WO2015025698A1 - 低温液化ガス気化装置 - Google Patents

低温液化ガス気化装置 Download PDF

Info

Publication number
WO2015025698A1
WO2015025698A1 PCT/JP2014/070385 JP2014070385W WO2015025698A1 WO 2015025698 A1 WO2015025698 A1 WO 2015025698A1 JP 2014070385 W JP2014070385 W JP 2014070385W WO 2015025698 A1 WO2015025698 A1 WO 2015025698A1
Authority
WO
WIPO (PCT)
Prior art keywords
fins
intermediate medium
low
heat transfer
temperature liquefied
Prior art date
Application number
PCT/JP2014/070385
Other languages
English (en)
French (fr)
Inventor
孝祐 東
和久 福谷
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to MYPI2016700438A priority Critical patent/MY183514A/en
Publication of WO2015025698A1 publication Critical patent/WO2015025698A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G3/00Rotary appliances
    • F28G3/10Rotary appliances having scrapers, hammers, or cutters, e.g. rigidly mounted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0311Air heating
    • F17C2227/0313Air heating by forced circulation, e.g. using a fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0397Localisation of heat exchange characterised by fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground
    • F17C2270/0136Terminals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0047Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/04Feeding and driving arrangements, e.g. power operation

Definitions

  • the present invention relates to a low-temperature liquefied gas vaporizer.
  • Patent Document 2 describes that seawater may not be used as a heat source fluid of a low-temperature liquefied gas vaporizer, and for example, a heat medium such as warm water or glycol water may be used. .
  • a heat medium such as warm water or glycol water
  • a gas such as air
  • the heat transfer efficiency is reduced due to icing / frosting, so that an improvement in performance as a gas vaporizer is desired.
  • An object of the present invention is to improve the performance as a low-temperature liquefied gas vaporizer by improving the heat transfer efficiency in the intermediate medium evaporator when a gas is used as the heat source fluid.
  • a low-temperature liquefied gas vaporizer includes an intermediate medium evaporator that vaporizes an intermediate medium by heat exchange with a gas, and a low-temperature liquefied gas that vaporizes a low-temperature liquefied gas using the intermediate medium vaporized by the intermediate medium evaporator.
  • the intermediate medium evaporator has a heat transfer tube through which the intermediate medium flows.
  • the heat transfer tube has a heat exchanging portion that inclines so as to gradually reach an upper position from the inlet of the intermediate medium toward the outlet, and performs heat exchange with the gas.
  • FIG. 1 is a diagram schematically showing an overall configuration of a low-temperature liquefied gas vaporizer according to a first embodiment of the present invention.
  • (B) It is a figure for demonstrating the structure of the heat exchanger tube arrange
  • (A) It is a figure for demonstrating the storage amount of an intermediate medium in case a heat exchanger tube is horizontal
  • a low temperature liquefied gas vaporizer (hereinafter referred to as a gas vaporizer) according to the first embodiment vaporizes liquefied natural gas (LNG), which is a low temperature liquefied gas, to produce natural gas (NG). It is a device for obtaining.
  • this invention is not restricted to the apparatus which vaporizes LNG, For example, it can also be applied as an apparatus which vaporizes low temperature liquefied gas, such as ethylene, liquefied oxygen, liquefied nitrogen.
  • the gas vaporizer of this embodiment is an intermediate medium type gas vaporizer, and propane is used as the intermediate medium 4.
  • the intermediate medium 4 is not limited to propane.
  • the intermediate medium 4 evaporates at room temperature such as propylene and alternative chlorofluorocarbon and does not solidify at a normal temperature (low temperature) (medium having a boiling point lower than the atmospheric temperature), a medium other than propane is used. It is also possible to do.
  • the gas vaporizer has a gas system through which liquefied natural gas flows and an intermediate medium system through which the intermediate medium 4 flows.
  • a circulation circuit 20 in which the intermediate medium 4 is enclosed is formed.
  • the gas vaporizer includes an evaporator E1, a vaporizer E2, and a heater E3.
  • the evaporator E ⁇ b> 1 is an intermediate medium evaporator that exchanges heat between the liquid intermediate medium 4 and the atmosphere (an example of gas) 12 to evaporate at least a part of the intermediate medium 4.
  • the vaporizer E2 is a low-temperature liquefied gas evaporator that exchanges heat between the liquefied natural gas in the gas system and the liquid intermediate medium 4 in the circulation circuit 20 to vaporize the liquefied natural gas.
  • the warmer E3 heats the natural gas vaporized by the vaporizer E2 in the atmosphere 12.
  • the gas system is provided with a pipe 1 through which liquefied natural gas flows, and the pipe 1 is provided with a flow rate adjusting valve 2.
  • the flow rate adjusting valve 2 is controlled by the valve control unit 2a, and adjusts the valve opening degree according to a signal from the valve control unit 2a.
  • the liquefied natural gas whose flow rate is adjusted by the flow rate adjusting valve 2 is introduced into the vaporizer E2.
  • the vaporizer E2 includes an inlet chamber 22 and an outlet chamber 24 that are partitioned from each other by a partition wall, and a plurality of heat transfer tubes 26 that communicate with the chambers 22 and 24.
  • Each heat transfer tube 26 is substantially U-shaped and protrudes into a heat exchange chamber 28 disposed on the side of the inlet chamber 22 and the outlet chamber 24.
  • a heat transfer promoting body (not shown) for promoting heat transfer may be provided in the heat transfer tube 26, a heat transfer promoting body (not shown) for promoting heat transfer may be provided.
  • This heat transfer promoting body is, for example, a tape (twist tape) formed in a spiral shape, a structure in which a plurality of curved plate-like bodies are arranged, a wire insert, a structure in which a linear body is knitted, or the like.
  • the heat transfer promoting body promotes the turbulent flow of the intermediate medium 4 in the heat transfer tube 26.
  • the intermediate medium 4 is received from above, and the liquefied natural gas in the heat transfer tube 26 is evaporated using the condensation latent heat of propane gas as the intermediate medium 4 as a heat source.
  • the natural gas evaporated in the heat transfer tube 26 is discharged through the outlet chamber 24 and introduced into the heater E3 through the pipe 3.
  • the heat exchange chamber 28 is provided with a reservoir 30 for storing the liquid intermediate medium 4 condensed in the heat exchange chamber 28.
  • the reservoir 30 is located below the heat transfer tube 26.
  • the storage unit 30 is provided with a liquid level sensor 46.
  • the intermediate medium 4 in the circulation circuit 20 circulates by driving the pump 5.
  • a pump (liquid pipe) 6 that connects the storage unit 30 and the evaporator E 1 in the vaporizer E 2 is provided with a pump 5 and a liquid level control valve 7. ing.
  • the pump 5 sucks the propane solution (intermediate medium 4) stored in the storage unit 30, and the propane solution sent out from the pump 5 is supplied to the evaporator E1. That is, in the pipe 6 in which the pump 5 is disposed, the liquid intermediate medium 4 stored in the storage unit 30 flows toward the evaporator E1.
  • the evaporator E1 includes a heat transfer tube chamber 34 in which the heat transfer tube 10 through which the intermediate medium 4 flows, and a blower chamber 35 in which the blower 11 for circulating the atmosphere (air) 12 around the heat transfer tube 10 is disposed. It is equipped with.
  • the heat transfer tube chamber 34 is installed in a state supported by the legs 36. The internal space of the heat transfer tube chamber 34 communicates with the internal space of the blower chamber 35.
  • the blower 11 is installed in the central portion of the blower chamber 35 in a posture in which the rotation axis is vertical. Therefore, in the blower chamber 35 and the heat transfer tube chamber 34, when the blower 11 is driven, air flows in the vertical direction (in the present embodiment, air flows from top to bottom).
  • the blower 11 has a motor 13 whose rotation speed can be adjusted by an inverter 38.
  • the inverter 38 receives a control signal from the pressure detector 9 that detects the pressure in the heat exchange chamber 28 of the vaporizer E2.
  • the inverter 38 and the pressure detector 9 control the rotation speed of the blower 11 so that the temperature of the intermediate medium 4 in the evaporator E1 is within a predetermined temperature range. That is, the air volume of the atmosphere 12 flowing through the heat transfer tube chamber 34 is adjusted by controlling the rotational speed of the blower 11 by the inverter 38 according to the detection result of the pressure detector 9.
  • the blower 11 is controlled so that the temperature (and consequently the pressure) of the intermediate medium (propane gas) 4 in the heat exchange chamber 28 of the vaporizer E2 falls within a predetermined range.
  • the blower 11 (pushing fan) is installed in the blower chamber 35 disposed on the upper side of the heat transfer tube chamber 34, and the atmosphere 12 flows from top to bottom.
  • the configuration is not limited to this.
  • the blower 11 (push-in fan) may be installed below the heat transfer tube chamber 34, or the blower 11 (suction fan) is arranged above the heat transfer tube chamber 34 and the atmosphere 12 moves from bottom to top. It may be configured to flow. That is, the blower 11 may be a push fan arranged on the upstream side of the heat transfer tube chamber 34 or a suction fan arranged on the downstream side of the heat transfer tube chamber 34.
  • the intermediate medium 4 flowing in the heat transfer tube 10 is evaporated by exchanging heat with the air 12 supplied from the outside by the blower 11. That is, in the evaporator E1, the intermediate medium 4 receives heat from the atmosphere 12 for the latent heat of evaporation of the intermediate medium 4 condensed by exchanging heat with liquefied natural gas. In other words, the atmosphere 12 is used as a heat source in the evaporator E1. Then, the liquid intermediate medium 4 introduced from the lower part of the heat transfer tube chamber 34 evaporates in the heat transfer tube 10 and is led out from the upper part of the heat transfer tube chamber 34 to the gas pipe 8. The gaseous intermediate medium 4 is returned to the upper part of the vaporizer E ⁇ b> 2 via the gas pipe 8.
  • the warmer E3 heats the natural gas vaporized by the vaporizer E2. That is, heating of natural gas by the atmosphere is extremely easy in an area where the atmospheric temperature is high. For this reason, in the case of a low-temperature gas vaporizer installed in such an area, a configuration in which a load at the vaporizer E2 is reduced and gas at a predetermined temperature is obtained by heating by the warmer E3 (heater E3 Is more economical. Therefore, in the present embodiment, a heater E3 is provided.
  • the warmer E3 is a heat exchanger using the atmosphere 12 as a heat source, and has the same configuration as the evaporator E1. That is, the warmer E3 includes a heat transfer tube chamber 48 in which the heat transfer tube 15 is provided, and a blower chamber 49 in which the blower 16 is provided. The blower 16 is driven by a motor 17.
  • the outlet pipe 14 is connected to one end portion of the heat transfer tube 15 in the heat transfer tube chamber 48, and one end portion of the gas pipe 3 is connected to the other end portion of the heat transfer tube 15.
  • the other end of the gas pipe 3 is connected to the outlet chamber 24 of the vaporizer E2. Therefore, the low-temperature gas vaporized by the vaporizer E2 is introduced into the heater E3 through the gas pipe 3, and is heated to a predetermined temperature or higher by exchanging heat with the atmosphere 12 by the heater E3.
  • FIGS. 2A and 2B show the configuration of the heat transfer tube 10 provided in the heat transfer tube chamber 34 of the evaporator E1.
  • the heat transfer tube 10 has a plurality of paths 52, and each path 52 is connected to an inflow header 54 and an outflow header 56.
  • the inflow header 54 is connected to the pipe 6, and the outflow header 56 is connected to the gas pipe 8.
  • the outflow header 56 is disposed above the inflow header 54.
  • Each path 52 includes a first heat exchanging portion 52a having an inflow end connected to the inflow header 54, a second heat exchanging portion 52b having an outflow end connected to the outflow header 56, a first heat exchanging portion 52a, And a connecting part 52c for connecting the second heat exchange part 52b. That is, the heat transfer tube 10 has a heat exchange part that performs heat exchange with the atmosphere 12, and the intermediate medium 4 flows from one side in the heat transfer tube chamber 34 to the other side in this heat exchange part. A first heat exchange part 52a and a second heat exchange part 52b through which the intermediate medium 4 flows from one side to the other side in the heat transfer tube chamber 34 are included. Accordingly, each path 52 is formed in a shape folded at the intermediate portion.
  • the first heat exchanging part 52a and the second heat exchanging part 52b are inclined so as to gradually move upward from the inlet side of the intermediate medium 4 toward the outlet side.
  • both the first heat exchange part 52a and the second heat exchange part 52b are formed in a straight tube shape.
  • the connecting portion 52c extends in the horizontal direction.
  • the intermediate medium 4 gradually vaporizes while flowing obliquely upward.
  • pass 52 of the heat exchanger tube 10 is not restricted to the structure by which the two heat exchange parts 52a and 52b are connected by the connection part 52c.
  • each path 52 may be configured by one heat exchanging unit without having the connecting part 52c.
  • a large number of fins 58 are provided in the heat exchange portions 52 a and 52 b of the heat transfer tube 10.
  • the fins 58 are formed in a flat plate shape extending in a direction orthogonal to the heat exchange parts 52a and 52b. As described above, since the heat exchange parts 52a and 52b are inclined, the fins 58 are also inclined according to the inclination angle of the heat exchange parts 52a and 52b.
  • the heat transfer tube 10 is supported by a pair of tube plates 62 and 63. Specifically, the end portions on the header side of the heat exchange portions 52a and 52b are supported by one tube plate 62, and the end portions on the connection portion 52c side of the heat exchange portions 52a and 52b are supported by the other tube plate 63. ing. The atmosphere 12 flows between these tube plates 62 and 63.
  • the intermediate medium 4 that has flowed into the inflow header 54 from the pipe 6 flows separately to each path 52.
  • the intermediate medium 4 flowing into each path 52 exchanges heat with the atmosphere 12 in the first heat exchange section 52a, and a part thereof is vaporized.
  • the intermediate medium 4 that has flowed into the second heat exchanging part 52b from the first heat exchanging part 52a via the connecting part 52c exchanges heat with the atmosphere 12. Since part of the intermediate medium 4 is also vaporized in the second heat exchange part 52b, the intermediate medium 4 flowing into the outflow header 56 is in a gas-liquid two-phase state.
  • the intermediate medium 4 that has flowed into and joined the outflow header 56 flows out to the gas pipe 8.
  • a heat transfer promoting body for promoting heat transfer may be provided.
  • This heat transfer promoting body is, for example, a tape (twist tape) formed in a spiral shape, a structure in which a plurality of curved plate-like bodies are arranged, a wire insert, a structure in which a linear body is knitted, or the like.
  • the heat transfer promoting body promotes the turbulent flow of the intermediate medium 4 in the heat transfer tube 10.
  • the liquid level 4a is also affected by the inclination of the heat transfer tube 10 (second heat exchanging portion 52b), as in the case of the heat transfer tube 10 of the present embodiment, the liquid surface 4a is inclined so as to be positioned higher on the outlet side. In comparison with the horizontal case, the amount of the liquid intermediate medium 4 filling the pipe increases. Therefore, compared with the horizontal case, the boiling region in the heat exchange part 52b is increased.
  • the heat exchanging portion 52b of the heat transfer tube 10 of the evaporator E1 is inclined so as to gradually move upward from the inlet of the intermediate medium 4 to the outlet.
  • the boiling region of the intermediate medium 4 in the heat exchange part 52b can be increased. That is, the intermediate medium 4 flows into the heat transfer tube 10 in a liquid state, and is vaporized in the heat exchange portions 52a and 52b of the heat transfer tube 10. At this time, the ratio of the gas phase gradually increases along the flow in the heat exchange parts 52a and 52b. Then, the intermediate medium 4 flows out from the outlet of the heat transfer tube 10 as a gas-liquid two-phase flow.
  • the present invention is not limited to the first embodiment, and various changes and improvements can be made without departing from the spirit of the present invention.
  • the atmosphere 12 flows in the vertical direction, while the fins 58 provided in the heat exchange portions 52a and 52b of the heat transfer tube 10 are inclined with respect to the vertical direction. It has become the direction.
  • the fin 58 is not along the direction through which the atmosphere 12 flows.
  • the fins 58 may be set in a direction along the flow direction of the atmosphere 12. That is, in the form of FIG.
  • the flowing direction of the atmosphere 12 is not an up-down direction but an oblique direction, which is a direction that matches the direction of the fins 58.
  • the blower 16 may be installed in an inclined posture such that the rotation axis is not in the vertical direction but in a direction slightly inclined from the vertical direction.
  • the fan 16 is disposed not at the center of the fan chamber 35 but at a position deviated from the center in the longitudinal direction of the heat exchangers 52a and 52b (biased to the left in FIG. 4). May be.
  • the air 12 may be arranged to flow in the vertical direction, while the fins 58 may be arranged so as to extend in the vertical direction.
  • the fins 58 are not perpendicular to the heat exchanging parts 52a and 52b but are slightly inclined.
  • water droplets condensed from the atmosphere 12 flow on the surface of the fins 58 in the direction of gravity, so that the droplets on the fins 58 are more likely to flow.
  • the interval between adjacent fins 58 may be different between the inlet side and the outlet side.
  • the arrangement of the fins 58 may be set so that the interval between the fins 58 provided on the inlet side is wider than the interval between the fins 58 provided on the outlet side.
  • the spacing between the fins 58 gradually decreases from the inlet toward the outlet.
  • the interval between the fins 58 on the inlet side of the intermediate medium 4 is set to be wider than the interval between the fins 58 on the outlet side, the adhesion of droplets to the fins 58 can be reduced. it can.
  • the gaps between some of the fins 58 may be the same.
  • the interval between the fins 58 may be the same from the entrance side to the intermediate portion, and the interval between the fins 58 from the intermediate portion to the exit side may be narrower than that.
  • interval of the fins 58 may become narrow gradually from an entrance to an intermediate part, and the space
  • a circulation channel 66 for circulating air (an example of gas) used in the evaporator E1 may be provided. That is, in the embodiment, the air introduced into the heat transfer tube chamber 34 is exhausted from the blower chamber 35 in the evaporator E1. On the other hand, in the form shown in FIG. 7, a circulation channel 66 is provided through which air circulates between the evaporator E ⁇ b> 1 and the heater 68. In the evaporator E1, since the air is cooled by the intermediate medium 4, a heater 68 for heating the cooled air and returning it to the original temperature is provided.
  • air an example of gas
  • the heater 68 has a first flow path 68a through which the air in the circulation flow path 66 flows and a second flow path 68b through which the atmosphere flows, and the air in the first flow path 68a and the air in the second flow path 68b.
  • Heat exchange In this form, the air for vaporizing the intermediate medium 4 in the evaporator E1 circulates in the circulation channel 66 that is a closed circuit. For this reason, the moisture contained in the air is condensed and is in a small state. Therefore, it is possible to suppress the dew on the evaporator E1. Thereby, the fall of the heat-transfer performance by droplet adhesion and retention can be suppressed. Further, since the heater 68 is connected to the circulation channel 66, the temperature of the air cooled in the evaporator E1 can be returned to the atmospheric temperature.
  • the present invention is not limited to the configuration in which the air is gradually dried by circulating the air, and as shown in FIG. 8, a drying means 70 for drying the air toward the evaporator E1 may be provided.
  • the drying means 70 is a device in which a desiccant such as silica gel is enclosed, and dries the air flowing into the device. Even in this form, it is possible to suppress dew condensation on the evaporator E1, thereby suppressing a decrease in heat transfer performance due to droplet adhesion and retention.
  • the drying means 70 may be provided in the circulation channel 66 shown in FIG.
  • FIG. 9 shows a schematic configuration of the evaporator E1 provided in the gas vaporizer according to the second embodiment of the present invention.
  • the evaporator E1 includes a blower chamber 35 and a heat transfer tube chamber 34.
  • the blower 11 (not shown) is disposed in the blower chamber 35, and a large number of heat transfer tubes 10 are disposed in the heat transfer tube chamber 34. Has been. In FIG. 9, only one heat transfer tube 10 is drawn for convenience.
  • the blower 11 is installed in the central portion of the blower chamber 35 in a posture in which the rotation axis is vertical.
  • air flows from top to bottom.
  • An air intake 35 a is provided on the upper surface of the blower chamber 35.
  • the support frame 40 that supports the heat transfer tube chamber 34 includes a plurality of legs 36 provided at the corners of the heat transfer tube chamber 34, an upper beam member 41, a lower beam member 42, an upper beam member 41, and a lower frame. And a support member 43 that connects the side beam member 42.
  • the upper beam member 41 and the lower beam member 42 are arranged between the adjacent leg portions 36 so as to extend in the horizontal direction, and are arranged between the beam members and extend in the horizontal direction. There is something to be arranged.
  • a support member 43 extending vertically is provided so as to connect the upper beam member 41 and the lower beam member 42. An upper end portion of the support member 43 is connected to an intermediate portion of the upper beam member 41, and a lower end portion of the support member 43 is connected to an intermediate portion of the lower beam member 42 positioned directly below the upper beam member 41.
  • FIG. 10 is a partially enlarged view of FIG.
  • a large number of heat transfer tubes 10 (first heat exchange part 52a or second heat exchange part 52b) are arranged in the horizontal direction (left and right direction in FIG. 9) so that the fins 58 are close to each other (see FIG. 13).
  • FIG. 10 shows the first heat exchange part 52a of the heat transfer tube 10, for example.
  • a large number of fins 58 are arranged in the extending direction of the heat transfer tube 10 (the first heat exchange part 52 a or the second heat exchange part 52 b) at intervals.
  • the evaporator E1 is provided with a removing device 72 for removing condensed water accumulated in the gaps between the fins 58.
  • the removing device 72 includes a rotating shaft 73 that is rotatably arranged, a plurality of removing members 74 that are supported by the rotating shaft 73, and a drive unit 75 that rotates the rotating shaft 73.
  • the rotating shaft 73 is disposed below the heat transfer tube 10 as shown in FIG.
  • the rotating shaft 73 is parallel to the heat transfer tube 10 (the first heat exchange unit 52a or the second heat exchange unit 52b) and is disposed directly below the heat transfer tube 10.
  • One end of the rotating shaft 73 is rotatably supported by the upper beam member 41, and the other end of the rotating shaft 73 is rotatable by the upper beam member 41 arranged in parallel with the upper beam member 41. It is pivotally supported.
  • Each removal member 74 is configured by a rod-shaped member extending from the rotary shaft 73 toward the outside in the radial direction.
  • the removal members 74 are arranged at intervals in the axial direction of the rotary shaft 73. Therefore, only one removal member 74 is located in one plane perpendicular to the axial direction of the rotation shaft 73. As shown in FIG. 11, the pitch P1 between adjacent removal members 74 is set to the same pitch as the fin pitch P2. Therefore, as many removal members 74 as the number of gaps between adjacent fins 58 are provided. Then, when the rotating shaft 73 rotates, one removing member 74 passes through the gap between the adjacent fins 58.
  • the plurality of removal members 74 are arranged with different phases so that the static balance of the rotating shaft 73 is ensured.
  • the arrangement of the removing members 74 is, for example, 90 degrees apart so as to be equally spaced in the direction around the rotation shaft 73.
  • the total number of removal members 74 for each phase is set to be substantially the same. Accordingly, a plurality of removal members 74 are arranged so that only one removal member 74 is positioned in one plane perpendicular to the rotation shaft 73, and a static balance around the rotation shaft 73 is ensured. .
  • the removing member 74 is arranged in the order of 0 degree position, 90 degree position, 180 degree position, and 270 degree position when viewed in the axial direction from one end to the other end in the axial direction.
  • a plurality (five in the illustrated example) of removing members 74 are continuously arranged in the same phase, but the present invention is not limited to this.
  • the plurality of removing members 74 are continuously arranged in the same phase, it is possible to prevent the creation from becoming complicated.
  • the drive unit 75 for rotating the rotation shaft 73 includes a drive shaft 76, a transmission member 77 that rotates the rotation shaft 73 by the rotation of the drive shaft 76, and the atmosphere that passes between the fins 58 ( Air) 12 and a receiving member 79 for converting the force received from the atmosphere 12 guided by the guide 78 into a force for rotating the drive shaft 76.
  • the drive shaft 76 is installed between the adjacent lower beam members 42 and is disposed directly below the rotation shaft 73 and is disposed in parallel with the rotation shaft 73.
  • One end of the drive shaft 76 is rotatably supported by the lower beam member 42, and the other end of the drive shaft 76 is connected to the lower beam member 42 arranged in parallel with the lower beam member 42. It is pivotally supported.
  • the transmission member 77 is constituted by a belt member 77 c wound around a pulley 77 a fixed to the drive shaft 76 and a pulley 77 b fixed to the rotating shaft 73. Therefore, the rotation shaft 73 can be rotated by rotating the drive shaft 76.
  • the receiving member 79 has a plurality of blades 79a fixed to the drive shaft 76 and extending in the axial direction of the drive shaft 76, and constitutes a windmill.
  • the vane plate 79a is configured by a flat plate projecting in the radial direction from the drive shaft 76, but may be configured by a curved plate.
  • the guide 78 is formed in a flat plate shape extending in parallel with the drive shaft 76.
  • the guide 78 can be fixed to the support member 43, for example.
  • the guide 78 is arranged so as to guide the air 12 that has passed between the fins 58 toward the blade plate 79 a located on one side with respect to the drive shaft 76. That is, the guide 78 is formed in an elongated plate shape extending in a direction parallel to the rotation shaft 73, and is shifted to the side from the vertical plane including the rotation shaft 73 and the drive shaft 76 as shown in FIG. Has been placed. And the guide 78 is arrange
  • the atmosphere 12 is guided to the blade plate 79 a located on one side with respect to the drive shaft 76. That is, for example, as shown in FIG. 13, the atmosphere 12 that has passed between the fins 58 passes through both sides of the rotating shaft 73. Since the guide 78 is disposed below the rotation shaft 73, the atmosphere 12 flowing downward on one side (left side in FIG. 13) with respect to the drive shaft 76 hits the guide 78. The atmosphere 12 is guided to the other side (right side in FIG. 13) with respect to the drive shaft 76 by the guide 78. As a result, the atmosphere 12 presses the right blade plate 79a without pressing the left blade plate 79a in FIG. Accordingly, the drive shaft 76 rotates in the clockwise direction in FIG.
  • the plurality of removal members 74 are arranged so that only one removal member 74 is positioned in one plane perpendicular to the rotation shaft 73, the wind speed passing between the fins 58 is reduced. The fluctuation can be increased. Therefore, the condensed water between the fins 58 can be further easily removed. That is, only one removing member 74 is located in one plane perpendicular to the rotation shaft 73, and the static balance of the rotation shaft 73 is ensured. For this reason, not all the removing members 74 are arranged in the same phase, but some of the removing members 74 have a phase different from that of the other removing members 74.
  • the condensed water between some of the fins 58 is removed, while the condensed water between other fins 58 remains accumulated between the fins 58.
  • the air 12 is concentrated between the fins 58 from which the condensed water has been removed, and the gas flow rate here increases.
  • the gas flow rate is small between the fins 58 where the condensed water is accumulated. Therefore, with the passage of time, the fluctuation of the flow velocity of the atmosphere 12 flowing into the gap between the certain fins 58 increases, so that the condensed water between the fins 58 can be easily removed.
  • a receiving member 79 is provided for converting the force received from the atmosphere 12 guided by the guide 78 into a force for rotating the drive shaft 76. Therefore, the atmosphere 12 that has passed between the fins 58 is guided by the guide 78 and hits the receiving member 79.
  • the receiving member 79 converts the force received from the atmosphere 12 into a force that rotates the drive shaft 76. Therefore, the rotating shaft 73 can be rotated using the atmosphere 12 that has passed between the fins 58.
  • the drive shaft 76 and the rotary shaft 73 are rotated using the atmosphere 12 that has passed between the fins 58, but the present invention is not limited to this.
  • the drive shaft 76 and the rotation shaft 73 may be rotated using condensed water dropped from between the fins 58.
  • the drive unit 75 converts the force received from the condensed water dropped from between the fins 58 into a force for rotating the drive shaft 76 and the condensed water dropped from between the fins 58 toward the receiving member 79.
  • a guide 78 is provided.
  • the receiving member 79 has a plurality of water receiving portions 79b fixed to the drive shaft 76 so as to project in the radial direction with respect to the drive shaft 76, and constitutes a water wheel.
  • the plurality of water receiving portions 79b are arranged around the drive shaft 76 at equal intervals around the axis.
  • the number (for example, four) of the water receiving portions 79b around the drive shaft 76 matches the number (for example, four) of the removal members 74 around the rotating shaft 73.
  • a configuration in which four water receiving portions 79b are provided around the drive shaft 76 is shown, but the configuration is not limited thereto.
  • Each water receiving portion 79b is formed in a dish shape so that the opening faces the same direction around the axis of the drive shaft 76 (counterclockwise direction in FIG. 15).
  • the receiving member 79 converts the condensed water accumulated in the water receiving portion 79b into a force for rotating the drive shaft 76 by a reaction when the condensed water flows out from the water receiving portion 79b.
  • the guide 78 is formed in an elongated plate shape extending in a direction parallel to the rotation shaft 73, and is arranged at a position shifted laterally from the rotation shaft 73 as shown in FIG. And the guide 78 is arrange
  • the water receiving portion 79b is arranged in such a posture that the opening faces upward on the side where the guide 78 does not exist with respect to the vertical surface and the opening faces downward on the side where the guide 78 exists with respect to the vertical surface. Yes.
  • the water receiving portion 79b has an axial length corresponding to the arrangement positions of a plurality of (five in the illustrated example) removal members 74 that are continuously arranged in the same phase.
  • the phase of the water receiving portions 79 b adjacent in the axial direction is shifted in the same manner as the removing member 74.
  • the water receiving portion 79b may be formed in a size that is continuous over the entire length of the drive shaft 76. In this case, for example, four water receiving portions 79b are provided in total.
  • the condensed water that has fallen from the fin 58 passes through both sides of the rotating shaft 73, but the condensed water that falls on one side (right side in FIG. 15) with respect to the drive shaft 76 does not hit the guide 78.
  • the part 79b is reached. Since the opening of the water receiving portion 79b faces upward, the condensed water is temporarily stored in the water receiving portion 79b.
  • the condensed water falling on the other side (left side in FIG. 15) with respect to the drive shaft 76 hits the guide 78 and flows down on the guide 78.
  • This condensed water flows down from the guide 78 and is stored in the water receiving portion 79b whose opening faces upward.
  • the drive shaft 76 rotates due to its own weight. Thereby, the rotating shaft 73 rotates and the condensed water between the fins can be scraped out by the removing member 74.
  • the rotation shaft 73 can be rotated by the rotation of the drive shaft 76, the rotation shaft 73 can be rotated even when a configuration in which a driving force is directly applied to the rotation shaft 73 cannot be employed.
  • the drive shaft 76 can be rotated more efficiently.
  • a motor 81 may be used as a drive source for rotating the rotary shaft 73.
  • the rotating shaft 73 is directly or indirectly connected to the output shaft of the motor 81.
  • the motor 81 may be provided on each rotation shaft 73, or a transmission member (such as a belt) may be provided so that the plurality of rotation shafts 73 are rotated by one motor 81.
  • the rotating shaft 73 that rotates the removal member 74 may be provided for each heat transfer tube 10 (the first heat exchange unit 52a or the second heat exchange unit 52b). Or as shown in FIG. 18, the structure by which one rotating shaft 73 is arrange
  • the heat transfer tube 10 and the fins 58 may be coated or sprayed with a water repellent. Thereby, it is possible to further suppress the accumulation of condensed water between the fins 58.
  • the heat exchange part of the heat transfer tube of the intermediate medium evaporator is inclined so as to gradually move upward from the inlet of the intermediate medium toward the outlet. For this reason, compared with the case where the heat exchange part of a heat exchanger tube is arrange
  • the fins are set in a direction along the gas flow direction.
  • the heat exchange portion of the heat transfer tube is inclined, while the fins of the heat transfer tube are formed in a direction along the gas flow direction. For this reason, the flow of gas is not obstructed by the fins, and it is possible to prevent deterioration of the evaporation performance of the intermediate medium in the heat exchange section.
  • the heat exchanging portion is not vertical, the fins are not horizontal, and therefore, droplets condensed with gas do not accumulate on the fins. Accordingly, it is possible to prevent the heat transfer performance at the fins from being deteriorated.
  • the fins may be set in the vertical direction.
  • the liquid condensed from the gas flows in the direction of gravity on the fin surface. Therefore, the droplet on the fin is more likely to flow.
  • a large number of the fins may be provided along the heat exchange section, and in this case, the interval between the fins provided on the inlet side of the intermediate medium is provided on the outlet side of the intermediate medium. It may be wider than the interval between the fins.
  • the interval between the fins on the inlet side of the intermediate medium is set to be wider than the interval between the fins on the outlet side. For this reason, adhesion of the droplet to the fin can be reduced. That is, on the inlet side of the intermediate medium in the heat transfer tube, compared to the outlet side, droplets condensed with gas are likely to adhere to the fins and stay (the temperature difference between the gas and the intermediate medium is large and the gas is likely to condense). For this reason, by making the space
  • the fin interval is narrow on the outlet side, the heat transfer area per unit length of the heat exchange part is larger than that on the inlet side. Therefore, the heat transfer performance on the outlet side can be improved.
  • the circulation passage is cooled in the intermediate medium evaporator and the intermediate medium evaporator.
  • a heater that heats air may be connected.
  • the air for vaporizing the intermediate medium in the intermediate medium evaporator circulates in the circulation channel that is a closed circuit. For this reason, there is little moisture contained in air. Therefore, it is possible to suppress dew on the intermediate medium evaporator. Thereby, the fall of the heat-transfer performance by droplet adhesion and retention can be suppressed. Moreover, since the heater is connected to the circulation channel, the temperature of the air cooled in the intermediate medium evaporator can be returned to the atmospheric temperature.
  • a drying unit may be provided for drying the air toward the intermediate medium evaporator.
  • the low-temperature liquefied gas vaporizer may include a removing device that removes condensed water accumulated in a gap between the fins provided in the heat transfer tube.
  • the said removal apparatus may be equipped with the rotating shaft rotatably arrange
  • the plurality of removal members may be arranged on the rotation shaft at a pitch at which one removal member passes through a gap between the fins as the rotation shaft rotates.
  • each removal member passes through the gap between the fins of the heat transfer tube as the rotating shaft rotates.
  • the condensed water accumulated between the fins can be discharged to the outside between the fins, and as a result, it is possible to prevent the condensed water from being always accumulated between the fins.
  • one removing member is provided between each fin, an increase in the weight of the removing device can be suppressed.
  • Static balance of the rotating shaft may be ensured while the plurality of removing members are arranged so that only one removing member is positioned in one plane perpendicular to the rotating shaft.
  • the condensed water between the fins can be further easily removed. That is, only one removal member is located in one plane perpendicular to the rotation axis, and the static balance of the rotation axis is ensured. For this reason, not all the removal members are arranged in the same phase, but some of the removal members are in a different phase from the other removal members. For this reason, at a certain point in time, the condensed water between some fins is removed, while the condensed water between other fins remains accumulated between the fins. At this time, the gas flows in in a concentrated manner between the fins from which the condensed water has been removed, and the gas flow rate here increases.
  • the gas flow rate is small between the fins where the condensed water is accumulated. Therefore, with the passage of time, the fluctuation in the flow velocity of the gas flowing into the gap between the certain fins increases, so that it is possible to easily remove the condensed water between the fins.
  • the removing device may include a drive unit that rotates the rotating shaft.
  • the drive unit may include a drive shaft and a transmission member that rotates the rotation shaft by rotation of the drive shaft.
  • the rotation shaft rotates as the drive shaft rotates. Therefore, even when a configuration in which a driving force is directly applied to the rotating shaft cannot be employed, the rotating shaft can be rotated.
  • the drive unit includes a guide for guiding the gas that has passed between the fins, and a receiving member that converts a force received from the gas guided by the guide into a force for rotating the drive shaft. May be.
  • the gas that has passed between the fins is guided by the guide and strikes the receiving member.
  • the receiving member converts the force received from the gas into a force that rotates the drive shaft. Therefore, the rotating shaft can be rotated using the gas that has passed between the fins.
  • the drive unit may include a receiving member that converts a force received from the condensed water dropped from between the fins into a force that rotates the drive shaft.
  • the rotating shaft can be rotated using the condensed water dropped from between the fins.
  • the drive unit may include a guide for flowing condensed water that has fallen from between the fins toward the receiving member.
  • the drive shaft can be rotated more efficiently.
  • the heat transfer efficiency in the intermediate medium evaporator can be improved, thereby improving the performance as a low-temperature liquefied gas vaporizer. Can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

 低温液化ガス気化装置は、大気(12)との熱交換によって中間媒体(4)を気化させる蒸発器(E1)と、蒸発器(E1)で気化した中間媒体(4)によって低温の液化天然ガスを気化させる気化器(E2)と、備える。蒸発器(E1)は、中間媒体(4)が流れる伝熱管(10)を有している。伝熱管(10)は、中間媒体4の入口から出口に向かって次第に上の位置になるように傾斜し、大気(12)との熱交換を行う熱交換部(52a,52b)を有している。

Description

低温液化ガス気化装置
 本発明は、低温液化ガス気化装置に関するものである。
 従来、下記特許文献1及び2に開示されているように、LNG(液化天然ガス)等の低温液化ガスを連続的に気化する装置として、熱源流体に加えて中間媒体を用いた中間媒体式の低温液化ガス気化装置が知られている。この種の低温液化ガス気化装置では、中間媒体蒸発器とLNG蒸発器とNG(天然ガス)加温器とが設けられている。中間媒体蒸発器では、海水等の熱源流体によって中間媒体(例えばプロパン)を気化させる。LNG蒸発器では、中間媒体によってLNGを気化させる。NG加温器では、NGがさらに加温される。
 前記特許文献2には、低温液化ガス気化装置の熱源流体として海水を用いることができない場合があり、例えば、温水又はグリコール水等の熱媒が用いられることがある、ということが記載されている。一方、熱源流体として空気等のガスを用いることも考えられる。しかしながら、熱源流体としてガスが用いられる場合には、着氷・着霜により熱伝達効率が低下することから、ガス気化装置としての性能向上が要望される。
特開2000-227200号公報 特開2001-200995号公報
 本発明の目的は、熱源流体としてガスが用いられる場合において、中間媒体蒸発器での伝熱効率を向上することにより、低温液化ガス気化装置としての性能を向上することである。
 本発明の一局面に従う低温液化ガス気化装置は、ガスとの熱交換によって中間媒体を気化させる中間媒体蒸発器と、前記中間媒体蒸発器で気化した中間媒体によって低温の液化ガスを気化させる低温液化ガス蒸発器と、を備える。前記中間媒体蒸発器は、前記中間媒体が流れる伝熱管を有している。前記伝熱管は、前記中間媒体の入口から出口に向かって次第に上の位置になるように傾斜し、前記ガスとの熱交換を行う熱交換部を有している。
本発明の第1実施形態に係る低温液化ガス気化装置の全体構成を概略的に示す図である。 (A)(B)前記ガス気化装置に設けられた蒸発器の伝熱管室内に配置された伝熱管の構成を説明するための図である。 (A)伝熱管が水平の場合における中間媒体の貯留量を説明するための図であり、(B)第1実施形態の場合での伝熱管内における中間媒体の貯留量を説明するための図である。 その他の実施形態における伝熱管の構成を説明するための図である。 その他の実施形態における伝熱管の構成を説明するための図である。 その他の実施形態における伝熱管の構成を説明するための図である。 蒸発器に導入されるガスを乾燥させる実施形態を説明するための図である。 蒸発器に導入されるガスを乾燥させる実施形態を説明するための図である。 本発明の第2施形態に係る低温液化ガス気化装置に設けられた蒸発器の構成を概略的に示す図である。 図9の要部(除去装置)を拡大して示す図である。 除去部材のピッチとフィンピッチとの関係を説明するための図である。 回転軸に設けられた除去部材の構成を説明するための図である。 フィン間を通過した大気によって回転軸を回転させる機構を説明するための図である。 フィン間から落下した凝縮水を利用して駆動軸及び回転軸を回転させる除去装置を概略的に示す図である。 フィン間から落下した凝縮水によって回転軸を回転させる機構を説明するための図である。 モーターによって回転軸を回転させる除去装置を概略的に示す図である。 モーターによって回転軸を回転させる除去装置を概略的に示す図である。 隣り合う2つの伝熱管で1つの除去装置を共用する場合の構成を説明するための図である。
 以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。
 (第1実施形態)
 図1に示すように、第1実施形態に係る低温液化ガス気化装置(以下、ガス気化装置と称する)は、低温液化ガスである液化天然ガス(LNG)を気化させて天然ガス(NG)を得るための装置である。なお、本発明は、LNGを気化させる装置に限られるものではなく、例えば、エチレン、液化酸素、液化窒素等の低温液化ガスを気化させる装置として適用することもできる。
 本実施形態のガス気化装置は、中間媒体式のガス気化装置であり、中間媒体4としてプロパンが用いられている。なお、中間媒体4は、プロパンに限られるものではない。例えば、中間媒体4は、プロピレン、代替フロン等の常温で蒸発し、且つ常用の温度(低温)で固化しないもの(大気の温度よりも沸点の低い媒体)であれば、プロパン以外の媒体を使用することも可能である。
 ガス気化装置は、液化天然ガスが流れるガス系統と、中間媒体4が流れる中間媒体系統とを有する。中間媒体系統には、中間媒体4が封入された循環回路20が形成されている。
 ガス気化装置は、蒸発器E1と気化器E2と加温器E3とを備えている。蒸発器E1は、液状の中間媒体4と大気(ガスの一例)12とを熱交換させて中間媒体4の少なくとも一部を蒸発させる中間媒体蒸発器である。気化器E2は、ガス系統内の液化天然ガスと循環回路20内の液状の中間媒体4とを熱交換させて液化天然ガスを気化させる低温液化ガス蒸発器である。加温器E3は、気化器E2で気化した天然ガスを大気12で加熱する。
 ガス系統には、液化天然ガスが流れる配管1が設けられており、この配管1には流量調整弁2が設けられている。流量調整弁2は、弁制御部2aによって制御され、弁制御部2aからの信号に応じて弁開度を調整する。気化器E2には、流量調整弁2で流量が調整された液化天然ガスが導入される。
 気化器E2は、仕切り壁で互いに仕切られた入口室22及び出口室24と、両室22,24を連通する多数本の伝熱管26とを備えている。各伝熱管26は、略U字状をなし、入口室22及び出口室24の側方に配置された熱交換室28の内部に突き出ている。なお、伝熱管26内には、伝熱を促進させるための伝熱促進体(図示省略)が設けられていてもよい。この伝熱促進体は、例えば、螺旋状に形成されたテープ(ツイストテープ)、湾曲した複数の板状体を並べたもの、ワイヤインサート、線状体を編み込んだ構成のもの等である。伝熱促進体は、伝熱管26での中間媒体4の乱流を促進させる。
 気化器E2の熱交換室28では、中間媒体4を上部より受け入れ、中間媒体4であるプロパンガスの凝縮潜熱を熱源として伝熱管26内の液化天然ガスを蒸発させる。伝熱管26内で蒸発した天然ガスは、出口室24を通して排出され、配管3を通して加温器E3に導入される。
 熱交換室28には、熱交換室28内で凝縮した液状の中間媒体4を溜める貯留部30が設けられている。貯留部30は、伝熱管26よりも下方に位置している。貯留部30には液面センサー46が設けられている。
 中間媒体系統では、ポンプ5を駆動することにより、循環回路20内の中間媒体4が循環する。具体的に、循環回路20を構成する配管のうち、気化器E2における貯留部30と蒸発器E1とを接続する配管(液配管)6には、ポンプ5と液面調節弁7とが設けられている。ポンプ5は、貯留部30に貯留されたプロパン液(中間媒体4)を吸い込み、ポンプ5から送り出されたプロパン液は蒸発器E1に供給される。すなわち、このポンプ5が配設された配管6では、貯留部30に貯まった液状の中間媒体4が蒸発器E1に向かって流れる。
 蒸発器E1は、中間媒体4が流通する伝熱管10が配置された伝熱管室34と、伝熱管10の周囲に大気(空気)12を流通させるための送風機11が配置された送風機室35と、を備えている。伝熱管室34は脚部36に支持された状態で設置されている。伝熱管室34の内部空間と送風機室35の内部空間とは連通している。
 送風機11は、回転軸が垂直になる姿勢で送風機室35内の中央部に設置されている。したがって、送風機室35及び伝熱管室34では、送風機11が駆動されると、空気が上下方向に流れる(本実施形態では、空気は上から下に向かって流れる)。
 送風機11は、インバーター38によって回転数を調整可能なモーター13を有する。インバーター38は、気化器E2の熱交換室28内の圧力を検出する圧力検知器9からの制御信号を受信する。
 インバーター38及び圧力検知器9は、蒸発器E1での中間媒体4の温度が所定温度の範囲内に収まるように送風機11の回転数を制御する。すなわち、圧力検知器9の検知結果に応じてインバーター38によって送風機11の回転数が制御されることにより、伝熱管室34を流れる大気12の風量が調節される。送風機11は、気化器E2の熱交換室28での中間媒体(プロパンガス)4の温度(結果的には圧力)が所定範囲に収まるように制御される。
 図例では、伝熱管室34の上側に配置された送風機室35に送風機11(押込みファン)が設置されて、上から下に大気12が流れる構成としている。しかしながら、この構成に限られるものではない。例えば、送風機11(押込みファン)は伝熱管室34の下側に設置されてもよく、あるいは、送風機11(吸込みファン)が伝熱管室34の上側に配置されるとともに大気12が下から上に流れる構成としてもよい。すなわち、送風機11は、伝熱管室34の上流側に配置される押込みファンであってもよく、あるいは伝熱管室34の下流側に配置される吸込みファンであってもよい。
 伝熱管10内を流れる中間媒体4は、送風機11によって外部から供給された大気12と熱交換して蒸発する。すなわち、蒸発器E1において中間媒体4は、液化天然ガスと熱交換して凝縮した中間媒体4の蒸発潜熱分の熱量を大気12から受けている。言い換えると、大気12を蒸発器E1での熱源としている。そして、伝熱管室34の下部から導入された液状の中間媒体4は、伝熱管10内で蒸発して、伝熱管室34の上部からガス配管8に導出される。ガス状の中間媒体4は、ガス配管8を経由して、気化器E2の上部に戻される。
 加温器E3は、気化器E2で気化した天然ガスを加熱する。すなわち、大気温度の高い地域において大気による天然ガスの加温は極めて容易である。このため、このような地域に設置される低温ガス気化装置の場合には、気化器E2での負荷を減らして、加温器E3による加温によって所定温度のガスを得る構成(加温器E3に負荷させた構成)とした方がより経済的になる。そこで、本実施形態では、加温器E3が設けられている。
 加温器E3は、大気12を熱源とする熱交換器であり、蒸発器E1と同様の構成を有している。すなわち、加温器E3は、伝熱管15が設けられた伝熱管室48と、送風機16が設けられた送風機室49と、を備えている。送風機16は、モーター17によって駆動される。
 伝熱管室48の伝熱管15の一端部には、出口配管14が接続され、伝熱管15の他端部は、ガス配管3の一端部が接続されている。ガス配管3の他端部は、気化器E2の出口室24に接続されている。したがって、気化器E2で気化した低温ガスは、ガス配管3を通して加温器E3に導入され、この加温器E3で大気12と熱交換することによって所定温度以上に加熱される。
 図2(A)(B)は、蒸発器E1の伝熱管室34に設けられた伝熱管10の構成を示している。伝熱管10は複数のパス52を有しており、各パス52は流入ヘッダ54及び流出ヘッダ56に接続されている。流入ヘッダ54は配管6に接続されており、流出ヘッダ56はガス配管8に接続されている。流出ヘッダ56は流入ヘッダ54の上側に配置されている。
 各パス52は、流入端部が流入ヘッダ54に接続された第1熱交換部52aと、流出端部が流出ヘッダ56に接続された第2熱交換部52bと、第1熱交換部52a及び第2熱交換部52bを連結する連結部52cと、を有する。すなわち、伝熱管10は、大気12との熱交換を行う熱交換部を有しており、この熱交換部には、伝熱管室34内の一方側から他方側に向かって中間媒体4が流れる第1熱交換部52aと、伝熱管室34内の他方側から一方側に向かって中間媒体4が流れる第2熱交換部52bとが含まれている。したがって、各パス52は、中間部で折り返された形状に形成されている。
 第1熱交換部52a及び第2熱交換部52bは、それぞれ、中間媒体4の入口側から出口側に向かって次第に上の位置になるように傾斜している。図例は、第1熱交換部52a及び第2熱交換部52bは何れも直管状に形成されている。一方、連結部52cは、水平方向に延びている。そして、何れの熱交換部52a,52bにおいても、中間媒体4は斜め上方に向かって流れながら、次第に気化していく。なお、伝熱管10の各パス52の構成は、2つの熱交換部52a,52bが連結部52cで連結される構成に限られない。例えば、各パス52が、連結部52cを有することなく1つの熱交換部によって構成されていてもよい。
 伝熱管10の熱交換部52a,52bには、多数のフィン58が設けられている。フィン58は、熱交換部52a,52bに直交する方向に延びる平板状に形成されている。前述したように、熱交換部52a,52bが傾斜しているため、フィン58も熱交換部52a,52bの傾斜角度に応じて傾斜した向きとなっている。
 伝熱管10は一対の管板62,63に支持されている。具体的に、熱交換部52a,52bのヘッダ側の端部が一方の管板62に支持され、熱交換部52a,52bの連結部52c側の端部がもう一方の管板63に支持されている。大気12は、これら管板62,63の間を流通する。
 配管6から流入ヘッダ54内に流入した中間媒体4は、各パス52に分流して流れる。各パス52に流入した中間媒体4は、第1熱交換部52aで大気12と熱交換し、一部が気化する。第1熱交換部52aから連結部52cを経由して第2熱交換部52bに流入した中間媒体4は、大気12と熱交換する。第2熱交換部52bにおいても中間媒体4の一部が気化するため、流出ヘッダ56に流入する中間媒体4は気液二相の状態となっている。流出ヘッダ56に流入して合流した中間媒体4は、ガス配管8に流出する。
 なお、伝熱管10内には、伝熱を促進させるための伝熱促進体(図示省略)が設けられていてもよい。この伝熱促進体は、例えば、螺旋状に形成されたテープ(ツイストテープ)、湾曲した複数の板状体を並べたもの、ワイヤインサート、線状体を編み込んだ構成のもの等である。伝熱促進体は、伝熱管10での中間媒体4の乱流を促進させる。
 第2熱交換部52bでは、全ての中間媒体4が気化するわけではないため、出口側での中間媒体4は気液二相の状態となっている。第2熱交換部52bは、出口側ほど上の位置になる傾斜状態となっているため、図3(A)(B)に示すように、伝熱管(第2熱交換部52b)が水平の場合に比べて、管内には多くの液状の中間媒体4が溜まっている。すなわち、伝熱管10内では、熱交換部52bの出口において、中間媒体4が完全に気化しているのではなく、一部液状となっている。このため、管内に溜まった中間媒体4の液面4aが、熱交換部52bの出口から続くように形成されている。この液面4aは、伝熱管10(第2熱交換部52b)の傾きにも影響を受けるため、本実施形態の伝熱管10のように、出口側ほど上の位置になる傾斜している場合には、水平の場合に比べ、管内を満たす液状の中間媒体4の量は増加する。したがって、水平の場合に比べ、熱交換部52b内における沸騰領域が増大している。
 第1実施形態に係るガス気化装置では、蒸発器E1の伝熱管10の熱交換部52bが、中間媒体4の入口から出口に向かって次第に上の位置になるように傾斜しているため、伝熱管の熱交換部が水平に配置されている場合に比べて、熱交換部52b内における中間媒体4の沸騰領域を増大させることができる。すなわち、中間媒体4は液状で伝熱管10に流入し、伝熱管10の熱交換部52a,52b内において気化する。このとき、熱交換部52a,52b内での流れに沿って次第に気相の割合が増加する。そして、伝熱管10の出口からは中間媒体4が気液二相流となって流出する。このため、伝熱管10の熱交換部52bが、中間媒体4の入口から出口に向かって次第に上の位置になるように傾斜している場合には、熱交換部52b内において液状の中間媒体4がより溜まりやすくなる。その結果として、熱交換部52b内における沸騰領域を増大させることができる。したがって、蒸発器E1での伝熱効率が向上するため、ガス気化装置としての性能を向上させることができる。
 なお、本発明は、前記第1実施形態に限られるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。例えば、伝熱管室34では、送風機11が駆動されると、大気12が上下方向に流れる一方で、伝熱管10の熱交換部52a,52bに設けられたフィン58は、上下方向に対して傾いた向きとなっている。このため、前記実施形態では、フィン58が大気12の流れる向きに沿っていない。これに代え、図4に示すように、フィン58が、大気12の流れの向きに沿う向きに設定されていてもよい。すなわち、図4の形態では、大気12の流れる方向が上下方向ではなく、斜め方向となっており、フィン58の向きと一致する方向となっている。この構成の場合、送風機16は、例えば回転軸が鉛直方向ではなく鉛直方向から少し傾いた方向になるように、傾いた姿勢で設置されていてもよい。あるいは、送風機16が垂直姿勢で設置される一方で、送風機室35の中央部ではなく熱交間部52a,52bの長手方向において中央部から偏った(図4の左側に偏った)位置に配置されていてもよい。
 また、図5に示すように、前記第1実施形態と同様に、大気12が上下方向に流れる構成とする一方、フィン58が上下方向に延びる姿勢で配置されていてもよい。この場合、フィン58は、熱交換部52a,52bに対して垂直ではなく、少し傾斜した向きとなる。フィン58が鉛直向きに設定されている構成では、大気12から凝縮した水滴がフィン58表面を重力方向に流れるため、フィン58上の液滴がより流れやすくなる。
 また、図6に示すように、隣り合うフィン58同士の間隔が、入口側と出口側とで異なっていてもよい。具体的には、入口側に設けられたフィン58同士の間隔が、出口側に設けられたフィン58同士の間隔よりも広くなるように、フィン58の配置が設定されていてもよい。図例では、入口から出口に向かってフィン58同士の間隔が次第に小さくなる設定の場合を示している。この態様では、中間媒体4の入口側におけるフィン58同士の間隔が、出口側におけるフィン58同士の間隔よりも広くなるように設定されているため、フィン58への液滴の付着を減らすことができる。すなわち、伝熱管10における中間媒体4の入口側では、出口側に比べ、大気12が凝縮した液滴がフィン58に付着し滞留しやすい(大気12と中間媒体4の温度差が大きく、大気12が凝縮しやすい)。このため、入口側におけるフィン58同士の間隔が、出口側におけるフィン58同士の間隔よりも広くすることにより、大気12が、入口側のフィン58同士の間隙をより通りやすくなる。したがって、入口側でのフィン58への液滴の付着、滞留を抑制することができる。一方、出口側ではフィン58間隔が狭いため、熱交換部52a,52bの単位長さ当たりの伝熱面積が入口側に比べて大きくなっている。したがって、出口側での伝熱性能を向上することができる。
 ただし、出口側での間隔が入口側での間隔よりも狭ければ、一部のフィン58同士の間隔が同じであってもよい。例えば、入口側から中間部まででは、フィン58同士の間隔が同じであって、中間部から出口側までのフィン58同士の間隔がそれよりも狭い構成であってもよい。また、入口から中間部までフィン58同士の間隔が次第に狭くなり、中間部から出口までのフィン58同士の間隔が同じ幅であってもよい。
 図7に示すように、蒸発器E1で使用される空気(ガスの一例)を循環させる循環流路66が設けられていてもよい。すなわち、前記実施形態では、蒸発器E1において、伝熱管室34に導入された空気は、送風機室35から排気される構成となっている。これに対し、図7に示す形態では、空気が蒸発器E1と加熱器68との間を循環する循環流路66が設けられている。蒸発器E1では、空気が中間媒体4によって冷却されるため、冷却された空気を加熱して元の温度に戻す加熱器68が設けられている。加熱器68は、循環流路66の空気が流れる第1流路68aと、大気が流れる第2流路68bとを有し、第1流路68aの空気と第2流路68bの大気とを熱交換させる。この形態では、蒸発器E1において中間媒体4を気化させるための空気が、閉回路である循環流路66内を循環する。このため、空気に含まれる水分は凝縮して少ない状態となっている。したがって、蒸発器E1への露付きを抑制することができる。これにより、液滴付着、滞留による伝熱性能の低下を抑制することができる。また、循環流路66には加熱器68が接続されているため、蒸発器E1において冷却された空気の温度を大気温度まで戻すことができる。
 また、空気を循環させることによって徐々に空気を乾燥させる構成に限られるものではなく、図8に示すように、蒸発器E1に向かう空気を乾燥させる乾燥手段70が設けられていてもよい。この乾燥手段70は、シリカゲル等の乾燥剤が封入された装置であり、該装置内に流入された空気を乾燥させる。この形態でも、蒸発器E1への露付きを抑制することができ、これにより、液滴付着、滞留による伝熱性能の低下を抑制することができる。なお、図7に示す循環流路66において乾燥手段70が設けられていてもよい。
 (第2実施形態)
 図9は、本発明の第2実施形態に係るガス気化装置に設けられた蒸発器E1の概略構成を示している。
 蒸発器E1は、送風機室35及び伝熱管室34を備えており、送風機室35内には送風機11(図示省略している)が配置され、伝熱管室34には多数の伝熱管10が配置されている。なお、図9では、便宜的に、伝熱管10が1つのみ描かれている。
 送風機11は、回転軸が垂直になる姿勢で送風機室35内の中央部に設置されている。送風機室35及び伝熱管室34において、送風機11が駆動されると、空気は上から下に向かって流れる。送風機室35の上面には、空気の取り入れ口35aが設けられている。
 伝熱管室34を支持する支持枠体40は、伝熱管室34の隅角部に設けられた複数の脚部36と、上側梁部材41及び下側梁部材42と、上側梁部材41と下側梁部材42とを繋ぐ支持部材43と、を備えている。上側梁部材41及び下側梁部材42には、隣り合う脚部36同士の間に架設されて水平方向に延びるように配置されるものと、梁部材同士の間に架設されて水平方向に延びるように配置されるものとがある。そして、上側梁部材41と下側梁部材42とを接続するように、上下に延びる支持部材43が設けられている。支持部材43の上端部は上側梁部材41の中間部に接続され、支持部材43の下端部は、上側梁部材41の真下に位置する下側梁部材42の中間部に接続されている。
 図9を部分的に拡大して図10に示している。多数の伝熱管10(第1熱交換部52a又は第2熱交換部52b)は、フィン58同士が互いに近接するように水平方向(図9の左右方向)に並べられている(図13参照)。図10は、例えば伝熱管10の第1熱交換部52aを示している。
 伝熱管10には、多数のフィン58が互いに間隔をおいて伝熱管10(第1熱交換部52a又は第2熱交換部52b)の延びる方向に配置されている。
 蒸発器E1には、各フィン58間の間隙に溜まった凝縮水を除去する除去装置72が設けられている。除去装置72は、回転自在に配置された回転軸73と、回転軸73に支持された複数の除去部材74と、回転軸73を回転させる駆動部75と、を備えている。
 回転軸73は、図10に示すように、伝熱管10の下方に配置されている。回転軸73は伝熱管10(第1熱交換部52a又は第2熱交換部52b)と平行となっており、伝熱管10の真下に配置されている。回転軸73の一端部は、上側梁部材41に回転自在に軸支されており、回転軸73の他端部は、前記上側梁部材41と平行に配置された上側梁部材41に回転自在に軸支されている。
 各除去部材74は、回転軸73から径方向の外側に向かって延びる棒状の部材によって構成されている。
 各除去部材74は、回転軸73の軸方向に間隔をおいて配置されている。したがって、回転軸73の軸方向に垂直な1つの平面内には、1つのみの除去部材74が位置している。図11に示すように、隣り合う除去部材74同士のピッチP1は、フィンピッチP2と同じピッチに設定されている。したがって、隣り合うフィン58間の間隙の数と同じ数の除去部材74が設けられている。そして、回転軸73が回転することによって、隣り合うフィン58同士の間隙に1つの除去部材74が通過するようになっている。
 図12にも示すように、複数の除去部材74は、回転軸73の静的釣り合いが確保されるように、位相を変えて配置されている。具体的には、除去部材74の配置は、回転軸73の軸回りの方向に等間隔になるように、例えば、90度間隔となっている。そして、各位相の除去部材74の合計数がいずれもほぼ同じ数になるように設定されている。したがって、回転軸73に垂直な一つの平面内に1つのみの除去部材74が位置するように複数の除去部材74が配置されつつ、回転軸73の軸回りの静的釣り合いが確保されている。
 図例では、除去部材74は、軸方向の一端から他端に向かい、軸方向に見て0度の位置、90度の位置、180度の位置、270度の位置の順で配置されているが、これには限られない。また、複数(図例では5本)の除去部材74が連続して同じ位相に配置されているが、これには限られない。ただし、複数の除去部材74が連続して同じ位相に配置される構成とすれば、作成が煩雑化することを抑制できる。
 図10に示すように、回転軸73を回転させるための駆動部75は、駆動軸76と、駆動軸76の回転によって回転軸73を回転させる伝動部材77と、フィン58間を通過した大気(空気)12を案内するガイド78と、ガイド78によって案内された大気12から受けた力を駆動軸76が回転する力に変換する受け部材79と、を備えている。
 駆動軸76は、隣り合う下側梁部材42間に架設されて、回転軸73の真下に配置されるとともに、回転軸73と平行に配置されている。駆動軸76の一端部は、下側梁部材42に回転自在に軸支されており、駆動軸76の他端部は、前記下側梁部材42と平行に配置された下側梁部材42に回転自在に軸支されている。
 伝動部材77は、駆動軸76に固定されたプーリ77aと回転軸73に固定されたプーリ77bとに巻き掛けられたベルト部材77cによって構成されている。したがって、駆動軸76が回転することにより、回転軸73を回転させることができる。
 受け部材79は、駆動軸76に固定されて駆動軸76の軸方向に延びる複数の羽根板79aを有し、風車を構成している。羽根板79aは、駆動軸76から径方向に張り出す平板によって構成されているが、湾曲板によって構成されていてもよい。
 ガイド78は、駆動軸76に平行に延びる平板状に形成されている。ガイド78は、例えば支持部材43に固定することができる。そして、ガイド78は、フィン58間を通過した大気12を、駆動軸76に対して一方側に位置する羽根板79aに向かって案内するように配置されている。すなわち、ガイド78は、回転軸73と平行な方向に延びる細長い板状に形成されていて、図13に示すように、回転軸73及び駆動軸76を含む垂直面から側方にずれた位置に配置されている。そして、ガイド78は、前記垂直面から遠い位置から当該垂直面に近づくにつれて下降する傾斜した姿勢で配置されている。ガイド78の下端部は、前記垂直面に近接した位置となっている。
 したがって、大気12は、駆動軸76に対して一方側に位置する羽根板79aに案内される。すなわち、例えば、図13に示すように、フィン58間を通過した大気12は回転軸73の両側を通過する。この回転軸73の下方にガイド78が配置されているため、駆動軸76に対して一方側(図13では左側)を下に向かって流れる大気12は、ガイド78に当たる。この大気12は、ガイド78によって駆動軸76に対して他方側(図13では右側)に案内される。この結果、大気12は、図13の左側の羽根板79aを押圧することなく、右側の羽根板79aを押圧する。したがって、図13の時計回りに駆動軸76が回転し、回転軸73も回転する。これにより、除去部材74の先端がフィン58間を通過するため、フィン58間に溜まった凝縮水をフィン58間の外部に排出することができる。この結果、フィン58間に凝縮水が常に溜まった状態になることを防止することができる。しかも、各フィン58間にそれぞれ1つの除去部材74が進入するように設けられているため、除去装置72の重量増加を抑制することができる。
 また第2実施形態では、回転軸73に垂直な一つの平面内に1つのみの除去部材74が位置するように複数の除去部材74が配置されているため、フィン58間を通過する風速の変動を大きくすることができる。したがって、フィン58間の凝縮水をさらに除去しやすくすることができる。すなわち、回転軸73に垂直な一つの平面内には1つのみの除去部材74が位置しており、かつ回転軸73の静的釣り合いが確保されている。このため、全ての除去部材74が同位相に並ぶのではなく、一部の除去部材74が他の除去部材74とは異なる位相となる。このため、ある時点において、一部のフィン58間の凝縮水が除去される一方で、他のフィン58間の凝縮水はフィン58間に溜まったままになる。このとき、凝縮水が除去されたフィン58間に集中して大気12が流入することになり、ここでのガス流速は大きくなる。一方で凝縮水が溜まったままのフィン58間ではガス流速が小さくなる。したがって、時間の経過に伴い、あるフィン58間の間隙に流入する大気12の流速の変動が大きくなるため、フィン58間の凝縮水を除去しやすくすることができる。
 また、第2実施形態では、駆動軸76と、駆動軸76を回転させる伝動部材77とを有しており、駆動軸76が回転することによって回転軸73が回転する。したがって、回転軸73に直接駆動力を付与する構成を採用できない場合でも、回転軸73を回転させることができる。
 また、第2実施形態では、ガイド78によって案内された大気12から受けた力を駆動軸76が回転する力に変換する受け部材79が設けられている。このため、フィン58間を通過した大気12がガイド78で案内されて受け部材79に当たる。受け部材79は、大気12から受けた力を、駆動軸76を回転させる力に変換する。したがって、フィン58間を通過した大気12を利用して回転軸73を回転させることができる。
 前記第2実施形態では、フィン58間を通過した大気12を利用して駆動軸76及び回転軸73を回転させる構成としたが、これに限られない。例えば、図14及び図15に示すように、フィン58間から落下した凝縮水を利用して駆動軸76及び回転軸73を回転させてもよい。
 この場合、駆動部75は、フィン58間から落下した凝縮水から受けた力を駆動軸76が回転する力に変換する受け部材79と、フィン58間から落下した凝縮水を受け部材79に向けて流すガイド78を備えている。
 受け部材79は、駆動軸76に対して径方向に張り出すように駆動軸76に固定された複数の水受け部79bを有し、水車を構成している。複数の水受け部79bは、駆動軸76の周囲に軸回りに等間隔に配置されている。駆動軸76回りの水受け部79bの数(例えば4つ)は、回転軸73回りの除去部材74の数(例えば4つ)と一致している。なお、図例では、駆動軸76回りに4つの水受け部79bが設けられた構成が示されているが、これに限られない。
 各水受け部79bは、開口が駆動軸76の軸回りのそれぞれ同じ方向(図15の反時計回り方向)を向くように配置された皿状に形成されている。受け部材79は、水受け部79bに溜まった凝縮水が水受け部79bから流出するときの反作用によって駆動軸76を回転させる力に変換する。
 ガイド78は、回転軸73と平行な方向に延びる細長い板状に形成されていて、図15に示すように、回転軸73から側方にずれた位置に配置されている。そして、ガイド78は、回転軸73と駆動軸76とを含む垂直面から遠い位置から前記垂直面に近づくにつれて下降する傾斜した姿勢で配置されている。ガイド78の下端部は、前記垂直面に近接した位置となっている。
 水受け部79bは、前記垂直面に対してガイド78が存在しない側で、開口が上を向き、前記垂直面に対してガイド78が存在する側で、開口が下を向く姿勢で配置されている。水受け部79bは、連続して同じ位相に配置されている複数(図例では5つ)の除去部材74の配置位置に対応する軸方向長さを有している。そして、軸方向に隣り合う水受け部79bは、除去部材74と同様に、位相がずれている。なお、水受け部79bは、駆動軸76の長さ方向の全体に亘って連続する大きさに形成されていてもよい。この場合には、全部で例えば4つの水受け部79bが設けられることとなる。
 この形態では、フィン58から落下した凝縮水は、回転軸73の両側を通過するが、駆動軸76に対して一方側(図15では右側)を落ちる凝縮水は、ガイド78に当たることなく水受け部79bに到達する。この水受け部79bは、開口が上を向いているため、凝縮水は水受け部79b内に一旦貯留される。
 一方、駆動軸76に対して他方側(図15では左側)を落ちる凝縮水は、ガイド78に当たり、ガイド78上を流れ落ちる。この凝縮水は、ガイド78から流れ落ち、開口が上を向いた水受け部79bに貯留される。ある程度の凝縮水が水受け部79bに溜まると、凝縮水の自重によって駆動軸76が回転する。これにより、回転軸73が回転し、除去部材74によってフィン間の凝縮水を掻き出すことができる。
 この形態では、駆動軸76が回転することによって回転軸73を回転させることができるため、回転軸73に直接駆動力を付与する構成を採用できない場合でも、回転軸73を回転させることができる。
 また、ガイド78が設けられているため、より効率的に駆動軸76を回転させることができる。
 図16及び図17に示すように、回転軸73を回転させる駆動源として、モーター81を用いてもよい。この場合、回転軸73は、モーター81の出力軸に直接又は間接に接続される。モーター81は、各回転軸73にそれぞれ設けられてもよく、1つのモーター81で複数の回転軸73を回転させるように伝動部材(ベルト等)を設けてもよい。
 除去部材74を回転させる回転軸73は、各伝熱管10(第1熱交換部52a又は第2熱交換部52b)に対してそれぞれ設けられていてもよい。あるいは、図18に示すように、隣り合う2つの伝熱管10(第1熱交換部52a又は第2熱交換部52b)に対して、1つの回転軸73が配置される構成であってもよい。この場合、1つの除去部材74が、両方の伝熱管10(第1熱交換部52a又は第2熱交換部52b)のフィン58間の間隙を通過する構成となる。
 伝熱管10及びフィン58は、撥水剤がコーティング又は溶射されていてもよい。これにより、フィン58間に凝縮水が溜まるのをさらに抑制することができる。
 ここで、前記実施形態について概説する。
 (1)前記実施形態では、中間媒体蒸発器の伝熱管の熱交換部が、中間媒体の入口から出口に向かって次第に上の位置になるように傾斜している。このため、伝熱管の熱交換部が水平に配置されている場合に比べて、熱交換部内における中間媒体の沸騰領域を増大させることができる。すなわち、中間媒体は液状で伝熱管に流入し、伝熱管の熱交換部内において気化する。このとき、熱交換部内での流れに沿って次第に、中間媒体の気相の割合が増加する。そして、伝熱管の出口からは中間媒体が気液二相流となって流出する。このため、伝熱管の熱交換部が、中間媒体の入口から出口に向かって次第に上の位置になるように傾斜している場合には、熱交換部内において液状の中間媒体がより溜まりやすくなる。その結果として、熱交換部内における沸騰領域を増大させることができる。したがって、中間媒体蒸発器での伝熱効率が向上するため、ガス気化装置としての性能を向上させることができる。
 (2)前記熱交換部にはフィンが設けられている場合には、前記フィンは、前記ガスの流れ方向に沿う向きに設定されているのが好ましい。
 この態様では、伝熱管の熱交換部が傾斜配置とされる一方で、伝熱管のフィンがガスの流れ方向に沿う向きに形成されている。このため、フィンによってガスの流れが阻害されることがなく、熱交換部での中間媒体の蒸発性能が悪化することを防止することができる。また、熱交換部が垂直になっているわけでないので、フィンが水平にならず、そのために、ガスが凝縮した液滴がフィン上に溜まることもない。したがって、フィンでの伝熱性能が悪化することも防止できる。
 (3)前記ガスが鉛直方向に流れる設定となっている場合には、前記フィンは鉛直向きに設定されていてもよい。この態様では、ガスから凝縮した液体がフィン表面を重力方向に流れる。したがって、フィン上の液滴がより流れやすくなる。
 (4)前記フィンは、前記熱交換部に沿って多数設けられていてもよく、この場合、前記中間媒体の入口側に設けられたフィン同士の間隔は、前記中間媒体の出口側に設けられたフィン同士の間隔よりも広くてもよい。
 この態様では、中間媒体の入口側におけるフィン同士の間隔が、出口側におけるフィン同士の間隔よりも広くなるように設定されている。このため、フィンへの液滴の付着を減らすことができる。すなわち、伝熱管における中間媒体の入口側では、出口側に比べ、ガスが凝縮した液滴がフィンに付着し滞留しやすい(ガスと中間媒体の温度差が大きく、ガスが凝縮しやすい)。このため、入口側におけるフィン同士の間隔を、出口側におけるフィン同士の間隔よりも広くすることにより、ガスが、入口側のフィン同士の間隙をより通りやすくなる。したがって、入口側でのフィンへの液滴の付着、滞留を抑制することができる。一方、出口側ではフィン間隔が狭いため、熱交換部の単位長さ当たりの伝熱面積が入口側に比べて大きくなっている。したがって、出口側での伝熱性能を向上することができる。
 (5)前記ガスは空気であり、前記空気を循環させる循環流路が設けられている場合には、前記循環流路には、前記中間媒体蒸発器と、前記中間媒体蒸発器において冷却された空気を加熱する加熱器とが接続されていてもよい。
 この態様では、中間媒体蒸発器において中間媒体を気化させるための空気は、閉回路である循環流路内を循環する。このため、空気に含まれる水分は少ない。したがって、中間媒体蒸発器への露付きを抑制することができる。これにより、液滴付着、滞留による伝熱性能の低下を抑制することができる。また、循環流路には加熱器が接続されているため、中間媒体蒸発器において冷却された空気の温度を大気温度まで戻すことができる。
 (6)前記ガスが空気である場合には、前記中間媒体蒸発器に向かう空気を乾燥させる乾燥手段が設けられていてもよい。この態様では、中間媒体蒸発器への露付きを抑制することができる。これにより、液滴付着、滞留による伝熱性能の低下を抑制することができる。
 (7)前記低温液化ガス気化装置は、前記伝熱管に設けられた各フィン間の間隙に溜まった凝縮水を除去する除去装置を備えていてもよい。前記除去装置は、前記伝熱管の下方に回転自在に配置された回転軸と、前記回転軸に支持された複数の除去部材と、を備えていてもよい。前記複数の除去部材は、前記回転軸が回転することによって各フィン間の間隙をそれぞれ1つの除去部材が通過するピッチで前記回転軸に配置されていてもよい。
 この態様では、回転軸が回転することにより、各除去部材が伝熱管のフィン間の間隙を通過する。これにより、フィン間に溜まった凝縮水をフィン間の外部に排出することができ、この結果、フィン間に凝縮水が常に溜まった状態になることを防止することができる。しかも、各フィン間にそれぞれ1つの除去部材が進入するように設けられているため、除去装置の重量増加を抑制することができる。
 (8)前記回転軸に垂直な一つの平面内に1つのみの除去部材が位置するように前記複数の除去部材が配置されつつ、前記回転軸の静的釣り合いが確保されていてもよい。
 この態様では、フィン間を通過する風速の変動を大きくすることができるため、フィン間の凝縮水をさらに除去しやすくすることができる。すなわち、回転軸に垂直な一つの平面内には1つのみの除去部材が位置しており、かつ回転軸の静的釣り合いが確保されている。このため、全ての除去部材が同位相に並ぶのではなく、一部の除去部材が他の除去部材とは異なる位相となる。このため、ある時点において、一部のフィン間の凝縮水が除去される一方で、他のフィン間の凝縮水はフィン間に溜まったままになる。このとき、凝縮水が除去されたフィン間に集中してガスが流入することになり、ここでのガス流速は大きくなる。一方で凝縮水が溜まったままのフィン間ではガス流速が小さくなる。したがって、時間の経過に伴い、あるフィン間の間隙に流入するガスの流速の変動が大きくなるため、フィン間の凝縮水を除去しやすくすることができる。
 (9)前記除去装置は、前記回転軸を回転させる駆動部を備えていてもよい。前記駆動部は、駆動軸と、前記駆動軸の回転によって前記回転軸を回転させる伝動部材とを備えていてもよい。この態様では、駆動軸が回転することによって回転軸が回転する。したがって、回転軸に直接駆動力を付与する構成を採用できない場合でも、回転軸を回転させることができる。
 (10)前記駆動部は、前記フィン間を通過したガスを案内するガイドと、前記ガイドによって案内されたガスから受けた力を前記駆動軸が回転する力に変換する受け部材と、を備えていてもよい。この態様では、フィン間を通過したガスがガイドで案内されて受け部材に当たる。受け部材は、ガスから受けた力を、駆動軸を回転させる力に変換する。したがって、フィン間を通過したガスを利用して回転軸を回転させることができる。
 (11)前記駆動部は、前記フィン間から落下した凝縮水から受けた力を前記駆動軸が回転する力に変換する受け部材を備えていてもよい。この態様では、フィン間から落下した凝縮水を利用して回転軸を回転させることができる。
 (12)前記駆動部は、前記フィン間から落下した凝縮水を前記受け部材に向けて流すガイドを備えていてもよい。この態様では、より効率的に駆動軸を回転させることができる。
 以上説明したように、前記実施形態によれば、熱源流体としてガスが用いられる場合において、中間媒体蒸発器での伝熱効率を向上することができ、これにより、低温液化ガス気化装置としての性能を向上することができる。

Claims (12)

  1.  ガスとの熱交換によって中間媒体を気化させる中間媒体蒸発器と、
     前記中間媒体蒸発器で気化した中間媒体によって低温の液化ガスを気化させる低温液化ガス蒸発器と、を備え、
     前記中間媒体蒸発器は、前記中間媒体が流れる伝熱管を有しており、
     前記伝熱管は、前記中間媒体の入口から出口に向かって次第に上の位置になるように傾斜し、前記ガスとの熱交換を行う熱交換部を有している低温液化ガス気化装置。
  2.  前記熱交換部にはフィンが設けられており、前記フィンは、前記ガスの流れ方向に沿う向きに設定されている請求項1に記載の低温液化ガス気化装置。
  3.  前記ガスが鉛直方向に流れる設定となっており、
     前記フィンは鉛直向きに設定されている請求項2に記載の低温液化ガス気化装置。
  4.  前記フィンは、前記熱交換部に沿って多数設けられており、
     前記中間媒体の入口側に設けられたフィン同士の間隔は、前記中間媒体の出口側に設けられたフィン同士の間隔よりも広い請求項2に記載の低温液化ガス気化装置。
  5.  前記ガスは空気であり、
     前記空気を循環させる循環流路が設けられており、
     前記循環流路には、前記中間媒体蒸発器と、前記中間媒体蒸発器において冷却された空気を加熱する加熱器とが接続されている請求項1に記載の低温液化ガス気化装置。
  6.  前記ガスは空気であり、
     前記中間媒体蒸発器に向かう空気を乾燥させる乾燥手段が設けられている請求項1に記載の低温液化ガス気化装置。
  7.  前記伝熱管に設けられた各フィン間の間隙に溜まった凝縮水を除去する除去装置を備えており、
     前記除去装置は、前記伝熱管の下方に回転自在に配置された回転軸と、前記回転軸に支持された複数の除去部材と、を備え、
     前記複数の除去部材は、前記回転軸が回転することによって各フィン間の間隙をそれぞれ1つの除去部材が通過するピッチで前記回転軸に配置されている請求項1から6の何れか1項に記載の低温液化ガス気化装置。
  8.  前記回転軸に垂直な一つの平面内に1つのみの除去部材が位置するように前記複数の除去部材が配置されつつ、前記回転軸の静的釣り合いが確保されている請求項7に記載の低温液化ガス気化装置。
  9.  前記除去装置は、前記回転軸を回転させる駆動部を備えており、
     前記駆動部は、駆動軸と、前記駆動軸の回転によって前記回転軸を回転させる伝動部材とを備えている請求項7に記載の低温液化ガス気化装置。
  10.  前記駆動部は、前記フィン間を通過したガスを案内するガイドと、前記ガイドによって案内されたガスから受けた力を前記駆動軸が回転する力に変換する受け部材と、を備えている請求項9に記載の低温液化ガス気化装置。
  11.  前記駆動部は、前記フィン間から落下した凝縮水から受けた力を前記駆動軸が回転する力に変換する受け部材を備えている請求項9に記載の低温液化ガス気化装置。
  12.  前記駆動部は、前記フィン間から落下した凝縮水を前記受け部材に向けて流すガイドを備えている請求項11に記載の低温液化ガス気化装置。
PCT/JP2014/070385 2013-08-23 2014-08-01 低温液化ガス気化装置 WO2015025698A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2016700438A MY183514A (en) 2013-08-23 2014-08-01 Vaporizer for cryogenic liquefied gas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-173564 2013-08-23
JP2013173564 2013-08-23
JP2014-113093 2014-05-30
JP2014113093A JP6242749B2 (ja) 2013-08-23 2014-05-30 低温液化ガス気化装置

Publications (1)

Publication Number Publication Date
WO2015025698A1 true WO2015025698A1 (ja) 2015-02-26

Family

ID=52483479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070385 WO2015025698A1 (ja) 2013-08-23 2014-08-01 低温液化ガス気化装置

Country Status (3)

Country Link
JP (1) JP6242749B2 (ja)
MY (1) MY183514A (ja)
WO (1) WO2015025698A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006644A1 (ja) * 2015-07-09 2017-01-12 株式会社神戸製鋼所 熱交換ユニット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6449117B2 (ja) * 2015-08-18 2019-01-09 株式会社神戸製鋼所 中間媒体式ガス気化装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422186U (ja) * 1987-07-28 1989-02-03
JPH01307600A (ja) * 1988-06-02 1989-12-12 Tokyo Gas Co Ltd ヒートパイプを利用した低温液化ガス気化器
JPH09292143A (ja) * 1996-04-25 1997-11-11 Daikin Ind Ltd 氷蓄熱装置における過冷却熱交換器の伝熱管構造
JPH09303696A (ja) * 1996-05-10 1997-11-28 Kobe Steel Ltd 低温液化ガス気化装置
JPH11294694A (ja) * 1998-04-13 1999-10-29 Seibu Gas Co Ltd 強制循環型空温式液化ガス気化装置
JP2000088192A (ja) * 1998-07-17 2000-03-31 Ito Koki Kk バルク容器
JP2000121261A (ja) * 1998-10-16 2000-04-28 Hitachi Plant Eng & Constr Co Ltd 空気加熱器
JP2001304494A (ja) * 2000-04-26 2001-10-31 Osaka Gas Co Ltd 低温液化ガス気化器および熱交換器
JP2003148845A (ja) * 2001-08-27 2003-05-21 Osaka Gas Co Ltd 空気熱源液化天然ガス気化器
JP2004190951A (ja) * 2002-12-11 2004-07-08 Hiroshima Gas Kk Lng冷熱の回収方法及びその装置
JP2008546974A (ja) * 2005-06-16 2008-12-25 エイチ2ジーイーエヌ・イノベーションズ・インコーポレイテッド ボイラシステム、並びにこのボイラシステムを制御する方法
JP2013032836A (ja) * 2011-06-30 2013-02-14 Kobe Steel Ltd 低温液化ガス気化装置及び低温液化ガス気化方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422186U (ja) * 1987-07-28 1989-02-03
JPH01307600A (ja) * 1988-06-02 1989-12-12 Tokyo Gas Co Ltd ヒートパイプを利用した低温液化ガス気化器
JPH09292143A (ja) * 1996-04-25 1997-11-11 Daikin Ind Ltd 氷蓄熱装置における過冷却熱交換器の伝熱管構造
JPH09303696A (ja) * 1996-05-10 1997-11-28 Kobe Steel Ltd 低温液化ガス気化装置
JPH11294694A (ja) * 1998-04-13 1999-10-29 Seibu Gas Co Ltd 強制循環型空温式液化ガス気化装置
JP2000088192A (ja) * 1998-07-17 2000-03-31 Ito Koki Kk バルク容器
JP2000121261A (ja) * 1998-10-16 2000-04-28 Hitachi Plant Eng & Constr Co Ltd 空気加熱器
JP2001304494A (ja) * 2000-04-26 2001-10-31 Osaka Gas Co Ltd 低温液化ガス気化器および熱交換器
JP2003148845A (ja) * 2001-08-27 2003-05-21 Osaka Gas Co Ltd 空気熱源液化天然ガス気化器
JP2004190951A (ja) * 2002-12-11 2004-07-08 Hiroshima Gas Kk Lng冷熱の回収方法及びその装置
JP2008546974A (ja) * 2005-06-16 2008-12-25 エイチ2ジーイーエヌ・イノベーションズ・インコーポレイテッド ボイラシステム、並びにこのボイラシステムを制御する方法
JP2013032836A (ja) * 2011-06-30 2013-02-14 Kobe Steel Ltd 低温液化ガス気化装置及び低温液化ガス気化方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006644A1 (ja) * 2015-07-09 2017-01-12 株式会社神戸製鋼所 熱交換ユニット
CN107735614A (zh) * 2015-07-09 2018-02-23 株式会社神户制钢所 换热组件
CN107735614B (zh) * 2015-07-09 2019-07-12 株式会社神户制钢所 换热组件

Also Published As

Publication number Publication date
JP6242749B2 (ja) 2017-12-06
JP2015061982A (ja) 2015-04-02
MY183514A (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP6022810B2 (ja) 低温液化ガス気化装置及び低温液化ガス気化方法
ES2343969T3 (es) Paquete densificado de tubos de transferencia de calor.
JP6910289B2 (ja) 組み合わせ式コンベクタ
JP5009290B2 (ja) 風向順応型ヒーティングタワー装置および方法
JP5221136B2 (ja) 方向調整器を有する加熱塔装置
JP5604295B2 (ja) 周囲空気気化器用の構造及び方法
JP2010526981A (ja) 蒸発冷却器及び乾燥剤補助蒸気圧縮空調システム
JP6242749B2 (ja) 低温液化ガス気化装置
WO2005079957A1 (ja) 空気調和方法及び空気調和装置
JP5431357B2 (ja) 凝縮ユニットと蒸発ユニットとの連結による、サイクロメトリック混合物の冷却システム
JPWO2018131121A1 (ja) 除湿装置
NO20180844A1 (en) Intermediate Fluid Type Vaporizer
JP6397853B2 (ja) 低温液体を気化するシステム
GB2517725A (en) Heater
JP2016023925A (ja) 蒸発空調システム
JP6407744B2 (ja) 液化ガス気化装置および液化ガス気化システム
JP2007285531A (ja) 熱交換チューブ、蒸発器、及びヒートポンプ
JP2008064426A (ja) 凝縮器及び冷凍機
JP2015101966A (ja) ガス設備、ガスタービンプラント、および、コンバインドサイクルプラント
CN105899898A (zh) 冷却机组
JP2001304494A (ja) 低温液化ガス気化器および熱交換器
JP7308975B2 (ja) 除湿装置
JP2006112706A (ja) 除湿空気の供給ダクト装置
JP2015148395A (ja) 冷却装置
JP2006017116A (ja) 多段圧縮機、ヒートポンプ、および熱利用装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601923

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14838355

Country of ref document: EP

Kind code of ref document: A1