WO2007086528A1 - 半導体受光素子 - Google Patents

半導体受光素子 Download PDF

Info

Publication number
WO2007086528A1
WO2007086528A1 PCT/JP2007/051313 JP2007051313W WO2007086528A1 WO 2007086528 A1 WO2007086528 A1 WO 2007086528A1 JP 2007051313 W JP2007051313 W JP 2007051313W WO 2007086528 A1 WO2007086528 A1 WO 2007086528A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
receiving element
light receiving
semiconductor light
inp
Prior art date
Application number
PCT/JP2007/051313
Other languages
English (en)
French (fr)
Inventor
Takeshi Nakata
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US12/162,640 priority Critical patent/US7994601B2/en
Priority to JP2007556026A priority patent/JP5433948B2/ja
Publication of WO2007086528A1 publication Critical patent/WO2007086528A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Definitions

  • the present invention relates to a semiconductor light receiving element, and more particularly to a semiconductor light receiving element having excellent high frequency characteristics.
  • APD Advanced Photo Diodes
  • APD is an element having a built-in multiplication function and high light receiving sensitivity.
  • APDs can be roughly classified according to whether the material produced is Si or a compound semiconductor. It is possible to classify elements using compound semiconductors according to whether GaAs or InP is used as the substrate, and the structure is either planar or mesa. It is possible to classify by.
  • a semiconductor light-receiving element having a planar structure and an electron multiplying structure has a p-InP buffer layer (2), p-type on a compound semiconductor InP semiconductor substrate (1) as shown in FIG.
  • Light absorption layer (3), i-type light absorption layer (4), electric field relaxation layer (5), multiplication layer (6), etching stop layer (7), n-type nother layer (8), n-type contact layer (9) are stacked in order, and the n-type contact layer (9) and n-type buffer layer (8) are removed around the light-receiving area until they reach the etching stop layer (7), and Ti ions are implanted.
  • the guard ring (11) is formed, and the Zn diffusion is performed on the periphery of the guard ring (11) to form the Zn diffusion layer (10), and the formed Zn diffusion layer (10)
  • a p-type electrode (13) is formed on the upper part, and an n-type electrode (12) is formed on the upper part of the n-type contact layer (9).
  • Non-patent document 1 there is a document disclosing a planar and electron multiplication type element using a compound semiconductor InP semiconductor substrate, such as the semiconductor light receiving element shown in FIG. 1 (for example, Non-patent document 1).
  • Non-Patent Document 1 first includes a p-In P buffer layer, a p-InGaAs light absorption layer, a p-InP electric field relaxation layer, a superlattice increase on a semi-insulating InP substrate. Double layer, n- InP etching stop layer, n- InAlAs cap layer, n- InGaAs contact layer are stacked in this order, and then the n-InAlAs cap layer is removed in a ring shape so as to surround the light receiving portion.
  • a Zn diffusion region is provided in the periphery thereof, and a p-type electrode is provided in the upper portion of the Zn nucleic acid region.
  • a high-concentration first conductive semiconductor buffer layer is disposed on a semi-insulating semiconductor substrate or a high-concentration first conductive semiconductor substrate.
  • a low-concentration first-conductivity-type semiconductor light absorption layer, a first-conductivity-type semiconductor electric field relaxation layer, a superlattice multiplication layer, a high-concentration second-conductivity-type semiconductor cap layer, and a high-concentration second In a superlattice avalanche photodiode with a conductive semiconductor contact layer sequentially stacked, it is selectively formed in a region around the region to receive light, at least deeper than the first conductive semiconductor field relaxation layer from the surface.
  • the first conductive region, and the high-concentration second conductive semiconductor contact layer and the high-concentration second conductive semiconductor cap layer are not in contact with each other.
  • the high-concentration second conductive semiconductor contact Layer and high concentration Separation groove structure with a depth corresponding to the thickness of the second conductivity type semiconductor cap layer reduces the surface leakage dark current, which is a problem with mesa pn junction photodiodes, and is reliable with low dark current.
  • Patent Document 1 Japanese Patent No. 2762939
  • Non-Special Reference 1 A New planar-Structure InAluaAs-InAlAs Supenattice Avalanche P hotodiode with a Ti- Implanted Guard- Ring ", I. Watanabe, et at all, IEEE PHOTONI CS TECHNOLOGY LETTERS, VOL. 8, NO. 6, JUNE 1996
  • a compound semiconductor InP semiconductor substrate (1) is used to form a pseudo-planar type and an electron multiplying type APD, thereby achieving high speed. 'It is possible to construct a highly sensitive semiconductor light-receiving element.
  • the multiplication factor M is usually reduced and becomes stable.
  • the device has a certain probability of deterioration of the initial characteristics, in particular, a phenomenon in which dark current increases or a short-circuit failure occurs at a certain probability. This is thought to be because current concentration occurs and local heat is generated when current flows in the in-plane direction through the P-InP buffer layer (2) inside the device.
  • Non-Patent Document 1 as in the semiconductor light receiving element shown in FIG. 1, a compound semiconductor InP semiconductor substrate is used, which is the same as an element having a planar structure and an electron multiplying structure. Although such a technique is disclosed, it is not considered at all that the response of the element deteriorates when very high light is input as in the present invention. Patent Document 1 discloses that a high-concentration first conductive semiconductor having a layer thickness of about 0.5 to 1.0 m on a semi-insulating semiconductor substrate or a high-concentration first conductive semiconductor substrate. It is disclosed that the buffer layer is formed. However, it is not considered at all that the response of the device deteriorates when very high light is input.
  • the present invention has been made in view of the above circumstances.
  • a semiconductor light receiving element having a pseudo planar type and an electron multiplying type structure on an InP semiconductor substrate local heat is present. It is an object of the present invention to provide a semiconductor light receiving element that suppresses the generation of light, has high speed and high sensitivity characteristics even during high light input, and has high light input resistance.
  • the present invention has the following features.
  • a semiconductor light receiving device is a semiconductor light receiving device in which a light absorption layer is formed on an InP semiconductor substrate, and a quaternary yarn and a gap between the InP semiconductor substrate and the light absorption layer. It is characterized in that a quaternary buffer layer containing the composition material is formed.
  • the quaternary buffer layer has InxAlyGa (l—x—y) As or InxGa (1 -x) AsyP (1 -Including y).
  • the quaternary buffer layer has a layer thickness of 0.5 m or more.
  • the layer thickness of the quaternary buffer layer is 1.5 m or less.
  • the band gap energy of the quaternary buffer layer: Eg (Q) is expressed by the relation: Eg (InP)> Eg (Q)> ⁇ ⁇ (where Eg (InP): It is characterized by satisfying the band gap energy of the InP semiconductor substrate, ⁇ : energy corresponding to the wavelength of the signal light to be received.
  • a semiconductor light receiving element is a semiconductor light receiving element in which a light absorption layer is formed on an InP semiconductor substrate, and a current is interposed between the InP semiconductor substrate and the light absorption layer. A current dispersion layer for dispersing the distribution is formed.
  • the current distribution layer includes an impurity concentration gradient structure.
  • the concentration gradient structure is characterized in that the concentration is high on the InP semiconductor substrate side and the concentration is low on the light absorption layer side.
  • R1 (G1) X O. 1 range (however, the layer thickness of the concentration gradient structure: d, guard ring width: G1, R1 (G1) X O. 1 range (however, the layer thickness of the concentration gradient structure: d, guard ring width: G1, R1 (G1) X O. 1 range (however, the layer thickness of the concentration gradient structure: d, guard ring width: G1, R1 (G1) X O. 1 range (however, the layer thickness of the concentration gradient structure: d, guard ring width: G1, R1 (G1) X O. 1 range (however, the layer thickness of the concentration gradient structure: d, guard ring width: G1, R1 (G1) X O. 1 range (however, the layer thickness of the concentration gradient structure: d, guard ring width: G1, R1 (G1) X O. 1 range (however, the layer thickness of the concentration gradient structure: d, guard ring width: G1, R1 (G1) X O. 1 range (however, the
  • the current spreading layer includes InxAlyGa (l—x—y) As or InxGa (1 ⁇ x) AsyP (1 ⁇ y) having a lattice matching with InP. It is characterized by including.
  • the band gap energy of the current dispersion layer: Eg (Q) is expressed by the relation: Eg (InP)> Eg (Q)> ⁇ ⁇ (where Eg (InP): InP semiconductor substrate band gap energy, ⁇ ⁇ : energy corresponding to the wavelength of the signal light to be received, is characterized.
  • the thickness of the current spreading layer is 1.5 / zm or less.
  • the semiconductor light-receiving element according to the present invention has a continuous layer in which a ternary layer having a material force of a ternary composition and a quaternary layer made of a quaternary material are continuously formed. It is characterized in that a crystal quality recovery layer for dividing is formed.
  • the crystal quality recovery layer includes a light absorption layer
  • the crystal quality recovery layer is formed between the light absorption layer and the current dispersion layer, or in the light absorption layer or in the current dispersion layer. It is characterized by.
  • the crystal quality recovery layer includes a material having a binary composition.
  • the crystal quality recovery layer has a layer thickness in a range of 10 ⁇ m or more and lOOnm or less.
  • the concentration of the crystal quality recovery layer is equal to or higher than the concentration of the layer in contact with the upper part of the crystal quality recovery layer. It is characterized by being formed so as to be equal to or lower than the concentration. [0037] Further, in the semiconductor light receiving element according to the present invention, the width between the uppermost end of the light absorption layer and the uppermost end of the crystal quality recovery layer is 1.5 m or less.
  • a semiconductor light receiving element having a pseudo planar type and an electron multiplying type structure on an InP semiconductor substrate local heat generation is suppressed, and a high light input is possible. It is possible to form a semiconductor light receiving element having high speed and high sensitivity characteristics and high light input resistance.
  • the semiconductor light receiving element in the present embodiment is a semiconductor light receiving element in which a light absorption layer (3, 4) is formed on an InP semiconductor substrate (1).
  • a quaternary buffer layer (21) containing a material having a quaternary composition is formed between (1) and the light absorption layer (3, 4).
  • the semiconductor element in the present embodiment is a semiconductor light receiving element in which a light absorption layer (3, 4) is formed on an InP semiconductor substrate (1), and includes an InP semiconductor.
  • a current distribution layer (31) for distributing current distribution is formed between the substrate (1) and the light absorption layers (3, 4).
  • the binary composition material is treated as a material composed of two elements. Impurities that can be mixed into the manufacturing process and those that do not affect the manufacturing process are not counted as constituent elements. The same applies to ternary composition materials and quaternary composition materials.
  • the semiconductor light receiving element in the present embodiment has a p-type buffer layer structure formed between the InP semiconductor substrate (1) and the light absorption layers (3, 4).
  • a layer having a structure that achieves both the function of maintaining the characteristics of the element and the function of not concentrating heat is formed.
  • a quaternary buffer layer (21) containing a quaternary material is disposed in a p-type buffer layer that has been conventionally composed of p-InP at a constant concentration.
  • a current distribution layer (31) for distributing the current distribution is disposed. This suppresses local heat generation, has high-speed and high-sensitivity characteristics even during high light input, and is highly resistant to light input.
  • a light receiving element can be formed.
  • the semiconductor light receiving element in the present embodiment will be described with reference to the accompanying drawings.
  • the semiconductor light receiving element in this embodiment includes an InP semiconductor substrate (1), a p-InP buffer layer (2), a p-type quaternary buffer layer (21), and a p-type.
  • the semiconductor light-receiving element in the present embodiment has an n-type contact layer (with respect to the semiconductor light-receiving element having the layer structure shown in FIG. 2) so as to surround the light-receiving portion until the etching stop layer (7) is reached. 9) and the n-type buffer layer (8) are removed from above, and Ti ions are implanted to form a guard ring (11). Also, Zn diffusion is performed on the periphery of the guard ring (11), a Zn diffusion layer (10) is provided on the periphery of the light receiving portion, and a p-type is formed on the upper portion where the Zn diffusion layer (10) is provided. An electrode (13) is provided, and an n-type electrode (12) is provided above the n-type contact layer (9).
  • the p-InP buffer layer (2) of the semiconductor light receiving element in the present embodiment can be configured as a p-type force i-type or n-type. .
  • InxAly having a lattice-matched composition to InP is used as a material of the p-type quaternary buffer layer (21).
  • the p-type quaternary buffer layer (21) in the present embodiment is intended to be able to transmit current due to holes generated in the light receiving portion without loss, so that the p-type quaternary buffer layer (21) It is desirable that the buffer layer (21) is thicker and thicker.
  • the current transfer effect can be enhanced.
  • the band gap energy of the p-type quaternary buffer layer (21): Eg (Q) increases the p-type concentration and improves the electrical conductivity, so that the band gap energy of the InP semiconductor substrate (1) is increased. Energy: Smaller than Eg (InP) is desirable.
  • the band gap energy of the p-type quaternary buffer layer (21): Eg (Q) is The energy corresponding to the wavelength of the signal light to be received is larger than E ⁇ ! Therefore, it is desirable that the band gap energy Eg (Q) of the ⁇ -type quaternary buffer layer (21) satisfies the following relational expression (1).
  • the p-type quaternary buffer layer (21) has a p-concentration of 5 x 10 17 cm 3 or more and functions as a low-resistance buffer layer. Compared with the p-type light absorption layer (3) Even in such a case, it is desirable that the resistance is low.
  • the p-type quaternary buffer layer (21) is about 2 ⁇ 10 18 cm— 3 to about 1 in comparison with the p—InP buffer layer (2).
  • a p-type quaternary buffer layer (21) is used to form a semiconductor light-receiving element, even if only a material lattice-matched to the InP semiconductor substrate (1) is used, the layer structure without InP is used. If the APD structure is placed on the upper part, the crystal quality of the light absorption layer (3, 4) and multiplication layer (6) will deteriorate and dark current will be lost. Will increase.
  • crystal quality is determined based on the quality from the viewpoint of the amount of dark current generated purely. It is not a value that is evaluated based on the intensity or line width of photoluminescence, the signal intensity when evaluated by X-ray diffraction, or the half-value width.
  • the crystal quality recovery layer (22) containing the binary material (InP) with respect to the ternary layer and the continuous portion of the quaternary layer It is possible to solve this problem by dividing the layers that make up the continuous part of the ternary layer and quaternary layer, and reducing the continuous amount of the ternary layer and quaternary layer.
  • Crystal quality degradation due to the continuation of the ternary layer and the quaternary layer generates a force of about 1.5 m in the thickness of the continuous layer. It is desirable to form a crystal quality recovery layer (22) containing a binary material (InP) for a layer constituting a continuous part of the ternary layer and the quaternary layer with 1. as a limit.
  • a crystal quality recovery layer (22) containing a binary material (InP) for a layer constituting a continuous part of the ternary layer and the quaternary layer with 1. as a limit.
  • the layer thickness of the crystal quality recovery layer (22) is effective even when it is very thin, and it is possible to exert a force effect of lOnm or more.
  • the above-described effect is enhanced by increasing the layer thickness of the crystal quality recovery layer (22), the recovery effect starts to saturate when the thickness exceeds lOOnm. Therefore, it is desirable to form the crystal quality recovery layer (22) with a layer thickness in the range from lOnm to lOOnm.
  • the layer thickness of the light absorption layer (3, 4) is 1.5 m or less, the lowest part of the light absorption layer (3, 4) and the lowest layer of the light absorption layer (3, 4) are used.
  • the effect is demonstrated by arranging the crystal quality recovery layer (22) between the point located 1.5 m below the upper part.
  • the light absorption layer (3, 4) has a composition: InGaAs
  • a layer thickness: d l.
  • the top of the p-type quaternary buffer layer (21) is A, and the point located 0.3 ⁇ m below the top of the p-type quaternary buffer layer (21) is It is desirable to arrange the crystal quality recovery layer (22) between them.
  • the crystal quality recovery layer (22) is disposed inside the light absorption layer (3, 4). Alternatively, it is desirable to place it at the lowest end of the light absorption layer (3, 4).
  • the layer structure for relaxing the band discontinuities such as ⁇ and A Ec is configured by applying materials in which the conduction band and valence band of electrons are in InGa As and InP, respectively. It will be.
  • band gap energy Applying a quaternary layer (InAlGaAs, InGaAsP) with an Eg of 1.3 ⁇ m in terms of the wavelength of light, or a gap between InGaAs and InP 1. and 1 It is possible to effectively relax ⁇ ⁇ ⁇ ⁇ by, for example, continuously forming materials with 3 / zm and 1.1 / zm compositions.
  • the semiconductor light receiving element in the present embodiment has a p-InP buffer layer (2), a p-type quaternary buffer layer (21), p-type light on an InP semiconductor substrate (1).
  • Absorption layer (3), i-type light absorption layer (4), electric field relaxation layer (5), multiplication layer (6), plating stop layer (7), n-type buffer layer (8), n-type contact layer (9) are stacked in order, and the n-type contact layer (9) and n-type buffer layer (8) are removed around the light receiving part until they reach the etching stop layer (7), and Ti ions are implanted. , Forming a guard ring (11).
  • Zn diffusion is performed on the periphery of the guard ring (11) to form a Zn diffusion layer (10), and the upper part of the formed Zn diffusion layer (10) is formed.
  • the p-type electrode (13) is formed, and the n-type electrode (12) is formed on the n-type contact layer (9). Note that an AR (Anti Reflection) coating is applied to the lower incident surface of the InP semiconductor substrate (1).
  • the semiconductor light receiving element in this embodiment shown in FIG. 2 is provided by providing a p-type quaternary buffer layer (21) having a high impurity concentration on the InP semiconductor substrate (1) that is a compound semiconductor substrate.
  • the current corresponding to the optical carrier reached by the p-type light absorption layer (3) is easy to flow, and when the multiplication factor M is small, an element that does not deteriorate the initial characteristics even with a light input of about 10 mW is formed. It is possible to
  • the semiconductor light receiving element in the present embodiment has a p-InP buffer layer (2), a p-type quaternary buffer layer (21), a crystal quality recovery on an InP semiconductor substrate (1).
  • Zn diffusion is performed on the periphery of the guard ring (11) to form a Zn diffusion layer (10), and to the upper part of the formed Zn diffusion layer (10).
  • the p-type electrode (13) is formed, and the n-type electrode (12) is formed on the n-type contact layer (9). Note that an AR coating is applied to the incident surface below the InP semiconductor substrate (1).
  • the semiconductor light receiving element in this embodiment shown in FIG. 4 is provided with a p-type quaternary buffer layer (21) having a high impurity concentration on an InP semiconductor substrate (1) that is a compound semiconductor substrate.
  • the current corresponding to the optical carrier reached by the p-type light absorption layer (3) is easy to flow, and under the condition that the multiplication factor M is small, the initial characteristics are not deteriorated even for light input of about 10 mW.
  • the layer in which the ternary layer and the quaternary layer are continuous becomes thick.
  • a crystal quality recovery layer (22) is inserted to reduce the continuous amount of the ternary and quaternary layers, thereby reducing the dark current of the device. It becomes possible.
  • the crystal quality recovery layer (22) can be arranged in the p-type light absorption layer (3) or in the p-type quaternary buffer layer (21). .
  • the semiconductor photodetector in the second embodiment includes an InP semiconductor substrate (1), a p-InP buffer layer (2), a current distribution p-type buffer layer (31), , P-type light absorption layer (3), i-type light absorption layer (4), electric field relaxation layer (5), multiplication layer (6), etching stop layer (7), n-type buffer layer ( 8) and an n-type contact layer (9).
  • the semiconductor light receiving device in the second embodiment is an n-type contact layer that surrounds the light receiving portion until it reaches the etching stop layer (7) with respect to the semiconductor light receiving device having the layer structure shown in FIG. (9) and the n-type buffer layer (8) are removed from above, and Ti ions are implanted to form a guard ring (11). Also, Zn diffusion is performed on the periphery of the guard ring (11), a Zn diffusion layer (10) is provided on the periphery of the light receiving portion, and a p-type is formed on the upper portion where the Zn diffusion layer (10) is provided. An electrode (13) is provided, and an n-type electrode (12) is provided above the n-type contact layer (9).
  • the p-InP buffer layer (2) may be configured as a p-type force i-type or n-type. Is possible.
  • a current flowing in the in-plane direction is newly generated between the p-InP buffer layer (2) and the light absorption layers (3, 4). It is characterized in that a current distribution type P-type buffer layer (31) having a function of flowing uniformly in the layer is provided.
  • the p-InP buffer layer (2) is formed with a constant impurity concentration, and the resistivity is also constant within the layer. Therefore, the current caused by the optical carrier flows to the p-type electrode (13) so as to pass through the shortest path, and the path width becomes narrow.
  • the current distribution type p-type buffer layer (31) forms a resistivity distribution within the layer, and is configured with the intention that the current caused by the optical carriers spreads uniformly in the layer. As a result, the current density is reduced and the reliability of the device can be improved. A method for realizing this current spreading function will be described with reference to FIG.
  • the current is It passes through both “A” and “B” paths, and it is possible to reduce current concentration.
  • the two paths “A” and “B” are configured to have equal U ⁇ resistance.
  • the resistance of the current spreading p-type buffer layer (31) is set lower on the lower side and higher on the upper side so that the path "B" farther than the path "A” has a lower resistance.
  • an impurity concentration gradient structure is used.
  • the concentration gradient structure is determined so that the impurity concentration is higher at the lower side of the current dispersion p-type buffer layer (31) and lower at the upper side.
  • the concentration of the bottom surface of the concentration gradient layer constituting the concentration gradient structure is Na, and the concentration of the top surface is Nb.
  • the vertical direction of the concentration gradient layer The gradient can be either a first-order slope or a second-order slope.
  • the force directly below the light receiving portion is also the distance to the outer periphery of the guard ring (11).
  • R1 R2 for all carriers in the light receiving area.
  • Rl (LO) L0 / (L0 + 2d), where the distance of path “A” is LO.
  • R1 is determined using the value at the center of the light receiving unit
  • the force R1 that can be effective only at one point at the center of the light receiving unit is determined using the value around the light receiving unit as R1 Since the center of the light receiving unit can be effective on all circumferences that are equidistant, the actual design value of R1 is more effective by adjusting the value around the light receiving unit. It becomes possible to do.
  • the current density is at least l lkAZcm 2 or more.
  • the current density is 5 kAZcm 2 or more.
  • the total thickness of the concentration gradient layer is preferably set to 5.0 m or less.
  • the band gap energy: Eg (Q) of the current dispersion type p-type buffer layer (31) is preferably a quaternary composition in order to increase the p-concentration and increase the electrical conductivity.
  • Eg (Q) of the current dispersion type p-type buffer layer (31) is preferably a quaternary composition in order to increase the p-concentration and increase the electrical conductivity.
  • an InP semiconductor substrate (1) is used as the compound semiconductor, it is desirable to use InAlGaAs or InGaAsP that lattice matches with the InP semiconductor substrate (1).
  • impurities that have no particular effect are not included in the number of constituent elements, and when P is contained in the compound semiconductor InAlGaAs, the quaternary composition is not used.
  • the band gap energy of E31 (31): Eg (Q) is preferably smaller than the band gap energy of InP semiconductor substrate (1): Eg (InP). Since the signal light passes through the current spreading p-type buffer layer (31), the band gap energy: Eg (Q) of the current spreading p-type buffer layer (31) is It is desirable that the energy corresponding to the wavelength of the signal light to be received is larger than ⁇ . Therefore, it is desirable that the band gap energy Eg (Q) of the current dispersion type ⁇ type buffer layer (31) satisfies the following relational expression (2).
  • the band gap energy of the current-spreading p-type buffer layer (31) Eg (Q )
  • Eg (In P)> Eg (Q)> E l ( ⁇ 1.3 m).
  • the current-dispersive p-type buffer layer (31) used in the second embodiment uses a material containing a quaternary composition, and therefore, like the semiconductor light-receiving element of the first embodiment, the current-spread type p-type bag
  • the fa layer (31) and the light absorbing layer (3, 4) form a continuous structure of quaternary and ternary layers, which may degrade the crystal quality.
  • the above-mentioned deterioration in crystal quality is a phenomenon in which the amount of dark current flowing for a certain electric field increases. In the case of APD, this dark current is multiplied to give a total current. As a result, degradation of crystal quality is a factor that significantly degrades device performance.
  • the semiconductor light receiving element in the present embodiment recovers the crystal quality of the thin film containing the binary material (inP) with respect to the uppermost part of the current dispersion p-type buffer layer (31) as shown in FIG. layer(
  • the layer thickness of the crystal quality recovery layer (32) is effective even when it is very thin, and it is possible to exert a force effect of lOnm or more.
  • the layer thickness of the crystal quality recovery layer (32) by increasing the layer thickness of the crystal quality recovery layer (32), the above-described effect is enhanced. However, the recovery effect starts to saturate at lOOnm or more. Therefore, it is desirable to form the layer thickness of the crystal quality recovery layer (32) in the range from lOnm to lOOnm.
  • the impurity concentration of the crystal quality recovery layer (32) is set to a range equal to or higher than the concentration of the layer in contact with the upper surface, or set to a range equal to or lower than the concentration of the layer in contact with the lower surface. It becomes possible to flow an electric current smoothly.
  • the layer thickness of the light absorption layer (3, 4) is 1.5 m or less, the bottom part of the light absorption layer (3, 4) and the top part of the light absorption layer (3, 4) The effect is demonstrated by arranging the crystal quality recovery layer (32) between the point 1.5 m below and the point located 1.5 m below.
  • the top of the current spreading p-type buffer layer (31) is A
  • the top of the current spreading p-type buffer layer (31) is A force 0.3 ml nP on the semiconductor substrate (1) side. If the point to be treated is B, the crystal quality recovery layer (32 ) Is desired to be arranged.
  • the crystal quality recovery layer (32) is arranged inside the light absorption layer (3, 4). Alternatively, it is desirable to place it at the lowest end of the light absorption layer (3, 4).
  • the crystal quality recovery layer (32) is arranged inside the light absorption layer (3, 4), the ⁇ ⁇ V and ⁇ Ec and the band discontinuity amount are large! / Therefore, it is effective to arrange ⁇ Ev and ⁇ Ec and the layer structure to alleviate the band discontinuity above and below the crystal quality recovery layer (32). It is. As a result, it is possible to avoid obstructing the traveling of the carrier.
  • the layer structure for relaxing the band discontinuities such as ⁇ and A Ec is configured by applying materials in which the conduction band and valence band of electrons are in InGa As and InP, respectively. It will be.
  • band gap energy Applying a quaternary layer (InAlGaAs, InGaAsP) with an Eg of 1.3 ⁇ m in terms of the wavelength of light, or a gap between InGaAs and InP 1. and 1 It is possible to effectively relax ⁇ ⁇ ⁇ ⁇ by, for example, continuously forming materials with 3 / zm and 1.1 / zm compositions.
  • the semiconductor light receiving element in the second embodiment has a p-InP buffer layer (2), a current distribution type p-type buffer layer (31) on an InP semiconductor substrate (1), p-type absorption layer (3), i-type absorption layer (4), electric field relaxation layer (5), multiplication layer (6), etching stop layer (7), n-type buffer layer (8), n-type
  • the contact layer (9) is sequentially stacked, and the n-type contact layer (9) and the n-type buffer layer (8) are removed around the light-receiving area until the etching stop layer (7) is reached.
  • a guard ring (11) To form a guard ring (11).
  • Zn diffusion is performed on the periphery of the guard ring (11) to form a Zn diffusion layer (10), and the upper part of the formed Zn diffusion layer (10) is formed.
  • a Zn diffusion layer (10) is formed on the periphery of the guard ring (11) to form a Zn diffusion layer (10), and the upper part of the formed Zn diffusion layer (10) is formed.
  • an n-type electrode (12) is formed.
  • an AR (Anti Reflection) coat is applied to the lower incident surface of the InP semiconductor substrate (1).
  • the semiconductor light-receiving element according to the second embodiment includes a p-type light absorption layer by providing a current-spreading p-type buffer layer (31) on an InP semiconductor substrate (1) that is a compound semiconductor substrate.
  • Current concentration corresponding to the optical carrier reached in (3) is unlikely to occur, and it is possible to form an element without deteriorating the initial characteristics even at 10 mW @ Become.
  • the semiconductor photodetector in the second embodiment has a p-InP buffer layer (2), a current distribution p-type buffer layer (31) on an InP semiconductor substrate (1), Crystal quality recovery layer (3
  • n-type contact layer (9) is sequentially stacked, and the n-type contact layer (9) and the n-type buffer layer (8) are removed around the light-receiving portion until the etching stop layer (7) is reached. Ions are implanted to form a guard ring (11). After forming the dielectric film, Zn diffusion is performed on the periphery of the guard ring (11) to form a Zn diffusion layer (10), and the upper part of the formed Zn diffusion layer (10) is formed. P-type electrode (13), n An n-type electrode (12) is formed on the top of the type contact layer (9). Note that an AR (Anti Reflection) coat is applied to the lower incident surface of the InP semiconductor substrate (1).
  • AR Anti Reflection
  • the light absorption layers (3, 4) are composed of InGaAs and layer thickness: 1.5 m.
  • a current distribution p-type buffer layer (31) is provided on the InP semiconductor substrate (1) to be a compound semiconductor substrate.
  • current concentration corresponding to the optical carrier reached in the p-type light absorption layer (3) is less likely to occur, and the initial characteristics are not deteriorated even with a light input of about 10 mW under the condition that the multiplication factor M is small. It is possible to form a saddle element.
  • the semiconductor light receiving element in the second embodiment is provided with the crystal quality recovery layer (32), so that a highly sensitive element with a low dark current is formed over the wafer surface with a high yield. It becomes possible.
  • FIG. 1 is a diagram showing a configuration of a conventional semiconductor light receiving element.
  • FIG. 2 is a diagram showing a first configuration of the semiconductor light receiving element according to the first embodiment.
  • FIG. 3 is a diagram showing a first configuration of a semiconductor light receiving element according to a second embodiment.
  • FIG. 4 is a diagram showing a second configuration of the semiconductor light receiving element according to the first embodiment.
  • FIG. 5 is a diagram for explaining a current distribution function in the semiconductor light receiving element of the second embodiment.
  • FIG. 6 is a diagram showing a second configuration of the semiconductor light receiving element of the second embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

 局所的な熱の発生を抑制し、高光入力時も高速・高感度特性を有し、光入力耐性の高い半導体受光素子を提供する。  InP半導体基板(1)上に光吸収層(3、4)が形成されてなる半導体受光素子において、InP半導体基板(1)と、光吸収層(3、4)と、の間に、4元組成の材料を含むバッファ層(21)が形成されてなることを特徴とする。

Description

明 細 書
半導体受光素子
技術分野
[0001] 本発明は、半導体受光素子に関し、特に、高周波特性に優れた半導体受光素子 に関するものである。
背景技術
[0002] 半導体受光素子には、様々な種類があるが、その中でも、 APD (Avalanche Photo Diodes)は、増倍機能を内蔵し、受光感度が高い素子である。
[0003] なお、 APDはおおまかに、作製される材料が Siか、化合物半導体か、で分類する ことが可能である。なお、化合物半導体を用いた素子の中では、基板として GaAsを 用いるか、 InPを用いるかで分類することが可能であり、また、構造に関しては、プレ ーナ型であるか、メサ型であるかで分類することが可能である。
[0004] また、その層構成とキャリア増倍の原理構成との違 、から、電子増倍型とホール増 倍型とに分類することが可能である。
[0005] なお、化合物半導体を用い、プレーナ構造で且つ、電子増倍型の構造の半導体受 光素子について、図 1を参照しながら説明する。
[0006] プレーナ構造で且つ、電子増倍型の構造の半導体受光素子は、図 1に示すように 、化合物半導体の InP半導体基板(1)上に、 p— InPバッファ層 (2)、 p型光吸収層( 3)、 i型光吸収層(4)、電界緩和層(5)、増倍層 (6)、エッチングストップ層 (7)、 n型 ノ ッファ層(8)、 n型コンタクト層(9)を順に積層し、受光部の周辺において、 n型コン タクト層(9)と、 n型バッファ層(8)と、をエッチングストップ層 (7)に達するまで除去し、 Tiイオンを注入し、ガードリング(11)を形成し、また、ガードリング(11)の周辺部に対 し、 Zn拡散を行い、 Zn拡散層(10)を形成し、その形成した Zn拡散層(10)の上部に 対し、 p型電極(13)を形成し、 n型コンタクト層(9)の上部に対し、 n型電極(12)を形 成すること〖こなる。
[0007] この図 1に示す半導体受光素子に対し、信号光を入射させ、得られた光電流を最 適増倍率 M (M= 10前後)にて増倍させるようにバイアス電圧を調節すると、その増 幅機能により、 p—i— n型半導体受光素子よりも高い受信感度を有する光受信機を 構築することが可能となる。
[0008] この図 1に示す半導体受光素子と、最適な受信回路と、を組み合わせることで、 10 GbZsの高速応答の APD受信機を製造することが可能となる。
[0009] なお、図 1に示す半導体受光素子のように、化合物半導体の InP半導体基板を用 い、プレーナ構造で且つ、電子増倍型の構造の素子が開示された文献がある (例え ば、非特許文献 1参照)。
[0010] 上記非特許文献 1に開示されている素子は、まず、半絶縁性 InP基板上に、 p-In Pバッファ層、 p— InGaAs光吸収層、 p— InP電界緩和層、超格子増倍層、 n— InP エッチングストップ層、 n— InAlAsキャップ層、 n— InGaAsコンタクト層を順に積層し 、次に、受光部を取り囲むようにリング状に、 n—InAlAsキャップ層を除去し、 Tiィォ ンを注入し、その周辺部に対し、 Zn拡散領域を設け、その Zn核酸領域の上部に対し 、 p型電極を設けて構成することになる。
[0011] また、本発明より先に出願された特許文献として、半絶縁性半導体基板もしくは高 濃度の第 1導伝型半導体基板上に、高濃度の第 1導伝型半導体バッファ層を介して 、低濃度第 1導伝型半導体光吸収層と、第 1導伝型半導体電界緩和層と、超格子増 倍層と、高濃度の第 2導伝型半導体キャップ層と、高濃度の第 2導伝型半導体コンタ タト層とを順次積層した超格子アバランシェフオトダイオードにおいて、受光に供する 領域の周囲の領域に、表面より少なくとも前記第 1導伝型半導体電界緩和層より深い 位置まで選択的に形成した第 1導伝型化領域を有し、かつ、前記第 1導伝型化領域 と高濃度第 2導伝型半導体コンタクト層及び高濃度第 2導伝型半導体キャップ層が 接しないように、その境界領域に前記高濃度第 2導伝型半導体コンタクト層と高濃度 第 2導伝型半導体キャップ層の厚さに相当する深さの分離溝構造を有し、メサ型 pn 接合フォトダイオードで問題となる表面リーク暗電流を低減し低暗電流で信頼性の高 い超格子アバランシェフオトダイオードを実現した超格子アバランシェフオトダイォー ドが開示された文献がある (例えば、特許文献 1参照)。
特許文献 1:特許第 2762939号公報
非特干文献 1: A New planar-Structure InAluaAs-InAlAs Supenattice Avalanche P hotodiode with a Ti- Implanted Guard- Ring", I. Watanabe, et at all, IEEE PHOTONI CS TECHNOLOGY LETTERS, VOL. 8, NO. 6, JUNE 1996
発明の開示
発明が解決しょうとする課題
[0012] なお、上述した図 1に示す半導体受光素子のように、化合物半導体の InP半導体 基板(1)を用い、擬似プレーナ型で、且つ、電子増倍型の APDを形成することで、 高速'高感度な半導体受光素子を構築することが可能となる。
[0013] し力しながら、図 1に示す半導体受光素子に対し、非常に高い光を入力させた場合 に、素子の応答が劣化する虞があることが判明した。
[0014] 光の弱い状態で、 APDにバイアスをかけておき、高いレベルの光を入力させた場 合、通常、増倍率 Mが小さくなつて安定した状態になる。し力しながら、素子において は、ある一定の確率において、初期特性の劣化、特に、暗電流が増加する現象や、 ショート故障が発生する事例がある。これは、素子内部の P— InPバッファ層(2)を電 流が面内方向に流れる際に、電流集中が発生し、局所的な熱が発生するためと考え られる。
[0015] なお、上記非特許文献 1には、図 1に示す半導体受光素子のように、化合物半導 体の InP半導体基板を用い、プレーナ構造で且つ、電子増倍型の構造の素子と同 様な技術について開示されているが、本願発明のように、非常に高い光を入力させ た場合に、素子の応答が劣化する点については何ら考慮されたものではない。また、 上記特許文献 1には、半絶縁性半導体基板もしくは高濃度の第 1導伝型半導体基板 上に、 0. 5〜1. 0 m程度の層厚の高濃度の第 1導伝型半導体バッファ層を形成す る点については開示されている力 非常に高い光を入力させた場合に、素子の応答 が劣化する点にっ ヽては何ら考慮されたものではな 、。
[0016] 本発明は、上記事情に鑑みてなされたものであり、 InP半導体基板上に、擬似プレ ーナ型と、電子増倍型と、の構造を有する半導体受光素子において、局所的な熱の 発生を抑制し、高光入力時も高速,高感度特性を有し、光入力耐性の高い半導体受 光素子を提供することを目的とするものである。
課題を解決するための手段 [0017] かかる目的を達成するために、本発明は以下の特徴を有することとする。
[0018] 本発明にかかる半導体受光素子は、 InP半導体基板上に光吸収層が形成されて なる半導体受光素子であって、 InP半導体基板と、光吸収層と、の間に、 4元糸且成の 材料を含む 4元バッファ層が形成されてなることを特徴とするものである。
[0019] また、本発明に力かる半導体受光素子において、 4元バッファ層は、 InPに格子整 合する組成の InxAlyGa (l—x—y)As、または、 InxGa ( 1 - x) AsyP ( 1 - y)を含む ことを特徴とするものである。
[0020] また、本発明に力かる半導体受光素子において、 4元バッファ層の層厚は、 0. 5 m以上であることを特徴とするものである。
[0021] また、本発明に力かる半導体受光素子において、 4元バッファ層の層厚は、 1. 5 m以下であることを特徴とするものである。
[0022] また、本発明に力かる半導体受光素子において、 4元バッファ層のバンドギャップェ ネルギー: Eg (Q)が、関係式: Eg (InP) >Eg (Q) >Ε λ (但し、 Eg (InP) : InP半導 体基板のバンドギャップエネルギー、 Ε λ:受光しょうとする信号光の波長に相当する エネルギー)を満たすことを特徴とするものである。
[0023] また、本発明にかかる半導体受光素子は、 InP半導体基板上に光吸収層が形成さ れてなる半導体受光素子であって、 InP半導体基板と、光吸収層と、の間に、電流分 布の分散を行う電流分散層が形成されてなることを特徴とするものである。
[0024] また、本発明にかかる半導体受光素子において、電流分散層は、不純物の濃度勾 配構造を含むことを特徴とするものである。
[0025] また、本発明にかかる半導体受光素子において、濃度勾配構造は、 InP半導体基 板側で濃度が高ぐ光吸収層側で濃度が低くなつて ヽることを特徴とするものである。
[0026] また、本発明にかかる半導体受光素子において、濃度勾配構造は、濃度勾配の最 下面濃度: Naと、濃度勾配の最上面濃度: Nbと、の比: R2 = NbZNaが、 1 >R2>
R1 (G1) X O. 1の範囲(但し、濃度勾配構造の層厚: d、ガードリング幅: G1、R1 (G
1) =G1/ (G1 + 2d) )であることを特徴とするものである。
[0027] また、本発明にかかる半導体受光素子において、濃度勾配構造は、濃度勾配の最 下面濃度: Naと、濃度勾配の最上面濃度: Nbと、の比: R2 = NbZNaが、 R2=R1 ( G 1 ) (但し、濃度勾配構造の層厚: d、ガードリング幅: Gl、Rl (Gl) =GlZ (Gl + 2 d) )の範囲であることを特徴とするものである。
[0028] また、本発明にかかる半導体受光素子において、電流分散層は、 InPに格子整合 する組成の InxAlyGa (l—x—y)As、または、 InxGa ( 1 - x) AsyP ( 1 - y)を含むこ とを特徴とするものである。
[0029] また、本発明に力かる半導体受光素子において、電流分散層のバンドギャップエネ ルギ一: Eg (Q)が、関係式: Eg (InP) >Eg (Q) >Ε λ (但し、 Eg (InP) : InP半導体 基板のバンドギャップエネルギー、 Ε λ:受光しょうとする信号光の波長に相当するェ ネルギー)を満たすことを特徴とするものである。
[0030] また、本発明に力かる半導体受光素子において、電流分散層の層厚は、 1. 5 /z m 以下であることを特徴とするものである。
[0031] また、本発明に力かる半導体受光素子は、 3元組成の材料力 なる 3元層と、 4元組 成の材料からなる 4元層と、が連続して構成される連続層を分割するための結晶品質 回復層が形成されてなることを特徴とするものである。
[0032] また、本発明にかかる半導体受光素子において、結晶品質回復層は、光吸収層と
4元バッファ層との間、または、光吸収層の中、または、 4元バッファ層の中に形成さ れてなることを特徴とするものである。
[0033] また、本発明にかかる半導体受光素子において、結晶品質回復層は、光吸収層と 電流分散層との間、または、光吸収層の中、または、電流分散層の中に形成されて なることを特徴とするものである。
[0034] また、本発明にかかる半導体受光素子において、結晶品質回復層は、 2元組成の 材料を含むことを特徴とするものである。
[0035] また、本発明にかかる半導体受光素子において、結晶品質回復層の層厚は、 10η m以上〜 lOOnm以下の範囲であることを特徴とするものである。
[0036] また、本発明にかかる半導体受光素子において、結晶品質回復層の濃度が、結晶 品質回復層の上部に接する層の濃度と同等もしくは高ぐまた、結晶品質回復層の 下部に接する層の濃度と同等もしくは低くなるように形成されてなることを特徴とする ものである。 [0037] また、本発明にかかる半導体受光素子において、光吸収層の最上端と結晶品質回 復層の最上端との間の幅が、 1.5 m以下であることを特徴とするものである。
発明の効果
[0038] 本発明によれば、 InP半導体基板上に、擬似プレーナ型と、電子増倍型と、の構造 を有する半導体受光素子において、局所的な熱の発生を抑制し、高光入力時も高 速 ·高感度特性を有し、光入力耐性の高い半導体受光素子を形成することが可能と なる。
発明を実施するための最良の形態
[0039] まず、図 2、図 3を参照しながら、本実施形態における半導体受光素子の特徴につ いて説明する。
[0040] 本実施形態における半導体受光素子は、図 2に示すように、 InP半導体基板(1)上 に光吸収層(3、 4)が形成されてなる半導体受光素子であって、 InP半導体基板(1) と、光吸収層(3、 4)と、の間に、 4元組成の材料を含む 4元バッファ層(21)が形成さ れてなることを特徴とするものである。
[0041] また、本実施形態における半導体素子は、図 3に示すように、 InP半導体基板(1) 上に光吸収層(3、 4)が形成されてなる半導体受光素子であって、 InP半導体基板( 1)と、光吸収層(3、 4)と、の間に、電流分布の分散を行う電流分散層(31)が形成さ れてなることを特徴とするものである。以下に示す 2元組成材料の定義として、 2元組 成材料は、 2元素から組成された材料として扱う。これに製造上混入しえる不純物、 特段影響しないものは、構成元素として数えないものとする。 3元組成材料、 4元組成 材料も同様とする。
[0042] このように、本実施形態における半導体受光素子は、 InP半導体基板(1)と、光吸 収層(3、 4)と、の間に形成される p型バッファ層の構造において、半導体素子の特性 を維持する機能と、熱が集中しない機能と、を両立させる構造の層を形成する。具体 的には、従来、一定濃度の p— InPで構成されていた p型バッファ層において、図 2に 示すように、 4元組成の材料を含む 4元バッファ層(21)を配置する。また、図 3に示す ように、電流分布の分散を行う電流分散層(31)を配置する。これにより、局所的な熱 の発生を抑制し、高光入力時も高速,高感度特性を有し、光入力耐性の高い半導体 受光素子を形成することが可能となる。以下、添付図面を参照しながら、本実施形態 における半導体受光素子について説明する。
[0043] (第 1の実施形態)
まず、図 2を参照しながら、本実施形態における半導体受光素子の構成について 説明する。
[0044] 本実施形態における半導体受光素子は、図 2に示すように、 InP半導体基板(1)と 、 p— InPバッファ層(2)と、 p型 4元バッファ層(21)と、 p型光吸収層(3)と、 i型光吸 収層(4)と、電界緩和層(5)と、増倍層 (6)と、エッチングストップ層(7)と、 n型バッフ ァ層(8)と、 n型コンタクト層(9)と、を有して構成される。
[0045] 本実施形態における半導体受光素子は、図 2に示す層構造からなる半導体受光素 子に対し、エッチングストップ層 (7)に達するまで、受光部を取り囲むように、 n型コン タクト層(9)と、 n型バッファ層(8)と、を上部から除去し、 Tiイオンを注入し、ガードリ ング(11)を形成する。また、ガードリング(11)の周辺部に対し、 Zn拡散を行い、受 光部周辺に対し、 Zn拡散層(10)を設け、その Zn拡散層(10)を設けた上部に対し、 p型電極(13)を設け、また、 n型コンタクト層(9)の上部に対し、 n型電極(12)を設け ることになる。
[0046] なお、本実施形態における半導体受光素子は、図 2に示すように、 p— InPバッファ 層(2)は、 p型とした力 i型や、 n型で構成することも可能である。
[0047] また、 p型 4元バッファ層(21)の材料としては、 InPに格子整合する組成の InxAly
Ga (1— X— y) As、もしくは、 InxGa (1— x) AsyP (1— y)を適用することが望まし!、。
[0048] また、本実施形態における p型 4元バッファ層(21)は、受光部で発生したホールに よる電流を損失することなく伝達できるようにすることが目的であるため、 p型 4元バッ ファ層(21)の層厚が厚ぐ濃度も高い方が望ましい。
[0049] 例えば、 p型 4元バッファ層(21)の層厚: d=0. 5 m以上に設定することで、電流 の伝達効果を高めることが可能となる。
[0050] また、 p型 4元バッファ層(21)のバンドギャップエネルギー: Eg (Q)は、 p型濃度を 高くして電気伝導度を向上させるため、 InP半導体基板(1)のバンドギャップェネル ギー: Eg (InP)と比較して小さいほうが望ましい。し力しながら、裏面入射型の場合、 信号光は、 p -InPバッファ層(2)を通過することになるため、光の損失を発生させな いように、 p型 4元バッファ層(21)のバンドギャップエネルギー: Eg (Q)は、受光しょう とする信号光の波長に相当するエネルギー: E λと比較して大き!/、方が望ま 、。従 つて、 ρ型 4元バッファ層(21)のバンドギャップエネルギー: Eg (Q)は、次の関係式( 1)を満たすことが望ましい。
[0051] 関係式(l) : Eg (InP) >Eg (Q) >E
Eg (InP): InP半導体基板 (1)のバンドギャップエネルギー
Eg (Q): p型 4元バッファ層(21)のバンドギャップエネルギー
E λ:受光しょうとする信号光の波長に相当するエネルギー
[0052] なお、信号光は、一般的には、 1. 3 /ζ πι〜1. 55 mの波長を用いるため、 p型 4元 バッファ層(21)のバンドギャップエネルギー: Eg (Q)は、関係式(1): Eg (InP) >Eg (Q) >E ( λ = 1. 3 m)を満たすことが望ましい。
[0053] また、 p型 4元バッファ層(21)の p濃度は、 5 X 1017cm 3以上で低抵抗なバッファ層 として機能することになるが、 p型光吸収層(3)と比較した場合でも低抵抗な条件であ ることが望ましい。
[0054] p型 4元バッファ層(21)は、 p— InPバッファ層(2)と比較し、約 2 X 1018cm— 3〜約 1
X 1019cm 3の範囲の不純物濃度の高い層を形成することが可能であるため、 p型光 吸収層(3)の濃度を、 1 X 1018cm 3と高めた場合でも、 p型光吸収層(3)と比較して 抵抗率の低いバッファ層を形成することが可能となる。
[0055] 次に、本実施形態の半導体受光素子のように、 p型 4元バッファ層(21)を用いた構 造の場合に発生する課題と、その課題を解決するための解決方法にっ ヽて説明す る。
[0056] p型 4元バッファ層(21)を用いて半導体受光素子を構成した場合、 InP半導体基 板(1)に対して格子整合する材料のみを用いた場合でも、 InPのない層構造の部分 が厚く構成されてしまうことになり、その上部に対し、 APD構造を配置した場合には、 光吸収層(3、 4)や、増倍層(6)の結晶品質が劣化し、暗電流の増加を招くことにな る。
[0057] なお、上述した結晶品質とは、純粋に暗電流の発生量の観点からみた良否で判定 する品質であり、フォトルミネッセンスの強度や線幅、 X線回折で評価した場合の信号 強度や、半値幅等で評価したものではない。
[0058] この上述した課題を解決する方法としては、図 4に示すように、 3元層、 4元層の連 続部分に対し、 2元材料 (InP)を含む結晶品質回復層(22)を形成し、 3元層、 4元 層の連続部分を構成する層を分割し、 3元層、 4元層の連続量を小さくすることで解 決することが可能となる。
[0059] 3元層及び 4元層が連続することによる結晶品質の劣化は、連続層厚が 1. 5 m程 度力 発生することになるため、 3元層及び 4元層の連続量が 1. を限度として、 3元層及び 4元層の連続部分を構成する層に対し、 2元材料 (InP)を含む結晶品質 回復層(22)を形成することが望ま 、。
[0060] なお、結晶品質回復層(22)の層厚は、非常に薄い場合でも効果があり、 lOnm以 上力 効果を発揮することが可能となる。
[0061] なお、結晶品質回復層(22)の層厚を厚くすることにより、上述した効果は高まること になるが、 lOOnm以上になると回復効果は飽和し始めることになる。従って、結晶品 質回復層(22)の層厚を、 lOnm以上〜 lOOnm以下の範囲で形成することが望まし いことになる。
[0062] また、光吸収層(3、 4)の層厚が 1. 5 m以下の場合には、光吸収層(3、 4)の最 下部と、光吸収層(3、 4)の最上部から 1. 5 m下側に位置する点と、の間に、結晶 品質回復層(22)を配置するように構成することで効果を発揮することになる。
[0063] 例えば、光吸収層(3、 4)を、組成: InGaAs,層厚: d= l. とし、 p型 4元バッ ファ層(21)の層厚: d=0. 5 mとすると、 p型 4元バッファ層(21)の最上部を A、 p 型 4元バッファ層(21)の最上部から 0. 3 μ m下側に位置する点を Βとすると、 Aと Bと の間に結晶品質回復層(22)を配置するように構成することが望ま 、ことになる。
[0064] また、光吸収層(3、 4)の層厚: d= l. 5 m以上の場合には、光吸収層(3、 4)の 内部に、結晶品質回復層(22)を配置するか、もしくは、光吸収層(3、 4)の最下端に 配置することが望ましい。
[0065] なお、光吸収層(3、 4)の内部に、結晶品質回復層(22)を配置した場合には、 Δ Ε Vや Δ Ecと 、つたバンド不連続量が大き!/、場合が多ぐキャリアの走行を妨げることに なるので、 Δ Ενや Δ Ecと 、つたバンド不連続量を緩和するための層構造を結晶品 質回復層(22)の上下に配置するのが効果的である。これにより、キャリアの走行を阻 害することを回避することが可能となる。なお、 Δ Ενや A Ecといったバンド不連続量 を緩和するための層構造としては、電子の伝導帯と価電子帯とのそれぞれが、 InGa As, InPにあるような材料を適用して構成することになる。例えば、バンドギャップエネ ルギ一: Egが光の波長換算で 1. 3 μ m組成の 4元層(InAlGaAs, InGaAsP)を適 用したり、また、 InGaAsと InPとの間〖こ 1. と 1. 3 /z mと 1. 1 /z m組成の材料を 連続して形成するなどしたりすることで、 Δ Ε Δ Ενを効果的に緩和させることが可 能となる。
[0066] また、結晶品質回復層(22)から InP半導体基板(1)側の層厚が、 1. 以下と なるように構成することで、結晶品質の劣化を回避することが可能となる。
[0067] (第 1の実施形態の第 1の実施例)
次に、図 2を参照しながら、第 1実施形態の半導体受光素子の第 1の構成について 説明する。
[0068] 本実施形態における半導体受光素子は、図 2に示すように、 InP半導体基板(1)上 に、 p— InPバッファ層 (2)、 p型 4元バッファ層(21)、 p型光吸収層(3)、 i型光吸収 層(4)、電界緩和層(5)、増倍層 (6)、ヱツチングストップ層 (7)、 n型バッファ層(8)、 n型コンタクト層(9)を順に積層し、受光部の周辺において、 n型コンタクト層(9)と、 n 型バッファ層(8)と、をエッチングストップ層(7)に達するまで除去し、 Tiイオンを注入 し、ガードリング(11)を形成する。そして、誘電体膜を形成したのち、ガードリング(1 1)の周辺部に対し、 Zn拡散を行い、 Zn拡散層(10)を形成し、その形成した Zn拡散 層(10)の上部に対し、 p型電極(13)を形成し、 n型コンタクト層(9)の上部に対し、 n 型電極(12)を形成する。なお、 InP半導体基板(1)の下部の入射面には AR (Anti R eflection)コートを施すことになる。
[0069] この図 2に示す本実施形態における半導体受光素子は、化合物半導体基板となる InP半導体基板(1)上に対し、不純物濃度の高い p型 4元バッファ層(21)を設けたこ とで、 p型光吸収層(3)で達した光キャリアに対応した電流が流れやすくなり、増倍率 Mが小さ ヽ条件で、 10mW程度の光入力にも初期特性が劣化しな ヽ素子を形成す ることが可能となる。
[0070] (第 1の実施形態の第 2の実施例)
次に、図 4を参照しながら、第 1の実施形態の半導体受光素子の第 2の構成につい て説明する。
[0071] 本実施形態における半導体受光素子は、図 4に示すように、 InP半導体基板(1)上 に、 p— InPバッファ層 (2)、 p型 4元バッファ層(21)、結晶品質回復層(22)、 p型光 吸収層(3)、 i型光吸収層(4)、電界緩和層(5)、増倍層 (6)、ヱツチングストップ層 ( 7)、 n型バッファ層(8)、 n型コンタクト層(9)を順に積層し、受光部の周辺において、 n型コンタクト層(9)と、 n型バッファ層(8)と、をエッチングストップ層 (7)に達するまで 除去し、 Tiイオンを注入し、ガードリング(11)を形成する。そして、誘電体膜を形成し たのち、ガードリング(11)の周辺部に対し、 Zn拡散を行い、 Zn拡散層(10)を形成し 、その形成した Zn拡散層(10)の上部に対し、 p型電極(13)を形成し、 n型コンタクト 層(9)の上部に対し、 n型電極(12)を形成する。なお、 InP半導体基板(1)の下部の 入射面には ARコートを施すことになる。
[0072] なお、 p型 4元バッファ層(21)は、組成: InPに格子整合する InAlGaAs,バンドギ ヤップエネルギー: Eg =光の波長で 1. 1 m相当,層厚: d= l. 0 m, p濃度: Nd = 5 X 1018cm— 3で構成される。
[0073] また、結晶品質回復層(22)は、組成: p— InP,層厚: d=0.: L m,p濃度: Nd= 1
X 1018cm 3で構成される。
[0074] また、 p型光吸収層(3)は、組成: InGaAs,層厚: d=0. 5 m, p濃度: Nd= 5 X l 017cm 3で構成される。
[0075] また、 i型光吸収層(4)は、組成: InGaAs,層厚: d=0. p濃度: Nd= 5 X l
015cm 3で構成される。
[0076] この図 4に示す本実施形態における半導体受光素子は、化合物半導体基板となる InP半導体基板(1)上に対し、不純物濃度の高い p型 4元バッファ層(21)を設けたこ とで、 p型光吸収層(3)で達した光キャリアに対応した電流が流れやすくなり、増倍率 Mが小さ ヽ条件で、 10mW程度の光入力にも初期特性が劣化しな ヽ素子を構成す ることが可能となる。特に、図 4に示す半導体受光素子は、 p型 4元バッファ層(21)の 層厚: d= l. 0 mと厚く形成したため、より高い効果を発揮することが可能となる。
[0077] また、図 4に示す半導体受光素子は、 p型 4元バッファ層(21)及び光吸収層(3、 4) の部分において、 3元層、 4元層が連続する層が厚くなるため、(例えば、図 4に示す 構造で、結晶品質回復層(22)がない場合には、 p型 4元バッファ層(21)と、 p型光吸 収層(3)と、 i型光吸収層(4)と、の連続層厚: d= l. 0 + 0. 5 + 0. 7 = 2. とな り、連続層厚が厚くなるため)、 p型 4元バッファ層(21)と、 p型光吸収層(3)と、の間 に、結晶品質回復層(22)を挿入し、 3元、 4元層の連続量を小さくすることで、素子 の暗電流の低減を図ることが可能となる。なお、結晶品質回復層(22)は、 p型光吸 収層(3)の中に配置したり、また、 p型 4元バッファ層(21)の中に配置したりすることも 可能である。
[0078] (第 2の実施の形態)
次に、第 2の実施形態について説明する。
[0079] 第 2の実施形態における半導体受光素子は、図 3に示すように、 InP半導体基板(1 )と、 p— InPバッファ層 (2)と、電流分散型 p型バッファ層(31)と、 p型光吸収層(3)と 、 i型光吸収層(4)と、電界緩和層(5)と、増倍層 (6)と、エッチングストップ層 (7)と、 n型バッファ層(8)と、 n型コンタクト層(9)と、を有して構成される。
[0080] 第 2の実施形態における半導体受光素子は、図 3に示す層構造からなる半導体受 光素子に対し、エッチングストップ層 (7)に達するまで、受光部を取り囲むように、 n型 コンタクト層 (9)と、 n型バッファ層(8)と、を上部から除去し、 Tiイオンを注入し、ガー ドリング(11)を形成する。また、ガードリング(11)の周辺部に対し、 Zn拡散を行い、 受光部周辺に対し、 Zn拡散層(10)を設け、その Zn拡散層(10)を設けた上部に対 し、 p型電極(13)を設け、また、 n型コンタクト層(9)の上部に対し、 n型電極(12)を 設けることになる。
[0081] なお、第 2の実施形態における半導体受光素子は、図 3に示すように、 p— InPバッ ファ層(2)は、 p型とした力 i型や、 n型で構成することも可能である。
[0082] なお、第 2の実施形態における半導体受光素子は、 p— InPバッファ層 (2)と、光吸 収層(3、 4)と、の間に、新たに面内方向に流れる電流が層内に均一に分散して流れ るような機能をもつ電流分散型 P型バッファ層(31)を設けたことを特徴とする。 [0083] p— InPバッファ層(2)は、一定の不純物濃度で形成されており、抵抗率も層内で 一定である。従って、光キャリアに起因する電流は、 p型電極(13)に対し、最短経路 を通過するように流れ、経路の幅が狭くなつてしまうことになる。
[0084] 電流分散型 p型バッファ層(31)は、層内で抵抗率の分布を形成し、光キャリアに起 因する電流が層内に一様に広がることを意図して構成される。これにより、電流密度 が小さくなり、素子の信頼性を向上させることが可能となる。この電流分散機能の実 現方法を、図 5を参照しながら説明する。
[0085] 受光部中心の場合、受光部中心の光吸収層(3、 4)内でキャリアが発生した場合、 ホールによる電流は、経路『A』、又は、経路『B』を通過し、電流分散型 p型バッファ 層(31 )から Zn拡散層( 10)を経由し、 p型電極 ( 13)へと到達することになる。
[0086] この場合、経路『A』と経路『B』との抵抗値が等 ヽか、または、経路『A』と経路『B』 との抵抗値が近い値であれば、電流は、経路『A』と『B』との双方の経路を通過するこ とになり、電流集中を軽減することが可能となる。
[0087] なお、経路『A』の距離は、受光部直下力もガードリング(11)の外周部までの距離『 L』である。また、経路『B』の距離は、受光部直下から電流分散型 p型バッファ層(31 )の最下部を経由し、その最下部を外周方向に進んだ後に、ガードリング(11)の外 周部に戻るまでの距離であり、電流分散型 p型バッファ層(31)の層厚を dとすると、経 路『B』の距離は、 d + L + dとなり、経路『A』と経路『B』との距離の比: R1は、 Rl (L) = L/ (L + 2d)となる。
[0088] ここで、電流分散機能を実現するために、 2つの経路『A』、『B』が等 Uヽ抵抗を持 つように構成する。
[0089] このため、経路『A』よりも遠い経路『B』の方が低抵抗になるよう、電流分散型 p型バ ッファ層(31)の抵抗を、下側が低めに、上側が高めとなるように構成する。このため、 不純物の濃度勾配構造を用いることになる。
[0090] 濃度勾配構造は、不純物濃度が、電流分散型 p型バッファ層(31)の下側で高ぐ 上側で低くなるように決定する。
[0091] 濃度勾配構造を構成する濃度勾配層の最下面の濃度を Na,最上面の濃度を Nb
,その濃度勾配の比: R2を、 R2=NbZNaとする。なお、濃度勾配層の垂直方向の 勾配は、 1次の傾きでも 2次の傾きでも良ぐ特に限定しないものとする。
[0092] 例えば、 Rl =R2のように決定すると、濃度勾配構造の最上面と最下面との抵抗が ほぼ等しくなり、電流分散機能を発揮することが可能となる。
[0093] なお、受光部の位置により、受光部直下力もガードリング(11)の外周部までの距離
『L』が変化することになるため、受光部の面内の全てのキャリアに対し、 R1 =R2に 設定することは出来ない。例えば、受光部中心の経路は、経路『A』の距離を LOとす ると、 Rl (LO) =L0/ (L0 + 2d)となる。
[0094] また、受光部周辺では、経路『A'』と経路『B'』との比較となる。経路『A'』の距離『L』 は、およそ図 5に示すガードリング幅:『G1』と等しくなるので、 R1 (G1) =G1/ (G1
+ 2d)となる。
[0095] なお、『受光部中心の 1^1 >受光部周辺の Rl』の関係となる。
[0096] R1として受光部中心の値を用いて決定すると、受光部中心の一点でしか効果を発 揮することができないことになる力 R1として受光部周辺の値を用いて決定した場合 には、受光部中心力 等距離にある全ての円周上において効果を発揮することが可 能となるため、 R1の実際の設計値は、受光部周辺の値に調整することで、より効果を 発揮することが可能となる。
[0097] なお、濃度勾配構造の最下面の p濃度: Na= l X 1018cm 3とし、素子の受光径が 3 0 m、分離溝の半径方向の距離: Gl = 5 mとすると、 LO= 15 + 5 = 20 mとな る。
[0098] Rl (LO) = 20/ (20 + 2) =0. 909で計算され、濃度勾配構造の最下面の濃度を 9%程度以上小さくすることで、受光部中心部での電流分散の効果を発揮することが 可能となる。
[0099] なお、受光部周辺からの距離 5 μ m付近で同様の効果を発揮させようとすると、 R1
(5 + 5) = 10/ (10 + 2) =0. 833となり、 Nb = 8. 33 X 1017cm— 3の濃度に設定する ことになる。
[0100] また、受光部周辺からの距離 1 μ m付近で同様の効果を発揮させようとすると、 R1 ( 5 + 1) =6/ (6 + 2) =0. 75となり、 Nb = 7. 5 X 1017cm— 3の濃度に設定することに なる。 [0101] また、受光部端で同様の効果を発揮させようとすると、 Rl (G1) =G1/ (G1 + 2d) = 5/ (5 + 2) =0. 714となり、 Nb = 7. 1 X 1017cm— 3の濃度に設定することになる。
[0102] なお、効果が発揮できる最大の濃度勾配の比の目安は、 R1 (G1) 5 = 0. 071程度 であることから、濃度勾配構造の最上面の濃度: Nbを 1. 4 X 1017cm 3以上に設定す ることになる。
[0103] また、 R1が小さすぎる場合には、効果が再び下がってしまうことになるため、 R1の 値は、小さい場合でも受光部周辺の R1の値の 10分の 1より大きくなる程度の値に設 定すること〖こなる。
[0104] このため、濃度勾配構造は、濃度勾配の最下面濃度: Naと、濃度勾配の最上面濃 度: Nbと、の比: R2 = NbZNaが、 1 >R2>R1 (Gl) X 0. 1の範囲(但し、濃度勾 配構造の層厚: d、ガードリング幅: Gl、 Rl (Gl) =G1Z (G1 + 2d) )にすることが望 ましい。
[0105] 電流分散型 p型バッファ層(31)の層厚に関しては、層厚が厚い方が電流密度を低 減する効果が大きくなるため、層厚を厚くするほうが望ましい。
[0106] 例えば、電流分散型 p型バッファ層(31)の層厚: d=0. 以上に設定すること で、電流分散の効果を高めることが可能となる。
[0107] 電流分散型 p型バッファ層(31)の層厚: d=0. 5 m、受光部直径 30 mの場合 、電流が、電流分散型 p型バッファ層(31)の厚み方向に平均的に流れた場合、受光 部周辺部おける電流パスの面積は、『受光部の周囲長』 X『電流分散型 p型バッファ 層(31)の層厚』から計算すると、 2 X pi X 15 X 0. 5=47.: L m2であることから、光 電流 10mAが流れた場合、電流密度の最大値は、少なくとも 21kAZcm2となる。
[0108] また、電流分散型 p型バッファ層(31)の層厚: d= l. O /z mとした場合、電流密度 は、少なくとも l lkAZcm2以上となる。
[0109] 同様に、電流分散型 p型バッファ層(31)の層厚: d= 2. 0 mとした場合、電流密 度は、 5kAZcm2以上となる。
[0110] 従って、電流分散型 p型バッファ層(31)の層厚を厚くしてゆくと、電流密度が下がり 、より高い光耐性を発揮することが可能となる。
[0111] デバイスの信頼性を高めるためには、電流分散型 p型バッファ層(31)の層厚: dは 、 d=0. 5 m以上に設定することが望ましい。また、半導体受光素子の形成の効率 を考慮すると、濃度勾配層の全層厚は、 5. 0 m以下に設定することが望ましい。
[0112] 電流分散型 p型バッファ層(31)のバンドギャップエネルギー: Eg (Q)は、 p濃度を 高くして電気伝導度を上げるため、 4元組成を用いることが望ましい。特に、化合物半 導体として、 InP半導体基板(1)を用いる場合には、 InP半導体基板(1)と格子整合 する InAlGaAsや、 InGaAsPを用いることが望ましい。上述したように、不純物ゃ特 段影響のないものは、構成元素として数に入れず、化合物半導体 InAlGaAsに Pが 含まれた場合に 5元組成とせず、 4元組成として取り扱う。
[0113] なお、高濃度の p型バッファ層(31)を形成できるように、電流分散型 p型バッファ層
(31)のバンドギャップエネルギー: Eg (Q)は、 InP半導体基板(1)のバンドギャップ エネルギー: Eg (InP)と比較して小さいほうが望ましいが、一方で、裏面入射型の場 合には、信号光が電流分散型 p型バッファ層(31)を通過することになるため、光の損 失を発生させないよう、電流分散型 p型バッファ層(31)のバンドギャップエネルギー: Eg (Q)は、受光しょうとする信号光の波長に相当するエネルギー: Ε λと比較して大 きいことが望ましい。従って、電流分散型 ρ型バッファ層(31)のバンドギャップェネル ギー: Eg (Q)は、次の関係式(2)を満たすことが望ま 、。
[0114] 関係式(2) :Eg (InP) >Eg (Q) >E
Eg (InP): InP半導体基板 (1)のバンドギャップエネルギー
Eg (Q):電流分散型 p型バッファ層(31)のバンドギャップエネルギー
E λ:受光しょうとする信号光の波長に相当するエネルギー
[0115] なお、信号光は、一般的には、 1. 3 /ζ πι〜1. 55 mの波長を用いるので、電流分 散型 p型バッファ層(31)のバンドギャップエネルギー: Eg (Q)は、関係式(2): Eg (In P) >Eg (Q) >E l ( λ = 1. 3 m)を満たすことが望ましい。
[0116] 次に、本実施形態の半導体受光素子のように、電流分散型 p型バッファ層(31)を 用いた構造の場合に発生する課題と、その課題を解決するための解決方法につい て説明する。
[0117] 第 2の実施形態で使用する電流分散型 p型バッファ層(31)は、 4元組成を含む材 料を用いるため、第 1の実施形態の半導体受光素子と同様に、電流分散型 p型バッ ファ層(31)と、光吸収層(3、 4)と、で 4元層及び 3元層の連続構造を形成し、結晶品 質が劣化する恐れがある。
[0118] なお、上述した結晶品質の劣化とは、ある電界に対して流れる暗電流の量が増加 するという現象であり、 APDの場合には、この暗電流が増倍されて全喑電流として現 れるため、結晶品質の劣化はデバイス性能を顕著に劣化させる要因となる。
[0119] そこで、本実施形態における半導体受光素子は、図 6に示すように、電流分散型 p 型バッファ層(31)の最上部に対し、 2元材料 (inP)を含む薄膜の結晶品質回復層(
32)を挿入することを特徴とする。
[0120] なお、 4元層及び 3元層が連続することによる結晶品質の劣化は、連続層厚が 1. 5 m程度力 発生することになるため、 4元層及び 3元層の連続量が 1. を限度 として、 4元層及び 3元層の連続部分を構成する層に対し、 2元材料 (InP)を含む結 晶品質回復層(32)を挿入する構造にすることが望ましい。
[0121] なお、結晶品質回復層(32)の層厚は、非常に薄い場合でも効果があり、 lOnm以 上力 効果を発揮することが可能である。
[0122] また、結晶品質回復層(32)の層厚を厚くすることで、上述した効果は高まることに なるが、 lOOnm以上になると回復効果は飽和し始めることになる。従って、結晶品質 回復層(32)の層厚を、 lOnm以上〜 lOOnm以下の範囲で形成することが望ましい ことになる。
[0123] なお、結晶品質回復層(32)の不純物濃度は、上面に接する層の濃度と同等もしく は高い範囲に設定したり、また、下面に接する層の濃度と同等もしくは低い範囲に設 定したりすることで、電流を円滑に流すことが可能となる。
[0124] 例えば、光吸収層(3、 4)の層厚が 1. 5 m以下の場合は、光吸収層(3、 4)の最 下部と、光吸収層(3、 4)の最上部から 1. 5 m下側に位置する点と、の間に、結晶 品質回復層(32)を配置するように構成することで効果を発揮することになる。
[0125] 例えば、光吸収層(3、 4)を、組成: InGaAs,層厚: d= l. とし、電流分散型 p型バッファ層(31)の層厚: d=0. 5 m以上とした場合には、電流分散型 p型バッ ファ層(31)の最上部を A、電流分散型 p型バッファ層(31)の最上部 A力 0. 3 ml nP半導体基板(1)側に位置する点を Bとすると、 Aと Bとの間に結晶品質回復層(32 )を配置するように構成することが望ま U、ことになる。
[0126] また、光吸収層(3、 4)の層厚: d= l. 5 m以上の場合には、光吸収層(3、 4)の 内部に、結晶品質回復層(32)を配置するか、もしくは、光吸収層(3、 4)の最下端に 配置することが望ましい。
[0127] なお、光吸収層(3、 4)の内部に、結晶品質回復層(32)を配置した場合には、 Δ Ε Vや Δ Ecと 、つたバンド不連続量が大き!/、場合が多ぐキャリアの走行を妨げることに なるので、 Δ Evや Δ Ecと 、つたバンド不連続量を緩和するための層構造を結晶品 質回復層(32)の上下に配置するのが効果的である。これにより、キャリアの走行を阻 害することを回避することが可能となる。なお、 Δ Ενや A Ecといったバンド不連続量 を緩和するための層構造としては、電子の伝導帯と価電子帯とのそれぞれが、 InGa As, InPにあるような材料を適用して構成することになる。例えば、バンドギャップエネ ルギ一: Egが光の波長換算で 1. 3 μ m組成の 4元層(InAlGaAs, InGaAsP)を適 用したり、また、 InGaAsと InPとの間〖こ 1. と 1. 3 /z mと 1. 1 /z m組成の材料を 連続して形成するなどしたりすることで、 Δ Ε Δ Ενを効果的に緩和させることが可 能となる。
[0128] また、結晶品質回復層(32)から InP半導体基板(1)側の層厚が、 1. 以下と なるように構成することで、結晶品質の劣化を回避することが可能となる。
[0129] (第 2の実施形態の第 1の実施例)
次に、図 3を参照しながら、第 2実施形態の半導体受光素子の第 1の構成について 説明する。
[0130] 第 2の実施形態における半導体受光素子は、図 3に示すように、 InP半導体基板(1 )上に、 p— InPバッファ層 (2)、電流分散型 p型バッファ層(31)、 p型光吸収層(3)、 i 型光吸収層(4)、電界緩和層(5)、増倍層 (6)、エッチングストップ層 (7)、 n型バッフ ァ層(8)、 n型コンタクト層(9)を順に積層し、受光部の周辺において、 n型コンタクト 層(9)と、 n型バッファ層(8)と、をエッチングストップ層 (7)に達するまで除去し、 Tiィ オンを注入し、ガードリング(11)を形成する。そして、誘電体膜を形成したのち、ガー ドリング(11)の周辺部に対し、 Zn拡散を行い、 Zn拡散層(10)を形成し、その形成し た Zn拡散層(10)の上部に対し、 p型電極(13)を形成し、 n型コンタクト層(9)の上部 に対し、 n型電極(12)を形成する。なお、 InP半導体基板(1)の下部の入射面には AR(Anti Reflection)コートを施すことになる。
[0131] なお、 p— InPバッファ層(2)は、層厚: d=0. 5 m, p濃度: Nd= 5. 0 X 1017cm— 3 で構成される。
[0132] また、電流分散型 p型バッファ層(31)は、濃度勾配層として、組成: InAlGaAs,層 厚: d= l m,バンドギャップエネルギー: Eg =光の波長でエネルギーに換算して、 1 = 1.: m相当,濃度勾配層の最下面の p濃度: Na= l X 1018cm 3とし、素子の 受光径が 30 m、分離溝の半径方向の距離 G 1 = 5 mとすると、 L0 = 15 + 5 = 20 μ mで構成される。
[0133] なお、受光部端で受光した光キャリアに効果があるように設定するためには、 Rl (G
1) =Gl/ (Gl + 2d) = 5/ (5 + 2) =0. 714となり、濃度勾配層の最上面の p濃度 : Nb = 7. I X 1017cm 3となるように設定することが効果的である。
[0134] 第 2の実施形態における半導体受光素子は、化合物半導体基板となる InP半導体 基板(1)上に対し、電流分散型 p型バッファ層(31)を設けたことで、 p型光吸収層(3 )で達した光キャリアに対応した電流集中が発生し難くなり、増倍率 Mが小さい条件 で、 10mW@度の光入力にも初期特性が劣化しな 、素子を形成することが可能とな る。
[0135] (第 2の実施の形態の第 2の実施例)
次に、図 6を参照しながら、第 2実施形態の半導体受光素子の第 2の構成について 説明する。
[0136] 第 2の実施形態における半導体受光素子は、図 6に示すように、 InP半導体基板(1 )上に、 p-InPバッファ層(2)、電流分散型 p型バッファ層(31)、結晶品質回復層(3
2)、 p型光吸収層(3)、 i型光吸収層(4)、電界緩和層(5)、増倍層 (6)、ヱツチング ストップ層 (7)、 n型バッファ層(8)、 n型コンタクト層(9)を順に積層し、受光部の周辺 において、 n型コンタクト層(9)と、 n型バッファ層(8)と、をエッチングストップ層(7)に 達するまで除去し、 Tiイオンを注入し、ガードリング(11)を形成する。そして、誘電体 膜を形成したのち、ガードリング(11)の周辺部に対し、 Zn拡散を行い、 Zn拡散層(1 0)を形成し、その形成した Zn拡散層(10)の上部に対し、 p型電極(13)を形成し、 n 型コンタクト層(9)の上部に対し、 n型電極(12)を形成する。なお、 InP半導体基板( 1 )の下部の入射面には AR (Anti Reflection)コートを施すことになる。
[0137] なお、 P— InPバッファ層(2)は、層厚: d=0. 5 m, p濃度: Nd= 5. 0 X 1017cm— 3 で構成される。
[0138] また、電流分散型 p型バッファ層(31)は、濃度勾配層として、組成: InAlGaAs,層 厚: d= 1 m,濃度勾配層の最下面の p濃度: Na= 1 X 1018cm 3とし、素子の受光 径が 30 μ m、分離溝の半径方向の距離 Gl = 5 /z mとすると、 Ι^0= 15 + 5 = 20 /ζ πι で構成される。
[0139] なお、受光部周辺からの距離 1 μ m付近で同様の効果を発揮するようにする場合 には、 R1 (5 + 1) =6/ (6 + 2) =0. 75となること力ら、 Nb = 7. 5 X 1017cm— 3の濃度 に設定することになる。
[0140] 結晶品質回復層(32)は、組成: InP,層厚: d= 50nm,濃度: Nb = 5 X 1017cm 3 で構成される。
[0141] 光吸収層(3、 4)は、組成: InGaAs,層厚: 1. 5 mで構成される。
[0142] 第 2の実施形態における半導体受光素子は、図 6に示すように、化合物半導体基 板となる InP半導体基板(1)上に対し、電流分散型 p型バッファ層(31)を設けたこと で、 p型光吸収層(3)で達した光キャリアに対応した電流集中が発生し難くなり、増倍 率 Mが小さ ヽ条件で、 10mW程度の光入力にも初期特性が劣化しな ヽ素子を形成 することが可能となる。
[0143] また、第 2の実施形態における半導体受光素子は、結晶品質回復層(32)を設けた ことで、暗電流の低ぐ感度の高い素子をウェハー面内に渡って歩留まり良く形成す ることが可能となる。
[0144] なお、上述する実施形態は、本発明の好適な実施形態であり、上記実施形態のみ に本発明の範囲を限定するものではなぐ本発明の要旨を逸脱しない範囲において 種々の変更を施した形態での実施が可能である。
図面の簡単な説明
[0145] [図 1]従来の半導体受光素子の構成を示す図である。
[図 2]第 1の実施形態の半導体受光素子の第 1の構成を示す図である。 [図 3]第 2の実施形態の半導体受光素子の第 1の構成を示す図である。
[図 4]第 1の実施形態の半導体受光素子の第 2の構成を示す図である。
[図 5]第 2の実施形態の半導体受光素子における電流分散機能を説明するための図 である。
[図 6]第 2の実施形態の半導体受光素子の第 2の構成を示す図である。
符号の説明
1 InP半導体基板
2 p— InPバッファ層
3 p型光吸収層
4 i型光吸収層
5 電界緩和層
6 増倍層
7 エッチングストップ層
8 n型バッファ層
9 n型コンタクト層
10 Zn拡散層
11 ガードリング
12 n型電極
13 p型電極
21 p型 4元バッファ層(4元バッファ層)
22 結晶品質回復層
31 電流分散型 p型バッファ層 (電流分散層)
32 結晶品質回復層

Claims

請求の範囲
[1] InP半導体基板上に光吸収層が形成されてなる半導体受光素子であって、
前記 InP半導体基板と、前記光吸収層と、の間に、 4元組成の材料を含むバッファ 層が形成されてなることを特徴とする半導体受光素子。
[2] 前記 4元バッファ層は、 InPに格子整合する組成の InxAlyGa (1—x—y) As、また は、 InxGa (1— X) AsyP (1— y)を含むことを特徴とする請求項 1記載の半導体受光 素子。
[3] 前記 4元バッファ層の層厚は、 0. 5 μ m以上であることを特徴とする請求項 1記載の 半導体受光素子。
[4] 前記 4元バッファ層の層厚は、 1. 5 μ m以下であることを特徴とする請求項 1記載の 半導体受光素子。
[5] 前記 4元バッファ層のバンドギャップエネルギー: Eg (Q) iS 関係式: Eg (InP) >E g (Q) >Ε λ (但し、 Eg (InP) : InP半導体基板のバンドギャップエネルギー、 Ε λ:受 光しょうとする信号光の波長に相当するエネルギー)を満たすことを特徴とする請求 項 1記載の半導体受光素子。
[6] InP半導体基板上に光吸収層が形成されてなる半導体受光素子であって、
前記 InP半導体基板と、前記光吸収層と、の間に、電流分布の分散を行う電流分 散層が形成されてなることを特徴とする半導体受光素子。
[7] 前記電流分散層は、不純物の濃度勾配構造を含むことを特徴とする請求項 6記載 の半導体受光素子。
[8] 前記濃度勾配構造は、前記 InP半導体基板側で濃度が高く、前記光吸収層側で 濃度が低くなつていることを特徴とする請求項 7記載の半導体受光素子。
[9] 前記濃度勾配構造は、濃度勾配の最下面濃度: Naと、濃度勾配の最上面濃度: N bと、の比: R2 = NbZNaが、 1 >R2>R1 (G1) X O. 1の範囲(但し、濃度勾配構造 の層厚: d、ガードリング幅: Gl、 Rl (Gl) =G1Z (G1 + 2d) )であることを特徴とす る請求項 7記載の半導体受光素子。
[10] 前記濃度勾配構造は、濃度勾配の最下面濃度: Naと、濃度勾配の最上面濃度: N bと、の比: R2 = NbZNaが、 R2=R1 (G1) (但し、濃度勾配構造の層厚: d、ガード リング幅: Gl、 Rl (Gl) =G1Z (Gl + 2d) )の範囲であることを特徴とする請求項 7 記載の半導体受光素子。
[11] 前記電流分散層は、 InPに格子整合する組成の InxAlyGa (l— X— y) As、または 、 InxGa (l -x) AsyP (l -y)を含むことを特徴とする請求項 6記載の半導体受光素 子。
[12] 前記電流分散層のバンドギャップエネルギー: Eg (Q)力 関係式: Eg (inP) >Eg ( Q) >Ε λ (但し、 Eg (InP) : InP半導体基板のバンドギャップエネルギー、 Ε λ:受光 しょうとする信号光の波長に相当するエネルギー)を満たすことを特徴とする請求項 6 記載の半導体受光素子。
[13] 前記電流分散層の層厚は、 1. 5 μ m以下であることを特徴とする請求項 6記載の 半導体受光素子。
[14] 3元組成の材料力 なる 3元層と、 4元組成の材料力 なる 4元層と、が連続して構 成される連続層を分割するための結晶品質回復層が形成されてなることを特徴とす る請求項 1または 6記載の半導体受光素子。
[15] 前記結晶品質回復層は、前記光吸収層と前記 4元バッファ層との間、または、前記 光吸収層の中、または、前記 4元バッファ層の中に形成されてなることを特徴とする請 求項 14記載の半導体受光素子。
[16] 前記結晶品質回復層は、前記光吸収層と前記電流分散層との間、または、前記光 吸収層の中、または、前記電流分散層の中に形成されてなることを特徴とする請求 項 14記載の半導体受光素子。
[17] 前記結晶品質回復層は、 2元組成の材料を含むことを特徴とする請求項 14記載の 半導体受光素子。
[18] 前記結晶品質回復層の層厚は、 lOnm以上〜 lOOnm以下の範囲であることを特 徴とする請求項 14記載の半導体受光素子。
[19] 前記結晶品質回復層の濃度が、前記結晶品質回復層の上部に接する層の濃度と 同等もしくは高ぐまた、前記結晶品質回復層の下部に接する層の濃度と同等もしく は低くなるように形成されてなることを特徴とする請求項 14記載の半導体受光素子。
[20] 前記光吸収層の最上端と前記結晶品質回復層の最上端との間の幅が、 1.5 m以 下であることを特徴とする請求項 14記載の半導体受光素子。
PCT/JP2007/051313 2006-01-30 2007-01-26 半導体受光素子 WO2007086528A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/162,640 US7994601B2 (en) 2006-01-30 2007-01-26 Semiconductor light receiving device
JP2007556026A JP5433948B2 (ja) 2006-01-30 2007-01-26 半導体受光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-021399 2006-01-30
JP2006021399 2006-01-30

Publications (1)

Publication Number Publication Date
WO2007086528A1 true WO2007086528A1 (ja) 2007-08-02

Family

ID=38309313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051313 WO2007086528A1 (ja) 2006-01-30 2007-01-26 半導体受光素子

Country Status (3)

Country Link
US (1) US7994601B2 (ja)
JP (1) JP5433948B2 (ja)
WO (1) WO2007086528A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160053179A (ko) * 2014-10-31 2016-05-13 (재)한국나노기술원 변형된 도핑 및 조성 흡수층을 이용한 애벌랜치 포토다이오드
KR20160053178A (ko) * 2014-10-31 2016-05-13 (재)한국나노기술원 변형된 도핑 흡수층을 이용한 애벌랜치 포토다이오드
US10079324B2 (en) 2015-07-30 2018-09-18 Mitsubishi Electric Corporation Semiconductor light-receiving device
WO2018189898A1 (ja) * 2017-04-14 2018-10-18 三菱電機株式会社 半導体受光素子

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253212B2 (en) * 2008-06-23 2012-08-28 Sunnybrook Health Sciences Centre Photodetector/imaging device with avalanche gain
KR100999684B1 (ko) * 2009-10-21 2010-12-08 엘지이노텍 주식회사 발광 소자 및 그 제조방법
JP5631668B2 (ja) * 2010-09-02 2014-11-26 Nttエレクトロニクス株式会社 アバランシ・フォトダイオード
CN102214724B (zh) * 2011-06-14 2013-07-10 北京工业大学 一种高增益雪崩二极管
US8288253B1 (en) * 2011-06-30 2012-10-16 M/A-Com Technology Solutions Holdings, Inc. InxGa1-xAsYP1-Y quaternary etch stop for improved chemical resistivity of gallium arsenide field effect transistors
US8288260B1 (en) * 2011-06-30 2012-10-16 M/A-Com Technology Solutions Holdings, Inc. Field effect transistor with dual etch-stop layers for improved power, performance and reproducibility
US9397243B2 (en) * 2013-07-23 2016-07-19 Sifotonics Technologies Co., Ltd. Ge—Si avalanche photodiode with silicon carrier-energy-relaxation layer and edge electric field buffer region

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265279A (ja) * 1988-08-31 1990-03-05 Nec Corp 半導体受光素子
JPH0661521A (ja) * 1992-08-06 1994-03-04 Fujitsu Ltd アバランシェホトダイオード
JP2001028454A (ja) * 1999-07-15 2001-01-30 Sumitomo Electric Ind Ltd 半導体受光素子
JP2004111763A (ja) * 2002-09-20 2004-04-08 Fujitsu Quantum Devices Ltd 半導体受光装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2762939B2 (ja) 1994-03-22 1998-06-11 日本電気株式会社 超格子アバランシェフォトダイオード
JP3287458B2 (ja) * 1998-06-24 2002-06-04 日本電気株式会社 超高速・低電圧駆動アバランシェ増倍型半導体受光素子
JP2006040919A (ja) * 2004-07-22 2006-02-09 Mitsubishi Electric Corp アバランシェフォトダイオード
JP2006253548A (ja) * 2005-03-14 2006-09-21 Mitsubishi Electric Corp 半導体受光素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265279A (ja) * 1988-08-31 1990-03-05 Nec Corp 半導体受光素子
JPH0661521A (ja) * 1992-08-06 1994-03-04 Fujitsu Ltd アバランシェホトダイオード
JP2001028454A (ja) * 1999-07-15 2001-01-30 Sumitomo Electric Ind Ltd 半導体受光素子
JP2004111763A (ja) * 2002-09-20 2004-04-08 Fujitsu Quantum Devices Ltd 半導体受光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATANABE I. ET AL.: "A New Planar-Structure InAlGaAs-InAlAs Superlattice Avalanche Photodiode with a Ti-Implanted Guard-Ring", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 8, no. 6, 1996, pages 827 - 829, XP000590025 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160053179A (ko) * 2014-10-31 2016-05-13 (재)한국나노기술원 변형된 도핑 및 조성 흡수층을 이용한 애벌랜치 포토다이오드
KR20160053178A (ko) * 2014-10-31 2016-05-13 (재)한국나노기술원 변형된 도핑 흡수층을 이용한 애벌랜치 포토다이오드
KR101663644B1 (ko) 2014-10-31 2016-10-10 (재)한국나노기술원 변형된 도핑 및 조성 흡수층을 이용한 애벌랜치 포토다이오드
KR101663638B1 (ko) 2014-10-31 2016-10-10 (재)한국나노기술원 변형된 도핑 흡수층을 이용한 애벌랜치 포토다이오드
US10079324B2 (en) 2015-07-30 2018-09-18 Mitsubishi Electric Corporation Semiconductor light-receiving device
WO2018189898A1 (ja) * 2017-04-14 2018-10-18 三菱電機株式会社 半導体受光素子

Also Published As

Publication number Publication date
JPWO2007086528A1 (ja) 2009-06-25
JP5433948B2 (ja) 2014-03-05
US20090039453A1 (en) 2009-02-12
US7994601B2 (en) 2011-08-09

Similar Documents

Publication Publication Date Title
WO2007086528A1 (ja) 半導体受光素子
US7038251B2 (en) Semiconductor device
JP6466416B2 (ja) 高速光検出器
US20100133637A1 (en) Avalanche photodiode
EP2321856A1 (en) Nanostructured photodiode
US8659053B2 (en) Semiconductor light detecting element
WO2006046276A1 (ja) アバランシェフォトダイオード
JP5327892B2 (ja) アバランシ・フォトダイオード
KR101921239B1 (ko) 화합물 반도체 태양 전지
US20110303949A1 (en) Semiconductor light-receiving element
JP3675223B2 (ja) アバランシェフォトダイオードとその製造方法
JP7024918B1 (ja) アバランシェフォトダイオード
KR20150092608A (ko) 화합물 태양 전지
WO2018189898A1 (ja) 半導体受光素子
US20170033254A1 (en) Semiconductor light-receiving device
JP2015201504A (ja) アバランシ・フォトダイオード
JP4985298B2 (ja) アバランシェフォトダイオード
TWI731630B (zh) 半導體受光元件以及半導體受光元件製造方法
JPH0473310B2 (ja)
JP5303793B2 (ja) フォトダイオード
JP7433540B1 (ja) アバランシェフォトダイオード
JP2005286000A (ja) 受光素子およびアバランシェフォトダイオード
JPH0575160A (ja) アバランシエホトダイオードおよびその動作方法
JP2001237453A (ja) 半導体受光素子
JP2016004936A (ja) 受光素子およびエピタキシャルウエハ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007556026

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12162640

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707545

Country of ref document: EP

Kind code of ref document: A1