WO2022099746A1 - 一种850nm波段单载流子高速探测器 - Google Patents

一种850nm波段单载流子高速探测器 Download PDF

Info

Publication number
WO2022099746A1
WO2022099746A1 PCT/CN2020/129922 CN2020129922W WO2022099746A1 WO 2022099746 A1 WO2022099746 A1 WO 2022099746A1 CN 2020129922 W CN2020129922 W CN 2020129922W WO 2022099746 A1 WO2022099746 A1 WO 2022099746A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
speed detector
doping concentration
carrier high
Prior art date
Application number
PCT/CN2020/129922
Other languages
English (en)
French (fr)
Inventor
徐鹏飞
王岩
罗帅
季海铭
Original Assignee
江苏华兴激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华兴激光科技有限公司 filed Critical 江苏华兴激光科技有限公司
Publication of WO2022099746A1 publication Critical patent/WO2022099746A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Definitions

  • the invention relates to the technical field of semiconductor optoelectronic devices, in particular to a single-carrier high-speed detector in the 850 nm band.
  • a photodetector is a device used to detect light or other electromagnetic radiation energy, convert the radiation energy into current or voltage, and measure these current and voltage values from an external circuit. Most optoelectronic types use pn junctions, while Si or Ge based junctions are called Si cells or Ge cells. It has a wide range of applications due to its good properties from visible to near-infrared. Photovoltaic devices have excellent measurement characteristics when used with a reverse bias voltage applied and current drawn. Often called a photodiode, it is increasingly replacing photomultiplier tubes. Phototransistors use the same detection method as photodiodes, but incorporate a mechanism for amplifying the output. CCDs are also photodetectors.
  • Semiconductor photodetectors are the most ideal photodetectors due to their small size, sensitivity quotient, fast response, and ease of integration, typically including PIN photodiodes, avalanche diodes, and silicon photomultiplier tubes. It is widely used in optical fiber communication, sensing system, high energy physics, nuclear medicine and other fields.
  • Single-carrier high-speed detectors are a new type of high-speed detectors.
  • photodiodes that can simultaneously meet the requirements of high response speed and high saturation output power are becoming the focus of attention. hot spot.
  • an optical receiver composed of a photodiode and an optical amplifier has better performance than an optical receiver composed of an ordinary photodiode (pin-PD) and a post-amplifier, which can save the electric amplifier, expand the bandwidth, and simplify the the structure of the receiver.
  • the photodiode is based on the InGaAs/InP pin PD structure.
  • people use a variety of methods to reduce or eliminate the factors that cause the space charge effect.
  • the distributed or edge-coupling structure is used to reduce the space charge effect of the photodiode by reducing the drift space distance of the photogenerated carriers, and the output power is improved;
  • the InGaAs and InP double depletion region structure with optimized parameters is used to reduce the photogenerated carriers.
  • the drift space distance and the thermal resistance of the InGaAs layer are used to reduce the space charge effect and improve the linear response characteristics.
  • Another method is to increase the carrier drift speed to reduce the space charge density of the device.
  • T.Ishibashi et al. of the NTT Photonic Laboratory in Japan successfully developed a p-type neutral light absorbing layer and n It is composed of a wide-bandgap build-up layer and uses only electrons as active carriers for a photodiode, namely a single-row carrier photodiode (TC-PD), which achieves a 3dB bandwidth of up to 400kA/cm2 and 80GHz, and uses the device to directly Drive 40Gb/s optical signal logic integrated circuits.
  • TC-PD single-row carrier photodiode
  • the UTC-PD consists of a p-type neutral InGaAs light absorption layer and an n-type wide-bandgap InP accumulation layer.
  • the depletion accumulation layer and the light absorption layer are completely separated in space, and the photogenerated electron-hole pairs generated in the absorption layer simultaneously Diffusion to both ends of the absorbing layer.
  • the p-type diffusion blocking layer near the anode end prevents electrons from diffusing to the anode, so that electrons only diffuse in the direction of the concentration layer, that is, single-row carriers are formed.
  • the electrons in the absorption layer When the diffused electrons in the absorption layer are injected into the accumulation layer, the electrons pass through the layer at a high speed (4 ⁇ 107cm/s) due to the overshoot effect under the action of the internal electric field established by the conduction band barrier of the heterointerface, and the photogenerated voids in the absorption layer As the majority carrier, the hole has a very short dielectric relaxation time, and its influence on the working speed of the photoelectrode tube is negligible.
  • the difference from the traditional pinPD is that the bandwidth of UTC-PD depends on the diffusion time of electrons in the absorber layer and the drift time of the accumulation layer. When the accumulation layer is thin enough, the delay time of electrons in the accumulation layer is about 0.2 ⁇ 0.4ps.
  • the value is negligible compared with the response time t of the absorber layer, and the bandwidth of UTC-PD is mainly determined by the diffusion time of electrons in the absorber layer. Because the diffusion time of electrons is longer than the drift time of electrons, the velocity performance of UTC-PD can be improved by utilizing a light-absorbing layer with a built-in field. The built-in field in the absorber layer induces a drift component of electron transport, which facilitates faster electron movement towards the accumulation layer. In order to realize the ultra-high-speed operation of UTC-PD, the characteristic of electron velocity overshoot in the build-up layer must be fully utilized.
  • the overshoot speed of electrons is about an order of magnitude higher than the saturation speed of holes, effectively suppressing the space charge effect in the depletion layer, which makes UTC-pd still have high operating speed at high operating speeds compared to pin-PD. output saturation current.
  • the conventional single-carrier detector is an InP system
  • the InP base is suitable for the 1550 nm band, and the responsivity in the 850 nm band will be affected to a certain extent.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and to provide a single-carrier high-speed detector in the 850 nm band, which is suitable for working in the 850 nm band, and is beneficial to improve the response rate of the detector and increase the detection bandwidth.
  • the technical solution of the present invention is: a single-carrier high-speed detector in the 850nm band, the difference is that: it includes an incident end, and the incident end includes a substrate, a first a collection layer, a second collection layer, a transition layer, a p-type multiple quantum well absorption layer, a p-type barrier layer, and a p-type contact layer, further comprising a positive electrode layer and a negative electrode layer, the positive electrode layer being located on the p-type On the contact layer, the negative electrode layer is located on the first collector layer and on one side of the second collector layer.
  • the incident end is an anti-reflection dielectric film layer with a wavelength of 850 nm, which is a double-layer hybrid structure, including a first dielectric film layer and a second dielectric film layer, and the sum of the optical thicknesses of the two is a quarter of 850 nm. one.
  • the substrate is a semi-insulating GaAs material with low defect density.
  • the first collection layer is made of N-type highly doped GaAs material, the thickness is 50-100 nm, and the doping concentration is greater than 5 ⁇ 10 18 cm ⁇ 3 .
  • the second collection layer is an N-type low-doped GaAs material with a thickness of 200-300 nm and a doping concentration of 5 ⁇ 10 16 cm ⁇ 3 .
  • the transition layer sequentially includes a charge layer, a lower transition layer and an upper transition layer from bottom to top, and the charge layer is an n-type GaAs material with a thickness of 5-15 nm and a doping concentration of 1 ⁇ 10 18 cm -3
  • the lower transition layer is an i-type InGaAsP material with a thickness of 10-20 nm and a doping concentration of 1 ⁇ 10 15 cm ⁇ 3
  • the upper transition layer is an i-type InGaAs material with a thickness of 5-15 nm and a doping concentration of 1 ⁇ 10 15 cm -3 .
  • the p-type multiple quantum well absorption layer is an InGaAs/AlGaAs multiple quantum well material
  • the doping concentration is 1 ⁇ 10 18 cm ⁇ 3
  • the total thickness is 50-100 nm.
  • the p-type barrier layer is made of p-type InGaAsP material, the doping concentration is greater than 1 ⁇ 10 19 cm ⁇ 3 , and the total thickness is 20-30 nm.
  • the p-type contact layer is made of p-type InGaAs material, the doping concentration is greater than 2 ⁇ 10 19 cm ⁇ 3 , and the total thickness is 50-80 nm.
  • the positive electrode layer is a TiAu bimetallic layer with a total thickness of 400-500 nm; the negative electrode layer is made of AuGeNi/Au material with a total thickness of 300-500 nm.
  • the present invention discloses a single-carrier high-speed detector in the 850nm band, which is mainly aimed at the detector application of high speed, high saturation power and high responsivity in the 850nm band, using the flexible energy band of the III-V multi-component system.
  • the absorption layer is not p-type InGaAs of conventional InP-based UTC-PD, but p-type multiple quantum well structure, which improves the 850nm band responsivity, and the whole material is Based on the GaAs system, it is suitable for working in the 850nm band, while the InP base is suitable for working in the 1550nm band.
  • the invention can realize high-efficiency absorption under thinner condition, is more favorable to improve the response rate of the detector, increase the detection bandwidth, and has broad application prospects in the field of high-speed optical fiber communication.
  • FIG. 1 is a schematic diagram of the overall structure of a laser according to an embodiment of the present invention.
  • 10-incidence end 20-substrate, 30-first collection layer, 41-second collection layer, 42-negative electrode layer, 50-transition layer (51-charge layer, 52-lower transition layer, 53- upper transition layer), 60-p-type multiple quantum well absorption layer, 70-p-type barrier layer, 80-p-type contact layer, 90-positive electrode layer.
  • a single-carrier high-speed detector in the 850 nm band of the present invention is different in that it includes an incident end 10 , and the incident end 10 includes a substrate 20 and a first collection layer in sequence from bottom to top. 30.
  • the incident end 10 is an anti-reflection dielectric film layer with a wavelength of 850 nm, which is a double-layer hybrid structure, including a first dielectric film layer and a second dielectric film layer, and the sum of the optical thicknesses of the two is a quarter of 850 nm.
  • the first dielectric film layer is an aluminum oxide layer
  • the second dielectric film layer is a silicon oxide layer, wherein the silicon oxide layer is below the aluminum oxide layer.
  • the substrate 20 is a low defect density semi-insulating GaAs material.
  • the first collection layer 30 is an N-type highly doped GaAs material with a thickness of 50-100 nm and a doping concentration greater than 5 ⁇ 10 18 cm ⁇ 3 .
  • the second collection layer 41 is an N-type low-doped GaAs material with a thickness of 200-300 nm and a doping concentration of about 5 ⁇ 10 16 cm ⁇ 3 .
  • the transition layer 50 sequentially includes a charge layer 51, a lower transition layer 52 and an upper transition layer 53 from bottom to top.
  • the charge layer 51 is an n-type GaAs material with a thickness of 5-15 nm and a doping concentration of 1 ⁇ 10 18 cm ⁇ 3 or so, the electric field can be increased in this layer by injecting electric charges to accelerate the drift movement of carriers;
  • the lower transition layer 52 is an i-type InGaAsP material with a thickness of 10-20 nm and a doping concentration of 1 ⁇ 10 15 cm ⁇ 3 ;
  • the transition layer 53 is an i-type InGaAs material with a thickness of 5-15 nm and a doping concentration of about 1 ⁇ 10 15 cm ⁇ 3 .
  • the p-type multiple quantum well absorption layer 60 is an InGaAs/AlGaAs multiple quantum well material with a doping concentration of about 1 ⁇ 10 18 cm ⁇ 3 and a total thickness of 50-100 nm.
  • the p-type barrier layer 70 is made of p-type InGaAsP material, the doping concentration is greater than 1 ⁇ 10 19 cm ⁇ 3 , and the total thickness is 20-30 nm.
  • the p-type contact layer 80 is a p-type InGaAs material, the doping concentration is greater than 2 ⁇ 10 19 cm ⁇ 3 , and the total thickness is 50-80 nm.
  • the positive electrode layer 90 is a TiAu bimetallic layer with a total thickness of 400-500 nm; the negative electrode layer 42 is made of AuGeNi/Au material with a total thickness of 300-500 nm.
  • the epitaxial material of the single-carrier high-speed detector with a P-type doped multiple quantum well absorption layer in the 850 nm wavelength band is characterized in that the first collection layer 30 is an n-type highly doped GaAs material, and the thickness is 100nm, the doping concentration is greater than 5x10 18 cm -3 .
  • the epitaxial material of the single-carrier high-speed detector with a P-type doped multiple quantum well absorption layer in the 850 nm wavelength band is characterized in that the second collection layer 41 is an n-type low-doped GaAs material, and the thickness is 200nm, the doping concentration is about 5x10 16 cm -3 .
  • the epitaxial material of the 850nm wavelength band P-type doped multiple quantum well absorption layer single-carrier high-speed detector is characterized in that the transition layer 50 includes three layers, namely the charge layer 51 and the lower transition layer. 52 and the upper transition layer 53.
  • the charge layer 51 is an n-type GaAs material with a thickness of 15 nm and a doping concentration of about 1 ⁇ 10 18 cm -3 ;
  • the lower transition layer 52 is an i-type InGaAsP material with a thickness of 20 nm and a doping concentration of about 1 ⁇ 10 15 cm -3 ;
  • the upper transition layer 53 is an i-type InGaAs material with a thickness of 15 nm and a doping concentration of about 1 ⁇ 10 15 cm ⁇ 3 .
  • the single-carrier high-speed detector of the 850nm band P-type doped multiple quantum well absorption layer is characterized in that the epitaxial material of the p-type multiple quantum well absorption layer 60 is InGaAs/AlGaAs multiple quantum well material , which includes 5 pairs, the doping concentration of the P-type doped multiple quantum well absorption layer is 1 ⁇ 10 18 cm -3 , and the total thickness is 65 nm.
  • the epitaxial material of the 850nm wavelength band P-type doped multiple quantum well absorption layer single-carrier high-speed detector is characterized in that the P-type barrier layer 70 is a P-type InGaAsP material, and the doping concentration is greater than 1 ⁇ 10 19 cm -3 , with a total thickness of 20 nm.
  • the epitaxial material is characterized in that the P-type contact layer 80 is a P-type InGaAs material, and the doping concentration is greater than 2 ⁇ 10 19 cm -3 , with a total thickness of 80 nm.
  • GaAs is used as the substrate, and the InGaAsP/InGaAs/AlGaAs/GaAs system is used to realize the UTC-PD operating in the 850 nm band.
  • the multi-quantum well structure can achieve efficient absorption in a thinner case, which is more beneficial to improve the response rate of the detector and increase the detection bandwidth.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种850nm波段单载流子高速探测器:其包括入射端(10),入射端(10)上由下至上依次包括衬底(20)、第一收集层(30)、第二收集层(41)、过渡层(50)、p型多量子阱吸收层(60)、p型阻挡层(70)和p型接触层(80),还包括正电极层(90)和负电极层(42),正电极(90)层位于p型接触层(80)上,负电极层(42)位于第一收集层(30)上且位于第二收集层(41)的一侧。高速探测器适于850nm波段工作,有利于提高探测器响应速率,增大探测带宽。

Description

一种850nm波段单载流子高速探测器 技术领域
本发明涉及半导体光电子器件技术领域,尤其涉及一种850nm波段单载流子高速探测器。
背景技术
光探测器是一种用来探测光或其他电磁辐射能量的装置,它把辐射能量转换成电流或电压,并从外部电路测量这些电流、电压值。大多数光电类型使用pn结,而基于Si或Ge的结称为Si电池或Ge电池。由于具有从可见光到近红外的良好特性,因此具有广泛的应用范围。当以施加反向偏置电压并取出电流的方式使用光伏器件时,其具有极佳的测量特性。通常称为光电二极管,它越来越多地代替光电倍增管。光电晶体管使用与光电二极管相同的检测方法,但结合了用于放大输出的机制。CCD也是光电探测器。
半导体光电探测器由于体积小、灵敏度商、响应速度快、易于集成,是最理想的光电探测器,典型的包括PIN光电二极管、雪崩二极管以及硅光电倍增管。在光纤通信,传感系统、高能物理、核医学等领域广泛应用。
单载流子高速探测器是一种新型的高速探测器,在大容量光纤通信系统和超高速测试系统的发展中,能够同时满足高响应速度和高饱和输出功率要求的光电二极管正成为人们关注的焦点。因为这样的光电二极管和光放大器组成的光接收机,其性能优于普通光电二极管(pin-PD)和后置电放大器组成的光接收机,从而可以省去电放大器,扩展了带宽的同时还简化了接收机的结构。
作为一种新型光电探测器,其独特的工作方式和高速、高饱和输出等特性,越来越受到专业技术研究领域和工业、产业界人士的极大关注,拥有非常广阔的市场前景。目前,在国外以日本NTT光子实验室为代表的一些研究机构对高饱和输出、高速InGaAs PD的研发应用,已取得了相当大的进展。
对普通的pin-PD而言,高电流密度工作时要保持高速响应是困难的,这些困难主要是由光生载流子产生的电场屏蔽即空间电荷效应引起的,所以要想得到高速、高饱和输出的光电二极管,基于InGaAs/InP pin PD结构,在进行光电二极管结构的设计时,人们为此采用多种方法来减少或消除引起空间电荷效应的因素。如采用分布或边耦合结构通过减少光生载流子的漂移空间距离来降低光电二极管空间电荷效应,提高了输出功率;采用优化参数的InGaAs、InP双耗尽区结构,通过减少光生载流子的漂移空间距离和InGaAs层的热阻影响来降低空间电荷效应,改善线性响应特性。
另一种方法是提高载流子漂移速度来降低器件的空间电荷密度,基于这一概念,1997年 由日本NTT光子实验室T.Ishibashi等人成功研制出由p型中性光吸收层和n型宽带隙集结层构成,只用电子作为有源载流子的光电二极管,即单行载流子光电二极管(TC-PD),实现了高达400kA/cm2及80GHz的3dB带宽,并利用该器件直接驱动40Gb/s光信号逻辑集成电路。
迄今为止,NTT光子实验已成功开发出不同规格的UTC-D,例如26mA的峰值电流和152GHz的3dB带宽,100mA的峰值电流和80GHz的3dB带宽,其中性能最好的是1.55m光照下,半峰宽(FWHM)为0.97ps及310GHz的3dB带宽以及约0.5V偏压下具有超高速特性的UTC-pd,由此可以看出UTC结构的光电二极管中能同时实现宽3dB带宽和高饱和输出的性能特性。
传统的pin-PD光吸收层是本征(非故意掺杂的n型)层,在工作电压下完全耗尽。在耗尽层中,光生电子-空穴均充当有源载流子。因为空穴的迁移率比电子的迁移率低,所以当大功率的光入射时仍残留在耗尽层中的大量空穴产生了空间电荷效应,从而限制了器件的最大输出电压值。为了克服这个问题,人们采用了单行载流子结构。由p型中性InGaAs光吸收层和n型宽带隙InP集结层构成的UTC-PD,耗尽集结层与光吸收层在空间上完全分离,吸收层中产生的光生电子-空穴对,同时向吸收层两端扩散。靠近阳极端的p型扩散阻断层阻止电子向阳极扩散,从而使电子只集结层方向扩散,即形成了单行载流子。当吸收层扩散电子注入集结层后,电子在异质界面导带势垒建立的内电场作用下因过冲效应电子高速(4×107cm/s)掠过该层,而吸收层中的光生空穴作为多数载流子,其介电弛豫时间非常短,对光电极管工作速度的影响可以忽略不计。与传统的pinPD截然不同之处在于UTC-PD的带宽取决于电子在吸收层的扩散时间和集结层的漂移时间当集结层足够薄,电子在集结层的延迟时间约为0.2~0.4ps,这个值与吸收层的响应时间t相比可以忽略不计,UTC-PD的带宽主要由电子在吸收层的扩散时间决定。因为电子的扩散时间要比电子的漂移时间长,所以UTC-PD的速度性能可以通过利用具有内建场的光吸收层加以改善。吸收层中的内建场引起电子输运的漂移成分,有利于电子更快地向集结层运动。要想实现UTC-PD的超高速工作,必须充分利用集结层中电子速度过冲这一特点。电子的过冲速度大约比空穴的饱和速度高一个数量级,有效地抑制了耗尽层中空间电荷效应,这使得UTC-pd与pin-PD相比,在高的工作速度下仍有高的输出饱和电流。
综上,常规的单载流子探测器为InP体系,而InP基适于1550nm波段工作,在850nm波段的响应度等各方面均会受到一定影响。
鉴于此,为克服上述技术缺陷,提供一种850nm波段单载流子高速探测器成为本领域亟待解决的问题。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种850nm波段单载流子高速探测器,适于850nm波段工作,有利于提高探测器响应速率,增大探测带宽。
为解决以上技术问题,本发明的技术方案为:一种850nm波段单载流子高速探测器,其不同之处在于:其包括入射端,所述入射端上由下至上依次包括衬底、第一收集层、第二收集层、过渡层、p型多量子阱吸收层、p型阻挡层和p型接触层,还包括正电极层和负电极层,所述正电极层位于所述p型接触层上,所述负电极层位于所述第一收集层上且位于所述第二收集层的一侧。
按以上技术方案,所述入射端为850nm波段的增透介质膜层,其为双层混合结构,包括第一介质膜层和第二介质膜层,二者的光学厚度和为850nm的四分之一。
按以上技术方案,所述衬底为低缺陷密度半绝缘GaAs材料。
按以上技术方案,所述第一收集层为N型高掺杂GaAs材料,厚度为50-100nm,掺杂浓度大于5x10 18cm -3
按以上技术方案,所述第二收集层为N型低掺杂GaAs材料,厚度为200-300nm,掺杂浓度为5x10 16cm -3
按以上技术方案,所述过渡层由下至上依次包括电荷层、下过渡层和上过渡层,所述电荷层为n型GaAs材料,厚度为5-15nm,掺杂浓度为1x10 18cm -3;所述下过渡层为i型InGaAsP材料,厚度为10-20nm,掺杂浓度为1x10 15cm -3;所述上过渡层为i型InGaAs材料,厚度为5-15nm,掺杂浓度为1x10 15cm -3
按以上技术方案,所述p型多量子阱吸收层为InGaAs/AlGaAs多量子阱材料,掺杂浓度为1x10 18cm -3,总厚度为50-100nm。
按以上技术方案,所述p型阻挡层为p型InGaAsP材料,掺杂浓度大于1x10 19cm -3,总厚度为20-30nm。
按以上技术方案,所述p型接触层为p型InGaAs材料,掺杂浓度大于2x10 19cm -3,总厚度为50-80nm。
按以上技术方案,所述正电极层为TiAu双金属层,总厚度为400-500nm;所述负电极层为AuGeNi/Au材料,总厚度为300-500nm。
由上述方案,本发明公开了一种850nm波段单载流子高速探测器,主要针对850nm波段高速、高饱和功率、高响应度的探测器应用,利用III-V多组分体系灵活的能带工程,通过P型多数载流子吸收层设计、电子扩散阻挡层设计、过渡层和收集层设计来调节电场,使只有电子流对光生电流有贡献,避免空穴运动速度慢带来的诸多不利效应。本发明提供的850nm 波段单载流子高速探测器,吸收层不是采用常规InP基UTC-PD的p型InGaAs,而是采用P型多量子阱结构,提高了850nm波段响应度,而整个材料是基于GaAs体系,适于850nm波段工作,而InP基适于1550nm波段工作。本发明可在更薄的情况下实现高效吸收,更有利提高探测器响应速率,增大探测带宽,在高速光纤通信领域中具有广阔的应用前景。
附图说明
图1为本发明实施例激光器的整体结构示意图;
其中:10-入射端,20-衬底,30-第一收集层,41-第二收集层,42-负电极层,50-过渡层(51-电荷层,52-下过渡层,53-上过渡层),60-p型多量子阱吸收层,70-p型阻挡层,80-p型接触层,90-正电极层。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在下文中,将参考附图来更好地理解本发明的许多方面。附图中的部件未必按照比例绘制。替代地,重点在于清楚地说明本发明的部件。此外,在附图中的若干视图中,相同的附图标记指示相对应零件。
如本文所用的词语“示例性”或“说明性”表示用作示例、例子或说明。在本文中描述为“示例性”或“说明性”的任何实施方式未必理解为相对于其它实施方式是优选的或有利的。下文所描述的所有实施方式是示例性实施方式,提供这些示例性实施方式是为了使得本领域技术人员做出和使用本公开的实施例并且预期并不限制本公开的范围,本公开的范围由权利要求限定。在其它实施方式中,详细地描述了熟知的特征和方法以便不混淆本发明。出于本文描述的目的,术语“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”和其衍生词将与如图1定向的发明有关。而且,并无意图受到前文的技术领域、背景技术、发明内容或下文的详细描述中给出的任何明示或暗示的理论限制。还应了解在附图中示出和在下文的说明书中描述的具体装置和过程是在所附权利要求中限定的发明构思的简单示例性实施例。因此,与本文所公开的实施例相关的具体尺寸和其他物理特征不应被理解为限制性的,除非权利要求书另作明确地陈述。
请参考图1,本发明一种850nm波段单载流子高速探测器,其不同之处在于:其包括入射端10,所述入射端10上由下至上依次包括衬底20、第一收集层30、第二收集层41、过渡 层50、p型多量子阱吸收层60、p型阻挡层70和p型接触层80,还包括正电极层90和负电极层42,所述正电极层90位于所述p型接触层80上,所述负电极层42位于所述第一收集层30上且位于所述第二收集层41的一侧。
具体的,入射端10为一种对850nm波段的增透介质膜层,其为双层混合结构,包括第一介质膜层和第二介质膜层,二者的光学厚度和为850nm的四分之一。其中,第一介质膜层为氧化铝层,第二介质膜层为氧化硅层,其中氧化硅层在氧化铝层下方。
具体的,衬底20为低缺陷密度半绝缘GaAs材料。
优选的,第一收集层30为N型高掺杂GaAs材料,厚度为50-100nm,掺杂浓度大于5x10 18cm -3
优选的,第二收集层41为N型低掺杂GaAs材料,厚度为200-300nm,掺杂浓度为5x10 16cm -3左右。
具体的,过渡层50由下至上依次包括电荷层51、下过渡层52和上过渡层53,所述电荷层51为n型GaAs材料,厚度为5-15nm,掺杂浓度为1x10 18cm -3左右,本层可通过注入电荷提高电场,加速载流子漂移运动;所述下过渡层52为i型InGaAsP材料,厚度为10-20nm,掺杂浓度为1x10 15cm -3;所述上过渡层53为i型InGaAs材料,厚度为5-15nm,掺杂浓度为1x10 15cm -3左右。
具体的,p型多量子阱吸收层60为InGaAs/AlGaAs多量子阱材料,掺杂浓度为1x10 18cm -3左右,总厚度为50-100nm。
优选的,p型阻挡层70为p型InGaAsP材料,掺杂浓度大于1x10 19cm -3,总厚度为20-30nm。
优选的,p型接触层80为p型InGaAs材料,掺杂浓度大于2x10 19cm -3,总厚度为50-80nm。
优选的,所述正电极层90为TiAu双金属层,总厚度为400-500nm;所述负电极层42为AuGeNi/Au材料,总厚度为300-500nm。
根据以上器件结构描述,所需要的外延材料各层的一个实施例,如表1所示(不限于下表):
表1:850nm波段UTC-PD外延结构
Figure PCTCN2020129922-appb-000001
Figure PCTCN2020129922-appb-000002
如表1所述的一种850nm波段P型掺杂多量子阱吸收层单载流子高速探测器,其外延材料特征在于GaAs衬底层20,该层为低缺陷密度半绝缘GaAs材料,厚度为100微米。
上述实施例中,所述的一种850nm波段P型掺杂多量子阱吸收层单载流子高速探测器,其外延材料特征在于第一收集层30为n型高掺杂GaAs材料,厚度为100nm,掺杂浓度大于5x10 18cm -3
上述实施例中,所述的一种850nm波段P型掺杂多量子阱吸收层单载流子高速探测器,其外延材料特征在于第二收集层41为n型低掺杂GaAs材料,厚度为200nm,掺杂浓度为5x10 16cm -3左右。
上述实施例中,所述的一种850nm波段P型掺杂多量子阱吸收层单载流子高速探测器,其外延材料特征在于过渡层50包含三层,分别为电荷层51,下过渡层52及上过渡层53。其中电荷层51为n型GaAs材料,厚度为15nm,掺杂浓度为1x10 18cm -3左右;下过渡层52为i型InGaAsP材料,厚度为20nm,掺杂浓度为1x10 15cm -3左右;上过渡层53为i型InGaAs材料,厚度为15nm,掺杂浓度为1x10 15cm -3左右。
上述实施例中,所述的一种850nm波段P型掺杂多量子阱吸收层单载流子高速探测器,其外延材料特征在于p型多量子阱吸收层60为InGaAs/AlGaAs多量子阱材料,其包括5对,P型掺杂多量子阱吸收层掺杂浓度为1x10 18cm -3,总厚度为65nm。
上述实施例中,所述的一种850nm波段P型掺杂多量子阱吸收层单载流子高速探测器,其外延材料特征在于P型阻挡层70为P型InGaAsP材料,掺杂浓度大于1x10 19cm -3,总厚度为20nm。
上述实施例中,所述的一种850nm波段P型掺杂多量子阱吸收层单载流子高速探测器,其外延材料特征在于P型接触层80为P型InGaAs材料,掺杂浓度大于2x10 19cm -3,总厚度为80nm。
本发明实施例中,利用GaAs作为衬底,采用InGaAsP/InGaAs/AlGaAs/GaAs体系实现850nm波段工作的UTC-PD,其吸收层不是采用常规InP基UTC-PD的p型InGaAs,而是采用P型多量子阱结构,可在更薄的情况下实现高效吸收,更有利提高探测器响应速率,增大探测带宽。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具 体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种850nm波段单载流子高速探测器,其特征在于:其包括入射端,所述入射端上由下至上依次包括衬底、第一收集层、第二收集层、过渡层、p型多量子阱吸收层、p型阻挡层和p型接触层,还包括正电极层和负电极层,所述正电极层位于所述p型接触层上,所述负电极层位于所述第一收集层上且位于所述第二收集层的一侧。
  2. 根据权利要求1所述850nm波段单载流子高速探测器,其特征在于:所述入射端为850nm波段的增透介质膜层,其为双层混合结构,包括第一介质膜层和第二介质膜层,二者的光学厚度和为850nm的四分之一。
  3. 根据权利要求1所述850nm波段单载流子高速探测器,其特征在于:所述衬底为低缺陷密度半绝缘GaAs材料。
  4. 根据权利要求1所述850nm波段单载流子高速探测器,其特征在于:所述第一收集层为N型高掺杂GaAs材料,厚度为50-100nm,掺杂浓度大于5x10 18cm -3
  5. 根据权利要求1所述850nm波段单载流子高速探测器,其特征在于:所述第二收集层为N型低掺杂GaAs材料,厚度为200-300nm,掺杂浓度为5x10 16cm -3
  6. 根据权利要求1所述850nm波段单载流子高速探测器,其特征在于:所述过渡层由下至上依次包括电荷层、下过渡层和上过渡层,所述电荷层为n型GaAs材料,厚度为5-15nm,掺杂浓度为1x10 18cm -3;所述下过渡层为i型InGaAsP材料,厚度为10-20nm,掺杂浓度为1x10 15cm -3;所述上过渡层为i型InGaAs材料,厚度为5-15nm,掺杂浓度为1x10 15cm -3
  7. 根据权利要求1所述850nm波段单载流子高速探测器,其特征在于:所述p型多量子阱吸收层为InGaAs/AlGaAs多量子阱材料,掺杂浓度为1x10 18cm -3,总厚度为50-100nm。
  8. 根据权利要求1所述850nm波段单载流子高速探测器,其特征在于:所述p型阻挡层为p型InGaAsP材料,掺杂浓度大于1x10 19cm -3,总厚度为20-30nm。
  9. 根据权利要求1所述850nm波段单载流子高速探测器,其特征在于:所述p型接触层为p型InGaAs材料,掺杂浓度大于2x10 19cm -3,总厚度为50-80nm。
  10. 根据权利要求1所述850nm波段单载流子高速探测器,其特征在于:所述正电极层为TiAu双金属层,总厚度为400-500nm;所述负电极层为AuGeNi/Au材料,总厚度为300-500nm。
PCT/CN2020/129922 2020-11-12 2020-11-19 一种850nm波段单载流子高速探测器 WO2022099746A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011264776.6 2020-11-12
CN202011264776.6A CN112259626A (zh) 2020-11-12 2020-11-12 一种850nm波段单载流子高速探测器

Publications (1)

Publication Number Publication Date
WO2022099746A1 true WO2022099746A1 (zh) 2022-05-19

Family

ID=74265466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129922 WO2022099746A1 (zh) 2020-11-12 2020-11-19 一种850nm波段单载流子高速探测器

Country Status (2)

Country Link
CN (1) CN112259626A (zh)
WO (1) WO2022099746A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11335826B2 (en) 2020-06-30 2022-05-17 Epistar Corporation Semiconductor photo-detecting device
CN113130694A (zh) * 2021-04-02 2021-07-16 上海科技大学 一种850nm波段零偏压工作的光电探测器的外延结构
CN117374167B (zh) * 2023-12-07 2024-03-12 上海三菲半导体有限公司 一种基于浅刻蚀的高速大功率单行载流子探测器制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614086B2 (en) * 2000-12-19 2003-09-02 Electronics And Telecommunications Research Institute Avalanche photodetector
CN102201482A (zh) * 2010-03-22 2011-09-28 无锡沃浦光电传感科技有限公司 量子阱红外探测器
CN105140330A (zh) * 2015-09-23 2015-12-09 北京邮电大学 一种低功耗、零偏压单行载流子光电探测器
CN106409965A (zh) * 2016-11-24 2017-02-15 聊城大学 一种高速饱和单行载流子紫外光电二极管及制备方法
CN106847933A (zh) * 2017-01-16 2017-06-13 中国工程物理研究院电子工程研究所 单片集成紫外‑红外双色雪崩光电二极管及其制备方法
CN111540797A (zh) * 2020-05-13 2020-08-14 中国科学院半导体研究所 中远红外雪崩光电探测器
CN213212174U (zh) * 2020-11-12 2021-05-14 江苏华兴激光科技有限公司 一种850nm波段单载流子高速探测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614086B2 (en) * 2000-12-19 2003-09-02 Electronics And Telecommunications Research Institute Avalanche photodetector
CN102201482A (zh) * 2010-03-22 2011-09-28 无锡沃浦光电传感科技有限公司 量子阱红外探测器
CN105140330A (zh) * 2015-09-23 2015-12-09 北京邮电大学 一种低功耗、零偏压单行载流子光电探测器
CN106409965A (zh) * 2016-11-24 2017-02-15 聊城大学 一种高速饱和单行载流子紫外光电二极管及制备方法
CN106847933A (zh) * 2017-01-16 2017-06-13 中国工程物理研究院电子工程研究所 单片集成紫外‑红外双色雪崩光电二极管及其制备方法
CN111540797A (zh) * 2020-05-13 2020-08-14 中国科学院半导体研究所 中远红外雪崩光电探测器
CN213212174U (zh) * 2020-11-12 2021-05-14 江苏华兴激光科技有限公司 一种850nm波段单载流子高速探测器

Also Published As

Publication number Publication date
CN112259626A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2022099746A1 (zh) 一种850nm波段单载流子高速探测器
US20070096240A1 (en) Doped Absorption For Enhanced Responsivity For High Speed Photodiodes
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
TWI620339B (zh) 高速光偵測器
CN213212174U (zh) 一种850nm波段单载流子高速探测器
CN105742397A (zh) 一种可见光到红外光探测的宽波段光电二极管
CN112310237A (zh) 波导耦合型单载流子探测器
Tan et al. Low noise avalanche photodiodes incorporating a 40 nm AlAsSb avalanche region
CN213212172U (zh) 一种850nm波段高响应度探测器
Li et al. A comparison of front-and backside-illuminated high-saturation power partially depleted absorber photodetectors
Kou et al. Optimization strategy of 4H-SiC separated absorption charge and multiplication avalanche photodiode structure for high ultraviolet detection efficiency
JP2004031707A (ja) アバランシ・フォトダイオード
Chen et al. Demonstration of infrared nBn photodetectors based on the AlInAsSb digital alloy materials system
Piotrowski et al. Stacked multijunction photodetectors of long-wavelength radiation
CN115295646A (zh) 一种高性能光探测器芯片外延片
WO2022099747A1 (zh) 一种850nm波段高响应度探测器
WO2020107784A1 (zh) 一种单向载流子传输光电探测器及其制造方法
Shi et al. Novel back-to-back uni-traveling-carrier photodiodes with high responsivity and wide bandwidth
Yi et al. Colloidal Quantum Dot Enhanced Short-Wavelength Infrared Absorption of Avalanche Photodetectors
Li et al. Modified dual depletion region photodiode with optimized collection layer
Chao et al. High-speed and high-power GaSb based photodiode for 2.5 μm wavelength operations
US11508869B2 (en) Lateral interband type II engineered (LITE) detector
CN111403540B (zh) 一种雪崩光电二极管
Yu et al. Nanocrystalline Si-based metal-oxide-semiconductor photodetectors
Li et al. High-speed and low dark current InGaAs/InAlAs Avalanche Photodiodes with gradually-doped p-type absorption layers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961300

Country of ref document: EP

Kind code of ref document: A1