JP6437284B2 - アバランシェ受光器 - Google Patents

アバランシェ受光器 Download PDF

Info

Publication number
JP6437284B2
JP6437284B2 JP2014235576A JP2014235576A JP6437284B2 JP 6437284 B2 JP6437284 B2 JP 6437284B2 JP 2014235576 A JP2014235576 A JP 2014235576A JP 2014235576 A JP2014235576 A JP 2014235576A JP 6437284 B2 JP6437284 B2 JP 6437284B2
Authority
JP
Japan
Prior art keywords
layer
light absorption
intrinsic semiconductor
light
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014235576A
Other languages
English (en)
Other versions
JP2016100436A (ja
Inventor
靖彦 石川
靖彦 石川
一実 和田
一実 和田
祐司 宮坂
祐司 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2014235576A priority Critical patent/JP6437284B2/ja
Publication of JP2016100436A publication Critical patent/JP2016100436A/ja
Application granted granted Critical
Publication of JP6437284B2 publication Critical patent/JP6437284B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Description

本発明は、光信号を電気信号に変換する際になだれ増幅を利用するアバランシェ受光器に関する。
受光器(以下、フォトダイオード又はPDと記載することがある。)は光信号を電気信号に変換するデバイスである。ゲルマニウム(以下Ge)を光吸収層とした光通信波長帯(1.3−1.6ミクロン)のPD(Ge−PD)は、Geがシリコン(以下Si)基板上にエピタキシャル成長できるため、Si光電子集積回路技術「Siフォトニクス」におけるPDとして応用されている(例えば、非特許文献1を参照。)。通信用途で用いられるGe−PDでは、10GHz程度以上の高速動作に加えて、できる限り小さな強度の光を電流として検出することが要求される。すなわち最小受光感度を向上する必要がある。
最小受光感度を向上する有効な方法として、高電界下でのキャリアの衝突イオン化(大きな運動エネルギーをもったキャリアがエネルギーを失う際に新たな電子−正孔対を発生する現象)を利用する、すなわちアバランシェ(なだれ)増幅を利用する方法がある。アバランシェ増幅によって、微弱な光によって発生した電流を増大でき、受光感度が向上する。このようなアバランシェフォトダイオード(APD)のキャリア増幅層としてGeを利用すると、キャリアのイオン化係数が比較的大きいため、100−200kV/cm程度の比較的小さな印加電界で動作するAPDを作製できる。
High−performance silicon photonics technology for telecommunications applications (K Yamada et al、National Institute for Materials Science. Sci. Technol. Adv. Mater. 15 (2014) 024603 (10pp)) Monolithic germanium/silicon avalanche photodiodes with 340GHz gain−bandwidth product (Y. Kang et al., Nature Photon. 3 (2009) 59)
しかしながら、キャリア増幅層としてGeを利用するAPDは、大きな増幅率を得られる一方、電子及びホールとも衝突イオン化を起こしやすいため(電子及びホールの衝突イオン化係数が同程度)、過剰雑音と呼ばれるノイズが大きくなるという課題があった。
一方、キャリア増幅層にSiを利用するAPDは、電子のイオン化係数がホールよりも大きく、主に加速された電子のみが増幅に寄与する結果、過剰雑音を低減できる。しかし、キャリア増幅層にSiを利用するAPDは、Siのイオン化係数がGeのイオン化係数より小さく、印加電界(>300kV/cm)や印加電圧を大きくしなければならないという課題あった(例えば、非特許文献2を参照。)。
本発明は、このような課題を解決するため、低電界・低電圧、かつ低ノイズで動作するSiフォトニクス用アバランシェ受光器を提供することを目的とする。
上記目的を達成するために、本発明に係るアバランシェ受光器は、SiとGeの傾斜組成をもつ層とGeの層とがヘテロ接合する構造のキャリア増幅層を備えることとした。
具体的には、本発明に係るアバランシェ受光器は、
入力光でキャリアを発生させるn型ゲルマニウムの光吸収層と、
前記光吸収層に隣接し、前記光吸収層で発生したキャリアでアバランシェ増幅するキャリア増幅層と、
を備え、
前記キャリア増幅層は、
真性ゲルマニウムである真性半導体層と、前記光吸収層と前記真性半導体層とに挟まれ、前記光吸収層側から前記真性半導体層側へシリコンの組成比が一様に増加する真性ゲルマニウムである傾斜組成層とがヘテロ接合した構造であることを特徴とする。
本発明に係るアバランシェ受光器をエネルギーバンドの点で説明する。まず、価電子帯について説明する。SiGeの傾斜組成層とGeの光吸収層との接合面における価電子帯のバンドオフセットが小さく、光吸収層から傾斜組成層へホールが移動しやすい。一方、SiGeの傾斜組成層とGeの真性半導体層とのヘテロ接合面における価電子帯のバンドオフセットが大きい。このため、傾斜組成層から真性半導体層へ移動するホールはヘテロ接合面で大きな運動エネルギーを得、真性半導体層で衝突イオン化するキャリア数が増大する。これにより、低電界・低電圧でも受光感度が高い受光器とすることができる。
続いて、伝導帯について説明する。真性半導体層と傾斜組成層との接合面、傾斜組成層と光吸収層との接合面における伝導帯のバンドオフセットは小さい。つまり伝導帯の電子に運動エネルギーを与えるバンドオフセットが小さく、衝突イオン化を起こすキャリア数が少ない。これは、衝突イオン化を電子ではなくホール主体とすることができる。このため、本アバランシェ受光器は、電子及びホールとも衝突イオン化を起こしやすいアバランシェ受光器よりノイズを低減することができる。
従って、本発明は、低電界・低電圧、かつ低ノイズで動作するSiフォトニクス用アバランシェ受光器を提供することができる。
本発明に係るアバランシェ受光器の前記傾斜組成層は、前記光吸収層と接する面のシリコンの組成比が0%であり、前記真性半導体層とのヘテロ接合面のシリコンの組成比が15%より大きく60%より小さいことが好ましい。
本発明に係るアバランシェ受光器の前記傾斜組成層の膜厚は、前記真性半導体層と格子整合する臨界膜厚以下であることを特徴とする。ヘテロ接合面における格子欠陥密度を低減し、光照射のない状態でのリーク電流を低減することができる。
本発明に係るアバランシェ受光器の前記真性半導体層の膜厚は、電子の衝突イオン化係数の逆数以下であることを特徴とする。真性半導体層で発生した電子に衝突イオン化させにくくでき、ノイズの低減に効果がある。
本発明に係るアバランシェ受光器は、
前記光吸収層の前記キャリア増幅層と反対側にあるシリコン基板と、
前記光吸収層と前記シリコン基板とに挟まれ、前記光吸収層より不純物濃度が高いn型ゲルマニウムの接続層と、
をさらに備えることを特徴とする。
本アバランシェ受光器は、シリコン基板(光導波路)からのエバネッセント光が接続層を経由して光吸収層へ入射する。本アバランシェ受光器は、光導波路から光をタップする構造が不要なため、Siフォトニクスの構造を簡易とすることができる。
本発明に係るアバランシェ受光器の前記接続層、前記光吸収層、及び前記傾斜組成層は、前記シリコン基板との接合による引っ張りひずみを持つことが好ましい。引っ張りひずみが存在することで、価電子帯での電流輸送は有効質量の小さな軽いホールが支配的になり、電界による加速が促進されて衝突イオン化を促進できる。
本発明は、低電界・低電圧、かつ低ノイズで動作するSiフォトニクス用アバランシェ受光器を提供することができる。
本発明に関連するアバランシェ受光器を説明する図である。 本発明に係るアバランシェ受光器を説明する図である。 本発明に係るアバランシェ受光器の傾斜組成層のエネルギーバンドを説明する図である。 本発明に係るアバランシェ受光器のヘテロ接合面における価電子帯のバンドオフセットとノイズとの関係を説明する図である。 本発明に係るアバランシェ受光器の傾斜組成層の臨界膜厚を説明する図である。 本発明に係るアバランシェ受光器を説明する図である。 引っ張り格子ひずみの有無によるGeバンド構造を説明する図である。 電界の逆数に対する衝突イオン化係数の変化を価電子帯のバンドオフセット毎に示した図である。
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施形態であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(関連する実施形態)
図1は、本発明に関連する実施形態のAPD300を説明する図である。図1(A)はAPD300の層構成を説明する図であり、図1(B)はバイアスを印加した時のAPD300のバンドギャップを説明する図である。APD300は、キャリア増幅層に一様なSi含有率をもつSiGeを利用するAPDである。APD300は、n型Geの光吸収層30と、真性SiGeのキャリア増幅層40と、真性Geのキャリア増幅層50と、を備える。
Geのバンドギャップが約0.6eVに対して、SiGeのバンドギャップはGeより大きい。Si組成に応じて変化し、Siが100%のときに最大となり、約1.1eVである。光吸収層30からキャリア増幅層50までのバンドギャップは図1(B)のように、光吸収層30とキャリア増幅層40との間及びキャリア増幅層40とキャリア増幅層50との間において主に価電子帯Evにバンドオフセットが存在する。
光入射により光吸収層30で価電子帯に発生したホールは、電界あるいは拡散によりキャリア増幅層40へ移動するが、境界にバンドオフセットがあり、円滑にキャリア増幅層40へ入ることができない。キャリア増幅層40へ入ることができたホールは、さらにキャリア増幅層50へ移動すると、キャリア増幅層40とキャリア増幅層50との界面にあるバンドオフセットのエネルギーに相当する運動エネルギーを得る。バンドオフセットがない場合に比べてキャリア増幅層50での衝突イオン化が増大する。図1(C)のように光吸収層30をp型Geとし、印加する電界方向を逆向きにすると、光吸収層30で伝導帯に発生した電子は、電界あるいは拡散によりキャリア増幅層40へ移動する。境界のバンドオフセットが小さく、円滑にキャリア増幅層40へ入るが、キャリア増幅層50へ移動した際に得られる運動エネルギーが小さく、衝突イオン化の増大効果は得られにくい。このため非特許文献2では、キャリア増幅層50は省略され、キャリア増幅層40のみをもつ構造となっている。キャリア増幅層40内での衝突イオン化は利用できるが、キャリア増幅層40内での衝突イオン化の頻度を増大させるため、高電界・高電圧の動作が必要である。
(実施形態1)
図2は、本実施形態のAPD301を説明する図である。図2(A)はAPD301の層構成を説明する図であり、図2(B)はバイアスを印加した時のAPD301のバンドギャップを説明する図である。APD301は、入力光でキャリアを発生させるn型ゲルマニウムの光吸収層32と、光吸収層32に隣接し、光吸収層32で発生したキャリアでアバランシェ増幅するキャリア増幅層42と、を備える。キャリア増幅層42は、真性ゲルマニウムである真性半導体層45と、光吸収層32と真性半導体層45とに挟まれ、光吸収層32側から真性半導体層45側へシリコン含有率が一様に増加する真性ゲルマニウムである傾斜組成層43とがヘテロ接合した構造である。本実施形態では光吸収層32をn型のGe層として説明するが、n型Ge−真性Ge−n型Geのように積層した構造(n−i−n)でもよい。
図2(B)はバイアスを印加した時のAPD301のバンドギャップを説明する図である。ここで、SiGeの組成が変化した時の価電子帯の変化を図3を用いて説明する。図3の横軸はSiGeの組成比率であり、左端はSiが100%であり、右へ進むにつれてGe量が多くなり、右端はGeが100%である。価電子帯のエネルギーは、Si比率が増加するにつれて一様に減少する。
傾斜組成層43は光吸収層32側がGe100%であり、真性半導体層45へ近づくにつれてSi比率が一様に増加する。例えば、傾斜組成層43の真性半導体層45側でSi比率を15%より大きく60%より小さくしておくとよい。このように組成が傾斜している傾斜組成層43は、Geである光吸収層32と傾斜組成層43との境界における価電子帯のエネルギーにバンドオフセットはない(図2(B)のEv参照)。一方、傾斜組成層43は、真性半導体層45へ近づくにつれてSi比率が増え、価電子帯のエネルギーが一様に減少するので、Geである真性半導体層45と傾斜組成層43とのヘテロ接合面における価電子帯のエネルギーにバンドオフセットが発生する(図2(B)のEv参照)。このヘテロ接合面における価電子帯のバンドオフセット量は、傾斜組成層43の真性半導体層45側でのGeとSiの組成比率で決定する。
次に、SiGeの組成が変化した時の伝導帯の変化を図3を用いて説明する。伝導帯のエネルギーは、Ge中のSiが増加しても一様に変化しない。具体的には、Ge100%からSi比率を増加させていくと、初めは波数空間におけるL点において伝導帯のエネルギーが最小となっており、図3のLpointで示す伝導帯に従いエネルギーが増加するが、Si比率が約15%以上(Geが約85%以下)では波数空間におけるΔ点において伝導帯のエネルギーが最小となり、図3のΔpointで示す伝導帯に従うようになり、Si比率を増やしても伝導帯のエネルギーは増加せず、減少するようになる。
傾斜組成層43は、Geである光吸収層32と傾斜組成層43との境界における伝導帯のエネルギーにバンドオフセットはない(図2(B)のEc参照)。傾斜組成層43は、真性半導体層45へ近づくにつれてSi比率が増える。Si比率が15%までは伝導帯のエネルギーが増加するが、Si比率が15%で変曲点を迎え、Si比率が15%を超えると伝導帯のエネルギーの増加が止まる。このため、Geである真性半導体層45と傾斜組成層43とのヘテロ接合における伝導帯のエネルギーのバンドオフセットは小さい(図2(B)のEc参照)。
続いて、図2(B)を用いてAPD301の具体的動作を説明する。光の入射で光吸収層32で発生したホールは、電界あるいは拡散によりキャリア増幅層42へ進む。前述のように光吸収層32と傾斜組成層43との境界における価電子帯にバンドオフセットはないので、ホールは円滑に傾斜組成層43に入る。そして、ホールは、真性半導体層45と傾斜組成層43とのヘテロ接合における価電子帯のバンドオフセットから運動エネルギーを得て、真性半導体層45で衝突イオン化を発生する。一方、衝突イオン化で発生した電子は伝導帯を光吸収層32へ進む。Geである真性半導体層45の厚さを真性半導体層45における電子の衝突イオン化係数の逆数よりも小さくしておくと、真性半導体層45中で電子による衝突イオン化が発生しない。真性半導体層45と傾斜組成層43との境界における伝導帯のバンドオフセットは小さいため、円滑に傾斜組成層43に入る。傾斜組成層43から光吸収層32までバンドオフセットがなく、SiGeであるためGeに比べて衝突イオン化をおこしにくい。
図2(B)のように、バンドオフセットは価電子帯にあるのでホールによる衝突イオン化を増大できるが、真性半導体層45の厚さを適切に設定することで電子による衝突イオン化を抑制できる。このため、Geのみで構成され、電子及びホールとも衝突イオン化を起こしやすい従来のAPDと比較して、APD301は主にホールのみで衝突イオン化を発生させるのでノイズを低減することができる。
次に、真性半導体層45との界面における傾斜組成層43のSi含有量と衝突イオン化によるノイズとの関係を図4を用いて説明する。図4のグラフは、横軸が電界の逆数、縦軸がk値の逆数である。k値とは電子の衝突イオン化係数αに対するホールの衝突イオン化係数βの比であり、k値の逆数(あるいはk値)が1より十分に大きいあるいは十分に小さく0に近いほどノイズが少ないことを意味する。
ここで、衝突イオン化係数について説明する。衝突イオン化の頻度はキャリアの進行速度に対して増大する。衝突イオン化係数とは、1個のキャリアが高電界でドリフト速度で移動しているときに、衝突イオン化を起こすの単位時間当たりの回数である。図8は、電界の逆数に対する衝突イオン化係数の変化を示した図である。伝導帯にはバンドオフセットが発生しないため、電子の衝突イオン化係数αは破線のみで示しているが、ホールの衝突イオン化係数βは価電子帯のバンドオフセットΔEに応じて変化するためΔE毎に実線で示している。
図4のグラフ中のΔEは、真性半導体層45と傾斜組成層43とのヘテロ接合における価電子帯のバンドオフセット量、つまり、図3におけるGe100%の価電子帯の電子エネルギーに対するSiGeの価電子帯の電子エネルギーの差に相当する。ΔE=0(eV)は傾斜組成層43にSiが含まれていない状態である。また、ΔE=0.30(eV)はSi比率が60%の状態である。
図8のように、ΔEに対して一定である電子の衝突イオン化係数αに対してΔEの増大でホールの衝突イオン化係数βも増大するので、図4のようにΔEが増加するとk値の逆数が小さくなり、0に近づく。つまり、真性半導体層45との界面における傾斜組成層43のSi含有量が多いほどノイズが小さくなる。Siの比率をさらに高めると、傾斜組成層43中に結晶欠陥が発生しやすくなり、光照射のない状態でのリーク電流が増大し、最小受光感度が悪化する。
傾斜組成層43の膜厚は、真性半導体層45と格子整合する臨界膜厚以下が好ましい。臨界膜厚とは、ヘテロ接合で格子整合可能な最大膜厚をいう。結晶欠陥を低減するため、傾斜組成層43の膜厚は臨界膜厚以下とし、Geである光吸収層32および真性半導体層45に格子整合することが望ましい。臨界膜厚は、真性半導体層45との界面における傾斜組成層43の組成によって変わる。図5は、真性半導体層45とのヘテロ接合面における傾斜組成層43の組成に対する臨界膜厚の関係を例示した図である。例えば、Siの組成比が10%であれば、臨界膜厚はSiGeのエピタキシャル成長時の温度に依存するが、少なくとも30nm、大きい場合は約500nmである。一方、Siの組成比が60%であれば、臨界膜厚は約10nm以下となる。
真性半導体層45の膜厚は、電子の衝突イオン化係数の逆数(衝突イオン化の発生する特性長)以下が好ましい。このように真性半導体層45の膜厚を設定することで、真性半導体層45においてホールによる衝突イオン化で発生した電子が加速され、衝突イオン化を起こすことを防ぎ、ノイズ発生を低減することができる。
(実施形態2)
図6は、本実施形態のAPD302の構成を説明する図である。APD302は、図2で説明したAPD301に、
光吸収層32のキャリア増幅層42と反対側にあるシリコン基板10と、
光吸収層32とシリコン基板10とに挟まれ、光吸収層32より不純物濃度が高いn型ゲルマニウムの接続層21と、
キャリア増幅層42の光吸収層32と反対側にあるp型ゲルマニウムの電極層52と、
をさらに備える。
シリコン基板10は、光導波路であってもよい。
接続層21は、リン(P)等の不純物が添加されたn型Ge層である。不純物の濃度は光吸収層32のGeに添加される不純物の濃度より高くする。例えば、光吸収層32のGeに添加されるリンの濃度が1×1016〜1×1018(cm−3)であれば、接続層21のGeに添加されるリンの濃度は1×1019(cm−3)である。
電極層52は、ホウ素(B)の不純物が添加されたp型Ge層である。電極層52と真性半導体層45とはホモ接合である。電極層52のGeに添加されるホウ素の濃度は1×1019(cm−3)である。
図6のような構造のAPD302はCVDを用いて各層を連続して形成することができる。
接続層21、光吸収層32、及び傾斜組成層43は、シリコン基板10との接合による引っ張りひずみを持つことが好ましい。シリコン基板10上にGeを成長させると、成長温度ではGeは格子緩和して格子ひずみは存在しないが、室温への冷却時にシリコンとの熱膨張係数差等に起因して発生する引っ張り格子ひずみがGe膜に残ることがある。本実施形態では、この引っ張り格子ひずみを積極的に利用する。
図7は、引っ張り格子ひずみの有無によるGeのエネルギーバンド構造を説明する図である。図7(A)は、引っ張り格子ひずみの無いGeのエネルギーバンド構造である。図7(B)は、引っ張り格子ひずみが有るGeのエネルギーバンド構造である。引っ張り格子ひずみが存在すると、有効質量の小さい軽いホール(LH)と有効質量が大きい重いホール(HH)の2つのエネルギーバンドが分裂する。このため、引っ張り格子ひずみが存在すると、価電子帯での電流輸送は軽いホールが支配的になる。
さらに、実施形態1で説明したように傾斜組成層43のSiGeの膜厚を臨界膜厚以下とすると、熱膨張係数差による引っ張り格子ひずみだけでなく、GeとSiGeの格子定数差に起因した引っ張り格子ひずみも加わり、傾斜組成層43も引っ張り格子ひずみを有する。この場合、傾斜組成層43でも価電子帯での電流輸送は軽い正孔が支配的になる。
結果として、軽いホールによる電流輸送が支配的になることで、高電界下でのホールの加速が促進され、衝突イオン化を促進でき、APDの最小受光感度を向上させることができる。
10:シリコン基板
21:接続層
30:電極接続層
32:光吸収層
40:キャリア増幅層
42:キャリア増幅層
43:傾斜組成層
45:真性半導体層
50:キャリア増幅層
52:電極層
300、301、302:APD

Claims (6)

  1. 入力光でキャリアを発生させるn型ゲルマニウムの光吸収層と、
    前記光吸収層に隣接し、前記光吸収層で発生したキャリアでアバランシェ増幅するキャリア増幅層と、
    を備え、
    前記キャリア増幅層は、
    真性ゲルマニウムである真性半導体層と、前記光吸収層と前記真性半導体層とに挟まれ、前記光吸収層側から前記真性半導体層側へシリコンの組成比が一様に増加する真性ゲルマニウムである傾斜組成層とがヘテロ接合した構造である
    ことを特徴とするアバランシェ受光器。
  2. 前記傾斜組成層は、
    前記光吸収層と接する面のシリコンの組成比が0%であり、前記真性半導体層とのヘテロ接合面のシリコンの組成比が15%より大きく60%より小さいことを特徴とする請求項1に記載のアバランシェ受光器。
  3. 前記傾斜組成層の膜厚は、前記真性半導体層と格子整合する臨界膜厚以下であることを特徴とする請求項1又は2に記載のアバランシェ受光器。
  4. 前記真性半導体層の膜厚は、電子の衝突イオン化係数の逆数以下であることを特徴とする請求項1から3のいずれかに記載のアバランシェ受光器。
  5. 前記光吸収層の前記キャリア増幅層と反対側にあるシリコン基板と、
    前記光吸収層と前記シリコン基板とに挟まれ、前記光吸収層より不純物濃度が高いn型ゲルマニウムの接続層と、
    をさらに備えることを特徴とする請求項1から4のいずれかに記載のアバランシェ受光器。
  6. 前記接続層、前記光吸収層、及び前記傾斜組成層は、前記シリコン基板との接合による引っ張りひずみを持つことを特徴とする請求項3を引用する請求項5に記載のアバランシェ受光器。
JP2014235576A 2014-11-20 2014-11-20 アバランシェ受光器 Expired - Fee Related JP6437284B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014235576A JP6437284B2 (ja) 2014-11-20 2014-11-20 アバランシェ受光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014235576A JP6437284B2 (ja) 2014-11-20 2014-11-20 アバランシェ受光器

Publications (2)

Publication Number Publication Date
JP2016100436A JP2016100436A (ja) 2016-05-30
JP6437284B2 true JP6437284B2 (ja) 2018-12-12

Family

ID=56077467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014235576A Expired - Fee Related JP6437284B2 (ja) 2014-11-20 2014-11-20 アバランシェ受光器

Country Status (1)

Country Link
JP (1) JP6437284B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699055B2 (ja) * 2016-06-06 2020-05-27 日本電信電話株式会社 アバランシェ受光器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421294A (en) * 1977-07-19 1979-02-17 Mitsubishi Electric Corp Avalanche photo diode
ATE507585T1 (de) * 2000-10-19 2011-05-15 Quantum Semiconductor Llc Verfahren zur herstellung von mit cmos integrierten heteroübergang-photodioden
JP2005276969A (ja) * 2004-03-24 2005-10-06 Fujitsu Ltd アバランシェフォトダイオード
JP5234104B2 (ja) * 2008-03-28 2013-07-10 日本電気株式会社 半導体受光素子
JP2010287817A (ja) * 2009-06-15 2010-12-24 Shin-Etsu Chemical Co Ltd Ge膜付きSOI基板の製造方法及びGe膜付きSOI基板
US8704272B2 (en) * 2011-06-24 2014-04-22 SiFotonics Technologies Co, Ltd. Avalanche photodiode with special lateral doping concentration

Also Published As

Publication number Publication date
JP2016100436A (ja) 2016-05-30

Similar Documents

Publication Publication Date Title
US10199525B2 (en) Light-receiving element and optical integrated circuit
WO2011083657A1 (ja) アバランシェフォトダイオード及びそれを用いた受信機
US11075314B2 (en) Doped absorption photodiode
KR101666400B1 (ko) 포토다이오드 및 포토다이오드 제조 방법
US10374107B2 (en) Optical waveguide integrated light receiving element and method of manufacturing the same
JP7024918B1 (ja) アバランシェフォトダイオード
US20130154045A1 (en) Avalanche photodiode
JP6699055B2 (ja) アバランシェ受光器
Nada et al. A high-linearity avalanche photodiodes with a dual-carrier injection structure
JP7445152B2 (ja) アバランシェフォトダイオード
WO2018189898A1 (ja) 半導体受光素子
JP6437284B2 (ja) アバランシェ受光器
JP2014090138A (ja) フォトダイオード
JP2007165359A (ja) 半導体受光素子
JP6705762B2 (ja) アバランシェフォトダイオード
US20160181460A1 (en) Avalance Photodiode
JP6362142B2 (ja) ゲルマニウム受光器
WO2016017126A1 (ja) アバランシェフォトダイオード
TWI686961B (zh) 突崩式光二極體及其製造方法
JP2014143224A (ja) 量子ドット型高速フォトダイオード
Arshad et al. Comparison on IV characteristics analysis between Silicon and InGaAs PIN photodiode
TWI455354B (zh) Homogeneous junction type of high speed photodiode
US10128397B1 (en) Low excess noise, high gain avalanche photodiodes
JP2009032797A (ja) 光伝導素子、半導体受光素子、光通信機器、光情報処理装置及び光計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181114

R150 Certificate of patent or registration of utility model

Ref document number: 6437284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees