WO2022099747A1 - 一种850nm波段高响应度探测器 - Google Patents

一种850nm波段高响应度探测器 Download PDF

Info

Publication number
WO2022099747A1
WO2022099747A1 PCT/CN2020/129923 CN2020129923W WO2022099747A1 WO 2022099747 A1 WO2022099747 A1 WO 2022099747A1 CN 2020129923 W CN2020129923 W CN 2020129923W WO 2022099747 A1 WO2022099747 A1 WO 2022099747A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
detector
thickness
algaas
Prior art date
Application number
PCT/CN2020/129923
Other languages
English (en)
French (fr)
Inventor
徐鹏飞
王岩
罗帅
季海铭
Original Assignee
江苏华兴激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华兴激光科技有限公司 filed Critical 江苏华兴激光科技有限公司
Publication of WO2022099747A1 publication Critical patent/WO2022099747A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of semiconductor optoelectronic devices, in particular to a detector with high responsivity in the 850nm waveband.
  • Semiconductor photodetectors are the most ideal photodetectors due to their small size, sensitivity quotient, fast response, and ease of integration, typically including PIN photodiodes, avalanche diodes, and silicon photomultiplier tubes. It is widely used in optical fiber communication, sensing system, high energy physics, nuclear medicine and other fields.
  • a PIN photodiode is a detector that incorporates a lightly doped intrinsic region between the pn diodes.
  • the internal electric field across both ends varies with distance from the diode surface.
  • PIN photodiodes have a strong electric field in the intrinsic region, when a photon is absorbed in this region, the photon energy is converted to new carriers (electron and hole pairs), and these newly generated carriers are based on their own The polarity, under the action of the electric field, drifts in different directions (electrons toward the n region, holes toward the p region). If the external circuit is connected again, a photocurrent is generated at this time. Since PIN photodiodes have a wide intrinsic region, they have a longer light-wave absorption region and faster time response.
  • PIN photodiodes have good photoelectric properties, simple structure, easy production and processing, and small dark current.
  • the PIN photodiode is stable for a long time and only needs to be loaded with a lower bias voltage.
  • the usual photodetectors in the 850nm band generally use silicon detectors, but the responsivity of silicon detectors is not high.
  • the conventional light source materials are all III-V family materials, and the two are difficult to be integrated in a single chip, which limits the development of high integration in large-scale optoelectronic integration.
  • the radiation resistance of silicon materials is also not as good as that of GaAs materials.
  • the development of 5G has promoted the development of GaAs-based high-speed and high-power electronic devices, and increased the application of GaAs materials in future optoelectronic integration.
  • GaAs-based detectors are very suitable, but the defect density of GaAs semi-insulating substrates is very high, reaching 10,000/cm 2 , which is at least an order of magnitude higher than that of N-type substrates.
  • the GaAs semi-insulating substrate will lead to many detector defects, and it is not suitable for detector arrays. There are a series of problems such as excessive dark current, uneven response, and low yield. While directly using the N-type substrate, although the defects are low, its conductivity has serious parasitic effects, which affects the detection speed.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and to provide a detector with high responsivity in the 850 nm band, which improves the response rate and contributes to the realization of a detector with high responsivity and low dark current against radiation.
  • an 850nm waveband high responsivity detector which is different in that it includes an n-type substrate located at the bottommost end of the detector, and the n-type substrate is composed of From bottom to top, it includes aluminum oxide layer, n-type contact layer, n-type DBR layer, lower confinement layer, absorption layer, upper confinement layer, p-type contact layer and anti-reflection coating layer, and also includes n-type electrode layer and p-type electrode layer.
  • the n-type electrode layer is located on the n-type contact layer and is located on one side of the n-type DBR layer
  • the p-type electrode layer is located on the p-type contact layer and located on one side of the anti-reflection coating layer .
  • the n-type substrate is a GaAs material with ultra-low defect density, and the thickness is 80-150 ⁇ m.
  • the Al content in the alumina layer is greater than 98%, and the thickness is 10-40 nm.
  • the n-type doping concentration of the n-type contact layer is greater than 1 ⁇ 10 18 /cm 3 and the thickness is 30-100 nm.
  • the n-type DBR layer is a plurality of AlGaAs film pairs with high/low aluminum composition, each film pair is composed of 850/4nm optical thickness high aluminum AlGaAs and 850/4nm optical thickness low aluminum AlGaAs, n
  • the type doping concentration is 5 ⁇ 10 17 /cm 3 to 1 ⁇ 10 18 /cm 3 .
  • the high-aluminum AlGaAs is Al 0.7 GaAs
  • the low-aluminum AlGaAs is Al 0.1 GaAs
  • the total number of pairs of thin films is 10-20 pairs.
  • the lower confinement layer is an i-type AlGaAs material, the Al composition is 0.2-0.5, and the thickness is 100-300 nm; the absorption layer is an i-type GaAs material, and the thickness is greater than 1 ⁇ m; the upper confinement layer is The i-type AlGaAs material has an Al composition of 0.2-0.5 and a thickness of 100-300 nm.
  • the p-type contact layer is a p-type graded doping material with a total thickness of 110 nm; the lower part is an AlGaAs graded layer, which gradually reduces the Al composition from the bottom to the top of the AlGaAs material until the upper GaAs contact surface, the highest Al
  • the component content is 0.3, the gradient is reduced to 0.2, the thickness is 100nm, the p-type doping concentration is from 2x10 17 /cm 3 to 1x10 18 /cm 3 ; the thickness of the GaAs contact surface is 10nm, and the p-type doping concentration is 1x10 19 / cm 3 .
  • the anti-reflection film layer is a double-layer hybrid structure, including a lower titanium oxide layer and an upper silicon oxide layer, and the sum of the optical thicknesses of the two is a quarter of 850 nm.
  • the n-type electrode layer is AuGeNi/Au material with a total thickness of 300-500nm;
  • the p-type electrode layer is a TiAu bimetallic layer with a total thickness of 400-500nm.
  • the present invention discloses a detector with high responsivity in the 850nm band.
  • the present invention reduces the parasitic capacitance of the substrate of the GaAs-based photodetector in the 850nm band through a new design.
  • By introducing an aluminum oxide layer on the N-type substrate Using the wet oxygen process to fabricate an insulating layer, combined with the structure of other layers, can reduce the parasitic capacitance and improve the response rate. It is suitable for medium and short-distance high-speed optical communication, and is helpful for the realization of anti-irradiation, low dark current and high responsivity detectors.
  • the invention can be applied to the fields of optical communication, anti-irradiation detection, space energy transmission, photon integration and laser batteries.
  • FIG. 1 is a schematic diagram of the overall structure of a laser according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of an epitaxial material according to an embodiment of the present invention.
  • 10-n-type substrate 20-alumina layer, 30-n-type contact layer, 40-n-type electrode layer, 50-n-type DBR layer, 60-lower confinement layer, 70-absorber layer, 80-upper Confinement layer, 90-p-type contact layer, 100-p-type electrode layer, 110-anti-reflection coating layer.
  • a detector with high responsivity in the 850 nm band of the present invention is different in that it includes an n-type substrate 10 at the bottom of the detector, and the n-type substrate 10 is arranged from top to bottom.
  • the n-type contact layer 30 It includes the aluminum oxide layer 20, the n-type contact layer 30, the n-type DBR layer 50, the lower confinement layer 60, the absorption layer 70, the upper confinement layer 80, the p-type contact layer 90 and the anti-reflection film layer 110 in sequence, and also includes the n-type Electrode layer 40 and p-type electrode layer 100, the n-type electrode layer 40 is located on the n-type contact layer 30 and located on one side of the n-type DBR layer 50, the p-type electrode layer 100 is located in the p-type contact layer 90 and on one side of the anti-reflection coating layer 110 .
  • the upper left end of the n-type contact layer 30 is the n-type electrode layer 40 , and the right end is the n-type DBR layer 50 .
  • the upper left end of the p-type contact layer 90 is the p-type electrode layer 100 , and the right end is the anti-reflection coating layer 110 .
  • the n-type substrate 10 is an ultra-low defect density GaAs material with a thickness of 80-150 ⁇ m. Compared with p-type and semi-insulating GaAs, the defect density of n-type material GaAs can be reduced by more than one order of magnitude.
  • the Al content in the aluminum oxide layer 20 is greater than 98%, and the thickness is 10-40 nm.
  • This layer of material is not grown directly on the n-type substrate 10, but is formed by growing AlAs or AlGaAs high-aluminum-containing material on the n-type substrate 10 in the device process stage through a lateral wet oxygen process, wherein III
  • the Al content in the group elements is greater than 98%.
  • the n-type doping concentration of the n-type contact layer 30 is greater than 1 ⁇ 10 18 /cm 3 , and the thickness is 30-100 nm. It is grown on the above-mentioned AlAs or AlGaAs high-aluminum-containing material on the n-type substrate 10 by using MOCVD or MBE equipment in the epitaxy stage.
  • the n-type DBR layer 50 is a plurality of AlGaAs thin film pairs with high/low Al composition, each thin film pair is composed of 850/4 nm optical thickness high Al AlGaAs and 850/4 nm optical thickness low Al AlGaAs, n-type
  • the doping concentration is 5 ⁇ 10 17 /cm 3 to 1 ⁇ 10 18 /cm 3 .
  • the n-type DBR layer 50 is located to the right over the n-type contact layer 30 .
  • the high-aluminum AlGaAs is Al 0.7 GaAs
  • the low-aluminum AlGaAs is Al 0.1 GaAs
  • the total number of pairs of thin films is 10-20 pairs.
  • the lower confinement layer 60 is an i-type AlGaAs material, which is an unintentional doping material, the Al composition is 0.2-0.5, and the thickness is 100-300 nm;
  • the absorption layer 70 is an i-type GaAs material, which is an unintentional doping material. Doping material, the thickness is greater than 1 ⁇ m;
  • the upper confinement layer 80 is an i-type AlGaAs material, which is an unintentional doping material, the Al composition is 0.2-0.5, and the thickness is 100-300 nm.
  • the p-type contact layer 90 is a p-type graded doping material with a total thickness of 110 nm; the lower part is an AlGaAs graded layer, and the Al composition is gradually reduced from the bottom to the top of the AlGaAs material to the upper GaAs contact surface, and the highest Al group is The part content is 0.3, the gradient is reduced to 0.2, the thickness is 100 nm, the p-type doping concentration is from 2x10 17 /cm 3 to 1x10 18 /cm 3 ; the thickness of the GaAs contact surface is 10 nm, and the p-type doping concentration is 1x10 19 /cm 3 3 .
  • the anti-reflection film layer 110 is a double-layer hybrid structure, including a lower titanium oxide layer and an upper silicon oxide layer, and the sum of the optical thicknesses of the two is a quarter of 850 nm.
  • the p-type contact layer 90 On the right side above the p-type contact layer 90 .
  • the n-type electrode layer 40 is made of AuGeNi/Au material, with a total thickness of 300-500 nm, and is located on the left side of the n-type contact layer 30 ;
  • the p-type electrode layer 100 is a TiAu bimetallic layer with a total thickness of 400-500nm, above the p-type contact layer 90 to the left.
  • the main steps of using the epitaxial material shown in FIG. 2 to fabricate the 850nm waveband high responsivity detector are as follows:
  • Step 1 On the epitaxial material as shown in FIG. 1 , an isolation trench pattern is photo-etched, and the epitaxial layer through the aluminum oxide layer 20 is etched to the n-type substrate 10 .
  • Step 2 Wet oxygen oxidation.
  • the aluminum oxide layer 20 is laterally oxidized to the entire lateral penetration. At this time, the aluminum oxide layer 20 becomes an insulating aluminum oxide with a refractive index of about 1.75, which limits the current and isolates the device from the n-type substrate 10 .
  • Step 3 growing the insulating layer, and etching out the upper electrode window.
  • Step 4 Photolithography and metal stripping to form an N-type electrode.
  • Step 5 forming a P-type electrode by photolithography and metal stripping.
  • Step 6 Antireflection coating.
  • Step 7 Wafer thinning and annealing.
  • the detector according to the embodiment of the present invention is obtained through the above process steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及半导体光电子器件技术领域,尤其涉及一种850nm波段高响应度探测器,其不同之处在于:其包括位于探测器最底端的n型衬底,所述n型衬底上由下至上依次包括氧化铝层、n型接触层、n型DBR层、下限制层、吸收层、上限制层、p型接触层和增透膜层,还包括n型电极层和p型电极层,所述n型电极层位于所述n型接触层上且位于所述n型DBR层的一侧,所述p型电极层位于p型接触层上且位于所述增透膜层的一侧。本发明提高响应速率,有助于抗辐照低暗电流高响应度探测器的实现。

Description

一种850nm波段高响应度探测器 技术领域
本发明涉及半导体光电子器件技术领域,尤其涉及一种850nm波段高响应度探测器。
背景技术
半导体光电探测器由于体积小、灵敏度商、响应速度快、易于集成,是最理想的光电探测器,典型的包括PIN光电二极管、雪崩二极管以及硅光电倍增管。在光纤通信,传感系统、高能物理、核医学等领域广泛应用。
PIN光电二极管是一个在pn二极管之间加入一个轻掺杂的本征区的探测器。跨越两端的内部电场随着离二极管表面距离的变化而变化。PIN光电二极管在本征区中的电场很强,当一个光子在这一区域被吸收时,光子能量转换给新的载流子(电子和空穴对),这些新产生的载流子根据自身极性,在电场作用下,向不同方向漂移(电子朝向n区、空穴朝向P区)。如果外部电路再进行相连,此时就有光电流产生。由于PIN光电二极管有很宽的本征区域,因此有了一个较长的光波吸收区域和较快的时间响应。它有很多应用,如衰减器、射频交换机和光纤系统中的探测器。其噪声主要是暗电流和光的离散光子产生的散粒噪声。PIN光电二极管具有很好的光电特性,结构简单,易于生产加工,具有较小的暗电流。PIN光电二极管长期工作稳定,而且只需加载较低的偏置电压。
通常的850nm波段的光探测器一般用硅探测器,但是硅探测器响应率不高。而常规光源材料都是III-V族材料系,二者难于单片集成,限制了大规模光电子集成的高集成度发展。硅材料的抗辐照能力也不如GaAs材料。5G的发展促进了GaAs基高速大功率电子器件的发展,加大了GaAs材料在未来光电子集成的应用领域。对于空间光通信以及激光电池等应用而言,GaAs基探测器非常适合,但GaAs半绝缘衬底的缺陷密度很高,达到10000个/cm 2,比N型衬底至少高一个数量级,所以利用GaAs半绝缘衬底会导致探测器缺陷多,更不适合做探测器阵列,存在暗电流过大、响应不均匀、成品率低等一系列问题。而直接利用N型衬底,虽然缺陷低,但是其导电性有严重寄生效应,影响探测速度。
鉴于此,为克服上述技术缺陷,提供一种850nm波段高响应度探测器成为本领域亟待解决的问题。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种850nm波段高响应度探测器,提高响应速率,有助于抗辐照低暗电流高响应度探测器的实现。
为解决以上技术问题,本发明的技术方案为:一种850nm波段高响应度探测器,其不同 之处在于:其包括位于探测器最底端的n型衬底,所述n型衬底上由下至上依次包括氧化铝层、n型接触层、n型DBR层、下限制层、吸收层、上限制层、p型接触层和增透膜层,还包括n型电极层和p型电极层,所述n型电极层位于所述n型接触层上且位于所述n型DBR层的一侧,所述p型电极层位于p型接触层上且位于所述增透膜层的一侧。
按以上技术方案,所述n型衬底为超低缺陷密度的GaAs材料,厚度为80-150μm。
按以上技术方案,所述氧化铝层中Al含量大于98%,厚度为10-40nm。
按以上技术方案,所述n型接触层的n型掺杂浓度大于1x10 18/cm 3,厚度为30-100nm。
按以上技术方案,所述n型DBR层为若干个高/低铝组份AlGaAs薄膜对,每个薄膜对分别由850/4nm光学厚度高铝AlGaAs和850/4nm光学厚度低铝AlGaAs构成,n型掺杂浓度为5x10 17/cm 3至1x10 18/cm 3
按以上技术方案,所述高铝AlGaAs为Al 0.7GaAs,低铝AlGaAs为Al 0.1GaAs,所述薄膜对的总对数为10-20对。
按以上技术方案,所述下限制层为i型AlGaAs材料,Al组份为0.2-0.5,厚度为100-300nm;所述吸收层为i型GaAs材料,厚度大于1μm;所述上限制层为i型AlGaAs材料,Al组份为0.2-0.5,厚度为100-300nm。
按以上技术方案,所述p型接触层为p型渐变掺杂材料,总厚度为110nm;下部为AlGaAs渐变层,由AlGaAs材料由下至上渐变降低Al组份直至上部的GaAs接触面,最高Al组份含量为0.3,渐变降低至0.2,厚度为100nm,p型掺杂浓度由2x10 17/cm 3至1x10 18/cm 3;GaAs接触面的厚度为10nm,P型掺杂浓度为1x10 19/cm 3
按以上技术方案,所述增透膜层为双层混合结构,包括下部的氧化钛层及上部的氧化硅层,二者光学厚度和为850nm的四分之一。
按以上技术方案,所述n型电极层为AuGeNi/Au材料,总厚度为300-500nm;所述p型电极层为TiAu双金属层,总厚度为400-500nm。
由上述方案,本发明公开了一种850nm波段高响应度探测器,本发明通过新设计来降低850nm波段GaAs基光探测器衬底的寄生电容,通过在N型衬底上引入氧化铝层,利用湿氧工艺,制造一层绝缘层,配合其他各层的结构,可实现降低寄生电容,提高响应速率的效果。适用于中短距离高速光通信,有助于抗辐照低暗电流高响应度探测器的实现,本发明可应用于光通信、抗辐照探测、太空传能、光子集成及激光电池领域。
附图说明
图1为本发明实施例激光器的整体结构示意图;
图2为本发明实施例的外延材料结构图;
其中:10-n型衬底,20-氧化铝层,30-n型接触层,40-n型电极层,50-n型DBR层,60-下限制层,70-吸收层,80-上限制层,90-p型接触层,100-p型电极层,110-增透膜层。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在下文中,将参考附图来更好地理解本发明的许多方面。附图中的部件未必按照比例绘制。替代地,重点在于清楚地说明本发明的部件。此外,在附图中的若干视图中,相同的附图标记指示相对应零件。
如本文所用的词语“示例性”或“说明性”表示用作示例、例子或说明。在本文中描述为“示例性”或“说明性”的任何实施方式未必理解为相对于其它实施方式是优选的或有利的。下文所描述的所有实施方式是示例性实施方式,提供这些示例性实施方式是为了使得本领域技术人员做出和使用本公开的实施例并且预期并不限制本公开的范围,本公开的范围由权利要求限定。在其它实施方式中,详细地描述了熟知的特征和方法以便不混淆本发明。出于本文描述的目的,术语“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”和其衍生词将与如图1定向的发明有关。而且,并无意图受到前文的技术领域、背景技术、发明内容或下文的详细描述中给出的任何明示或暗示的理论限制。还应了解在附图中示出和在下文的说明书中描述的具体装置和过程是在所附权利要求中限定的发明构思的简单示例性实施例。因此,与本文所公开的实施例相关的具体尺寸和其他物理特征不应被理解为限制性的,除非权利要求书另作明确地陈述。
请参考图1和图2,本发明一种850nm波段高响应度探测器,其不同之处在于:其包括位于探测器最底端的n型衬底10,所述n型衬底10上由下至上依次包括氧化铝层20、n型接触层30、n型DBR层50、下限制层60、吸收层70、上限制层80、p型接触层90和增透膜层110,还包括n型电极层40和p型电极层100,所述n型电极层40位于所述n型接触层30上且位于所述n型DBR层50的一侧,所述p型电极层100位于p型接触层90上且位于所述增透膜层110的一侧。n型接触层30上左端为n型电极层40,右端为n型DBR层50。p型接触层90上左端为p型电极层100,右端为增透膜层110。
具体的,所述n型衬底10为一种超低缺陷密度的GaAs材料,厚度为80-150μm。n型材 料GaAs较p型和半绝缘GaAs缺陷密度可降低1个数量级以上。
具体的,所述氧化铝层20中Al含量大于98%,厚度为10-40nm。该层材料不是在n型衬底10上直接生长出来的,而是在器件工艺阶段利用在n型衬底10上生长AlAs或AlGaAs高含铝材料,通过侧面湿氧工艺而形成的,其中III族元素中Al含量大于98%。
具体的,所述n型接触层30的n型掺杂浓度大于1x10 18/cm 3,厚度为30-100nm。是利用MOCVD或者MBE设备在外延阶段,于上述n型衬底10上的AlAs或AlGaAs高含铝材料生长出来的。
优选的,所述n型DBR层50为若干个高/低铝组份AlGaAs薄膜对,每个薄膜对分别由850/4nm光学厚度高铝AlGaAs和850/4nm光学厚度低铝AlGaAs构成,n型掺杂浓度为5x10 17/cm 3至1x10 18/cm 3。n型DBR层50位于n型接触层30之上右侧。
优选的,所述高铝AlGaAs为Al 0.7GaAs,低铝AlGaAs为Al 0.1GaAs,所述薄膜对的总对数为10-20对。
具体的,所述下限制层60为i型AlGaAs材料,为非故意掺杂材料,Al组份为0.2-0.5,厚度为100-300nm;所述吸收层70为i型GaAs材料,为非故意掺杂材料,厚度大于1μm;所述上限制层80为i型AlGaAs材料,为非故意掺杂材料,Al组份为0.2-0.5,厚度为100-300nm。
具体的,所述p型接触层90为p型渐变掺杂材料,总厚度为110nm;下部为AlGaAs渐变层,由AlGaAs材料由下至上渐变降低Al组份直至上部的GaAs接触面,最高Al组份含量为0.3,渐变降低至0.2,厚度为100nm,p型掺杂浓度由2x10 17/cm 3至1x10 18/cm 3;GaAs接触面的厚度为10nm,P型掺杂浓度为1x10 19/cm 3
优选的,所述增透膜层110为双层混合结构,包括下部的氧化钛层及上部的氧化硅层,二者光学厚度和为850nm的四分之一。位于p型接触层90上方右侧。
优选的,所述n型电极层40为AuGeNi/Au材料,总厚度为300-500nm,位于n型接触层30之上左侧;所述p型电极层100为TiAu双金属层,总厚度为400-500nm,位于p型接触层90上方左侧。
本发明实施例中,利用图2所示的外延材料制作所述850nm波段高响应度探测器的主要步骤如下:
步骤一、在如图1所述的外延材料上,光刻出隔离槽图形,并刻蚀外延层过氧化铝层20,至n型衬底10。
步骤二、湿氧氧化。横向氧化所述氧化铝层20至整个横向贯穿。此时氧化铝层20变成绝缘的氧化铝,折射率在1.75左右,对电流有限制作用,并使器件与n型衬底10隔离。
步骤三、生长绝缘层,并腐蚀出上电极窗口。
步骤四、光刻及金属剥离形成N型电极。
步骤五、光刻及金属剥离形成P型电极。
步骤六、镀增透膜。
步骤七、晶片减薄及退火。
经过以上工艺步骤获得本发明实施例所述的探测器。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种850nm波段高响应度探测器,其特征在于:其包括位于探测器最底端的n型衬底,所述n型衬底上由下至上依次包括氧化铝层、n型接触层、n型DBR层、下限制层、吸收层、上限制层、p型接触层和增透膜层,还包括n型电极层和p型电极层,所述n型电极层位于所述n型接触层上且位于所述n型DBR层的一侧,所述p型电极层位于p型接触层上且位于所述增透膜层的一侧。
  2. 根据权利要求1所述850nm波段高响应度探测器,其特征在于:所述n型衬底为超低缺陷密度的GaAs材料,厚度为80-150μm。
  3. 根据权利要求1所述850nm波段高响应度探测器,其特征在于:所述氧化铝层中Al含量大于98%,厚度为10-40nm。
  4. 根据权利要求1所述850nm波段高响应度探测器,其特征在于:所述n型接触层的n型掺杂浓度大于1x 10 18/cm 3,厚度为30-100nm。
  5. 根据权利要求1所述850nm波段高响应度探测器,其特征在于:所述n型DBR层为若干个高/低铝组份AlGaAs薄膜对,每个薄膜对分别由850/4nm光学厚度高铝AlGaAs和850/4nm光学厚度低铝AlGaAs构成,n型掺杂浓度为5x 10 17/cm 3至1x 10 18/cm 3
  6. 根据权利要求5所述850nm波段高响应度探测器,其特征在于:所述高铝AlGaAs为Al 0.7GaAs,低铝AlGaAs为Al 0.1GaAs,所述薄膜对的总对数为10-20对。
  7. 根据权利要求1所述850nm波段高响应度探测器,其特征在于:所述下限制层为i型AlGaAs材料,Al组份为0.2-0.5,厚度为100-300nm;所述吸收层为i型GaAs材料,厚度大于1μm;所述上限制层为i型AlGaAs材料,Al组份为0.2-0.5,厚度为100-300nm。
  8. 根据权利要求1所述850nm波段高响应度探测器,其特征在于:所述p型接触层为p型渐变掺杂材料,总厚度为110nm;下部为AlGaAs渐变层,由AlGaAs材料由下至上渐变降低Al组份直至上部的GaAs接触面,最高Al组份含量为0.3,渐变降低至0.2,厚度为100nm,p型掺杂浓度由2x 10 17/cm 3至1x 10 18/cm 3;GaAs接触面的厚度为10nm,P型掺杂浓度为1x 10 19/cm 3
  9. 根据权利要求1所述850nm波段高响应度探测器,其特征在于:所述增透膜层为双层混合结构,包括下部的氧化钛层及上部的氧化硅层,二者光学厚度和为850nm的四分之一。
  10. 根据权利要求1所述850nm波段高响应度探测器,其特征在于:所述n型电极层为AuGeNi/Au材料,总厚度为300-500nm;所述p型电极层为TiAu双金属层,总厚度为400-500nm。
PCT/CN2020/129923 2020-11-12 2020-11-19 一种850nm波段高响应度探测器 WO2022099747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011262620.4 2020-11-12
CN202011262620.4A CN112259617A (zh) 2020-11-12 2020-11-12 一种850nm波段高响应度探测器

Publications (1)

Publication Number Publication Date
WO2022099747A1 true WO2022099747A1 (zh) 2022-05-19

Family

ID=74265680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129923 WO2022099747A1 (zh) 2020-11-12 2020-11-19 一种850nm波段高响应度探测器

Country Status (2)

Country Link
CN (1) CN112259617A (zh)
WO (1) WO2022099747A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224195A (zh) * 2021-04-19 2021-08-06 深圳市德明利光电有限公司 一种薄型光吸收区的光二极体结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576786A (zh) * 2014-08-12 2015-04-29 深圳市芯思杰联邦国际科技发展有限公司 新型零伏响应雪崩光电探测器芯片及其制作方法
CN109461785A (zh) * 2018-10-22 2019-03-12 中国科学院上海技术物理研究所 一种正照射型的可见及短波红外宽光谱InGaAs探测器
CN110190169A (zh) * 2018-02-22 2019-08-30 晶元光电股份有限公司 发光装置
WO2020142976A1 (en) * 2019-01-10 2020-07-16 Shenzhen Xpectvision Technology Co., Ltd. X-ray detectors based on an epitaxial layer and methods of making
CN111564754A (zh) * 2015-06-09 2020-08-21 通快光电器件有限公司 垂直腔面发射激光器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740655B (zh) * 2009-12-09 2011-09-28 中国科学院半导体研究所 光伏型InAs量子点红外探测器结构
CN102623523B (zh) * 2012-03-28 2014-09-03 中国科学院半导体研究所 一种有多色响应的量子点红外探测器
CN102723405B (zh) * 2012-06-26 2015-03-04 中国科学院苏州纳米技术与纳米仿生研究所 双面生长高效宽谱吸收多结太阳电池的制备方法
CN213212172U (zh) * 2020-11-12 2021-05-14 江苏华兴激光科技有限公司 一种850nm波段高响应度探测器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576786A (zh) * 2014-08-12 2015-04-29 深圳市芯思杰联邦国际科技发展有限公司 新型零伏响应雪崩光电探测器芯片及其制作方法
CN111564754A (zh) * 2015-06-09 2020-08-21 通快光电器件有限公司 垂直腔面发射激光器
CN110190169A (zh) * 2018-02-22 2019-08-30 晶元光电股份有限公司 发光装置
CN109461785A (zh) * 2018-10-22 2019-03-12 中国科学院上海技术物理研究所 一种正照射型的可见及短波红外宽光谱InGaAs探测器
WO2020142976A1 (en) * 2019-01-10 2020-07-16 Shenzhen Xpectvision Technology Co., Ltd. X-ray detectors based on an epitaxial layer and methods of making

Also Published As

Publication number Publication date
CN112259617A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
US6104047A (en) Avalanche photodiode with thin built-in depletion region
JP4220688B2 (ja) アバランシェホトダイオード
CN106098836B (zh) 通讯用雪崩光电二极管及其制备方法
Shimizu et al. InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz
JP5942068B2 (ja) 化合物半導体受光素子アレイ
US7148463B2 (en) Increased responsivity photodetector
JP5109981B2 (ja) 半導体受光素子
US20070194357A1 (en) Photodiode and method for fabricating same
CN110176507B (zh) 一种台面pin的钝化结构和光电二极管及其制备方法
WO2022099746A1 (zh) 一种850nm波段单载流子高速探测器
JP2010278406A (ja) アバランシェホトダイオード及びこれを用いた光受信モジュール
WO2023051242A1 (zh) 单光子探测器及其制作方法、单光子探测器阵列
CN213212172U (zh) 一种850nm波段高响应度探测器
CN108091720A (zh) 单行载流子光电探测器及其制备方法
Karve et al. Geiger mode operation of an In/sub 0.53/Ga/sub 0.47/As-In/sub 0.52/Al/sub 0.48/As avalanche photodiode
JP3675223B2 (ja) アバランシェフォトダイオードとその製造方法
WO2022099747A1 (zh) 一种850nm波段高响应度探测器
Li et al. A partially depleted absorber photodiode with graded doping injection regions
JP2011258809A (ja) 半導体受光素子
JP4861388B2 (ja) アバランシェホトダイオード
CN110808312B (zh) 一种提高光电探测器芯片产出量的制备工艺方法
WO2018189898A1 (ja) 半導体受光素子
RU2469438C1 (ru) Полупроводниковый фотодиод для инфракрасного излучения
US4894703A (en) Restricted contact, planar photodiode
CN217740536U (zh) 一种半导体器件及其封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961301

Country of ref document: EP

Kind code of ref document: A1