JP2006017116A - 多段圧縮機、ヒートポンプ、および熱利用装置 - Google Patents

多段圧縮機、ヒートポンプ、および熱利用装置 Download PDF

Info

Publication number
JP2006017116A
JP2006017116A JP2005161693A JP2005161693A JP2006017116A JP 2006017116 A JP2006017116 A JP 2006017116A JP 2005161693 A JP2005161693 A JP 2005161693A JP 2005161693 A JP2005161693 A JP 2005161693A JP 2006017116 A JP2006017116 A JP 2006017116A
Authority
JP
Japan
Prior art keywords
atomization
liquid
atmosphere
unit
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161693A
Other languages
English (en)
Inventor
Kenji Watanabe
健次 渡辺
Hiroyuki Sakata
裕之 坂田
Tomoya Ito
智也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2005161693A priority Critical patent/JP2006017116A/ja
Publication of JP2006017116A publication Critical patent/JP2006017116A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】 コストアップの防止を図り、かつCOPの低下を防止できる多段圧縮機を提供すること。
【解決手段】 蒸発器50から凝縮器60に送出する蒸気を多段に圧縮する(多段)圧縮機12において、段間のリターンチャネル(流路)25とは異なる空間33aで液体から霧を発生させる霧化部31と、空間33aからリターンチャネル25に霧を供給する霧供給部32と、霧化部31内の雰囲気を加熱する液体通路(加熱手段)70とを備え、リターンチャネル25に霧化部31および霧供給部32が設置されることを特徴とする。
【選択図】 図1

Description

本発明は、蒸気を多段に圧縮する多段圧縮機、ヒートポンプ、および熱利用装置に関し、特に、圧縮された蒸気を冷却する技術に関する。
従来、多段圧縮機において、圧縮される気体の冷却などを目的として、段間の流路に液体を供給する技術がある(例えば、特許文献1参照)。この技術は、段間の流路内で液体を蒸発させ、その蒸発潜熱により圧縮気体の熱を奪うものである。圧縮気体の効果的な冷却は、圧縮動力の低減につながる。
米国特許第2786626号明細書
上記技術では、圧縮気体の効果的な冷却のために、流路内で液体をいかに確実に蒸発させるかが課題となっている。また、径の大きい液体の粒が次の段の回転部材に衝突すると、エロージョンや振動などの不具合を生じさせるおそれがある。
本発明は、段間の流路に冷却用の液体が供給される多段圧縮機において、圧縮気体を効果的に冷却可能な多段圧縮機、ヒートポンプ、および熱利用装置を提供することを目的とする。
本発明は、上記課題を解決するため、以下の手段を採用する。すなわち本発明は、蒸発器から凝縮器に送出する蒸気を多段に圧縮する多段圧縮機において、段間の流路とは異なる空間で液体から霧を発生させる霧化部と、前記空間から前記流路に前記霧を供給する霧供給部と、前記霧化部内の雰囲気を加熱する加熱手段とを備えたことを特徴とする。
本発明に係る多段圧縮機では、段間の流路に供給される液体が予め霧になっており、その流路に存在する液体の粒径のサイズが小さく限定される。そのため、段間の流路において液体(霧)が容易に蒸発するとともに、エロージョンや振動などの不具合の発生が防止される。なお、霧の発生は、段間の流路とは異なる空間が用いられることにより、確実かつ安定的に行われる。
さらに、本発明に係る多段圧縮機では、霧化部内における霧を含む雰囲気を加熱手段によって加熱することにより、空間内の飽和蒸気圧が上昇して流路内の蒸気圧より高圧となる。このような空間と流路との間の圧力差により、空間内の雰囲気が流路に流れ込み、この雰囲気の流れによって霧が流路に供給されることになる。その結果、霧が流路内の主流蒸気に接して蒸発することにより、主流蒸気が冷却されることとなる。
なお、本発明に係る多段圧縮機では、段間の流路に霧を供給するために霧化部の空間と流路とが連通されており、加熱手段が作動していないとき、これら空間と流路との間には圧力差が生じていない状態となっている。
また、本発明に係る多段圧縮機において、前記加熱手段は、前記凝縮器内の熱を前記霧化部内に伝達することで前記霧化部内の雰囲気を加熱することを特徴とする。
本発明に係る多段圧縮機によれば、霧化部内の雰囲気を加熱する際に凝縮器内の熱を利用するため、加熱手段を容易かつ簡単に設けることができる。
また、本発明に係る多段圧縮機において、前記加熱手段は、前記凝縮器内で凝縮された液体を前記霧化部内に導入することで前記霧化部内の雰囲気を加熱することを特徴とする。
本発明に係る多段圧縮機によれば、凝縮器内で凝縮された液体が高温であることにより、その液体が霧化部内に導入されると液体の熱によって霧化部内の温度が上昇するため、霧化部内の液体が霧化しやすくなるとともに、霧化部内の雰囲気を効率よく加熱する。また、凝縮器内の液体が霧化部内に直接導入されるため、凝縮器内の液体が有効に利用されることとなる。
また、本発明に係る多段圧縮機において、前記加熱手段は、前記凝縮器で温められた液体を前記霧化部内に導入することで前記霧化部内の雰囲気を加熱することを特徴とする。
本発明に係る多段圧縮機によれば、凝縮器で温められた液体が高温であることにより、その液体が霧化部内に導入されると液体の熱によって霧化部内の温度が上昇するため、霧化部内の液体が霧化しやすくなるとともに、霧化部内の雰囲気を効率よく加熱する。また、凝縮器の熱を利用する一方、凝縮器内の液体を霧化部内に直接導入しない場合の加熱手段として有効となる。
また、本発明に係る多段圧縮機において、前記加熱手段は、前記凝縮器内の蒸気を前記霧化部内に導入することで前記霧化部内の雰囲気を加熱することを特徴とする。
本発明に係る多段圧縮機によれば、凝縮器内の蒸気が高温であることにより、その蒸気を霧化部内に導入すると蒸気の熱によって霧化部内の温度が上昇するため、霧化部内の雰囲気を効率よく加熱する。また、凝縮器内の蒸気が凝縮液よりも高温であるため、霧化部内の雰囲気の加熱が促進されることとなる。
また、本発明に係る多段圧縮機において、前記加熱手段は、前記圧縮機から排出された蒸気を前記霧化部内に導入することで前記霧化部内の雰囲気を加熱することを特徴とする。
本発明に係る多段圧縮機によれば、圧縮機から排出された蒸気が最も高温であることにより、その蒸気が霧化部内に導入されると蒸気の熱によって霧化部内の温度が急速に上昇するため、霧化部内の雰囲気の加熱がより促進されることとなる。
また、本発明に係る多段圧縮機において、前記加熱手段は、前記凝縮器内の蒸気または前記圧縮機から排出された蒸気を前記霧化部内の液体に導入することで前記霧化部内の雰囲気を加熱することを特徴とする。
本発明に係る多段圧縮機によれば、蒸気が霧化部内の液体に直接導入されると蒸気の熱によって霧化部内の液体の温度が急速に上昇するため、霧化部内の液体の霧化を促進しつつ、霧化部内の雰囲気を効率よく加熱する。
また、本発明に係る多段圧縮機において、前記加熱手段は、前記凝縮器内の液体または蒸気と、前記霧化部内の液体または雰囲気とを熱交換することを特徴とする。
本発明に係る多段圧縮機によれば、凝縮器内の液体または蒸気が高温であることにより、凝縮器内の液体または蒸気の熱が霧化部内の液体または雰囲気に伝達されると、霧化部内の液体が霧化しやすくなるとともに、霧化部内の雰囲気を効率よく加熱する。また、凝縮器内の液体または蒸気の熱を利用する一方、その液体または蒸気を霧化部内に直接導入しない場合の加熱手段として有効となる。
また、本発明に係る多段圧縮機において、前記加熱手段は、駆動源の冷却液と、前記霧化部内の液体または雰囲気とを熱交換することを特徴とする。
本発明に係る多段圧縮機によれば、駆動源が駆動によって高温になることにより、駆動源の熱が冷却液に伝達され、冷却液が温められる。その冷却液の熱が霧化部内の液体または雰囲気に伝達されると、霧化部内の液体が霧化しやすくなるとともに、霧化部内の雰囲気を効率よく加熱する。したがって、駆動源から発生する熱が加熱手段に有効利用されることとなる。
また、本発明に係る多段圧縮機において、前記加熱手段として、前記霧化部内の液体または雰囲気を加熱するヒータが用いられることを特徴とする。
本発明に係る多段圧縮機によれば、加熱手段としてヒータを用いてヒータの熱が霧化部内の液体または雰囲気に伝達されると、霧化部内の液体が霧化しやすくなるとともに、霧化部内の雰囲気を効率よく加熱する。
また、本発明に係る多段圧縮機において、前記蒸気を3段以上で圧縮し、前記流路を2以上形成するとともに、前記霧供給部は、少なくとも2つの前記流路に接続されていることを特徴とする。
本発明に係る多段圧縮機によれば、霧供給部が少なくとも2つの流路に接続されていることにより、少なくとも2箇所において流路内の主流蒸気が冷却されることとなるため、主流蒸気の冷却効果が促進される。
また、本発明に係る多段圧縮機において、前記霧化部の1つと少なくとも2つの前記流路とが前記霧供給部を介して接続されていることを特徴とする。
本発明に係る多段圧縮機によれば、霧化部の1つが少なくとも2つの流路に接続されることにより、主流蒸気の冷却効果が促進された状態で霧化部の設置個数を削減できる。
また、本発明に係る多段圧縮機において、前記蒸気を3段以上で圧縮し、前記流路を2以上形成するとともに、前記流路のそれぞれに前記霧化部および前記霧供給部が設置されることを特徴とする。
本発明に係る多段圧縮機によれば、流路のそれぞれに設置された霧化部および霧供給部を用いて、各流路に供給する霧を個別に調整することが可能となる。これによって、流路のそれぞれにおいて個別に最適な主流蒸気の温度上昇が抑制され、圧縮動力の低減が図られる。
また、本発明に係る多段圧縮機において、前記加熱手段は、前記霧化部の1つで凝縮されまたは温められた液体を別の前記霧化部内に導入することで前記霧化部内の雰囲気を加熱することを特徴とする。
本発明に係る多段圧縮機によれば、霧化部の1つの内部の熱が別の霧化部に伝達されて別の霧化部内の雰囲気を加熱するため、霧化部の1つの内部の熱が有効に利用されることとなる。
また、本発明に係る多段圧縮機において、前記霧化部が2以上設置されるとともに、前記霧化部は、前記凝縮器内で凝縮されまたは温められた液体を前記蒸発器に送出できる液体通路に直列に接続されていることを特徴とする。
本発明に係る多段圧縮機によれば、霧化部が液体通路に直列に接続されることで、凝縮器内で凝縮されまたは温められて高温になった液体を冷却させながら蒸発器に戻すことが可能となる。また、上流側に設置された霧化部から下流側に設置された霧化部に液体が液体通路を介して送出されるにつれて、霧化部内の液体が蒸発により霧化部ごとに順次冷却され、蒸発器に送出されるときにその液体は凝縮温度よりも一層低い温度となる。そのため、蒸発潜熱を大きくとることができ、その分蒸発器内の蒸発量を少なくすることができる。
また、本発明に係る多段圧縮機において、前記霧供給部は、前記流路内の蒸気の少なくとも一部を前記霧化部に導入する導入路と、前記霧化部内の霧を含む雰囲気を前記流路に排出する排出路とを有していることを特徴とする。
本発明に係る多段圧縮機によれば、主流蒸気の少なくとも一部が霧化部に導入されることにより、霧化部における空間から前記流路に霧を含む雰囲気が流れやすくなる。
また、本発明に係る多段圧縮機において、前記流路内の蒸気の流れに対向するように前記導入路の開口が配設されていることを特徴とする。
本発明に係る多段圧縮機によれば、前記流路における主流蒸気の動圧により、主流蒸気の少なくとも一部が霧化部に確実に導入され、その結果、霧化部における空間から前記流路に霧を含む雰囲気がさらに流れやすくなる。
また、本発明に係る多段圧縮機において、前記霧供給部は、他の場所から蒸気またはガスを前記霧化部に導入する導入路と、前記霧化部内の霧を含む雰囲気を前記流路に排出する排出路とを有していることを特徴とする。
本発明に係る多段圧縮機によれば、他の場所から蒸気またはガスが霧化部に導入されることにより、霧化部における空間から前記流路に霧を含む雰囲気が流れやすくなる。
また、本発明に係るヒートポンプは、上記した本発明の多段圧縮機を備えることを特徴とする。
また、本発明に係る熱利用装置は、熱源との熱の授受を行う熱利用装置であって、上記した本発明のヒートポンプを備えることを特徴とする。
本発明の多段圧縮機によれば、段間の流路において霧状の液体が容易に蒸発することから、その蒸発潜熱により圧縮気体を効果的に冷却することができる。さらに、圧縮気体が効果的に冷却されることで、圧縮動力が低減され、エネルギー効率の向上を図ることができる。そして、本発明のヒートポンプは、高効率な圧縮により、水蒸気などの高い圧力比を必要とする冷媒に好ましく適用される。
また、本発明のヒートポンプによれば、圧縮気体が効果的に冷却されることで、圧縮動力が低減される。そのため、エネルギー効率の向上を図ることができる。また、本発明のヒートポンプは、高効率な圧縮により、水蒸気などの高い圧力比を必要とする冷媒にも好ましく対応することができる。
また、本発明の熱利用装置によれば、上記ヒートポンプを用いることにより、エネルギー効率の向上を図ることができる。
以下、本発明の実施形態例について図面を参照して説明する。
図1は、本発明に係る多段圧縮機の一実施形態例を模式的に示す図である。
図1において、圧縮機(多段圧縮機)12は、多段(本例では4段)の遠心圧縮機からなり、回転軸20と、回転軸20に取り付けられかつ回転軸20の軸方向に多段に配置される複数のインペラ21と、回転軸20を駆動するための駆動装置23と、前段のインペラ21からの圧縮気体(主流蒸気)を後段のインペラ21に導く流路であるリターンチャネル25と、リターンチャネル25を通過した主流蒸気をリターンチャネル26を介して後述する凝縮器60に排出するための排出管27と、霧を含む雰囲気(霧水+水蒸気)をリターンチャネル25に供給する複数(本例では3個)の霧供給装置30とを備えて構成されている。
また、圧縮機12は、図1における下方から上方に向けて気体を圧縮して送出するように設置されており、圧縮機12の上流側、すなわち図1における下側には蒸発器50が設置され、圧縮機12の下流側、すなわち図1における上側には凝縮器60が設置されている。
蒸発器50の内部には、蒸発器50内の蒸気を加熱するための水を通過できる水路管51が設置されている。この水路管51は、下部および上部にそれぞれ入口52および出口53を有しており、蒸発器50内の気体との接触面積が大きくなるように、波形に配置されている。なお、蒸発器50内は飽和圧873Paであり、蒸発温度5℃である。また、水路管51を通過する水の温度は、例えば入口52において12℃であり、出口53において7℃である。
さらに、蒸発器50の上部には、蒸発器50内に生じる大きな水滴がインペラ21に付着しないように、デミスタ54が設けられている。
凝縮器60の内部には、凝縮器60内の蒸気を冷却するための水を通過できる水路管61が設置されている。この水路管61は、下部および上部にそれぞれ入口62および出口63を有しており、凝縮器60内の気体との接触面積が大きくなるように、波形に配置されている。なお、凝縮器60内は飽和圧7384Paであり、凝縮温度40℃である。また、水路管61を通過する水の温度は、例えば入口62において32℃であり、出口63において37℃である。
霧供給装置30は、霧化部31と、霧供給部32とを有している。霧化部31は、凝縮液を貯溜する貯液槽33、および貯液槽33内の凝縮液を空間33aで霧化する霧化器34を有している。霧化器34としては、本例では超音波振動子を用いた超音波霧化器が用いられる。超音波霧化器は、簡略な構成でありながら様々な液体に対応可能であるという利点を有する。なお、霧化器は超音波式に限定されることなく公知の様々なものが適用可能である。
また、霧供給部32は、貯液槽33の空間33aからリターンチャネル25に霧とともに雰囲気を排出する通路として機能する。
すなわち、この霧供給装置30は、霧化部31内の貯液槽33に貯溜された凝縮液を霧化器34で霧化し、霧を含む空間33aの雰囲気(霧水+水蒸気)を霧供給部32によってリターンチャネル25に供給する。
また、蒸発器50と凝縮器60との間には、これら蒸発器50および凝縮器60を接続して、凝縮器60によって凝縮された液体、すなわち凝縮液を蒸発器50に送出できる液体通路70が設置されている。この液体通路70には、3個の霧化部31が直列に接続されている。このとき、図2に示すように、液体通路70が貯液槽33に接続されており、貯液槽33の下部から凝縮液が導入され、適当な水位を確保して余分な凝縮液を貯液槽33から排除できるようになっている。この液体通路70は、貯液槽33に凝縮液を導入するとともに、凝縮液に含まれる熱を霧化部31内に伝達するため、霧化部31内の凝縮液および雰囲気を加熱する加熱手段として機能する。なお、液体通路70から導入された凝縮液に含まれる熱によって霧化部31内の雰囲気が加熱されることで、霧化部31内の凝縮液を霧化する霧化量が増加する。例えば、水温40℃の凝縮液を霧化する場合には、水温25℃の凝縮液を霧化する場合と比較して10%霧化量が増加することとなる。
また、液体通路70において、凝縮器60と霧化部31との間、隣り合う霧化部31,31の間、および霧化部31と蒸発器50との間には、それぞれ開閉弁71が設置されている。
このような圧縮機12では、駆動装置23が回転軸20を回転させると、蒸発器50内で蒸発した気体が、デミスタ54を通過して大きな水滴を排除しながら圧縮機12内に流入する。この気体、すなわち主流蒸気は、インペラ21の回転により周方向かつ径方向の外方に移動されて圧力が高められて圧縮され、リターンチャネル25を通って次の段のインペラ21に導かれる。以後同様にして気体の圧縮が各段で行われる。複数段にわたって圧縮が繰り返されることにより、所望の圧力比まで気体の圧力が高められる。また、リターンチャネル25を流れる主流蒸気は、霧供給装置30により供給される霧によって冷却され、その温度上昇が抑制される。そして、インペラ21およびリターンチャネル25,26を流れ、圧縮機12から排出されると排出管27に到達する。この主流蒸気は、排出管27から排出されると、凝縮器60によって凝縮され、凝縮液となって凝縮器60内に貯溜される。また、この凝縮液は、開閉弁71を開状態としたとき、凝縮器60から液体通路70を通過して順次霧化部31内に導入される。そして、最下流に配置された霧化部31において余分となった凝縮液が、液体通路70を通過して蒸発器50に排出され、蒸発器50内に貯溜される。
このような圧縮機12において、リターンチャネル25に霧を供給するために霧化部31の空間33aとリターンチャネル25とが霧供給部32で連通されており、液体通路70から霧化部31内に凝縮液を導入しないとき、これら空間33aとリターンチャネル25との間には圧力差が生じていない状態となっている。
ここで、液体通路70から霧化部31内に凝縮液を導入すると、霧化部31内の空間33aの雰囲気(霧水+水蒸気)が加熱されるため、霧化部31内の飽和蒸気圧が上昇してリターンチャネル25内の蒸気圧より高圧となる。このような霧化部31とリターンチャネル25との間の圧力差により、霧化部31内の雰囲気が霧化部31からリターンチャネル25に流れ込み、この雰囲気の流れによって、霧がリターンチャネル25に供給されることになる。その結果、霧がリターンチャネル25内の主流蒸気に接して蒸発することにより、主流蒸気が蒸発潜熱によって冷却されることとなる。
また、凝縮器60で凝縮された凝縮液が上流側の霧化部31から下流側の霧化部31に送出されると、下流側の霧化部31に存在する凝縮液が蒸発によって冷却される。さらに、この凝縮液が、霧化部31の下流側に存在する蒸発器50に送出されると、凝縮液が凝縮器60内の凝縮温度よりも低温となるため、蒸発潜熱を大きく利用でき、同じ冷凍能力を有する場合、蒸発潜熱を利用する際に必要な蒸発器50内の蒸発量を少なくすることができる。
また、凝縮器60で凝縮された凝縮液が高温であることにより、凝縮液が霧化部31内に導入されると凝縮液の熱によって霧化部31内の温度が上昇するため、霧化部31内の凝縮液が霧化しやすくなるとともに、霧化部31内の雰囲気を効率よく加熱する。また、凝縮器60内の凝縮液が霧化部31内に直接導入されるため、凝縮器60内の凝縮液が有効に利用されることとなる。
また、蒸発器50から凝縮器60に送出した蒸気が凝縮されて凝縮液となり、液体通路70および霧化部31を通過して蒸発器50に戻されたとき、その凝縮液は霧供給部32からリターンチャネル25に霧化される霧の霧化量よりも多くなるため、圧縮機12の外部から液体を供給する必要がなく、霧化器34による霧化の安定化を図ることができる。
また、霧化部31の下部から凝縮液が貯液槽33に導入され、適当な水位を確保して余分な凝縮液を貯液槽33から排除できるように、液体通路70が貯液槽33に接続されることで、貯液槽33の水位制御を簡略化することができる。
また、開閉弁71が減圧弁として機能するため、液体通路70に複数設置されることにより、凝縮水が凝縮器60から蒸発器50に送出される際、液体通路70内の下流側の気泡、いわゆるフラッシュガスの混入を少なくすることができる。
なお、先の図1において、1個の駆動装置23と1軸の回転軸20とを設置しているが、駆動装置23を複数、例えば2個設置し、それぞれに対して回転軸20を設置してもよい。
また、図1において、各段間のリターンチャネル25のそれぞれに霧供給装置30が設置されることで、各段間のリターンチャネル25のそれぞれに霧を供給する構成となっている。そのため、リターンチャネル25のそれぞれに設置された霧化部31および霧供給部32を用いてリターンチャネル25ごとに供給する霧を個別に調整することが可能となる。これによって、リターンチャネル25のそれぞれにおいて個別に最適な主流蒸気の温度上昇が抑制され、圧縮動力の低減が図られる。
なお、本発明は、各段間のリターンチャネル25のすべてに霧を供給するものに限定されない。例えば、霧供給部32が2つのリターンチャネル25に接続されてもよい。この場合、霧供給部32が2箇所においてリターンチャネル25内の主流蒸気を冷却するため、それ以上設置する必要がない。その結果、設備コストを削減できる。
また、霧化部31の1つと少なくとも2つのリターンチャネル25とが霧供給部32を介して接続されてもよい。この場合、主流蒸気の冷却効果が促進された状態で霧化部31の設置個数を削減することができる。
また、リターンチャネル25における霧の供給箇所の位置や数は、主流蒸気の種類や、圧力比などの圧縮条件に応じて適宜定められる。例えば、1つのリターンチャネル25に2つの霧供給装置30が設置されてもよい。この場合、2つの霧供給装置30で霧を供給することによってリターンチャネル25内の主流蒸気の冷却を促進することができる。
さらに、本例では圧縮機12が4段で圧縮し、リターンチャネル25を3段形成した構成となっているが、多段に圧縮する圧縮機であれば、2段で圧縮し、リターンチャネル25を1段形成した構成となってもよい。
なお、圧縮機12に用いられる加熱手段は、凝縮器60内の熱を霧化部31内に伝達することで霧化部31内の雰囲気(霧水+水蒸気)を加熱することができれば、どのような構成であってもよい。この場合、霧化部31内の雰囲気を加熱する際に凝縮器60内の熱を利用するため、熱の有効利用が図られる。
ここで、例えば、図3に簡略化して示すように、液体通路70を凝縮器60内に貫通させ、凝縮器60内に貯溜された凝縮液の熱を液体通路70内を通過する液体に伝達させ、その液体を霧化部31内に導入することで霧化部31内の雰囲気(霧水+水蒸気)を加熱してもよい。この場合、凝縮器で温められた液体が高温であることにより、その液体が霧化部31内に導入されると液体の熱によって霧化部31内の温度が上昇するため、霧化部31内の液体が霧化しやすくなるとともに、霧化部31内の雰囲気を効率よく加熱する。また、凝縮器60の熱を利用する一方、凝縮器60内の液体が霧化部31内に直接導入されない場合の加熱手段として有効となる。さらに、凝縮器60で温められる液体は、凝縮液によって加熱されることに限定されず、凝縮器60内の蒸気での加熱や、凝縮器60の外側での加熱であってもよい。
また、図4に簡略化して示すように、液体通路70を介して凝縮器60および霧化部31を接続し、凝縮器60内の蒸気を霧化部31内、特に霧化部31に貯溜された液体内に導入することで霧化部31内の雰囲気(霧水+水蒸気)を加熱してもよい。この場合、凝縮器60内の蒸気が高温であることにより、その蒸気を霧化部31内に導入すると蒸気の熱によって霧化部31内の温度が上昇するため、霧化部31内の雰囲気を効率よく加熱する。また、凝縮器60内の蒸気が凝縮液よりも高温であるため、霧化部31内の雰囲気の加熱が促進されることとなる。
なお、凝縮器60内の蒸気は、圧縮機12から排出された直後において最も高温であるが、排出後に排出管27を通過して凝縮器60内に導入される際に温度が低下する。したがって、できる限り高温の蒸気を得るために、圧縮機12から排出された蒸気、すなわち図1で示す排出管27の入口付近の蒸気を直接霧化部31内に導入してもよい。この場合、圧縮機12から排出された蒸気が最も高温であることにより、その蒸気を霧化部31内に導入すると蒸気の熱によって霧化部31内の温度が急速に上昇するため、霧化部31内の雰囲気の加熱がより促進されることとなる。
さらに、このような凝縮器60内の蒸気または圧縮機12から排出された蒸気を霧化部31内の液体に直接導入した場合、霧化部31内の液体の温度が急速に上昇するため、霧化部31内の液体の霧化が促進されることとなる。
また、図5に簡略化して示すように、液体通路70を凝縮器60に接続するとともに霧化部31内を貫通するように設置して、凝縮器60内の凝縮液と、霧化部31内の凝縮液とを熱交換するようにしてもよい。この場合、凝縮器60内の凝縮液が高温であることにより、その凝縮液の熱が霧化部31内の凝縮液に伝達されると、霧化部31内の凝縮液が霧化しやすくなるとともに、霧化部31内の雰囲気を効率よく加熱する。また、凝縮器60内の凝縮液の熱を利用する一方、その凝縮液が霧化部31内に直接導入されない場合の加熱手段として有効となる。なお、図5には、凝縮液と霧化部31内の液体とを熱交換するタイプを示しているが、これに代えて、凝縮器60内の蒸気と霧化部31内の液体とを熱交換するタイプ、凝縮液と空間33aの雰囲気とを熱交換するタイプ、凝縮器60内の蒸気と空間33aの雰囲気とを熱交換するタイプであってもよい。
また、図6に簡略化して示すように、駆動装置23の冷却液が、霧化部31内を貫通するように液体通路80を設置して、駆動装置23に用いられる冷却液と、霧化部31内の凝縮液とを熱交換するようにしてもよい。この場合、駆動装置23が駆動によって高温になることにより、駆動装置23の熱が冷却液に伝達され、冷却液が温められる。その冷却液の熱が霧化部31内の液体に伝達されると、霧化部31内の液体が霧化しやすくなるとともに、霧化部31内の雰囲気を効率よく加熱する。したがって、駆動装置23から発生する熱が有効利用されることとなる。なお、冷却液を霧化部31内の液体と熱交換することに代えて、冷却液を空間33aの雰囲気と熱交換させるようにしてもよい。
また、図7に簡略化して示すように、図示しない外部電源に接続され、霧化部31内の凝縮液を加熱するヒータ90を用いてもよい。この場合、加熱手段としてのヒータ90の熱が霧化部31内の液体に伝達されると、霧化部31内の液体が霧化しやすくなるとともに、霧化部31内の雰囲気を効率よく加熱する。ここで、このヒータ90は、電熱線を用いたものに限らず、霧化部31内の凝縮液または霧を加熱できるものであればよい。なお、ヒータ90を空間33aに配置し、霧化部31の雰囲気を加熱してもよい。
また、図8に凝縮液の冷凍サイクルを示す。図8におけるAにおいて蒸発器50内の液体が蒸発し、B,C,Dそれぞれにおいて、圧縮機12によって圧縮された蒸気が、リターンチャネル25内で霧供給装置30により供給される霧によって冷却される。
そして、Eにおいて凝縮器60内の蒸気が凝縮されて液体となり、F,G,Hにおいて霧化部31を通過して蒸発器50に戻る。
このように、B,C,Dそれぞれにおいて蒸気を冷却することによって、圧縮機12の動力の負荷を減少させることができるので、圧縮機12のトータルの成績係数、すなわちCOP(=冷凍能力/動力)が高くなる。
図9は、本発明に係る多段圧縮機の他の実施形態例を模式的に示す図である。
なお、図9において、図1に示したものと同様の機能を有する構成要素については同一の符号を付し、その説明を省略または簡略化する。
図9に示す多段圧縮機13は、図1の多段圧縮機12と同様に、多段(本例では4段)の遠心圧縮機からなり、各段間のリターンチャネル25に対応して霧供給装置30を備えて構成されている。
霧供給装置30は、霧化部31と、霧供給部32とを有している。霧化部31は、凝縮液を貯溜する貯液槽33と、貯液槽33内の凝縮液を空間33aで霧化する霧化器34とを有している。霧化器34としては、例えば、超音波振動子を用いた超音波霧化器が用いられる。超音波霧化器は、簡略な構成でありながら様々な液体に対応可能であるという利点を有する。なお、霧化器は超音波式に限定されることなく公知の様々なものが適用可能である。
また、霧供給部32は、リターンチャネル25を流れる主流蒸気の少なくとも一部を貯液槽33に導く導入路41と、貯液槽33内の空間33aからリターンチャネル25に霧とともに雰囲気を排出する排出路42とを有している。この他に、霧供給部32には、流量調節弁、及び温度センサなどの計器類などが必要に応じて適宜配設される。なお、排出路42は、排出路42内での霧水の蒸発の抑制や、配管抵抗抑制の目的等から、なるべく短いのが好ましい。
図10は、霧供給部32の説明図である。
霧供給部32における導入路41は、一端がリターンチャネル25に接続され、他端が貯液槽33に接続されている。リターンチャネル25の内壁面に、導入路41の一方の開口41aが開放されており、この開口41aは、リターンチャネル25内の主流蒸気の流れに対向する位置に配設されている。例えば、導入路41の開口41aは、リターンチャネル25の内壁面のうち、リターンチャネル25の湾曲部における外周側に配設されている。導入路41の開口41aがリターンチャネル25内の主流蒸気の流れに対向して配設されることにより、リターンチャネル25における流れの動圧を利用して導入路41内に主流蒸気の少なくとも一部が確実に導かれる。なお、主流蒸気の流れの乱れを抑制するために、導入路41の端部がリターンチャネル25の内壁面から突出しないのが好ましい。また、霧化部31の貯液槽33の内壁面における水面よりも上方位置に、導入路41の他方の開口41bが配設されている。
また、排出路42は、一端が貯液槽33に接続され、他端がリターンチャネル25に接続されている。リターンチャネル25の内壁面において排出路42の開口42aが開放されており、この開口42aは、リターンチャネル25内の流れ方向に関して導入路41の開口41aに比べて下流位置に配設されている。なお、主流蒸気の流れの乱れを抑制するために、排出路42の端部がリターンチャネル25の内壁面から突出しないのが好ましい。また、霧化部31の貯液槽33の内壁面における水面よりも上方位置に、排出路42の他方の開口42bが配設されている。
図9に戻り、蒸発器50と凝縮器60との間には、これら蒸発器50および凝縮器60を接続して、凝縮器60によって凝縮された液体、すなわち凝縮液を蒸発器50に送出できる液体通路70が設置されている。この液体通路70には、3個の霧化部31が直列に接続されている。このとき、図9に示すように、液体通路70が貯液槽33に接続されており、貯液槽33の下部から凝縮液が導入され、適当な水位を確保して余分な凝縮液を貯液槽33から排除できるようになっている。この液体通路70は、貯液槽33に凝縮液を導入するとともに、凝縮液に含まれる熱を霧化部31内に伝達するため、霧化部31内の凝縮液および雰囲気を加熱する加熱手段として機能する。なお、液体通路70から導入された凝縮液に含まれる熱によって霧化部31内の雰囲気が加熱されることで、霧化部31内の凝縮液を霧化する霧化量が増加する。
また、液体通路70において、凝縮器60と霧化部31との間、隣り合う霧化部31,31の間、および霧化部31と蒸発器50との間には、それぞれ開閉弁71が設置されている。
このような圧縮機13では、霧供給装置30によってリターンチャネル25内に霧が供給されることにより、リターンチャネル25を流れる主流蒸気が冷却される。
すなわち、霧化部31における貯液槽33内の空間33aの雰囲気(霧水+水蒸気)が加熱されることにより、その空間33aの飽和蒸気圧が上昇してリターンチャネル25内の蒸気圧に比べて高圧となり、その圧力差によってその空間33a内の雰囲気(霧水+水蒸気)がリターンチャネル25に流れ込む。さらに、リターンチャネル25から主流蒸気の少なくとも一部が導入路41を介して霧化部31における貯液槽33内の空間33aに導入されることにより、その空間33a内の雰囲気(霧水+水蒸気)が押し出され、排出路42を介してその雰囲気がリターンチャネル25に流れ込む。
このように、本例の圧縮機13では、雰囲気加熱に伴う圧力上昇に加え、リターンチャネル25からの主流蒸気の導入により、霧化部31における貯液槽33からリターンチャネル25に雰囲気(霧水+水蒸気)が流れる。この場合、雰囲気加熱に伴う圧力上昇のみの場合に比べて、リターンチャネル25内への霧の供給量が増加し、圧縮気体(主流蒸気)の冷却効果の向上が図られる。リターンチャネル25における主流蒸気の流量に応じて、リターンチャネル25から霧化部31への蒸気導入量が変化し、これに伴って、リターンチャネル25内への霧の供給量が変化する。すなわち、主流蒸気の流量が多いときほどリターンチャネルに冷却用の多くの霧が供給される。これは、効果的な蒸気冷却に有利である。
なお、先の図9の圧縮機13において、先の図3〜図7に示す加熱手段並びに霧化部31を適用することも可能である。
また、リターンチャネル25から導入路41を介して貯液槽33に導かれる蒸気は、リターンチャネル25を流れる主流蒸気のほぼすべてであってもよく、主流蒸気の一部であってもよい。
さらに、本例では圧縮機13が4段構成であるが、圧縮段数はこれに限らず、2段以上であれば他の段数でもよい。
また、図11及び図12に簡略化して示すように、霧供給部32は、1つのリターンチャネル25から抽気した蒸気を複数の霧化部31に分配導入するように構成することもできる。図11の例では、中段のリターンチャネル25に導入路41の一端が接続されており、その導入路41の他端が分岐されて各貯液槽33に接続されている。図12の例では、最上段のリターンチャネル25に導入路41の一端が接続されており、その導入路41の他端が分岐されて各貯液槽33に接続されている。導入路41が接続される抽気対象のリターンチャネル25は、圧縮機13の特性に応じて適宜選択される。
また、図13に簡略化して示すように、霧供給部32は、1つの霧化部31から複数のリターンチャネル25に霧を分配供給するように構成することもできる。図13の例では、最下段のリターンチャネル25に導入路41の一端が接続されており、その導入路41の他端が1つの霧化部31に接続されている。さらに、その霧化部31に排出路42の一端が接続されるとともに、その排出路42の他端が分岐されて各リターンチャネル25に接続されている。
また、図14に簡略化して示すように、霧供給部32は、リターンチャネル25とは異なる他の場所から蒸気あるいはガスを霧化部31に導入するように構成することもできる。蒸気あるいはガスの供給源は、蒸発器50や凝縮器60であってもよく、別の圧縮装置からであってもよい。図14の例では、複数の霧化部31のそれぞれに、供給源からの導入路41が接続されるとともに、各霧化部31と各リターンチャネル25とが排出路42を介して接続されている。
さらに、本発明の多段圧縮機において、上記のような多段圧縮機を備えたヒートポンプにも適用可能であり、ヒートポンプ自体の性能の劣化およびコストアップの防止を図ることができる。また、ヒートポンプは、冷房、暖房、除湿、及び加湿の少なくとも1つの機能を有する空気調和装置に適用することができる。この他に、冷却装置(ヒートシンクなど)、暖房装置(床暖房装置など)、給湯装置、冷凍装置、脱水装置、蓄熱装置、融雪装置、乾燥装置など、熱源との間で熱の授受を行う様々な熱利用装置(プラントやシステムを含む)に適用可能である。これらの熱利用装置では、本発明のヒートポンプを用いることにより、高いエネルギー効率を得ることができる。また、ヒートポンプの冷媒に水(水蒸気)を用いることにより、エネルギー効率の向上とともに、環境面での様々な利点が得られる。なお、ヒートポンプや熱利用装置に関する技術は、特開2004−293872号公報に記載の技術を援用することができる。
以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
本発明に係る多段圧縮機の一実施形態例を模式的に示す図である。 霧化部の構成例を示す図である。 霧化部の他の構成例を示す図である。 霧化部の他の構成例を示す図である。 霧化部の他の構成例を示す図である。 霧化部の他の構成例を示す図である。 霧化部の他の構成例を示す図である。 圧力およびエンタルピーの関係を示す図である。 本発明に係る多段圧縮機の他の実施形態例を模式的に示す図である。 霧供給部の構成例を示す図である。 霧供給部の他の構成例を示す図である。 霧供給部の他の構成例を示す図である。 霧供給部の他の構成例を示す図である。 霧供給部の他の構成例を示す図である。
符号の説明
12,13…圧縮機(多段圧縮機)、20…回転軸、21…インペラ、25…リターンチャネル(流路)、31…霧化部、32…霧供給部、33…貯液槽、33a…空間、34…霧化器、導入路…41、排出路…42、50…蒸発器、60…凝縮器、70…液体通路(加熱手段)

Claims (20)

  1. 蒸発器から凝縮器に送出する蒸気を多段に圧縮する多段圧縮機において、段間の流路とは異なる空間で液体から霧を発生させる霧化部と、前記空間から前記流路に前記霧を供給する霧供給部と、前記霧化部内の雰囲気を加熱する加熱手段とを備えたことを特徴とする多段圧縮機。
  2. 前記加熱手段は、前記凝縮器内の熱を前記霧化部内に伝達することで前記霧化部内の雰囲気を加熱することを特徴とする請求項1に記載の多段圧縮機。
  3. 前記加熱手段は、前記凝縮器内で凝縮された液体を前記霧化部内に導入することで前記霧化部内の雰囲気を加熱することを特徴とする請求項2に記載の多段圧縮機。
  4. 前記加熱手段は、前記凝縮器で温められた液体を前記霧化部内に導入することで前記霧化部内の雰囲気を加熱することを特徴とする請求項2に記載の多段圧縮機。
  5. 前記加熱手段は、前記凝縮器内の蒸気を前記霧化部内に導入することで前記霧化部内の雰囲気を加熱することを特徴とする請求項2に記載の多段圧縮機。
  6. 前記加熱手段は、前記圧縮機から排出された蒸気を前記霧化部内に導入することで前記霧化部内の雰囲気を加熱することを特徴とする請求項2に記載の多段圧縮機。
  7. 前記加熱手段は、前記凝縮器内の蒸気または前記圧縮機から排出された蒸気を前記霧化部内の液体に導入することで前記霧化部内の雰囲気を加熱することを特徴とする請求項5または請求項6に記載の多段圧縮機。
  8. 前記加熱手段は、前記凝縮器内の液体または蒸気と、前記霧化部内の液体または雰囲気とを熱交換することを特徴とする請求項2に記載の多段圧縮機。
  9. 前記加熱手段は、駆動源の冷却液と、前記霧化部内の液体または雰囲気とを熱交換することを特徴とする請求項2に記載の多段圧縮機。
  10. 前記加熱手段として、前記霧化部内の液体または雰囲気を加熱するヒータが用いられることを特徴とする請求項2に記載の多段圧縮機。
  11. 前記蒸気を3段以上で圧縮し、前記流路を2以上形成するとともに、前記霧供給部は、少なくとも2つの前記流路に接続されていることを特徴とする請求項1から請求項10のうちのいずれかに記載の多段圧縮機。
  12. 前記霧化部の1つと少なくとも2つの前記流路とが前記霧供給部を介して接続されていることを特徴とする請求項11に記載の多段圧縮機。
  13. 前記蒸気を3段以上で圧縮し、前記流路を2以上形成するとともに、前記流路のそれぞれに前記霧化部および前記霧供給部が設置されることを特徴とする請求項1から請求項10のうちのいずれかに記載の多段圧縮機。
  14. 前記加熱手段は、前記霧化部の1つで凝縮されまたは温められた液体を別の前記霧化部内に導入することで前記霧化部内の雰囲気を加熱することを特徴とする請求項13に記載の多段圧縮機。
  15. 前記霧化部が2以上設置されるとともに、前記霧化部は、前記凝縮器内で凝縮されまたは温められた液体を前記蒸発器に送出できる液体通路に直列に接続されていることを特徴とする請求項13または請求項14に記載の多段圧縮機。
  16. 前記霧供給部は、前記流路内の蒸気の少なくとも一部を前記霧化部に導入する導入路と、前記霧化部内の雰囲気を前記流路に排出する排出路とを有していることを特徴とする請求項1から請求項15のいずれかに記載の多段圧縮機。
  17. 前記流路内の蒸気の流れに対向するように前記導入路の開口が配設されていることを特徴とする請求項16に記載の多段圧縮機。
  18. 前記霧供給部は、他の場所から蒸気またはガスを前記霧化部に導入する導入路と、前記霧化部内の雰囲気を前記流路に排出する排出路とを有していることを特徴とする請求項1から請求項15のいずれかに記載の多段圧縮機。
  19. 請求項1から請求項18のうちのいずれかに記載の多段圧縮機を備えることを特徴とするヒートポンプ。
  20. 熱源との熱の授受を行う熱利用装置であって、請求項19に記載のヒートポンプを備えることを特徴とする熱利用装置。
JP2005161693A 2004-06-02 2005-06-01 多段圧縮機、ヒートポンプ、および熱利用装置 Pending JP2006017116A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161693A JP2006017116A (ja) 2004-06-02 2005-06-01 多段圧縮機、ヒートポンプ、および熱利用装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004164357 2004-06-02
JP2005161693A JP2006017116A (ja) 2004-06-02 2005-06-01 多段圧縮機、ヒートポンプ、および熱利用装置

Publications (1)

Publication Number Publication Date
JP2006017116A true JP2006017116A (ja) 2006-01-19

Family

ID=35791605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161693A Pending JP2006017116A (ja) 2004-06-02 2005-06-01 多段圧縮機、ヒートポンプ、および熱利用装置

Country Status (1)

Country Link
JP (1) JP2006017116A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221966A (ja) * 2008-03-17 2009-10-01 Tokyo Electric Power Co Inc:The 多段圧縮機、圧縮機、及び冷凍機
WO2013001816A1 (ja) * 2011-06-30 2013-01-03 ダイキン工業株式会社 冷凍装置の室外機

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221966A (ja) * 2008-03-17 2009-10-01 Tokyo Electric Power Co Inc:The 多段圧縮機、圧縮機、及び冷凍機
WO2013001816A1 (ja) * 2011-06-30 2013-01-03 ダイキン工業株式会社 冷凍装置の室外機
JP2013015228A (ja) * 2011-06-30 2013-01-24 Daikin Industries Ltd 冷凍装置の室外機
CN103635752A (zh) * 2011-06-30 2014-03-12 大金工业株式会社 制冷装置的室外机
US20140102131A1 (en) * 2011-06-30 2014-04-17 Daikin Industries, Ltd. Outdoor unit of refrigeration system
EP2728270A1 (en) * 2011-06-30 2014-05-07 Daikin Industries, Ltd. Outdoor machine of refrigeration device
EP2728270A4 (en) * 2011-06-30 2015-04-01 Daikin Ind Ltd EXTERNAL MACHINE FOR A COOLING DEVICE
CN103635752B (zh) * 2011-06-30 2015-04-01 大金工业株式会社 制冷装置的室外机
AU2012277182B2 (en) * 2011-06-30 2015-05-28 Daikin Industries, Ltd. Outdoor unit of refrigeration system

Similar Documents

Publication Publication Date Title
US11175067B2 (en) Air conditioner with water removal
US10101059B2 (en) Thermally driven heat pump for heating and cooling
JP2019523384A (ja) アクティブ/パッシブ冷却システム
JP2000274977A (ja) 熱交換装置及び熱抽出法
KR20180055833A (ko) 공조기
WO2005079957A1 (ja) 空気調和方法及び空気調和装置
JP2017003252A (ja) 熱交換装置及びヒートポンプ装置
JP5211883B2 (ja) 蒸気生成システム
JP5200525B2 (ja) 蒸気生成システム
US8517355B2 (en) Evaporative cooling tower and method
JP2005241204A (ja) 蒸発器、ヒートポンプ、熱利用装置
JP2006017116A (ja) 多段圧縮機、ヒートポンプ、および熱利用装置
JP2004300929A (ja) 多段圧縮機、ヒートポンプ、並びに熱利用装置
JP2008057453A (ja) ヒートポンプシステム
US6715312B1 (en) De-superheater for evaporative air conditioning
JP2004300928A (ja) 多段圧縮機、ヒートポンプ、並びに熱利用装置
JP4483505B2 (ja) ガスタービン設備とその制御装置,ガスタービン設備の制御方法及びタービン冷却部の冷却方法
JP2007285531A (ja) 熱交換チューブ、蒸発器、及びヒートポンプ
JP2016023925A (ja) 蒸発空調システム
JP2009221966A (ja) 多段圧縮機、圧縮機、及び冷凍機
JP2007163095A (ja) 空気調和装置
JP2008064426A (ja) 凝縮器及び冷凍機
WO2005071244A1 (ja) ガスタービン発電設備
JP4853125B2 (ja) 蒸気発生システム
CN101639305A (zh) 冷凝器