TWI838904B - 高響應度與高飽和電流的串聯累崩光二極體 - Google Patents

高響應度與高飽和電流的串聯累崩光二極體 Download PDF

Info

Publication number
TWI838904B
TWI838904B TW111138199A TW111138199A TWI838904B TW I838904 B TWI838904 B TW I838904B TW 111138199 A TW111138199 A TW 111138199A TW 111138199 A TW111138199 A TW 111138199A TW I838904 B TWI838904 B TW I838904B
Authority
TW
Taiwan
Prior art keywords
layer
type
electric field
field control
ohmic contact
Prior art date
Application number
TW111138199A
Other languages
English (en)
Other versions
TW202343814A (zh
Inventor
許晉瑋
Original Assignee
國立中央大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中央大學 filed Critical 國立中央大學
Publication of TW202343814A publication Critical patent/TW202343814A/zh
Application granted granted Critical
Publication of TWI838904B publication Critical patent/TWI838904B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Light Receiving Elements (AREA)
  • Bipolar Transistors (AREA)

Abstract

一種高響應度與高飽和電流的串聯累崩光二極體,係在單一累增層(multiplication layers)中插入多層的電場控制層(field control layer),以將該單一累增層切成數層不同區域的累增層,俾以減小崩潰電壓、降低臨界電場、增進飽和功率與提高增益,達到累增崩潰的效果。

Description

高響應度與高飽和電流的串聯累崩光二極體
本發明係有關於一種高響應度與高飽和電流的串聯累崩光二極 體,尤指涉及一種在單一累增層(multiplication layer)中插入多層的電場控制層(field control layer),以將該單一累增層切成數層不同區域的累增層,特別係指可以減小崩潰電壓、降低臨界電場、增進飽和功率與提高增益,達到累增崩潰效果的裝置。
數十年來,累崩光二極體(avalanche photodiode, APD)在光纖通 信、生物感測、光達、量子光學、量子計算及無線光通信等多種不同應用的接收端發揮著重要作用。與其它內部增益較大的半導體光偵測器(包括光電晶體與光導體)相比,APD通常可具有更短的內部響應時間、更寬的光電(optical-to-electrical, O-E)頻寬、更低的雜訊等效功率(noise-equivalent-power, NEP)、及更高的靈敏度等性能。另一方面,與具有單位增益的p-i-n PD對應物相比,APD高增益的代價是其輸出飽和電流密度較低與O-E頻寬較小,這是由於其主動層內的額外載子倍增過程所致。
近來使用在模擬系統中具有大動態範圍的光接收器需求量很大, 為使APD裝置能夠在高飽和輸出電流下保持高響應性與高速性能,成為滿足此類應用的重要問題。以調頻連續波(frequency modulated continuous wave, FMCW)光達中的同調接收器為例,在光學局部震盪器(local oscillator, LO)強烈功率泵浦下可以提供高飽和射頻輸出功率的高線性p-i-n PD,非常適用於放大微弱的接收光。然而,在基於進階光子積體電路(photonic integrated circuit, PIC)的FMCW光達系統中,顯著的光插入損耗仍然是一個挑戰,這導致輸出光學LO功率有限(幾mW)。
在具有高響應性能的傳統APD中,其飽和電流通常受到較厚的砷化銦鎵(In0.53Ga0.47As)吸收層(~2μm)中的空間電荷屏蔽(space-charge screening,SCS)效應的限制。通過降低電荷層中的摻雜密度,可以在吸收層中分配更強的電場來抑制這種SCS效應。然而,此種做法會導致崩潰(操作)電壓(Vbr)的增加,以及在大功率操作下產生更嚴重的設備發熱。
本發明人先前曾設計一種APD凸台結構,如第8圖所示,以下統稱裝置B,前案裝置B將在後續實驗中與本發明的裝置A進行性能比較。前案裝置B的結構從上到下由一p+型In0.53Ga0.47As接觸層31、一In0.52Al0.48As透光層32、一本質In0.53Ga0.47As吸收層33、二p型In0.52Al0.48As電場控制層34、二本質In0.52Al0.48As累增層35、以及二N+型In0.52Al0.48As/InP接觸層36組成。並將二In0.52AlxGa0.48-xAs帶溝漸變層37分別插入該吸收層33與該透光層32,以及該吸收層33與該累增層35之間的界面處。然而,該裝置B的操作增益將隨著光泵浦功率的增加而逐漸減少,相關實驗數據詳見後述。故,一般習用者係無法符合使用者於實際使用時之所需。
本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提供一種可以從根本上克服傳統APD在FMCW光達與高速光通信應用中響應度與飽和電流性能之間的權衡之高響應度與高飽和電流的串聯累崩光二極體。
為達以上之目的,本發明係一種高響應度與高飽和電流的串聯累崩光二極體,係在單一累增層(multiplication layers)中插入多層的電場控制層(field control layer),以將該單一累增層切成數層不同區域的累增層,俾以減小崩潰電壓、降低臨界電場、增進飽和功率與提高增益,達到累增崩潰的效果。
於本發明上述實施例中,該串聯累崩光二極體的磊晶層結構,係 包括:一P型接觸層(Contact Layer),係為p +-型摻雜之第一半導體;二N型接觸層,係為n +/n-型摻雜之第二、三半導體;一P型透光層(Window Layer),係為p +-型摻雜之第四半導體,並夾置於該P型歐姆接觸層與該二N型歐姆接觸層之間;一第一帶溝漸變層(Graded Bandgap Layer),係為p +-型摻雜之第五半導體,並夾置於該P型透光層與該二N型歐姆接觸層之間;一吸收層(Absorption Layer),係為無摻雜之第六半導體,並夾置於該第一帶溝漸變層與該二N型歐姆接觸層之間;一第二帶溝漸變層,係為無摻雜之第七半導體,並夾置於該吸收層與該二N型歐姆接觸層之間;一第一P型電場控制層,係為p-型摻雜之第八半導體,並夾置於該第二帶溝漸變層與該二N型歐姆接觸層之間;一第二P型電場控制層,係為p-型摻雜之第九半導體,並夾置於該第一P型電場控制層與該二N型歐姆接觸層之間;一第一累增層,係為無摻雜之第十半導體,並夾置於該第二P型電場控制層與該二N型歐姆接觸層之間;一第三P型電場控制層,係為p-型摻雜之第十一半導體,並夾置於該第一累增層與該二N型歐姆接觸層之間;一第二累增層,係為無摻雜之第十二半導體,並夾置於該第三P型電場控制層與該二N型歐姆接觸層之間;一第四P型電場控制層,係為p-型摻雜之第十三半導體,並夾置於該第二累增層與該二N型歐姆接觸層之間;以及一第三累增層,係為無摻雜之第十四半導體,並夾置於該第四P型電場控制層與該二N型歐姆接觸層之間;該高響應度與高飽和電流的串聯累崩光二極體之結構從上到下(from Top to Bottom),係由該P型歐姆接觸層、該P型透光層、該第一帶溝漸變層、該吸收層、該第二帶溝漸變層、該第一P型電場控制層、該第二P型電場控制層、該第一累增層、該第三P型電場控制層、該第二累增層、該第四P型電場控制層、該第三累增層、該N型歐姆接觸層以及該N+型歐姆接觸層所組成,成為陰極(n-side(M-layer) down)電極在下之磊晶層結構,以至少三層的多層連續堆疊累增層設計,每層累增層上方都插設有一電場控制層,藉此可以從根本上克服傳統APD中響應性與飽和電流性能之間的權衡,以便在FMCW光達與相關通信系統中的接收端應用。
於本發明上述實施例中,該磊晶層結構係成長於一半絕緣或導電 之半導體基板上。
於本發明上述實施例中,該P型歐姆接觸層為p +-型砷化銦鎵 (InGaAs)、該P型透光層為p +-型磷化銦(InP)、該第一帶溝漸變層為p +-型砷化鋁銦鎵(InAlGaAs)、該吸收層為無摻雜之InGaAs、該第二帶溝漸變層為無摻雜之InGaAs或InAlAs、該第一P型電場控制層為p-型摻雜之InAlAs、該第二P型電場控制層為p-型摻雜之InP、該第一累增層為無摻雜之InAlAs、該第三P型電場控制層為p-型摻雜之InAlAs、該第二累增層為無摻雜之InAlAs、該第四P型電場控制層為p-型摻雜之InAlAs、該第三累增層為無摻雜之InAlAs、以及該二N型歐姆接觸層分別為n-型摻雜之InAlAs與n +-型摻雜之InP。
於本發明上述實施例中,該P型歐姆接觸層為p +-型In xGa 1-xAs,且x 係為0.53。
於本發明上述實施例中,該吸收層為無摻雜之In xGa 1-xAs,且x係 為0.53。
於本發明上述實施例中,該第一、三、四P型電場控制層為p-型 摻雜之In xAl 1-xAs,且x係為0.52。
於本發明上述實施例中,該第一、二、三累增層為無摻雜之 In xAl 1 -xAs,且x係為0.52。
於本發明上述實施例中,該N型歐姆接觸層為n-型摻雜之 In xAl 1 -xAs,且x係為0.52。
於本發明上述實施例中,該高響應度與高飽和電流的串聯累崩光 二極體係適用於調頻連續波(frequency modulated continuous wave, FMCW)光達。
請參閱『第1圖~第7圖』所示,係分別為本發明三層累增層 APD(裝置A)之剖面示意圖、本發明裝置A在衝穿電壓與崩潰電壓下沿第1圖所示的AA'與BB'方向計算之電場分佈示意圖、本發明以裝置B在衝穿電壓與崩潰電壓下沿第1圖所示的AA'與BB'方向計算之電場分佈示意圖、本發明裝置A、A'與B在不同光泵浦功率下測量的暗電流、光電流及操作增益與偏壓之關係示意圖、本發明裝置A、A'與B測量的直流輸出光電流與輸入光功率之關係示意圖、本發明裝置A'與B在不同偏壓下的直流輸出光電流與輸入光功率之關係示意圖、以及本發明之暗電流、光電流、操作增益、O-E頻率響應、及以裝置A、B與PIN PD模組作為接收器拍攝的OUTs(K、F與C)之影像圖。如圖所示:本發明係一種高響應度與高飽和電流的串聯累崩光二極體(avalanche photodiode, APD),包括由一P型接觸層(Contact Layer)11、二N型接觸層12、13、一P型透光層(Window Layer)14、一第一帶溝漸變層(Graded Bandgap Layer)15、一吸收層(Absorption Layer)16、一第二帶溝漸變層17、一第一P型電場控制層(Field Control Layer)18、一第二P型電場控制層(Field Control Layer)19、一第一累增層(Multiplication Layer)20、一第三P型電場控制層21、一第二累增層22、一第四P型電場控制層23、以及一第三累增層24構成一磊晶層結構,並成長於一半絕緣或導電之半導體基板25上。如是,藉由上述揭露之結構構成一全新之高響應度與高飽和電流的串聯累崩光二極體。
於本發明之一較佳具體實施例中,該高響應度與高飽和電流的串 聯累崩光二極體可適用於調頻連續波(frequency modulated continuous wave, FMCW)光達,其結構如第1圖所示,以下統稱裝置A。該裝置A的結構從上到下(from Top to Bottom),係由一p +型砷化銦鎵(In 0.53Ga 0.47As)接觸層,厚度120 nm、一磷化銦(InP)透光層,厚度500 nm、一p型砷化鋁銦鎵(InAlGaAs)帶溝漸變層,厚度40 nm、一無摻雜之In 0.53Ga 0.47As吸收層,厚度2000 nm、一無摻雜之InGaAs或InAlAs帶溝漸變層,厚度30 nm、三p型In 0.52Al 0.48As電場控制層與一p型InP電場控制層,厚度30、30、30與120 nm、三無摻雜之In 0.52Al 0.48As累增層,厚度100 nm、100 nm與400 nm、以及二N +型In 0.52Al 0.48As/InP接觸層組成。成為陰極(n-side(M-layer) down)電極在下之磊晶層結構,以至少三層的多層連續堆疊累增層設計,每層累增層上方都插設有一電場控制層,藉此可以從根本上克服傳統APD中響應性與飽和電流性能之間的權衡,以便在FMCW光達與高速光通信系統中的接收端應用。
上述清楚地說明了每個磊晶層的厚度,裝置A、裝置B(如第8 圖所示)的In 0.53Ga 0.47As吸收層厚度相同,為2 μm,且累增層厚度相近(600(A) vs. 500(B) nm)。本發明係在單一累增層中插入多層的電場控制層,以將單一累增層切成數層不同區域的累增層,以上述裝置A為例,所提600 nm厚的累增層細分為100 nm的第一累增層20、100 nm的第二累增層22與400 nm的第三累增層 24等三部分。藉此減小崩潰電壓、降低臨界電場、增進飽和功率與提高增益,以達到累增崩潰的效果。
承上述,由於累增區中的階梯電場分佈,電子在第一與第二累增 層20、22中被激發,並且由於電場強度不足,可能無法觸發顯著的碰撞電離。最終,電子轉移到與N型接觸層13緊密相連的第三累增層24,開始連續的碰撞電離。因此,本發明提出這種多層累層層設計提供了比單個均勻厚的累增層具有更好的碰撞電離定域化,因此可以顯著減少APD中由累崩過程引起的延遲時間。
第2圖與第3圖分別顯示本發明裝置A與前案裝置B在衝穿電 壓與崩潰電壓下沿第1圖所示的垂直(AA')與水平(BB')方向計算的電場分佈。結果顯示,第2圖為本發明裝置A模擬的一維電場,累增區的臨界電場可降低至305 kV/cm,-44 V的崩潰電壓。第3圖為前案裝置B模擬的一維電場,累增區的臨界電場為610 kV/cm,-51 V的崩潰電壓。在APD結構的設計過程中,較低的臨界電場代表較小的工作電壓(V br),較低的裝置發熱,並且可以在較厚的In 0.53Ga 0.47As吸收層中分配較強的電場來抑制空間電荷屏蔽(space-charge screening, SCS)效應,從而獲得較高的飽和輸出光電流密度。總體而言,本發明的多累增層設計可以從根本上放寬高增益APD對飽和的限制,提供比具有相同累增層厚度的傳統APD設計更短的累崩延遲時間與更大的增益頻寬乘積(gain-bandwidth product, GBP)。
由第2、3圖可知,本發明裝置A累增崩潰的電場只需要305 kV/cm,前案裝置B需要高到610 kV/cm才會崩潰,本發明裝置A可以有效的把崩潰電場變小,把崩潰電場從-51 V降到-44 V,換言之,本發明裝置A可以把累增層電場壓低,把吸收層電場拉高,同時維持崩潰的現象,所以本發明可以有更小的崩潰電壓(-51 V降到-44 V),更低的臨界電場,達到累增崩潰的效果。
第4圖分別針對(a)裝置A(b)裝置A'與(c)裝置B在1.55 µm光波長 下經受不同光泵浦功率下測量的暗電流、光電流及操作增益與偏壓的關係。其中,裝置A'係具有與裝置A完全相同的磊晶層結構,但電場控制層的摻雜密度已被調整為具有更大的反向偏壓衝穿電壓(punch through voltage, V pt)(-16 vs. -9 V)。由結果可見,裝置A、A'與B實測的崩潰電壓(breakdown voltage, V br)分別約為-41 V、-39 V與-49 V。證明本發明裝置A也可以同時把V pt與V br壓低,而能夠把衝穿點壓低,代表吸收層的電場可以更高,從而使其高功率表現會更好。
第5圖分別針對具有相同活動窗直徑為60µm的(a)裝置A(b)裝置 A'與(c)裝置B測量的直流輸出光電流與輸入光功率的關係,且圖(a)中的插圖係顯示裝置A與B的測量正向偏壓I-V曲線。由結果可見,第5圖(a)顯示本發明裝置A的光電流是不易飽和,第5圖(c)顯示前案裝置B的飽和光電流較小,所以容易飽和,這是因為其吸收層電場較小,所以比較容易飽和,由第5圖(a)可知,本發明裝置A超過5.6 mA都未飽和,前案裝置B在2.5 mA就飽和。因此,與其他兩個裝置A'(I 1dB:3.2 mA)、B(I 1dB:2.5 mA)相比,本發明裝置A具有更高的1 dB飽和電流(I 1dB:>5.6 mA)。
第6圖(c)顯示具有相同活動窗直徑為200µm的裝置A'與B在不 同偏壓下的直流輸出光電流與輸入光功率的關係。由結果顯示,當本發明裝置 A'把元件面積拉大時,變成電流可以到很大,本發明裝置A'崩潰電壓較小,所以裝置發熱就比較小,可以耐到高電流,因為吸收層電場比較高;前案裝置B崩潰電壓很大,無法耐高電流。
第7圖(a)~(h)顯示分別使用裝置A、B與PIN PD模組作為接收 器拍攝的OUTs(K、F與C)的影像,這些影像係根據每個像素的降頻中頻(IF)頻率與功率所構建,其中圖(a)、(c)、(e)及(g)係基於裝置A在0.9 Vbr、裝置B在0.8 Vbr、裝置B在0.9 Vbr以及PIN PD下測量的每個像素的中頻功率拍攝的光達圖像,圖(b)、(d)、(f)及(h)係基於裝置A在0.9 Vbr、裝置B在0.8 Vbr、裝置B在0.9 Vbr以及PIN PD中每個像素的深度與距離信息拍攝的光達3D圖像。當應用在光達的接收端時發現,本發明所提裝置A顯影效果明顯比較好,只要一點點(0.5 mW)光功率就可以得到很好的影像效果,前案的裝置B無論是無累增層或雙層累增層都要4 mW的光功率,而且效果還比本發明裝置A差。
本發明提出一種新穎的APD設計,可以從根本上克服傳統APD在 FMCW光達與高速光通信應用中響應度與飽和電流性能之間的權衡。通過採用內部具有階梯電場的多個基於In 0.52Al 0.48As的累增層,由於多個累增層內的累崩過程比雙累增層更為明顯,因此可以有效降低臨界電場。藉此,本發明可以較小的工作電壓在APD的厚吸收層中分配一個更強的電場,可在高輸出光電流下減輕SCS效應與裝置發熱。與具有相同活動窗尺寸(60 μm)的雙累增層前案裝置B相比,本發明裝置A具有相近吸收值與累增層厚度的APD在0.95 V br操作下,表現出更小的V pt與V br,更高的響應度(19.6 vs. 13.5 A/W)、更大的最大增益(230 vs. 130)、及更高的1-dB飽和電流(>5.6 vs. 2.5 mA)。此外,當裝置活動窗直徑進一步增加到200 μm且輸出電流密度較低時,由於裝置A中工作電壓(V br)較小且裝置發熱較輕,所提的裝置結構仍然保持優於裝置B的飽和電流性能(>14.6 vs. 12.8 mA)。在自外差FMCW光達測試台上,這種新型APD在每個像素中表現出更大的信噪比,並且構建的三維影像質量也比通過前案雙累增層與高性能商用PIN PD模組獲得的影像質量更佳,所需的光功率(0.5 vs. 4 mW)更少。上述結果證明本發明所提新型APD可以進一步提高下一代FMCW光達與高速光通信系統的靈敏度。
綜上所述,本發明係一種高響應度與高飽和電流的串聯累崩光二 極體,可有效改善習用之種種缺點,係在單一累增層(multiplication layer)中插入多層的電場控制層(field control layer),以將該單一累增層切成數層不同區域的累增層,俾以減小崩潰電壓、降低臨界電場、增進飽和功率與提高增益,達到累增崩潰的效果,進而使本發明之產生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定 本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡 單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。
(本發明部分) A:裝置 11:P型接觸層 12、13:N型接觸層 14:P型透光層 15:第一帶溝漸變層 16:吸收層 17:第二帶溝漸變層 18:第一P型電場控制層 19:第二P型電場控制層 20:第一累增層 21:第三P型電場控制層 22:第二累增層 23:第四P型電場控制層 24:第三累增層 25:半導體基板 (前案部分) B:裝置 31:p +型In 0.53Ga 0.47As接觸層 32:In 0.52Al 0.48As透光層 33:本質In 0.53Ga 0.47As吸收層 34:p型In 0.52Al 0.48As電場控制層 35:本質In 0.52Al 0.48As累增層 36:N +型In 0.52Al 0.48As/InP接觸層 37:In 0.52Al xGa 0.48-xAs帶溝漸變層
第1圖,係本發明三層累增層APD(裝置A)之剖面示意圖。 第2圖,係本發明裝置A在衝穿電壓與崩潰電壓下沿第1圖所示的AA'與BB'方向計算之電場分佈示意圖。 第3圖,係本發明以裝置B在衝穿電壓與崩潰電壓下沿第1圖所示的AA'與BB'方向計算之電場分佈示意圖。 第4圖,係本發明裝置A、A'與B在不同光泵浦功率下測量的暗電流、光電流及操作增益與偏壓之關係示意圖。 第5圖,係本發明裝置A、A'與B測量的直流輸出光電流與輸入光功率之關係示意圖。 第6圖,係本發明裝置A'與B在不同偏壓下的直流輸出光電流與輸入光功率之關係示意圖。 第7圖,係本發明之暗電流、光電流、操作增益、O-E頻率響應、及以裝置A、B與PIN PD模組作為接收器拍攝的OUTs(K、F與C)之影像圖。 第8圖,係習用雙累增層APD(裝置B)之剖面示意圖。
A:裝置
11:P型接觸層
12、13:N型接觸層
14:P型透光層
15:第一帶溝漸變層
16:吸收層
17:第二帶溝漸變層
18:第一P型電場控制層
19:第二P型電場控制層
20:第一累增層
21:第三P型電場控制層
22:第二累增層
23:第四P型電場控制層
24:第三累增層
25:半導體基板

Claims (10)

  1. 一種高響應度與高飽和電流的串聯累崩光二極體(avalanche photodiode,APD),係在單一累增層(multiplication layer)中插入多層的電場控制層(field control layer),以將該單一累增層切成數層不同區域的累增層。
  2. 依申請專利範圍第1項所述之高響應度與高飽和電流的串聯累崩光二極體,其中,該串聯累崩光二極體的磊晶層結構,係包括:一P型接觸層(Contact Layer),係為p+-型摻雜之第一半導體;二N型接觸層,係為n+/n-型摻雜之第二、三半導體;一P型透光層(Window Layer),係為p+-型摻雜之第四半導體,並夾置於該P型歐姆接觸層與該二N型歐姆接觸層之間;一第一帶溝漸變層(Graded Bandgap Layer),係為p+-型摻雜之第五半導體,並夾置於該P型透光層與該二N型歐姆接觸層之間;一吸收層(Absorption Layer),係為無摻雜之第六半導體,並夾置於該第一帶溝漸變層與該二N型歐姆接觸層之間;一第二帶溝漸變層,係為無摻雜之第七半導體,並夾置於該吸收層與該二N型歐姆接觸層之間;一第一P型電場控制層,係為p-型摻雜之第八半導體,並夾置於該第二帶溝漸變層與該二N型歐姆接觸層之間;一第二P型電場控制層,係為p-型摻雜之第九半導體,並夾置於該第一P型電場控制層與該二N型歐姆接觸層之間;一第一累增層,係為無摻雜之第十半導體,並夾置於該第二P型電場控制層與該二N型歐姆接觸層之間;一第三P型電場控制層,係為p-型摻雜之第十一半導體,並夾置於該第一累 增層與該二N型歐姆接觸層之間;一第二累增層,係為無摻雜之第十二半導體,並夾置於該第三P型電場控制層與該二N型歐姆接觸層之間;一第四P型電場控制層,係為p-型摻雜之第十三半導體,並夾置於該第二累增層與該二N型歐姆接觸層之間;以及一第三累增層,係為無摻雜之第十四半導體,並夾置於該第四P型電場控制層與該二N型歐姆接觸層之間;該高響應度與高飽和電流的串聯累崩光二極體之結構從上到下(from Top to Bottom),係由該P型歐姆接觸層、該P型透光層、該第一帶溝漸變層、該吸收層、該第二帶溝漸變層、該第一P型電場控制層、該第二P型電場控制層、該第一累增層、該第三P型電場控制層、該第二累增層、該第四P型電場控制層、該第三累增層、該N型歐姆接觸層以及該N+型歐姆接觸層所組成,成為陰極(n-side(M-layer)down)電極在下之磊晶層結構,以至少三層的多層連續堆疊累增層設計,每層累增層上方都插設有一電場控制層。
  3. 依申請專利範圍第2項所述之高響應度與高飽和電流的串聯累崩光二極體,其中,該磊晶層結構係成長於一半絕緣或導電之半導體基板上。
  4. 依申請專利範圍第2項所述之高響應度與高飽和電流的串聯累崩光二極體,其中,該P型歐姆接觸層為p+-型砷化銦鎵(InGaAs)、該P型透光層為p+-型磷化銦(InP)、該第一帶溝漸變層為p+-型砷化鋁銦鎵(InAlGaAs)、該吸收層為無摻雜之InGaAs、該第二帶溝漸變層為無摻雜之InGaAs或InAlAs、該第一P型電場控制層為p-型摻雜之InAlAs、該第二P型電場控制層為p-型摻雜之InP、該第一累增層為無摻雜之InAlAs、該第三P型電場控制層為p-型摻雜之InAlAs、該第二累增層為無摻雜之InAlAs、該第四P型電場控制層為p-型摻雜之InAlAs、該第三累增層為無摻雜之InAlAs、以及該二N型歐姆接觸層分別為n-型 摻雜之InAlAs與n+-型摻雜之InP。
  5. 依申請專利範圍第2項所述之高響應度與高飽和電流的串聯累崩光二極體,其中,該P型歐姆接觸層為p+-型InxGa1-xAs,且x係為0.53。
  6. 依申請專利範圍第2項所述之高響應度與高飽和電流的串聯累崩光二極體,其中,該吸收層為無摻雜之InxGa1-xAs,且x係為0.53。
  7. 依申請專利範圍第2項所述之高響應度與高飽和電流的串聯累崩光二極體,其中,該第一、三、四P型電場控制層為p-型摻雜之InxAl1-xAs,且x係為0.52。
  8. 依申請專利範圍第2項所述之高響應度與高飽和電流的串聯累崩光二極體,其中,該第一、二、三累增層為無摻雜之InxAl1-xAs,且x係為0.52。
  9. 依申請專利範圍第2項所述之高響應度與高飽和電流的串聯累崩光二極體,其中,該N型歐姆接觸層為n-型摻雜之InxAl1-xAs,且x係為0.52。
  10. 依申請專利範圍第1項所述之高響應度與高飽和電流的串聯累崩光二極體,係適用於調頻連續波(frequency modulated continuous wave,FMCW)光達與高速光通信系統中的接收端應用。
TW111138199A 2022-04-18 2022-10-07 高響應度與高飽和電流的串聯累崩光二極體 TWI838904B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263331952P 2022-04-18 2022-04-18
US63/331,952 2022-04-18

Publications (2)

Publication Number Publication Date
TW202343814A TW202343814A (zh) 2023-11-01
TWI838904B true TWI838904B (zh) 2024-04-11

Family

ID=88307142

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111138199A TWI838904B (zh) 2022-04-18 2022-10-07 高響應度與高飽和電流的串聯累崩光二極體

Country Status (2)

Country Link
US (1) US20230335664A1 (zh)
TW (1) TWI838904B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515315B1 (en) * 1999-08-05 2003-02-04 Jds Uniphase, Corp. Avalanche photodiode for high-speed applications
CN103390680A (zh) * 2012-05-10 2013-11-13 三菱电机株式会社 雪崩光电二极管及其制造方法
TW201731120A (zh) * 2016-02-18 2017-09-01 國立中央大學 光偵測元件
JP2020098877A (ja) * 2018-12-19 2020-06-25 日本電信電話株式会社 アバランシェフォトダイオードおよびその製造方法
TW202131527A (zh) * 2020-02-12 2021-08-16 國立中央大學 混層複合式充電層累增崩潰光二極體

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515315B1 (en) * 1999-08-05 2003-02-04 Jds Uniphase, Corp. Avalanche photodiode for high-speed applications
CN103390680A (zh) * 2012-05-10 2013-11-13 三菱电机株式会社 雪崩光电二极管及其制造方法
TW201731120A (zh) * 2016-02-18 2017-09-01 國立中央大學 光偵測元件
JP2020098877A (ja) * 2018-12-19 2020-06-25 日本電信電話株式会社 アバランシェフォトダイオードおよびその製造方法
TW202131527A (zh) * 2020-02-12 2021-08-16 國立中央大學 混層複合式充電層累增崩潰光二極體

Also Published As

Publication number Publication date
TW202343814A (zh) 2023-11-01
US20230335664A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US20070096240A1 (en) Doped Absorption For Enhanced Responsivity For High Speed Photodiodes
US9882080B2 (en) High speed photodetector
US9130083B2 (en) Semiconductor light receiving device and light receiving apparatus
Shi et al. Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth
US9466751B1 (en) Avalanche photodiode having electric-field confinement by mesas
TWI595678B (zh) 光偵測元件
Nada et al. A high-linearity avalanche photodiodes with a dual-carrier injection structure
Watanabe et al. High-speed and low-dark-current flip-chip InAlAs/InAlGaAs quaternary well superlattice APDs with 120 GHz gain-bandwidth product
US9276158B2 (en) Photodiode
TWI664718B (zh) 凸台狀累增光偵測器元件
Li et al. A partially depleted absorber photodiode with graded doping injection regions
CN213212172U (zh) 一种850nm波段高响应度探测器
TWI838904B (zh) 高響應度與高飽和電流的串聯累崩光二極體
Chizh et al. High-speed high-power InAlAs/InGaAs/InP schottky photodiode
Meng et al. High-photocurrent and wide-bandwidth UTC photodiodes with dipole-doped structure
JP2006229156A (ja) フォトダイオード
TWI722305B (zh) 第二型混成吸收光偵測器
TWI728694B (zh) 混層複合式充電層累增崩潰光二極體
WO2022099747A1 (zh) 一种850nm波段高响应度探测器
Li et al. Design of a High-Speed PIN Photodiode With a Gradually-Doped Composite Absorption Layer for 100 Gbit/s Optical Receivers
Beckerwerth et al. High-speed waveguide integrated avalanche photodiode for InP-PICs
Nada et al. High-speed high-power-tolerant avalanche photodiode for 100-Gb/s applications
Du et al. Cascade uni-traveling-carrier photodetector array for terahertz applications
Beling et al. High Power Integrated 100 GHz Photodetectors
Shi et al. Novel back-to-back uni-traveling-carrier photodiodes with high responsivity and wide bandwidth