WO2015025842A1 - エアバッグ用織物 - Google Patents

エアバッグ用織物 Download PDF

Info

Publication number
WO2015025842A1
WO2015025842A1 PCT/JP2014/071650 JP2014071650W WO2015025842A1 WO 2015025842 A1 WO2015025842 A1 WO 2015025842A1 JP 2014071650 W JP2014071650 W JP 2014071650W WO 2015025842 A1 WO2015025842 A1 WO 2015025842A1
Authority
WO
WIPO (PCT)
Prior art keywords
base fabric
weight
weaving
yarn
fabric
Prior art date
Application number
PCT/JP2014/071650
Other languages
English (en)
French (fr)
Inventor
田中 剛
Original Assignee
旭化成せんい株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52483616&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015025842(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 旭化成せんい株式会社 filed Critical 旭化成せんい株式会社
Priority to KR1020167002954A priority Critical patent/KR101970867B1/ko
Priority to JP2015523334A priority patent/JP5789068B2/ja
Priority to CN201480046138.3A priority patent/CN105473774B/zh
Publication of WO2015025842A1 publication Critical patent/WO2015025842A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/02Inflatable articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/008Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23504Inflatable members characterised by their material characterised by material
    • B60R2021/23509Fabric

Definitions

  • the present invention relates to airbag fabrics. More specifically, the present invention relates to a fabric for an air bag having high airtightness at a high temperature.
  • Airbags reduce the impact of collisions during accidents and the contact between in-vehicle equipment and the human body. Airbags need to be airtight because they are deployed quickly and receive the human body without tearing and need a cushioning effect. Specifically, the airtightness of the boundary between the inflatable part and the non-inflatable part affects the airtightness of the entire bag, but the airtightness of the aforementioned part is particularly important especially in an environment where high-temperature gas is present when the inflator is activated. is there. Improvement of the airtightness of the base fabric is disclosed in Patent Document 1 and Patent Document 2 below. Patent document 1 is a method of suppressing the movement of the yarn by improving the mutual restraining force between the fibers.
  • Patent Document 2 discloses that after weaving using a multifilament composed of flat single yarn, shrinkage treatment is performed with a warp tension of 0.08 cN / dtex or less. However, a woven structure in which flat yarns are aligned and aligned in the direction of the flat axis may reduce the tearing properties and the like, and there is no description about the opening at high temperatures.
  • the object of the present invention is to improve the flexibility of the fabric at room temperature while suppressing the opening at the high temperature of the boundary portion between the inflatable portion and the non-inflatable portion when it is used as a bag body for an air bag. It is to provide a woven fabric with improved tear strength.
  • the present inventor adjusts the bulk density of the woven fabric to suppress the opening at high temperature at the boundary between the inflated portion and the non-expanded portion of the bag body in the high-density woven fabric and has a high tear strength.
  • the present invention is as follows.
  • the base fabric of the present invention is a high-density fabric having a specific bulk density, the opening of the boundary between the inflatable portion and the non-inflatable portion when an airbag is formed is suppressed, and the airtightness of the airbag is increased. While realizing, the flexibility, which is a drawback of high-density fabrics, has been improved, and the tearing strength has also been improved. In particular, it is suitable for an airbag device using a high-power and high-temperature gas.
  • the woven density of the base fabric of the present invention needs to be in a range where the cover factor satisfies 2250 or more and 2500 or less.
  • the cover factor is more preferably 2300 or more and less than 2500, and most preferably 2350 or more and less than 2450. If it is 2250 or more, the opening of the boundary portion between the inflatable portion and the non-inflatable portion when the airbag is used is increased, and the airtightness of the normal pressure is not impaired. If it is 2500 or less, flexibility will not be impaired.
  • the bulk density of the base fabric needs to be 700 kg / m 3 or more and 900 kg / m 3 or less.
  • it is 700 kg / m ⁇ 3 > or more, the opening of the boundary part of an expansion part and a non-expansion part when it is set as a bag will not become large, and high pressure airtightness will not be impaired.
  • 900 kg / m ⁇ 3 > or less a softness
  • the warp density is set to 50 yarns / inch or more
  • the weft is set to the same density
  • the warp tension during weaving is set to 0.3 cN / inch. This is possible by weaving with a tension of dtex or higher and then performing a setting step.
  • setting it is important to treat the base fabric without loosening, and the tension at that time is 1 N / cm or more. That is, it is important to employ processing conditions for increasing the cover factor, increasing the bulk density, and obtaining a three-dimensionally clogged fabric structure.
  • the dynamic ventilation rate of the base fabric of the present invention is preferably 400 mm / s or less. More preferably, it is 300 mm / s or less, Most preferably, it is 200 mm / s or less. If it is 400 mm / s or less, both flexibility and airtightness can be achieved. In addition, the measuring method of dynamic ventilation is mentioned later.
  • the stitch opening at 100 ° C. of the base fabric of the present invention is 12 mm or less. Preferably it is 10 mm or less. Most preferably, it is 8 mm or less. If it is 12 mm or less, it can be developed without significantly impairing the airtightness of the bag. The method for measuring the stitch opening will be described later.
  • the base fabric of the present invention preferably has a tear strength of 150N or more and less than 300N. More preferably, it is most preferably 180N or more and 200N or more. If it is 150 N or more, it works to suppress misalignment. Moreover, if it is a base fabric of less than 300N, it becomes a flexible base fabric with a large degree of freedom of fibers, which is advantageous for storage.
  • the tear strength here is the single tongue method defined in ISO 13937-2.
  • alkyl phosphate ester salt is present in an amount of 0.05 to 3.0 ppm by weight, and alkyl sulfate is present in an amount of 1 to 12 ppm by weight. Is preferred. More preferably, the alkyl phosphate ester salt is present in an amount of 0.1 to 2.0 ppm by weight, and the alkyl sulfate salt is present in an amount of 2 to 8 ppm by weight. That is, 1 ppm by weight or more and less than 1.0 ppm by weight, and the alkyl sulfate is 2 ppm by weight or more and less than 5 ppm by weight.
  • the alkyl phosphate ester salt is 0.05 ppm by weight or more, the static friction between fibers does not become too large, which is advantageous for maintaining and improving the tearing strength. Moreover, if it is less than 3.0 weight ppm, it is advantageous, without increasing the opening of the boundary part of the expansion part and non-expansion part at the time of making a bag. On the other hand, when the alkyl sulfate is 1 ppm by weight or more, the static friction between the fibers does not become too large, which is advantageous for maintaining and improving the tearing strength. If it is less than 12 weight ppm, it is advantageous without increasing the opening of the boundary part between the inflating part and the non-inflating part in the bag.
  • the alkyl part of the alkyl phosphate preferably has 8 to 18 carbon atoms, may have a side chain, and may contain an ethylene oxide chain.
  • a sodium salt, a calcium salt, and a tertiary amine salt are preferable.
  • the alkyl part of the alkyl sulfate preferably has 8 to 18 carbon atoms, may have a side chain, and may contain an ethylene oxide chain.
  • a sodium salt and a calcium salt are preferable.
  • the method for providing the alkyl phosphate and alkyl sulfate used in the base fabric of the present invention is not particularly limited, but it is preferable that the alkyl phosphate and alkyl sulfate are applied only to the fiber surface by a method of applying to the fiber surface, and the amount used is small and effective. is there. Furthermore, as a method for coating on the fiber surface, a method that is carried out at the spinning stage and the warping preparation stage can be adopted, and the component is generally given together with the spinning oil.
  • the spinning oil component is not particularly limited.
  • a smoothing agent is an ester of a divalent organic acid and a monovalent alcohol, an ester of a monovalent organic acid and a polyhydric alcohol, and an organic acid or alcohol is ethylene.
  • an organic acid or alcohol is ethylene.
  • this includes an ester of hydrogenated castor oil or its derivative and a mono- or polyhydric alcohol containing ethylene oxide or propylene oxide, ethylene oxide or propylene Alkyl ethers of oxides can generally be used.
  • the liquid to be applied can be in the form of a dispersion or solution in an organic solvent such as hydrocarbon or water, but preferably water is used as the solvent for economic and safety reasons. It is.
  • the fiber surface refers to the single yarn surface of the fibers constituting the base fabric.
  • the single yarn fineness of the fiber used for the base fabric of the present invention is preferably 2 dtex or more and 7 dtex or less. More preferably, it is 3 dtex or more and less than 7 dtex, and the most preferable is 3 dtex or more and less than 6 dtex. If it is 2 dtex or more, the airtightness is good, and it is advantageous for suppressing the opening when the bag is deployed. If it is 7 dtex or less, it is difficult to receive single yarn damage during processing such as weaving, and it is advantageous for obtaining a good quality base fabric.
  • the fiber used for the base fabric of the present invention preferably has a round cross section as a single yarn cross section.
  • the base fabric having high tensile strength when stress is applied to the base fabric, the base fabric having high tensile strength can be obtained because the stress is applied uniformly.
  • the round cross section means that the aspect ratio is 1.0 or more and less than 1.1, the long axis of the aspect ratio is defined as the maximum diameter of the cross section, and the short axis is defined as the minimum diameter.
  • the fiber material used for the base fabric of the present invention is preferably a thermoplastic fiber, and in particular, polyester and polyamide 66 fibers can be most suitably used in terms of fiber properties and handleability.
  • the base fabric of the present invention it is preferable to perform a wet treatment after weaving.
  • the wetting treatment is preferably performed under tension, and the tension at this time is preferably 1 N / cm or more. More preferably, it is 1.5 N / cm or more, and most preferably 2 N / cm or more. If it is 1 N / cm or more, an increase in thickness due to shrinkage of the wet fabric in hot water or drying is suppressed, and a three-dimensionally woven structure is obtained. Therefore, the airtightness under high pressure can be maintained well. If it is too large, uniform shrinkage may be impaired, and wrinkling of the base fabric and variation in the weave density may increase, so 4 N / cm or less is preferable.
  • the wetting treatment described here refers to a scouring treatment after weaving or a soaking treatment using only water and / or hot water, including a subsequent drying treatment, and a tenter treatment may be performed in the middle. Furthermore, the treatment of only drying the wet base fabric after weaving is also included in the wet treatment referred to in the present invention. Further, in the step of wetting the base fabric, it is preferable not to use an alkali so that the oil agent on the surface of the base fabric does not fall off excessively.
  • the hardness of the base fabric was measured according to ASTM-D4032.
  • the tear strength of the base fabric was measured in accordance with ISO 13937-2.
  • the dynamic aeration rate of the base fabric was measured using a FX3350 aeration rate tester manufactured by TEXTEST in accordance with ASTM-D6474.
  • the aeration rate was 50 kPa with a test head of 400 cc and a peak pressure of 95 to 105 kPa. The amount was determined.
  • the bulk density of the base fabric was calculated by measuring the weight and thickness of the base fabric of 10 cm 2 (ISO-5084 test pressure 1 kPa) and measuring the weight and volume.
  • the amount of seam opening at room temperature is 50 stitches of sewing thread made of 1350 dtex twisted yarn, cutting out two pieces of 38 cm long ⁇ 15 cm wide from the sample fabric, facing each other and leaving a 1 cm portion from the end of the long side Stitch with / dm main stitch and tie both ends of the thread.
  • a sample was prepared by stitching the warp in the warp direction and the weft in the weft direction. Thereafter, the opening length of the stitch when a load of 1500 N was applied at a speed of 100 mm / min in A & D Tensilon was measured with a ruler.
  • the amount of stitch opening at 100 ° C. is the same as that of room temperature stitch opening measurement. After holding for 1 minute in a dedicated thermostatic chamber set at 100 ° C., 1500 N as in (5) above. The stitch opening length when a load was applied was measured with a ruler.
  • the amount of residual oil 15 g of base fabric was sampled, and Soxhlet extraction was performed using cyclohexane as a solvent. Next, the extracted solvent was volatilized by heating, and the weight of the residue was measured with a precision balance to determine the amount of residue. A value obtained by dividing this weight by the sample weight was defined as a residual oil amount.
  • the adhesion amount of the alkyl phosphate ester salt on the fiber surface was determined from the phosphorus concentration by ICP.
  • the amount of alkyl sulfate attached to the fiber surface was determined from the amount of sulfate radical by ion chromatography. (11) Appearance was determined by visually observing the finished base fabric.
  • Polyamide 66 resin is melt-spun at 300 ° C., and cooled, an alkyl (C12-16) phosphoric acid amine salt 0.3% by weight in a spinning oil 60% by weight of an ester-based smoothing agent and 40% by weight of a nonionic surfactant And 0.8% by weight of a spinning oil containing 4% by weight of alkyl (C12-16) sodium sulfate salt based on the weight of the yarn, and then stretched 4.9 times with a hot stretch roll at 200 ° C. and then compressed. By providing entanglement with air, an original yarn having a fineness of 470 dtex and a single yarn number of 136 was obtained.
  • the raw yarn strength was 8.6 cN / dtex, and the elongation at break was 20.0%.
  • a warp setting density of 51 / inch, a weft setting density of 52 / inch, a counter width of 230 cm, a warp tension of 0.32 cN / dtex, and a loom rotation speed of 600 rpm Plain weaving was performed.
  • two 33 dtex nylon 66 monofilaments were used as entanglement yarns.
  • Example 2 A raw material fabric was obtained in the same manner as in Example 1 except that the nylon 66 fiber described in Example 1 was used and the warp tension was 0.26 cN / dtex. This is processed in the same manner as in Example 1. The desired fabric was obtained. As a result of measuring the residual oil amount of this fabric, it was 0.1% by weight with respect to the weight of the base fabric. Various properties were measured and evaluated for the obtained base fabric, and the results and weaving evaluation are shown in Table 1.
  • Example 3 A raw material fabric was obtained in the same manner as in Example 1 except that the nylon 66 fiber described in Example 1 was used and the warp tension was changed to 0.35 cN / dtex. This is processed in the same manner as in Example 1. The desired fabric was obtained. As a result of measuring the residual oil amount of this fabric, it was 0.11% by weight based on the weight of the base fabric. Various properties were measured and evaluated for the obtained base fabric, and the results and weaving evaluation are shown in Table 1.
  • Example 4 Using the nylon 66 fiber described in Example 1, a plain weave weaving was performed at a warp setting density of 53 / inch, a weft setting density of 53 / inch, a counter width of 230 cm, a warp tension of 0.32 cN / dtex, and a loom rotation speed of 500 rpm. .
  • a raw material was obtained in the same manner as in Example 1. Thereafter, it was treated in a hot water bath at 80 ° C. under a tension of 400 N for 180 seconds, and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having an intended weaving density of 57 yarns / inch.
  • Example 5 Using the nylon 66 fiber described in Example 1, a plain weaving was performed at a warp setting density of 49 yarns / inch, a weft yarn setting density of 50 yarns / inch, a counter width of 230 cm, a warp tension of 0.32 cN / dtex, and a loom rotation speed of 600 rpm. .
  • a raw material was obtained in the same manner as in Example 1. Thereafter, it was treated in a hot water bath at 80 ° C. under a tension of 400 N for 180 seconds and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having a target woven density of 53 yarns / inch.
  • Polyamide 66 resin was melt-spun at 300 ° C., and a spinning oil containing 0.3% by weight of alkyl (C12-16) phosphate amine salt and 4% by weight of alkyl (C12-16) sodium sulfate salt was cooled while cooling. 0.8% by weight, and after stretching 4.7 times with a heat drawing roll at 200 ° C., by confounding with compressed air, a yarn having a fineness of 470 dtex and 216 single yarns was obtained. Obtained. The raw yarn strength was 8.7 cN / dtex, and the elongation at break was 19.5%.
  • Example 7 Polyamide 66 resin was melt-spun at 300 ° C., and a spinning oil containing 0.3% by weight of alkyl (C12-16) phosphate amine salt and 4% by weight of alkyl (C12-16) sodium sulfate salt was cooled while cooling. 0.8% by weight, and then 4.8 times with a 200 ° C. hot drawing roll, and then entangled with compressed air to obtain a yarn having a fineness of 470 dtex and a single yarn number of 72. Obtained. The raw yarn strength was 8.6 cN / dtex, and the elongation at break was 20.2%.
  • Example 1 As a result of weaving in the same manner as in Example 1 using this raw yarn, the residual oil ratio was 0.11% by weight based on the weight of the base fabric. Various characteristics were measured and evaluated for the obtained base fabric, and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
  • Example 8 Polyamide 66 resin was melt-spun at 300 ° C., and a spinning oil containing 3% by weight of alkyl (C12-16) amine phosphate and 4% by weight of sodium alkyl (C12-16) sulfate was cooled with cooling. 0.8% by weight, and then 4.9 times with a 200 ° C. hot drawing roll, and then entangled with compressed air to obtain a yarn having a fineness of 470 dtex and 136 single yarns. .
  • the raw yarn strength was 8.5 cN / dtex, and the elongation at break was 21.0%.
  • Example 1 As a result of weaving similar to Example 1 using this raw yarn, the residual oil ratio was 0.11% by weight based on the weight of the base fabric. Various characteristics were measured and evaluated for the obtained base fabric, and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
  • Example 9 Polyamide 66 resin was melt-spun at 300 ° C., and a spinning oil containing 0.05% by weight of alkyl (C12-16) phosphoric acid amine salt and 4% by weight of alkyl (C12-16) sodium sulfate salt was cooled while cooling. 0.8% by weight, and after stretching 4.8 times with a 200 ° C. hot-drawing roll, by confounding with compressed air, a yarn having a fineness of 470 dtex and 136 single yarns was obtained. Obtained. The raw yarn strength was 8.6 cN / dtex, and the elongation at break was 20.5%. Weaving similar to that of Example 1 was performed using this raw yarn. Various characteristics were measured and evaluated for the obtained base fabric, and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
  • Polyamide 66 resin was melt-spun at 300 ° C., and a spinning oil containing 0.3% by weight of alkyl (C12-16) phosphate amine salt and 10% by weight of alkyl (C12-16) sodium sulfate salt was cooled while cooling. 0.8% by weight, and after stretching 4.8 times with a 200 ° C. hot-drawing roll, by confounding with compressed air, a yarn having a fineness of 470 dtex and 136 single yarns was obtained. Obtained. The raw yarn strength was 8.6 cN / dtex, and the elongation at break was 20%.
  • Example 1 As a result of weaving similar to Example 1 using this raw yarn, the residual oil ratio was 0.12% by weight based on the weight of the base fabric. Various characteristics were measured and evaluated for the obtained base fabric, and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
  • Polyamide 66 resin was melt-spun at 300 ° C., and a spinning oil containing 0.3% by weight of alkyl (C12-16) phosphate amine salt and 2% by weight of alkyl (C12-16) sodium sulfate salt was cooled while cooling. 0.8% by weight, and after stretching 4.8 times with a 200 ° C. hot-drawing roll, by confounding with compressed air, a yarn having a fineness of 470 dtex and 136 single yarns was obtained. Obtained. The raw yarn strength was 8.7 cN / dtex, and the elongation at break was 20.5%.
  • Example 1 As a result of weaving similar to Example 1 using this raw yarn, the residual oil ratio was 0.08% by weight based on the weight of the base fabric. Various characteristics were measured and evaluated for the obtained base fabric, and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
  • Example 12 Polyethylene terephthalate resin was melt-spun at 290 ° C., and a spinning oil containing 0.3% by weight of alkyl (C12-16) phosphate amine salt and 1% by weight of alkyl (C12-16) sodium sulfate salt was cooled while cooling. 0.8% by weight, and then drawn 6.0 times with a 200 ° C. hot drawing roll, and then entangled with compressed air to obtain a yarn having a fineness of 550 dtex and 96 single yarns. Obtained. The raw yarn strength was 7.0 cN / dtex, and the elongation at break was 20%.
  • Example 1 As a result of weaving similar to Example 1 using this raw yarn, the residual oil ratio was 0.08% by weight based on the weight of the base fabric. Various characteristics were measured and evaluated for the obtained base fabric, and the results are shown in Table 1. In addition, Table 1 also shows the evaluation of weaving properties at the time of weaving.
  • Polyamide 66 resin was melt-spun at 300 ° C., and while cooling, a spinning oil containing only 4% by weight of alkyl (C12-16) sodium phosphate salt and containing 4% by weight of alkyl (C12-16) sodium sulfate salt was added to the yarn weight. 0.8% by weight, and then 4.9 times with a 200 ° C. hot drawing roll, and then entangled with compressed air to obtain a yarn having a fineness of 470 dtex and 136 single yarns. Obtained.
  • the raw yarn strength was 8.6 cN / dtex, and the elongation at break was 20.0%.
  • Example 2 Using this raw yarn, weaving was performed in the same manner as in Example 1 to obtain a woven fabric having a target weaving density of 55 pieces / inch in both history and background. As a result of measuring the residual oil amount of this fabric, it was 0.1% by weight with respect to the weight of the base fabric. Various properties were measured and evaluated for the obtained base fabric, and the results are shown in Table 2. Table 2 also shows the evaluation of weaving properties during the weaving.
  • Example 14 Polyamide 66 resin was melt-spun at 300 ° C., and with cooling, a spinning oil containing 0.3% by weight of alkyl (C12-16) amine phosphate and no sodium alkyl (C12-16) sulfate was added to the yarn weight while cooling. 0.8% by weight is applied, and then 4.9 times with a 200 ° C. hot drawing roll, and then entangled with compressed air to obtain an original yarn having a fineness of 470 dtex and 136 single yarns. It was. The raw yarn strength was 8.6 cN / dtex, and the elongation at break was 20.2%.
  • Example 2 Using this raw yarn, weaving was performed in the same manner as in Example 1 to obtain a woven fabric having a target weaving density of 55 pieces / inch in both history and background. As a result of measuring the residual oil amount of this fabric, it was 0.1% by weight with respect to the weight of the base fabric. Various characteristics were measured and evaluated for the obtained base fabric, and the results are shown in Table 1. Various properties were measured and evaluated for the obtained base fabric, and the results are shown in Table 2. Table 2 also shows the evaluation of weaving properties during the weaving.
  • Example 15 Polyamide 66 resin was melt-spun at 300 ° C., and while cooling, a spinning oil containing no alkyl (C12-16) phosphate amine salt and alkyl (C12-16) sodium sulfate salt was added at 0.8% by weight based on the yarn weight. Except for the addition, spinning was performed in the same manner as in Example 1 to obtain an original yarn having a fineness of 470 dtex and a single yarn number of 136. The raw yarn strength was 8.6 cN / dtex, and the elongation at break was 21.0%. Using this raw yarn, weaving was performed in the same manner as in Example 1 to obtain a woven fabric having a target weaving density of 55 pieces / inch in both history and background.
  • Example 16 Using the yarn of Example 1, weaving similar to that of Example 1 was performed to obtain a base fabric. This was immersed in a 7.4 g / L aqueous solution of sodium hydroxide at 60 ° C., passed through a steam bath at 80 ° C. for 30 seconds, washed with water at 90 ° C. for 1 minute, and then heated with a 100 ° C. heating roll. After drying for seconds, winding and weaving density were both 55 / inch. The residual oil amount of this woven fabric was 0.01% with respect to the weight of the base fabric. The obtained base fabric was evaluated and the results are shown in Table 2. Table 2 also shows the evaluation of weaving properties during weaving.
  • Example 17 Using the yarn of Example 1, weaving similar to that of Example 1 was performed to obtain a base fabric. This was treated in a hot water bath at 80 ° C. under a tension of 200 N for 180 seconds, and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having an intended woven density of 55 yarns / inch. As a result of measuring the residual oil amount of this fabric, it was 0.11% by weight with respect to the weight of the base fabric. Various properties were measured and evaluated for the obtained base fabric, and the results are shown in Table 2. Table 2 also shows the evaluation of weaving properties during the weaving.
  • Example 18 Using the yarn of Example 1, weaving similar to that of Example 1 was performed to obtain a base fabric. This was treated in a hot water bath at 80 ° C. under a tension of 800 N for 180 seconds, and dried on a heating drum at 110 ° C. for 40 seconds to obtain a woven fabric having a target woven density of 55 yarns / inch. As a result of measuring the residual oil amount of this fabric, it was 0.10% by weight with respect to the weight of the base fabric. Various properties were measured and evaluated for the obtained base fabric, and the results are shown in Table 2. Table 2 also shows the evaluation of weaving properties during the weaving.
  • Example 2 The same operation as in Example 1 was carried out except that the warp tension was 0.18 cN / dtex. Various properties were measured and evaluated for the obtained base fabric, and the results are shown in Table 2. Table 2 also shows the evaluation of weaving properties during the weaving. Low bulk density and high air permeability.
  • Example 3 Weaving was performed in the same manner as in Example 1 using the same yarn as in Example 1, and then treated in a hot water bath at 80 ° C. under a tension of 50 N for 180 seconds, and then dried at 110 ° C. for 40 seconds in a heating drum. As a result, a woven fabric having a target weaving density of 55 pieces / inch was obtained. As a result of measuring the residual oil amount of this fabric, it was 0.08% by weight based on the weight of the base fabric. Various properties were measured and evaluated for the obtained base fabric, and the results are shown in Table 2. Table 2 also shows the evaluation of weaving properties during the weaving. The bulk density is low, the air permeability is high, and the high-temperature opening is also large.
  • Example 4 Weaving and hot water washing were performed in the same manner as in Example 1 using the same yarn as in Example 1, and then calendering was performed at a temperature of 150 ° C. and a pressure of 7 MPa, and the target woven density was 55 yarns / inch in both circumstances. A woven fabric was obtained. As a result of measuring the residual oil amount of this fabric, it was 0.10% by weight with respect to the weight of the base fabric. Various properties were measured and evaluated for the obtained base fabric, and the results are shown in Table 2. Table 2 also shows the evaluation of weaving properties during the weaving. The bulk density is extremely high and the air flow rate is suppressed, but the tearing strength is inferior.
  • the non-coated airbag base fabric of the present invention has extremely high industrial utility value because the opening at the boundary between the inflatable portion and the non-inflatable portion is suppressed and the flexibility is excellent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Woven Fabrics (AREA)
  • Air Bags (AREA)

Abstract

 本発明の目的はエアバッグ用の袋体としたときの膨張部と非膨張部の境界部分の高温時の目開きが抑制されつつも、常温時の柔軟性が改善され、特に高密度における引裂き強力が改善されたエアバッグ基布を提供することであり、本発明のエアバッグ基布は下記式であらわされるカバーファクターが2250以上2500以下であって、嵩密度が700kg/m3以上900kg/m3以下であることを特徴とするノンコートエアバッグ基布である。 ((経密度)+(緯密度))×√(繊維繊度)

Description

エアバッグ用織物
 本発明はエアバッグ用織物に関する。より詳しくは高温下での気密性の高いエアバッグ用織物に関する。
 エアバッグは事故時の衝突の衝撃や、車内装備品と人体の接触を軽減するものである。エアバッグは、いち早く大きく展開し、破れることなく人体を受け止め、クッション効果を必要とされるため、気密性が求められている。詳しくは膨張部と非膨張部の境界部分の気密性がバッグ全体の気密性に影響を与えるが、特にインフレータ作動時の高温ガスが存在する環境下での前述した部分の気密性は特に重要である。基布の気密性向上は、下記特許文献1及び特許文献2に開示されている。特許文献1は繊維間の相互拘束力を向上させることによって糸の動きを抑制する方法である。しかしながら当該文献には高温時における目開きは記載がない。また、単に繊維間の拘束力向上のみでは、高密度織物になった場合、過剰に繊維の動きが抑制されてしまい、引裂き強力が低下する場合がある。特許文献2には、扁平な単糸で構成されたマルチフィラメントを用いて製織した後、0.08cN/dtex以下の経糸張力で収縮処理することが開示されている。しかしながら、扁平糸を引き揃え偏平軸方向を揃えて並べた織構造は引裂き物性などが低減してしまうことがあるし、高温時における目開きについては記載がない。
特開2012-52280号公報 特開2005-105445号公報
 本発明の目的はエアバッグ用の袋体としたときの膨張部と非膨張部の境界部分の高温時の目開きが抑制されつつも、常温時の織物の柔軟性を改善し、特に高密度における引裂き強力を改善した織物を提供することである。
 本発明者は、織物としたときの嵩密度を調整することで、高密度織物において袋体の膨張部と非膨張部の境界部分の高温時目開きが抑制され、かつ、引裂き強力の高い織物が得られることを見出し、発明に至った。
 すなわち、本発明は以下のとおりである。
 (1)下記式であらわされるカバーファクターが2250以上2500以下であって、嵩密度が700kg/m3以上900kg/m3以下であることを特徴とするノンコートエアバッグ基布。
    ((経密度)+(緯密度))×√(繊維繊度)
 (2)引裂き強力が150N以上300N未満であることを特徴とする上記1項に記載のノンコートエアバッグ基布。
 (3)繊維表面に糸重量に対してアルキルリン酸エステル塩が0.05重量ppm以上3重量ppm未満存在することを特徴とする上記1または2項に記載のノンコートエアバッグ基布。
 (4)繊維表面に糸重量に対してアルキル硫酸塩が1重量ppm以上12重量ppm未満存在することを特徴とする上記1~3項のいずれか一項に記載のノンコートエアバッグ基布。
 (5)単糸断面形状が丸断面である糸条を用いて製織されたことを特徴とする上記1~4項のいずれか一項に記載のノンコートエアバッグ基布。
 (6)基布の動的通気量が400mm/s以下であることを特徴とする上記1~5項いずれか一項に記載のノンコートエアバッグ基布。
 (7)100℃における縫目目開き量が12mm以下であることを特徴とする上記1~6項のいずれか一項に記載のノンコートエアバッグ基布。
 (8)単糸繊度が2dtex以上7dtex以下である糸条にて構成されていることを特徴とする上記1~7項のいずれか一項に記載のノンコートエアバッグ基布。
 (9)基布を構成する繊維がポリアミド66であることを特徴とする上記1~8項のいずれか一項に記載のノンコートエアバッグ基布。
 (10)製織後1N/cm以上の張力下で湿潤処理されていることを特徴とする上記1~9項のいずれか一項に記載のノンコートエアバッグ基布。
 (11)上記1~10項のいずれか一項に記載の基布にて製造されたノンコートエアバッグ。
 本発明の基布は、特定の嵩密度を有する高密度織物であることにより、エアバッグとしたときの膨張部と非膨張部の境界部分の目開きが抑制され、エアバッグの高気密性を実現しつつ、高密度織物の欠点である柔軟性が改善され、引裂き強力も向上している。とりわけ、高出力で高温のガスを用いるエアバッグ装置に適している。
 以下、本発明について詳細に説明する。
 本発明の基布の織密度は、カバーファクターが2250以上2500以下を満足する範囲であることが必要である。カバーファクターが2300以上2500未満であればより好ましく、2350以上2450未満が最も好ましい。2250以上であれば、エアバッグとしたときの膨張部と非膨張部の境界部分の目開きが大きくなって、通常圧の気密性が損なわれることがない。2500以下ならば、柔軟性が損なわれることがない。基布の嵩密度は700kg/m3以上900kg/m3以下が必要である。750kg/m3以上900kg/m3未満であればより好ましく、750kg/m3以上850kg/m3未満であればさらに好ましく、780kg/m3以上830kg/m3が最も好ましい。700kg/m3以上であれば、バッグとしたときの膨張部と非膨張部の境界部分の目開きが大きくならず、高圧の気密性が損なわれることがない。また、900kg/m3以下の場合は柔軟性が損なわれず、収納性も小さく維持される。カバーファクターと嵩密度を上記の範囲にするには、例えば、経糸の密度を50本/inch以上に設定し、また緯糸も同じ密度の設定を行ない、製織時の経糸の張力を0.3cN/dtex以上の張力で製織し、その後にセット工程を行なうことによって可能である。セット時には基布を弛めずに処理することが重要で、その時の張力は1N/cm以上である。すなわち、カバーファクターを大きくし、かつ、嵩密度を大きくし、3次元的に目の詰まった織物構造とするための加工条件を採用することが重要である。
 本発明の基布の動的通気量は400mm/s以下が好ましい。より好ましくは300mm/s以下で、最も好ましくは200mm/s以下である。400mm/s以下では柔軟性と気密性を両立できる。なお、動的通気量の測定方法は後述する。
 本発明の基布の100℃における縫目目開きは、12mm以下である。好ましくは10mm以下であり。8mm以下であれば最も好ましい。12mm以下であればバッグとしたときの気密性を大きく損なうことなく、展開が可能である。なお、縫目目開きの測定方法は後述する。
 本発明の基布は、引裂き強力が150N以上300N未満であることが好ましい。より好ましくは180N以上で200N以上であれば最も好ましい。150N以上では目ずれ抑制に有利に働く。また300N未満の基布であれば繊維の自由度が大きく柔軟な基布となり、収納性に有利になる。ここでの引裂き強力はISO13937-2に規定されているシングルタング法である。
 本発明の基布を構成する繊維の表面には、アルキルリン酸エステル塩が0.05重量ppm以上3.0重量ppm未満、および、アルキル硫酸塩が1重量ppm以上12重量ppm未満存在することが好ましい。さらに好ましくは、アルキルリン酸エステル塩が0.1重量ppm以上2.0重量ppm未満、および、アルキル硫酸塩が2重量ppm以上8重量ppm未満存在、最も好ましくはアルキルリン酸エステル塩が0.1重量ppm以上1.0重量ppm未満、および、アルキル硫酸塩が2重量ppm以上5重量ppm未満とすることである。
 アルキルリン酸エステル塩が0.05重量ppm以上であれば繊維間の静摩擦が大きくなりすぎず、引裂き強力の維持向上に有利である。また、3.0重量ppm未満では、バッグとした際の膨張部と非膨張部の境界部目開きを増大させずに有利である。一方、アルキル硫酸塩が1重量ppm以上であると繊維間の静摩擦が大きくなりすぎず、引裂き強力の維持向上に有利である。12重量ppm未満では、バッグとした際の膨張部と非膨張部の境界部目開きを増大させずに有利である。
 アルキルリン酸エステル塩とアルキル硫酸塩は、いずれかが上述の適量存在することが好ましい。しかし、両者がともに存在することが好ましく、より少量の存在量でより効果的である。
 アルキルリン酸塩のアルキル部は炭素数が8以上18以下であることが好ましく、側鎖を有していてもよく、またエチレンオキサイド鎖を含んでも良い。塩としては、ナトリウム塩、カルシウム塩、3級アミン塩が好ましい。アルキル硫酸塩のアルキル部は炭素数が8~18であることが好ましく、側鎖を有していてもよく、またエチレンオキサイド鎖を含んでも良い。塩としてはナトリウム塩、カルシウム塩が好ましい。
 本発明の基布に使用するアルキルリン酸塩及びアルキル硫酸塩の付与方法は特に限定されないが、好ましくは繊維表面に塗布する方法で繊維表面にのみ存在させることが、使用量も少なく効果的である。さらに、繊維表面への塗布の方法としては、紡糸段階及び整経準備段階にて実施する方法が採用でき、紡糸油剤とともに当該成分を付与するのが一般的である。紡糸油剤成分は特に限定されないが、例えば、平滑剤には2価の有機酸と1価のアルコールとのエステル、1価の有機酸と多価のアルコールとのエステルで有機酸やアルコールにはエチレンオキサイドブロックが含まれるものを含み、水分散で使用する場合は、これに硬化ひまし油もしくはその誘導体と1価もしくは多価のアルコールとのエステルでエチレンオキサイドもしくはプロピレンオキサイドを含むものや、エチレンオキサイドもしくはプロピレンオキサイドのアルキルエーテルが一般的に使用できる。
 また、塗布する液体の形態としては、炭化水素等の有機溶媒や水への分散液もしくは溶液の形態が可能であるが、好ましくは溶媒に水を利用したものが経済的、安全性にも有効である。なお、繊維表面とは、基布を構成する繊維の単糸表面を指す。
 本発明の基布に使用する繊維の単糸繊度は2dtex以上7dtex以下が好ましい。より好ましくは3dtex以上7dtex未満であり、最も好ましいのは3dtex以上6dtex未満である。2dtex以上では気密性が良く、バッグ展開時における目開き抑制に有利である。7dtex以下であれば、製織等の加工時の単糸ダメージを受けにくく、品質の良い基布を得るのに有利である。
 本発明の基布に使用する繊維は、その構成する単糸断面は丸断面が好ましい。丸断面であれば、基布に応力がかかる場合において、均等に応力がかかる為に、引裂き、引張強力の高い基布を得ることができる。ここでの丸断面とはアスペクト比が1.0以上1.1未満の事を言い、アスペクト比の長軸の定義はその断面の最大径、短軸の定義は最小径を示す。
 本発明の基布に使用する繊維素材は、熱可塑性繊維が好ましく、特にポリエステル、ポリアミド66繊維が繊維物性、取扱い性にて最も好適に使用できる。
 本発明の基布の製造において、製織後に湿潤処理を行うことが好ましい。湿潤処理は張力下で行うことが好ましく、この時の張力は1N/cm以上が好ましい。より好ましくは1.5N/cm以上で、2N/cm以上であれば最も好ましい。1N/cm以上であれば湿潤処理の熱水中もしくは乾燥時の基布の収縮による厚みの増加を抑え、3次元的に目の詰まった織構造が得られる。そのため、高圧下での気密性が良好に維持できる。あまり大きすぎると均一な収縮が損なわれる場合があり、基布のしわ発生や、織密度のバラつきが大きくなる場合があるから、4N/cm以下が好ましい。ここで述べる湿潤処理とは製織後の精練処理もしくは水及び/又は熱水のみの浸漬処理で、その後の乾燥処理までを含んだ処理を言い、途中にテンター処理を実施しても良い。さらに、製織後の湿潤状態の基布の乾燥のみの処理も本発明で言う湿潤処理に含まれる。また、基布を湿潤する工程では、アルカリを使用しないことが基布表面の油剤の過剰な脱落を起こさず好適である。
 次に、実施例および比較例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。本発明における各種測定方法および評価方法は以下の通りである。
 (1)製織性は、豊田自動織機社製LWT710を用い、2.3m幅、織機回転数600rpmまたは500rpmで試織を行い、下記基準で評価した。
      停台が5回/日以上:×
      停台が3~4回/日:△
      停台が2回/日未満:○
 (2)基布の硬さは、ASTM-D4032に従って測定した。
 (3)基布の引裂き強力はISO13937-2に従って測定した。
 (4)基布の動的通気量はASTM-D6476に従ってTEXTEST社製FX3350通気量試験機を用いて測定し、テストヘッドが400cc、ピーク圧力が95~105kPaになるようにして、50kPa時の通気量を求めた。
 (5)基布の嵩密度は10cm2の基布重量及び厚み(ISO-5084 試験圧1kPa)を測定し、その重さと体積によって算出した。
 (6)室温の縫目目開き量はサンプル織物より縦38cm×横15cmの布2枚を切り出し、互いに向き合わせて長辺の端より1cmの部分を残し1350dtexの撚糸からなる縫い糸にて50針/dmの本縫で縫合し、糸両端を結ぶ。これを織物の経方向どうしの合わせおよび緯方向どうしの合わせの縫合で試料を作成した。その後、A&D社製テンシロンにおいて100mm/minの速度にて1500Nの荷重をかけた時の縫目の開き長さを定規にて測定した。
 (7)100℃における縫目開き量は、室温の縫目開き量測定と同じ試料を作成し、100℃に設定した専用恒温槽の中1分間保持後、上記(5)と同様に1500Nの荷重をかけた時の縫目目開き長さを定規にて測定した。
 (8)残油量は、基布15gを採取し、シクロヘキサンを溶媒としてソックスレー抽出を行った。次に抽出した溶媒を加熱揮発させ、その残渣重量を精密天秤にて測定し残渣量を求めた。この重量を試料重量で割った値を残油量とした。
 (9)繊維表面のアルキルリン酸エステル塩の付着量はICPによってリン濃度より求めた。
 (10)繊維表面のアルキル硫酸塩の付着量はイオンクロマトグラフによって硫酸根の量より求めた。
 (11)外観は、仕上がった基布を目視判定し、特に問題ない場合を○、外観で異常を発見した場合はその現象を記した。
 (12)総合判定は縫目目開き量を主体にして、柔軟性(硬さ)および気密性(動的通気量)も考慮して判定し、極めて良好を○、良好を△、不良を×とした。
 [実施例1]
 ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらエステル系平滑剤60重量%及び非イオン型界面活性剤40重量%の紡糸油剤にアルキル(C12~16)リン酸アミン塩0.3重量%及びアルキル(C12~16)硫酸ナトリウム塩4重量%を含んだ紡糸油剤を糸重量に対し0.8重量%付与し、その後200℃の熱延伸ロールにて4.9倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度470dtex、単糸数136本の原糸を得た。原糸強度は8.6cN/dtex、破断伸び率は20.0%であった。これを用い、糊付けすることなく豊田自動織機社製LWT710にて、経糸設定密度51本/inch、緯糸設定密度52本/inch、反幅230cm、経糸張力0.32cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分はそれぞれ絡み糸として33dtexナイロン66モノフィラメント2本を使用した。また、増し糸として絡み糸の内側に33dtexナイロン66モノフィラメント8本を平織で織り込み幅2mの原料反を得た。その後、80℃の湯浴に400Nの張力下で180sec間処理し、加熱ドラムにて110℃で40sec間乾燥を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の残油量を計測した結果、基布重量に対し0.1重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
 [実施例2]
 実施例1記載のナイロン66繊維を用い、経糸張力を0.26cN/dtexとした以外は実施例1と同様にして原料反を得た。これを実施例1と同様な加工を行い。目的の織物を得た。この織物の残油量を測定した結果、基布重量に対し、0.1重量%であった。得られた基布について各種特性測定及び評価を行い、それらの結果と製織性評価を表1に記載した。
 [実施例3]
 実施例1記載のナイロン66繊維を用い、経糸張力を0.35cN/dtexとした以外は実施例1と同様にして原料反を得た。これを実施例1と同様な加工を行い。目的の織物を得た。この織物の残油量を測定した結果、基布重量に対し、0.11重量%であった。得られた基布について各種特性測定及び評価を行い、それらの結果と製織性評価を表1に記載した。
 [実施例4]
 実施例1に記載のナイロン66繊維を用い、経糸設定密度53本/inch、緯糸設定密度53本/inch、反幅230cm、経糸張力0.32cN/dtex、織機回転数500rpmで平織製織を行った。両耳部分は実施例1と同様にして原料反を得た。その後80℃の湯浴に400Nの張力下で180sec間処理し、加熱ドラムにて110℃で40sec間乾燥を行い、目的の織密度が経緯共に57本/inchの織物を得た。この織物の残油量を計測した結果、基布重量に対し0.12重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
 [実施例5]
 実施例1に記載のナイロン66繊維を用い、経糸設定密度49本/inch、緯糸設定密度50本/inch、反幅230cm、経糸張力0.32cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分は実施例1と同様にして原料反を得た。その後80℃の湯浴に400Nの張力下で180sec間処理し、加熱ドラムにて110℃で40sec間乾燥を行い、目的の織密度が経緯共に53本/inchの織物を得た。この織物の残油量を計測した結果、基布重量に対し0.09重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
 [実施例6]
 ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらアルキル(C12~16)リン酸アミン塩0.3重量%及びアルキル(C12~16)硫酸ナトリウム塩4重量%を含んだ紡糸油剤を糸重量に対し0.8重量%付与し、その後200℃の熱延伸ロールにて4.7倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度470dtex、単糸数216本の原糸を得た。原糸強度は8.7cN/dtex、破断伸び率は19.5%であった。この原糸を用いて実施例1と同様な製織を行った結果、残油率は基布重量に対し0.1重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
 [実施例7]
 ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらアルキル(C12~16)リン酸アミン塩0.3重量%及びアルキル(C12~16)硫酸ナトリウム塩4重量%を含んだ紡糸油剤を糸重量に対し0.8重量%付与し、その後200℃の熱延伸ロールにて4.8倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度470dtex、単糸数72本の原糸を得た。原糸強度は8.6cN/dtex、破断伸び率は20.2%であった。この原糸を用いて実施例1と同様な製織を行った結果、残油率は基布重量に対し0.11重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
 [実施例8]
 ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらアルキル(C12~16)リン酸アミン塩3重量%及びアルキル(C12~16)硫酸ナトリウム塩4重量%を含んだ紡糸油剤を糸重量に対し0.8重量%付与し、その後200℃の熱延伸ロールにて4.9倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度470dtex、単糸数136本の原糸を得た。原糸強度は8.5cN/dtex、破断伸び率は21.0%であった。この原糸を用いて実施例1と同様な製織を実施した結果、残油率は基布重量に対し0.11重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
 [実施例9]
 ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらアルキル(C12~16)リン酸アミン塩0.05重量%及びアルキル(C12~16)硫酸ナトリウム塩4重量%を含んだ紡糸油剤を糸重量に対し0.8重量%付与し、その後200℃の熱延伸ロールにて4.8倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度470dtex、単糸数136本の原糸を得た。原糸強度は8.6cN/dtex、破断伸び率は20.5%であった。この原糸を用いて実施例1と同様な製織を行なった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
 [実施例10]
 ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらアルキル(C12~16)リン酸アミン塩0.3重量%及びアルキル(C12~16)硫酸ナトリウム塩10重量%を含んだ紡糸油剤を糸重量に対し0.8重量%付与し、その後200℃の熱延伸ロールにて4.8倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度470dtex、単糸数136本の原糸を得た。原糸強度は8.6cN/dtex、破断伸び率は20%であった。この原糸を用いて実施例1と同様な製織を実施した結果、残油率は基布重量に対し0.12重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
 [実施例11]
 ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらアルキル(C12~16)リン酸アミン塩0.3重量%及びアルキル(C12~16)硫酸ナトリウム塩2重量%を含んだ紡糸油剤を糸重量に対し0.8重量%付与し、その後200℃の熱延伸ロールにて4.8倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度470dtex、単糸数136本の原糸を得た。原糸強度は8.7cN/dtex、破断伸び率は20.5%であった。この原糸を用いて実施例1と同様な製織を実施した結果、残油率は基布重量に対し0.08重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
 [実施例12]
 ポリエチレンテレフタレート樹脂を290℃において溶融紡糸し、冷却しながらアルキル(C12~16)リン酸アミン塩0.3重量%及びアルキル(C12~16)硫酸ナトリウム塩1重量%を含んだ紡糸油剤を糸重量に対し0.8重量%付与し、その後200℃の熱延伸ロールにて6.0倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度550dtex、単糸数96本の原糸を得た。原糸強度は7.0cN/dtex、破断伸び率は20%であった。この原糸を用いて実施例1と同様な製織を実施した結果、残油率は基布重量に対し0.08重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表1に記載した。また、上記製織時の製織性評価も表1に記載した。
Figure JPOXMLDOC01-appb-T000001
 [実施例13]
 ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらアルキル(C12~16)リン酸アミン塩を含まず、アルキル(C12~16)硫酸ナトリウム塩のみを4重量%を含んだ紡糸油剤を糸重量に対し0.8重量%付与し、その後200℃の熱延伸ロールにて4.9倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度470dtex、単糸数136本の原糸を得た。原糸強度は8.6cN/dtex、破断伸び率は20.0%であった。この原糸を用いて実施例1と同様な製織を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の残油量を計測した結果、基布重量に対し0.1重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表2に記載した。また、上記製織時の製織性評価も表2に記載した。
 [実施例14]
 ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらアルキル(C12~16)リン酸アミン塩0.3重量%を含み、アルキル(C12~16)硫酸ナトリウム塩を含まない紡糸油剤を糸重量に対し0.8重量%付与し、その後200℃の熱延伸ロールにて4.9倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度470dtex、単糸数136本の原糸を得た。原糸強度は8.6cN/dtex、破断伸び率は20.2%であった。この原糸を用いて実施例1と同様な製織を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の残油量を計測した結果、基布重量に対し0.1重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表1に記載した。得られた基布について、各種特性測定および評価を行ない、それらの結果を表2に記載した。また、上記製織時の製織性評価も表2に記載した。
 [実施例15]
 ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらアルキル(C12~16)リン酸アミン塩及び、アルキル(C12~16)硫酸ナトリウム塩を含まない紡糸油剤を糸重量に対し0.8重量%付与した以外は、実施例1と同様な方法で紡糸して、繊度470dtex、単糸数136本の原糸を得た。原糸強度は8.6cN/dtex、破断伸び率は21.0%であった。この原糸を用いて実施例1と同様な製織を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の残油量を計測した結果、基布重量に対し0.11重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表2に記載した。また、製織時の製織性評価も表2に記載した。
 [実施例16]
 実施例1の糸条を用い、実施例1と同様な製織を行って基布を得た。これを60℃の水酸化ナトリウム7.4g/L水溶液に浸漬後、80℃のスチーム槽に30秒通した後、90℃×1分間の水洗浄を実施し、100℃の加熱ロールにて70秒乾燥後、巻き取り、織密度が経緯共に55本/inchの織物を得た。この織物の残油量は、基布重量に対し0.01%であった。得られた基布について、評価を行い、それらの結果を表2に記載した。また、製織時の製織性評価も表2に記載した。
 [実施例17]
 実施例1の糸条を用い、実施例1と同様な製織を行って基布を得た。これを80℃の湯浴に200Nの張力下で180sec間処理し、加熱ドラムにて110℃で40sec間乾燥を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の残油量を計測した結果、基布重量に対し0.11重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表2に記載した。また、上記製織時の製織性評価も表2に記載した。
 [実施例18]
 実施例1の糸条を用い、実施例1と同様な製織を行って基布を得た。これを80℃の湯浴に800Nの張力下で180sec間処理し、加熱ドラムにて110℃で40sec間乾燥を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の残油量を計測した結果、基布重量に対し0.10重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表2に記載した。また、上記製織時の製織性評価も表2に記載した。
 [比較例1]
 ポリアミド66樹脂を300℃において溶融紡糸し、冷却しながらアルキル(C12~16)リン酸アミン塩0.3重量%及びアルキル(C12~16)硫酸ナトリウム塩4重量%を含んだ紡糸油剤を糸重量に対し0.8重量%付与し、その後200℃の熱延伸ロールにて4.9倍に延伸した後、圧縮空気にて交絡を付与することにより、繊度470dtex、単糸数136本の原糸を得た。原糸強度は8.6cN/dtex、破断伸び率は20.0%であった。この原糸を用い、糊付けすることなく豊田自動織機社性LWT710にて、経糸設定密度49本/inch、緯糸設定密度48本/inch、反幅230cm、経糸張力0.32cN/dtex、織機回転数600rpmで平織製織を行った。両耳部分はそれぞれ絡み糸として33dtexナイロン66モノフィラメント2本を使用した。また、増し糸として絡み糸の内側に33dtexナイロン66モノフィラメント8本を平織で織り込み原料反を得た。その後80℃の湯浴に400Nの張力下で180sec間処理し、加熱ドラムにて110℃で40sec間乾燥を行い、織密度が経緯共に51本/inchの目的の織物を得た。この織物の残油量を計測した結果、基布重量に対し0.1重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表2に記載した。また、上記製織時の製織性評価も表2に記載した。カバーファクターが低く、縫目開きが大きいものであった。
 [比較例2]
 経糸張力を0.18cN/dtexとしたことを除いて、実施例1と同様に実施した。得られた基布について、各種特性測定および評価を行ない、それらの結果を表2に記載した。また、上記製織時の製織性評価も表2に記載した。嵩密度が低く、通気度が大きい。
 [比較例3]
 実施例1と同様な糸条を用い、実施例1と同様に製織を実施し、その後、80℃の湯浴に50Nの張力下で180sec間処理し、加熱ドラムにて110℃で40sec間乾燥を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の残油量を計測した結果、基布重量に対し0.08重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表2に記載した。また、上記製織時の製織性評価も表2に記載した。嵩密度が低く、通気度が大きいうえに高温目開きも大きい。
 [比較例4]
 実施例1と同様な糸条を用い、実施例1と同様に製織および湯洗を実施し、その後温度150℃、圧力7MPaでカレンダー処理を行い、目的の織密度が経緯共に55本/inchの織物を得た。この織物の残油量を計測した結果、基布重量に対し0.10重量%であった。得られた基布について、各種特性測定および評価を行ない、それらの結果を表2に記載した。また、上記製織時の製織性評価も表2に記載した。嵩密度が著しく高く、通気量が抑えられているが、引裂き強力が劣っている。
Figure JPOXMLDOC01-appb-T000002
 表1および表2から分かるように、本発明のものは目開きしにくいが、本発明の範囲外のものは目開きし易い。
 本発明のノンコートエアバッグ基布は膨張部と非膨張部の境界部分の目開きが抑制され、かつ柔軟性にも優れているので、産業上の利用価値は極めて大きい。

Claims (11)

  1.  下記式であらわされるカバーファクターが2250以上2500以下であって、嵩密度が700kg/m3以上900kg/m3以下であることを特徴とするノンコートエアバッグ基布。
        ((経密度)+(緯密度))×√(繊維繊度)
  2.  引裂き強力が150N以上300N未満であることを特徴とする請求項1に記載のノンコートエアバッグ基布。
  3.  繊維表面に糸重量に対してアルキルリン酸エステル塩が0.05重量ppm以上3重量ppm未満存在することを特徴とする請求項1または2に記載のノンコートエアバッグ基布。
  4.  繊維表面に糸重量に対してアルキル硫酸塩が1重量ppm以上12重量ppm未満存在することを特徴とする請求項1~3のいずれか一項に記載のノンコートエアバッグ基布。
  5.  単糸断面形状が丸断面である糸条を用いて製織されたことを特徴とする請求項1~4のいずれか一項に記載のノンコートエアバッグ基布。
  6.  基布の動的通気量が400mm/s以下であることを特徴とする請求項1~5のいずれか一項に記載のノンコートエアバッグ基布。
  7.  100℃における縫目目開き量が12mm以下であることを特徴とする請求項1~6のいずれか一項に記載のノンコートエアバッグ基布。
  8.  単糸繊度が2dtex以上7dtex以下である糸条にて構成されていることを特徴とする請求項1~7のいずれか一項に記載のノンコートエアバッグ基布。
  9.  基布を構成する繊維がポリアミド66であることを特徴とする請求項1~8のいずれか一項に記載のノンコートエアバッグ基布。
  10.  製織後1N/cm以上の張力下で湿潤処理されていることを特徴とする請求項1~9のいずれか一項に記載のノンコートエアバッグ基布。
  11.  請求項1~10のいずれか一項に記載の基布にて製造されたノンコートエアバッグ。
PCT/JP2014/071650 2013-08-19 2014-08-19 エアバッグ用織物 WO2015025842A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167002954A KR101970867B1 (ko) 2013-08-19 2014-08-19 에어백용 직물
JP2015523334A JP5789068B2 (ja) 2013-08-19 2014-08-19 エアバッグ用織物
CN201480046138.3A CN105473774B (zh) 2013-08-19 2014-08-19 气囊用织物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013169592 2013-08-19
JP2013-169592 2013-08-19

Publications (1)

Publication Number Publication Date
WO2015025842A1 true WO2015025842A1 (ja) 2015-02-26

Family

ID=52483616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071650 WO2015025842A1 (ja) 2013-08-19 2014-08-19 エアバッグ用織物

Country Status (4)

Country Link
JP (1) JP5789068B2 (ja)
KR (1) KR101970867B1 (ja)
CN (1) CN105473774B (ja)
WO (1) WO2015025842A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193966A1 (ja) * 2020-03-26 2021-09-30 旭化成株式会社 資材用基布およびその製法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248581B2 (ja) * 1998-07-27 2002-01-21 東洋紡績株式会社 ノンコートエアバッグ用織物及びその製造方法、並びにノンコートエアバッグ用織物の製造装置
JP2002220777A (ja) * 2001-01-17 2002-08-09 Toyobo Co Ltd 低通気織物の製造方法
JP2002317343A (ja) * 2001-04-19 2002-10-31 Toyobo Co Ltd エアバッグ用高密度織物
JP2005105446A (ja) * 2003-09-29 2005-04-21 Toyobo Co Ltd エアバッグ用基布およびその製法
JP2006016707A (ja) * 2004-06-30 2006-01-19 Toray Ind Inc エアバッグ用基布およびエアバッグならびにその製造方法
JP2006256474A (ja) * 2005-03-17 2006-09-28 Toray Ind Inc エアバッグ用基布およびその製造方法
JP2009185421A (ja) * 2008-02-08 2009-08-20 Toray Ind Inc シリコーンコートエアバッグ用基布およびその製造方法
WO2011162073A1 (ja) * 2010-06-24 2011-12-29 松本油脂製薬株式会社 エアバッグ用合成繊維処理剤、エアバッグ用合成繊維フィラメントおよびエアバッグ用基布
JP2013040415A (ja) * 2011-08-15 2013-02-28 Asahi Kasei Fibers Corp エアバッグ用高密度織物とその製織方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849818B2 (ja) * 1996-12-06 2006-11-22 東レ株式会社 エアバッグ用基布およびエアバッグとその製造方法
JP4306391B2 (ja) 2003-09-29 2009-07-29 東洋紡績株式会社 エアバッグ用基布およびその製法
CN101205650A (zh) * 2006-12-19 2008-06-25 东丽纤维研究所(中国)有限公司 安全气囊的非涂层织物
JP6013710B2 (ja) 2010-08-02 2016-10-25 旭化成株式会社 エアバッグ用織物およびエアバッグ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248581B2 (ja) * 1998-07-27 2002-01-21 東洋紡績株式会社 ノンコートエアバッグ用織物及びその製造方法、並びにノンコートエアバッグ用織物の製造装置
JP2002220777A (ja) * 2001-01-17 2002-08-09 Toyobo Co Ltd 低通気織物の製造方法
JP2002317343A (ja) * 2001-04-19 2002-10-31 Toyobo Co Ltd エアバッグ用高密度織物
JP2005105446A (ja) * 2003-09-29 2005-04-21 Toyobo Co Ltd エアバッグ用基布およびその製法
JP2006016707A (ja) * 2004-06-30 2006-01-19 Toray Ind Inc エアバッグ用基布およびエアバッグならびにその製造方法
JP2006256474A (ja) * 2005-03-17 2006-09-28 Toray Ind Inc エアバッグ用基布およびその製造方法
JP2009185421A (ja) * 2008-02-08 2009-08-20 Toray Ind Inc シリコーンコートエアバッグ用基布およびその製造方法
WO2011162073A1 (ja) * 2010-06-24 2011-12-29 松本油脂製薬株式会社 エアバッグ用合成繊維処理剤、エアバッグ用合成繊維フィラメントおよびエアバッグ用基布
JP2013040415A (ja) * 2011-08-15 2013-02-28 Asahi Kasei Fibers Corp エアバッグ用高密度織物とその製織方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193966A1 (ja) * 2020-03-26 2021-09-30 旭化成株式会社 資材用基布およびその製法
JPWO2021193966A1 (ja) * 2020-03-26 2021-09-30
JP7349558B2 (ja) 2020-03-26 2023-09-22 旭化成株式会社 資材用基布およびその製法
US11987910B2 (en) 2020-03-26 2024-05-21 Asahi Kasei Kabushiki Kaisha Base cloth for material and manufacturing method therefor

Also Published As

Publication number Publication date
CN105473774B (zh) 2018-06-19
CN105473774A (zh) 2016-04-06
JP5789068B2 (ja) 2015-10-07
KR101970867B1 (ko) 2019-04-19
JPWO2015025842A1 (ja) 2017-03-02
KR20160029826A (ko) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5100895B2 (ja) エアバッグ用基布
CN103906867B (zh) 聚酰胺纤维和气囊用织物
KR102183372B1 (ko) 낮은 투과도 및 높은 강도의 직조 천 및 이의 제조 방법
WO2017010458A1 (ja) エアバッグ用基布、エアバッグおよびエアバッグ用基布の製造方法
CN104060366B (zh) 高密度织物
JP2009533566A (ja) エアバッグ用織物
JPWO2019167820A1 (ja) エアバッグ用ノンコート基布、エアバッグ用コーティング基布およびそれを用いたエアバッグ
US20220213622A1 (en) Ultra low permeability and high seam strength fabric and methods of making the same
CN106489000B (zh) 制备用于气囊的聚酯织物的方法
JP2007162187A (ja) エアバッグ用ノンコート織物、コート織物およびその製造方法およびインフレータブルカーテンエアバッグ
JPWO2014123090A1 (ja) エアバッグ用織物および織物ロール
JP5789068B2 (ja) エアバッグ用織物
JP7188393B2 (ja) エアバッグ基布およびそれを含むエアバッグ
JP2015110857A (ja) エアバッグ基布
JP7349558B2 (ja) 資材用基布およびその製法
CN106319720B (zh) 安全气囊用织物、其制造方法及安全气囊
JP2015183309A (ja) エアバッグ用織物基布
JP6694490B2 (ja) エアバッグ用織物基布
JP2007023410A (ja) エアバッグ用基布およびその製造方法
US20230278519A1 (en) Textile for Hollow Weave Airbag
JP2006037287A (ja) 高密度袋織基布の製織方法
JP2007262648A (ja) エアバック用高密度織物
JP2017020122A (ja) エアバッグ用織物およびエアバッグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046138.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015523334

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167002954

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838027

Country of ref document: EP

Kind code of ref document: A1