WO2015020019A1 - ポリイミド樹脂粉末の製造方法及び熱可塑性ポリイミド樹脂粉末 - Google Patents

ポリイミド樹脂粉末の製造方法及び熱可塑性ポリイミド樹脂粉末 Download PDF

Info

Publication number
WO2015020019A1
WO2015020019A1 PCT/JP2014/070532 JP2014070532W WO2015020019A1 WO 2015020019 A1 WO2015020019 A1 WO 2015020019A1 JP 2014070532 W JP2014070532 W JP 2014070532W WO 2015020019 A1 WO2015020019 A1 WO 2015020019A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide resin
diamine
group
carbon atoms
formula
Prior art date
Application number
PCT/JP2014/070532
Other languages
English (en)
French (fr)
Inventor
勇希 佐藤
三田寺 淳
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020167002654A priority Critical patent/KR102208953B1/ko
Priority to CN201480039002.XA priority patent/CN105377949B/zh
Priority to JP2015530892A priority patent/JP6565676B2/ja
Priority to US14/905,637 priority patent/US9670320B2/en
Priority to EP14834341.1A priority patent/EP3031844B1/en
Publication of WO2015020019A1 publication Critical patent/WO2015020019A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method for producing a polyimide resin powder and a thermoplastic polyimide resin powder.
  • Aromatic polyimide resins are useful engineering plastics with high thermal stability, high strength, and high solvent resistance due to molecular chain rigidity, resonance stabilization, and strong chemical bonds.
  • aromatic polyimide resins are generally difficult to mold by hot melting due to their high thermal stability, and it is also generally difficult to obtain molded products via polyimide solutions due to their high solvent resistance. Therefore, in order to produce a molded article of an aromatic polyimide resin, a polycarboxylic acid is prepared by reacting a tetracarboxylic acid component and a diamine component, and after molding at this stage, the polyamic acid is imidized by various methods. Is taken.
  • One of the most well-known methods is to prepare a polyamic acid by reacting an aromatic tetracarboxylic acid component with a diamine containing an aromatic ring in a high boiling point solvent such as N-methylpyrrolidone or dimethylacetamide, and to support the polyamic acid.
  • a high boiling point solvent such as N-methylpyrrolidone or dimethylacetamide
  • This is a method of forming a film on a body and then thermally imidizing it under high temperature conditions to obtain a polyimide film (see Patent Document 1).
  • this method requires a plurality of steps such as (1) volatilization of the solvent uniformly when forming the polyamic acid into a film, and (2) a high temperature exceeding 300 ° C. in the subsequent imidization.
  • some aromatic polyimide resins can be molded by being exposed to high temperature and high pressure for a long time after being recovered in a powder state (see Patent Document 2).
  • some semi-aromatic polyimide resins and wholly aliphatic polyimide resins have some solvent resins and thermoplastic polyimide resins.
  • the solvent-soluble polyimide resin can be formed into a film from a polyimide varnish, and the thermoplastic polyimide resin can be formed into various shapes by heat melting.
  • These polyimide resins having moldability can be molded even if they are obtained in a shape other than the final product shape, that is, in a powder or lump shape.
  • the semi-aromatic polyimide resin and the fully aliphatic polyimide resin are superior to the aromatic polyimide resin in terms of moldability.
  • the versatility of polyimide resin powder is high.
  • the polyimide resin can be recovered as a uniform powder, processing unevenness hardly occurs at the time of molding processing, so that the utility is high.
  • the powdered polyimide resin has advantages such as good storage stability and easy transportation.
  • Patent Document 3 reports a method of synthesizing polyimide resin at normal pressure and collecting it with powder.
  • a powdery polyimide resin is produced by heating an aromatic tetracarboxylic acid and a linear aliphatic diamine in N-methyl-2-pyrrolidone and toluene at a temperature of about 160 ° C. Has been. This reaction is sometimes referred to as thermal reflux imidization, and is characterized by the precipitation of polyimide resin as a powder.
  • the synthesis method by thermal reflux imidization can hardly be used as a method for synthesizing a polyimide resin using an aliphatic diamine.
  • N-methyl-2-pyrrolidone, dimethylacetamide, etc. are used as polymerization solvents for polyimide resins.
  • tetracarboxylic acid and aliphatic diamine are used in the synthesis of semi-aromatic polyimide resins in these solvents.
  • a strong salt of polyamic acid and / or a polyamic acid and an aliphatic diamine is formed, and a large amount of precipitates are generated at the beginning of the reaction, resulting in poor stirring and non-uniform reaction.
  • An object of the present invention is to solve the above-mentioned problems in the prior art, and to obtain a polyimide resin using an aliphatic diamine in powder form, a novel method for producing a polyimide resin powder, and a novel crystalline heat
  • the object is to provide a plastic polyimide resin powder.
  • the inventors of the present invention in the production of a polyimide resin using an aliphatic diamine as a raw material diamine component, by reacting a tetracarboxylic acid component and a diamine component in the presence of a specific solvent, The inventors have found that a powdery polyimide resin can be produced and have reached the present invention.
  • the present invention provides a solvent containing an alkylene glycol solvent represented by the formula (1), a tetracarboxylic acid component (A) containing tetracarboxylic dianhydride and a diamine component (B) containing an aliphatic diamine.
  • the manufacturing method of a polyimide resin powder including the process made to react in presence of (C) is provided.
  • (Ra 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • Ra 2 is a linear alkylene group having 2 to 6 carbon atoms
  • n is an integer of 1 to 3
  • the present invention also includes a repeating structural unit represented by the following formula (I) and a repeating structural unit represented by the following formula (II), wherein the repeating structural unit of the formula (I) and the repeating structural unit of the formula (II)
  • a polyimide resin powder is provided.
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • R 2 is a divalent chain aliphatic group having 5 to 20 carbon atoms.
  • X 1 And X 2 each independently represents a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • a powdery polyimide resin in the production of a polyimide resin using an aliphatic diamine as a raw material diamine component, a powdery polyimide resin can be produced with almost no lump. Moreover, a novel crystalline thermoplastic polyimide resin powder can be obtained by the present invention.
  • FIG. 2 is a GPC chart of the product obtained in Example 1.
  • 6 is a GPC chart of the product obtained in Example 12.
  • 2 is a measurement result of laser diffraction particle size distribution measurement of the product obtained in Example 1.
  • FIG. 2 is a measurement result of imaging particle size distribution measurement of the product obtained in Example 1.
  • FIG. It is a measurement result of the laser diffraction type particle size distribution measurement of the product obtained in Example 13.
  • It is a measurement result of the laser diffraction type particle size distribution measurement of the product obtained in Example 15.
  • 7 is a measurement result of laser diffraction particle size distribution measurement of the product obtained in Example 17.
  • 2 is a measurement result of laser diffraction particle size distribution measurement of the product obtained in Example 18.
  • the method for producing a polyimide resin powder according to the present invention includes a tetracarboxylic acid component (A) containing tetracarboxylic dianhydride and a diamine component (B) containing an aliphatic diamine. Reacting in the presence of a solvent (C) containing a system solvent.
  • a solvent containing a system solvent.
  • Ra 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • Ra 2 is a linear alkylene group having 2 to 6 carbon atoms
  • n is an integer of 1 to 3
  • the solvent (C) includes an alkylene glycol solvent represented by the formula (1).
  • a powdery polyimide resin can be obtained by reacting a tetracarboxylic acid component and a diamine component in the presence of such a specific solvent.
  • the polyamic acid is uniformly dissolved or the nylon salt is uniformly dispersed in the one-pot reaction, and (2) the polyimide resin is not dissolved or swollen at all. It may be desirable for the solvent to have one characteristic.
  • the solvent (C) generally satisfies these two characteristics.
  • the terms “powder” and “powdered” mean that when a screening test is performed by the method of JIS K0069, the ratio of passing through a sieve having a nominal aperture of 500 ⁇ m for JIS testing is 90% by mass or more. It means that there is.
  • the alkylene glycol solvent preferably has a boiling point of 140 ° C. or higher, more preferably 160 ° C. or higher, and still more preferably 180 ° C. or higher, from the viewpoint of enabling a polymerization reaction under normal pressure and high temperature conditions.
  • Ra 1 in the formula (1) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group.
  • Ra 2 in the formula (1) is a linear alkylene group having 2 to 6 carbon atoms, preferably a linear alkylene group having 2 to 3 carbon atoms, and more preferably an ethylene group.
  • N in the formula (1) is an integer of 1 to 3, preferably 2 or 3.
  • alkylene glycol solvent examples include ethylene glycol monomethyl ether, diethylene glycol monomethyl ether (also known as 2- (2-methoxyethoxy) ethanol), and triethylene glycol monomethyl ether (also known as 2- [2- (2-methoxy).
  • Ethoxy) ethoxy] ethanol ethylene glycol monoethyl ether, diethylene glycol monoethyl ether (also known as 2- (2-ethoxyethoxy) ethanol), ethylene glycol monoisopropyl ether, diethylene glycol monoisopropyl ether, triethylene glycol monoisopropyl ether, ethylene Glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, Glycol mono isobutyl ether, diethylene glycol isobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol, 1,3-propane diol.
  • solvents may be used alone, or two or more solvents selected from these may be used in combination.
  • 2- (2-methoxyethoxy) ethanol, 2- [2- (2-methoxyethoxy) ethoxy] ethanol, 2- (2-ethoxyethoxy) ethanol and 1,3-propanediol are preferable. More preferred are 2- (2-methoxyethoxy) ethanol and 2- (2-ethoxyethoxy) ethanol.
  • the content of the alkylene glycol solvent in the solvent (C) is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 75% by mass or more, and particularly preferably 95% by mass or more.
  • the solvent (C) may consist only of the alkylene glycol solvent.
  • the solvent (C) includes the alkylene glycol solvent and other solvents
  • specific examples of the “other solvents” include water, benzene, toluene, xylene, acetone, hexane, heptane, chlorobenzene, methanol, Ethanol, n-propanol, isopropanol, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylcaprolactam, hexa Methylphosphoramide, tetramethylenesulfone, dimethylsulfoxide, o-cresol, m-cresol, p-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxa , ⁇ -but
  • the solvent (C) preferably contains no water, but may contain water as long as the long-chain polyamic acid is formed as described above. Specifically, the water content is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 1% by mass or less, and particularly preferably 0% by mass. Note that it is preferable that 5 to 10% by mass of ⁇ -butyrolactone is contained in the solvent (C) in that the hue of the resulting polyimide resin is improved.
  • the diamine component (B) contains an aliphatic diamine.
  • the present invention enables the production of a powdered polyimide resin in the production of a polyimide resin using an aliphatic diamine as a raw material diamine component.
  • thermoforming processability is imparted to the polyimide resin powder.
  • the aliphatic diamine include a diamine having at least one alicyclic hydrocarbon structure and a chain aliphatic diamine.
  • the diamine containing at least one alicyclic hydrocarbon structure is preferably a diamine (B1) represented by the following formula (B1-1).
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure means a ring derived from an alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated. It may be a ring or a polycycle.
  • alicyclic hydrocarbon structure examples include, but are not limited to, cycloalkane rings such as cyclohexane ring, cycloalkene rings such as cyclohexene, bicycloalkane rings such as norbornane ring, and bicycloalkene rings such as norbornene. Do not mean. Among these, a cycloalkane ring is preferable, a cycloalkane ring having 4 to 7 carbon atoms is more preferable, and a cyclohexane ring is more preferable.
  • R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
  • R 1 contains at least one alicyclic hydrocarbon structure, preferably 1 to 3.
  • R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2), more preferably a divalent group represented by the following formula (R1-3). is there.
  • M 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1.
  • m 13 to m 15 are each independently an integer of 0 to 2, preferably 0. Or 1.
  • the positional relationship between the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans is Any value is acceptable.
  • the diamine (B1) is more preferably represented by the following formula (B1-2).
  • M 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1.
  • diamine (B1) examples include 1,2-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4′-diaminodicyclohexylmethane, 4,4′-methylenebis (2-methylcyclohexylamine), isophoronediamine, norbornanediamine, bis (aminomethyl) tricyclo [5.2.1.0 (2,6)] decane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4,4′-diaminodicyclohexylpropane and the like.
  • a diamine containing an alicyclic hydrocarbon structure generally has a structural isomer, but the cis / trans ratio is not limited.
  • the chain aliphatic diamine is preferably a diamine (B2) represented by the following formula (B2-1).
  • R 2 is a divalent chain aliphatic group having 5 to 20 carbon atoms.
  • the chain aliphatic group means a group derived from a chain aliphatic compound, and the chain aliphatic compound may be saturated or unsaturated, and may be linear. Alternatively, it may be branched, and may contain a hetero atom such as an oxygen atom.
  • R 2 is preferably an alkylene group having 5 to 20 carbon atoms, more preferably an alkylene group having 5 to 16 carbon atoms, still more preferably an alkylene group having 5 to 12 carbon atoms, still more preferably a carbon atom.
  • the alkylene group may be a linear alkylene group or a branched alkylene group, but is preferably a linear alkylene group.
  • R 2 is particularly preferably a hexamethylene group.
  • R 2 is a divalent chain aliphatic group having 5 to 20 carbon atoms (preferably 5 to 16 carbon atoms, more preferably 5 to 12 carbon atoms) including an ether group. It is done. Among these, a divalent group represented by the following formula (R2-1) or (R2-2) is preferable.
  • R2-1 a divalent group represented by the following formula (R2-1) or (R2-2) is preferable.
  • M 21 and m 22 are each independently an integer of 1 to 19, preferably 1 to 15, more preferably 1 to 11, and still more preferably 2 to 6.
  • m 23 to m 25 are And each independently represents an integer of 1 to 18, preferably 1 to 14, more preferably 1 to 10, and further preferably 2 to 4.
  • R 2 is a divalent chain aliphatic group having 5 to 20 carbon atoms (preferably 5 to 16 carbon atoms, more preferably 5 to 12 carbon atoms)
  • m 22 so that the carbon number of the divalent group represented by the formula (R2-1) falls within the range of 5 to 20 (preferably 5 to 16 carbon atoms, more preferably 5 to 12 carbon atoms).
  • m 21 + m 22 is 5 to 20 (preferably having 5 to 16 carbon atoms, more preferably 5 to 12).
  • the divalent group represented by the formula (R2-2) has 5 to 20 carbon atoms (preferably 5 to 16 carbon atoms, more preferably It is selected to fall within the range of 5 to 12 carbon atoms. That is, m 23 + m 24 + m 25 is 5 to 20 (preferably having 5 to 16 carbon atoms, more preferably 5 to 12).
  • diamine (B2) examples include 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylene
  • the diamine component (B) preferably contains the above diamine (B1) and the above diamine (B2) as the aliphatic diamine.
  • the amount of diamine (B1) with respect to the total amount of diamine (B1) and diamine (B2) is preferably 40 to 70 mol%, more preferably 40 to 60 mol%.
  • the diamine component (B) may be composed only of an aliphatic diamine, but may contain a diamine containing an aromatic ring in addition to the aliphatic diamine.
  • the diamine containing an aromatic ring is preferably a diamine containing at least one aromatic ring, more preferably a diamine (B3) represented by the following formula (B3-1).
  • R 3 is a divalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a tetracene ring.
  • R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • R 3 contains at least one aromatic ring, preferably 1 to 3 aromatic rings.
  • a monovalent or divalent electron withdrawing group may be bonded to the aromatic ring. Examples of the monovalent electron withdrawing group include nitro group, cyano group, p-toluenesulfonyl group, halogen, halogenated alkyl group, phenyl group, acyl group and the like.
  • divalent electron withdrawing group examples include a fluorinated alkylene group (for example, —C (CF 3 ) 2 —, — (CF 2 ) p — (wherein p is an integer of 1 to 10)).
  • a fluorinated alkylene group for example, —C (CF 3 ) 2 —, — (CF 2 ) p — (wherein p is an integer of 1 to 10).
  • p is an integer of 1 to 10.
  • halogenated alkylene group —CO—, —SO 2 —, —SO—, —CONH—, —COO— and the like can be mentioned.
  • R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
  • M 31 and m 32 are each independently an integer of 0 to 2, preferably 0 or 1.
  • m 33 and m 34 are each independently an integer of 0 to 2, preferably 0.
  • R 21 , R 22 , and R 23 are each independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms.
  • p 21 , p 22 and p 23 are integers of 0 to 4, preferably 0.
  • L 21 is a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Note that since R 3 is a C 6-22 divalent group containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in the formula (R3-1) are represented by the formula (R3- The divalent group represented by 1) is selected so that the number of carbon atoms is in the range of 6-22. Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in formula (R3-2) are the same as those in which the carbon number of the divalent group represented by formula (R3-2) is It is selected to fall within the range of 12-22.
  • diamine (B3) examples include orthoxylylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-diethynylbenzenediamine, 1,3-diethynylbenzenediamine, 1,4-diethynylbenzene.
  • the diamine component (B) includes both an aliphatic diamine and a diamine containing an aromatic ring
  • the diamine component (B) in addition to the diamine (B1) and the diamine (B2), the diamine component (B) further includes the diamine (B3).
  • the quantity of the said diamine (B3) with respect to the total amount of the said diamine (B1) and the said diamine (B2) is 25 mol% or less.
  • the lower limit is not particularly limited as long as it exceeds 0 mol%.
  • the diamine component (B) may contain a diamine (B4) represented by the following formula (B4-1).
  • R 4 is a divalent group containing —SO 2 — or —Si (R x ) (R y ) O—, and R x and R y are each independently a chain aliphatic group having 1 to 3 carbon atoms. Represents a group or a phenyl group.
  • the tetracarboxylic acid component (A) contains tetracarboxylic dianhydride.
  • the tetracarboxylic dianhydride is preferably a tetracarboxylic dianhydride containing at least one aromatic ring, and more preferably a tetracarboxylic dianhydride represented by the formula (A-1).
  • X is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • X is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a tetracene ring. Among these, a benzene ring and a naphthalene ring are preferable, and a benzene ring is more preferable.
  • X has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • X contains at least one aromatic ring, preferably 1 to 3 aromatic rings.
  • X is preferably a tetravalent group represented by any of the following formulas (X-1) to (X-4).
  • R 11 to R 18 are each independently an alkyl group having 1 to 4 carbon atoms.
  • P 11 to p 13 are each independently an integer of 0 to 2, preferably 0.
  • p 14 , P 15 , p 16 and p 18 are each independently an integer of 0 to 3, preferably 0.
  • p 17 is an integer of 0 to 4, preferably 0.
  • L 11 to L 13 independently represents a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.
  • X is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring
  • R 12 , R 13 , p 12 and p 13 in the formula (X-2) are represented by the formula (X-2 ) Is selected so that the carbon number of the tetravalent group represented by
  • L 11 , R 14 , R 15 , p 14 and p 15 in formula (X-3) are such that the tetravalent group represented by formula (X-3) has a carbon number in the range of 12-22.
  • L 12 , L 13 , R 16 , R 17 , R 18 , p 16 , p 17 and p 18 in formula (X-4) are tetravalents represented by formula (X-4) Are selected so that the number of carbons in the group falls within the range of 18-22.
  • X is particularly preferably a tetravalent group represented by the following formula (X-5) or (X-6).
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride, 2,3,5,6-toluenetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid Dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,4,5,8-naphthalenetetra
  • carboxylic dianhydrides examples. These tetracarboxylic dianhydrides may be used alone or in combination of two or more. Among these, pyromellitic dianhydride is particularly preferable.
  • the tetracarboxylic acid component (A) may contain a derivative of tetracarboxylic dianhydride (tetracarboxylic acid and / or alkyl ester of tetracarboxylic acid) in addition to tetracarboxylic dianhydride.
  • tetracarboxylic acid include pyromellitic acid, 2,3,5,6-toluenetetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetra
  • examples thereof include carboxylic acid and 1,4,5,8-naphthalenetetracarboxylic acid.
  • pyromellitic acid is particularly preferable.
  • alkyl ester of tetracarboxylic acid examples include dimethyl pyromellitic acid, diethyl pyromellitic acid, dipropyl pyromellitic acid, diisopropyl pyromellitic acid, dimethyl 2,3,5,6-toluenetetracarboxylic acid, 3,3 ′, 4 Dimethyl 4,4'-diphenylsulfonetetracarboxylate, dimethyl 3,3 ', 4,4'-benzophenone tetracarboxylate, dimethyl 3,3', 4,4'-biphenyltetracarboxylate, 1,4,5,8 -Dimethyl naphthalene tetracarboxylate and the like.
  • the alkyl group preferably has 1 to 3 carbon atoms.
  • the proportion of tetracarboxylic acid in the tetracarboxylic acid component (A) is preferably small, preferably 50 mol% or less, more preferably 30 mol% or less, and particularly preferably 0 mol%.
  • the charge ratio of the tetracarboxylic acid component (A) and the diamine component (B) is such that the diamine component (B) is 0.9 mol per 1 mol of the tetracarboxylic acid component (A). It is preferably ⁇ 1.1 mol.
  • a terminal sealing agent may be mixed in addition to the tetracarboxylic acid component (A) and the diamine component (B). Monoamines or dicarboxylic acids are preferred as the end-capping agent.
  • the amount of the terminal blocking agent introduced is preferably 0.0001 to 0.1 mol, particularly preferably 0.001 to 0.06 mol, per 1 mol of the tetracarboxylic acid component (A).
  • Examples of monoamine end-capping agents include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Examples thereof include ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline and the like. Of these, benzylamine and aniline can be preferably used.
  • dicarboxylic acid end-capping agent dicarboxylic acids are preferable, and there is no problem even if a part of them is closed.
  • phthalic acid for example, phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenone dicarboxylic acid, 3,4-benzophenone dicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclopentane-1,2 -Dicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid and the like.
  • phthalic acid and phthalic anhydride can be suitably used.
  • the method of synthesizing the polyimide resin by reacting the tetracarboxylic acid component (A) and the dicarboxylic acid component (B) is carried out in the presence of the specific solvent (C). It is not limited as long as it is performed.
  • both the tetracarboxylic acid component (A) and the diamine component (B) are charged in a specific solvent (C) and heated (preferably 150 ° C. or higher, more preferably 180 ° C. to 250 ° C.) to obtain a polyimide resin.
  • the method of synthesizing is mentioned.
  • the polymerization time is appropriately changed depending on the monomer used, but it is preferably about 0.5 to 6 hours.
  • a solution (a) containing the tetracarboxylic acid component (A) in the specific solvent (C) and a diamine component (B) in the specific solvent (C) are used.
  • the solution (b) is added to the solution (a) or the solution (a) is added to the solution (b).
  • the reaction of the tetracarboxylic acid component (A) and the diamine component (B) can be carried out under normal pressure or under pressure, but it is preferable in that the pressure-resistant container is not required under normal pressure.
  • the method for producing the polyimide resin powder of the present invention comprises a step of reacting the tetracarboxylic acid component (A) and the diamine component (B) with the tetracarboxylic acid component.
  • the solution (b) is preferably added to the solution (a) so that the amount of the component (B) added is 0.1 mol / min or less.
  • step (i) the amount of the diamine component (B) added per unit time with respect to 1 mol of the tetracarboxylic acid component (A) is 0.1 mol / min or less. It is desirable to control the rate of addition of solution (b) to solution (a) so that The mechanism that can suppress the formation of by-products by controlling the rate of addition of solution (b) to solution (a) to the above rate is not completely clear, but is considered as follows. By gradually adding the diamine component, formation of a strong polyamic acid salt is prevented, and a long-chain polyamic acid is formed.
  • this long-chain polyamic acid can be thermally imidized without causing hydrolysis, a long-chain polyimide can be obtained without forming a cyclic oligomer.
  • the diamine is added rapidly, most of the diamine is in the form of a polyamic acid salt, and many short-chain polyamic acids are obtained.
  • a short-chain polyamic acid inevitably increases the probability of adopting a cyclic arrangement, so that a cyclic oligomer is easily formed.
  • the addition rate of the solution (b) to the solution (a) is increased, and the addition amount of the diamine component (B) per unit time with respect to 1 mol of the tetracarboxylic acid component (A) is 0.1 mol / min or less.
  • the addition rate of the solution (b) to the solution (a) is increased, and the addition amount of the diamine component (B) per unit time with respect to 1 mol of the tetracarboxylic acid component (A) is 0.1 mol / min or less.
  • the addition rate of the solution (b) to the solution (a) is slow, and the diamine component (B) per unit time with respect to 1 mol of the tetracarboxylic acid component (A).
  • the lower limit value of the addition amount is not particularly limited.
  • the addition amount of the diamine component (B) per unit time with respect to 1 mol of the tetracarboxylic acid component (A) is 0.005 mol / min or more from the viewpoint of productivity or the fear of hydrolysis of the polyamic acid due to long-term retention. It is preferable to add the solution (b) to the solution (a) so that
  • a long-chain polyamic acid As described above, in order to suppress the formation of cyclic oligomers, it is preferable to form a long-chain polyamic acid as the first step.
  • Polyamic acid is sufficiently dissolved as a polymerization solvent and a uniform reaction system is maintained. What can ensure the solution viscosity which can be performed is preferable.
  • the tetracarboxylic acid component (A) and the diamine component (B) are reacted in the presence of the solvent (C). The system can be maintained.
  • the solution (a) contains a tetracarboxylic acid component (A) including tetracarboxylic dianhydride.
  • the solution (a) is preferably formed by adding the tetracarboxylic acid component (A) to the solvent (C).
  • the content of the tetracarboxylic acid component (A) in the solution (a) is preferably higher as long as it can be uniformly stirred. Specifically, it is preferably 20 to 45% by mass, and more preferably 25 to 45% by mass.
  • the solution (b) contains a diamine component (B) containing an aliphatic diamine.
  • the solution (b) is preferably formed by containing the diamine component (B) in the solvent (C).
  • the content of the diamine component (B) in the solution (b) is not particularly limited as long as it can be gradually added, but is preferably 20 to 80% by mass, more preferably 40 to 60% by mass. is there.
  • the solvent (C) is preferably contained in the solution (a) and the solution (b). Therefore, the step of reacting the tetracarboxylic acid component (A) with the diamine component (B) involves adding the diamine component to the solution (a) containing the tetracarboxylic acid component (A) and the alkylene glycol solvent.
  • the tetracarboxylic-acid component (A) contains tetracarboxylic dianhydride, the production
  • the mechanism is not completely clear, as described above, in order to suppress the formation of cyclic oligomers, it is necessary to form a long-chain polyamic acid as the first step. This is probably because long-chain polyamic acid can be formed.
  • the proportion of tetracarboxylic dianhydride in the tetracarboxylic acid component (A) is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more. It is particularly preferred that the tetracarboxylic acid component (A) consists essentially of tetracarboxylic dianhydride. “Substantially” as used herein means that when only tetracarboxylic dianhydride is used as the tetracarboxylic acid component (A), a part (up to about 10 mol%) reacts with moisture in the atmosphere. Ring opening means that it is permissible.
  • the addition of the solution (b) to the solution (a) is such that the total addition amount of the diamine component (B) with respect to 1 mol of the tetracarboxylic acid component (A) is 0.9 to 1.1 mol. It is preferable to end the process immediately. In the case of using a terminal blocking agent, it may be added after the solution (b) is added to the solution (a) in the step (i).
  • the kind and addition amount of terminal blocker, and those preferable aspects are as above-mentioned.
  • step (ii) the polyamic acid-containing solution (c) prepared in step (i) is heated to imidize the polyamic acid to obtain a polyimide resin.
  • the solution (c) is heated, precipitation of polyimide resin powder and dehydration due to imidization are usually confirmed at a liquid temperature of about 120 to 150 ° C.
  • the liquid temperature is preferably 150 ° C. or higher, more preferably the liquid temperature is 180 ° C. to 250 ° C., and the temperature is maintained for about 0.5 to 6 hours. It is preferable. Although it is not necessary to remove water generated by imidization, it is preferable to remove it.
  • steps (i) and (ii) can be carried out under normal pressure or under pressure, but it is preferable in terms of not requiring a pressure-resistant container if under normal pressure.
  • the step of reacting the tetracarboxylic acid component (A) and the diamine component (B) includes the step (i) and the step (ii), the production of by-products can be suppressed.
  • the area ratio of peaks in the low molecular region peaks where the peak top exists at a molecular weight of 1000 or less
  • the area ratio of peaks in the low molecular region can be 2 area% or less.
  • the polyimide resin produced by the method of the present invention is preferably a thermoplastic polyimide resin containing a repeating structural unit represented by the following formula (I) and a repeating structural unit represented by the following formula (II).
  • the content ratio of the repeating structural unit of the formula (I) to the total of the repeating structural unit of the formula (II) is 40 to 70 mol%.
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • R 2 is a divalent chain aliphatic group having 5 to 20 carbon atoms.
  • X 1 And X 2 each independently represents a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • R 1 and R 2 has the same meaning as R 2 in the formula (B1-1) R 1 and wherein in (B 2 - 1), preferable embodiments thereof are also the same.
  • X 1 and X 2 will be described later.
  • the polyimide resin having the above-described structure has a high glass transition temperature of 170 ° C. or higher (preferably 200 ° C. or higher) at the same time, although it has a low melting point of 360 ° C. or lower, and is a crystalline thermoplastic that can be hot melt molded. It is a polyimide resin.
  • the thermoplastic polyimide resin powder of the present invention will be described.
  • the thermoplastic polyimide resin powder of the present invention includes a repeating structural unit represented by the following formula (I) and a repeating structural unit represented by the following formula (II), and the repeating structural unit of the formula (I) and the formula (II)
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • R 2 is a divalent chain aliphatic group having 5 to 20 carbon atoms.
  • X 1 And X 2 each independently represents a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • thermoplastic polyimide resin powder When the thermoplastic polyimide resin powder has the above-described configuration, it becomes a novel crystalline thermoplastic polyimide resin powder, and has a low melting point of 360 ° C. or lower and a high glass of 170 ° C. or higher (preferably 200 ° C. or higher).
  • a thermoplastic polyimide resin having a transition temperature at the same time becomes a powder suitable for thermoforming.
  • thermoplastic polyimide resin powder of the present invention When the thermoplastic polyimide resin powder of the present invention is subjected to a screening test according to the method of JIS K0069, the ratio of passing through a sieve having a nominal opening of 500 ⁇ m for JIS testing is 90% by mass or more, preferably the nominal opening The ratio of passing through the 250 ⁇ m sieve is 90% by mass or more.
  • the thermoplastic polyimide resin powder of the present invention has such a particle size, so that processing unevenness during molding is less likely to occur, it is easy to convey, has high dispersibility when used as a filler, and shortens the drying time. A number of advantages such as being able to be realized are obtained.
  • thermoplastic polyimide resin powder of the present invention D10 is preferably 10 to 100 ⁇ m, D50 is preferably 15 to 250 ⁇ m, and D90 is determined by particle size measurement using a laser diffraction light scattering particle size distribution analyzer. It is preferably 20 to 500 ⁇ m.
  • the thermoplastic polyimide resin powder of the present invention preferably has a D10 value (D10 / D50) of 1/3 or more with respect to the D50 value as measured by a particle size distribution measuring device using a laser diffraction light scattering particle size distribution analyzer. / 2 or more is more preferable.
  • the D90 value (D90 / D50) with respect to the D50 value is preferably 3 or less, more preferably 2 or less.
  • Resin powder having a particle size distribution in such a range has a very narrow particle size range, and it is easy to set conditions for handling. In addition, stability during pneumatic transportation is high, and it is difficult to make it non-uniform when used as a filler.
  • the particle size measurement with a laser diffraction light scattering particle size distribution analyzer is performed using LMS-2000e (manufactured by Seishin Enterprise Co., Ltd.), water as a dispersion medium, and polyimide powder. Is measured in a state sufficiently dispersed in the dispersion medium. The measurement range is 0.02 to 2000 ⁇ m.
  • thermoplastic polyimide resin powder of the present invention preferably has an average circularity determined by imaging particle size distribution measurement of 0.800 to 1.000, more preferably 0.850 to 1.000.
  • the imaging type particle size distribution measurement uses FPIA-3000 manufactured by Malvern. In the imaging type particle size measurement, particles are directly measured by a camera, and the circularity is obtained by the following equation. The circularity is measured between 0 and 1.000, and 1.000 is an index that becomes a perfect circle.
  • Circularity Perimeter of a perfect circle having the same area as the photographed particle / perimeter of the photographed particle
  • the measurement uses a 0.2 wt% sodium hexametaphosphate aqueous solution as a dispersion medium and 10 wt% Triton X- as a surfactant. 10 drops of 100 aqueous solution is added, and the measurement powder is sufficiently dispersed under ultrasonic conditions. The measurement range is 0.5 to 200 ⁇ m.
  • R 1 is a divalent group having 6 to 22 carbon atoms and containing at least one alicyclic hydrocarbon structure.
  • R 1 has the same meaning as R 1 in formula (B1-1), and the preferred embodiments are also the same.
  • X 1 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • X 1 has the same meaning as X in formula (A-1), and the preferred embodiments are also the same.
  • R 2 is a divalent chain aliphatic group having 5 to 20 carbon atoms.
  • R 2 has the same meaning as R 2 in the formula (B 2 - 1), preferable embodiments thereof are also the same.
  • X 2 is defined in the same manner as X 1 in formula (I), and preferred embodiments are also the same.
  • the content ratio of the repeating structural unit of the formula (I) to the total of the repeating structural unit of the formula (I) and the repeating structural unit of the formula (II) is 40 to 70 mol%.
  • the content ratio of the repeating structural unit of the formula (I) is in the above range, the semi-crystallization time of the thermoplastic polyimide resin is 60 seconds or less and the crystallization speed is fast, and even in a general injection molding cycle, It becomes possible to crystallize the thermoplastic polyimide resin sufficiently.
  • the content ratio of the repeating structural unit of the formula (I) to the total of the repeating structural unit of the formula (I) and the repeating structural unit of the formula (II) is preferably 40 to 60 mol%.
  • the total content ratio of the repeating structural unit of the formula (I) and the repeating structural unit of the formula (II) with respect to all the repeating units constituting the thermoplastic polyimide resin is preferably 50 to 100 mol%, more preferably 75 to 100 mol%.
  • the thermoplastic polyimide resin may further contain a repeating structural unit of the following formula (III), in which case the repeating structural unit of the formula (I) and the formula (II)
  • the content ratio of the repeating structural unit of the formula (III) to the total of the repeating structural units is 25 mol% or less.
  • the lower limit is not particularly limited as long as it exceeds 0 mol%.
  • the content ratio is preferably 5 mol% or more, more preferably 10 mol% or more, while from the viewpoint of maintaining crystallinity, it is preferably 20 mol% or less. Preferably it is 15 mol% or less.
  • R 3 is a C 6-22 divalent group containing at least one aromatic ring.
  • X 3 is a C 6-22 tetravalent group containing at least one aromatic ring.
  • R 3 is a C 6-22 divalent group containing at least one aromatic ring.
  • R 3 has the same meaning as R 3 in the formula (B3-1), preferable embodiments thereof are also the same.
  • X 3 is defined in the same manner as X 1 in formula (1), and the preferred embodiment is also the same.
  • the content ratio of the repeating structural unit of the formula (III) with respect to all the repeating structural units constituting the thermoplastic polyimide resin of the present invention is preferably 25 mol% or less.
  • the lower limit is not particularly limited as long as it exceeds 0 mol%.
  • the content ratio is preferably 5 mol% or more, more preferably 10 mol% or more, while from the viewpoint of maintaining crystallinity, it is preferably 20 mol% or less. Preferably it is 15 mol% or less.
  • the thermoplastic polyimide resin may further contain a repeating structural unit of the following formula (IV).
  • R 4 is a divalent group containing —SO 2 — or —Si (R x ) (R y ) O—, and R x and R y are each independently a chain aliphatic group having 1 to 3 carbon atoms.
  • X 4 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • the thermoplastic polyimide resin preferably has a melting point of 360 ° C. or lower and a glass transition temperature of 170 ° C. or higher (preferably 200 ° C. or higher).
  • the thermoplastic polyimide resin has a calorific value of the crystallization exothermic peak observed when the temperature is lowered at a cooling rate of 10 ° C./min or higher after melting with a differential scanning calorimeter. It is preferably 5 mJ / mg or more.
  • the thermoplastic polyimide resin powder of the present invention can be produced by the method for producing the polyimide resin powder of the present invention described above.
  • the components used in the production method are as described above, but the tetracarboxylic acid component (A) and the diamine component (B) used for producing the thermoplastic polyimide resin powder of the present invention are preferably used in the following manner.
  • the tetracarboxylic acid component (A) preferably contains a tetracarboxylic dianhydride containing at least one aromatic ring.
  • the tetracarboxylic dianhydride containing at least one aromatic ring is preferably a compound in which four carboxyl groups are directly bonded to the aromatic ring, and may contain an alkyl group in the structure.
  • the tetracarboxylic dianhydride preferably has 6 to 38 carbon atoms.
  • the tetracarboxylic acid component (A) may contain a derivative of tetracarboxylic dianhydride containing at least one aromatic ring in addition to tetracarboxylic dianhydride containing at least one aromatic ring.
  • Examples of the derivative of tetracarboxylic dianhydride including at least one aromatic ring include tetracarboxylic acid including at least one aromatic ring and / or a derivative thereof.
  • the tetracarboxylic acid including at least one aromatic ring includes carbon Those of formula 6 to 26 are preferred.
  • the alkyl ester of tetracarboxylic acid containing at least one aromatic ring preferably has 6 to 38 carbon atoms.
  • Specific examples of the tetracarboxylic dianhydride containing at least one aromatic ring and derivatives thereof include the compounds mentioned in the description of the method for producing the polyimide resin powder of the present invention described above.
  • the molar ratio of the charged amount of the diamine containing at least one aromatic ring to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine is 25 mol% or less. It is preferable that On the other hand, the lower limit is not particularly limited as long as it exceeds 0 mol%.
  • the molar ratio is preferably 5 mol% or more, more preferably 10 mol% or more from the viewpoint of improving heat resistance, and preferably 20 mol% or less from the viewpoint of maintaining crystallinity. Preferably it is 15 mol% or less.
  • thermoplastic polyimide resin powder of the present invention is essentially a melt at a temperature of 360 ° C. or lower and is a uniform powder, and is therefore suitable for various thermoforming.
  • thermoforming method include injection molding, extrusion molding, blow molding, hot press molding, vacuum molding, pressure forming, laser molding, welding, welding, etc. Molding is possible.
  • shape of the molded body include injection molded bodies, extruded molded bodies, films, sheets, strands, pellets, fibers, round bars, square bars, spheres, pipes, tubes, and seamless belts.
  • the thermoplastic polyimide resin of the present invention can be used as a heat-resistant adhesive by heating and pressing, it can be used for flexible substrates, copper-clad laminates, and the like.
  • thermoplastic polyimide resin powder of the present invention can control the particle size and has a sharp particle size distribution
  • the heat-resistant modifying filler, the sliding modifying filler, the resin paste, and the fiber impregnating resin It can be used for materials, resin materials for fabric impregnation, resin materials for 3D printers, compression molding materials, and the like.
  • the melting point, glass transition temperature, and crystallization temperature of polyimide resin were measured using a differential scanning calorimeter device (DSC-6220) manufactured by SII Nanotechnology. It was measured. Under a nitrogen atmosphere, a thermal history under the following conditions was imposed on the thermoplastic polyimide resin. The conditions for the heat history were that the first temperature increase was a temperature increase rate of 10 ° C./min, then cooling was a cooling rate of 20 ° C./min, and then the second temperature increase was a temperature increase rate of 10 ° C./min.
  • the melting point of the present invention is determined by reading the peak top value of the endothermic peak observed at the first temperature increase or the second temperature increase.
  • the glass transition temperature is determined by reading the value observed at the first temperature increase or the second temperature increase.
  • the crystallization temperature is determined by reading the peak top value of the exothermic peak observed at the first temperature drop.
  • the melting point for the first temperature rise is Tm 0
  • the melting point for the second temperature rise is Tm
  • the glass transition temperature for the first temperature rise is Tg 0
  • the glass transition temperature for the second temperature rise is Tg
  • the first crystallization temperature is described as Tc 0
  • the first crystallization temperature is described as Tc.
  • Half-crystallization time was evaluated with a differential scanning calorimeter (DSC-6220) manufactured by SII Nanotechnology. The measurement conditions for a semi-crystallization time of 20 seconds or less were observed when a quenching operation at a cooling rate of 70 ° C./min was performed after holding the resin at 420 ° C. for 10 min in a nitrogen atmosphere and completely melting the resin. The time taken from the appearance of the crystallization peak to the peak top is calculated and determined.
  • DSC-6220 differential scanning calorimeter
  • 1% decomposition temperature 1% decomposition temperature was measured at a temperature increase of 10 ° C / min in an air atmosphere using a differential thermal and thermogravimetric simultaneous measurement device (TG / DTA-6200) manufactured by SII Nanotechnology. The temperature at which a weight loss of 1% with respect to the initial weight occurs is shown.
  • Example 1 650 g of 2- (2-methoxyethoxy) ethanol (Nippon Emulsifier Co., Ltd.) and pyromellitic dianhydride (Mitsubishi) in a 2 L separable flask equipped with a Dean-Stark apparatus, Liebig condenser, thermocouple, and four paddle blades 257.75 g (1.180 mol) (manufactured by Gas Chemical Co., Ltd.) was introduced to form a nitrogen flow, and then stirred at 150 rpm so as to obtain a uniform suspension.
  • This mixed diamine solution was added dropwise over 60 min to the suspension in the 2 L separable flask using a plunger pump. During the dropping, all were in a nitrogen flow state, and the rotation speed of the stirring blade was 250 rpm. Moreover, the maximum exothermic temperature at the time of dripping was 65 degreeC. After completion of the dropwise addition, 100 g of 2- (2-methoxyethoxy) ethanol and 1.897 g (0.0177 mol) of benzylamine (manufactured by Kanto Chemical Co., Inc.) were added and further stirred. At this stage, a yellow transparent uniform polyamic acid solution was obtained.
  • the polyamic acid solution in the 2 L separable flask was heated to 190 ° C.
  • precipitation of polyimide powder and dehydration accompanying imidization were confirmed when the liquid temperature was 130 to 150 ° C.
  • the mixture was allowed to cool to room temperature and filtered.
  • the obtained polyimide powder was washed with 300 g of 2- (2-methoxyethoxy) ethanol and 300 g of methanol (Mitsubishi Gas Chemical Co., Ltd.), filtered, dried in a dryer at 190 ° C. for 10 hours, and 360 g A polyimide powder 1 was obtained.
  • Tm 0 was only observed at 338 ° C. at the first temperature increase, and Tg 0 and Tc 0 were not clearly observed (having high crystallinity).
  • Tc was observed at 308 ° C. (calorific value 12.0 mJ / mg), and it was confirmed that the film had high crystallinity.
  • Tg was observed at 226 ° C.
  • Tm was observed at 335 ° C.
  • the half crystallization time was measured, it was determined to be 20 seconds or less.
  • the 1% decomposition temperature was 411 ° C., and the logarithmic viscosity was 0.63 dL / g.
  • Example 2 650 g 2- (2-methoxyethoxy) ethanol (Nippon Emulsifier Co., Ltd.) and 257.75 g pyromellitic dianhydride (Mitsubishi Gas Chemical Co., Ltd.) 1.180 mol) was introduced to form a nitrogen flow, followed by stirring at 150 rpm so as to obtain a uniform suspension.
  • This mixed diamine solution was added dropwise over 60 min to the suspension solution in the 2 L autoclave using a plunger pump. During the dropping, all were in a nitrogen flow state, and the rotation speed of the stirring blade was 250 rpm. After completion of the dropwise addition, 100 g of 2- (2-methoxyethoxy) ethanol and 1.897 g (0.0177 mol) of benzylamine (manufactured by Kanto Chemical Co., Inc.) were added, and the mixture was further stirred for 10 minutes. At this stage, a yellow transparent uniform polyamic acid solution was obtained. Next, after the autoclave was sealed and the stirring speed was 100 rpm, the polyamic acid solution in the 2 L autoclave was heated to 190 ° C.
  • Example 5 Synthesis and post-treatment were performed in the same manner as in Example 1 except that the polymerization solvent (2- (2-methoxyethoxy) ethanol) in Example 1 was changed to 1,3-propanediol, and 352 g of polyimide powder 5 was obtained. Obtained.
  • the thermophysical properties, half crystallization time, logarithmic viscosity, IR spectrum were the same as polyimide powder 1.
  • the polyimide powder 5 was passed through a sieve having an opening of 500 ⁇ m by the method of JIS K0069, 99% by mass or more passed, and when passed through a sieve having an opening of 250 ⁇ m, 99% by mass or more passed.
  • Example 6 The same as Example 1 except that the polymerization solvent (2- (2-methoxyethoxy) ethanol) in Example 1 was changed to 2- [2- (2-methoxyethoxy) ethoxy] ethanol (manufactured by Kanto Chemical Co., Inc.). Synthesis and post-treatment were performed by the method, and 348 g of polyimide powder 6 was obtained. The thermophysical properties, half crystallization time, logarithmic viscosity, IR spectrum were the same as polyimide powder 1. When the polyimide powder 6 was passed through a sieve having an aperture of 500 ⁇ m by the method of JIS K0069, 99% by mass or more passed, and when passed through a sieve having an aperture of 250 ⁇ m, 95% by mass passed.
  • Example 1 The synthesis was performed in the same manner as in Example 1 except that the polymerization solvent (2- (2-methoxyethoxy) ethanol) in Example 1 was changed to ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Corporation). Since strong sticking occurred on the bottom of the container during the temperature increase of 190 ° C., most of it could not be recovered. When the partially recovered slurry was filtered and dried, 64 g of polyimide was recovered, which contained a large amount of massive polyimide.
  • Example 2 The synthesis was performed in the same manner as in Example 1 except that the polymerization solvent (2- (2-methoxyethoxy) ethanol) in Example 1 was changed to dipropylene glycol monopropyl ether (Wako Pure Chemical Industries, Ltd.). .
  • the temperature was raised to 190 ° C., and post-treatment was performed in the same manner as in Example 1.
  • the resulting powder turned strong brown upon drying at 190 ° C.
  • Example 3 The synthesis was performed in the same manner as in Example 1 except that the polymerization solvent (2- (2-methoxyethoxy) ethanol) in Example 1 was changed to diethylene glycol diethyl ether (Wako Pure Chemical Industries, Ltd.). When the addition of the diamine was completed, the inside of the container was a non-uniform suspension, and formation of a polyamic acid solution was not confirmed. Thereafter, the temperature was raised to 190 ° C., and post-treatment was performed in the same manner as in Example 1. The resulting powder turned strong brown upon drying at 190 ° C. As a result of measuring the IR spectrum, almost no absorption of ⁇ (C ⁇ O) was observed, and it was confirmed that imidization did not proceed.
  • the polymerization solvent (2- (2-methoxyethoxy) in Example 1 was changed to diethylene glycol diethyl ether (Wako Pure Chemical Industries, Ltd.).
  • the temperature was raised to 190 ° C.
  • post-treatment was performed in the same manner
  • Example 4 Synthesis and post-treatment were performed in the same manner as in Example 1 except that the polymerization solvent (2- (2-methoxyethoxy) ethanol) in Example 1 was changed to N-methyl-2-pyrrolidone (Mitsubishi Chemical Corporation). went. During the heating to 190 ° C., strong sticking occurred on the bottom of the container, so that most could not be recovered. When the partially recovered slurry was filtered and dried, 92 g of polyimide was recovered, which contained a large amount of massive polyimide.
  • This mixed diamine solution was added dropwise over 60 min to the suspension solution in the 2 L autoclave using a plunger pump. During the dropping, all were in a nitrogen flow state, and the rotation speed of the stirring blade was 250 rpm. After the reaction, the polyimide could not be recovered because of strong sticking of the resin in the autoclave.
  • Example 1 When the molecular weight of the polyimide powder 1 obtained by the above-described method was further measured by HFIP-GPC, two peaks of a high molecular weight region and a low molecular weight region were observed. 3. The area ratio of the peak area was 99.7%, the low molecular weight region was Mw410, the area ratio of the peak area was 0.3%, and the peak top molecular weight value was 510. A GPC chart of the polyimide powder 1 is shown in FIG. In FIG. 1, it is the device specifications that the baseline will eventually rise.
  • Example 7 650 g 2- (2-methoxyethoxy) ethanol (Nippon Emulsifier Co., Ltd.) and 257.75 g pyromellitic dianhydride (Mitsubishi Gas Chemical Co., Ltd.) 1.180 mol) was introduced to form a nitrogen flow, followed by stirring at 150 rpm so as to obtain a uniform suspension.
  • This mixed diamine solution was added dropwise over 60 min to the suspension solution in the 2 L autoclave using a plunger pump. During the dropping, all were in a nitrogen flow state, and the rotation speed of the stirring blade was 250 rpm. Moreover, the maximum exothermic temperature at the time of dripping was 65 degreeC. After completion of the dropwise addition, 100 g of 2- (2-methoxyethoxy) ethanol and 1.897 g (0.0177 mol) of benzylamine (manufactured by Kanto Chemical Co., Inc.) were added, and the mixture was further stirred for 10 minutes. At this stage, a yellow transparent uniform polyamic acid solution was obtained.
  • the polyamic acid solution in the 2 L autoclave was heated to 190 ° C.
  • the internal pressure increased to 0.3 MPaG.
  • 225 g of water was introduced into a 2 L autoclave using a plunger pump, allowed to cool to room temperature, and filtered.
  • the obtained polyimide powder was washed with 300 g of 2- (2-methoxyethoxy) ethanol and 300 g of methanol (Mitsubishi Gas Chemical Co., Ltd.), filtered, dried at 190 ° C.
  • Tm 0 was only observed at 338 ° C. at the first temperature increase, and Tg 0 and Tc 0 were not clearly observed (having high crystallinity).
  • Tc was observed at 308 ° C. (calorific value 12.1 mJ / mg), and it was confirmed that the film had high crystallinity.
  • Tg was observed at 226 ° C.
  • Tm was observed at 335 ° C. Further, when the half crystallization time was measured, it was determined to be 20 seconds or less.
  • the 1% decomposition temperature was 410 ° C.
  • Example 8 Synthesis and post-treatment were performed in the same manner as in Example 1 except that the dropping time of the mixed diamine solution was changed to 15 min (the maximum exothermic temperature at the time of dropping was 83 ° C.), and 365 g of polyimide powder 8 was obtained. Obtained. Thermophysical properties, semi-crystallization time, logarithmic viscosity, IR spectrum, and particle size were not significantly different from those of polyimide powder 1.
  • the molecular weight was measured by HFIP-GPC, two peaks of a high molecular weight region and a low molecular weight region were observed.
  • the low molecular weight region was Mw370, the peak area ratio was 0.8%, and the peak top molecular weight value was 450.
  • Example 9 Except for changing the dropping time of the mixed diamine solution to 90 min (the maximum exothermic temperature at the time of dropping was 59 ° C.), synthesis and post-treatment were performed in the same manner as in Example 1, and 360 g of polyimide powder 9 was obtained. Obtained. Thermophysical properties, semi-crystallization time, logarithmic viscosity, IR spectrum, and particle size were not significantly different from those of polyimide powder 1. When the molecular weight was measured by HFIP-GPC, two peaks of a high molecular weight region and a low molecular weight region were observed.
  • the low molecular weight region was Mw 370, the peak area ratio was 1.1%, and the peak top molecular weight value was 450.
  • Example 10 Synthesis and post-treatment were performed in the same manner as in Example 1 except that the dropping time of the mixed diamine solution was changed to 180 min (the maximum exothermic temperature at the time of dropping was 54 ° C.), and 362 g of polyimide powder 10 was obtained. Obtained. Thermophysical properties, semi-crystallization time, logarithmic viscosity, IR spectrum, and particle size were not significantly different from those of polyimide powder 1. When the molecular weight was measured by HFIP-GPC, two peaks of a high molecular weight region and a low molecular weight region were observed.
  • the low molecular weight region was Mw 360, the peak area ratio was 0.9%, and the peak top molecular weight value was 440.
  • Example 11 The same as Example 1 except that the polymerization solvent (2- (2-methoxyethoxy) ethanol) in Example 1 was changed to 2- [2- (2-methoxyethoxy) ethoxy] ethanol (manufactured by Kanto Chemical Co., Inc.). (The maximum exothermic temperature at the time of dropping was 67 ° C.) and post-treatment, and 359 g of polyimide powder 11 was obtained. Thermophysical properties, semi-crystallization time, IR spectrum, and particle size were not significantly different from those of polyimide powder 1. When the molecular weight was measured by HFIP-GPC, two peaks of a high molecular weight region and a low molecular weight region were observed.
  • the low molecular weight region was Mw380, the peak area ratio was 0.5%, and the peak top molecular weight value was 500.
  • Example 12 650 g of 2- (2-methoxyethoxy) ethanol (Nippon Emulsifier Co., Ltd.) and pyromellitic dianhydride (Mitsubishi) in a 2 L separable flask equipped with a Dean-Stark apparatus, Liebig condenser, thermocouple, and four paddle blades 257.75 g (1.180 mol) (manufactured by Gas Chemical Co., Ltd.) was introduced to form a nitrogen flow, and then stirred at 150 rpm so as to obtain a uniform suspension.
  • This mixed diamine solution was added dropwise to the suspension in the 2 L separable flask with a dropping funnel over 5 minutes. At this time, strong precipitation that seemed to be a polyamic acid salt occurred, resulting in poor stirring. Therefore, the stirring speed was reduced to 20 rpm and stirring was performed for 10 minutes. The precipitate was gradually dispersed and stirring became possible, so the stirring speed was returned to 250 rpm. During the dropping, all were in a nitrogen flow state. Moreover, the maximum exothermic temperature at the time of dripping was 98 degreeC.
  • the low molecular weight region was Mw400, the peak area ratio was 2.5%, and the peak top molecular weight value was 380.
  • a GPC chart of the polyimide powder 12 is shown in FIG. In FIG. It is thought that the baseline was finally lowered due to the fluctuation of the concentration of sodium trifluoroacetate as a stabilizer.
  • This mixed diamine solution was added dropwise over 60 min to the suspension solution in the 2 L autoclave using a plunger pump. During the dropping, all were in a nitrogen flow state, and the rotation speed of the stirring blade was 250 rpm. When dripping, a strong salt gradually precipitated, and when about half of the diamine was introduced, the stirring was poor. Even when the temperature was raised, the salt was not dispersed and the slurry was not uniform, and the reaction was difficult to continue.
  • Laser diffraction particle size distribution measurement For laser diffraction particle size distribution measurement, LMS-2000e manufactured by Seishin Co., Ltd. was used. The measurement was performed using water as a dispersion medium under conditions where the measurement powder was sufficiently dispersed under ultrasonic conditions. The measurement range was 0.02 to 2000 ⁇ m.
  • Imaging type particle size distribution measurement FPIA-3000 manufactured by Malvern was used for the imaging type particle size distribution measurement.
  • the imaging type particle size measurement particles are directly measured by a camera, and the circularity is obtained by the following equation. The degree of circularity was measured between 0 and 1.000, and 1.000 was used as an index for a perfect circle.
  • Circularity Perimeter of a perfect circle with the same area as the photographed particle / perimeter of the photographed particle
  • the measurement uses a 0.2 wt% sodium hexametaphosphate aqueous solution as a dispersion medium and 10 wt% Triton X- as a surfactant. Ten drops of 100 aqueous solution was added, and the measurement was performed under the condition that the measurement powder was sufficiently dispersed under ultrasonic conditions. The measurement range was 0.5 to 200 ⁇ m.
  • Example 1 When the particle size of the polyimide powder 1 obtained by the method described above was measured with a laser diffraction light scattering particle size distribution analyzer, D10 was 13.6 ⁇ m, D50 was 21.2 ⁇ m, and D90 was unimodal with 33.3 ⁇ m. It was confirmed that the particle size distribution was narrow.
  • FIG. 3 shows the measurement results of the laser diffraction particle size distribution measurement.
  • the average circularity obtained by imaging particle size distribution measurement was 0.969, which was a value close to a perfect circle.
  • FIG. 4 shows the measurement results of the imaging particle size distribution measurement.
  • FIG. 5 shows the measurement results of the laser diffraction particle size distribution measurement.
  • the average circularity determined by imaging particle size distribution measurement was 0.936, which was a value close to a perfect circle.
  • Example 14 The same as Example 1 except that the polymerization solvent (2- (2-methoxyethoxy) ethanol) in Example 1 was changed to 2- [2- (2-methoxyethoxy) ethoxy] ethanol (manufactured by Kanto Chemical Co., Inc.). Synthesis and post-treatment were performed by the method, and 359 g of polyimide powder 14 was obtained. The thermophysical properties, half crystallization time, logarithmic viscosity, IR spectrum were the same as polyimide powder 1.
  • Example 15 650 g 2- (2-methoxyethoxy) ethanol (Nippon Emulsifier Co., Ltd.) and 257.75 g pyromellitic dianhydride (Mitsubishi Gas Chemical Co., Ltd.) 1.180 mol) was introduced to form a nitrogen flow, followed by stirring at 150 rpm so as to obtain a uniform suspension.
  • This mixed diamine solution was added dropwise over 60 min to the suspension solution in the 2 L autoclave using a plunger pump. During the dropping, all were in a nitrogen flow state, and the rotation speed of the stirring blade was 250 rpm. After completion of the dropwise addition, 1.897 g (0.0177 mol) of benzylamine (manufactured by Kanto Chemical Co., Inc.) was added, and the mixture was further stirred for 10 minutes. At this stage, a yellow transparent uniform polyamic acid solution was obtained. Next, after the autoclave was sealed and the stirring speed was 100 rpm, the polyamic acid solution in the 2 L autoclave was heated to 190 ° C.
  • the mixture was allowed to cool to room temperature and filtered.
  • the obtained polyimide powder was washed with 300 g of 2- (2-methoxyethoxy) ethanol and 300 g of methanol (Mitsubishi Gas Chemical Co., Ltd.), filtered, dried at 190 ° C. for 10 hours with a dryer, and 366 g of A polyimide powder 15 was obtained.
  • Tm 0 was only observed at 338 ° C. at the first temperature increase, and Tg 0 and Tc 0 were not clearly observed (having high crystallinity).
  • Tc was observed at 308 ° C. (calorific value 12.1 mJ / mg), and it was confirmed that the film had high crystallinity.
  • Tg was observed at 226 ° C.
  • Tm was observed at 335 ° C.
  • the 1% decomposition temperature was 410 ° C. and the logarithmic viscosity was 0.61 dL / g.
  • characteristic absorption of the imide ring was observed at ⁇ (C ⁇ O) 1771 and 1699 (cm ⁇ 1 ).
  • Example 16 650 g of 2- (2-methoxyethoxy) ethanol (Nippon Emulsifier Co., Ltd.) and pyromellitic dianhydride (Mitsubishi) in a 2 L separable flask equipped with a Dean-Stark apparatus, Liebig condenser, thermocouple, and four paddle blades 163.59 g (0.750 mol) (manufactured by Gas Chemical Co., Ltd.) was introduced to form a nitrogen flow, and then stirred at 150 rpm so as to obtain a uniform suspension.
  • Tc Upon cooling, Tc was observed at 247 ° C. and 253 ° C. (calorific value 16.4 mJ / mg), and it was confirmed to have high crystallinity.
  • Tg was observed to be 201 ° C.
  • Tm was observed to be 307 ° C.
  • the logarithmic viscosity was 0.69 dL / g.
  • characteristic absorption of the imide ring was observed at ⁇ (C ⁇ O) 1771 and 1699 (cm ⁇ 1 ).
  • the 1% decomposition temperature was 376 ° C.
  • Example 17 650 g of 2- (2-methoxyethoxy) ethanol (Nippon Emulsifier Co., Ltd.) and pyromellitic dianhydride (Mitsubishi) in a 2 L separable flask equipped with a Dean-Stark apparatus, Liebig condenser, thermocouple, and four paddle blades 163.59 g (0.750 mol) (manufactured by Gas Chemical Co., Ltd.) was introduced to form a nitrogen flow, and then stirred at 150 rpm so as to obtain a uniform suspension.
  • Tc 0 was not clearly observed (that is, having a high crystallinity).
  • Tc was observed at 225 ° C. (calorific value 17.7 mJ / mg), and it was confirmed that the film had high crystallinity.
  • Tg was observed at 187 ° C.
  • Tm was observed at 267 ° C. and 277 ° C.
  • the logarithmic viscosity was 0.71 dL / g.
  • the low molecular weight region was Mw650, the peak area ratio was 0.9%, and the peak top molecular weight value was 530.
  • the particle size was measured by a laser diffraction light scattering type particle size distribution measuring instrument, it was confirmed that the particle size distribution was narrow with D10 being 23.54 ⁇ m, D50 being 32.51 ⁇ m, and D90 being 44.76 ⁇ m.
  • FIG. 9 shows the measurement results of the laser diffraction particle size distribution measurement.
  • Example 18 650 g of 2- (2-methoxyethoxy) ethanol (Nippon Emulsifier Co., Ltd.) and pyromellitic dianhydride (Mitsubishi) in a 2 L separable flask equipped with a Dean-Stark apparatus, Liebig condenser, thermocouple, and four paddle blades 163.59 g (0.750 mol) (manufactured by Gas Chemical Co., Ltd.) was introduced to form a nitrogen flow, and then stirred at 150 rpm so as to obtain a uniform suspension.
  • Tc was observed at 212 ° C. (a calorific value of 22.8 mJ / mg), and it was confirmed to have high crystallinity.
  • Tg was observed at 173 ° C.
  • Tm was observed at 253 ° C.
  • the logarithmic viscosity was 0.73 dL / g.
  • characteristic absorption of the imide ring was observed at ⁇ (C ⁇ O) 1771 and 1699 (cm ⁇ 1 ).
  • the 1% decomposition temperature was 377 ° C.
  • FIG. 10 shows the measurement results of the laser diffraction particle size distribution measurement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 本発明は、テトラカルボン酸二無水物を含むテトラカルボン酸成分(A)と脂肪族ジアミンを含むジアミン成分(B)とを、式(1)で表されるアルキレングリコール系溶媒を含む溶媒(C)の存在下で反応させる工程を含む、ポリイミド樹脂粉末の製造方法を提供する。(Ra1は水素原子又は炭素数1~4のアルキル基であり、Ra2は炭素数2~6の直鎖のアルキレン基であり、nは1~3の整数である。)

Description

ポリイミド樹脂粉末の製造方法及び熱可塑性ポリイミド樹脂粉末
 本発明は、ポリイミド樹脂粉末の製造方法及び熱可塑性ポリイミド樹脂粉末に関する。
 芳香族ポリイミド樹脂は、分子鎖の剛直性、共鳴安定化、強い化学結合によって、高熱安定性、高強度、高耐溶媒性を有する有用なエンジニアリングプラスチックである。しかし、芳香族ポリイミド樹脂はその高熱安定性ゆえに、熱溶融による成形が一般に難しく、また、その高耐溶媒性ゆえに、ポリイミド溶液を経由して成形品を得ることも一般に難しい。したがって、芳香族ポリイミド樹脂の成形品を製造するには、テトラカルボン酸成分とジアミン成分とを反応させポリアミド酸を調製し、この段階で成形した後に、種々の方法によってポリアミド酸をイミド化する方法がとられる。最も知られている方法の1つは、N-メチルピロリドンやジメチルアセトアミドといった高沸点溶媒中で芳香族テトラカルボン酸成分と芳香環を含むジアミンを反応させポリアミド酸を調製し、当該ポリアミド酸を支持体上にフィルム状に成形した後、これを高温条件下で熱イミド化してポリイミドフィルムを得る方法である(特許文献1参照)。
 しかしながらこの方法は、(1)ポリアミド酸をフィルム状に成形する際に均一に溶媒を揮発させ、(2)続くイミド化で300℃を超えるような高温を要する、といった複数の手間が必要となる。
 ただし、一部の芳香族ポリイミド樹脂は、粉末状態で回収した後に、高温、高圧に長時間さらすことで成形が可能である(特許文献2参照)。
 一方で、半芳香族ポリイミド樹脂や全脂肪族ポリイミド樹脂の中には溶媒可溶性や熱可塑性を有するポリイミド樹脂が幾つか報告されている。溶媒可溶性ポリイミド樹脂はポリイミドワニスからのフィルム成形が可能であり、熱可塑性ポリイミド樹脂は熱溶融により種々の形状に成形することが可能である。これらの成形加工性を有するポリイミド樹脂は、最終製品形状ではない形状、すなわち粉末や塊状で得られたとしても成形することができる。このように、半芳香族ポリイミド樹脂や全脂肪族ポリイミド樹脂は、芳香族ポリイミド樹脂よりも、成形加工性の観点で優れていると言える。
 ポリイミド樹脂粉末を成形加工する技術は多数存在していることから、ポリイミド樹脂粉末の汎用性は高い。特に、ポリイミド樹脂を均一な粉末で回収することができれば、成形加工時に加工ムラが出にくいため、有用性は高い。また、粉末状のポリイミド樹脂には、保存安定性が良い、搬送が容易、といった利点も挙げられる。
 特許文献3には、ポリイミド樹脂を常圧合成し、粉末で回収する方法が報告されている。特許文献3においては、芳香族テトラカルボン酸と直鎖脂肪族ジアミンをN-メチル-2-ピロリドンとトルエン中で160℃程度の温度で加熱することで粉末状のポリイミド樹脂が生成されると報告されている。この反応は熱還流イミド化と呼ばれることがあり、ポリイミド樹脂が粉末で析出することも特徴となっている。
 しかしながら、熱還流イミド化による合成方法は、実際に脂肪族ジアミンを用いたポリイミド樹脂の合成方法として使用できることは少ない。一般的にポリイミド樹脂の重合溶媒としてN-メチル-2-ピロリドンやジメチルアセトアミド等が使用されるが、これら溶媒中での半芳香族ポリイミド樹脂の合成では、(1)テトラカルボン酸と脂肪族ジアミンの強固な塩及び/又はポリアミド酸と脂肪族ジアミンの強固な塩が形成され、反応初期に多量の析出物が発生し、撹拌不良や反応の不均一化を招く、(2)ポリイミド樹脂は析出固体として回収されるが、粒子径が安定せず、大きな塊になる、あるいは粒子が小さすぎて濾過性が悪化する、(3)反応時間が数時間以上かかり生産性が確保されない、といった多くの問題を有しており、実用性は劣ると言わざるを得ない。現実に、脂肪族ジアミンを使用したポリイミド樹脂は、合成の難しさ、生産性の低さから市場での販売量は極端に少ない。
特開2004-83885号公報 特開2005-28524号公報 特開2000-204172号公報
 本発明の目的は、従来技術における上記したような課題を解決する、脂肪族ジアミンを用いたポリイミド樹脂を粉末状で得ることができる、ポリイミド樹脂粉末の新規な製造方法及び新規な結晶性の熱可塑性ポリイミド樹脂粉末を提供することにある。
 本発明者らは、鋭意研究を重ねた結果、原料のジアミン成分として脂肪族ジアミンを用いたポリイミド樹脂の製造において、特定の溶媒の存在下でテトラカルボン酸成分とジアミン成分を反応させることで、粉末状のポリイミド樹脂が製造できることを見出し本発明に到達した。
 すなわち、本発明は、テトラカルボン酸二無水物を含むテトラカルボン酸成分(A)と脂肪族ジアミンを含むジアミン成分(B)とを、式(1)で表されるアルキレングリコール系溶媒を含む溶媒(C)の存在下で反応させる工程を含む、ポリイミド樹脂粉末の製造方法、を提供する。
Figure JPOXMLDOC01-appb-C000015
(Ra1は水素原子又は炭素数1~4のアルキル基であり、Ra2は炭素数2~6の直鎖のアルキレン基であり、nは1~3の整数である。)
 また、本発明は、下記式(I)で示される繰り返し構成単位及び下記式(II)で示される繰り返し構成単位を含み、式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する式(I)の繰り返し構成単位の含有比が40~70モル%である熱可塑性ポリイミド樹脂の粉末であって、目開き500μmのふるいを通過する割合が90質量%以上である、熱可塑性ポリイミド樹脂粉末、を提供する。
Figure JPOXMLDOC01-appb-C000016
(R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。R2は炭素数5~20の2価の鎖状脂肪族基である。X1及びX2は、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 本発明によって、原料のジアミン成分として脂肪族ジアミンを用いたポリイミド樹脂の製造において、粉末状のポリイミド樹脂を、塊をほとんど生じることなく、製造することできる。また、本発明によって、新規な結晶性の熱可塑性ポリイミド樹脂粉末を得ることができる。
実施例1で得られた生成物のGPCチャートである。 実施例12で得られた生成物のGPCチャートである。 実施例1で得られた生成物のレーザー回折式粒度分布測定の測定結果である。 実施例1で得られた生成物の撮像式粒度分布測定の測定結果である。 実施例13で得られた生成物のレーザー回折式粒度分布測定の測定結果である。 実施例14で得られた生成物のレーザー回折式粒度分布測定の測定結果である。 実施例15で得られた生成物のレーザー回折式粒度分布測定の測定結果である。 実施例16で得られた生成物のレーザー回折式粒度分布測定の測定結果である。 実施例17で得られた生成物のレーザー回折式粒度分布測定の測定結果である。 実施例18で得られた生成物のレーザー回折式粒度分布測定の測定結果である。
<ポリイミド樹脂粉末の製造方法>
 本発明のポリイミド樹脂粉末の製造方法は、テトラカルボン酸二無水物を含むテトラカルボン酸成分(A)と脂肪族ジアミンを含むジアミン成分(B)とを、式(1)で表されるアルキレングリコール系溶媒を含む溶媒(C)の存在下で反応させる工程を含む。
Figure JPOXMLDOC01-appb-C000017
(Ra1は水素原子又は炭素数1~4のアルキル基であり、Ra2は炭素数2~6の直鎖のアルキレン基であり、nは1~3の整数である。)
 溶媒(C)は、前記式(1)で表されるアルキレングリコール系溶媒を含む。原料のジアミン成分に脂肪族ジアミンを用いるポリイミド樹脂の製造において、このような特定の溶媒の存在下でテトラカルボン酸成分とジアミン成分を反応させることにより、粉末状のポリイミド樹脂を得ることができる。
 均一な粉末状のポリイミド樹脂を得るには、ワンポットの反応において(1)ポリアミド酸を均一に溶解させる、あるいはナイロン塩を均一に分散させる、(2)ポリイミド樹脂を全く溶解、膨潤させない、の二つの特性が溶媒に備わっていることが望ましいと考えられる。前記溶媒(C)はこの二つの特性を概ね満たしている。前記(1)が不完全であるとイミド化前に凝集、塊が発生し、前記(2)が不完全であるとイミド化後に凝集や塊が発生する。
 本発明において、「粉末」及び「粉末状」とは、JIS K0069の方法にて、ふるい分け試験を行ったときに、JIS試験用の公称目開き500μmのふるいを通過する割合が90質量%以上であることを意味する。
 前記アルキレングリコール系溶媒は、常圧において高温条件で重合反応を可能にする観点から、好ましくは140℃以上、より好ましくは160℃以上、さらに好ましくは180℃以上の沸点を有する。
 式(1)中のRa1は水素原子又は炭素数1~4のアルキル基であり、好ましくは炭素数1~4のアルキル基であり、より好ましくはメチル基又はエチル基である。
 式(1)中のRa2は炭素数2~6の直鎖のアルキレン基であり、好ましくは炭素数2~3の直鎖のアルキレン基であり、より好ましくはエチレン基である。
 式(1)中のnは1~3の整数であり、好ましくは2又は3である。
 前記アルキレングリコール系溶媒の具体例としては、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル(別名:2-(2-メトキシエトキシ)エタノール)、トリエチレングリコールモノメチルエーテル(別名:2-[2-(2-メトキシエトキシ)エトキシ]エタノール)、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル(別名:2-(2-エトキシエトキシ)エタノール)、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノイソプロピルエーテル、トリエチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、ジエチレングリコールモノイソブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコール、1,3-プロパンジオール等が挙げられる。これら溶媒を単独で用いてもよく、これらから選ばれる2つ以上の溶媒を組み合わせて用いてもよい。これら溶媒のうち、好ましくは2-(2-メトキシエトキシ)エタノール、2-[2-(2-メトキシエトキシ)エトキシ]エタノール、2-(2-エトキシエトキシ)エタノール及び1,3-プロパンジオールであり、より好ましくは2-(2-メトキシエトキシ)エタノール及び2-(2-エトキシエトキシ)エタノールである。
 溶媒(C)中における前記アルキレングリコール系溶媒の含有量は、好ましくは30質量%以上、より好ましくは50質量%以上、さらに好ましくは75質量%以上、特に好ましくは95質量%以上である。溶媒(C)は、前記アルキレングリコール系溶媒のみからなっていてもよい。
 溶媒(C)が、前記アルキレングリコール系溶媒とそれ以外の溶媒を含む場合、当該「それ以外の溶媒」の具体例としては水、ベンゼン、トルエン、キシレン、アセトン、ヘキサン、ヘプタン、クロロベンゼン、メタノール、エタノール、n-プロパノール、イソプロパノール、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、o-クレゾール、m-クレゾール、p-クレゾール、フェノール、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、ジブロモメタン、トリブロモメタン、1,2-ジブロモエタン、1,1,2-トリブロモエタン等が挙げられる。これら溶媒を単独で用いてもよく、これらから選ばれる2つ以上の溶媒を組み合わせて用いてもよい。溶媒(C)は水を含まないことが好ましいが、前述したように長鎖のポリアミド酸が形成される範囲ならば含水していてもよい。具体的に含水量としては好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは1質量%以下、特に好ましくは0質量%である。
 なお、溶媒(C)中にγ-ブチロラクトンが5~10質量%含まれると、得られるポリイミド樹脂の色相が改善される点で好ましい。
 ジアミン成分(B)は、脂肪族ジアミンを含む。本発明は、原料のジアミン成分として脂肪族ジアミンを用いたポリイミド樹脂の製造において、粉末のポリイミド樹脂の製造を可能にするものである。原料のジアミン成分として脂肪族ジアミンを用いることで、ポリイミド樹脂粉末に熱成形加工性が付与される。
 前記脂肪族ジアミンとしては、少なくとも1つの脂環式炭化水素構造を含むジアミン及び鎖状脂肪族ジアミンが挙げられる。
 前記少なくとも1つの脂環式炭化水素構造を含むジアミンは、好ましくは下記式(B1-1)で表されるジアミン(B1)である。
Figure JPOXMLDOC01-appb-C000018
(R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。)
 ここで、脂環式炭化水素構造とは、脂環式炭化水素化合物から誘導される環を意味し、該脂環式炭化水素化合物は、飽和であっても不飽和であってもよく、単環であっても多環であってもよい。
 脂環式炭化水素構造としては、シクロヘキサン環等のシクロアルカン環、シクロヘキセン等のシクロアルケン環、ノルボルナン環等のビシクロアルカン環、及びノルボルネン等のビシクロアルケン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはシクロアルカン環、より好ましくは炭素数4~7のシクロアルカン環、さらに好ましくはシクロヘキサン環である。
 R1の炭素数は6~22であり、好ましくは8~17である。
 R1は脂環式炭化水素構造を少なくとも1つ含み、好ましくは1~3個含む。
 R1は、好ましくは下記式(R1-1)又は(R1-2)で表される2価の基であり、更に好ましくは、下記式(R1-3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000019
(m11及びm12は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m13~m15は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。)
Figure JPOXMLDOC01-appb-C000020
 なお、上記の式(R1-3)で表される2価の基において、2つのメチレン基のシクロヘキサン環に対する位置関係はシスであってもトランスであってもよく、またシスとトランスの比は如何なる値でもよい。
 ジアミン(B1)は、より好ましくは下記式(B1-2)で表される。
Figure JPOXMLDOC01-appb-C000021
(m11及びm12は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。)
 ジアミン(B1)の具体例としては、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、イソフォロンジアミン、ノルボルナンジアミン、ビス(アミノメチル)トリシクロ[5.2.1.0(2,6)]デカン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルプロパン等が挙げられる。これらの化合物を単独で用いてもよく、これらから選ばれる2つ以上の化合物を組み合わせて用いてもよい。これらのうち、特に1,3-ビス(アミノメチル)シクロヘキサンが好適に使用できる。なお、脂環式炭化水素構造を含むジアミンは一般的には構造異性体を持つが、シス体/トランス体の比率は限定されない。
 前記鎖状脂肪族ジアミンは、好ましくは下記式(B2-1)で表されるジアミン(B2)である。
Figure JPOXMLDOC01-appb-C000022
(R2は炭素数5~20の2価の鎖状脂肪族基である。)
 ここで鎖状脂肪族基とは、鎖状脂肪族化合物から誘導される基を意味し、該鎖状脂肪族化合物は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよく、酸素原子等のヘテロ原子を含んでいてもよい。
 R2は、好ましくは炭素数5~20のアルキレン基であり、より好ましくは炭素数5~16のアルキレン基であり、更に好ましくは炭素数5~12のアルキレン基であり、より更に好ましくは炭素数6~10のアルキレン基である。前記アルキレン基は、直鎖アルキレン基であっても分岐アルキレン基であってもよいが、好ましくは直鎖アルキレン基である。
 R2は、特に好ましくはヘキサメチレン基である。
 また、R2の別の好適な様態として、エーテル基を含む炭素数5~20(好ましくは炭素数5~16、より好ましくは炭素数5~12)の2価の鎖状脂肪族基が挙げられる。その中でも好ましくは下記式(R2-1)又は(R2-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000023
(m21及びm22は、それぞれ独立に、1~19の整数であり、好ましくは1~15、より好ましくは1~11であり、更に好ましくは2~6である。m23~m25は、それぞれ独立に、1~18の整数であり、好ましくは1~14、より好ましくは1~10であり、更に好ましくは2~4である。)
 なお、R2は炭素数5~20(好ましくは炭素数5~16、より好ましくは炭素数5~12)の2価の鎖状脂肪族基であるので、式(R2-1)におけるm21及びm22は、式(R2-1)で表される2価の基の炭素数が5~20(好ましくは炭素数5~16、より好ましくは炭素数5~12)の範囲に入るように選択される。即ち、m21+m22は5~20(好ましくは炭素数5~16、より好ましくは5~12)である。
 同様に、式(R2-2)におけるm23~m25は、式(R2-2)で表される2価の基の炭素数が5~20(好ましくは炭素数5~16、より好ましくは炭素数5~12)の範囲に入るように選択される。即ち、m23+m24+m25は5~20(好ましくは炭素数5~16、より好ましくは5~12)である。
 ジアミン(B2)の具体例としては、1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、1,13-トリデカメチレンジアミン、1,14-テトラデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、2,2’-(エチレンジオキシ)ビス(エチレンアミン)等が挙げられる。これらの化合物を単独で用いてもよく、これらから選ばれる2つ以上の化合物を組み合わせて用いてもよい。これらのうち、特に1,6-ヘキサメチレンジアミンが好適に使用できる。
 ジアミン成分(B)は、前記脂肪族ジアミンとして、好ましく上述のジアミン(B1)及び上述のジアミン(B2)を含む。
 ジアミン(B1)とジアミン(B2)の合計量に対する、ジアミン(B1)の量は、好ましくは40~70モル%であり、より好ましくは40~60モル%である。
 ジアミン成分(B)は、脂肪族ジアミンのみからなってもよいが、脂肪族ジアミンに加えて芳香環を含むジアミンを含んでもよい。
 芳香環を含むジアミンは、好ましくは少なくとも1つの芳香環を含むジアミンであり、より好ましくは下記式(B3-1)で表されるジアミン(B3)である。
Figure JPOXMLDOC01-appb-C000024
(R3は少なくとも1つの芳香環を含む炭素数6~22の2価の基である。)
 前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 R3の炭素数は6~22であり、好ましくは6~18である。
 R3は芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 また、前記芳香環には1価もしくは2価の電子求引性基が結合していてもよい。1価の電子求引性基としてはニトロ基、シアノ基、p-トルエンスルホニル基、ハロゲン、ハロゲン化アルキル基、フェニル基、アシル基などが挙げられる。2価の電子求引性基としては、フッ化アルキレン基(例えば-C(CF32-、-(CF2p-(ここで、pは1~10の整数である))のようなハロゲン化アルキレン基のほかに、-CO-、-SO2-、-SO-、-CONH-、-COO-などが挙げられる。
 R3は、好ましくは下記式(R3-1)又は(R3-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000025
(m31及びm32は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m33及びm34は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。R21、R22、及びR23は、それぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。p21、p22及びp23は0~4の整数であり、好ましくは0である。L21は、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、R3は少なくとも1つの芳香環を含む炭素数6~22の2価の基であるので、式(R3-1)におけるm31、m32、R21及びp21は、式(R3-1)で表される2価の基の炭素数が6~22の範囲に入るように選択される。
 同様に、式(R3-2)におけるL21、m33、m34、R22、R23、p22及びp23は、式(R3-2)で表される2価の基の炭素数が12~22の範囲に入るように選択される。
 ジアミン(B3)の具体例としては、オルトキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,2-ジエチニルベンゼンジアミン、1,3-ジエチニルベンゼンジアミン、1,4-ジエチニルベンゼンジアミン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、α,α’-ビス(4-アミノフェニル)1,4-ジイソプロピルベンゼン、α,α’-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン等が挙げられる。
 ジアミン成分(B)が脂肪族ジアミンと芳香環を含むジアミンの両方を含む場合には、上述のジアミン(B1)と上述のジアミン(B2)に加えて、上述のジアミン(B3)をさらに含み、前記ジアミン(B1)と前記ジアミン(B2)の合計量に対する、前記ジアミン(B3)の量が25モル%以下であることが好ましい。一方で、下限は特に限定されず、0モル%を超えていればよい。
 ジアミン成分(B)は、下記式(B4-1)で表されるジアミン(B4)を含んでもよい。
Figure JPOXMLDOC01-appb-C000026
(R4は-SO2-又は-Si(Rx)(Ry)O-を含む2価の基であり、Rx及びRyはそれぞれ独立に、炭素数1~3の鎖状脂肪族基又はフェニル基を表す。)
 テトラカルボン酸成分(A)は、テトラカルボン酸二無水物を含む。前記テトラカルボン酸二無水物は、好ましくは、少なくとも1つの芳香環を含むテトラカルボン酸二無水物であり、より好ましくは式(A-1)で表されるテトラカルボン酸二無水物である。
Figure JPOXMLDOC01-appb-C000027
(Xは、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Xの炭素数は6~22であり、好ましくは6~18である。
 Xは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 Xは、好ましくは下記式(X-1)~(X-4)のいずれかで表される4価の基である。
Figure JPOXMLDOC01-appb-C000028

(R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数であり、好ましくは0である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数であり、好ましくは0である。p17は0~4の整数であり、好ましくは0である。L11~L13は、それぞれ独立に、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基であるので、式(X-2)におけるR12、R13、p12及びp13は、式(X-2)で表される4価の基の炭素数が10~22の範囲に入るように選択される。
 同様に、式(X-3)におけるL11、R14、R15、p14及びp15は、式(X-3)で表される4価の基の炭素数が12~22の範囲に入るように選択され、式(X-4)におけるL12、L13、R16、R17、R18、p16、p17及びp18は、式(X-4)で表される4価の基の炭素数が18~22の範囲に入るように選択される。
 Xは、特に好ましくは下記式(X-5)又は(X-6)で表される4価の基である。
Figure JPOXMLDOC01-appb-C000029
 テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物、2,3,5,6-トルエンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物等が挙げられる。これらテトラカルボン酸二無水物は、単独で用いてもよく、2つ以上を組み合わせて用いてもよい。これらの中でもピロメリット酸二無水物が特に好ましい。
 テトラカルボン酸成分(A)は、テトラカルボン酸二無水物に加えて、テトラカルボン酸二無水物の誘導体(テトラカルボン酸及び/又はテトラカルボン酸のアルキルエステル体)を含んでもよい。
 テトラカルボン酸としては、ピロメリット酸、2,3,5,6-トルエンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸等が挙げられる。これらの中でもピロメリット酸が特に好ましい。
 テトラカルボン酸のアルキルエステル体としては、ピロメリット酸ジメチル、ピロメリット酸ジエチル、ピロメリット酸ジプロピル、ピロメリット酸ジイソプロピル、2,3,5,6-トルエンテトラカルボン酸ジメチル、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸ジメチル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジメチル、3,3’,4,4’-ビフェニルテトラカルボン酸ジメチル、1,4,5,8-ナフタレンテトラカルボン酸ジメチル等、が挙げられる。上記テトラカルボン酸のアルキルエステル体において、アルキル基の炭素数は1~3が好ましい。
 これらのテトラカルボン酸及びその誘導体は、単独で用いてもよく、2つ以上を組み合わせて用いてもよい。
 テトラカルボン酸成分(A)中におけるテトラカルボン酸の割合は少ない方が好ましく、好ましくは50モル%以下、より好ましくは30モル%以下、特に好ましくは0モル%である。
 ポリイミド樹脂粉末を製造する際、前記テトラカルボン酸成分(A)と前記ジアミン成分(B)の仕込み量比は、テトラカルボン酸成分(A)1モルに対してジアミン成分(B)が0.9~1.1モルであることが好ましい。
 本発明のポリイミド樹脂粉末の製造方法においては、前記テトラカルボン酸成分(A)、前記ジアミン成分(B)の他に、末端封止剤を混合してもよい。末端封止剤としてモノアミン類あるいはジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、テトラカルボン酸成分(A)1モルに対して0.0001~0.1モルが好ましく、特に0.001~0.06モルが好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、4-メチルアニリン等が挙げられる。これらのうち、ベンジルアミン、アニリンが好適に使用できる。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していても問題は無い。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロヘキサン-1,2-ジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロへキセン-1,2-ジカルボン酸等が挙げられる。これらのうち、フタル酸、無水フタル酸が好適に使用できる。
 本発明のポリイミド樹脂粉末の製造方法においては、テトラカルボン酸成分(A)とジカルボン酸成分(B)とを反応させポリイミド樹脂を合成する方法は、前記反応が特定溶媒(C)の存在下で行われる限りにおいて限定されない。例えば、特定溶媒(C)中にテトラカルボン酸成分(A)とジアミン成分(B)の両方を仕込み、加熱(好ましくは150℃以上、より好ましくは180℃~250℃)することでポリイミド樹脂を合成する方法が挙げられる。重合時間は使用するモノマーにより適宜変更するが、0.5~6時間程度行うのが好ましい。
 また別の好適な様態として、特定溶媒(C)中にテトラカルボン酸成分(A)を含ませてなる溶液(a)と、特定溶媒(C)中にジアミン成分(B)を含ませてなる溶液(b)を別々に調製した後、溶液(a)に対し溶液(b)を添加して又は溶液(b)に対し溶液(a)を添加して、ポリアミド酸を含有する溶液(c)を調製し、次いで、前記溶液(c)を加熱することにより前記ポリアミド酸をイミド化して、ポリイミド樹脂を合成する方法もある。
 テトラカルボン酸成分(A)とジアミン成分(B)との反応は、常圧下又は加圧下のいずれで行うこともできるが、常圧下であれば耐圧性容器を必要としない点で好ましい。
 ところで、化合物の合成反応においては副生成物に代表される不純物の発生を抑制することが要求されるところ、これはポリイミド樹脂の製造においても同様である。例えば、特開2009-286868号公報に記載されるように、ポリイミド樹脂の製造においても環状オリゴマーが副生成物として発生することがあるため、本発明においても副生成物の発生を抑制することが望ましい。
 本発明のポリイミド樹脂粉末の製造方法は、副生成物の量を低減する観点からは、前記テトラカルボン酸成分(A)と前記ジアミン成分(B)とを反応させる工程が、前記テトラカルボン酸成分(A)を含有する溶液(a)に、前記ジアミン成分(B)を含有する溶液(b)を添加して、ポリアミド酸を含有する溶液(c)を調製する工程(i)、及び前記溶液(c)を加熱することにより前記ポリアミド酸をイミド化して、ポリイミド樹脂を得る工程(ii)を含み;前記工程(i)において、前記テトラカルボン酸成分(A)1molに対する単位時間当たりの前記ジアミン成分(B)の添加量が0.1mol/min以下となるように、前記溶液(a)に前記溶液(b)を添加することが好ましい。
 副生成物である環状オリゴマーの生成を抑制するためには、工程(i)において、テトラカルボン酸成分(A)1molに対する単位時間当たりのジアミン成分(B)の添加量が0.1mol/min以下となるように、溶液(a)に対する溶液(b)の添加速度を制御することが望ましい。溶液(a)に対する溶液(b)の添加速度を上記速度に制御することで副生成物の生成を抑制し得るメカニズムは完全には明らかではないが、次のように考えられる。ジアミン成分を徐々に添加することにより、強固なポリアミド酸塩の形成が防がれ、長鎖のポリアミド酸が形成されることとなる。この長鎖ポリアミド酸を、加水分解を起こさずに熱イミド化できれば、環状オリゴマーを生成することなく長鎖のポリイミドが得られる。一方で、ジアミン添加を急激に行うと大部分のジアミンがポリアミド酸塩の状態となり、短鎖のポリアミド酸が多数得られることとなる。短鎖のポリアミド酸であれば、環状配置をとる確率も必然的に上がるため、環状オリゴマーが形成されやすくなる。具体的には、溶液(a)に対する溶液(b)の添加速度が速くなり、テトラカルボン酸成分(A)1molに対する単位時間当たりのジアミン成分(B)の添加量が0.1mol/min以下であることで、環状オリゴマーが生成しにくくなる。また、強固なポリアミド酸塩の析出による撹拌不能、強い反応熱による反応の暴走等の問題も抑制することができる。環状オリゴマーの生成を抑制する観点からは、溶液(a)に対する溶液(b)の添加速度は遅くても問題が無く、テトラカルボン酸成分(A)1molに対する単位時間当たりのジアミン成分(B)の添加量の下限値は、特に限定されない。ただし、生産性の観点、あるいは長期保持に起因するポリアミド酸の加水分解発生懸念から、テトラカルボン酸成分(A)1molに対する単位時間当たりのジアミン成分(B)の添加量が0.005mol/min以上となるように、溶液(a)に溶液(b)を添加することが好ましい。
 先述したように、環状オリゴマーの生成を抑制するには、第一段階として長鎖のポリアミド酸を形成させることが好ましく、重合溶媒としてはポリアミド酸を十分に溶解させ、かつ均一な反応系を維持できるような溶液粘度を確保できるものが好ましい。本発明のポリイミド樹脂粉末の製造方法では、前記溶媒(C)の存在下でテトラカルボン酸成分(A)とジアミン成分(B)を反応させるため、ポリアミド酸を十分に溶解させ、かつ均一な反応系を維持することができる。
 溶液(a)は、テトラカルボン酸二無水物を含むテトラカルボン酸成分(A)を含有する。溶液(a)は、溶媒(C)にテトラカルボン酸成分(A)を含有させてなることが好ましい。溶液(a)におけるテトラカルボン酸成分(A)の含有量は、均一に撹拌が可能である範囲でより高濃度であることが好ましい。具体的には、好ましくは20~45質量%であり、より好ましくは25~45質量%である。
 また、溶液(b)は、脂肪族ジアミンを含むジアミン成分(B)を含有する。溶液(b)は、溶媒(C)にジアミン成分(B)を含有させてなることが好ましい。溶液(b)におけるジアミン成分(B)の含有量は、徐々に添加することが可能であれば特に制限はないが、好ましくは20~80質量%であり、より好ましくは40~60質量%である。
 このように、溶媒(C)は、溶液(a)及び溶液(b)に含有させることが好ましい。従って、前記のテトラカルボン酸成分(A)とジアミン成分(B)とを反応させる工程は、前記テトラカルボン酸成分(A)と前記アルキレングリコール系溶媒とを含む溶液(a)に、前記ジアミン成分(B)と前記アルキレングリコール系溶媒とを含む溶液(b)を添加することで、ポリアミド酸を含有する溶液(c)を調製する工程(i)、及び前記溶液(c)を加熱して前記ポリアミド酸をイミド化することにより、ポリイミド樹脂を得る工程(ii)を含み;前記工程(i)において、前記テトラカルボン酸成分(A)1molに対する単位時間当たりの前記ジアミン成分(B)の添加量が0.1mol/min以下となるように、前記溶液(a)に前記溶液(b)を添加する、ことが好ましい。
 本発明のポリイミド樹脂粉末の製造方法においては、テトラカルボン酸成分(A)が、テトラカルボン酸二無水物を含むことから、副生成物である環状オリゴマーの生成を抑制することができる。そのメカニズムは完全には明らかではないが、先述したように、環状オリゴマーの生成を抑制するには、第一段階として長鎖のポリアミド酸を形成させる必要があるところ、テトラカルボン酸二無水物は、長鎖のポリアミド酸を形成することが可能であるためだと考えられる。
 テトラカルボン酸成分(A)中におけるテトラカルボン酸二無水物の割合は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、さらに好ましくは90モル%以上である。テトラカルボン酸成分(A)は実質的にテトラカルボン酸二無水物のみからなることが特に好ましい。ここで言う“実質的に”とは、テトラカルボン酸成分(A)としてテトラカルボン酸二無水物のみを使用したときに、その一部(10モル%程度まで)が雰囲気中の水分と反応して開環することは許容されることを意味する。
 工程(i)において、溶液(a)への溶液(b)の添加は、テトラカルボン酸成分(A)1モルに対するジアミン成分(B)の合計添加量が0.9~1.1モルとなったところで終了させることが好ましい。
 末端封止剤を用いる場合は、工程(i)において、溶液(a)への溶液(b)の添加後、添加すればよい。末端封止剤の種類及び添加量、並びにそれらの好ましい態様は、既述のとおりである。
 工程(ii)では、工程(i)で調製したポリアミド酸含有溶液(c)を加熱することにより前記ポリアミド酸をイミド化して、ポリイミド樹脂を得る。
 溶液(c)を加熱すると、通常、液温度が120~150℃程度でポリイミド樹脂粉末の析出と、イミド化による脱水が確認される。しかし、イミド化を完結させるためには、好ましくは液温度が150℃以上、より好ましくは液温度が180℃~250℃になるまで加熱し、当該温度にて0.5~6時間程度保持することが好ましい。イミド化で発生した水は除かなくてもよいが、除く方が好ましい。
 既述のように、テトラカルボン酸成分(A)とジアミン成分(B)との反応は、常圧下又は加圧下のいずれで行うこともできる。従って、工程(i)及び(ii)は、常圧下又は加圧下のいずれで行うこともできるが、常圧下であれば耐圧性容器を必要としない点で好ましい。
 テトラカルボン酸成分(A)とジアミン成分(B)とを反応させる工程が、工程(i)、及び工程(ii)を含むことで、副生成物の生成を抑制することができ、本発明の製造方法よって得られた生成物をゲル浸透クロマトグラフィー測定すると、低分子領域のピーク(ピークトップが分子量1000以下に存在するピーク)の面積比を、2area%以下とすることが可能である。
 本発明の方法によって製造されるポリイミド樹脂は、好ましくは、下記式(I)で示される繰り返し構成単位及び下記式(II)で示される繰り返し構成単位を含む熱可塑性ポリイミド樹脂であり、式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する式(I)の繰り返し構成単位の含有比が40~70モル%である。
Figure JPOXMLDOC01-appb-C000030
(R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。R2は炭素数5~20の2価の鎖状脂肪族基である。X1及びX2は、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 R1及びR2は、式(B1-1)におけるR1及び式(B2-1)におけるR2と同義であり、好ましい態様も同様である。X1及びX2については後述する。
 上記のような構成を有するポリイミド樹脂は、360℃以下の低融点でありながら、170℃以上(好ましくは200℃以上)の高ガラス転移温度を同時に有する、熱溶融成形可能な結晶性の熱可塑ポリイミド樹脂である。
 以下、本発明の熱可塑性ポリイミド樹脂粉末について説明する。
<熱可塑性ポリイミド樹脂粉末>
 本発明の熱可塑性ポリイミド樹脂粉末は、下記式(I)で示される繰り返し構成単位及び下記式(II)で示される繰り返し構成単位を含み、式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する式(I)の繰り返し構成単位の含有比が40~70モル%である熱可塑性ポリイミド樹脂の粉末であって、目開き500μmのふるいを通過する割合が90質量%以上である。
Figure JPOXMLDOC01-appb-C000031
(R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。R2は炭素数5~20の2価の鎖状脂肪族基である。X1及びX2は、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 熱可塑性ポリイミド樹脂粉末が上記構成であることで、新規な結晶性の熱可塑ポリイミド樹脂粉末となり、また、360℃以下の低融点でありながら、170℃以上(好ましくは200℃以上)の高ガラス転移温度を同時に有する熱可塑性ポリイミド樹脂を、熱成形加工等に適した粉末となる。
 本発明の熱可塑性ポリイミド樹脂粉末は、JIS K0069の方法によりふるい分け試験を行ったときに、JIS試験用の公称目開き500μmのふるいを通過する割合が90質量%以上であり、好ましくは公称目開き250μmのふるいを通過する割合が90質量%以上である。本発明の熱可塑性ポリイミド樹脂粉末は、このような粒度を有することで、成形時の加工ムラが出にくい、搬送が容易である、充填剤として使用した場合に分散性が高い、乾燥時間の短縮化が可能である、といった多数の利点が得られる。
 また、本発明の熱可塑性ポリイミド樹脂粉末は、レーザー回折光散乱式粒度分布測定器による粒度測定で、D10が10~100μmであることが好ましく、D50が15~250μmであることが好ましく、D90が20~500μmであることが好ましい。このような範囲の粒度とすることで、上述の利点に加えて、濾過性が良好である、粒子の浮遊を抑えられる、といった利点も得られる。
 また、本発明の熱可塑性ポリイミド樹脂粉末は、レーザー回折光散乱式粒度分布測定器による粒度測定で、D50の値に対するD10の値(D10/D50)が1/3以上であることが好ましく、1/2以上であることがより好ましい。D50の値に対するD90の値(D90/D50)が3以下であることが好ましく、2以下であることがより好ましい。このような範囲の粒度分布を持つ樹脂粉末は粒度の範囲が非常に狭く、取り扱う際の条件設定が容易である。また、空気輸送時の安定性が高く、充填剤として使用した際に不均一化しにくい。
 なお、本発明の熱可塑性ポリイミド樹脂粉末において、レーザー回折光散乱式粒度分布測定器による粒度測定は、LMS-2000e(株式会社セイシン企業製)を用いて、分散媒に水を使用し、ポリイミド粉末が分散媒に十分に分散した状態で測定する。測定範囲は0.02~2000μmとする。
 また、本発明の熱可塑性ポリイミド樹脂粉末は、撮像式粒度分布測定によって求めた平均円形度が好ましくは0.800~1.000であり、より好ましくは0.850~1.000である。
 なお、撮像式粒度分布測定は、マルバーン社製FPIA-3000を使用する。撮像式粒度測定はカメラにより粒子を直接測定し、以下の式により円形度を求める。円形度は0~1.000の間で測定し、1.000が真円となる指標である。
  円形度=撮影された粒子と同じ面積の真円の周囲長/撮影された粒子の周囲長
 測定は分散媒として0.2wt%ヘキサメタリン酸ナトリウム水溶液を使用し、界面活性剤として10wt%トリトンX-100水溶液を10滴加え、超音波条件下により測定粉末が十分に分散する条件で行う。測定範囲は0.5~200μmとする。
 式(I)の繰り返し構成単位において、R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。R1は、式(B1-1)におけるR1と同義であり、好ましい態様も同様である。また、X1は少なくとも1つの芳香環を含む炭素数6~22の4価の基である。X1は、式(A-1)におけるXと同義であり、好ましい態様も同様である。
 式(II)の繰り返し構成単位において、R2は炭素数5~20の2価の鎖状脂肪族基である。R2は式(B2-1)におけるR2と同義であり、好ましい態様も同様である。X2は、式(I)におけるX1と同様に定義され、好ましい様態も同様である。
 式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する、式(I)の繰り返し構成単位の含有比は40~70モル%である。式(I)の繰り返し構成単位の含有比が上記範囲である場合、熱可塑性ポリイミド樹脂の半結晶化時間は60秒以下と結晶化速度が速く、一般的な射出成形サイクルにおいても、本発明における熱可塑性ポリイミド樹脂を十分に結晶化させ得ることが可能となる。式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する、式(I)の繰り返し構成単位の含有比は、好ましくは40~60モル%である。
 本発明の熱可塑性ポリイミド樹脂粉末において、熱可塑性ポリイミド樹脂を構成する全繰り返し単位に対する、式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計の含有比は、好ましくは50~100モル%、より好ましくは75~100モル%である。
 本発明の熱可塑性ポリイミド樹脂粉末において、熱可塑性ポリイミド樹脂は、さらに、下記式(III)の繰り返し構成単位を含有してもよく、その場合、式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する、式(III)の繰り返し構成単位の含有比は、25モル%以下である。一方で、下限は特に限定されず、0モル%を超えていればよい。
 前記含有比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
Figure JPOXMLDOC01-appb-C000032
(R3は少なくとも1つの芳香環を含む炭素数6~22の2価の基である。X3は少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 R3は少なくとも1つの芳香環を含む炭素数6~22の2価の基である。R3は式(B3-1)におけるR3と同義であり、好ましい態様も同様である。
 X3は、式(1)におけるX1と同様に定義され、好ましい様態も同様である。
 本発明の熱可塑性ポリイミド樹脂を構成する全繰り返し構成単位に対する、式(III)の繰り返し構成単位の含有比は、25モル%以下であることが好ましい。一方で、下限は特に限定されず、0モル%を超えていればよい。
 前記含有比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
 本発明の熱可塑性ポリイミド樹脂粉末において、熱可塑性ポリイミド樹脂は、さらに、下記式(IV)の繰り返し構成単位を含有してもよい。
Figure JPOXMLDOC01-appb-C000033
(R4は-SO2-又は-Si(Rx)(Ry)O-を含む2価の基であり、Rx及びRyはそれぞれ独立に、炭素数1~3の鎖状脂肪族基又はフェニル基を表す。X4は少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 本発明の熱可塑性ポリイミド樹脂粉末において、熱可塑性ポリイミド樹脂は、360℃以下の融点を有し、かつ170℃以上(好ましくは200℃以上)のガラス転移温度を有することが好ましい。
 本発明の熱可塑性ポリイミド樹脂粉末において、熱可塑性ポリイミド樹脂は、示差走査型熱量計にて溶融後に10℃/min以上の冷却速度で降温させた際に観測される結晶化発熱ピークの熱量が、5mJ/mg以上であることが好ましい。
 本発明の熱可塑性ポリイミド樹脂粉末は、既述の本発明のポリイミド樹脂粉末の製造方法により製造することができる。当該製造方法において用いる成分は既述のとおりであるが、本発明の熱可塑性ポリイミド樹脂粉末の製造に用いるテトラカルボン酸成分(A)及びジアミン成分(B)は、次の態様で用いることが好ましい。
 テトラカルボン酸成分(A)は少なくとも1つの芳香環を含むテトラカルボン酸二無水物を含有することが好ましい。
 少なくとも1つの芳香環を含むテトラカルボン酸二無水物は4つのカルボキシル基が直接芳香環に結合した化合物であることが好ましく、構造中にアルキル基を含んでいてもよい。また前記テトラカルボン酸二無水物は、炭素数6~38であるものが好ましい。
 テトラカルボン酸成分(A)は、少なくとも1つの芳香環を含むテトラカルボン酸二無水物に加えて、少なくとも1つの芳香環を含むテトラカルボン酸二無水物の誘導体を含んでいてもよい。少なくとも1つの芳香環を含むテトラカルボン酸二無水物の誘導体としては、少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体が挙げられ、少なくとも1つの芳香環を含むテトラカルボン酸は、炭素数6~26であるものが好ましい。また、少なくとも1つの芳香環を含むテトラカルボン酸のアルキルエステル体は、炭素数6~38であるものが好ましい。
 少なくとも1つの芳香環を含むテトラカルボン酸二無水物、及びその誘導体の具体例は、既述の本発明のポリイミド樹脂粉末の製造方法の説明において挙げた化合物が挙げられる。
 ジアミン成分(B)は、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの芳香環を含むジアミンの仕込み量のモル比は、25モル%以下であることが好ましい。一方で、下限は特に限定されず、0モル%を超えていればよい。
 前記モル比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
 本発明の熱可塑性ポリイミド樹脂粉末は本質的に360℃以下の温度で溶融し、均一な粉末であるため、各種熱成形に適している。熱成形方法としては射出成形、押出し成形、ブロー成形、熱プレス成形、真空成形、圧空成形、レーザー成形、溶接、溶着等が挙げられるが、熱溶融工程を経る成形方法に関しては何れの方法においても成形が可能である。成形体の形状としては、射出成形体、押出し成形体、フィルム、シート、ストランド、ペレット、繊維、丸棒、角棒、球状、パイプ、チューブ、シームレスベルト等が挙げられる。また、本発明の熱可塑性ポリイミド樹脂は加熱、加圧により耐熱接着剤として使用することができるため、フレキシブル基板、銅張積層板等への利用が可能である。
 また、本発明の熱可塑性ポリイミド樹脂粉末は粒子径の制御が可能であり、粒度分布もシャープであるため、耐熱改質用充填剤、摺動改質用充填剤、樹脂ペースト、繊維含浸用樹脂材料、織物含浸用樹脂材料、3Dプリンター用樹脂材料、圧縮成形用材料等への利用が可能である。
 次に実施例を挙げて本発明をより詳しく説明するが、本発明はこれに限定されるものではない。また、各実施例における物性の評価は以下に示す方法により測定した。
<評価1>
 実施例1~6及び比較例1~比較例5について、以下に示す方法によりポリイミド樹脂粉末製造の基礎評価を行った。
1)対数粘度μ
 対数粘度μは得られたポリイミドを190~200℃で2時間乾燥した後、ポリイミド0.100gを濃硫酸(96%、関東化学株式会社製)20mLに溶解し、キャノンフェンスケ粘度計を使用して30℃において測定を行った。対数粘度μは下記式により求めた。
μ=ln(ts/t0)/C
0:溶媒の流れる時間
ts:希薄高分子溶液の流れる時間
C:0.5g/dL
2)ポリイミド樹脂の融点、ガラス転移温度、及び結晶化温度
 ポリイミド樹脂の融点、ガラス転移温度、及び結晶化温度はエスアイアイ・ナノテクノロジー株式会社製示差走査熱量計装置(DSC-6220)を用いて測定した。窒素雰囲気下、熱可塑性ポリイミド樹脂に下記条件の熱履歴を課した。熱履歴の条件は、昇温1度目を昇温速度10℃/minとし、その後冷却を冷却速度20℃/minとし、その後昇温2度目を昇温速度10℃/minとした。本発明の融点は昇温1度目、あるいは昇温2度目で観測された吸熱ピークのピークトップ値を読み取り決定している。ガラス転移温度は昇温1度目、あるいは昇温2度目で観測された値を読み取り決定している。結晶化温度は降温1度目で観測された発熱ピークのピークトップ値を読み取り決定している。なお、実施例中では、昇温1度目の融点をTm0、昇温2度目の融点をTm、昇温1度目のガラス転移温度をTg0、昇温2度目のガラス転移温度をTg、昇温1度目の結晶化温度をTc0、降温1度目の結晶化温度をTcとして記載している。
3)半結晶化時間
 半結晶化時間についてはエスアイアイ・ナノテクノロジー株式会社製示差走査熱量計装置(DSC-6220)において評価を行った。半結晶化時間が20秒以下のものの測定条件は窒素雰囲気下、420℃で10minホールドし、樹脂を完全に溶融させたのち、冷却速度70℃/minの急冷操作を行った際に、観測される結晶化ピークの出現時からピークトップまでにかかった時間を計算し、決定している。
4)1%分解温度
 1%分解温度はエスアイアイ・ナノテクノロジー株式会社製示差熱・熱重量同時測定装置(TG/DTA-6200)において、空気雰囲気下、昇温10℃/minで測定を行った際に、初期重量に対して1%の重量減少が起こった温度を示している。
5)IR測定(イミド化の確認)
 IR測定については、日本電子株式会社製JIR-WINSPEC50を用いて測定した。
6)ふるいによる粒径の確認
 ふるいによる粒径の確認(ふるい式分級測定)は、JIS K0069の方法により、公称目開き500μmまたは公称目開き250μmのJIS試験用ふるいを用いて行った。
[実施例1]
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤株式会社製)650gとピロメリット酸二無水物(三菱ガス化学株式会社製)257.75g(1.180mol)を導入し、窒素フローとした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製)83.96g(0.5902mol)、1,6-ヘキサメチレンジアミン(和光純薬工業株式会社製)54.86g(0.4722mol)、4,4’-ジアミノジフェニルエーテル(和歌山精化工業株式会社製)23.64g(0.1180mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ混合ジアミン溶液を調製した。
 この混合ジアミン溶液を、プランジャーポンプを使用して、2Lセパラブルフラスコ中の懸濁溶液に60minかけて滴下した。滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。また、滴下の際の最高発熱温度は65℃であった。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール100gとベンジルアミン(関東化学株式会社製)1.897g(0.0177mol)を加えさらに撹拌した。この段階で、黄色透明な均一ポリアミド酸溶液が得られた。次に、撹拌速度を200rpmとした後に、2Lセパラブルフラスコ中のポリアミド酸溶液を190℃まで昇温した。昇温を行っていく過程において、液温度が130~150℃の間にポリイミド粉末の析出と、イミド化に伴う脱水が確認された。190℃で30分保持した後、室温まで放冷を行い、濾過を行った。得られたポリイミド粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール(三菱ガス化学株式会社製)300gにより洗浄、濾過を行った後、乾燥機で190℃、10時間乾燥を行い、360gのポリイミド粉末1を得た。
 DSC測定した結果、昇温1度目にはTm0が338℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが308℃(発熱量12.0mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが226℃、Tmが335℃に観測された。
 また、半結晶化時間を測定したところ20秒以下と決定された。1%分解温度は411℃、対数粘度は0.63dL/gであった。
 また、IRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。ポリイミド粉末1をJIS K0069の方法により、目開き500μmのふるいに通したところ99質量%以上が通過し、目開き250μmのふるいに通したところ99質量%以上が通過した。
[実施例2]
 熱電対、4枚パドル翼を設置した2Lオートクレーブ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤株式会社製)650gとピロメリット酸二無水物(三菱ガス化学株式会社製)257.75g(1.180mol)を導入し、窒素フローとした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製)83.96g(0.5902mol)、1,6-ヘキサメチレンジアミン(和光純薬工業株式会社製)54.86g(0.4722mol)、4,4’-ジアミノジフェニルエーテル(和歌山精化工業株式会社製)23.64g(0.1180mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ混合ジアミン溶液を調製した。この混合ジアミン溶液を、プランジャーポンプを使用して、2Lオートクレーブ中の懸濁溶液に60minかけて滴下した。滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール100gとベンジルアミン(関東化学株式会社製)1.897g(0.0177mol)を加えさらに10分間撹拌した。この段階で、黄色透明な均一ポリアミド酸溶液が得られた。次に、オートクレーブを密閉状態、撹拌速度を100rpmとした後に、2Lオートクレーブ中のポリアミド酸溶液を190℃まで昇温した。昇温に伴いイミド化が起こると水が発生するはずであるが、この水は全て系内に密閉した。昇温中に、内圧が0.3MPaGまで上昇した。190℃で30分保持した後、室温まで放冷を行い、濾過を行った。得られたポリイミド粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール(三菱ガス化学株式会社製)300gにより洗浄、濾過を行った後、乾燥機で190℃、10時間乾燥を行い、365gのポリイミド粉末2を得た。熱物性、半結晶化時間、対数粘度、IRスペクトル、はポリイミド粉末1と大差の無い結果となった。ポリイミド粉末2をJIS K0069の方法により、目開き500μmのふるいに通したところ99質量%以上が通過し、目開き250μmのふるいを通したところ99%以上が通過した。
[実施例3]
 実施例1の重合溶媒(2-(2-メトキシエトキシ)エタノール)を2-(2-メトキシエトキシ)エタノール/γ-ブチロラクトン=90/10質量%混合溶媒に変えた以外は実施例1と同様の方法で合成、後処理を行い、363gのポリイミド粉末3を得た。熱物性、半結晶化時間、対数粘度、IRスペクトル、はポリイミド粉末1と大差の無い結果となった。ポリイミド粉末3をJIS K0069の方法により、目開き500μmのふるいに通したところ99質量%以上が通過し、目開き250μmのふるいに通したところ99質量%以上が通過した。
[実施例4]
 実施例1の重合溶媒(2-(2-メトキシエトキシ)エタノール)を2-(2-メトキシエトキシ)エタノール/γ-ブチロラクトン=70/30質量%混合溶媒に変えた以外は実施例1と同様の方法で合成、後処理を行い、360gのポリイミド粉末4を得た。熱物性、半結晶化時間、対数粘度、IRスペクトル、はポリイミド粉末1と大差の無い結果となった。ポリイミド粉末4をJIS K0069の方法により、目開き500μmのふるいに通したところ99質量%以上が通過し、目開き250μmのふるいに通したところ99質量%以上が通過した。
[実施例5]
 実施例1の重合溶媒(2-(2-メトキシエトキシ)エタノール)を1,3-プロパンジオールに変えた以外は実施例1と同様の方法で合成、後処理を行い、352gのポリイミド粉末5を得た。熱物性、半結晶化時間、対数粘度、IRスペクトル、はポリイミド粉末1と大差の無い結果となった。ポリイミド粉末5をJIS K0069の方法により、目開き500μmのふるいに通したところ99質量%以上が通過し、目開き250μmのふるいに通したところ99質量%以上が通過した。
[実施例6]
 実施例1の重合溶媒(2-(2-メトキシエトキシ)エタノール)を2-[2-(2-メトキシエトキシ)エトキシ]エタノール(関東化学株式会社製)に変えた以外は実施例1と同様の方法で合成、後処理を行い、348gのポリイミド粉末6を得た。熱物性、半結晶化時間、対数粘度、IRスペクトル、はポリイミド粉末1と大差の無い結果となった。ポリイミド粉末6をJIS K0069の方法により、目開き500μmのふるいに通したところ99質量%以上が通過し、目開き250μmのふるいに通したところ95質量%が通過した。
[比較例1]
 実施例1の重合溶媒(2-(2-メトキシエトキシ)エタノール)をγ-ブチロラクトン(三菱化学株式会社製)に変えた以外は実施例1と同様の方法で合成を行った。190℃の昇温を行う途中で容器底面に強い固着が発生したため、大部分は回収できなかった。部分的に回収されたスラリー液を濾過、乾燥したところ、ポリイミドが64g回収されたが、その中には塊状のポリイミドが多く含まれていた。
[比較例2]
 実施例1の重合溶媒(2-(2-メトキシエトキシ)エタノール)をジプロピレングリコールモノプロピルエーテル(和光純薬工業株式会社製)に変えた以外は実施例1と同様の方法で合成を行った。ジアミンの滴下が終わった時点で容器内は不均一の懸濁液となっており、ポリアミド酸溶液の形成は確認されなかった。その後、190℃まで昇温し、実施例1と同様の方法で後処理を行った。190℃乾燥の際に、得られた粉末は強い褐色に変色した。IRスペクトルを測定した結果イミド基由来のν(C=O)の吸収がほとんど見られず、イミド化が進行していないことを確認した。
 なお、ジプロピレングリコールモノプロピルエーテルの構造式は下記の通りである。
Figure JPOXMLDOC01-appb-C000034
[比較例3]
 実施例1の重合溶媒(2-(2-メトキシエトキシ)エタノール)をジエチレングリコールジエチルエーテル(和光純薬工業株式会社製)に変えた以外は実施例1と同様の方法で合成を行った。ジアミンの滴下が終わった時点で容器内は不均一の懸濁液となっており、ポリアミド酸溶液の形成は確認されなかった。その後、190℃まで昇温し、実施例1と同様の方法で後処理を行った。190℃乾燥の際に、得られた粉末は強い褐色に変色した。IRスペクトルを測定した結果ν(C=O)の吸収がほとんど見られず、イミド化が進行していないことを確認した。
[比較例4]
 実施例1の重合溶媒(2-(2-メトキシエトキシ)エタノール)をN-メチル‐2-ピロリドン(三菱化学株式会社製)に変えた以外は実施例1と同様の方法で合成、後処理を行った。190℃に昇温を行う途中で容器底面に強い固着が発生したため、大部分は回収できなかった。部分的に回収されたスラリー液を濾過、乾燥したところ、ポリイミドが92g回収されたが、その中には塊状のポリイミドが多く含まれていた。
[比較例5]
 熱電対、4枚パドル翼を設置した2Lオートクレーブ中にN-メチル‐2-ピロリドン(三菱化学株式会社製)650gとピロメリット酸(三菱ガス化学株式会社製)300.0g(1.180mol)を導入し、窒素フローとした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製)83.96g(0.5902mol)、1,6-ヘキサメチレンジアミン(和光純薬工業株式会社製)54.86g(0.4722mol)、4,4’-ジアミノジフェニルエーテル(和歌山精化工業株式会社製)23.64g(0.1180mol)を2-(2-メトキシエトキシ)エタノール/水=80/20質量%混合溶媒250gに溶解させ混合ジアミン溶液を調製した。この混合ジアミン溶液を、プランジャーポンプを使用して、2Lオートクレーブ中の懸濁溶液に60minかけて滴下した。滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。反応後、オートクレーブ内で樹脂の強い固着が発生したため、ポリイミドを回収できなかった。
<評価2>
 実施例7~12及び比較例6について、評価1に示す方法によりポリイミド樹脂粉末製造の基礎評価を行うと共に、以下に示す方法によりポリイミド樹脂粉末製造における副生成物の生成の抑制効果について評価した。副生成物の生成の抑制効果の評価は、実施例1に対しても行った。評価2の条件及び結果を表1及び表2に示す。
7)副生成物の生成の抑制効果の評価
 副生成物の生成の抑制効果は、得られたポリイミド樹脂粉末についてGPC測定を行うことにより評価した。
 GPC測定については、昭和電工株式会社製Shodex GPC-101を用いて測定した。測定時条件は次に示す通り:
 カラム-Shodex HFIP-806M
 移動相溶媒-トリフルオロ酢酸ナトリウム2mM含有HFIP
 カラム温度-40℃
 移動相流速-1.0mL/min
 試料濃度-約0.1質量%
 検出器-IR検出器
 注入量-100μm
 検量線-標準PMMA
[実施例1]
 既述の方法により得たポリイミド粉末1についてさらに、HFIP-GPCにより分子量測定をしたところ、高分子量域と低分子量域の2つのピークが観測され、高分子量域はMw31700、Mw/Mn=2.3、ピーク面積の面積比99.7%であり、低分子量域はMw410、ピーク面積の面積比0.3%、ピークトップの分子量値510、となっていた。ポリイミド粉末1のGPCチャートを図1に示す。なお、図1において、ベースラインが最終的に上がっていくのは装置仕様である。
[実施例7]
 熱電対、4枚パドル翼を設置した2Lオートクレーブ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤株式会社製)650gとピロメリット酸二無水物(三菱ガス化学株式会社製)257.75g(1.180mol)を導入し、窒素フローとした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製)83.96g(0.5902mol)、1,6-ヘキサメチレンジアミン(和光純薬工業株式会社製)54.86g(0.4722mol)、4,4’-ジアミノジフェニルエーテル(和歌山精化工業株式会社製)23.64g(0.1180mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ混合ジアミン溶液を調製した。この混合ジアミン溶液を、プランジャーポンプを使用して、2Lオートクレーブ中の懸濁溶液に60minかけて滴下した。滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。また、滴下の際の最高発熱温度は65℃であった。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール100gとベンジルアミン(関東化学株式会社製)1.897g(0.0177mol)を加えさらに10分間撹拌した。この段階で、黄色透明な均一ポリアミド酸溶液が得られた。次に、オートクレーブを密閉状態、撹拌速度を100rpmとした後に、2Lオートクレーブ中のポリアミド酸溶液を190℃まで昇温した。昇温に伴いイミド化が起こると水が発生するはずであるが、この水は全て系内に密閉した。昇温中に、内圧が0.3MPaGまで上昇した。190℃で30分保持した後、プランジャーポンプを使用して、2Lオートクレーブ中に水225gを導入し、室温まで放冷を行い、濾過を行った。得られたポリイミド粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール(三菱ガス化学株式会社製)300gにより洗浄、濾過を行った後、乾燥機で190℃、10時間乾燥を行い、362gのポリイミド粉末7を得た。DSC測定した結果、昇温1度目にはTm0が338℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが308℃(発熱量12.1mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが226℃、Tmが335℃に観測された。また、半結晶化時間を測定したところ20秒以下と決定された。1%分解温度は410℃、対数粘度は0.61dl/gであった。また、IRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。ポリイミド粉末7をJIS K0069の方法により、目開き500μmのふるいに通したところ、99%以上が通過した。さらに、HFIP-GPCにより分子量測定をしたところ、高分子量域と低分子量域の2つのピークが観測され、高分子量域はMw28000、Mw/Mn=2.2、ピーク面積の面積比99.5%であり、低分子量域はMw430、ピーク面積の面積比0.5%、ピークトップの分子量値480、となっていた。
[実施例8]
 混合ジアミン溶液の滴下時間を15minに変えた(なお、滴下時の最高発熱温度は83℃であった)以外は実施例1と同様の方法で合成、後処理を行い、365gのポリイミド粉末8を得た。熱物性、半結晶化時間、対数粘度、IRスペクトル、粒径はポリイミド粉末1と大差の無い結果となった。HFIP-GPCにより分子量測定をしたところ、高分子量域と低分子量域の2つのピークが観測され、高分子量域はMw32500、Mw/Mn=2.5、ピーク面積の面積比99.2%であり、低分子量域はMw370、ピーク面積の面積比0.8%、ピークトップの分子量値450、となっていた。
[実施例9]
 混合ジアミン溶液の滴下時間を90minに変えた(なお、滴下時の最高発熱温度は59℃であった)以外は実施例1と同様の方法で合成、後処理を行い、360gのポリイミド粉末9を得た。熱物性、半結晶化時間、対数粘度、IRスペクトル、粒径はポリイミド粉末1と大差の無い結果となった。HFIP-GPCにより分子量測定をしたところ、高分子量域と低分子量域の2つのピークが観測され、高分子量域はMw34400、Mw/Mn=2.3、ピーク面積の面積比98.9%であり、低分子量域はMw370、ピーク面積の面積比1.1%、ピークトップの分子量値450、となっていた。
[実施例10]
 混合ジアミン溶液の滴下時間を180minに変えた(なお、滴下時の最高発熱温度は54℃であった)以外は実施例1と同様の方法で合成、後処理を行い、362gのポリイミド粉末10を得た。熱物性、半結晶化時間、対数粘度、IRスペクトル、粒径はポリイミド粉末1と大差の無い結果となった。HFIP-GPCにより分子量測定をしたところ、高分子量域と低分子量域の2つのピークが観測され、高分子量域はMw32400、Mw/Mn=2.3、ピーク面積の面積比99.1%であり、低分子量域はMw360、ピーク面積の面積比0.9%、ピークトップの分子量値440、となっていた。
[実施例11]
 実施例1の重合溶媒(2-(2-メトキシエトキシ)エタノール)を、2-[2-(2-メトキシエトキシ)エトキシ]エタノール(関東化学株式会社製)に変えた以外は実施例1と同様の方法で合成(なお、滴下時の最高発熱温度は67℃であった)、後処理を行い、359gのポリイミド粉末11を得た。熱物性、半結晶化時間、IRスペクトル、粒径はポリイミド粉末1と大差の無い結果となった。HFIP-GPCにより分子量測定をしたところ、高分子量域と低分子量域の2つのピークが観測され、高分子量域はMw64300、Mw/Mn=3.0、ピーク面積の面積比99.5%であり、低分子量域はMw380、ピーク面積の面積比0.5%、ピークトップの分子量値500、となっていた。
[実施例12]
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤株式会社製)650gとピロメリット酸二無水物(三菱ガス化学株式会社製)257.75g(1.180mol)を導入し、窒素フローとした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製)83.96g(0.5902mol)、1,6-ヘキサメチレンジアミン(和光純薬工業株式会社製)54.86g(0.4722mol)、4,4’-ジアミノジフェニルエーテル(和歌山精化工業株式会社製)23.64g(0.1180mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ混合ジアミン溶液を調製した。この混合ジアミン溶液を、滴下ロートにより、2Lセパラブルフラスコ中の懸濁溶液に5minかけて滴下した。この際、ポリアミド酸塩と思われる強固な析出が発生し、撹拌不良となったため、撹拌回転数を20rpmに落として10分間撹拌した。徐々に析出物が分散し、撹拌が可能となったため撹拌回転数を250rpmに戻した。滴下中はすべて窒素フロー状態とした。また、滴下の際の最高発熱温度は98℃であった。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール100gとベンジルアミン(関東化学製)1.897g(0.0177mol)を加えさらに10分間撹拌した。この段階で、析出物が混ざった淡褐色なポリアミド酸溶液が得られた。これ以降の操作(昇温によるイミド化、洗浄、及び乾燥)は実施例1と同様に行い、355gのポリイミド粉末12を得た。熱物性、半結晶化時間、対数粘度、IRスペクトル、粒径はポリイミド粉末1と大差の無い結果となった。HFIP-GPCにより分子量測定をしたところ、高分子量域と低分子量域の2つのピークが観測され、高分子量域はMw30800、Mw/Mn=2.4、ピーク面積の面積比97.5%であり、低分子量域はMw400、ピーク面積の面積比2.5%、ピークトップの分子量値380、となっていた。ポリイミド粉末12のGPCチャートを図2に示す。なお、図2において。ベースラインが最終的に下に落ちているのは、安定剤であるトリフルオロ酢酸ナトリウム濃度のブレによるものであると考えられる。
[比較例6]
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤株式会社製)650gとピロメリット酸(三菱ガス化学株式会社製)300.0g(1.180mol)を導入し、窒素フローとした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製)83.96g(0.5902mol)、1,6-ヘキサメチレンジアミン(和光純薬工業株式会社製)54.86g(0.4722mol)、4,4’-ジアミノジフェニルエーテル(和歌山精化工業株式会社製)23.64g(0.1180mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ混合ジアミン溶液を調製した。この混合ジアミン溶液を、プランジャーポンプを使用して、2Lオートクレーブ中の懸濁溶液に60minかけて滴下した。滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。滴下により徐々に強固な塩が析出し、ジアミンを半量程度導入した時点で撹拌不良となった。昇温時にも塩は分散せず、均一なスラリー液とはならず、反応の継続は困難であった。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 なお、表中の略記の意味は下記のとおりである。
・PMDA:ピロメリット酸二無水物
・PMA:ピロメリット酸
・MDG:2-(2-メトキシエトキシ)エタノール
・MTG:2-[2-(2-メトキシエトキシ)エトキシ]エタノール
<評価3>
 実施例13~17について、評価1に示す方法によりポリイミド樹脂粉末製造の基礎評価を行うと共に、以下に示す方法によりポリイミド樹脂粉末の粒度分布について評価した。ポリイミド樹脂粉末の粒度分布の評価は、実施例1に対しても行った。
8)レーザー回折式粒度分布測定
 レーザー回折式粒度分布測定については、株式会社セイシン企業製LMS-2000eを使用した。測定は分散媒として水を使用し、超音波条件下により測定粉末が十分に分散する条件で行った。測定範囲は0.02~2000μmとした。
9)撮像式粒度分布測定
 撮像式粒度分布測定は、マルバーン社製FPIA-3000を使用した。撮像式粒度測定はカメラにより粒子を直接測定し、以下の式により円形度を求める。円形度は0~1.000の間で測定し、1.000が真円となる指標とした。
  円形度=撮影された粒子と同じ面積の真円の周囲長/撮影された粒子の周囲長
 測定は分散媒として0.2wt%ヘキサメタリン酸ナトリウム水溶液を使用し、界面活性剤として10wt%トリトンX-100水溶液を10滴加え、超音波条件下により測定粉末が十分に分散する条件で行った。測定範囲は0.5~200μmとした。
[実施例1]
 既述の方法により得たポリイミド粉末1についてレーザー回折光散乱式粒度分布測定器により粒度を測定したところ、D10が13.6μm、D50が21.2μm、D90が33.3μmの単峰性となり、粒度分布が狭いことが確認された。図3にレーザー回折式粒度分布測定の測定結果を示す。また、撮像式粒度分布測定によって求めた平均円形度は0.969であり、真円に近い値であった。図4に撮像式粒度分布測定の測定結果を示す。
[実施例13]
 実施例1の重合溶媒(2-(2-メトキシエトキシ)エタノール)を2-(2-メトキシエトキシ)エタノール/γ-ブチロラクトン(三菱化学株式会社製)=70/30質量%混合溶媒に変えた以外は実施例1と同様の方法で合成、後処理を行い、355gのポリイミド粉末13を得た。熱物性、半結晶化時間、対数粘度、IRスペクトル、はポリイミド粉末1と大差の無い結果となった。ポリイミド粉末13をJIS K0069の方法により、目開き500μmのふるいに通したところ99質量%以上が通過し、目開き250μmのふるいに通したところ99質量%以上が通過した。また、レーザー回折光散乱式粒度分布測定器により粒度を測定したところ、D10が7.36μm、D50が17.3μm、D90が50.3μmの単峰性となり、粒度分布が狭いことが確認された。図5にレーザー回折式粒度分布測定の測定結果を示す。撮像式粒度分布測定によって求めた平均円形度は0.936であり、真円に近い値であった。
[実施例14]
 実施例1の重合溶媒(2-(2-メトキシエトキシ)エタノール)を2-[2-(2-メトキシエトキシ)エトキシ]エタノール(関東化学株式会社製)に変えた以外は実施例1と同様の方法で合成、後処理を行い、359gのポリイミド粉末14を得た。熱物性、半結晶化時間、対数粘度、IRスペクトル、はポリイミド粉末1と大差の無い結果となった。ポリイミド粉末14をJIS K0069の方法により、目開き500μmのふるいに通したところ99質量%以上が通過し、目開き250μmのふるいに通したところ、95質量%が通過した。また、レーザー回折光散乱式粒度分布測定器により粒度を測定したところ、D10が81.3μm、D50が144.0μm、D90が247μmの単峰性となり、粒度分布が狭いことが確認された。図6にレーザー回折式粒度分布測定の測定結果を示す。撮像式粒度分布では測定範囲外の粒子の存在により測定は出来なかった。
[実施例15]
 熱電対、4枚パドル翼を設置した2Lオートクレーブ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤株式会社製)650gとピロメリット酸二無水物(三菱ガス化学株式会社製)257.75g(1.180mol)を導入し、窒素フローとした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mlビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製)83.96g(0.5902mol)、1,6-ヘキサメチレンジアミン(和光純薬工業株式会社製)54.86g(0.4722mol)、4,4’-ジアミノジフェニルエーテル(和歌山精化工業株式会社製)23.64g(0.1180mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ混合ジアミン溶液を調製した。この混合ジアミン溶液を、プランジャーポンプを使用して、2Lオートクレーブ中の懸濁溶液に60minかけて滴下した。滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。滴下が終わったのちに、ベンジルアミン(関東化学株式会社製)1.897g(0.0177mol)を加えさらに10分間撹拌した。この段階で、黄色透明な均一ポリアミド酸溶液が得られた。次に、オートクレーブを密閉状態、撹拌速度を100rpmとした後に、2Lオートクレーブ中のポリアミド酸溶液を190℃まで昇温した。昇温中にイミド化に伴い発生する水の影響で、内圧が0.3MPaGまで上昇した。190℃で30分保持した後、室温まで放冷を行い、濾過を行った。得られたポリイミド粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール(三菱ガス化学株式会社製)300gにより洗浄、濾過を行った後、乾燥機で190℃、10時間乾燥を行い、366gのポリイミド粉末15を得た。DSC測定した結果、昇温1度目にはTm0が338℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(高い結晶化度を有している)。冷却時にはTcが308℃(発熱量12.1mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが226℃、Tmが335℃に観測された。また、半結晶化時間を測定したところ20秒以下と決定された。1%分解温度は410℃、対数粘度は0.61dL/gであった。また、IRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。ポリイミド粉末15をJIS K0069の方法により、目開き500μmのふるいに通したところ99質量%以上が通過し、目開き250μmのふるいに通したところ、99質量%以上が通過した。また、レーザー回折光散乱式粒度分布測定器により粒度を測定したところ、D10が36.0μm、D50が66.4μm、D90が117.7μmの単峰性となり、粒度分布が狭いことが確認された。図7にレーザー回折式粒度分布測定の測定結果を示す。また、撮像式粒度分布測定によって求めた平均円形度は0.884であった。
<評価4>
 実施例16~18について、評価1の1)~6)、評価2の7)、及び評価3の8)に示す方法により評価した。
[実施例16]
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤株式会社製)650gとピロメリット酸二無水物(三菱ガス化学株式会社製)163.59g(0.750mol)を導入し、窒素フローとした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製)42.36g(0.2978mol)、1,8-オクタメチレンジアミン(東京化成工業株式会社製)64.43g(0.4467mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ、混合ジアミン溶液を調製した。
 この混合ジアミン溶液を、プランジャーポンプを使用して、2Lセパラブルフラスコ中の懸濁溶液に60minかけて滴下した。混合ジアミン溶液の滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール100gとベンジルアミン(関東化学株式会社製)1.19g(0.0112mol)を加えさらに撹拌した。この段階で、黄色透明な均一ポリアミド酸溶液が得られた。次に、撹拌速度を200rpmとした後に、2Lセパラブルフラスコ中のポリアミド酸溶液を190℃まで昇温した。昇温を行っていく過程において、液温度が130~150℃の間にポリイミド粉末の析出と、イミド化に伴う脱水が確認された。190℃で30分保持した後、室温まで放冷を行い、濾過を行った。得られたポリイミド粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール300gにより洗浄、濾過を行った後、乾燥機で190℃、10時間乾燥を行い、235gの白色のポリイミド粉末16を得た。
 DSC測定した結果、昇温1度目にはTm0が298℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(すなわち、高い結晶化度を有していた)。冷却時にはTcが247℃と253℃(発熱量16.4mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが201℃、Tmが307℃に観測された。
 更に、半結晶化時間を測定したところ20秒以下と決定された。対数粘度は0.69dL/gであった。またIRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。1%分解温度は、376℃であった。ポリイミド粉末16をJIS K0069の方法により、目開き500μmのふるいに通したところ99質量%以上が通過し、目開き250μmのふるいに通したところ99質量%以上が通過した。
 HFIP-GPCにより分子量測定をしたところ、単峰性のピークが観測され、Mw36000、Mw/Mn=4.5となっていた。
 レーザー回折光散乱式粒度分布測定器により粒度を測定したところ、D10が20.44μm、D50が30.53μm、D90が45.61μmの単峰性となり、粒度分布が狭いことが確認された。図8にレーザー回折式粒度分布測定の測定結果を示す。
[実施例17]
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤株式会社製)650gとピロメリット酸二無水物(三菱ガス化学株式会社製)163.59g(0.750mol)を導入し、窒素フローとした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製)42.36g(0.2978mol)、1,10-デカメチレンジアミン(小倉合成株式会社製)76.967g(0.4467mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ、混合ジアミン溶液を調製した。この混合ジアミン溶液を、プランジャーポンプを使用して、2Lセパラブルフラスコ中の懸濁溶液に60minかけて滴下した。混合ジアミン溶液の滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール100gとベンジルアミン(関東化学株式会社製)1.19g(0.0112mol)を加えさらに撹拌した。この段階で、黄色透明な均一ポリアミド酸溶液が得られた。次に、撹拌速度を200rpmとした後に、2Lセパラブルフラスコ中のポリアミド酸溶液を190℃まで昇温した。昇温を行っていく過程において、液温度が130~150℃の間にポリイミド粉末の析出と、イミド化に伴う脱水が確認された。190℃で30分保持した後、室温まで放冷を行い、濾過を行った。得られたポリイミド粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール300gにより洗浄、濾過を行った後、乾燥機で190℃、10時間乾燥を行い、247gの白色のポリイミド粉末17を得た。
 DSC測定した結果、昇温1度目にはTg0が184℃、Tm0が272℃に観測されるのみであり、Tc0は明確には観測されなかった(すなわち、高い結晶化度を有していた)。冷却時にはTcが225℃(発熱量17.7mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが187℃、Tmが267℃と277℃に観測された。更に、半結晶化時間を測定したところ20秒以下と決定された。対数粘度は0.71dL/gであった。またIRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。1%分解温度は、380℃であった。ポリイミド粉末17をJIS K0069の方法により、目開き500μmのふるいに通したところ99質量%以上が通過し、目開き250μmのふるいに通したところ99質量%以上が通過した。
 HFIP-GPCにより分子量測定をしたところ、高分子量域と低分子量域の2つのピークが観測され、高分子量域はMw78000、Mw/Mn=3.6、ピーク面積の面積比99.1%であり、低分子量域はMw650、ピーク面積の面積比0.9%、ピークトップの分子量値530となっていた。
 レーザー回折光散乱式粒度分布測定器により粒度を測定したところ、D10が23.54μm、D50が32.51μm、D90が44.76μmの単峰性となり、粒度分布が狭いことが確認された。図9にレーザー回折式粒度分布測定の測定結果を示す。
[実施例18]
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤株式会社製)650gとピロメリット酸二無水物(三菱ガス化学株式会社製)163.59g(0.750mol)を導入し、窒素フローとした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製)42.36g(0.2978mol)、1,12-ドデカメチレンジアミン(東京化成工業株式会社製)89.50g(0.4467mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ、混合ジアミン溶液を調製した。
 この混合ジアミン溶液を、プランジャーポンプを使用して、2Lセパラブルフラスコ中の懸濁溶液に60minかけて滴下した。混合ジアミン溶液の滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール100gとベンジルアミン(関東化学株式会社製)1.19g(0.0112mol)を加えさらに撹拌した。この段階で、黄色透明な均一ポリアミド酸溶液が得られた。次に、撹拌速度を200rpmとした後に、2Lセパラブルフラスコ中のポリアミド酸溶液を190℃まで昇温した。昇温を行っていく過程において、液温度が130~150℃の間にポリイミド粉末の析出と、イミド化に伴う脱水が確認された。190℃で30分保持した後、室温まで放冷を行い、濾過を行った。得られたポリイミド粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール300gにより洗浄、濾過を行った後、乾燥機で190℃、10時間乾燥を行い、260gの白色のポリイミド粉末18を得た。
 DSC測定した結果、昇温1度目にはTm0が249℃に観測されるのみであり、Tg0、Tc0は明確には観測されなかった(すなわち、高い結晶化度を有していた)。冷却時にはTcが212℃(発熱量22.8mJ/mg)に観測され、高い結晶性を有していることが確認された。また、昇温2度目ではTgが173℃、Tmが253℃に観測された。更に、半結晶化時間を測定したところ20秒以下と決定された。対数粘度は0.73dL/gであった。またIRスペクトルを測定したところ、ν(C=O)1771、1699(cm-1)にイミド環の特性吸収が認められた。1%分解温度は、377℃であった。ポリイミド粉末18をJIS K0069の方法により、目開き500μmのふるいに通したところ99質量%以上が通過し、目開き250μmのふるいに通したところ99質量%以上が通過した。
 HFIP-GPCにより分子量測定をしたところ、高分子量域と低分子量域の2つのピークが観測され、高分子量域はMw108300、Mw/Mn=4.4、ピーク面積の面積比98.9%であり、低分子量域はMw530、ピーク面積の面積比1.1%、ピークトップの分子量値480となっていた。
 レーザー回折光散乱式粒度分布測定器により粒度を測定したところ、D10が17.54μm、D50が27.01μm、D90が41.93μmの単峰性となり、粒度分布が狭いことが確認された。図10にレーザー回折式粒度分布測定の測定結果を示す。

Claims (31)

  1.  テトラカルボン酸二無水物を含むテトラカルボン酸成分(A)と脂肪族ジアミンを含むジアミン成分(B)とを、式(1)で表されるアルキレングリコール系溶媒を含む溶媒(C)の存在下で反応させる工程を含む、ポリイミド樹脂粉末の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (Ra1は水素原子又は炭素数1~4のアルキル基であり、Ra2は炭素数2~6の直鎖のアルキレン基であり、nは1~3の整数である。)
  2.  前記アルキレングリコール系溶媒が140℃以上の沸点を有する、請求項1に記載の製造方法。
  3.  Ra1が炭素数1~4のアルキル基である、請求項1又は2に記載の製造方法。
  4.  nが2又は3である、請求項1~3のいずれかに記載の製造方法。
  5.  Ra2がエチレン基である、請求項1~4のいずれかに記載の製造方法。
  6.  前記アルキレングリコール系溶媒が2-(2-メトキシエトキシ)エタノール又は2-(2-エトキシエトキシ)エタノールである、請求項1~5のいずれかに記載の製造方法。
  7.  前記溶媒(C)における前記アルキレングリコール系溶媒の含有量が75質量%以上である、請求項1~6のいずれかに記載の製造方法。
  8.  前記テトラカルボン酸成分(A)と前記ジアミン成分(B)とを反応させる工程が、前記テトラカルボン酸成分(A)を含有する溶液(a)に、前記ジアミン成分(B)を含有する溶液(b)を添加して、ポリアミド酸を含有する溶液(c)を調製する工程(i)、及び前記溶液(c)を加熱することにより前記ポリアミド酸をイミド化して、ポリイミド樹脂を得る工程(ii)を含み;前記工程(i)において、前記テトラカルボン酸成分(A)1molに対する単位時間当たりの前記ジアミン成分(B)の添加量が0.1mol/min以下となるように、前記溶液(a)に前記溶液(b)を添加する、請求項1~7のいずれかに記載の製造方法。
  9.  前記工程(i)において、前記テトラカルボン酸成分(A)1molに対する単位時間当たりの前記ジアミン成分(B)の添加量が0.005mol/min以上となるように、前記溶液(a)に前記溶液(b)を添加する、請求項8に記載の製造方法。
  10.  前記ジアミン成分(B)が、前記脂肪族ジアミンとして、式(B1-1)で表されるジアミン(B1)及び式(B2-1)で表されるジアミン(B2)を含む、請求項1~9のいずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    (R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基であり、R2は炭素数5~20の2価の鎖状脂肪族基である。)
  11.  前記ジアミン(B1)が式(B1-2)で表される、請求項10に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (m11及びm12は、それぞれ独立に、0~2の整数である。)
  12.  前記ジアミン(B1)と前記ジアミン(B2)の合計量に対する、前記ジアミン(B1)の量が40~70モル%である、請求項10又は11に記載の製造方法。
  13.  前記ジアミン成分(B)が、前記脂肪族ジアミンに加えて、式(B3-1)で表されるジアミン(B3)をさらに含み、前記ジアミン(B1)と前記のジアミン(B2)の合計量に対する、前記ジアミン(B3)の量が25モル%以下である、請求項10~12のいずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (R3は少なくとも1つの芳香環を含む炭素数6~22の2価の基である。)
  14.  前記テトラカルボン酸二無水物が式(A-1)で表される、請求項1~13のいずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (Xは、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
  15.  前記テトラカルボン酸二無水物がピロメリット酸二無水物である、請求項1~14のいずれかに記載の製造方法。
  16.  製造されるポリイミド樹脂が、下記式(I)で示される繰り返し構成単位及び下記式(II)で示される繰り返し構成単位を含む熱可塑性ポリイミド樹脂であり、式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する式(I)の繰り返し構成単位の含有比が40~70モル%である、請求項1~15のいずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。R2は炭素数5~20の2価の鎖状脂肪族基である。X1及びX2は、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
  17.  前記のテトラカルボン酸成分(A)とジアミン成分(B)との反応が常圧下で行われる、請求項1~16のいずれかに記載の製造方法。
  18.  得られた生成物をゲル浸透クロマトグラフィー測定したとき、ピークトップが分子量1000以下に存在するピークの面積比が、2area%以下である、請求項8~17のいずれかに記載の製造方法。
  19.  下記式(I)で示される繰り返し構成単位及び下記式(II)で示される繰り返し構成単位を含み、式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する式(I)の繰り返し構成単位の含有比が40~70モル%である熱可塑性ポリイミド樹脂の粉末であって、目開き500μmのふるいを通過する割合が90質量%以上である、熱可塑性ポリイミド樹脂粉末。
    Figure JPOXMLDOC01-appb-C000007
    (R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。R2は炭素数5~20の2価の鎖状脂肪族基である。X1及びX2は、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
  20.  目開き250μmのふるいを通過する割合が90質量%以上である、請求項19に記載の熱可塑性ポリイミド樹脂粉末。
  21.  R1が下記式(R1-1)又は(R1-2)で表される2価の基である、請求項19又は20に記載の熱可塑性ポリイミド樹脂粉末。
    Figure JPOXMLDOC01-appb-C000008
    (m11及びm12は、それぞれ独立に、0~2の整数である。m13~m15は、それぞれ独立に、0~2の整数である。)
  22.  R1が下記式(R1-3)で表される2価の基である、請求項19~21のいずれかに記載の熱可塑性ポリイミド樹脂粉末。
    Figure JPOXMLDOC01-appb-C000009
  23.  R2が炭素数5~20のアルキレン基である、請求項19~22のいずれかに記載の熱可塑性ポリイミド樹脂粉末。
  24.  R2がヘキサメチレン基である、請求項23に記載の熱可塑性ポリイミド樹脂粉末。
  25.  R2が下記式(R2-1)又は(R2-2)で表される2価の基である、請求項19~22のいずれかに記載の熱可塑性ポリイミド樹脂粉末。
    Figure JPOXMLDOC01-appb-C000010
    (m21及びm22は、それぞれ独立に、1~11の整数である。m23~m25は、それぞれ独立に、1~10の整数である。)
  26.  X1及びX2が、それぞれ独立に、下記式(X-1)~(X-4)のいずれかで表される4価の基である、請求項19~25のいずれかに記載の熱可塑性ポリイミド樹脂粉末。
    Figure JPOXMLDOC01-appb-C000011

    (R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数である。p17は0~4の整数である。L11~L13は、それぞれ独立に、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
  27.  熱可塑性ポリイミド樹脂がさらに下記式(III)で示される繰り返し構成単位を含み、式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する式(III)の繰り返し構成単位の含有比が25モル%以下である、請求項19~26のいずれかに記載の熱可塑性ポリイミド樹脂粉末。
    Figure JPOXMLDOC01-appb-C000012
    (R3は少なくとも1つの芳香環を含む炭素数6~22の2価の基である。X3は少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
  28.  R3が下記式(R3-1)又は(R3-2)で表される2価の基である、請求項27に記載の熱可塑性ポリイミド樹脂粉末。
    Figure JPOXMLDOC01-appb-C000013
    (m31及びm32は、それぞれ独立に、0~2の整数である。m33及びm34は、それぞれ独立に、0~2の整数である。R21、R22、及びR23は、それぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。p21、p22及びp23は0~4の整数である。L21は、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
  29.  X3が、それぞれ独立に、下記式(X-1)~(X-4)のいずれかで表される4価の基である、請求項27又は28に記載の熱可塑性ポリイミド樹脂粉末。
    Figure JPOXMLDOC01-appb-C000014

    (R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数である。p17は0~4の整数である。L11~L13は、それぞれ独立に、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
  30.  熱可塑性ポリイミド樹脂が360℃以下の融点を有し、かつ170℃以上のガラス転移温度を有する、請求項19~29のいずれかに記載の熱可塑性ポリイミド樹脂粉末。
  31.  示差走査型熱量計にて、溶融後に10℃/min以上の冷却速度で降温させた際に観測される熱可塑性ポリイミド樹脂の結晶化発熱ピークの熱量が5mJ/mg以上である、請求項19~29のいずれかに記載の熱可塑性ポリイミド樹脂粉末。
PCT/JP2014/070532 2013-08-06 2014-08-04 ポリイミド樹脂粉末の製造方法及び熱可塑性ポリイミド樹脂粉末 WO2015020019A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167002654A KR102208953B1 (ko) 2013-08-06 2014-08-04 폴리이미드 수지분말의 제조방법 및 열가소성 폴리이미드 수지분말
CN201480039002.XA CN105377949B (zh) 2013-08-06 2014-08-04 聚酰亚胺树脂粉末的制造方法和热塑性聚酰亚胺树脂粉末
JP2015530892A JP6565676B2 (ja) 2013-08-06 2014-08-04 ポリイミド樹脂粉末の製造方法及び熱可塑性ポリイミド樹脂粉末
US14/905,637 US9670320B2 (en) 2013-08-06 2014-08-04 Method for producing polyimide resin powder, and thermoplastic polyimide resin powder
EP14834341.1A EP3031844B1 (en) 2013-08-06 2014-08-04 Method for producing polyimide resin powder, and thermoplastic polyimide resin powder

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-163304 2013-08-06
JP2013163303 2013-08-06
JP2013163308 2013-08-06
JP2013-163308 2013-08-06
JP2013-163303 2013-08-06
JP2013163304 2013-08-06

Publications (1)

Publication Number Publication Date
WO2015020019A1 true WO2015020019A1 (ja) 2015-02-12

Family

ID=52461351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070532 WO2015020019A1 (ja) 2013-08-06 2014-08-04 ポリイミド樹脂粉末の製造方法及び熱可塑性ポリイミド樹脂粉末

Country Status (7)

Country Link
US (1) US9670320B2 (ja)
EP (1) EP3031844B1 (ja)
JP (1) JP6565676B2 (ja)
KR (1) KR102208953B1 (ja)
CN (1) CN105377949B (ja)
TW (1) TWI639619B (ja)
WO (1) WO2015020019A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172782A (ja) * 2018-03-28 2019-10-10 日立化成株式会社 マレイミド樹脂の製造方法
US10675808B2 (en) 2015-03-03 2020-06-09 Ricoh Company, Ltd. Method for solid freeform fabrication
US10683393B2 (en) 2015-03-03 2020-06-16 Ricoh Co., Ltd. Methods of solid freeform fabrication
US10688770B2 (en) 2015-03-03 2020-06-23 Ricoh Co., Ltd. Methods for solid freeform fabrication
WO2022202150A1 (ja) * 2021-03-26 2022-09-29 三菱瓦斯化学株式会社 ポリイミド樹脂粉末の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102196058B1 (ko) * 2013-07-05 2020-12-29 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지
WO2016147764A1 (ja) * 2015-03-16 2016-09-22 日本ゼオン株式会社 光学積層体、偏光板及び液晶表示装置
WO2018047708A1 (ja) * 2016-09-06 2018-03-15 三菱ケミカル株式会社 電気音響変換器用振動板エッジ材、電気音響変換器用振動板、マイクロスピーカー振動板、フィルム、及びポリイミド樹脂組成物
WO2019220967A1 (ja) * 2018-05-17 2019-11-21 三菱瓦斯化学株式会社 ポリイミドパウダー組成物
EP3795638A4 (en) * 2018-05-17 2021-07-28 Mitsubishi Gas Chemical Company, Inc. POLYIMIDE RESIN COMPOSITION
JP2020007464A (ja) * 2018-07-09 2020-01-16 信越ポリマー株式会社 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板及びその製造方法
CN109749100B (zh) * 2018-12-21 2022-11-18 航天科工(长沙)新材料研究院有限公司 一种小粒径聚酰亚胺粉末的制备方法及其应用
KR102255484B1 (ko) 2019-12-06 2021-05-21 연세대학교 원주산학협력단 판상형 폴리이미드 분말의 제조방법
KR102548759B1 (ko) * 2020-11-30 2023-06-28 피아이첨단소재 주식회사 입도가 제어된 폴리이미드 분말 및 이의 제조방법
CN117043232B (zh) * 2021-03-26 2024-10-22 三菱瓦斯化学株式会社 聚酰亚胺树脂粉末的制造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200453A (en) * 1981-06-04 1982-12-08 Ube Ind Ltd Preparation of polyimide powder
JPS61168669A (ja) * 1985-01-23 1986-07-30 ジヨン・ガグリアニ 被膜形成用水溶性イミド組成物及びその製造方法
JPH07300524A (ja) * 1994-05-09 1995-11-14 Hitachi Chem Co Ltd 粒子状ポリイミドの製造法及び粒子状ポリイミド
JPH07324134A (ja) * 1994-05-30 1995-12-12 Unitika Ltd ポリアミド酸溶液及びその製造方法
JP2000204172A (ja) 1999-01-14 2000-07-25 Teijin Ltd 樹脂組成物および成形体ならびにそれを用いた表面実装対応電子部品
JP2004083885A (ja) 2002-07-01 2004-03-18 Du Pont Toray Co Ltd ポリアミック酸混合物、ポリイミド、ポリイミドフィルムおよびその用途
JP2005028524A (ja) 2003-07-07 2005-02-03 Katsuo Shoji 超砥粒ホイール及びその製造方法
JP2007217486A (ja) * 2006-02-15 2007-08-30 Arakawa Chem Ind Co Ltd ポリマー微粒子の製造方法およびポリマー微粒子
JP2009241157A (ja) * 2008-03-28 2009-10-22 Toray Ind Inc 砥石およびその製造方法
JP2009286868A (ja) 2008-05-28 2009-12-10 Jfe Chemical Corp 線状ポリイミド前駆体、線状ポリイミド、その熱硬化物、製造方法、接着剤および銅張積層板
WO2013041530A1 (fr) * 2011-09-20 2013-03-28 Rhodia Operations (co) polyimides thermoplastiques et procédés de synthèse
JP2013144751A (ja) * 2012-01-13 2013-07-25 Ube Industries Ltd ポリイミド前駆体アルコール溶液組成物、及びポリイミド前駆体アルコール溶液組成物の製造方法
WO2014061781A1 (ja) * 2012-10-18 2014-04-24 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951484B2 (ja) * 1991-08-28 1999-09-20 ユニチカ株式会社 ポリイミド前駆体の粉粒体、その混合物及びその製造方法
EP1260538B1 (en) * 1999-10-06 2010-12-01 Kaneka Corporation Process for producing polyimide resin
KR100495096B1 (ko) * 2002-11-26 2005-06-10 대림에이치앤엘(주) 할로겐계 수지 분말을 함유한 방향족 폴리이미드계 복합소재 분말과 이의 제조방법
KR101310528B1 (ko) * 2009-03-04 2013-09-23 미쓰이 가가쿠 가부시키가이샤 폴리아마이드산 및 폴리이미드, 그들의 제조 방법, 조성물 및 용도

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200453A (en) * 1981-06-04 1982-12-08 Ube Ind Ltd Preparation of polyimide powder
JPS61168669A (ja) * 1985-01-23 1986-07-30 ジヨン・ガグリアニ 被膜形成用水溶性イミド組成物及びその製造方法
JPH07300524A (ja) * 1994-05-09 1995-11-14 Hitachi Chem Co Ltd 粒子状ポリイミドの製造法及び粒子状ポリイミド
JPH07324134A (ja) * 1994-05-30 1995-12-12 Unitika Ltd ポリアミド酸溶液及びその製造方法
JP2000204172A (ja) 1999-01-14 2000-07-25 Teijin Ltd 樹脂組成物および成形体ならびにそれを用いた表面実装対応電子部品
JP2004083885A (ja) 2002-07-01 2004-03-18 Du Pont Toray Co Ltd ポリアミック酸混合物、ポリイミド、ポリイミドフィルムおよびその用途
JP2005028524A (ja) 2003-07-07 2005-02-03 Katsuo Shoji 超砥粒ホイール及びその製造方法
JP2007217486A (ja) * 2006-02-15 2007-08-30 Arakawa Chem Ind Co Ltd ポリマー微粒子の製造方法およびポリマー微粒子
JP2009241157A (ja) * 2008-03-28 2009-10-22 Toray Ind Inc 砥石およびその製造方法
JP2009286868A (ja) 2008-05-28 2009-12-10 Jfe Chemical Corp 線状ポリイミド前駆体、線状ポリイミド、その熱硬化物、製造方法、接着剤および銅張積層板
WO2013041530A1 (fr) * 2011-09-20 2013-03-28 Rhodia Operations (co) polyimides thermoplastiques et procédés de synthèse
JP2013144751A (ja) * 2012-01-13 2013-07-25 Ube Industries Ltd ポリイミド前駆体アルコール溶液組成物、及びポリイミド前駆体アルコール溶液組成物の製造方法
WO2014061781A1 (ja) * 2012-10-18 2014-04-24 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3031844A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10675808B2 (en) 2015-03-03 2020-06-09 Ricoh Company, Ltd. Method for solid freeform fabrication
US10683393B2 (en) 2015-03-03 2020-06-16 Ricoh Co., Ltd. Methods of solid freeform fabrication
US10688770B2 (en) 2015-03-03 2020-06-23 Ricoh Co., Ltd. Methods for solid freeform fabrication
JP2019172782A (ja) * 2018-03-28 2019-10-10 日立化成株式会社 マレイミド樹脂の製造方法
JP7024548B2 (ja) 2018-03-28 2022-02-24 昭和電工マテリアルズ株式会社 マレイミド樹脂の製造方法
WO2022202150A1 (ja) * 2021-03-26 2022-09-29 三菱瓦斯化学株式会社 ポリイミド樹脂粉末の製造方法
JP7156580B1 (ja) * 2021-03-26 2022-10-19 三菱瓦斯化学株式会社 ポリイミド樹脂粉末の製造方法
KR20230147182A (ko) 2021-03-26 2023-10-20 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지분말의 제조방법
KR102635873B1 (ko) 2021-03-26 2024-02-13 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지분말의 제조방법

Also Published As

Publication number Publication date
US9670320B2 (en) 2017-06-06
CN105377949B (zh) 2018-04-03
KR102208953B1 (ko) 2021-01-28
US20160159984A1 (en) 2016-06-09
TW201509961A (zh) 2015-03-16
JP6565676B2 (ja) 2019-08-28
EP3031844C0 (en) 2024-05-22
EP3031844A1 (en) 2016-06-15
JPWO2015020019A1 (ja) 2017-03-02
CN105377949A (zh) 2016-03-02
EP3031844B1 (en) 2024-05-22
TWI639619B (zh) 2018-11-01
KR20160039613A (ko) 2016-04-11
EP3031844A4 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6565676B2 (ja) ポリイミド樹脂粉末の製造方法及び熱可塑性ポリイミド樹脂粉末
JP6024859B1 (ja) ポリイミド樹脂
JP6037088B1 (ja) ポリイミド樹脂
JP5365762B1 (ja) 結晶性熱可塑ポリイミド樹脂
JP7243717B2 (ja) ポリイミドパウダー組成物
WO2019220969A1 (ja) 樹脂成形体
TWI794491B (zh) 聚醯亞胺樹脂組成物
JP7497721B2 (ja) ポリイミド樹脂組成物
WO2021024624A1 (ja) 難燃性ポリイミド成形材料及び成形体
JP6879438B1 (ja) ポリイミド樹脂組成物及び成形体
JP6766986B1 (ja) ポリイミド樹脂組成物
WO2022004471A1 (ja) 樹脂組成物及び成形体
WO2023120303A1 (ja) 発光成形体及び波長変換部材
TWI855096B (zh) 阻燃性聚醯亞胺成形材料及成形體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530892

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14905637

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167002654

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014834341

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE