TWI455354B - Homogeneous junction type of high speed photodiode - Google Patents
Homogeneous junction type of high speed photodiode Download PDFInfo
- Publication number
- TWI455354B TWI455354B TW101124313A TW101124313A TWI455354B TW I455354 B TWI455354 B TW I455354B TW 101124313 A TW101124313 A TW 101124313A TW 101124313 A TW101124313 A TW 101124313A TW I455354 B TWI455354 B TW I455354B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- graded
- ohmic contact
- homojunction
- type
- Prior art date
Links
- 238000010521 absorption reaction Methods 0.000 claims description 49
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 28
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical group [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 claims description 26
- 230000003287 optical effect Effects 0.000 claims description 19
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 3
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 230000031700 light absorption Effects 0.000 description 11
- 230000005684 electric field Effects 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005685 electric field effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/103—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/065—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the graded gap type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/105—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Light Receiving Elements (AREA)
Description
本發明係有關於一種高速光二極體,尤指涉及一種同質接面型式,特別係指具有強大(>2μm-1
)光吸收常數之漸變帶溝吸收層而可將95%以上之入射光子完全吸收且避免表面復合之吸收層,以及以砷化銦鎵(InGaAs)作為材料而使其不吸光並能有超高速電子漂移之收集層之磊晶層結構。
光二極體就係能夠將光信號轉換成電信號之元件,因此其響應速度以及量子效率皆為一個高速光二極體所追求之目標。就光連結(Optical Interconnect, OI)應用而言,高密度之VCSEL陣列需要易耦光且高密度之光檢測器陣列搭配,因此垂直入射結構光檢測器相較於其他結構要來得更為適合。然而,一般之光檢測器通常需要外加反向偏壓(-3~-5V)以維持高速操作,因此造成電功率消耗以及對額外偏壓電路之需求。
承上述,傳統之PIN光二極體係由一個窄能隙之空乏層(即I區)夾在寬能隙之P型層以及N型層之中間所組成。其吸光區係位於該空乏層,入射光子在該空乏層中被吸收,同時激發出電子電洞對,該電子與電洞經由該空乏層內之電場加速,被掃進P型層以及N型層,因而形成光電流。惟考慮到電洞速度遠慢於電子速度,導致電洞會容易累積在本質區,形成電場遮蔽效應,造成內部電場變小,所以載子排出速度變慢,進而影響到輸出功率。其中,增加該空乏層厚度雖可以降低RC頻寬限制,但若空乏層厚度過厚,將導致載子漂移時間過長而使得響應速度變慢,然而,若降低空乏層厚度,則可以縮短載子漂移時間且能增加飽和電流,惟此將使電容變大造成頻寬下降並使量子效率亦隨之降低。另外,由於電洞之等效質量很重,此類元件通常必須在-3伏特(V)以上之外加偏壓操作,以加速電洞傳輸。由此可見,傳統之PIN光二極體若係在無外加偏壓下操作,將由於空乏區內電場太低,使得電洞漂移速度過慢,進而導致元件速度變得很慢。若要增加內建電場,則勢必要加大空乏層之能隙,惟此將造成吸光效率大幅下降。
再者,以單載子傳輸光二極體而言,其擁有一P型窄能帶之吸收層(Absorption Layer)及寬能帶之收集層(Collector Layer),由於P型吸收層為準中性,其多數載子(即電洞)可以很快地弛張至接觸金屬上,因此在單載子傳輸光檢測器中,電子可以說係其唯一之工作電荷,並且由電子之傳輸時間(包含通過傳輸層以及吸收層)來決定單載子傳輸光檢測器之暫態時間。以目前來說,InGaAs-InP單載子傳輸光二極體雖已經被廣泛利用於1550nm光通訊波段;然而,如果在850nm光波段操作下,以InP為材料之光二極體所吸收之能量相當大,因此會在收集層將產生不想要之電子電洞對,當電洞留在吸光區引起之空間電場效應將會降低元件之高速表現。
最近,藉由單載子傳輸光檢測器結構之使用,在零偏壓操作之下已示範高速與適當之響應度表現。因此,鑑於近年在綠色網際網路上之需求,光連結應用上光二極體係越來越受到注目;惟目前之成果仍無法做到將主動區之直徑增加到大於50微米(μm)以利光學對準與封裝而仍能保有高速(25Gbps)且低耗能之元件表現。故,ㄧ般習用者係無法符合使用者於實際使用時之所需。
承上述,傳統之PIN光二極體係由一個窄能隙之空乏層(即I區)夾在寬能隙之P型層以及N型層之中間所組成。其吸光區係位於該空乏層,入射光子在該空乏層中被吸收,同時激發出電子電洞對,該電子與電洞經由該空乏層內之電場加速,被掃進P型層以及N型層,因而形成光電流。惟考慮到電洞速度遠慢於電子速度,導致電洞會容易累積在本質區,形成電場遮蔽效應,造成內部電場變小,所以載子排出速度變慢,進而影響到輸出功率。其中,增加該空乏層厚度雖可以降低RC頻寬限制,但若空乏層厚度過厚,將導致載子漂移時間過長而使得響應速度變慢,然而,若降低空乏層厚度,則可以縮短載子漂移時間且能增加飽和電流,惟此將使電容變大造成頻寬下降並使量子效率亦隨之降低。另外,由於電洞之等效質量很重,此類元件通常必須在-3伏特(V)以上之外加偏壓操作,以加速電洞傳輸。由此可見,傳統之PIN光二極體若係在無外加偏壓下操作,將由於空乏區內電場太低,使得電洞漂移速度過慢,進而導致元件速度變得很慢。若要增加內建電場,則勢必要加大空乏層之能隙,惟此將造成吸光效率大幅下降。
再者,以單載子傳輸光二極體而言,其擁有一P型窄能帶之吸收層(Absorption Layer)及寬能帶之收集層(Collector Layer),由於P型吸收層為準中性,其多數載子(即電洞)可以很快地弛張至接觸金屬上,因此在單載子傳輸光檢測器中,電子可以說係其唯一之工作電荷,並且由電子之傳輸時間(包含通過傳輸層以及吸收層)來決定單載子傳輸光檢測器之暫態時間。以目前來說,InGaAs-InP單載子傳輸光二極體雖已經被廣泛利用於1550nm光通訊波段;然而,如果在850nm光波段操作下,以InP為材料之光二極體所吸收之能量相當大,因此會在收集層將產生不想要之電子電洞對,當電洞留在吸光區引起之空間電場效應將會降低元件之高速表現。
最近,藉由單載子傳輸光檢測器結構之使用,在零偏壓操作之下已示範高速與適當之響應度表現。因此,鑑於近年在綠色網際網路上之需求,光連結應用上光二極體係越來越受到注目;惟目前之成果仍無法做到將主動區之直徑增加到大於50微米(μm)以利光學對準與封裝而仍能保有高速(25Gbps)且低耗能之元件表現。故,ㄧ般習用者係無法符合使用者於實際使用時之所需。
本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提供一種利用具有強大(>2μm-1
)光吸收常數之漸變帶溝吸收層之吸收層將光子能量先行全部吸收且避免表面復合後,後段使用InGaAs為材料之收集層即不會再有吸光作用產生,不僅能解決傳統技術只在表面吸光之問題,且透過以InGaAs作為結構材料,與其他材料相比,更能具有較佳之電子傳遞,並可大幅地降低元件本身之電阻電容(RC)及載子傳輸時間所造成之頻寬限制,進而突破一般材料不能以InGaAs作為收集層之技術限制之同質接面型之高速光二極體。
為達以上之目的,本發明係一種同質接面型之高速光二極體,具有大於60微米(μm)之主動區直徑,其磊晶層結構至少包括由一第一歐姆接觸層(Ohmic Contact Layer)、一吸收層、一收集層及一第二歐姆接觸層所組成,成為p-i-n接面之磊晶層結構,並成長於一半導體基板上。藉此,可適用於850奈米(nm)與1550nm兩個光波段。
上述第一歐姆接觸層係為P型電極;該第二歐姆接觸層係為N型電極;該吸收層係設置於該第一、二歐姆接觸層之間,包含有一部分表面顯露於該第一歐姆接觸層覆蓋之外之透光層(Window Layer)、一漸變P型掺雜吸收層(Graded P-doping Absorption Layer)、及一設置於該透光層與該漸變P型掺雜吸收層之間之漸變帶溝吸收層(Graded Bandgap Absorption Layer),用以吸收入射光,並轉換為載子(Carrier);以及該收集層係設置於該吸收層中之漸變P型掺雜吸收層與該第二歐姆接觸層之間,用以收集前述載子並降低元件電容。
於一較佳實施例中,上述吸收層係可將95%以上之入射光子完全吸收。
於一較佳實施例中,上述吸收層之厚度係介於0.88~1.32μm之間,較佳為1.1μm。
於一較佳實施例中,上述透光層與漸變帶溝吸收層之厚度係介於0.4~0.6μm之間,較佳為0.5μm。
於一較佳實施例中,上述漸變P型掺雜吸收層之厚度係介於0.48~0.72μm之間,較佳為0.6μm。
於一較佳實施例中,上述收集層係為InGaAs,其厚度係介於3.04~4.56μm之間,較佳為3.8μm。
於一較佳實施例中,上述透光層係可為砷化銦鋁(InAlAs)或磷化銦(InP)。
於一較佳實施例中,上述漸變帶溝吸收層係可為砷化鋁銦鎵(InAlGaAs)或磷砷化銦鎵(InGaAsP)。
於一較佳實施例中,上述漸變P型掺雜吸收層係為P型砷化銦鎵。
為達以上之目的,本發明係一種同質接面型之高速光二極體,具有大於60微米(μm)之主動區直徑,其磊晶層結構至少包括由一第一歐姆接觸層(Ohmic Contact Layer)、一吸收層、一收集層及一第二歐姆接觸層所組成,成為p-i-n接面之磊晶層結構,並成長於一半導體基板上。藉此,可適用於850奈米(nm)與1550nm兩個光波段。
上述第一歐姆接觸層係為P型電極;該第二歐姆接觸層係為N型電極;該吸收層係設置於該第一、二歐姆接觸層之間,包含有一部分表面顯露於該第一歐姆接觸層覆蓋之外之透光層(Window Layer)、一漸變P型掺雜吸收層(Graded P-doping Absorption Layer)、及一設置於該透光層與該漸變P型掺雜吸收層之間之漸變帶溝吸收層(Graded Bandgap Absorption Layer),用以吸收入射光,並轉換為載子(Carrier);以及該收集層係設置於該吸收層中之漸變P型掺雜吸收層與該第二歐姆接觸層之間,用以收集前述載子並降低元件電容。
於一較佳實施例中,上述吸收層係可將95%以上之入射光子完全吸收。
於一較佳實施例中,上述吸收層之厚度係介於0.88~1.32μm之間,較佳為1.1μm。
於一較佳實施例中,上述透光層與漸變帶溝吸收層之厚度係介於0.4~0.6μm之間,較佳為0.5μm。
於一較佳實施例中,上述漸變P型掺雜吸收層之厚度係介於0.48~0.72μm之間,較佳為0.6μm。
於一較佳實施例中,上述收集層係為InGaAs,其厚度係介於3.04~4.56μm之間,較佳為3.8μm。
於一較佳實施例中,上述透光層係可為砷化銦鋁(InAlAs)或磷化銦(InP)。
於一較佳實施例中,上述漸變帶溝吸收層係可為砷化鋁銦鎵(InAlGaAs)或磷砷化銦鎵(InGaAsP)。
於一較佳實施例中,上述漸變P型掺雜吸收層係為P型砷化銦鎵。
請參閱『第1圖及第2圖』所示,係分別為本發明一較佳實施例之橫剖面示意圖、及本發明結構之能帶分佈示意圖。如圖所示:本發明係一種同質接面型之高速光二極體,具有大於60微米(μm)之主動區直徑,其磊晶層結構1至少包括由一第一歐姆接觸層(Ohmic Contact Layer)11、一吸收層(Absorption Layer)12、一收集層(Collector Layer)13及一第二歐姆接觸層14所組成,成為p-i-n接面之磊晶層,並成長於一半導體基板15上。
上述所提之吸收層12係設置於該第一、二歐姆接觸層11、14之間,其厚度係介於0.88~1.32μm範圍,該吸收層係包含有一部分表面顯露於該第一歐姆接觸層11覆蓋之外之透光層(Window Layer)121、一漸變P型摻雜吸收層(Graded P-doping Absorption Layer)123、及一設置於該透光層121與該漸變P型摻雜吸收層123之間之漸變帶溝吸收層(Graded Bandgap Absorption Layer)122,用以吸收入射光,並轉換為載子(Carrier)。其中,該透光層121與該漸變帶溝吸收層122之厚度係介於0.4~0.6μm之間,而該漸變P型摻雜吸收層123之厚度係介於0.48~0.72μm之間。
上述所提之收集層13係為砷化銦鎵,其設置於該吸收層12中之漸變P型摻雜吸收層123與該第二歐姆接觸層14之間,且厚度係介於3.04~4.56μm範圍,用以收集前述載子與降低元件電容。
上述所提之第一歐姆接觸層11係為P型電極,其材質係為P型砷化銦鎵,透過與下方材質為砷化銦鋁(InAlAs)之透光層121,可形成歐姆接觸之電性介面;並且,該透光層121之材質亦可為磷化銦(InP)。另外,該漸變帶溝吸收層122係可為砷化鋁銦鎵(InAlGaAs)或磷砷化銦鎵(InGaAsP),而該漸變P型摻雜吸收層123係為P型砷化銦鎵。此外,該第二歐姆接觸層14係為摻雜N型砷化銦鎵之N型電極。以上所述,係構成一全新之同質接面型之高速光二極體。
本發明同質接面型之高速光二極體,係可適用於850奈米(nm)與1550nm兩個光通訊波段,其運作原理如第2圖所示。於一較佳實施例中,以850nm光波段之入射光能量為例,入射光子進入厚度約1.1μm之吸收層12中時(其中P型InAlAs之透光層121至InAlGaAs之漸變帶溝吸收層122厚度約0.5μm,而P型InGaAs之漸變P型摻雜吸收層123厚度約0.6μm),InAlAs之透光層121可用以避免表面復合,而該漸變帶溝吸收層122與該漸變P型摻雜吸收層123可加速擴散並重整吸收過程以避免表面復合,使該吸收層12可將95%以上之入射光子全部吸收,進而使InGaAs可單純作為收集層13使用而不吸光,讓比電洞漂移速度更快之電子當成主動載子在整個光二極體磊晶層結構中運作以縮短載子漂移時間,俾當電子在該收集層13中漂移時,達成超高速電子漂移。
請參閱『第3圖』所示,係本發明與傳統p-i-n光二極體之模擬頻率響應比較示意圖。如圖所示:經由模擬,本發明可以降低RC頻寬限制與電洞傳輸時間兩者間之利弊關係,如圖中左側所示。因此,本發明提出之同質接面型之高速光二極體,其在主動區直徑為60 μm、吸收層厚度為1.1μm(含透光層至漸變帶溝吸收層之0.5μm與漸變P型摻雜吸收層之0.6μm)以及收集層厚度為3.8μm時,可以成功達到在大於25 Gbps操作(17 GHz 3-dB頻寬)。其模擬中所用之少數電子遷移率為5000cm2 /V-sec,以及電子在InGaAs收集層之漂移速度為3x105 m/sec之高速操作。模擬結果證實本結構設計之60μm主動區直徑,係擁有17 GHz之3-dB頻寬。
此外,於另一參考實施例中(如圖中右側所示),經由模擬,傳統之光二極體,當其在主動區直徑為60μm以及吸收層厚度為1.7μm(最佳化)時,僅可以達到10 Gbps操作模擬中電洞在收集層之漂移速度為0.5x105 m/sec之高速操作。由此模擬結果證實本發明所提出之結構設計之60μm主動區直徑與傳統p-i-n結構相比,的確擁有較高之3-dB頻寬(17 vs. 10 GHz)以利25 Gbps操作。
由上述可知,本發明係可突破一般材料不能以InGaAs作為收集層之技術限制,藉由具有強大(>2μm-1 )光吸收常數之漸變帶溝吸收層之吸收層可將光子能量先行全部吸收並能避免表面復合,使後段採用InGaAs為材料之收集層即不會再有吸光作用產生,不僅能解決傳統技術只在表面吸光之問題,且透過以InGaAs作為結構材料,與其他砷化鋁鎵(AlGaAs)、InP及砷化鎵(GaAs)等材料相比,更能具有較佳之電子傳遞,並可大幅地降低元件本身之電阻電容(RC)及載子傳輸時間所造成之頻寬限制。
綜上所述,本發明係一種同質接面型之高速光二極體,可有效改善習用之種種缺點,利用具有強大(>2μm-1 )光吸收常數之漸變帶溝吸收層之吸收層可將光子能量先行全部吸收並能避免表面復合,使後段採用砷化銦鎵(InGaAs)為材料之收集層即不會再有吸光作用產生,不僅能解決傳統技術只在表面吸光之問題,且透過以InGaAs作為結構材料,與其他材料相比,更能具有較佳之電子傳遞,並可大幅地降低元件本身之電阻電容(RC)及載子傳輸時間所造成之頻寬限制,達到突破一般材料不能以InGaAs作為收集層之技術限制,進而使本發明之産生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。
上述所提之吸收層12係設置於該第一、二歐姆接觸層11、14之間,其厚度係介於0.88~1.32μm範圍,該吸收層係包含有一部分表面顯露於該第一歐姆接觸層11覆蓋之外之透光層(Window Layer)121、一漸變P型摻雜吸收層(Graded P-doping Absorption Layer)123、及一設置於該透光層121與該漸變P型摻雜吸收層123之間之漸變帶溝吸收層(Graded Bandgap Absorption Layer)122,用以吸收入射光,並轉換為載子(Carrier)。其中,該透光層121與該漸變帶溝吸收層122之厚度係介於0.4~0.6μm之間,而該漸變P型摻雜吸收層123之厚度係介於0.48~0.72μm之間。
上述所提之收集層13係為砷化銦鎵,其設置於該吸收層12中之漸變P型摻雜吸收層123與該第二歐姆接觸層14之間,且厚度係介於3.04~4.56μm範圍,用以收集前述載子與降低元件電容。
上述所提之第一歐姆接觸層11係為P型電極,其材質係為P型砷化銦鎵,透過與下方材質為砷化銦鋁(InAlAs)之透光層121,可形成歐姆接觸之電性介面;並且,該透光層121之材質亦可為磷化銦(InP)。另外,該漸變帶溝吸收層122係可為砷化鋁銦鎵(InAlGaAs)或磷砷化銦鎵(InGaAsP),而該漸變P型摻雜吸收層123係為P型砷化銦鎵。此外,該第二歐姆接觸層14係為摻雜N型砷化銦鎵之N型電極。以上所述,係構成一全新之同質接面型之高速光二極體。
本發明同質接面型之高速光二極體,係可適用於850奈米(nm)與1550nm兩個光通訊波段,其運作原理如第2圖所示。於一較佳實施例中,以850nm光波段之入射光能量為例,入射光子進入厚度約1.1μm之吸收層12中時(其中P型InAlAs之透光層121至InAlGaAs之漸變帶溝吸收層122厚度約0.5μm,而P型InGaAs之漸變P型摻雜吸收層123厚度約0.6μm),InAlAs之透光層121可用以避免表面復合,而該漸變帶溝吸收層122與該漸變P型摻雜吸收層123可加速擴散並重整吸收過程以避免表面復合,使該吸收層12可將95%以上之入射光子全部吸收,進而使InGaAs可單純作為收集層13使用而不吸光,讓比電洞漂移速度更快之電子當成主動載子在整個光二極體磊晶層結構中運作以縮短載子漂移時間,俾當電子在該收集層13中漂移時,達成超高速電子漂移。
請參閱『第3圖』所示,係本發明與傳統p-i-n光二極體之模擬頻率響應比較示意圖。如圖所示:經由模擬,本發明可以降低RC頻寬限制與電洞傳輸時間兩者間之利弊關係,如圖中左側所示。因此,本發明提出之同質接面型之高速光二極體,其在主動區直徑為60 μm、吸收層厚度為1.1μm(含透光層至漸變帶溝吸收層之0.5μm與漸變P型摻雜吸收層之0.6μm)以及收集層厚度為3.8μm時,可以成功達到在大於25 Gbps操作(17 GHz 3-dB頻寬)。其模擬中所用之少數電子遷移率為5000cm2 /V-sec,以及電子在InGaAs收集層之漂移速度為3x105 m/sec之高速操作。模擬結果證實本結構設計之60μm主動區直徑,係擁有17 GHz之3-dB頻寬。
此外,於另一參考實施例中(如圖中右側所示),經由模擬,傳統之光二極體,當其在主動區直徑為60μm以及吸收層厚度為1.7μm(最佳化)時,僅可以達到10 Gbps操作模擬中電洞在收集層之漂移速度為0.5x105 m/sec之高速操作。由此模擬結果證實本發明所提出之結構設計之60μm主動區直徑與傳統p-i-n結構相比,的確擁有較高之3-dB頻寬(17 vs. 10 GHz)以利25 Gbps操作。
由上述可知,本發明係可突破一般材料不能以InGaAs作為收集層之技術限制,藉由具有強大(>2μm-1 )光吸收常數之漸變帶溝吸收層之吸收層可將光子能量先行全部吸收並能避免表面復合,使後段採用InGaAs為材料之收集層即不會再有吸光作用產生,不僅能解決傳統技術只在表面吸光之問題,且透過以InGaAs作為結構材料,與其他砷化鋁鎵(AlGaAs)、InP及砷化鎵(GaAs)等材料相比,更能具有較佳之電子傳遞,並可大幅地降低元件本身之電阻電容(RC)及載子傳輸時間所造成之頻寬限制。
綜上所述,本發明係一種同質接面型之高速光二極體,可有效改善習用之種種缺點,利用具有強大(>2μm-1 )光吸收常數之漸變帶溝吸收層之吸收層可將光子能量先行全部吸收並能避免表面復合,使後段採用砷化銦鎵(InGaAs)為材料之收集層即不會再有吸光作用產生,不僅能解決傳統技術只在表面吸光之問題,且透過以InGaAs作為結構材料,與其他材料相比,更能具有較佳之電子傳遞,並可大幅地降低元件本身之電阻電容(RC)及載子傳輸時間所造成之頻寬限制,達到突破一般材料不能以InGaAs作為收集層之技術限制,進而使本發明之産生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。
1...磊晶層結構
11...第一歐姆接觸層
12...吸收層
121...透光層
122...漸變帶溝吸收層
123...漸變P型摻雜吸收層
13...收集層
14...第二歐姆接觸層
15...半導體基板
第1圖,係本發明一較佳實施例之橫剖面示意圖。
第2圖,係本發明結構之能帶分佈示意圖。
第3圖,係本發明與傳統p-i-n光二極體之模擬頻率響應比較示意圖。
第2圖,係本發明結構之能帶分佈示意圖。
第3圖,係本發明與傳統p-i-n光二極體之模擬頻率響應比較示意圖。
1...磊晶層結構
11...第一歐姆接觸層
12...吸收層
121...透光層
122...漸變帶溝吸收層
123...漸變P型摻雜吸收層
13...收集層
14...第二歐姆接觸層
15...半導體基板
Claims (13)
- 一種同質接面型之高速光二極體,係為p-i-n接面之磊晶層結構,其包括:
一第一歐姆接觸層(Ohmic Contact Layer),係為P型電極;
一第二歐姆接觸層,係為N型電極;
一吸收層(Absorption Layer),係設置於該第一、二歐姆接觸層之間,包含有一部分表面顯露於該第一歐姆接觸層覆蓋之外之透光層(Window Layer)、一漸變P型摻雜吸收層(Graded P-doping Absorption Layer)、及一設置於該透光層與該漸變P型摻雜吸收層之間之漸變帶溝吸收層(Graded Bandgap Absorption Layer),用以吸收入射光,並轉換為載子(Carrier);以及
一收集層(Collector Layer),係設置於該吸收層與該第二歐姆接觸層之間,用以收集前述載子並降低元件電容。 - 依申請專利範圍第1項所述之同質接面型之高速光二極體,其具有至少大於60微米(μm)以上之主動區直徑。
- 依申請專利範圍第1項所述之同質接面型之高速光二極體,其中,該吸收層係可將95%以上之入射光子完全吸收。
- 依申請專利範圍第1項所述之同質接面型之高速光二極體,其中,該吸收層之厚度係介於0.88~1.32μm之間。
- 依申請專利範圍第1項所述之同質接面型之高速光二極體,其中,該透光層與該漸變帶溝吸收層之厚度係介於0.4~0.6μm之間。
- 依申請專利範圍第1項所述之同質接面型之高速光二極體,其中,該漸變P型掺雜吸收層之厚度係介於0.48~0.72μm之間。
- 依申請專利範圍第1項所述之同質接面型之高速光二極體,其中,該收集層係為砷化銦鎵(InGaAs),其厚度係介於3.04~4.56μm之間。
- 依申請專利範圍第1項所述之同質接面型之高速光二極體,其中,該透光層係可為砷化銦鋁(InAlAs)或磷化銦(InP)。
- 依申請專利範圍第1項所述之同質接面型之高速光二極體,其中,該漸變帶溝吸收層係可為砷化鋁銦鎵(InAlGaAs)或磷砷化銦鎵(InGaAsP)。
- 依申請專利範圍第1項所述之同質接面型之高速光二極體,其中,該漸變P型掺雜吸收層係為P型砷化銦鎵。
- 依申請專利範圍第1項所述之同質接面型之高速光二極體,其中,該收集層係設置於該漸變P型掺雜吸收層與該第二歐姆接觸層之間。
- 依申請專利範圍第1項所述之同質接面型之高速光二極體,係成長於一半導體基板上,且該第二歐姆接觸層係為N型砷化銦鎵。
- 依申請專利範圍第1項所述之同質接面型之高速光二極體,係適用於850奈米(nm)與1550nm之光通訊波段。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101124313A TWI455354B (zh) | 2012-07-05 | 2012-07-05 | Homogeneous junction type of high speed photodiode |
US13/549,425 US8541813B1 (en) | 2012-07-05 | 2012-07-14 | Homojunction type high-speed photodiode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101124313A TWI455354B (zh) | 2012-07-05 | 2012-07-05 | Homogeneous junction type of high speed photodiode |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201403865A TW201403865A (zh) | 2014-01-16 |
TWI455354B true TWI455354B (zh) | 2014-10-01 |
Family
ID=49181467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101124313A TWI455354B (zh) | 2012-07-05 | 2012-07-05 | Homogeneous junction type of high speed photodiode |
Country Status (2)
Country | Link |
---|---|
US (1) | US8541813B1 (zh) |
TW (1) | TWI455354B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002027805A2 (en) * | 2000-09-29 | 2002-04-04 | Board Of Regents, The University Of Texas System | A theory of the charge multiplication process in avalanche photodiodes |
US20040056250A1 (en) * | 2002-09-20 | 2004-03-25 | Fujitsu Quantum Devices Limited | Semiconductor light-receiving device |
WO2004095830A2 (en) * | 2003-04-21 | 2004-11-04 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Voltage tunable integrated infrared imager |
US7049640B2 (en) * | 2004-06-30 | 2006-05-23 | The Boeing Company | Low capacitance avalanche photodiode |
WO2011144938A2 (en) * | 2010-05-19 | 2011-11-24 | The University Of Sheffield | Avalanche photodiode structure and method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5148267A (en) * | 1989-09-08 | 1992-09-15 | Hewlett-Packard Company | Double heterostructure step recovery diode with internal drift field |
JP3292894B2 (ja) * | 1993-05-12 | 2002-06-17 | 日本電信電話株式会社 | 集積化受光回路 |
US7202102B2 (en) * | 2001-11-27 | 2007-04-10 | Jds Uniphase Corporation | Doped absorption for enhanced responsivity for high speed photodiodes |
US6740908B1 (en) * | 2003-03-18 | 2004-05-25 | Agilent Technologies, Inc. | Extended drift heterostructure photodiode having enhanced electron response |
CN100499173C (zh) * | 2003-05-02 | 2009-06-10 | 派克米瑞斯有限责任公司 | Pin光电检测器 |
US7274011B2 (en) * | 2004-12-27 | 2007-09-25 | Teledyne Licensing, Llc | Spectral imager and fabrication method |
TW200832687A (en) * | 2007-01-30 | 2008-08-01 | Univ Nat Taiwan | Ambient light sensor |
TW201001736A (en) * | 2008-06-19 | 2010-01-01 | Univ Nat Central | A high-speed avalanche photodiode |
JP5558085B2 (ja) * | 2009-12-01 | 2014-07-23 | 株式会社東芝 | 抵抗変化メモリ |
TWI403053B (zh) * | 2010-01-07 | 2013-07-21 | Univ Nat Central | Optoelectronic components |
TWI412149B (zh) * | 2010-12-16 | 2013-10-11 | Univ Nat Central | Laser energy conversion device |
US8822311B2 (en) * | 2011-12-22 | 2014-09-02 | Avogy, Inc. | Method of fabricating a GaN P-i-N diode using implantation |
-
2012
- 2012-07-05 TW TW101124313A patent/TWI455354B/zh active
- 2012-07-14 US US13/549,425 patent/US8541813B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002027805A2 (en) * | 2000-09-29 | 2002-04-04 | Board Of Regents, The University Of Texas System | A theory of the charge multiplication process in avalanche photodiodes |
US20040056250A1 (en) * | 2002-09-20 | 2004-03-25 | Fujitsu Quantum Devices Limited | Semiconductor light-receiving device |
WO2004095830A2 (en) * | 2003-04-21 | 2004-11-04 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Voltage tunable integrated infrared imager |
US7049640B2 (en) * | 2004-06-30 | 2006-05-23 | The Boeing Company | Low capacitance avalanche photodiode |
WO2011144938A2 (en) * | 2010-05-19 | 2011-11-24 | The University Of Sheffield | Avalanche photodiode structure and method |
Also Published As
Publication number | Publication date |
---|---|
US8541813B1 (en) | 2013-09-24 |
TW201403865A (zh) | 2014-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6963089B2 (en) | Avalanche photo-detector with high saturation power and high gain-bandwidth product | |
TWI412149B (zh) | Laser energy conversion device | |
US20070096240A1 (en) | Doped Absorption For Enhanced Responsivity For High Speed Photodiodes | |
WO2017148098A1 (zh) | 光波导探测器与光模块 | |
US9130083B2 (en) | Semiconductor light receiving device and light receiving apparatus | |
TWI620339B (zh) | 高速光偵測器 | |
Shi et al. | Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth | |
CN105140330A (zh) | 一种低功耗、零偏压单行载流子光电探测器 | |
CN112563351A (zh) | 一种大功率InGaAs/InP单行载流子光电探测器的设计方法 | |
Nada et al. | A high-linearity avalanche photodiodes with a dual-carrier injection structure | |
Li et al. | High bandwidth surface-illuminated InGaAs/InP uni-travelling-carrier photodetector | |
Meng et al. | High-photocurrent and wide-bandwidth UTC photodiodes with dipole-doped structure | |
JP2006229156A (ja) | フォトダイオード | |
Chizh et al. | High-speed high-power InAlAs/InGaAs/InP schottky photodiode | |
TWI722305B (zh) | 第二型混成吸收光偵測器 | |
CN115810680B (zh) | 一种局域场增强的光电导型高速光电探测器 | |
JP2002231992A (ja) | 半導体受光素子 | |
CN115295646A (zh) | 一种高性能光探测器芯片外延片 | |
TWI455354B (zh) | Homogeneous junction type of high speed photodiode | |
US20030111675A1 (en) | Doped absorption for enhanced responsivity for high speed photodiodes | |
Shi et al. | Novel back-to-back uni-traveling-carrier photodiodes with high responsivity and wide bandwidth | |
Chao et al. | High-speed and high-power GaSb based photodiode for 2.5 μm wavelength operations | |
Liu et al. | Symmetrical Back-to-Back Zero-Bias Operational Uni-Traveling Carrier Photodiode | |
TWI838904B (zh) | 高響應度與高飽和電流的串聯累崩光二極體 | |
Li et al. | Modified dual depletion region photodiode with optimized collection layer |