WO2022202150A1 - ポリイミド樹脂粉末の製造方法 - Google Patents

ポリイミド樹脂粉末の製造方法 Download PDF

Info

Publication number
WO2022202150A1
WO2022202150A1 PCT/JP2022/008643 JP2022008643W WO2022202150A1 WO 2022202150 A1 WO2022202150 A1 WO 2022202150A1 JP 2022008643 W JP2022008643 W JP 2022008643W WO 2022202150 A1 WO2022202150 A1 WO 2022202150A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide resin
solution
group
resin powder
carbon atoms
Prior art date
Application number
PCT/JP2022/008643
Other languages
English (en)
French (fr)
Inventor
勇希 佐藤
敦史 酒井
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2022535800A priority Critical patent/JP7156580B1/ja
Priority to CN202280023900.0A priority patent/CN117043232A/zh
Priority to KR1020237032282A priority patent/KR102635873B1/ko
Priority to EP22774947.0A priority patent/EP4317254A1/en
Publication of WO2022202150A1 publication Critical patent/WO2022202150A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions

Definitions

  • the present invention relates to a method for producing a polyimide resin powder, a polyimide resin powder, and a resin film obtained using the polyimide resin powder.
  • polyimide resin Due to the rigidity of the molecular chain, resonance stabilization, and strong chemical bonding, polyimide resin is a useful engineering plastic with high thermal stability, high strength, and high solvent resistance, and is applied in a wide range of fields. Polyimide resins having crystallinity can further improve their heat resistance, strength and chemical resistance, and thus are expected to be used as metal substitutes. However, although the polyimide resin has high heat resistance, it does not show thermoplasticity and has a problem of low moldability.
  • Patent Document 1 As polyimide molding materials, highly heat-resistant resin Vespel (registered trademark) and the like are known (Patent Document 1). Since it is necessary to perform molding, it is also disadvantageous in terms of cost. On the other hand, a resin such as a crystalline resin that has a melting point and is fluid at high temperatures can be molded easily and inexpensively.
  • thermoplastic polyimide resins with thermoplasticity have been reported.
  • Thermoplastic polyimide resins are excellent in moldability in addition to the inherent heat resistance of polyimide resins. Therefore, thermoplastic polyimide resins can be applied to moldings used in harsh environments, which could not be applied to general-purpose thermoplastic resins such as nylon and polyester.
  • Thermoplastic polyimide resin can be molded into various shapes by heat melting. Furthermore, if the thermoplastic polyimide resin can be recovered in the form of uniform powder, it is highly useful because unevenness in processing is less likely to occur during molding. In recent years, studies have also been made on methods for obtaining a uniform powdery thermoplastic polyimide resin.
  • Patent Document 2 a tetracarboxylic acid component (A) containing a tetracarboxylic dianhydride and a diamine component (B) containing an aliphatic diamine are combined with an alkylene glycol-based solvent represented by a specific formula.
  • a method for producing a polyimide resin powder is disclosed that includes the step of reacting in the presence of a solvent (C).
  • Patent Document 2 describes that a powdery polyimide resin can be produced with almost no lumps.
  • thermoplastic polyimide resins inherently have a high water absorption rate due to the polarity of the imide groups. Therefore, when a resin film is obtained using the thermoplastic polyimide resin, the fluctuation in dielectric constant due to water absorption becomes large. It is known.
  • thermoplastic polyimide resin powder When producing a film-shaped (including sheet-shaped) molded body (resin film) to be applied to a high-frequency circuit board or the like using a molding material containing a thermoplastic polyimide resin powder, it is usually necessary to (i) contain the powder A method in which a molding material is put into an extruder and directly extruded and then subjected to various thermoforming to obtain a film-like molded body; Examples include a method of obtaining a film-like molded product by subjecting pellets to molding material and subjecting them to various types of thermoforming, and (iii) a method of obtaining a film-like molded product by subjecting the molding material containing the powder to direct compression molding using a heat press. be done.
  • thermoplastic polyimide resin powder if the particle size of the thermoplastic polyimide resin powder is too small, the handleability when charged into an extruder, especially the biting into the screw of the extruder, is reduced, and problems such as difficulty in melt-kneading occur. Sometimes. In addition, during the production of the thermoplastic polyimide resin powder, clogging of the filter cloth occurs during filtration to remove the solvent, resulting in a decrease in productivity. On the other hand, if the particle size of the thermoplastic polyimide resin powder is too large, the high-boiling-point solvent used during production and moisture due to moisture absorption tend to remain inside the particles.
  • the polyimide resin powder described in Patent Document 2 is shown to have a suitable particle size distribution. It was not done, and there was room for further consideration.
  • an object of the present invention is to provide a method for producing a polyimide resin powder that can easily control the volume average particle diameter D50 within a specific range and has a good particle size distribution.
  • the present inventors have found that in a method for producing a polyimide resin powder comprising a step of reacting a tetracarboxylic acid component and a diamine component in the presence of a specific solvent, a polyimide resin precursor containing polyamic acid prepared in the step
  • a polyimide resin precursor containing polyamic acid prepared in the step
  • the average heating rate in a specific temperature range when the solution containing the solid content concentration in a specific range and imidizing the polyimide resin precursor containing the polyamic acid by heating the solution (c) is within a specific range
  • the present invention is a method for producing a polyimide resin powder, wherein a tetracarboxylic acid component (A) containing a tetracarboxylic dianhydride and a diamine component (B) containing an aliphatic diamine are represented by the formula (1).
  • the solution (a) is added to prepare a solution (c) containing a polyimide resin precursor containing polyamic acid, and then the polyimide resin precursor containing polyamic acid is heated by heating the solution (c). imidizing the body and precipitating polyimide resin powder in the solution;
  • the solid content concentration of the solution (c) is 15 to 25% by mass, and the average temperature increase rate in the temperature range of 70 to 130° C.
  • a method for producing a polyimide resin powder is provided.
  • Ra 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • Ra 2 is a linear alkylene group having 2 to 6 carbon atoms
  • n is an integer of 1 to 3.
  • the production method of the present invention it is possible to obtain a polyimide resin powder having a volume average particle size D50 within a specific range (specifically, 5 to 50 ⁇ m) and a good particle size distribution. Moreover, according to the resin film obtained by using the polyimide resin powder of the specific composition obtained by the production method of the present invention, it is possible to suppress the increase in the dielectric loss tangent under high temperature.
  • microwave antennas millimeter wave antennas, waveguide slot antennas, horn antennas, lens antennas, printed antennas, Plate antennas, microstrip antennas, patch antennas, various sensors, automotive radars, aerospace radars, semiconductor element materials, coatings for bearings, heat insulating shafts, trays, various belts such as seamless belts, heat resistant low dielectric tapes, heat resistant low dielectric tapes Tubes, low-dielectric wire coating materials, radomes (radomes), antenna substrates for 5G smartphones/5G terminals, antenna substrates for 6G smartphones/6G terminals, chip-on-film (COF) flexible substrates, optical communication modules (TOSA/ROSA) ), 77 GHz in-vehicle millimeter-wave radar antenna substrate, terahertz wave radar antenna substrate, aircraft radar antenna substrate, tracked vehicle antenna substrate, 8K-TV cable, WiGig antenna substrate, tablet terminal, notebook PC, thin
  • FIG. 2 shows the results of laser diffraction particle size distribution measurement of the polyimide resin powder obtained in Example 1.
  • FIG. 2 shows the results of laser diffraction particle size distribution measurement of the polyimide resin powder obtained in Example 2.
  • FIG. 4 shows the results of laser diffraction particle size distribution measurement of the polyimide resin powder obtained in Example 3.
  • FIG. 4 shows the results of laser diffraction particle size distribution measurement of the polyimide resin powder obtained in Example 4.
  • FIG. 4 shows the results of laser diffraction particle size distribution measurement of the polyimide resin powder obtained in Comparative Example 1.
  • FIG. 4 shows the results of laser diffraction particle size distribution measurement of the polyimide resin powder obtained in Comparative Example 2.
  • FIG. 4 shows the results of laser diffraction particle size distribution measurement of the polyimide resin powder obtained in Comparative Example 2.
  • FIG. 4 shows the results of laser diffraction particle size distribution measurement of the polyimide resin powder obtained in Comparative Example 3.
  • FIG. 4 shows the results of laser diffraction particle size distribution measurement of the polyimide resin powder obtained in Comparative Example 4.
  • FIG. 4 shows the results of laser diffraction particle size distribution measurement of the polyimide resin powder obtained in Comparative Example 5.
  • FIG. 4 shows the results of laser diffraction particle size distribution measurement of the polyimide resin powder obtained in Comparative Example 6.
  • FIG. 1 shows the measurement results of the dielectric constant P and the dielectric loss tangent Q of the resin film obtained in Example 1 at each temperature at a measurement frequency of 10 GHz.
  • 1 shows the measurement results of the dielectric constant P and the dielectric loss tangent Q of the resin film obtained in Example 1 at each temperature at a measurement frequency of 20 GHz.
  • a tetracarboxylic acid component (A) containing a tetracarboxylic dianhydride and a diamine component (B) containing an aliphatic diamine are combined with an alkylene glycol represented by the formula (1).
  • a step of reacting in the presence of a solvent (C) containing a system solvent wherein the step includes a solution (a) containing the tetracarboxylic acid component (A) in the solvent (C), and the solvent
  • the solution (b) is added to the solution (a) or the solution (b) is added to the solution (b) a) is added to prepare a solution (c) containing a polyimide resin precursor containing polyamic acid, and then the solution (c) is heated to imidize the polyimide resin precursor containing polyamic acid.
  • polyimide resin precursor refers to a product produced by the reaction of a tetracarboxylic acid component (A), a diamine component (B), and a solvent (C) containing an alkylene glycol solvent.
  • polyamic acids amate salts, polyamic acid salts, polyamic acid esters, polyamic acid amides, and the like are included.
  • the solid content concentration of the solution (c) containing the polyimide resin precursor containing polyamic acid refers to the proportion of solute in the solution (c) (% by mass in terms of charged amount).
  • the "solute” refers to the tetracarboxylic acid component (A) and the diamine component (B), which are the raw materials of the polyamic acid, the terminal blocker, etc.
  • the “solution (c)” refers to the solute and It refers to the sum of the solvent including the solvent (C) including the alkylene glycol solvent.
  • a solution (a) containing a tetracarboxylic acid component (A) in the solvent (C) and a diamine component (B) in the solvent (C) After separately preparing the solution (b) to be contained, the solution (b) is added to the solution (a) or the solution (a) is added to the solution (b) to obtain a polyimide containing polyamic acid
  • a solution (c) containing a resin precursor is prepared [step 1], and then the solution (c) is heated to imidize the polyimide resin precursor containing the polyamic acid in the solution (c). , the polyimide resin powder is precipitated in the solution to synthesize the polyimide resin powder [Step 2].
  • the solid content concentration of the solution (c) containing polyamic acid in the step 1 is set to 15 to 25% by mass, and the solution (c) is heated in the step 2.
  • the average heating rate of the solution (c) in the temperature range of 70 to 130°C is 0.5 to 8°C/min.
  • the imidization of the polyimide resin precursor containing the polyamic acid proceeds, and the polyimide resin powder in the solution. (hereinafter also referred to as "precipitate") precipitates.
  • the solvent (C) which is the solvent for the solution (c)
  • has high compatibility with the polyamic acid but low compatibility with the precipitates that precipitate as the imidization rate increases.
  • the solubility of precipitates increases when the temperature in the system is high, but the solubility decreases when the temperature in the system is low.
  • the solid content concentration of the solution (c) containing a polyimide resin precursor containing polyamic acid, prepared in the step 1 is 15 to 25% by mass, preferably 15 to 23% by mass, more preferably 17 to 23% by mass.
  • the volume average particle diameter D50 of the polyimide resin powder may exceed 50 ⁇ m, and the shape of the particle size distribution of the polyimide resin powder is trimodal or more multimodal. distribution.
  • the shape of the particle size distribution of the polyimide resin powder may be bimodal and very broad, or even if it is a unimodal distribution. It can be very broad.
  • the average heating rate in the temperature range of 70 to 130 ° C. of the solution (c) is 0.5 to 8 ° C. /min, preferably 0.8 to 6°C/min, more preferably 0.8 to 4°C/min. If the average heating rate is less than the above range (less than 0.5 ° C./min), the shape of the particle size distribution of the polyimide resin powder may be bimodal and very broad, or may be unimodal. can be very broad. On the other hand, when the average heating rate exceeds the above range (exceeds 8° C./min), the volume average particle size D50 of the polyimide resin powder may exceed 50 ⁇ m.
  • the average temperature increase rate may be the same as that in the range where the temperature of the solution (c) is 70 to 130 ° C., but from the viewpoint of improving the production rate.
  • it is preferable not to increase the rate too much. Specifically, it is 0.9 to 5°C/min, more preferably 1.0 to 4°C/min.
  • the heating and holding temperature and time are preferably up to 160°C, more preferably up to 160°C, from the viewpoint of sufficient growth of molecules or sufficient progress of imidization.
  • the solvent (C) contains an alkylene glycol-based solvent represented by the formula (1).
  • powdery polyimide is produced by reacting the tetracarboxylic acid component (A) and the diamine component (B) in the presence of such a specific solvent. resin can be obtained.
  • there are two methods in a one-pot reaction (i) uniformly dissolving the polyamic acid or uniformly dispersing the nylon salt, and (ii) not dissolving or swelling the polyimide resin at all. It is considered desirable for the solvent to possess two properties.
  • the solvent (C) generally satisfies these two characteristics.
  • the alkylene glycol-based solvent preferably has a boiling point of 140° C. or higher, more preferably 160° C. or higher, and still more preferably 180° C. or higher, from the viewpoint of enabling the polymerization reaction under normal pressure and high temperature conditions.
  • Ra 1 in formula (1) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or an ethyl group.
  • Ra 2 in formula (1) is a straight-chain alkylene group having 2 to 6 carbon atoms, preferably a straight-chain alkylene group having 2 to 3 carbon atoms, more preferably an ethylene group.
  • n in formula (1) is an integer of 1 to 3, preferably 2 or 3.
  • alkylene glycol solvent examples include ethylene glycol monomethyl ether, diethylene glycol monomethyl ether (alias: 2-(2-methoxyethoxy) ethanol), triethylene glycol monomethyl ether (alias: 2-[2-(2-methoxy ethoxy)ethoxy]ethanol), ethylene glycol monoethyl ether, diethylene glycol monoethyl ether (alias: 2-(2-ethoxyethoxy) ethanol), ethylene glycol monoisopropyl ether, diethylene glycol monoisopropyl ether, triethylene glycol monoisopropyl ether, ethylene Glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, diethylene glycol monoisobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol, 1,3-propanediol and the like.
  • solvents may be used alone, or two or more solvents selected from them may be used in combination.
  • these solvents preferably from 2-(2-methoxyethoxy)ethanol, 2-[2-(2-methoxyethoxy)ethoxy]ethanol, 2-(2-ethoxyethoxy)ethanol, and 1,3-propanediol At least one selected from the group consisting of, more preferably at least one selected from the group consisting of 2-(2-methoxyethoxy)ethanol and 2-(2-ethoxyethoxy)ethanol.
  • the content of the alkylene glycol-based solvent in solvent (C) is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 75% by mass or more, and even more preferably 95% by mass or more.
  • the solvent (C) may consist of the alkylene glycol-based solvent alone.
  • the solvent (C) contains the alkylene glycol-based solvent and other solvents
  • specific examples of the "other solvents” include water, toluene, xylene, acetone, hexane, heptane, chlorobenzene, methanol, ethanol, n-propanol, isopropanol, N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N,N-diethylformamide, N-methylcaprolactam, hexamethylphosphorus luamide, tetramethylene sulfone, dimethyl sulfoxide, o-cresol, m-cresol, p-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, ⁇ -butyrolactone
  • the solvent (C) may be used alone, or two or more solvents selected from them may be used in combination.
  • 2-ethylhexanol is preferred. That is, the solvent (C) preferably contains 2-ethylhexanol in addition to the alkylene glycol solvent.
  • the solvent (C) preferably does not contain water, it may contain water as long as a long-chain polyamic acid is formed as described above. Specifically, the water content is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 1% by mass or less, and particularly preferably 0% by mass.
  • Diamine component (B) contains an aliphatic diamine.
  • INDUSTRIAL APPLICABILITY The present invention enables the production of powdery polyimide resin in the production of polyimide resin using an aliphatic diamine as the raw material diamine component.
  • the aliphatic diamines include diamines containing at least one alicyclic hydrocarbon structure and chain aliphatic diamines.
  • the diamine component (B) preferably contains a diamine containing at least one alicyclic hydrocarbon structure and a chain aliphatic diamine as the aliphatic diamine, and is represented by formula (B1-1) described later.
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure
  • R 2 is a C 5-20 divalent chain aliphatic group.
  • Diamines containing at least one alicyclic hydrocarbon structure and chain aliphatic diamines are described below.
  • the diamine containing at least one alicyclic hydrocarbon structure is preferably a diamine (B1) represented by the following formula (B1-1).
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure means a ring derived from an alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated, and It may be cyclic or polycyclic.
  • alicyclic hydrocarbon structure examples include, but are not limited to, cycloalkane rings such as cyclohexane ring, cycloalkene rings such as cyclohexene, bicycloalkane rings such as norbornane ring, and bicycloalkene rings such as norbornene. Do not mean. Among these, a cycloalkane ring is preferred, a cycloalkane ring having 4 to 7 carbon atoms is more preferred, and a cyclohexane ring is even more preferred.
  • R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
  • R 1 contains at least one, preferably 1 to 3, alicyclic hydrocarbon structures.
  • R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2), more preferably a divalent group represented by the following formula (R1-3) be.
  • R1-1) or (R1-2) more preferably a divalent group represented by the following formula (R1-3) be.
  • m 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1;
  • m 13 to m 15 are each independently an integer of 0 to 2, preferably 0 or 1.
  • the positional relationship of the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans may be can be any value.
  • Diamine (B1) is more preferably represented by the following formula (B1-2).
  • (m 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1.)
  • diamine (B1) examples include 1,2-bis(aminomethyl)cyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4′-diaminodicyclohexylmethane, 4,4′-methylenebis(2-methylcyclohexylamine), carvonediamine, limonenediamine, isophoronediamine, norbornanediamine, bis(aminomethyl)tricyclo[5.2.1.0 2,6 ]decane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4,4′-diaminodicyclohexylpropane and the like.
  • 1,3-bis(aminomethyl)cyclohexane can be preferably used.
  • Diamines containing an alicyclic hydrocarbon structure generally have structural isomers, but the ratio of cis/trans isomers is not limited. It is also known that less symmetrical diamines generally tend to increase the free volume of resins. Therefore, 1,3-bis(aminomethyl)cyclohexane, which has a bulky structure and low symmetry, is considered to easily contribute to the reduction of the dielectric, and is therefore more suitable.
  • the chain aliphatic diamine is preferably a diamine (B2) represented by the following formula (B2-1).
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms.
  • the chain aliphatic group means a group derived from a chain aliphatic compound, and the chain aliphatic compound may be saturated or unsaturated, and may be linear. or branched, and may contain a heteroatom such as an oxygen atom.
  • R 2 is preferably an alkylene group having 5 to 16 carbon atoms, more preferably an alkylene group having 6 to 14 carbon atoms, still more preferably an alkylene group having 7 to 12 carbon atoms, and most preferably an alkylene group having 8 to 10 carbon atoms.
  • the alkylene group may be a straight-chain alkylene group or a branched alkylene group, but is preferably a straight-chain alkylene group.
  • R 2 is preferably at least one selected from the group consisting of octamethylene group and decamethylene group, and particularly preferably octamethylene group.
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms) containing an ether group. be done. Among them, a divalent group represented by the following formula (R2-1) or (R2-2) is preferred. (m 21 and m 22 are each independently an integer of 1 to 15, preferably 1 to 13, more preferably 1 to 11, still more preferably 1 to 9.
  • m 23 to m 25 are each independently an integer of 1 to 14, preferably 1 to 12, more preferably 1 to 10, and even more preferably 1 to 8.) Since R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms), m 21 and m 22 in formula (R2-1) are divalent groups represented by formula (R2-1) having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 carbon atoms to 12, more preferably 8 to 10 carbon atoms). That is, m 21 +m 22 is 5 to 16 (preferably 6 to 14, more preferably 7 to 12, still more preferably 8 to 10).
  • m 23 to m 25 in formula (R2-2) are divalent groups represented by formula (R2-2) having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably It is selected to fall within the range of 7 to 12 carbon atoms, more preferably 8 to 10 carbon atoms. That is, m 23 +m 24 +m 25 is 5 to 16 (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms).
  • diamine (B2) examples include 1,5-pentamethylenediamine, 2-methylpentane-1,5-diamine, 3-methylpentane-1,5-diamine, 1,6-hexamethylenediamine, 1, 7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13 -tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine, 2,2'-(ethylenedioxy)bis(ethyleneamine) and the like.
  • chain aliphatic diamines having 8 to 10 carbon atoms can be preferably used, and at least one selected from the group consisting of 1,8-octamethylenediamine and 1,10-decamethylenediamine is particularly preferable. Available.
  • the diamine component (B) preferably contains the above-described diamine (B1) and the above-described diamine (B2) as the aliphatic diamines, more preferably 1,3-bis(aminomethyl)cyclohexane and 1,8-octa Contains methylene diamine.
  • the amount of diamine (B1) with respect to the total amount of diamine (B1) and diamine (B2) is preferably 20 to 70 mol%. , more preferably 20 to 65 mol %, still more preferably 20 to 60 mol %, even more preferably 20 to 50 mol %, still more preferably 20 mol % or more and less than 40 mol %.
  • the diamine component (B) may consist of only an aliphatic diamine, or may contain a diamine containing an aromatic ring in addition to the aliphatic diamine.
  • the diamine containing an aromatic ring is preferably a diamine containing at least one aromatic ring, more preferably a diamine (B3) represented by the following formula (B3-1).
  • R 3 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring.
  • R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • R 3 contains at least one, preferably 1 to 3, aromatic rings.
  • a monovalent or divalent electron-withdrawing group may be bonded to the aromatic ring. Examples of monovalent electron-withdrawing groups include nitro group, cyano group, p-toluenesulfonyl group, halogen, halogenated alkyl group, phenyl group and acyl group.
  • divalent electron-withdrawing groups examples include fluorinated alkylene groups (e.g., -C(CF 3 ) 2 -, -(CF 2 ) p - (where p is an integer of 1 to 10)).
  • fluorinated alkylene groups e.g., -C(CF 3 ) 2 -, -(CF 2 ) p - (where p is an integer of 1 to 10).
  • p is an integer of 1 to 10
  • halogenated alkylene groups e.g., -CO-, -SO 2 -, -SO-, -CONH-, -COO- and the like can be mentioned.
  • R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
  • (m 31 and m 32 are each independently an integer of 0 to 2, preferably 0 or 1;
  • m 33 and m 34 are each independently an integer of 0 to 2, preferably 0 or 1.
  • R 21 , R 22 and R 23 are each independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms.
  • p 21 , p 22 and p 23 are integers of 0 to 4, preferably 0.
  • L 21 is a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since R 3 is a divalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in formula (R3-1) are represented by formula (R3- It is selected so that the number of carbon atoms of the divalent group represented by 1) falls within the range of 6-22. Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in formula (R3-2) have It is chosen to fall within the range of 12-22.
  • diamine (B3) examples include orthoxylylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-diethynylbenzenediamine, 1,3-diethynylbenzenediamine, and 1,4-diethynylbenzene.
  • the diamine component (B) contains both an aliphatic diamine and a diamine containing an aromatic ring
  • the above-mentioned diamine (B3) is further included
  • the amount of the diamine (B3) is preferably 25 mol % or less with respect to the total amount of the diamine (B1) and the diamine (B2).
  • the lower limit is not particularly limited as long as it exceeds 0 mol %.
  • the diamine component (B) may contain a diamine (B4) represented by the following formula (B4-1).
  • R 4 is a divalent group containing —SO 2 — or —Si(R x )(R y )O—, and R x and R y each independently represent a chain aliphatic group having 1 to 3 carbon atoms group or phenyl group.
  • the content of the aliphatic diamine in the diamine component (B) preferably the total content of the diamine (B1) and the diamine (B2), more preferably 1,3-bis(aminomethyl)cyclohexane and 1
  • the total content of 8-octamethylenediamine is preferably 50 mol% or more, more preferably 50 mol% or more, based on the total number of moles of diamine in the diamine component (B), from the viewpoint of the thermoforming processability of the resulting polyimide resin powder. It is 70 mol % or more, more preferably 80 mol % or
  • the tetracarboxylic acid component (A) contains a tetracarboxylic dianhydride.
  • the tetracarboxylic dianhydride is preferably a tetracarboxylic dianhydride containing at least one aromatic ring, more preferably a tetracarboxylic dianhydride represented by formula (A-1).
  • (X is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
  • X is a C6-C22 tetravalent group containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
  • X has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • X contains at least one, preferably 1 to 3, aromatic rings.
  • X is preferably a tetravalent group represented by any one of formulas (X-1) to (X-4) below.
  • R 11 to R 18 are each independently an alkyl group having 1 to 4 carbon atoms;
  • p 11 to p 13 are each independently an integer of 0 to 2, preferably 0;
  • p 14 , p 15 , p 16 and p 18 are each independently an integer of 0 to 3, preferably 0.
  • p 17 is an integer of 0 to 4, preferably 0.
  • L 11 to L 13 are each independently a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since X is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, R 12 , R 13 , p 12 and p 13 in formula (X-2) are ) is selected so that the number of carbon atoms of the tetravalent group represented by ) falls within the range of 10 to 22. Similarly, L 11 , R 14 , R 15 , p 14 and p 15 in formula (X-3) are in the range of 12 to 22 carbon atoms in the tetravalent group represented by formula (X-3).
  • L 12 , L 13 , R 16 , R 17 , R 18 , p 16 , p 17 and p 18 in formula (X-4) are tetravalent is selected so that the number of carbon atoms in the group is in the range of 18-22.
  • X is particularly preferably a tetravalent group represented by the following formula (X-5) or (X-6).
  • tetracarboxylic dianhydrides include pyromellitic dianhydride, 2,3,5,6-toluenetetracarboxylic dianhydride, and 3,3′,4,4′-diphenylsulfonetetracarboxylic acid.
  • dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 1,4,5,8-naphthalenetetra Carboxylic acid dianhydride etc. are mentioned.
  • These tetracarboxylic dianhydrides may be used alone or in combination of two or more.
  • pyromellitic dianhydride is particularly preferred.
  • the tetracarboxylic acid component (A) may contain, in addition to the tetracarboxylic dianhydride, a derivative of the tetracarboxylic dianhydride (tetracarboxylic acid and/or alkyl ester of tetracarboxylic acid).
  • Tetracarboxylic acids include pyromellitic acid, 2,3,5,6-toluenetetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, carboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, and the like.
  • alkyl esters of tetracarboxylic acids include dimethyl pyromellitic acid, diethyl pyromellitic acid, dipropyl pyromellitic acid, diisopropyl pyromellitic acid, dimethyl 2,3,5,6-toluenetetracarboxylate, 3,3′,4 ,4′-diphenylsulfonetetracarboxylate dimethyl, 3,3′,4,4′-benzophenonetetracarboxylate dimethyl, 3,3′,4,4′-biphenyltetracarboxylate dimethyl, 1,4,5,8 -Naphthalenetetracarboxylate dimethyl and the like.
  • the alkyl group preferably has 1 to 3 carbon atoms.
  • the ratio of the tetracarboxylic acid in the tetracarboxylic acid component (A) is preferably as low as possible, preferably 50 mol% or less, more preferably 30 mol% or less, and particularly preferably 0 mol%.
  • the charging ratio of the tetracarboxylic acid component (A) and the diamine component (B) is 0.9 for the diamine component (B) per 1 mol of the tetracarboxylic acid component (A). It is preferably ⁇ 1.1 mol.
  • a terminal blocking agent may be mixed in addition to the tetracarboxylic acid component (A) and the diamine component (B).
  • the terminal blocking agent at least one selected from the group consisting of monoamines and dicarboxylic acids is preferable.
  • the amount of the terminal blocking agent used may be an amount that can introduce a desired amount of terminal groups into the polyimide resin, and is preferably 0.0001 to 0.1 mol per 1 mol of the tetracarboxylic acid component (A). 0.001 to 0.06 mol is more preferred, and 0.002 to 0.035 mol is even more preferred.
  • Monoamine terminal blockers include, for example, methylamine, ethylamine, propylamine, butylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, n -undecylamine, laurylamine, n-tridecylamine, n-tetradecylamine, isopentylamine, neopentylamine, 2-methylpentylamine, 2-methylhexylamine, 2-ethylpentylamine, 3-ethylpentyl Aliphatic monoamines such as amines, isooctylamine, 2-ethylhexylamine, 3-ethylhexylamine, isononylamine, 2-ethyloctylamine, isodecylamine, isododecylamine, is
  • Monoamines are mentioned.
  • monoamines containing a halogen element such as fluorine are preferably used because they tend to provide low dielectric properties.
  • Specific examples include 2-trifluoromethylaniline, 3-trifluoromethylaniline, 4-trifluoromethylaniline, 2,3-bis(trifluoromethyl)aniline, 2,4-bis(trifluoromethyl)aniline, 2,5-bis(trifluoromethyl)aniline, 2,6-bis(trifluoromethyl)aniline, 3,4-bis(trifluoromethyl)aniline, 3,5-bis(trifluoromethyl)aniline, 2, 3,4-tris(trifluoromethyl)aniline, 2,3,5-tris(trifluoromethyl)aniline, 2,3,6-tris(trifluoromethyl)aniline, 2,4,5-tris(trifluoro methyl)aniline, 2,4,6-tris(trifluoromethyl)aniline, 3,4,5-tris(trifluoromethyl)aniline, 2,4,6-tris
  • monoamines having a bulky structure specifically, alicyclic monoamines
  • monoamine end-capping agents include amines having an adamantyl group such as cyclohexylamine, dicyclohexylamine, methylcyclohexylamine and adamantaneamine, and amines having a fluorene skeleton.
  • Dicarboxylic acids are preferable as the dicarboxylic acid end-capping agent, and a part thereof may be ring-closed.
  • phthalic acid and phthalic anhydride are preferred.
  • dicarboxylic acids having a halogen element such as fluorine or dicarboxylic acids having a bulky structure are used, which contributes to a low dielectric. This is preferable because it can be done.
  • the terminal blocking agent is particularly preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, isononylamine, n-decylamine, and isodecylamine.
  • n-octylamine more preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, and isononylamine, and still more preferably n-octylamine and isooctylamine , and 2-ethylhexylamine.
  • the solution (c) containing a polyimide resin precursor containing polyamic acid is a solution (a) containing a tetracarboxylic acid component (A) containing a tetracarboxylic dianhydride in the solvent (C); and a solution (b) containing a diamine component (B) containing an aliphatic diamine in the solvent (C).
  • the solution (c) containing a polyimide resin precursor containing polyamic acid is a solution (d) containing a terminal blocking agent in the solvent (C). including.
  • the content of the tetracarboxylic acid component (A) in the solution (a) is preferably 20 to 45% by mass, more preferably 25 to 45% by mass, and the content of the diamine component (B) in the solution (b).
  • the amount is preferably 20-80% by weight, more preferably 40-60% by weight.
  • the content of the terminal blocking agent in the solution (d) is preferably 1 to 100% by mass, more preferably 10 to 80% by mass.
  • the proportion of the tetracarboxylic dianhydride in the tetracarboxylic acid component (A) is preferably 50 mol% or more, more preferably 70 mol% or more, and still more preferably 90 mol%. That's it. It is particularly preferred that the tetracarboxylic acid component (A) consists essentially of tetracarboxylic dianhydride.
  • the term "substantially” as used herein means that when only tetracarboxylic dianhydride is used as the tetracarboxylic acid component (A), part of it (up to about 10 mol%) reacts with moisture in the atmosphere. is permissible.
  • the addition of the solution (b) to the solution (a) resulted in a total addition amount of the diamine component (B) of 0.9 to 1.1 mol per 1 mol of the tetracarboxylic acid component (A).
  • the solution (d) may be added after adding the solution (b) to the solution (a).
  • the type and content of the terminal blocking agent and preferred embodiments thereof are as described above.
  • the step of reacting the tetracarboxylic acid component (A) and the diamine component (B) in the presence of the solvent (C) can be carried out under normal pressure or under pressure. It is preferably carried out under normal pressure because it does not require a container.
  • the step of reacting the tetracarboxylic acid component (A) and the diamine component (B) in the presence of the solvent (C) includes steps 1 and 2, so that the volume average particle diameter D50 is within a specific range (specifically (typically 5 to 50 ⁇ m), and a polyimide resin powder having a good particle size distribution can be obtained.
  • the polyimide resin powder obtained by the production method of the present invention contains a repeating structural unit represented by the following formula (I) and a repeating structural unit represented by the following formula (II), and the repeating structural unit of the formula (I) and the The content ratio of the repeating structural units of formula (I) to the total repeating structural units of formula (II) is 20 to 70 mol %.
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the polyimide resin powder of the present invention has a volume average particle diameter D50 of preferably 5 to 50 ⁇ m, more preferably 10 to 40 ⁇ m, and still more preferably 13 to 35 ⁇ m, as measured by a laser diffraction light scattering particle size distribution analyzer.
  • the volume average particle diameter D10 is preferably 1 to 40 ⁇ m, more preferably 2 to 30 ⁇ m, more preferably 5 to 25 ⁇ m
  • the volume average particle diameter D90 is preferably 5 to 60 ⁇ m, more preferably 10 to 50 ⁇ m, More preferably, it is 15 to 45 ⁇ m.
  • the volume average particle diameters D50, D10, and D90 can be specifically determined by the method described in Examples.
  • the D10 value (D10/D50) with respect to the D50 value of the polyimide resin powder is preferably 1/3 (0.33) or more, more preferably 1/2 (0.5) or more.
  • the D90 value (D90/D50) with respect to the D50 value of the polyimide resin powder is preferably 3 or less, more preferably 2 or less. More preferably D10/D50 is 0.45 to 0.9 and D90/D50 is more than 1.4 and 2.0 or less, still more preferably D10/D50 is 0.7 to 0.9 and D90/D50 is 1.1 to 1.4.
  • the particle size distribution By setting the particle size distribution in such a range, a sharp shape with a single peak is obtained, or even if it has a bimodal shape, a sharp shape is obtained for the main peak, and the main peak Since the volume frequency of is increased, it is easy to handle, for example, it becomes a stable feed state during extrusion molding, which improves productivity. Similarly, it is possible to suppress classification during feeding. Many advantages can be obtained, such as improved fluidity of the powder itself, stable conditions for filtration and transportation during resin powder production, and excellent dispersibility when used as an additive, making it easy to express physical properties.
  • the polyimide resin powder is a thermoplastic resin, and the thermoplastic polyimide resin is formed by closing the imide ring after molding in the state of a polyimide precursor such as polyamic acid, for example, polyimide having no glass transition temperature (Tg) It is distinguished from resins or polyimide resins, which decompose at temperatures below the glass transition temperature.
  • a polyimide precursor such as polyamic acid
  • Tg glass transition temperature
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure means a ring derived from an alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated, and It may be cyclic or polycyclic.
  • Examples of the alicyclic hydrocarbon structure include, but are not limited to, cycloalkane rings such as cyclohexane ring, cycloalkene rings such as cyclohexene, bicycloalkane rings such as norbornane ring, and bicycloalkene rings such as norbornene. Do not mean.
  • a cycloalkane ring is preferred, a cycloalkane ring having 4 to 7 carbon atoms is more preferred, and a cyclohexane ring is even more preferred.
  • R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
  • R 1 contains at least one, preferably 1 to 3, alicyclic hydrocarbon structures.
  • R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2).
  • (m 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1;
  • m 13 to m 15 are each independently an integer of 0 to 2, preferably 0 or 1.)
  • R 1 is particularly preferably a divalent group represented by the following formula (R1-3).
  • R1-3 the positional relationship of the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans may be can be any value.
  • X 1 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
  • X 1 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • X 1 contains at least one, preferably 1 to 3, aromatic rings.
  • X 1 is preferably a tetravalent group represented by any one of formulas (X-1) to (X-4) below.
  • R 11 to R 18 are each independently an alkyl group having 1 to 4 carbon atoms;
  • p 11 to p 13 are each independently an integer of 0 to 2, preferably 0;
  • p 14 , p 15 , p 16 and p 18 are each independently an integer of 0 to 3, preferably 0.
  • p 17 is an integer of 0 to 4, preferably 0.
  • L 11 to L 13 are each independently a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since X 1 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, R 12 , R 13 , p 12 and p 13 in formula (X-2) are represented by formula (X- The number of carbon atoms in the tetravalent group represented by 2) is selected within the range of 10 to 22. Similarly, L 11 , R 14 , R 15 , p 14 and p 15 in formula (X-3) are in the range of 12 to 22 carbon atoms in the tetravalent group represented by formula (X-3).
  • L 12 , L 13 , R 16 , R 17 , R 18 , p 16 , p 17 and p 18 in formula (X-4) are selected to contain the tetravalent is selected so that the number of carbon atoms in the group is in the range of 18-22.
  • X 1 is particularly preferably a tetravalent group represented by the following formula (X-5) or (X-6).
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms, preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms.
  • R 2 is preferably an alkylene group having 5 to 16 carbon atoms, more preferably an alkylene group having 6 to 14 carbon atoms, still more preferably an alkylene group having 7 to 12 carbon atoms, and most preferably an alkylene group having 8 to 10 carbon atoms. It is an alkylene group.
  • the alkylene group may be a straight-chain alkylene group or a branched alkylene group, but is preferably a straight-chain alkylene group.
  • R 2 is preferably at least one selected from the group consisting of octamethylene group and decamethylene group, and particularly preferably octamethylene group.
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms containing an ether group.
  • the number of carbon atoms is preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms.
  • a divalent group represented by the following formula (R2-1) or (R2-2) is preferred.
  • (m 21 and m 22 are each independently an integer of 1 to 15, preferably 1 to 13, more preferably 1 to 11, still more preferably 1 to 9.
  • m 23 to m 25 are each independently an integer of 1 to 14, preferably 1 to 12, more preferably 1 to 10, and even more preferably 1 to 8.) Since R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms), m 21 and m 22 in formula (R2-1) are divalent groups represented by formula (R2-1) having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 carbon atoms to 12, more preferably 8 to 10 carbon atoms). That is, m 21 +m 22 is 5 to 16 (preferably 6 to 14, more preferably 7 to 12, still more preferably 8 to 10).
  • m 23 to m 25 in formula (R2-2) are divalent groups represented by formula (R2-2) having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably It is selected to fall within the range of 7 to 12 carbon atoms, more preferably 8 to 10 carbon atoms. That is, m 23 +m 24 +m 25 is 5 to 16 (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms).
  • X2 is defined in the same manner as X1 in formula ( I ), and preferred embodiments are also the same.
  • the content ratio of the repeating structural unit of formula (I) to the total of the repeating structural unit of formula (I) and the repeating structural unit of formula (II) is 20 to 70 mol %.
  • the content ratio of the repeating structural unit of formula (I) is within the above range, it is possible to sufficiently crystallize the polyimide resin powder even in a general injection molding cycle.
  • the content ratio is less than 20 mol %, moldability is deteriorated, and when it exceeds 70 mol %, crystallinity is deteriorated, resulting in deterioration of heat resistance.
  • the content ratio of the repeating structural unit of formula (I) to the total of the repeating structural unit of formula (I) and the repeating structural unit of formula (II) is preferably 65 mol% or less, from the viewpoint of expressing high crystallinity. It is more preferably 60 mol % or less, still more preferably 50 mol % or less. Above all, the content ratio of the repeating structural unit of formula (II) to the total of the repeating structural unit of formula (I) and the repeating structural unit of formula (II) is preferably 20 mol % or more and less than 40 mol %.
  • the crystallinity of the polyimide resin powder is high, the resin film is more excellent in heat resistance, suitable for the production of a high-frequency circuit board described later, and excellent in the effect of suppressing the increase in dielectric loss tangent at high temperatures. be able to.
  • the molecular motion of the resin is likely to be activated under high temperature, and the dielectric properties such as the dielectric loss tangent deteriorate. It is considered that raising the temperature is effective in suppressing the molecular motion of the resin.
  • the content ratio is preferably 25 mol% or more, more preferably 30 mol% or more, and still more preferably 32 mol% or more from the viewpoint of moldability, and is even more preferable from the viewpoint of expressing high crystallinity. is 35 mol % or less.
  • the total content ratio of the repeating structural unit of formula (I) and the repeating structural unit of formula (II) with respect to all repeating structural units constituting the polyimide resin powder is preferably 50 to 100 mol%, more preferably 75 to 100. mol %, more preferably 80 to 100 mol %, even more preferably 85 to 100 mol %.
  • the polyimide resin powder may further contain a repeating structural unit of formula (III) below.
  • the content ratio of the repeating structural unit of formula (III) to the total of the repeating structural unit of formula (I) and the repeating structural unit of formula (II) is preferably 25 mol % or less.
  • the lower limit is not particularly limited as long as it exceeds 0 mol %.
  • the content ratio is preferably 5 mol % or more, more preferably 10 mol % or more, while from the viewpoint of maintaining crystallinity, it is preferably 20 mol % or less, more preferably 20 mol % or less. Preferably, it is 15 mol % or less.
  • R 3 is a C 6-22 divalent group containing at least one aromatic ring.
  • X 3 is a C 6-22 tetravalent group containing at least one aromatic ring.
  • R 3 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
  • R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • R 3 contains at least one, preferably 1 to 3, aromatic rings. A monovalent or divalent electron-withdrawing group may be bonded to the aromatic ring.
  • Examples of monovalent electron-withdrawing groups include nitro group, cyano group, p-toluenesulfonyl group, halogen, halogenated alkyl group, phenyl group and acyl group.
  • Examples of divalent electron-withdrawing groups include fluorinated alkylene groups (e.g., -C(CF 3 ) 2 -, -(CF 2 ) p - (where p is an integer of 1 to 10)). -CO-, -SO 2 -, -SO-, -CONH-, -COO-, etc., in addition to halogenated alkylene groups.
  • R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
  • (m 31 and m 32 are each independently an integer of 0 to 2, preferably 0 or 1;
  • m 33 and m 34 are each independently an integer of 0 to 2, preferably 0 or 1.
  • R 21 , R 22 and R 23 are each independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms.
  • p 21 , p 22 and p 23 are integers of 0 to 4, preferably 0.
  • L 21 is a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since R 3 is a divalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in formula (R3-1) are represented by formula (R3- It is selected so that the number of carbon atoms of the divalent group represented by 1) falls within the range of 6-22. Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in formula (R3-2) have It is chosen to fall within the range of 12-22.
  • X3 is defined in the same manner as X1 in formula ( I ), and the preferred embodiments are also the same.
  • the polyimide resin powder may further contain a repeating structural unit represented by the following formula (IV).
  • R 4 is a divalent group containing —SO 2 — or —Si(R x )(R y )O—, and R x and R y each independently represent a chain aliphatic group having 1 to 3 carbon atoms or a phenyl group, and X 4 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • X4 is defined in the same manner as X1 in formula ( I ), and preferred embodiments are also the same.
  • the terminal structure of the polyimide resin powder is not particularly limited, it preferably has a chain aliphatic group having 5 to 14 carbon atoms at its terminal.
  • the chain aliphatic group may be saturated or unsaturated, linear or branched.
  • saturated chain aliphatic groups having 5 to 14 carbon atoms include n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, Lauryl group, n-tridecyl group, n-tetradecyl group, isopentyl group, neopentyl group, 2-methylpentyl group, 2-methylhexyl group, 2-ethylpentyl group, 3-ethylpentyl group, isooctyl group, 2-ethylhexyl group , 3-ethylhexyl group, isononyl group, 2-ethyloctyl group, isodecyl group, isododecyl group, isotridecyl group, isotetradecyl group and the like.
  • Examples of unsaturated chain aliphatic groups having 5 to 14 carbon atoms include 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-heptenyl group, 2-heptenyl group and 1-octenyl group. , 2-octenyl group, nonenyl group, decenyl group, dodecenyl group, tridecenyl group, tetradecenyl group and the like.
  • the chain aliphatic group is preferably a saturated chain aliphatic group, and more preferably a saturated straight chain aliphatic group.
  • the chain aliphatic group preferably has 6 or more carbon atoms, more preferably 7 or more carbon atoms, still more preferably 8 or more carbon atoms, and preferably 12 or less carbon atoms, more preferably 12 or less carbon atoms. has 10 or less carbon atoms, more preferably 9 or less carbon atoms. Only one kind of the chain aliphatic group may be used, or two or more kinds thereof may be used.
  • the chain aliphatic group is particularly preferably at least one selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group, isononyl group, n-decyl group and isodecyl group. More preferably at least one selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group and isononyl group, most preferably n-octyl group, isooctyl group and It is at least one selected from the group consisting of 2-ethylhexyl groups.
  • the polyimide resin powder preferably has only chain aliphatic groups having 5 to 14 carbon atoms at its terminals in addition to terminal amino groups and terminal carboxy groups.
  • the content thereof is preferably 10 mol % or less, more preferably 5 mol % or less, relative to the chain aliphatic group having 5 to 14 carbon atoms.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin powder is, from the viewpoint of expressing excellent heat aging resistance, a total of 100 mol% of all repeating structural units constituting the polyimide resin powder. , preferably 0.01 mol % or more, more preferably 0.1 mol % or more, and still more preferably 0.2 mol % or more.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin powder should be It is preferably 10 mol % or less, more preferably 6 mol % or less, and even more preferably 3.5 mol % or less, relative to the total of 100 mol % of the units.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin powder can be determined by depolymerizing the polyimide resin powder.
  • the polyimide resin powder preferably has a melting point of 360° C. or lower and a glass transition temperature of 150° C. or higher.
  • the melting point of the polyimide resin powder is more preferably 280° C. or higher, more preferably 290° C. or higher from the viewpoint of heat resistance, and preferably 345° C. or lower, more preferably 340° C. or higher from the viewpoint of expressing high moldability. °C or less, more preferably 335°C or less.
  • the glass transition temperature of the polyimide resin powder is more preferably 160° C. or higher, more preferably 170° C. or higher from the viewpoint of heat resistance, and preferably 250° C. or lower from the viewpoint of expressing high moldability. It is more preferably 230° C.
  • Both the melting point and glass transition temperature of the polyimide resin powder can be measured with a differential scanning calorimeter.
  • the polyimide resin powder was melted by differential scanning calorimeter measurement, and then cooled at a cooling rate of 20 ° C./min.
  • the heat quantity at the exothermic peak of crystallization (hereinafter also simply referred to as “calorific value of crystallization”) observed in the process is preferably 5.0 mJ/mg or more, more preferably 10.0 mJ/mg or more. , 17.0 mJ/mg or more.
  • the upper limit of the crystallization heat value is not particularly limited, it is usually 45.0 mJ/mg or less.
  • the melting point, glass transition temperature, and crystallization heat value of the polyimide resin powder can be specifically measured by the methods described in Examples.
  • the logarithmic viscosity at 30° C. of a 0.5 mass % concentrated sulfuric acid solution of the polyimide resin powder is preferably in the range of 0.2 to 2.0 dL/g, more preferably in the range of 0.3 to 1.8 dL/g. If the logarithmic viscosity is 0.2 dL / g or more, sufficient mechanical strength can be obtained when the obtained polyimide resin powder is formed into a molded body, and if it is 2.0 dL / g or less, molding processability and handleability becomes better.
  • the weight average molecular weight Mw of the polyimide resin powder is preferably 10,000 to 150,000, more preferably 15,000 to 100,000, still more preferably 20,000 to 80,000, still more preferably 30,000 to 70,000, more preferably in the range of 35,000 to 65,000.
  • the weight average molecular weight Mw of the polyimide resin powder is 10,000 or more, the mechanical strength of the molded product obtained is good, and when it is 40,000 or more, the stability of the mechanical strength is good. ,000 or less, the moldability is improved.
  • the weight average molecular weight Mw of the polyimide resin powder can be measured by gel permeation chromatography (GPC) using polymethyl methacrylate (PMMA) as a standard sample.
  • the present invention provides a film-like molded article (resin film) obtained using a molding material containing a polyimide resin powder having a specific composition obtained by the production method of the present invention.
  • the resin film of the present invention is obtained using a molding material containing polyimide resin powder of a specific composition obtained by the production method of the present invention.
  • the alicyclic hydrocarbon structure Since the alicyclic hydrocarbon structure has a bulky structure, it tends to increase the free volume of the resin (the difference between the volume actually occupied by the substance and the space occupied volume calculated from the atomic radius, etc.). Conceivable. It is considered that this is one of the reasons why the effect of improving the dielectric properties such as the dielectric loss tangent appears. Among them, if it is a divalent group derived from an alicyclic diamine with low symmetry (e.g., 1,3-bis(aminomethyl)cyclohexane), it is believed that the tendency to increase the free volume of the resin is higher. , the effect of improving dielectric properties such as dielectric loss tangent is considered to be higher.
  • the crystallized part expresses a high crystallization temperature
  • the amorphous part expresses a high glass transition temperature. It also has a design concept that makes it possible to Therefore, according to the resin film obtained using the molding material containing the polyimide resin powder of the present invention, which has a design concept not only at normal temperature but also at high temperature, the molecular motion of the resin is hardly activated even at high temperature, and the dielectric It is considered that the effect of suppressing deterioration of dielectric properties such as tangent is exhibited. It is known that crystalline resins generally tend to lower the water absorption rate. From this, it is considered that the resin film of the present invention also exhibits the effect of suppressing the deterioration of dielectric properties such as dielectric loss tangent due to the influence of water absorption under high humidity.
  • the ratio (P 120 /P 40 ) of the dielectric constant P 40 at 40° C. and the dielectric constant P 120 at 120° C. at 10 GHz of the resin film is preferably 0.8 to 1.2, more preferably 0.8. 8 to 1.1.
  • the ratio of the dielectric constant P40 at 40 °C to the dielectric constant P120 at 120 °C at 20 GHz of the resin film ( P120 / P40 ) is preferably 0.8 to 1.2, more preferably 0.85 to 1.1.
  • the ratio (Q 120 /Q 40 ) of the dielectric loss tangent Q 40 at 40° C. to the dielectric loss tangent Q 120 at 120° C. at 10 GHz of the resin film is preferably 1.0 to 1.5, more preferably 1.5. 0 to 1.3.
  • the ratio of the dielectric loss tangent Q40 at 40°C to the dielectric loss tangent Q120 at 120 °C at 20 GHz of the resin film ( Q120 / Q40 ) is preferably 1.0 to 1.7, more preferably 1.2 to 1.6.
  • the dielectric constant and dielectric loss tangent of the resin film can be specifically measured by the methods described in Examples.
  • the saturated water absorption of the resin film is 1.0% or less, preferably 0.9% or less, more preferably 0.8% or less under conditions of 85° C. and 85% relative humidity. Specifically, the saturated water absorption of the resin film can be measured by the method described in Examples.
  • Additives other than the polyimide resin powder can be blended as necessary as the molding material for the resin film, as long as the properties of the polyimide resin powder are not impaired.
  • additives include matting agents, plasticizers, antistatic agents, anti-coloring agents, anti-gelling agents, coloring agents, antioxidants, conductive agents, resin modifiers, flame retardants, glass fibers, and carbon fibers. , a crystal nucleating agent, a crystallization retarder, a sliding modifier, and a low dielectric constant agent such as fluororesin powder and calcium carbonate powder.
  • NE glass which has low dielectric properties, is preferably used as the glass fiber.
  • a flame retardant having a melting point or a glass transition temperature, or a fine powder flame retardant of several microns or less is preferably used from the viewpoint of improving the appearance of the molded article.
  • the fluororesin finely powdered fluororesin having a size of several microns or less is preferably used.
  • the amount of the additive compounded from the viewpoint of expressing the effect of the additive while maintaining the physical properties derived from the polyimide resin powder, it is usually 50% by mass or less, preferably 0.0001%, in the molding material. ⁇ 30% by mass, more preferably 0.001 to 15% by mass, still more preferably 0.01 to 10% by mass.
  • thermoplastic resins examples include polyamide resins, polyester resins, polyimide resins other than the polyimide resin powder, polycarbonate resins, polyetherimide resins, polyamideimide resins, polyphenylene etherimide resins, Polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, polyarylate resin, liquid crystal polymer, polyetherketone resin (polyetheretherketone resin, polyetherketone resin, polyetherketoneketone resin, polyetheretherketoneketone resin, etc.) , polybenzimidazole resin, fluorine resin, and the like.
  • polyetherimide resins At least one selected from the group consisting of polyphenylene sulfide resins and polyetherketone resins is preferred.
  • the blending ratio is not particularly limited as long as the characteristics of the polyimide resin powder are not impaired. It can be arbitrarily selected in the range of to 99/1.
  • the content of the polyimide resin powder in the molding material used for producing the resin film is preferably 20% by mass or more, more preferably 45% by mass, from the viewpoint of obtaining the effect of suppressing the increase in dielectric loss tangent at high temperatures.
  • an upper limit is 100 mass %.
  • the above molding material may be used in powder form for molding resin films, etc., or may be pelletized once and then used for molding resin films, etc.
  • thermoforming a film-like molded body (resin film) can be easily produced by thermoforming.
  • a method in which a molding material containing polyimide resin powder is put into an extruder and directly extruded and then subjected to various thermoforming methods to obtain a film-like molded body (ii) a molding material containing polyimide resin powder is A method of obtaining a film-shaped molded body by putting it into an extruder and pelletizing it once, then using the pellets to perform various thermoforming methods, and (iii) Direct compression molding of a molding material containing polyimide resin powder with a heat press device. and a method of obtaining a film-like molding.
  • a method for producing a resin film preferably includes a step of thermoforming a molding material containing polyimide resin powder and optionally various optional components at 300 to 410°C.
  • a specific procedure for example, in the case of the above method (ii), the following method can be mentioned.
  • polyimide resin powder and after dry blending various optional components as necessary, this is put into an extruder, preferably melted at 300 to 410 ° C., melted and kneaded in the extruder, and extruded. to make pellets.
  • the polyimide resin powder is put into an extruder, preferably melted at 300 to 410 ° C., various optional components are put into the extruder, and melt-kneaded in the extruder.
  • melt-kneaded molding material is single-screw extrusion molded. It is continuously extruded from various dies such as a T-die of a machine or a twin-screw extruder, and then cooled with a metal roll, which is preferably a cooling roll at 100 to 250 ° C., to form a film-like molded body (resin film). Obtainable.
  • the film-shaped molding is preferably preheated in the temperature range of 100 to 300° C., and stretched by a factor of 1.1 or more, more preferably 1.1 times in each of the MD and TD directions. It can be stretched 5 times or more.
  • stretching the film the mechanical strength of the film itself can be improved and the linear expansion coefficient in the stretching direction can be significantly reduced, so it is particularly suitable for multi-layering with low linear expansion coefficient materials. be.
  • the resin film of the present invention also includes a plate-like or sheet-like film having a thickness of 5 mm or less.
  • the resin film may have any thickness depending on the application, and is not particularly limited as long as it is 2 to 1000 ⁇ m.
  • the thickness of the resin film is preferably 5 to 800 ⁇ m, more preferably 10 to 500 ⁇ m, and still more preferably 12.5 to 250 ⁇ m, from the viewpoint of handleability and thinness. is.
  • the linear expansion coefficient in the plane direction (X direction, Y direction) of the resin film of the present invention is from 50 ° C.
  • the linear expansion coefficient in the thickness direction (Z direction) of the resin film is in the range of 50 ° C. to the glass transition temperature of the resin film. , preferably 300 ppm or less, more preferably 200 ppm or less, and still more preferably 100 ppm or less. Since the resin film of the present invention has crystallinity, it is easily stacked in the thickness direction and has a high glass transition temperature.
  • the resin film of the present invention is suitable for high-frequency circuit boards and copper-clad laminates because it can suppress an increase in dielectric loss tangent at high temperatures.
  • the powder itself is used as a raw material for dry blending, a raw material for compression molded products such as packing and IC inspection jigs, a toughness imparting agent for CFRP, a toughness imparting agent for thermosetting resins and thermoplastic resins, and a heat resistance improving agent. , coating materials, lubricants, raw materials for 3D printers, raw materials for UD tapes, etc.
  • the present invention provides a high-frequency circuit board including the resin film of the present invention.
  • the high-frequency circuit board of the present invention may have any layer other than the resin film, but from the viewpoint of suppressing the increase in dielectric loss tangent at high temperatures, it is preferable that the board consist only of the resin film. preferable.
  • the resin composition constituting the high-frequency circuit board, the method for manufacturing the high-frequency circuit board, the dielectric properties (dielectric constant and dielectric loss tangent) of the high-frequency circuit board, the saturated water absorption rate, and preferred aspects thereof are described in the resin film. Same as content.
  • the thickness of the high frequency circuit board is preferably 5 to 800 ⁇ m, more preferably 10 to 500 ⁇ m, still more preferably 12.5 to 250 ⁇ m, from the viewpoint of ensuring strength and dielectric properties.
  • the present invention also provides a copper-clad laminate comprising a layer comprising the resin film of the present invention.
  • the copper-clad laminate of the present invention may have a layer made of the resin film of the present invention (hereinafter also simply referred to as "resin film layer") and at least one copper foil layer.
  • resin film layer a layer made of the resin film of the present invention
  • a laminate having a structure in which a copper foil layer is laminated on at least one surface, preferably both surfaces, of the resin film layer may be used.
  • a copper-clad laminate having such a structure can be obtained, for example, by bonding the resin film of the present invention and a copper foil together by a known method.
  • the resin film used for manufacturing the copper-clad laminate can be manufactured by the same method as described above.
  • the thickness of the resin film and the resin film layer in the copper-clad laminate is preferably 5 to 500 ⁇ m from the viewpoint of ensuring the strength of the copper-clad laminate and improving the adhesion between the resin film layer and the copper foil layer. , more preferably 10 to 300 ⁇ m, still more preferably 12.5 to 200 ⁇ m.
  • the copper foil used in the production of the copper-clad laminate is not particularly limited, and commercially available rolled copper foil, electrolytic copper foil, etc. can be used, but the rolled copper foil is more suitable from the viewpoint of flexibility. .
  • the thickness of the copper foil layer and the copper foil used for its formation is preferably 2 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, from the viewpoint of ensuring sufficient conductivity and improving adhesiveness with the resin film layer. More preferably, it is 5 to 20 ⁇ m.
  • the thickness is the thickness per copper foil layer or per copper foil.
  • the surface roughness of the copper foil used in the production of the copper-clad laminate is not particularly limited, but the surface roughness of the copper foil is directly linked to the electrical properties of the laminate itself obtained after laminating the resin film, and generally In theory, the lower the roughness, the better the dielectric properties of the laminate. Therefore, the maximum height Rz of the copper foil surface is preferably in the range of 0.1 to 1 ⁇ m, more preferably in the range of 0.2 to 0.8 ⁇ m. The maximum height Rz of the copper foil surface can be measured, for example, with a surface roughness meter.
  • the thickness of the copper-clad laminate is preferably 15-600 ⁇ m, more preferably 25-500 ⁇ m, still more preferably 50-300 ⁇ m, from the viewpoint of improving the strength and conductivity of the copper-clad laminate.
  • the copper-clad laminate may have any layer other than the resin film layer and the copper foil layer as long as the effects of the present invention are not impaired.
  • the method for producing the copper-clad laminate is not particularly limited, and examples include a lamination method in which the resin film of the present invention and a copper foil are superimposed and then laminated under heat and pressure conditions by a known method. Since the resin film of the present invention contains a thermoplastic polyimide resin, it can be bonded to a copper foil by pressure bonding with the surface melted.
  • the apparatus used for manufacturing the copper-clad laminate may be any apparatus as long as it can bond the resin film and the copper foil together under heat and pressure conditions. Examples include a roll laminator, flat plate laminator, vacuum press apparatus, A double belt press device and the like can be mentioned.
  • a double belt press device is equipped with endless belts arranged in a pair of upper and lower parts, and between the belts, film-shaped materials (resin film and copper foil) forming each layer are continuously fed and heated through the endless belts. It is an apparatus capable of producing a laminate by heating and pressurizing the above materials using a pressurizing mechanism.
  • the double belt press device include the device described in JP-A-2010-221694 and the double belt press device manufactured by DIMCO Co., Ltd.
  • the heating temperature for producing a copper-clad laminate by the above method is not particularly limited as long as it is a temperature at which the resin film can be softened or melted. It is in the range of 250-400°C, more preferably 280-350°C.
  • the pressure conditions for producing the copper-clad laminate are preferably from 0.1 to 0.1, from the viewpoint of improving the adhesion between the resin film and the copper foil, and from the viewpoint of reducing the burden on the apparatus and manufacturing. 20 MPa, more preferably 0.15 to 15 MPa, still more preferably 0.2 to 12 MPa.
  • the pressurization time is preferably in the range of 1 to 600 seconds, more preferably 5 to 400 seconds, and even more preferably 10 to 300 seconds.
  • the resin film according to the present invention is characterized in that it can be heat-sealed, but in the production of copper-clad laminates, it is also possible to bond the resin film and copper foil together using an adhesive.
  • an adhesive a varnish-like adhesive, a sheet-like adhesive, a powder-like adhesive, or the like can be arbitrarily selected.
  • the adhesive also have low dielectric properties. Examples of adhesives with low dielectric properties include the "PIAD" series of polyimide adhesives manufactured by Arakawa Chemical Industries, Ltd.
  • the melting point Tm was determined by reading the peak top value of the endothermic peak observed the second time the temperature was raised.
  • the glass transition temperature Tg was determined by reading the value observed at the second heating.
  • the crystallization temperature Tc was determined by reading the peak top value of the exothermic peak observed during cooling.
  • the crystallization heat value ⁇ Hm (mJ/mg) was calculated from the area of the exothermic peak observed during cooling.
  • the semi-crystallization time of the polyimide resin powder produced in each example was measured using a differential scanning calorimeter ("DSC-6220" manufactured by SII Nanotechnology Co., Ltd.). .
  • the measurement conditions for the polyimide resin having a semi-crystallization time of 20 seconds or less were held at 420° C. for 10 minutes in a nitrogen atmosphere to melt the polyimide resin completely, and then perform a rapid cooling operation at a cooling rate of 70° C./min. Second, the time taken from the appearance of the observed crystallization peak to the peak top was calculated and determined.
  • (1-6) Volume average particle size (D10, D50, D90) D10, D50 and D90 of the polyimide resin powder produced in each example were obtained from the results of laser diffraction particle size distribution measurement.
  • the results of particle size distribution measurement of the polyimide resin powder produced in each example are shown in FIGS.
  • a laser diffraction light scattering type particle size distribution analyzer “LMS-2000e” manufactured by Malvern was used as a measuring device.
  • the D10, D50, and D90 measurements of the polyimide resin powder were carried out using water as a dispersion medium and under ultrasonic conditions so that the polyimide resin powder was sufficiently dispersed. The measurement range was 0.02 to 2000 ⁇ m.
  • network analyzer P5007A manufactured by Keysight Technologies
  • split cylinder resonator 20 GHz CR-720 manufactured by EM Lab
  • split cylinder temperature special evaluation software CR-TC manufactured by EM Lab
  • Example 1 ⁇ Production of polyimide resin powder>
  • a 2 L separable flask equipped with a Dean-Stark apparatus, a Liebig condenser, a thermocouple, and four paddle blades 800 g of 2-(2-methoxyethoxy) ethanol (manufactured by Nippon Nyukazai Co., Ltd.) and pyromellitic dianhydride ( Lonza Japan Co., Ltd.) 191.95 g (0.88 mol) was introduced, and after nitrogen flow, the mixture was stirred at 150 rpm to form a uniform suspension.
  • 1,8- A mixed diamine solution was prepared by dissolving 82.52 g (0.572 mol) of octamethylenediamine (manufactured by Kanto Kagaku Co., Ltd.) in 250 g of 2-(2-methoxyethoxy)ethanol. This mixed diamine solution was added dropwise to the suspension solution in the 2 L separable flask over 60 min using a plunger pump.
  • the polyamic acid solution (c) in the 2-L separable flask was heated to 190°C.
  • the liquid was heated at an average temperature increase rate of 0.91°C/min in the liquid temperature range of 70 to 130°C.
  • the average temperature increase rate in the liquid temperature range of 130 ° C. to 190 ° C. is continued at the same temperature increase rate as the average temperature increase rate in the range of 70 to 130 ° C. After holding at 190 ° C. for 30 minutes, room temperature. It was allowed to cool to , and filtered.
  • the obtained polyimide resin powder was washed with 300 g of 2-(2-methoxyethoxy)ethanol and 300 g of methanol, filtered, and dried in a dryer at 180° C. for 10 hours to obtain 317 g of polyimide resin powder.
  • characteristic absorption of the imide ring was observed at ⁇ (C ⁇ O) 1768, 1697 (cm ⁇ 1 ).
  • the logarithmic viscosity was 1.60 dL / g
  • Tm was 323 ° C.
  • Tg was 184 ° C.
  • Tc was 266 ° C.
  • the crystallization heat value was 21.0 mJ / mg
  • the half-crystallization time was Under 20 seconds
  • Mw was 55,000.
  • Table 1 shows the composition and evaluation results of the polyimide resin powder in Example 1.
  • the mol % of the tetracarboxylic acid component and the diamine component in Table 1 are values calculated from the amount of each component charged during the production of the polyimide resin.
  • Example 2 In the process of raising the temperature of the polyamic acid solution (c) to 190 ° C., except that the average temperature increase rate in the liquid temperature range of 70 to 130 ° C. was changed as shown in Table 2. A polyimide resin powder was obtained in the same manner.
  • Example 3 665g of 2-(2-methoxyethoxy)ethanol added to pyromellitic dianhydride, 208g of 2-(2-methoxyethoxy)ethanol added to mixed diamine, 2-(2-methoxyethoxy) added after dropping ) A polyimide resin powder was obtained in the same manner as in Example 1, except that 84 g of ethanol was used.
  • Example 4 In the process of raising the temperature of the polyamic acid solution (c) to 190 ° C., except that the average heating rate in the liquid temperature range of 70 to 130 ° C. was changed as shown in Table 2. A polyimide resin powder was obtained in the same manner.
  • the volume average particle diameters D10, D50, and D90 are shown in Table 2, and the particle size distribution results are shown in FIGS. 1 to 10, the shape of the particle size distribution was evaluated according to the following criteria and shown in Table 2.
  • A Unimodal distribution and very sharp (D10/D50 0.7-0.9 and D90/D50 1.1-1.4)
  • D Bimodal distribution and very broad (D10/D50 between 0.45 and 0.9 and D90/D50 greater than 2.0)
  • E Trimodal or more multimodal distribution
  • Example 2 The results shown in Table 2 reveal the following.
  • the solid content concentration of the solution (c) containing the polyimide resin precursor containing polyamic acid was set to a specific range (15 to 25% by mass), and the solution (c) was heated to produce polyamic acid.
  • polyimide resin powders having a unimodal and very sharp particle size distribution were obtained.
  • Comparative Examples 1 to 6 the solid content concentration of the solution (c) containing the polyimide resin precursor containing polyamic acid was produced under conditions outside the specific range, so that the volume average particle diameter D50 was within the specific range. (Specifically, 5 to 50 ⁇ m) and a polyimide resin powder having a good particle size distribution could not be obtained. In particular, in Comparative Example 1, only a polyimide resin powder having a multimodal particle size distribution of trimodal or more was obtained.
  • Example 5 ⁇ Production of resin film>
  • the polyimide resin powder obtained in Example 1 was extruded using a twin-screw kneading extruder “TEM58SX” (manufactured by Shibaura Kikai Co., Ltd.) at a barrel temperature of 250 to 330° C. and a screw rotation speed of 100 rpm. After the strand extruded from the extruder was air-cooled, it was pelletized by a pelletizer (“Fan cutter fcwn30-12” manufactured by Hoshi Plastics Co., Ltd.). The obtained pellets of the polyimide resin powder (hereinafter sometimes simply referred to as “pellets”) were dried at 150° C. for 12 hours.
  • the pellets obtained had a length of 3 to 4 mm and a diameter of 2 to 3 mm.
  • the dried pellets are put into a ⁇ 40 mm single screw extruder equipped with a T die of 900 mm in width and melt-kneaded at a resin temperature of 340 to 360 ° C., and the melt-kneaded polyimide resin is passed through the T die of the single screw extruder.
  • a resin film having a thickness of 50 ⁇ m was obtained by continuously extruding and then cooling with a metal roll that was a cooling roll at 150°C.
  • the saturated water absorption of the obtained resin film was 0.75%.
  • the temperature of the ⁇ 40 mm single-screw extruder was adjusted to 340 to 355°C
  • the temperature of the T-die was adjusted to 355°C
  • the temperature of the connecting pipe connecting the single-screw extruder and the T-die was adjusted to 355°C.
  • Table 3 shows the results of the dielectric properties of the resin film of Example 5 obtained using the polyimide resin powder obtained in Example 1.
  • Table 4 shows the results of the dielectric properties of the resin film of Example 1 obtained using the thermoplastic liquid crystal polymer disclosed in JP-A-2018-109090.
  • the resin film (containing the polyimide resin) shown in Table 3 has a ratio of the dielectric loss tangent Q40 at 40 °C to the dielectric loss tangent Q120 at 120 °C at 10 GHz ( Q120 /Q40) of 1.29.
  • the ratio of the dissipation factor Q40 at 40 ° C. to the dissipation factor Q120 at 120 ° C. ( Q120 / Q40 ) at 20 GHz is 1.5. Therefore, according to the resin film of Example 5 obtained using the polyimide resin powder of Example 1, it was shown that an increase in dielectric loss tangent at high temperatures can be suppressed.
  • FIG. 12 shows the measurement results of the dielectric loss tangent Q.
  • Table 4 shows the dielectric properties of the resin film of Example 1 obtained using the thermoplastic liquid crystal polymer disclosed in JP-A-2018-109090.
  • the resin film (containing the thermoplastic liquid crystal polymer) shown in Table 4 has a ratio of the dielectric loss tangent Q40 at 40 °C and the dielectric loss tangent Q120 at 120 °C at 20 GHz ( Q120 / Q40 ) of 3.
  • the resin films (containing polyimide resin) shown in Table 3 are more effective in suppressing increases in dielectric loss tangent at high temperatures than the resin films (containing thermoplastic liquid crystal polymer) shown in Table 4. was also shown.
  • Example 6 ⁇ Production of copper-clad laminate>
  • the resin film having a thickness of 50 ⁇ m obtained in Example 5 was cut into A4 size and used for manufacturing a copper-clad laminate.
  • the resin film and a 12 ⁇ m-thick rolled copper foil (“BHM-102F-HA-V2” manufactured by JX Metals Co., Ltd., A4 size, Rz of the welded surface with the resin film: 0.67 ⁇ m) are combined with the copper foil.
  • a resin film, and a copper foil Using a lab double belt press machine manufactured by Dimco Co., Ltd., this is laminated by dwelling for 10 seconds at a heating temperature of 300 ° C.
  • a copper-clad laminate having a three-layer structure was produced.
  • the adhesion between the resin film and the copper foil of the obtained copper-clad laminate was measured by a 90° peeling test (JIS K6854-1: 1999).
  • the appearance of the copper-clad laminate was evaluated by visual observation for the presence or absence of wrinkles.
  • the adhesiveness between the resin film and the copper foil and the appearance were evaluated on a four-grade scale of AA, A, B, and C using the evaluation results of Example 6 as the "A" standard.
  • Example 7 to 10 A copper-clad laminate was produced and evaluated in the same manner as in Example 6, except that the copper foil used, the equipment used, and the lamination conditions of the resin film and copper foil were changed as shown in Table 5. rice field. Table 5 shows the results.
  • the copper foils listed in Table 5 and the equipment used are as follows. (Copper foil) ⁇ Rolled copper foil (BHM-102F-HA-V2) manufactured by JX Metals Co., Ltd., A4 size, Rz of welding surface with resin film: 0.67 ⁇ m, thickness 12 ⁇ m ⁇ Electrolytic copper foil (TQ-M5-VSP) manufactured by Mitsui Kinzoku Mining Co., Ltd., A4 size, Rz of welding surface with resin film: 0.70 ⁇ m, thickness 12 ⁇ m (Equipment used) ⁇ Lab double belt press device DIMCO Co., Ltd. ⁇ Vacuum press device Kodaira Seisakusho
  • the production method of the present invention it is possible to obtain a polyimide resin powder having a volume average particle size D50 within a specific range (specifically, 5 to 50 ⁇ m) and a good particle size distribution. Moreover, according to the resin film obtained by using the polyimide resin powder of the specific composition obtained by the production method of the present invention, it is possible to suppress the increase in the dielectric loss tangent under high temperature.
  • microwave antennas millimeter wave antennas, waveguide slot antennas, horn antennas, lens antennas, printed antennas, Plate antennas, microstrip antennas, patch antennas, various sensors, automotive radars, aerospace radars, semiconductor element materials, coatings for bearings, heat insulating shafts, trays, various belts such as seamless belts, heat resistant low dielectric tapes, heat resistant low dielectric tapes Tubes, low-dielectric wire coating materials, radomes (radomes), antenna substrates for 5G smartphones/5G terminals, antenna substrates for 6G smartphones/6G terminals, chip-on-film (COF) flexible substrates, optical communication modules (TOSA/ROSA) ), 77 GHz in-vehicle millimeter-wave radar antenna substrate, terahertz wave radar antenna substrate, aircraft radar antenna substrate, tracked vehicle antenna substrate, 8K-TV cable, WiGig antenna substrate, tablet terminal, notebook PC, thin
  • the powder itself is used as a raw material for dry blending, a raw material for compression molded products such as packing and IC inspection jigs, a toughness imparting agent for CFRP, a toughness imparting agent for thermosetting resins and thermoplastic resins, and a heat resistance improving agent. , coating materials, lubricants, raw materials for 3D printers, raw materials for UD tapes, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

ポリイミド樹脂粉末の製造方法であって、前記製造方法は、テトラカルボン酸二無水物を含むテトラカルボン酸成分(A)と脂肪族ジアミンを含むジアミン成分(B)とを、式(1)で表されるアルキレングリコール系溶媒を含む溶媒(C)の存在下で反応させる工程を含み、 該工程は、前記溶媒(C)中に前記テトラカルボン酸成分(A)を含ませてなる溶液(a)と、前記溶媒(C)中に前記ジアミン成分(B)を含ませてなる溶液(b)を別々に調製した後、溶液(a)に対し溶液(b)を添加して又は溶液(b)に対し溶液(a)を添加して、ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)を調製し、次いで、前記溶液(c)を加熱することにより前記ポリアミド酸を含むポリイミド樹脂前駆体をイミド化して、該溶液中でポリイミド樹脂粉末を析出させる工程を含み、 前記溶液(c)の固形分濃度が15~25質量%であり、前記溶液(c)の前記加熱時の温度70~130℃の範囲における平均昇温速度が0.5~8℃/分である、ポリイミド樹脂粉末の製造方法。(Ra1は水素原子又は炭素数1~4のアルキル基であり、Ra2は炭素数2~6の直鎖のアルキレン基であり、nは1~3の整数である。)

Description

ポリイミド樹脂粉末の製造方法
 本発明は、ポリイミド樹脂粉末の製造方法、ポリイミド樹脂粉末、及び該ポリイミド樹脂粉末を用いて得られる樹脂フィルムに関する。
 ポリイミド樹脂は分子鎖の剛直性、共鳴安定化、強い化学結合によって、高熱安定性、高強度、高耐溶媒性を有する有用なエンジニアリングプラスチックであり、幅広い分野で応用されている。また結晶性を有しているポリイミド樹脂はその耐熱性、強度、耐薬品性をさらに向上させることができることから、金属代替等としての利用が期待されている。しかしながらポリイミド樹脂は高耐熱性である反面、熱可塑性を示さず、成形加工性が低いという問題がある。
 ポリイミド成形材料としては高耐熱樹脂ベスペル(登録商標)等が知られているが(特許文献1)、高温下でも流動性が極めて低いため成形加工が困難であり、高温、高圧条件下で長時間成形を行う必要があることからコスト的にも不利である。これに対し、結晶性樹脂のように融点を有し、高温での流動性がある樹脂であれば容易にかつ安価で成形加工が可能である。
 そこで近年、熱可塑性を有するポリイミド樹脂が報告されている。熱可塑性ポリイミド樹脂はポリイミド樹脂が本来有している耐熱性に加え、成形加工性にも優れる。そのため熱可塑性ポリイミド樹脂は、汎用の熱可塑性樹脂であるナイロンやポリエステルでは適用できなかった過酷な環境下で使用される成形体への適用も可能である。
 熱可塑性ポリイミド樹脂は、熱溶融により種々の形状に成形加工することが可能である。更に、熱可塑性ポリイミド樹脂を均一な粉末で回収することができれば、成形加工時に加工ムラが生じ難いため有用性が高い。近年では、均一な粉末状の熱可塑性ポリイミド樹脂を得る方法についての検討もなされている。
 例えば、特許文献2には、テトラカルボン酸二無水物を含むテトラカルボン酸成分(A)と脂肪族ジアミンを含むジアミン成分(B)とを、特定の式で表されるアルキレングリコール系溶媒を含む溶媒(C)の存在下で反応させる工程を含む、ポリイミド樹脂粉末の製造方法が開示されている。そして、特許文献2には、粉末状のポリイミド樹脂を、塊をほとんど生じることなく製造することができることが記載されている。
 ところで、近年では、熱可塑性ポリイミド樹脂を用いて得られる樹脂フィルムを高周波回路基板に適用する検討もなされている(例えば特許文献3を参照)。一方、熱可塑性ポリイミド樹脂はイミド基の極性に起因して元来吸水率が高いことから、該熱可塑性ポリイミド樹脂を用いて樹脂フィルムを得た場合、吸水に因る誘電率の変動が大きくなることが知られている。
特開2005-28524号公報 国際公開第2015/020019号 特開2020-177987号公報
 熱可塑性ポリイミド樹脂粉末を含む成形材料を用いて高周波回路基板等に適用するフィルム形状(シート形状も含む)の成形体(樹脂フィルム)を製造する際には、通常、(i)該粉末を含む成形材料を押出成形機に投入して直接押出成形した後に各種熱成形を行いフィルム状の成形体を得る方法、(ii)該粉末を含む材料を押出成形機に投入して一旦ペレット化した後にペレットを成形材料として各種熱成形を行いフィルム状の成形体を得る方法、及び(iii)該粉末を含む成形材料を熱プレス装置により直接圧縮成形を行いフィルム状の成形体を得る方法などが挙げられる。
 しかしながら、熱可塑性ポリイミド樹脂粉末の粒径が小さすぎると、押出成形機に投入する際の取り扱い性、特に押出機のスクリューへの食い込み性が低下し、溶融混練が困難になるなどの問題が生じることがある。また、熱可塑性ポリイミド樹脂粉末の製造時に、溶媒除去のためにろ過を行う際にろ布の詰まりが生じるなどして生産性も低下する。
 一方、熱可塑性ポリイミド樹脂粉末の粒径が大きすぎると、製造時に使用する高沸点溶媒や、吸湿による水分が、粒子内部に残留しやすい。そのため、乾燥工程において粒子内部に留まる残溶液(高沸点溶媒や水分)を除去するのに、高温乾燥や乾燥時間が長くなる等多くのエネルギーを要し、残溶液の除去が困難になるなどの問題が生じることがある。また、熱可塑性ポリイミド樹脂粉末の粒子内部に留まる残溶液が多いと、該粉末を用いてフィルム状の成形体を得る過程で多量のガスが発生することによる成形不良及びフィルム外観の悪化、並びに、残溶液を加熱することによる劣化を起点とした変色/変質などの問題が生じることがある。
 特許文献2に記載されたポリイミド樹脂粉末は、好適な粒径分布を有することが示されているが、その一方で、体積平均粒径D50を特定の範囲に制御するための方法について特段の検討はなされておらず、更なる検討の余地があった。
 そこで、本発明の課題は、体積平均粒径D50を特定の範囲に制御し易く、且つ良好な粒径分布を有するポリイミド樹脂粉末を製造する方法を提供することにある。
 本発明者らは、テトラカルボン酸成分とジアミン成分とを特定の溶媒の存在下で反応させる工程を含むポリイミド樹脂粉末の製造方法において、該工程において調製される、ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液を特定の範囲の固形分濃度とし、且つ、該溶液(c)を加熱して前記ポリアミド酸を含むポリイミド樹脂前駆体をイミド化する際の、特定の温度範囲における平均昇温速度を特定の範囲とすることで、上記課題を解決できることを見出した。
 すなわち本発明は、ポリイミド樹脂粉末の製造方法であって、テトラカルボン酸二無水物を含むテトラカルボン酸成分(A)と脂肪族ジアミンを含むジアミン成分(B)とを、式(1)で表されるアルキレングリコール系溶媒を含む溶媒(C)の存在下で反応させる工程を含み、前記工程は、前記溶媒(C)中に前記テトラカルボン酸成分(A)を含ませてなる溶液(a)と、前記溶媒(C)中に前記ジアミン成分(B)を含ませてなる溶液(b)を別々に調製した後、溶液(a)に対し溶液(b)を添加して又は溶液(b)に対し溶液(a)を添加して、ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)を調製し、次いで、前記溶液(c)を加熱することにより前記ポリアミド酸を含むポリイミド樹脂前駆体をイミド化して、該溶液中でポリイミド樹脂粉末を析出させる工程を含み、
 前記溶液(c)の固形分濃度が15~25質量%であり、前記溶液(c)の前記加熱時の温度70~130℃の範囲における平均昇温速度が0.5~8℃/分である、ポリイミド樹脂粉末の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000006

(Raは水素原子又は炭素数1~4のアルキル基であり、Raは炭素数2~6の直鎖のアルキレン基であり、nは1~3の整数である。)
 本発明の製造方法によれば、体積平均粒径D50が特定の範囲(具体的には5~50μm)にあり、且つ良好な粒径分布を有するポリイミド樹脂粉末を得ることができる。また、本発明の製造方法により得られた、特定組成のポリイミド樹脂粉末を用いて得られる樹脂フィルムによれば、高温下での誘電正接の上昇を抑制することができる。
 上記樹脂フィルムは、例えば、高周波回路基板、銅張積層板(CCL)、特に低粗度(算術平均粗さRa=1μm以下、最大高さRz=1μm以下)銅箔を用いた銅張積層板、プリント配線基板、同軸線路、ストリップ線路、マイクロストリップ線路、コプレナー線路、平行線路など伝送線路、マイクロ波用アンテナ、ミリ波用アンテナ、導波管スロットアンテナ、ホーンアンテナ、レンズアンテナ、プリントアンテナ、トリプレートアンテナ、マイクロストリップアンテナ、パッチアンテナ、各種センサ、車載用レーダ、航空宇宙用レーダ、半導体素子材、ベアリング用コート、断熱軸、トレー、シームレスベルトなどの各種ベルト、耐熱低誘電テープ、耐熱低誘電チューブ、低誘電電線被覆材、レドーム(レーダードーム)、5G用スマートフォン/5G端末のアンテナ基板、6G用スマートフォン/6G端末のアンテナ基板、チップオンフィルム(COF)フレキシブル基板、光通信モジュール(TOSA/ROSA)、77GHz車載ミリ波レーダのアンテナ基板、テラヘルツ波レーダのアンテナ基板、航空機用レーダのアンテナ基板、装軌車両用アンテナ基板、8K-TVのケーブル、WiGigのアンテナ基板、タブレット端末、ノートPC、薄型TV、巻き取り式TV、デジカメ等のモバイル端末やデジタル家電、マクロセル基地局、スモールセル基地局、C-RAN基地局、商業用ドローン、長距離移動ドローン、監視カメラ、スマートグラス、スマートウォッチ、高周波デバイス用ウエハ、無線通信デバイス、Wi-Fiチップ、タッチセンサ、室内サーバ、屋外サーバ、産業用ロボット基板、家庭用ロボットの通信用基盤、人工衛星、宇宙ステーション用通信機器、等に適用できる。
実施例1で得られたポリイミド樹脂粉末のレーザー回折式粒度分布測定の結果である。 実施例2で得られたポリイミド樹脂粉末のレーザー回折式粒度分布測定の結果である。 実施例3で得られたポリイミド樹脂粉末のレーザー回折式粒度分布測定の結果である。 実施例4で得られたポリイミド樹脂粉末のレーザー回折式粒度分布測定の結果である。 比較例1で得られたポリイミド樹脂粉末のレーザー回折式粒度分布測定の結果である。 比較例2で得られたポリイミド樹脂粉末のレーザー回折式粒度分布測定の結果である。 比較例3で得られたポリイミド樹脂粉末のレーザー回折式粒度分布測定の結果である。 比較例4で得られたポリイミド樹脂粉末のレーザー回折式粒度分布測定の結果である。 比較例5で得られたポリイミド樹脂粉末のレーザー回折式粒度分布測定の結果である。 比較例6で得られたポリイミド樹脂粉末のレーザー回折式粒度分布測定の結果である。 実施例1で得られた樹脂フィルムの、測定周波数10GHzにおける各温度での誘電率P及び誘電正接Qの測定結果である。 実施例1で得られた樹脂フィルムの、測定周波数20GHzにおける各温度での誘電率P及び誘電正接Qの測定結果である。
<ポリイミド樹脂粉末の製造方法>
 本発明のポリイミド樹脂粉末の製造方法は、テトラカルボン酸二無水物を含むテトラカルボン酸成分(A)と脂肪族ジアミンを含むジアミン成分(B)とを、式(1)で表されるアルキレングリコール系溶媒を含む溶媒(C)の存在下で反応させる工程を含み、前記工程は、前記溶媒(C)中に前記テトラカルボン酸成分(A)を含ませてなる溶液(a)と、前記溶媒(C)中に前記ジアミン成分(B)を含ませてなる溶液(b)を別々に調製した後、溶液(a)に対し溶液(b)を添加して又は溶液(b)に対し溶液(a)を添加して、ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)を調製し、次いで、前記溶液(c)を加熱することにより前記ポリアミド酸を含むポリイミド樹脂前駆体をイミド化して、該溶液中でポリイミド樹脂粉末を析出させる工程を含み、前記溶液(c)の固形分濃度が15~25質量%であり、前記溶液(c)の前記加熱時の温度70~130℃の範囲における平均昇温速度が0.5~8℃/分である。
 なお、ここで「ポリイミド樹脂前駆体」とは、テトラカルボン酸成分(A)とジアミン成分(B)とアルキレングリコール系溶媒を含む溶媒(C)との反応により生成する生成物を指していい、ポリアミド酸の他に、アミド酸塩、ポリアミド酸塩、ポリアミド酸エステル、及びポリアミド酸アミド等が挙げられる。
Figure JPOXMLDOC01-appb-C000007

(Raは水素原子又は炭素数1~4のアルキル基であり、Raは炭素数2~6の直鎖のアルキレン基であり、nは1~3の整数である。)
 ここで「ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)の固形分濃度」とは、溶液(c)中の溶質の割合(仕込み量換算での質量%)を指していう。なお、「溶質」とは、ポリアミド酸の原料であるテトラカルボン酸成分(A)及びジアミン成分(B)、末端封止剤等を指していい、「溶液(c)」とは、該溶質とアルキレングリコール系溶媒を含む溶媒(C)を含む溶媒との合計を指していう。
 本発明のポリイミド樹脂粉末の製造方法では、前記溶媒(C)中に、テトラカルボン酸成分(A)を含ませてなる溶液(a)と、前記溶媒(C)中にジアミン成分(B)を含ませてなる溶液(b)を別々に調製した後、溶液(a)に対し溶液(b)を添加して又は溶液(b)に対し溶液(a)を添加して、ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)を調製し〔工程1〕、次いで、溶液(c)を加熱することにより、該溶液(c)中で前記ポリアミド酸を含むポリイミド樹脂前駆体をイミド化して、該溶液中でポリイミド樹脂粉末を析出させて、ポリイミド樹脂粉末を合成する〔工程2〕。
 本発明のポリイミド樹脂粉末の製造方法では、前記工程1でポリアミド酸を含有する溶液(c)の固形分濃度を15~25質量%とし、前記工程2で該溶液(c)を加熱する際、該溶液(c)の温度70~130℃の範囲における平均昇温速度を0.5~8℃/分とする。これにより、体積平均粒径D50を特定の範囲(具体的には5~50μm)に制御し、且つ良好な粒径分布を有するポリイミド樹脂粉末が得られるメカニズムは必ずしも明らかではないが、次のように考えられる。
 ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)の温度が70~130℃の範囲にて、該ポリアミド酸を含むポリイミド樹脂前駆体のイミド化は進行し、該溶液中でポリイミド樹脂粉末(以下「析出物」ともいう)が析出する。
 溶液(c)の溶媒である前記溶媒(C)は、ポリアミド酸との相溶性は高いが、イミド化率上昇に伴い析出する析出物との相溶性は低い。一方、析出物は、系中温度が高いと溶解度は高くなるが、系中温度が低いと溶解度は低くなる。
 したがって、析出物は、系中温度上昇に伴う溶解度上昇とイミド化率上昇に伴う相溶性低下との均衡が崩れたタイミングで急激に発生すると考えられる。そして、この均衡が崩れるタイミングは、前記溶液(c)の固形分濃度と、イミド化が進行する70~130℃の温度範囲における平均昇温速度とによって制御することができると考えられる。
 例えば、前記溶液(c)の加熱時の昇温速度が遅い場合、イミド化が進行する過程で系中温度は緩やかに上昇することから、イミド化率が上昇する前段階で析出物の種となる結晶(種晶)が多数発生し、結果的に析出物である各粉末の粒径は大きく成長しない傾向にあると考えられる。
 一方、前記溶液(c)の加熱時の昇温速度が速い場合、イミド化が進行する過程で系中温度は急速に上昇することから、イミド化率が上昇する前段階での種晶の発生は回避され、イミド化がある程度進行した段階で析出がはじまり、結果的に析出物である各粉末の粒径は大きく成長する傾向にあると考えられる。
 本発明のポリイミド樹脂粉末の製造方法では、前記工程1で調製される、ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)の固形分濃度を、15~25質量%とし、好ましくは15~23質量%、より好ましくは17~23質量%とする。
 上記固形分濃度が上記範囲未満(15質量%未満)である場合、ポリイミド樹脂粉末の体積平均粒径D50が50μmを超えるおそれや、ポリイミド樹脂粉末の粒度分布の形状が三峰性以上の多峰性分布になるおそれがある。
 一方、上記固形分濃度が上記範囲を超える(25質量%を超える)場合、ポリイミド樹脂粉末の粒度分布の形状が二峰性分布で非常にブロードになるおそれや、単峰性分布であっても非常にブロードになるおそれがある。
 本発明のポリイミド樹脂粉末の製造方法では、前記工程2で溶液(c)を加熱する際、該溶液(c)の温度70~130℃の範囲における平均昇温速度を、0.5~8℃/分とし、好ましくは0.8~6℃/分、より好ましくは0.8~4℃/分とする。
 上記平均昇温速度が上記範囲未満(0.5℃/分未満)である場合、ポリイミド樹脂粉末の粒度分布の形状が二峰性分布で非常にブロードになるおそれや、単峰性分布であっても非常にブロードになるおそれがある。
 一方、上記平均昇温速度が上記範囲を超える(8℃/分を超える)場合、ポリイミド樹脂粉末の体積平均粒径D50が50μmを超えるおそれがある。
 本発明において溶液(c)を加熱する工程は、溶液(c)の温度が70~130℃の範囲においては、上述のとおり特定の平均昇温速度で加熱をする。
 一方、溶液(c)の温度が130℃を超える範囲において、平均昇温速度は、溶液(c)の温度が70~130℃の範囲と同じであってもよいが、生産速度を向上させる観点からは速度を下げ過ぎず、ただし、反応中に副生する水の突沸を抑える観点からは上げ過ぎない事が好ましい。具体的には0.9~5℃/分、より好ましくは1.0~4℃/分である。
 また、溶液(c)の温度が130℃を超える範囲において、加熱保持温度及び時間は、分子を十分に成長させる、あるいはイミド化を十分に進行させる観点から、好ましくは160℃まで、より好ましくは180℃まで、更に好ましくは190℃まで加熱し、その温度を好ましくは10~120分間、より好ましくは30~60分間保持する。
 前記溶媒(C)は、前記式(1)で表されるアルキレングリコール系溶媒を含む。原料のジアミン成分に脂肪族ジアミンを用いるポリイミド樹脂の製造において、このような特定の溶媒の存在下でテトラカルボン酸成分(A)とジアミン成分(B)とを反応させることにより、粉末状のポリイミド樹脂を得ることができる。
 均一な粉末状のポリイミド樹脂を得るには、ワンポットの反応において(i)ポリアミド酸を均一に溶解させる、あるいはナイロン塩を均一に分散させる、(ii)ポリイミド樹脂を全く溶解、膨潤させない、の二つの特性が溶媒に備わっていることが望ましいと考えられる。前記溶媒(C)はこの二つの特性を概ね満たしている。前記(i)が不完全であるとイミド化前に凝集、塊が発生し、前記(ii)が不完全であるとイミド化後に凝集や塊が発生する。
 前記アルキレングリコール系溶媒は、常圧において高温条件で重合反応を可能にする観点から、好ましくは140℃以上、より好ましくは160℃以上、更に好ましくは180℃以上の沸点を有する。
 式(1)中のRaは水素原子又は炭素数1~4のアルキル基であり、好ましくは炭素数1~4のアルキル基であり、より好ましくはメチル基又はエチル基である。
 式(1)中のRaは炭素数2~6の直鎖のアルキレン基であり、好ましくは炭素数2~3の直鎖のアルキレン基であり、より好ましくはエチレン基である。
 式(1)中のnは1~3の整数であり、好ましくは2又は3である。
 前記アルキレングリコール系溶媒の具体例としては、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル(別名:2-(2-メトキシエトキシ)エタノール)、トリエチレングリコールモノメチルエーテル(別名:2-[2-(2-メトキシエトキシ)エトキシ]エタノール)、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル(別名:2-(2-エトキシエトキシ)エタノール)、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノイソプロピルエーテル、トリエチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、ジエチレングリコールモノイソブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコール、1,3-プロパンジオール等が挙げられる。これら溶媒を単独で用いてもよく、これらから選ばれる2つ以上の溶媒を組み合わせて用いてもよい。これら溶媒のうち、好ましくは2-(2-メトキシエトキシ)エタノール、2-[2-(2-メトキシエトキシ)エトキシ]エタノール、2-(2-エトキシエトキシ)エタノール、及び1,3-プロパンジオールからなる群から選ばれる少なくとも1種であり、より好ましくは2-(2-メトキシエトキシ)エタノール、及び2-(2-エトキシエトキシ)エタノールからなる群から選ばれる少なくとも1種である。
 溶媒(C)中における前記アルキレングリコール系溶媒の含有量は、好ましくは30質量%以上、より好ましくは50質量%以上、さらに好ましくは75質量%以上、よりさらに好ましくは95質量%以上である。溶媒(C)は、前記アルキレングリコール系溶媒のみからなっていてもよい。
 溶媒(C)が、前記アルキレングリコール系溶媒とそれ以外の溶媒を含む場合、当該「それ以外の溶媒」の具体例としては水、トルエン、キシレン、アセトン、ヘキサン、ヘプタン、クロロベンゼン、メタノール、エタノール、n-プロパノール、イソプロパノール、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、o-クレゾール、m-クレゾール、p-クレゾール、フェノール、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、ジブロモメタン、トリブロモメタン、1,2-ジブロモエタン、1,1,2-トリブロモエタン、2-エチルヘキサノール等が挙げられる。これら溶媒を単独で用いてもよく、これらから選ばれる2つ以上の溶媒を組み合わせて用いてもよい。これら溶媒のうち、好ましくは2-エチルヘキサノールである。すなわち溶媒(C)は、前記アルキレングリコール系溶媒以外に、好ましくは2-エチルヘキサノールを含む。
 溶媒(C)は水を含まないことが好ましいが、前述したように長鎖のポリアミド酸が形成される範囲ならば含水していてもよい。具体的に含水量としては好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは1質量%以下、特に好ましくは0質量%である。
 ジアミン成分(B)は、脂肪族ジアミンを含む。本発明は、原料のジアミン成分として脂肪族ジアミンを用いたポリイミド樹脂の製造において、粉末のポリイミド樹脂の製造を可能にするものである。原料のジアミン成分として脂肪族ジアミンを用いることで、ポリイミド樹脂粉末に熱成形加工性が付与される。
 前記脂肪族ジアミンとしては、少なくとも1つの脂環式炭化水素構造を含むジアミン及び鎖状脂肪族ジアミンが挙げられる。ジアミン成分(B)は、前記脂肪族ジアミンとして、少なくとも1つの脂環式炭化水素構造を含むジアミン及び鎖状脂肪族ジアミンを含むことが好ましく、後述する、式(B1-1)で表されるジアミン(B1)及び式(B2-1)で表されるジアミン(B2)を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000008

Figure JPOXMLDOC01-appb-I000009

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基であり、Rは炭素数5~20の2価の鎖状脂肪族基である。)
 以下、少なくとも1つの脂環式炭化水素構造を含むジアミン、及び鎖状脂肪族ジアミンについて説明する。
 前記少なくとも1つの脂環式炭化水素構造を含むジアミンは、好ましくは下記式(B1-1)で表されるジアミン(B1)である。
Figure JPOXMLDOC01-appb-C000010

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。)
 ここで、脂環式炭化水素構造とは、脂環式炭化水素化合物から誘導される環を意味し、該脂環式炭化水素化合物は、飽和であっても不飽和であってもよく、単環であっても多環であってもよい。
 脂環式炭化水素構造としては、シクロヘキサン環等のシクロアルカン環、シクロヘキセン等のシクロアルケン環、ノルボルナン環等のビシクロアルカン環、及びノルボルネン等のビシクロアルケン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはシクロアルカン環、より好ましくは炭素数4~7のシクロアルカン環、さらに好ましくはシクロヘキサン環である。
 Rの炭素数は6~22であり、好ましくは8~17である。
 Rは脂環式炭化水素構造を少なくとも1つ含み、好ましくは1~3個含む。
 Rは、好ましくは下記式(R1-1)又は(R1-2)で表される2価の基であり、更に好ましくは、下記式(R1-3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000011

(m11及びm12は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m13~m15は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。)
Figure JPOXMLDOC01-appb-C000012

 なお、上記の式(R1-3)で表される2価の基において、2つのメチレン基のシクロヘキサン環に対する位置関係はシスであってもトランスであってもよく、またシスとトランスの比は如何なる値でもよい。
 ジアミン(B1)は、より好ましくは下記式(B1-2)で表される。
Figure JPOXMLDOC01-appb-C000013

(m11及びm12は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。)
 ジアミン(B1)の具体例としては、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、カルボンジアミン、リモネンジアミン、イソフォロンジアミン、ノルボルナンジアミン、ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルプロパン等が挙げられる。これらの化合物を単独で用いてもよく、これらから選ばれる2つ以上の化合物を組み合わせて用いてもよい。これらのうち、1,3-ビス(アミノメチル)シクロヘキサンが好適に使用できる。なお、脂環式炭化水素構造を含むジアミンは一般的には構造異性体を持つが、シス体/トランス体の比率は限定されない。また、対称性の低いジアミンは一般的には樹脂の自由体積を増加させる傾向があることが知られている。したがって、嵩高い構造を有し、かつ対称性が低い1,3-ビス(アミノメチル)シクロヘキサンは低誘電化に寄与しやすいと考えられることから、より好適である。
 前記鎖状脂肪族ジアミンは、好ましくは下記式(B2-1)で表されるジアミン(B2)である。
Figure JPOXMLDOC01-appb-C000014

(Rは炭素数5~16の2価の鎖状脂肪族基である。)
 ここで鎖状脂肪族基とは、鎖状脂肪族化合物から誘導される基を意味し、該鎖状脂肪族化合物は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよく、酸素原子等のヘテロ原子を含んでいてもよい。
 Rは、好ましくは炭素数5~16のアルキレン基であり、より好ましくは炭素数6~14、更に好ましくは炭素数7~12のアルキレン基であり、なかでも好ましくは炭素数8~10のアルキレン基である。前記アルキレン基は、直鎖アルキレン基であっても分岐アルキレン基であってもよいが、好ましくは直鎖アルキレン基である。
 Rは、好ましくはオクタメチレン基及びデカメチレン基からなる群から選ばれる少なくとも1種であり、特に好ましくはオクタメチレン基である。
 また、Rの別の好適な様態として、エーテル基を含む炭素数5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12)の2価の鎖状脂肪族基が挙げられる。その中でも好ましくは下記式(R2-1)又は(R2-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000015

(m21及びm22は、それぞれ独立に、1~15の整数であり、好ましくは1~13、より好ましくは1~11、更に好ましくは1~9である。m23~m25は、それぞれ独立に、1~14の整数であり、好ましくは1~12、より好ましくは1~10、更に好ましくは1~8である。)
 なお、Rは炭素数5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の2価の鎖状脂肪族基であるので、式(R2-1)におけるm21及びm22は、式(R2-1)で表される2価の基の炭素数が5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の範囲に入るように選択される。すなわち、m21+m22は5~16(好ましくは6~14、より好ましくは7~12、更に好ましくは8~10)である。
 同様に、式(R2-2)におけるm23~m25は、式(R2-2)で表される2価の基の炭素数が5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の範囲に入るように選択される。すなわち、m23+m24+m25は5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)である。
 ジアミン(B2)の具体例としては、1,5-ペンタメチレンジアミン、2-メチルペンタン-1,5-ジアミン、3-メチルペンタン-1,5-ジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、1,13-トリデカメチレンジアミン、1,14-テトラデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、2,2’-(エチレンジオキシ)ビス(エチレンアミン)等が挙げられる。これらの化合物を単独で用いてもよく、これらから選ばれる2つ以上の化合物を組み合わせて用いてもよい。これらのうち、炭素数が8~10の鎖状脂肪族ジアミンが好適に使用でき、特に1,8-オクタメチレンジアミン及び1,10-デカメチレンジアミンからなる群から選ばれる少なくとも1種が好適に使用できる。
 ジアミン成分(B)は、前記脂肪族ジアミンとして、好ましくは上述のジアミン(B1)及び上述のジアミン(B2)を含み、より好ましくは1,3-ビス(アミノメチル)シクロヘキサン及び1,8-オクタメチレンジアミンを含む。
 後述する高周波回路基板の製造に適したポリイミド樹脂粉末を得る観点からは、ジアミン(B1)とジアミン(B2)の合計量に対する、ジアミン(B1)の量は、好ましくは20~70モル%であり、より好ましくは20~65モル%、更に好ましくは20~60モル%、より更に好ましくは20~50モル%、より更に好ましくは20モル%以上、40モル%未満である。
 ジアミン成分(B)は、脂肪族ジアミンのみからなってもよいが、脂肪族ジアミンに加えて芳香環を含むジアミンを含んでもよい。
 芳香環を含むジアミンは、好ましくは少なくとも1つの芳香環を含むジアミンであり、より好ましくは下記式(B3-1)で表されるジアミン(B3)である。
Figure JPOXMLDOC01-appb-C000016

(Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。)
 前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Rの炭素数は6~22であり、好ましくは6~18である。
 Rは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 また、前記芳香環には1価もしくは2価の電子求引性基が結合していてもよい。1価の電子求引性基としてはニトロ基、シアノ基、p-トルエンスルホニル基、ハロゲン、ハロゲン化アルキル基、フェニル基、アシル基などが挙げられる。2価の電子求引性基としては、フッ化アルキレン基(例えば-C(CF-、-(CF-(ここで、pは1~10の整数である))のようなハロゲン化アルキレン基のほかに、-CO-、-SO-、-SO-、-CONH-、-COO-などが挙げられる。
 Rは、好ましくは下記式(R3-1)又は(R3-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000017
(m31及びm32は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m33及びm34は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。R21、R22、及びR23は、それぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。p21、p22及びp23は0~4の整数であり、好ましくは0である。L21は、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基であるので、式(R3-1)におけるm31、m32、R21及びp21は、式(R3-1)で表される2価の基の炭素数が6~22の範囲に入るように選択される。
 同様に、式(R3-2)におけるL21、m33、m34、R22、R23、p22及びp23は、式(R3-2)で表される2価の基の炭素数が12~22の範囲に入るように選択される。
 ジアミン(B3)の具体例としては、オルトキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,2-ジエチニルベンゼンジアミン、1,3-ジエチニルベンゼンジアミン、1,4-ジエチニルベンゼンジアミン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、α,α’-ビス(4-アミノフェニル)1,4-ジイソプロピルベンゼン、α,α’-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン等が挙げられる。
 ジアミン成分(B)が脂肪族ジアミンと芳香環を含むジアミンの両方を含む場合には、上述のジアミン(B1)と上述のジアミン(B2)に加えて、上述のジアミン(B3)をさらに含み、前記ジアミン(B1)と前記ジアミン(B2)の合計量に対する、前記ジアミン(B3)の量が25モル%以下であることが好ましい。一方で、下限は特に限定されず、0モル%を超えていればよい。
 ジアミン成分(B)は、下記式(B4-1)で表されるジアミン(B4)を含んでもよい。
Figure JPOXMLDOC01-appb-C000018

(Rは-SO-又は-Si(R)(R)O-を含む2価の基であり、R及びRはそれぞれ独立に、炭素数1~3の鎖状脂肪族基又はフェニル基を表す。)
 但し、ジアミン成分(B)中の脂肪族ジアミンの含有量、好適にはジアミン(B1)及びジアミン(B2)の合計含有量、より好適には1,3-ビス(アミノメチル)シクロヘキサン及び1,8-オクタメチレンジアミンの合計含有量は、得られるポリイミド樹脂粉末の熱成形加工性の観点から、ジアミン成分(B)中のジアミンの総モル数に対し、好ましくは50モル%以上、より好ましくは70モル%以上、更に好ましくは80モル%以上、より更に好ましくは90モル%以上であり、また、100モル%以下である。
 テトラカルボン酸成分(A)は、テトラカルボン酸二無水物を含む。前記テトラカルボン酸二無水物は、好ましくは、少なくとも1つの芳香環を含むテトラカルボン酸二無水物であり、より好ましくは式(A-1)で表されるテトラカルボン酸二無水物である。
Figure JPOXMLDOC01-appb-C000019

(Xは、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Xの炭素数は6~22であり、好ましくは6~18である。
 Xは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 Xは、好ましくは下記式(X-1)~(X-4)のいずれかで表される4価の基である。
Figure JPOXMLDOC01-appb-C000020

(R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数であり、好ましくは0である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数であり、好ましくは0である。p17は0~4の整数であり、好ましくは0である。L11~L13は、それぞれ独立に、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基であるので、式(X-2)におけるR12、R13、p12及びp13は、式(X-2)で表される4価の基の炭素数が10~22の範囲に入るように選択される。
 同様に、式(X-3)におけるL11、R14、R15、p14及びp15は、式(X-3)で表される4価の基の炭素数が12~22の範囲に入るように選択され、式(X-4)におけるL12、L13、R16、R17、R18、p16、p17及びp18は、式(X-4)で表される4価の基の炭素数が18~22の範囲に入るように選択される。
 Xは、特に好ましくは下記式(X-5)又は(X-6)で表される4価の基である。
Figure JPOXMLDOC01-appb-C000021
 テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物、2,3,5,6-トルエンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物等が挙げられる。これらテトラカルボン酸二無水物は、単独で用いてもよく、2つ以上を組み合わせて用いてもよい。これらの中でもピロメリット酸二無水物が特に好ましい。
 テトラカルボン酸成分(A)は、テトラカルボン酸二無水物に加えて、テトラカルボン酸二無水物の誘導体(テトラカルボン酸及び/又はテトラカルボン酸のアルキルエステル体)を含んでもよい。
 テトラカルボン酸としては、ピロメリット酸、2,3,5,6-トルエンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸等が挙げられる。これらの中でもピロメリット酸が特に好ましい。
 テトラカルボン酸のアルキルエステル体としては、ピロメリット酸ジメチル、ピロメリット酸ジエチル、ピロメリット酸ジプロピル、ピロメリット酸ジイソプロピル、2,3,5,6-トルエンテトラカルボン酸ジメチル、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸ジメチル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジメチル、3,3’,4,4’-ビフェニルテトラカルボン酸ジメチル、1,4,5,8-ナフタレンテトラカルボン酸ジメチル等、が挙げられる。上記テトラカルボン酸のアルキルエステル体において、アルキル基の炭素数は1~3が好ましい。
 これらのテトラカルボン酸及びその誘導体は、単独で用いてもよく、2つ以上を組み合わせて用いてもよい。
 テトラカルボン酸成分(A)中におけるテトラカルボン酸の割合は少ない方が好ましく、好ましくは50モル%以下、より好ましくは30モル%以下、特に好ましくは0モル%である。
 ポリイミド樹脂粉末を製造する際、前記テトラカルボン酸成分(A)と前記ジアミン成分(B)の仕込み量比は、テトラカルボン酸成分(A)1モルに対してジアミン成分(B)が0.9~1.1モルであることが好ましい。
 本発明のポリイミド樹脂粉末の製造方法においては、前記テトラカルボン酸成分(A)、前記ジアミン成分(B)の他に、末端封止剤を混合してもよい。末端封止剤としては、モノアミン類及びジカルボン酸類からなる群から選ばれる少なくとも1種が好ましい。末端封止剤の使用量は、ポリイミド樹脂中に所望量の末端基を導入できる量であればよく、テトラカルボン酸成分(A)1モルに対して0.0001~0.1モルが好ましく、0.001~0.06モルがより好ましく、0.002~0.035モルが更に好ましい。
 モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン、n-ウンデシルアミン、ラウリルアミン、n-トリデシルアミン、n-テトラデシルアミン、イソペンチルアミン、ネオペンチルアミン、2-メチルペンチルアミン、2-メチルヘキシルアミン、2-エチルペンチルアミン、3-エチルペンチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、3-エチルヘキシルアミン、イソノニルアミン、2-エチルオクチルアミン、イソデシルアミン、イソドデシルアミン、イソトリデシルアミン、及びイソテトラデシルアミン等の脂肪族モノアミン類、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、及び4-メチルアニリン等の芳香族モノアミン類が挙げられる。
 その他のモノアミン類末端封止剤として、フッ素等のハロゲン元素を有するモノアミン類を使用すると、低誘電特性が得られる傾向があるので好適である。具体例としては、2-トリフルオロメチルアニリン、3-トリフルオロメチルアニリン、4-トリフルオロメチルアニリン、2,3-ビス(トリフルオロメチル)アニリン、2,4-ビス(トリフルオロメチル)アニリン、2,5-ビス(トリフルオロメチル)アニリン、2,6-ビス(トリフルオロメチル)アニリン、3,4-ビス(トリフルオロメチル)アニリン、3,5-ビス(トリフルオロメチル)アニリン、2,3,4-トリス(トリフルオロメチル)アニリン、2,3,5-トリス(トリフルオロメチル)アニリン、2,3,6-トリス(トリフルオロメチル)アニリン、2,4,5-トリス(トリフルオロメチル)アニリン、2,4,6-トリス(トリフルオロメチル)アニリン、3,4,5-トリス(トリフルオロメチル)アニリン、2,3,4,5-テトラキス(トリフルオロメチル)アニリン、2,4,5,6-テトラキス(トリフルオロメチル)アニリン、2,4-ビス(3,5-ビス(トリフルオロメチル)フェノキシ)アニリン等を挙げることができる。
 また、その他のモノアミン類末端封止剤として、嵩高い構造を有するモノアミン類(具体的には脂環族モノアミン類)を使用する場合も低誘電特性が得られる傾向があるので好適である。具体例としては、シクロヘキシルアミン、ジシクロヘキシルアミン、メチルシクロヘキシルアミン、アダマンタンアミン等のアダマンチル基を有したアミン、フルオレン骨格を有したアミン等を挙げることができる。
 ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部が閉環していてもよい。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロヘキサン-1,2-ジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロへキセン-1,2-ジカルボン酸等が挙げられる。これらのうち、フタル酸、無水フタル酸が好ましい。
 また、その他のジカルボン酸類末端封止剤として、前記その他のモノアミン類末端封止剤と同様、フッ素等のハロゲン元素を有するジカルボン酸類や嵩高い構造を有するジカルボン酸類を使用すると、低誘電化に寄与できるため好適である。
 これらの末端封止剤は1種のみを用いてもよく、2種以上を用いてもよい。
 末端封止剤は、特に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、イソノニルアミン、n-デシルアミン、及びイソデシルアミンからなる群から選ばれる少なくとも1種であり、更に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、及びイソノニルアミンからなる群から選ばれる少なくとも1種であり、より更に好ましくはn-オクチルアミン、イソオクチルアミン、及び2-エチルヘキシルアミンからなる群から選ばれる少なくとも1種である。
 ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)は、前記溶媒(C)中にテトラカルボン酸二無水物を含むテトラカルボン酸成分(A)を含ませてなる溶液(a)と、前記溶媒(C)中に脂肪族ジアミンを含むジアミン成分(B)を含ませてなる溶液(b)とを含む。なお、末端封止剤を使用する場合には、ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)は、前記溶媒(C)中に末端封止剤を含ませてなる溶液(d)を含む。
 本発明のポリイミド樹脂粉末の製造方法では、前記工程1で調製される、ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)の固形分濃度を15~25質量%に制御する観点から、前記溶液(a)におけるテトラカルボン酸成分(A)の含有量は、好ましくは20~45質量%、より好ましくは25~45質量%であり、前記溶液(b)におけるジアミン成分(B)の含有量は、好ましくは20~80質量%、より好ましくは40~60質量%である。
 なお、末端封止剤を用いる場合は、溶液(d)における末端封止剤の含有量は、好ましくは1~100質量%、より好ましくは10~80質量%である。
 溶液(a)において、テトラカルボン酸成分(A)中におけるテトラカルボン酸二無水物の割合は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは90モル%以上である。テトラカルボン酸成分(A)は実質的にテトラカルボン酸二無水物のみからなることが特に好ましい。ここで言う“実質的に”とは、テトラカルボン酸成分(A)としてテトラカルボン酸二無水物のみを使用したときに、その一部(10モル%程度まで)が雰囲気中の水分と反応して開環することは許容されることを意味する。
 前記工程1において、溶液(a)への溶液(b)の添加は、テトラカルボン酸成分(A)1モルに対するジアミン成分(B)の合計添加量が0.9~1.1モルとなったところで終了させることが好ましい。
 末端封止剤を用いる場合は、溶液(a)への溶液(b)の添加後、溶液(d)を添加すればよい。末端封止剤の種類及び含有量、並びにそれらの好ましい態様は、既述のとおりである。
 溶媒(C)の存在下で、テトラカルボン酸成分(A)とジアミン成分(B)とを反応させる工程は、常圧下又は加圧下のいずれで行うこともできるが、常圧下であれば耐圧性容器を必要としない点で、常圧下で行われることが好ましい。
 溶媒(C)の存在下で、テトラカルボン酸成分(A)とジアミン成分(B)とを反応させる工程が、工程1及び工程2を含むことで、体積平均粒径D50が特定の範囲(具体的には5~50μm)にあり、且つ良好な粒径分布を有するポリイミド樹脂粉末を得ることができる。
<ポリイミド樹脂粉末>
 本発明の製造方法により得られるポリイミド樹脂粉末は、下記式(I)で示される繰り返し構成単位及び下記式(II)で示される繰り返し構成単位を含み、該式(I)の繰り返し構成単位と該式(II)の繰り返し構成単位の合計に対する該式(I)の繰り返し構成単位の含有比が20~70モル%である。
Figure JPOXMLDOC01-appb-C000022

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 本発明のポリイミド樹脂粉末は、レーザー回折光散乱式粒度分布測定器による粒度測定で、体積平均粒径D50が、好ましくは5~50μm、より好ましくは10~40μm、更に好ましくは13~35μmであり、体積平均粒径D10が、好ましくは1~40μm、より好ましくは2~30μm、更に好ましくは5~25μmであり、体積平均粒径D90が、好ましくは5~60μm、より好ましくは10~50μm、更に好ましくは15~45μmである。
 このような範囲の粒径とすることで、ポリイミド樹脂粉末の製造時に、ろ布の詰まりが生じ難く、溶媒除去のための濾過性が良好となり、粒子内部に留まる残溶液(高沸点溶媒や水分)を少なくすることができる、等といった多数の利点が得られる。
 なお、体積平均粒径D50、D10、及びD90は、具体的には実施例に記載の方法で求めることができる。
 ポリイミド樹脂粉末のD50の値に対するD10の値(D10/D50)は、好ましくは1/3(0.33)以上、より好ましくは1/2(0.5)以上である。
 また、ポリイミド樹脂粉末のD50の値に対するD90の値(D90/D50)は、好ましくは3以下、より好ましくは2以下である。
 更に好ましくはD10/D50が0.45~0.9かつD90/D50が1.4を超え2.0以下であり、更により好ましくはD10/D50が0.7~0.9かつD90/D50が1.1~1.4である。
 このような範囲の粒度分布とすることで、単峰性を有しシャープな形状が得られることから、或いは二峰性を有していてもメインピークはシャープな形状が得られ、かつメインピークの体積頻度が大きくなることから、取扱い性に優れ、例えば、押出成形時に安定したフィード状態となるため生産性が向上する、同じくフィードの際に分級を抑制できる、微粉末の飛散を抑制できる、粉末自体の流動性が改善する、樹脂粉末製造時にも濾過や搬送の条件が安定する、添加剤として使用する際には分散性に優れ物性を発現しやすい、といった多数の利点が得られる。
 ポリイミド樹脂粉末は熱可塑性樹脂であり、熱可塑性ポリイミド樹脂は、例えばポリアミド酸等のポリイミド前駆体の状態で成形した後にイミド環を閉環して形成される、ガラス転移温度(Tg)を持たないポリイミド樹脂、あるいはガラス転移温度よりも低い温度で分解してしまうポリイミド樹脂とは区別される。
 式(I)の繰り返し構成単位について、以下に詳述する。
 Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。ここで、脂環式炭化水素構造とは、脂環式炭化水素化合物から誘導される環を意味し、該脂環式炭化水素化合物は、飽和であっても不飽和であってもよく、単環であっても多環であってもよい。
 脂環式炭化水素構造としては、シクロヘキサン環等のシクロアルカン環、シクロヘキセン等のシクロアルケン環、ノルボルナン環等のビシクロアルカン環、及びノルボルネン等のビシクロアルケン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはシクロアルカン環、より好ましくは炭素数4~7のシクロアルカン環、さらに好ましくはシクロヘキサン環である。
 Rの炭素数は6~22であり、好ましくは8~17である。
 Rは脂環式炭化水素構造を少なくとも1つ含み、好ましくは1~3個含む。
 Rは、好ましくは下記式(R1-1)又は(R1-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000023

(m11及びm12は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m13~m15は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。)
 Rは、特に好ましくは下記式(R1-3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000024

 なお、上記の式(R1-3)で表される2価の基において、2つのメチレン基のシクロヘキサン環に対する位置関係はシスであってもトランスであってもよく、またシスとトランスの比は如何なる値でもよい。
 Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Xの炭素数は6~22であり、好ましくは6~18である。
 Xは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 Xは、好ましくは下記式(X-1)~(X-4)のいずれかで表される4価の基である。
Figure JPOXMLDOC01-appb-C000025

(R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数であり、好ましくは0である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数であり、好ましくは0である。p17は0~4の整数であり、好ましくは0である。L11~L13は、それぞれ独立に、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基であるので、式(X-2)におけるR12、R13、p12及びp13は、式(X-2)で表される4価の基の炭素数が10~22の範囲に入るように選択される。
 同様に、式(X-3)におけるL11、R14、R15、p14及びp15は、式(X-3)で表される4価の基の炭素数が12~22の範囲に入るように選択され、式(X-4)におけるL12、L13、R16、R17、R18、p16、p17及びp18は、式(X-4)で表される4価の基の炭素数が18~22の範囲に入るように選択される。
 Xは、特に好ましくは下記式(X-5)又は(X-6)で表される4価の基である。
Figure JPOXMLDOC01-appb-C000026
 次に、式(II)の繰り返し構成単位について、以下に詳述する。
 Rは炭素数5~16の2価の鎖状脂肪族基であり、好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10である。
 Rは、好ましくは炭素数5~16のアルキレン基であり、より好ましくは炭素数6~14、更に好ましくは炭素数7~12のアルキレン基であり、なかでも好ましくは炭素数8~10のアルキレン基である。前記アルキレン基は、直鎖アルキレン基であっても分岐アルキレン基であってもよいが、好ましくは直鎖アルキレン基である。
 Rは、好ましくはオクタメチレン基及びデカメチレン基からなる群から選ばれる少なくとも1種であり、特に好ましくはオクタメチレン基である。
 また、Rの別の好適な様態として、エーテル基を含む炭素数5~16の2価の鎖状脂肪族基が挙げられる。該炭素数は、好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10である。その中でも好ましくは下記式(R2-1)又は(R2-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000027

(m21及びm22は、それぞれ独立に、1~15の整数であり、好ましくは1~13、より好ましくは1~11、更に好ましくは1~9である。m23~m25は、それぞれ独立に、1~14の整数であり、好ましくは1~12、より好ましくは1~10、更に好ましくは1~8である。)
 なお、Rは炭素数5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の2価の鎖状脂肪族基であるので、式(R2-1)におけるm21及びm22は、式(R2-1)で表される2価の基の炭素数が5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の範囲に入るように選択される。すなわち、m21+m22は5~16(好ましくは6~14、より好ましくは7~12、更に好ましくは8~10)である。
 同様に、式(R2-2)におけるm23~m25は、式(R2-2)で表される2価の基の炭素数が5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の範囲に入るように選択される。すなわち、m23+m24+m25は5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)である。
 Xは、式(I)におけるXと同様に定義され、好ましい様態も同様である。
 式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する、式(I)の繰り返し構成単位の含有比は、20~70モル%である。式(I)の繰り返し構成単位の含有比が上記範囲である場合、一般的な射出成型サイクルにおいても、ポリイミド樹脂粉末を十分に結晶化させ得ることが可能となる。該含有量比が20モル%未満であると成形加工性が低下し、70モル%を超えると結晶性が低下するため、耐熱性が低下する。
 式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する、式(I)の繰り返し構成単位の含有比は、高い結晶性を発現する観点から、好ましくは65モル%以下、より好ましくは60モル%以下、更に好ましくは50モル%以下である。
 中でも、式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する式(II)の繰り返し構成単位の含有比は20モル%以上、40モル%未満であることが好ましい。この範囲であるとポリイミド樹脂粉末の結晶性が高くなり、より耐熱性に優れ、後述する高周波回路基板の製造に適し、高温下での誘電正接の上昇を抑制する効果にも優れる樹脂フィルムを得ることができる。なお、高温下では樹脂の分子運動が活発化され易く、誘電正接等の誘電特性は悪化することが一般的に知られていることから、樹脂に結晶性を付与することや、樹脂のガラス転移温度を高くすることが、樹脂の分子運動を抑制するのに有効であると考えられる。
 上記含有比は、成形加工性の観点からは、好ましくは25モル%以上、より好ましくは30モル%以上、更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、より更に好ましくは35モル%以下である。
 ポリイミド樹脂粉末を構成する全繰り返し構成単位に対する、式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計の含有比は、好ましくは50~100モル%、より好ましくは75~100モル%、更に好ましくは80~100モル%、より更に好ましくは85~100モル%である。
 ポリイミド樹脂粉末は、さらに、下記式(III)の繰り返し構成単位を含有してもよい。その場合、式(I)の繰り返し構成単位と式(II)の繰り返し構成単位の合計に対する、式(III)の繰り返し構成単位の含有比は、好ましくは25モル%以下である。一方で、下限は特に限定されず、0モル%を超えていればよい。
 前記含有比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
Figure JPOXMLDOC01-appb-C000028

(Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Rの炭素数は6~22であり、好ましくは6~18である。
 Rは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 また、前記芳香環には1価もしくは2価の電子求引性基が結合していてもよい。1価の電子求引性基としてはニトロ基、シアノ基、p-トルエンスルホニル基、ハロゲン、ハロゲン化アルキル基、フェニル基、アシル基などが挙げられる。2価の電子求引性基としては、フッ化アルキレン基(例えば-C(CF-、-(CF-(ここで、pは1~10の整数である))のようなハロゲン化アルキレン基のほかに、-CO-、-SO-、-SO-、-CONH-、-COO-などが挙げられる。
 Rは、好ましくは下記式(R3-1)又は(R3-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000029

(m31及びm32は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m33及びm34は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。R21、R22、及びR23は、それぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。p21、p22及びp23は0~4の整数であり、好ましくは0である。L21は、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基であるので、式(R3-1)におけるm31、m32、R21及びp21は、式(R3-1)で表される2価の基の炭素数が6~22の範囲に入るように選択される。
 同様に、式(R3-2)におけるL21、m33、m34、R22、R23、p22及びp23は、式(R3-2)で表される2価の基の炭素数が12~22の範囲に入るように選択される。
 Xは、式(I)におけるXと同様に定義され、好ましい様態も同様である。
 ポリイミド樹脂粉末は、さらに、下記式(IV)で示される繰り返し構成単位を含有してもよい。
Figure JPOXMLDOC01-appb-C000030

(Rは-SO-又は-Si(R)(R)O-を含む2価の基であり、R及びRはそれぞれ独立に、炭素数1~3の鎖状脂肪族基又はフェニル基を表す。Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 Xは、式(I)におけるXと同様に定義され、好ましい様態も同様である。
 ポリイミド樹脂粉末の末端構造には特に制限はないが、炭素数5~14の鎖状脂肪族基を末端に有することが好ましい。
 該鎖状脂肪族基は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよい。ポリイミド樹脂粉末が上記特定の基を末端に有すると、耐熱老化性に優れる樹脂フィルムを得ることができる。
 炭素数5~14の飽和鎖状脂肪族基としては、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、ラウリル基、n-トリデシル基、n-テトラデシル基、イソペンチル基、ネオペンチル基、2-メチルペンチル基、2-メチルヘキシル基、2-エチルペンチル基、3-エチルペンチル基、イソオクチル基、2-エチルヘキシル基、3-エチルヘキシル基、イソノニル基、2-エチルオクチル基、イソデシル基、イソドデシル基、イソトリデシル基、イソテトラデシル基等が挙げられる。
 炭素数5~14の不飽和鎖状脂肪族基としては、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-ヘプテニル基、2-ヘプテニル基、1-オクテニル基、2-オクテニル基、ノネニル基、デセニル基、ドデセニル基、トリデセニル基、テトラデセニル基等が挙げられる。
 中でも、上記鎖状脂肪族基は飽和鎖状脂肪族基であることが好ましく、飽和直鎖状脂肪族基であることがより好ましい。また耐熱老化性を得る観点から、上記鎖状脂肪族基は好ましくは炭素数6以上、より好ましくは炭素数7以上、更に好ましくは炭素数8以上であり、好ましくは炭素数12以下、より好ましくは炭素数10以下、更に好ましくは炭素数9以下である。上記鎖状脂肪族基は1種のみでもよく、2種以上でもよい。
 上記鎖状脂肪族基は、特に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、イソノニル基、n-デシル基、及びイソデシル基からなる群から選ばれる少なくとも1種であり、更に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、及びイソノニル基からなる群から選ばれる少なくとも1種であり、最も好ましくはn-オクチル基、イソオクチル基、及び2-エチルヘキシル基からなる群から選ばれる少なくとも1種である。
 またポリイミド樹脂粉末は、耐熱老化性の観点から、末端アミノ基及び末端カルボキシ基以外に、炭素数5~14の鎖状脂肪族基のみを末端に有することが好ましい。上記以外の基を末端に有する場合、その含有量は、好ましくは炭素数5~14の鎖状脂肪族基に対し10モル%以下、より好ましくは5モル%以下である。
 ポリイミド樹脂粉末中の上記炭素数5~14の鎖状脂肪族基の含有量は、優れた耐熱老化性を発現する観点から、ポリイミド樹脂粉末を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、更に好ましくは0.2モル%以上である。また、十分な分子量を確保し良好な機械的物性を得るためには、ポリイミド樹脂粉末中の上記炭素数5~14の鎖状脂肪族基の含有量は、ポリイミド樹脂粉末を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは10モル%以下、より好ましくは6モル%以下、更に好ましくは3.5モル%以下である。
 ポリイミド樹脂粉末中の上記炭素数5~14の鎖状脂肪族基の含有量は、ポリイミド樹脂粉末を解重合することにより求めることができる。
 ポリイミド樹脂粉末は、360℃以下の融点を有し、かつ150℃以上のガラス転移温度を有することが好ましい。ポリイミド樹脂粉末の融点は、耐熱性の観点から、より好ましくは280℃以上、更に好ましくは290℃以上であり、高い成形加工性を発現する観点からは、好ましくは345℃以下、より好ましくは340℃以下、更に好ましくは335℃以下である。また、ポリイミド樹脂粉末のガラス転移温度は、耐熱性の観点から、より好ましくは160℃以上、より好ましくは170℃以上であり、高い成形加工性を発現する観点からは、好ましくは250℃以下、より好ましくは230℃以下、更に好ましくは200℃以下である。
 ポリイミド樹脂粉末の融点、ガラス転移温度は、いずれも示差走査型熱量計により測定することができる。
 またポリイミド樹脂粉末は、結晶性、耐熱性、機械的強度、耐薬品性を向上させる観点から、示差走査型熱量計測定により、該ポリイミド樹脂粉末を溶融後、降温速度20℃/分で冷却した際に観測される結晶化発熱ピークの熱量(以下、単に「結晶化発熱量」ともいう)が、5.0mJ/mg以上であることが好ましく、10.0mJ/mg以上であることがより好ましく、17.0mJ/mg以上であることが更に好ましい。結晶化発熱量の上限値は特に限定されないが、通常、45.0mJ/mg以下である。
 ポリイミド樹脂粉末の融点、ガラス転移温度、結晶化発熱量は、具体的には実施例に記載の方法で測定できる。
 ポリイミド樹脂粉末の0.5質量%濃硫酸溶液の30℃における対数粘度は、好ましくは0.2~2.0dL/g、より好ましくは0.3~1.8dL/gの範囲である。対数粘度が0.2dL/g以上であれば、得られるポリイミド樹脂粉末を成形体とした際に十分な機械的強度が得られ、2.0dL/g以下であると、成形加工性及び取り扱い性が良好になる。対数粘度μは、キャノンフェンスケ粘度計を使用して、30℃において濃硫酸及び上記ポリイミド樹脂溶液の流れる時間をそれぞれ測定し、下記式から求められる。
  μ=ln(ts/t)/C
   t:濃硫酸の流れる時間
   ts:ポリイミド樹脂溶液の流れる時間
   C:0.5(g/dL)
 ポリイミド樹脂粉末の重量平均分子量Mwは、好ましくは10,000~150,000、より好ましくは15,000~100,000、更に好ましくは20,000~80,000、より更に好ましくは30,000~70,000、より更に好ましくは35,000~65,000の範囲である。また、ポリイミド樹脂粉末の重量平均分子量Mwが10,000以上であれば得られる成形体の機械的強度が良好になり、40,000以上であれば機械的強度の安定性が良好になり、150,000以下であれば成形加工性が良好になる。
 ポリイミド樹脂粉末の重量平均分子量Mwは、ポリメチルメタクリレート(PMMA)を標準試料としてゲルろ過クロマトグラフィー(GPC)法により測定することができる。
<樹脂フィルム>
 本発明は、本発明の製造方法により得られた、特定組成のポリイミド樹脂粉末を含む成形材料を用いて得られるフィルム状の成形体(樹脂フィルム)を提供する。
 本発明の樹脂フィルムは、本発明の製造方法により得られた、特定組成のポリイミド樹脂粉末を含む成形材料を用いて得られる。これにより、高温下での誘電正接の上昇を抑制する効果が発現するメカニズムは必ずしも明らかではないが、次のように考えられる。
 本発明の製造方法により得られるポリイミド樹脂粉末は、ジアミン成分(B)に由来する2価の基として、少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基と、炭素数5~16の2価の鎖状脂肪族基とを特定の割合で含む。
 脂環式炭化水素構造は、嵩高い構造を有することから、樹脂の自由体積(物質が実際に占める体積と、原子半径等から計算される空間占有体積との差)を増加させる傾向があると考えられる。これが一因となって、誘電正接等の誘電特性が改善される効果が発現すると考えられる。中でも、対称性が低い脂環式ジアミン(例えば1,3-ビス(アミノメチル)シクロヘキサン)に由来する2価の基であれば、樹脂の自由体積を増加させる傾向がより高いと考えられることから、誘電正接等の誘電特性が改善する効果がより高くなると考えられる。
 この常温下での設計思想に加え、本発明の特定組成の範囲を有するポリイミド樹脂粉末によれば、結晶化部では高い結晶化温度を発現させ、かつ非晶化部では高いガラス転移温度を発現させることが可能となる設計思想も有する。
 したがって、常温下だけでなく高温下での設計思想も有する本発明のポリイミド樹脂粉末を含む成形材料を用いて得られる樹脂フィルムによれば、高温下でも樹脂の分子運動が活発化され難く、誘電正接等の誘電特性の悪化が抑制される効果が発現すると考えられる。
 なお、結晶性樹脂は、一般的には吸水率を低下させる傾向があることが知られている。このことから、本発明の樹脂フィルムによれば、高湿下での吸水の影響による誘電正接等の誘電特性の悪化が抑制される効果も発現すると考えられる。
 樹脂フィルムの10GHzにおける、40℃での誘電率P40と120℃での誘電率P120との比(P120/P40)は、好ましくは0.8~1.2、より好ましくは0.8~1.1である。
 また、樹脂フィルムの20GHzにおける、40℃での誘電率P40と120℃での誘電率P120との比(P120/P40)は、好ましくは0.8~1.2、より好ましくは0.85~1.1である。
 樹脂フィルムの10GHzにおける、40℃での誘電正接Q40と120℃での誘電正接Q120との比(Q120/Q40)は、好ましくは1.0~1.5、より好ましくは1.0~1.3である。
 また、樹脂フィルムの20GHzにおける、40℃での誘電正接Q40と120℃での誘電正接Q120との比(Q120/Q40)が、好ましくは1.0~1.7、より好ましくは1.2~1.6である。
 なお、樹脂フィルムの誘電率及び誘電正接は、具体的には実施例に記載の方法で測定できる。
 樹脂フィルムの飽和吸水率は、85℃、相対湿度85%の条件下で1.0%以下、好ましくは0.9%以下、より好ましくは0.8%以下である。
 樹脂フィルムの飽和吸水率は、具体的には実施例に記載の方法で測定できる。
 樹脂フィルムの成形材料として、ポリイミド樹脂粉末の特性が阻害されない範囲で、ポリイミド樹脂粉末以外の添加剤を必要に応じて配合することができる。
 添加剤としては、例えば、艶消剤、可塑剤、帯電防止剤、着色防止剤、ゲル化防止剤、着色剤、酸化防止剤、導電剤、樹脂改質剤、難燃剤、ガラス繊維、炭素繊維、結晶核剤、結晶化遅延剤、摺動改質剤、フッ素樹脂粉末や炭酸カルシウム粉末等の低誘電化剤等が挙げられる。
 ガラス繊維としては、低誘電特性であるNEガラスが好適に用いられる。難燃剤としては、成形品の外観を改善する観点から、融点やガラス転移温度を有する難燃剤、もしくは数ミクロン以下の微粉末状の難燃剤が好適に用いられる。フッ素樹脂としては、数ミクロン以下の微粉末状のフッ素樹脂が好適に用いられる。
 添加剤の配合量には特に制限はないが、ポリイミド樹脂粉末由来の物性を維持しつつ添加剤の効果を発現させる観点から、成形材料中、通常50質量%以下であり、好ましくは0.0001~30質量%、より好ましくは0.001~15質量%、更に好ましくは0.01~10質量%である。
 また、樹脂フィルムの成形材料として、ポリイミド樹脂粉末の特性が阻害されない範囲で、ポリイミド樹脂粉末以外の他の樹脂を配合することができる。
 他の樹脂としては、高耐熱性の熱可塑性樹脂が好ましく、例えば、ポリアミド樹脂、ポリエステル樹脂、前記ポリイミド樹脂粉末以外のポリイミド樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンエーテルイミド樹脂、ポリフェニレンサルファイド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂、液晶ポリマー、ポリエーテルケトン系樹脂(ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルケトンケトン樹脂、ポリエーテルエーテルケトンケトン樹脂等)、ポリベンゾイミダゾール樹脂、フッ素樹脂、等が挙げられる。これらの中でも、耐熱性(耐熱老化性、短期耐熱性、高温時物性保持率等)、成形加工性、強度、高温時の優れた誘電特性、及び耐溶剤性の観点から、ポリエーテルイミド樹脂、ポリフェニレンサルファイド樹脂、及びポリエーテルケトン系樹脂からなる群から選ばれる1種以上が好ましい。
 ポリイミド樹脂粉末と他の樹脂とを併用する場合、ポリイミド樹脂粉末の特性が阻害されない範囲であれば、その配合比率には特に制限はないが、具体的には各必要特性に応じて1/99~99/1の範囲で任意に選択することができる。
 但し、樹脂フィルムの作製に用いる成形材料中のポリイミド樹脂粉末の含有量は、高温下での誘電正接の上昇を抑制する効果を得る観点から、好ましくは20質量%以上、より好ましくは45質量%以上、更に好ましくは70質量%以上、より更に好ましくは80質量%以上である。また、上限は100質量%である。
 上記成形材料は、粉末の状態で樹脂フィルム等の成形に供してもよく、一旦ペレット化してから樹脂フィルム等の成形に供してもよい。
 本発明のポリイミド樹脂粉末は、熱可塑性を有するため、熱成形することにより容易にフィルム状の成形体(樹脂フィルム)を製造することができる。
 例えば、(i)ポリイミド樹脂粉末を含む成形材料を押出成形機に投入して直接押出成形した後に各種熱成形を行いフィルム状の成形体を得る方法、(ii)ポリイミド樹脂粉末を含む成形材料を押出成形機に投入して一旦ペレット化した後に該ペレットを用いて各種熱成形を行いフィルム状の成形体を得る方法、及び(iii)ポリイミド樹脂粉末を含む成形材料を熱プレス装置により直接圧縮成形してフィルム状の成形体を得る方法などが挙げられる。
 樹脂フィルムを製造する方法としては、ポリイミド樹脂粉末及び必要に応じて各種任意成分を含む成形材料を300~410℃で熱成形する工程を有することが好ましい。具体的な手順としては、例えば前記(ii)の方法であれば、以下の方法が挙げられる。
 まず、ポリイミド樹脂粉末、及び必要に応じて各種任意成分をドライブレンドした後、これを押出成形機に投入して、好ましくは300~410℃で溶融して押出成形機内で溶融混練し、押出すことでペレットを作製する。
 あるいは、ポリイミド樹脂粉末を押出成形機に投入して、好ましくは300~410℃で溶融し、ここに必要に応じて各種任意成分を投入して押出成形機に投入し、押出成形機内で溶融混練し、押出すことでペレットを作製してもよい。
 作製したペレットを乾燥させた後、Tダイスを備えた単軸押出成形機もしくは2軸押し出し機に投入して好ましくは300~410℃で溶融混練し、この溶融混練した成形材料を単軸押出成形機もしくは2軸押し出し機のTダイス等の各種ダイスから連続的に押し出し、その後、好ましくは100~250℃の冷却ロールである金属ロールで冷却することにより、フィルム状の成形体(樹脂フィルム)を得ることができる。なお、フィルム状の成形体を得た後に、インラインあるいはオフラインにおいて各種延伸工程に供することも可能である。延伸工程における延伸条件としては、好ましくは100~300℃の温度範囲にてフィルム状の成形体を予熱し、MD方向とTD方向にそれぞれ、好ましくは1.1倍延伸以上、より好ましくは1.5倍延伸以上に延伸することができる。フィルムの延伸を行うことで、フィルム自体の機械強度を向上させることができ、かつ延伸方向への線膨張係数を大幅に低減できるため、低線膨張係数材料との多層化用途等では特に好適である。
 本発明の樹脂フィルムは、5mm以下の板状又はシート状のものも包含する。
 樹脂フィルムは、用途に応じて任意の厚さであってよく、2~1000μmであれば特に限定されない。樹脂フィルムを高周波回路基板に適用する場合には、取扱い性や薄型化の観点から、該樹脂フィルムの厚さは好ましくは5~800μm、より好ましくは10~500μm、更に好ましくは12.5~250μmである。
 また、後述する銅張積層板とした際に加熱時や冷却時の変形を抑制する観点からは、本発明の樹脂フィルムの面方向(X方向、Y方向)の線膨張係数は、50℃から該樹脂フィルムのガラス転移温度以下の温度範囲において、好ましくは80ppm以下、より好ましくは50ppm以下、更に好ましくは20ppm以下である。また、樹脂フィルムを高度に多層化した際の積層方向の変形を抑える観点から、樹脂フィルムの厚さ方向(Z方向)の線膨張係数は、50℃から該樹脂フィルムのガラス転移温度以下の範囲において、好ましくは300ppm以下、より好ましくは200ppm以下、更に好ましくは100ppm以下である。本発明の樹脂フィルムは、結晶性を有しているため厚み方向にスタッキングしやすく、かつガラス転移温度も高いため、特に厚み方向の線膨張係数を低減できることが期待される。
 本発明の樹脂フィルムによれば、高温下での誘電正接の上昇を抑制することができることから、例えば、高周波回路基板、銅張積層板(CCL)、特に低粗度(算術平均粗さRa=1μm以下)銅箔を用いた銅張積層板、ボンディングシート、フィルムコンデンサー、プリント配線基板、同軸線路、ストリップ線路、マイクロストリップ線路、コプレナー線路、平行線路など伝送線路、マイクロ波用アンテナ、ミリ波用アンテナ、導波管スロットアンテナ、ホーンアンテナ、レンズアンテナ、プリントアンテナ、トリプレートアンテナ、マイクロストリップアンテナ、パッチアンテナ、各種センサ、車載用レーダ、航空宇宙用レーダ、半導体素子材、ベアリング用コート、断熱軸、トレー、シームレスベルトなどの各種ベルト、耐熱低誘電テープ、耐熱低誘電チューブ、低誘電電線被覆材、レドーム(レーダードーム)、5G用スマートフォン/5G端末のアンテナ基板、6G用スマートフォン/6G端末のアンテナ基板、チップオンフィルム(COF)フレキシブル基板、光通信モジュール(TOSA/ROSA)、77GHz車載ミリ波レーダのアンテナ基板、テラヘルツ波レーダのアンテナ基板、航空機用レーダのアンテナ基板、装軌車両用アンテナ基板、8K-TVのケーブル、WiGigのアンテナ基板、タブレット端末、ノートPC、薄型TV、巻き取り式TV、デジカメ等のモバイル端末やデジタル家電、マクロセル基地局、スモールセル基地局、C-RAN基地局、商業用ドローン、長距離移動ドローン、監視カメラ、スマートグラス、スマートウォッチ、高周波デバイス用ウエハ、無線通信デバイス、Wi-Fiチップ、タッチセンサ、室内サーバ、屋外サーバ、産業用ロボット基板、家庭用ロボットの通信用基盤、人工衛星、宇宙ステーション用通信機器、等に適用できる。これらの中でも、本発明の樹脂フィルムによれば、高温下での誘電正接の上昇を抑制することができることから、高周波回路基板及び銅張積層板に好適である。
 また、粉末そのものの用途としては、ドライブレンド用原料、パッキンやIC検査治具等の圧縮成形品原料、CFRP用の靱性付与剤、熱硬化樹脂や熱可塑性樹脂の靱性付与剤や耐熱性向上剤、コーティング材料、潤滑剤、3Dプリンター用原料、UDテープ用原料、等に適用できる。
<高周波回路基板>
 本発明は、前記本発明の樹脂フィルムを含む高周波回路基板を提供する。
 本発明の高周波回路基板は、前記樹脂フィルム以外に任意の層を有していてもよいが、高温下での誘電正接の上昇抑制の観点からは、前記樹脂フィルムのみからなるものであることが好ましい。その場合、高周波回路基板を構成する樹脂組成、高周波回路基板の製造方法、高周波回路基板の誘電特性(誘電率及び誘電正接)、飽和吸水率、及びこれらの好適態様は、前記樹脂フィルムにおいて記載した内容と同じである。
 高周波回路基板の厚さは、強度及び誘電特性を確保する観点から、好ましくは5~800μm、より好ましくは10~500μm、更に好ましくは12.5~250μmである。
<銅張積層板>
 本発明はまた、前記本発明の樹脂フィルムからなる層を含む銅張積層板を提供する。
 本発明の銅張積層板は、本発明の樹脂フィルムからなる層(以下、単に「樹脂フィルム層」ともいう)と、少なくとも1層の銅箔層とを有するものであればよい。例えば、前記樹脂フィルム層の少なくとも一方の面、好ましくは両面に銅箔層を積層した構成の積層板が挙げられる。このような構成の銅張積層板は、例えば、本発明の樹脂フィルムと銅箔とを公知の方法で貼り合わせることにより得られる。
 銅張積層板の製造に用いる樹脂フィルムは、前記と同様の方法で製造することができる。該樹脂フィルム、及び銅張積層板における樹脂フィルム層の厚さは、銅張積層板の強度を確保する観点、樹脂フィルム層と銅箔層との接着性向上の観点から、好ましくは5~500μm、より好ましくは10~300μm、更に好ましくは12.5~200μmである。
 銅張積層板の製造に用いる銅箔としては特に制限されず、市販の圧延銅箔、電解銅箔等を用いることができるが、フレキシブル性の観点からは圧延銅箔の方がより好適である。銅箔層及びその形成に用いる銅箔の厚さは、十分な導電性を確保する観点、及び樹脂フィルム層との接着性向上の観点から、好ましくは2~50μm、より好ましくは3~30μm、更に好ましくは5~20μmである。該厚さは、銅箔層1層あたり、又は銅箔1枚あたりの厚さである。
 また、銅張積層板の製造に用いる銅箔の表面粗さは特に制限されないが、該銅箔の表面粗さは樹脂フィルムを貼り合わせた後に得られる積層板自体の電気特性に直結し、一般的には低粗度であるほど誘電特性として優れた積層板と成り得る。そのため、銅箔表面の最大高さRzの値は、好ましくは0.1~1μm、より好ましくは0.2~0.8μmの範囲である。銅箔表面の最大高さRzは、例えば表面粗さ計により測定することができる。
 銅張積層板の厚さは、銅張積層板の強度及び導電性向上の観点から、好ましくは15~600μm、より好ましくは25~500μm、更に好ましくは50~300μmである。なお銅張積層板は、本発明の効果を損なわない限り、前記樹脂フィルム層及び銅箔層以外の任意の層を有していてもよい。
 銅張積層板の製造方法は特に制限されず、本発明の樹脂フィルムと銅箔とを重ね合わせ、次いで公知の方法により加熱加圧条件下で貼り合わせることにより積層する方法が挙げられる。本発明の樹脂フィルムは熱可塑性のポリイミド樹脂を含むため、表面を熱溶融させた状態で圧着し、銅箔と貼り合わせることが可能である。
 銅張積層板の製造に用いられる装置としては、樹脂フィルムと銅箔とを加熱加圧条件下で貼り合わせることが可能な装置であればよく、例えば、ロールラミネーター、平板ラミネーター、真空プレス装置、ダブルベルトプレス装置等が挙げられる。これらの中でも、銅張積層板の生産性の観点、及び、外観良好な銅張積層板を得る観点からは、ダブルベルトプレス装置を用いることが好ましい。ダブルベルトプレス装置とは、上下一対に配置されたエンドレスベルトを備え、該ベルト間に、各層を形成するフィルム形状の材料(樹脂フィルム及び銅箔)を連続的に送り込み、エンドレスベルトを介して加熱加圧機構により前記材料を加熱加圧成形し、積層体を製造できる装置である。
 ダブルベルトプレス装置としては、特開2010-221694号公報に記載の装置、(株)ディムコ製のダブルベルトプレス装置等を例示できる。
 前記方法で銅張積層板を製造する際の加熱温度は、樹脂フィルムを軟化又は溶融させることができる温度であれば特に制限されないが、装置上及び製造上の負担を軽減する観点から、好ましくは250~400℃、より好ましくは280~350℃の範囲である。また銅張積層板を製造する際の加圧条件は、樹脂フィルムと銅箔との接着性向上の観点、装置上及び製造上の負担を軽減する観点から、圧力としては好ましくは0.1~20MPa、より好ましくは0.15~15MPa、更に好ましくは0.2~12MPaである。また、生産効率を向上させる観点から、加圧時間は、好ましくは1~600秒、より好ましくは5~400秒、更に好ましくは10~300秒の範囲である。
 なお、本発明による樹脂フィルムについては、熱溶着できることが特徴ではあるが、銅張積層板の製造において、樹脂フィルムと銅箔とを接着剤を用いて貼り合わせることも可能である。接着剤としては、ワニス状の接着剤、シート状の接着剤、粉末状の接着剤等任意に選択できる。一方、低誘電特性を担保する観点からは、接着剤としても低誘電特性を有するものが好適である。低誘電特性の接着剤としては、例えば荒川化学工業(株)製のポリイミド接着剤「PIAD」シリーズが挙げられる。
 次に実施例を挙げて本発明をより詳しく説明するが、本発明はこれに限定されるものではない。また、各製造例、実施例及び比較例における各種測定及び評価は以下のように行った。
(1)ポリイミド樹脂粉末の物性
(1-1)赤外線分光分析(IR測定)
 各例で製造したポリイミド樹脂粉末のIR測定は日本電子(株)製「JIR-WINSPEC50」を用いて行った。
(1-2)対数粘度μ
 各例で製造したポリイミド樹脂粉末を190~200℃で2時間乾燥した後、該ポリイミド樹脂粉末0.100gを濃硫酸(96%、関東化学(株)製)20mLに溶解したポリイミド樹脂溶液を測定試料とし、キャノンフェンスケ粘度計を使用して30℃において測定を行った。対数粘度μは下記式により求めた。
μ=ln(ts/t)/C
:濃硫酸の流れる時間
ts:ポリイミド樹脂溶液の流れる時間
C:0.5g/dL
(1-3)融点、ガラス転移温度、結晶化温度、結晶化発熱量
 各例で製造したポリイミド樹脂粉末の融点Tm、ガラス転移温度Tg、結晶化温度Tc、及び結晶化発熱量ΔHmは、示差走査熱量計装置(エスアイアイ・ナノテクノロジー(株)製「DSC-6220」)を用いて測定した。
 窒素雰囲気下、ポリイミド樹脂粉末に下記条件の熱履歴を課した。熱履歴の条件は、昇温1度目(昇温速度10℃/分)、その後冷却(降温速度20℃/分)、その後昇温2度目(昇温速度10℃/分)である。
 融点Tmは昇温2度目で観測された吸熱ピークのピークトップ値を読み取り決定した。ガラス転移温度Tgは昇温2度目で観測された値を読み取り決定した。結晶化温度Tcは冷却時に観測された発熱ピークのピークトップ値を読み取り決定した。
 また結晶化発熱量ΔHm(mJ/mg)は冷却時に観測された発熱ピークの面積から算出した。
(1-4)半結晶化時間
 各例で製造したポリイミド樹脂粉末の半結晶化時間は、示差走査熱量計装置(エスアイアイ・ナノテクノロジー(株)製「DSC-6220」)を用いて測定した。
 半結晶化時間が20秒以下のポリイミド樹脂の測定条件は窒素雰囲気下、420℃で10分保持し、ポリイミド樹脂を完全に溶融させたのち、冷却速度70℃/分の急冷操作を行った際に、観測される結晶化ピークの出現時からピークトップに達するまでにかかった時間を計算し、決定した。
(1-5)重量平均分子量
 各例で製造したポリイミド樹脂粉末の重量平均分子量(Mw)は、昭和電工(株)製のゲルろ過クロマトグラフィー(GPC)測定装置「Shodex GPC-101」を用いて下記条件にて測定した。
 カラム:Shodex HFIP-806M
 移動相溶媒:トリフルオロ酢酸ナトリウム2mM含有HFIP
 カラム温度:40℃
 移動相流速:1.0mL/min
 試料濃度:約0.1質量%
 検出器:IR検出器
 注入量:100μm
 検量線:標準PMMA
(1-6)体積平均粒径(D10、D50、D90)
 各例で製造したポリイミド樹脂粉末のD10、D50、D90は、レーザー回折式粒度分布測定の結果より求めた。なお、各例で製造したポリイミド樹脂粉末の粒度分布測定の結果は図1~10に示した。
 測定装置としてマルバーン社製のレーザー回折光散乱式粒度分布測定器「LMS-2000e」を使用した。ポリイミド樹脂粉末のD10、D50、D90測定においては分散媒として水を使用し、超音波条件下によりポリイミド樹脂粉末が十分に分散する条件で行った。測定範囲は0.02~2000μmとした。
(2)樹脂フィルムの物性
(2-1)飽和吸水率
 実施例1で製造したポリイミド樹脂粉末を用いて、後述する方法により樹脂フィルムを作製し、10mm×10mm×厚さ50μmのサイズに10枚切り出し、これらを試験片として一度の試験で使用した。
 JIS K7209:2000に準拠して、該試験片を50℃で24時間乾燥した後、デシケーターで室温に戻し、23℃、相対湿度50%の環境下で重量(W0)を測定した。続いて、このフィルムを水分脱着装置IGA SORP(ハイデン社製)に投入し、85℃、相対湿度85%の環境として、サンプル重量が安定した時点の重量(W1)を測定した。下記式に基づいて飽和吸水率を算出した。
 飽和吸水率(%)=[(W1-W0)/W0]×100
(2-2)誘電特性
 実施例1で製造したポリイミド樹脂粉末を用いて、後述する方法により樹脂フィルムを作製し、60mm×75mm×厚さ50μmのサイズに切り出し試験片とした。
 該試験片をデシケーターにて乾燥後、速やかに測定に使用した。測定装置として、ネットワークアナライザP5007A(キーサイト・テクノロジー社製)、スプリットシリンダ共振器 20 GHz CR-720(EMラボ社製)、スプリットシリンダ温特評価ソフトウェア CR-TC(EMラボ社製)、環境試験器 SH-662(エスペック社製)を用い、IEC 62810に準拠して、空洞共振器摂動法により、-40~150℃の環境下で、周波数10GHz及び20GHzにおける誘電率及び誘電正接を測定した。測定値はn=2の平均値とした。
[実施例1]
<ポリイミド樹脂粉末の製造>
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤(株)製)800gとピロメリット酸二無水物(ロンザジャパン(株)製)191.95g(0.88mol)を導入し、窒素フローとした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学(株)製、シス/トランス比=7/3)43.81g(0.308mol)、1,8-オクタメチレンジアミン(関東化学(株)製)82.52g(0.572mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ、混合ジアミン溶液を調製した。
 この混合ジアミン溶液を、プランジャーポンプを使用して、2Lセパラブルフラスコ中の懸濁溶液に60minかけて滴下した。滴下により発熱が起こるが、内温は40~80℃に収まるよう調整した。混合ジアミン溶液の滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。また、滴下の際の最高発熱温度は65℃であった。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール130gと、末端封止剤であるn-オクチルアミン(関東化学(株)製)1.13g(0.0088mol)を加えさらに撹拌した。この段階で、淡黄色の固形分濃度が20質量%のポリアミド酸溶液(c)が得られた。次に、撹拌速度を200rpmとした後に、2Lセパラブルフラスコ中のポリアミド酸溶液(c)を190℃まで昇温した。昇温を行っていく過程において、液温度が70~130℃の範囲における平均昇温速度を0.91℃/分として加熱した。この間にポリイミド樹脂粉末の析出と、イミド化に伴う脱水が確認された。液温度が130℃を超え190℃の範囲における平均昇温速度を70~130℃の範囲における平均昇温速度と同様の昇温速度として引き続き昇温し、190℃で30分保持した後、室温まで放冷を行い、濾過を行った。得られたポリイミド樹脂粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール300gにより洗浄、濾過を行った後、乾燥機で180℃、10時間乾燥を行い、317gのポリイミド樹脂粉末を得た。
 ポリイミド樹脂粉末のIRスペクトルを測定したところ、ν(C=O)1768、1697(cm-1)にイミド環の特性吸収が認められた。
 ポリイミド樹脂粉末の物性を測定したところ、対数粘度は1.60dL/g、Tmは323℃、Tgは184℃、Tcは266℃、結晶化発熱量は21.0mJ/mg、半結晶化時間は20秒以下、Mwは55,000であった。
 実施例1におけるポリイミド樹脂粉末の組成及び評価結果を表1に示す。なお、表1中のテトラカルボン酸成分及びジアミン成分のモル%は、ポリイミド樹脂製造時の各成分の仕込み量から算出した値である。
 後述する実施例2~4及び比較例1~6で得られるポリイミド樹脂粉末においても、表1に示される実施例1のポリイミド樹脂粉末と同じ組成及び評価結果であった。
Figure JPOXMLDOC01-appb-T000031
 表1中の略号は下記の通りである。
・PMDA;ピロメリット酸二無水物
・1,3-BAC;1,3-ビス(アミノメチル)シクロヘキサン
・OMDA;1,8-オクタメチレンジアミン
[実施例2]
 ポリアミド酸溶液(c)を190℃まで昇温を行っていく過程において、液温度が70~130℃の範囲における平均昇温速度を表2に示すとおりに変更したこと以外は、実施例1と同様にしてポリイミド樹脂粉末を得た。
[実施例3]
 ピロメリット酸二無水物に加える2-(2-メトキシエトキシ)エタノールを665g、混合ジアミンに加える2-(2-メトキシエトキシ)エタノールを208g、滴下が終わったのちに加える2-(2-メトキシエトキシ)エタノールを84gとした以外は、実施例1と同様にしてポリイミド樹脂粉末を得た。
[実施例4]
 ポリアミド酸溶液(c)を190℃まで昇温を行っていく過程において、液温度が70~130℃の範囲における平均昇温速度を表2に示すとおりに変更したこと以外は、実施例3と同様にしてポリイミド樹脂粉末を得た。
[比較例1]
 ピロメリット酸二無水物の量を76.69g(0.353mol)、1,3-ビス(アミノメチル)シクロヘキサンの量を17.57g(0.123mol)、1,8-オクタメチレンジアミンの量を33.09g(0.229mol)、n-オクチルアミンの量を0.453g(0.00352mol)としたこと以外は、実施例1と同様にしてポリイミド樹脂粉末を得た。
[比較例2]
 ピロメリット酸二無水物の量を295.3g(1.359mol)、1,3-ビス(アミノメチル)シクロヘキサンの量を67.64g(0.474mol)、1,8-オクタメチレンジアミンの量を127.4g(0.882mol)、n-オクチルアミンの量を1.74g(0.0136mol)としたこと以外は、実施例1と同様にしてポリイミド樹脂粉末を得た。
[比較例3~6]
 ポリアミド酸溶液(c)を190℃まで昇温を行っていく過程において、液温度が70~130℃の範囲における平均昇温速度を表2に示すとおりに変更したこと以外は、比較例2と同様にしてポリイミド樹脂粉末を得た。
 実施例1~4及び比較例1~6で得られたポリイミド樹脂粉末において、体積平均粒径D10、D50、D90の結果を表2、粒度分布の結果を図1~10に示した。なお、図1~10の結果から粒度分布の形状を下記基準で評価し、表2に示した。
 A:単峰性分布で非常にシャープ
 (D10/D50が0.7~0.9かつD90/D50が1.1~1.4)
 B:単峰性分布でシャープ
 (D10/D50が0.45~0.9かつD90/D50が1.4を超え2.0以下)
 C:二峰性分布でメインピークがシャープ
 (二峰性であるが、D10/D50が0.45~0.9かつD90/D50が1.4を超え2.0以下)
 D:二峰性分布で非常にブロード
 (D10/D50が0.45~0.9かつD90/D50が2.0を超える)
 E:三峰性以上の多峰性分布
Figure JPOXMLDOC01-appb-T000032
 表2に記載されている結果より、以下のことが分かる。
 実施例1~4では、ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)の固形分濃度を特定の範囲(15~25質量%)とし、該溶液(c)を加熱してポリアミド酸を含むポリイミド樹脂前駆体をイミド化する際の温度範囲(70~130℃)における平均昇温速度を特定の範囲(0.5~8℃/分)として製造したことにより、体積平均粒径D50が特定の範囲(具体的には5~50μm)にあり、且つ良好な粒径分布を有するポリイミド樹脂粉末が得られた。特に、実施例1~2では、単峰性で非常にシャープな粒度分布を有するポリイミド樹脂粉末が得られた。
 一方、比較例1~6では、ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)の固形分濃度が特定範囲から外れた条件で製造したことにより、体積平均粒径D50が特定の範囲(具体的には5~50μm)にあり、且つ良好な粒径分布を有するポリイミド樹脂粉末は得られなかった。特に、比較例1では、三峰性以上の多峰性の粒度分布を有するポリイミド樹脂粉末しか得られなかった。
[実施例5]
<樹脂フィルムの製造>
 実施例1で得られたポリイミド樹脂粉末を二軸混練押出機「TEM58SX」(芝浦機械(株)製)を用いてバレル温度250~330℃、スクリュー回転数100rpmで押し出した。押出機より押し出されたストランドを空冷後、ペレタイザー((株)星プラスチック製「ファンカッターfcwn30-12」)によってペレット化した。得られたポリイミド樹脂粉末のペレット(以下、単に「ペレット」と称することがある)は、150℃で12時間乾燥させた。なお、得られたペレットのサイズは、長さ3~4mm、直径2~3mmであった。
 乾燥させたペレットを幅900mmのTダイスを備えたφ40mm単軸押出成形機に投入して樹脂温度340~360℃で溶融混練し、この溶融混練したポリイミド樹脂を単軸押出成形機のTダイスから連続的に押し出し、その後、150℃の冷却ロールである金属ロールで冷却することにより、厚さ50μmの樹脂フィルムを得た。得られた樹脂フィルムの飽和吸水率は0.75%であった。
 ここで、φ40mm単軸押出成形機の温度は340~355℃、Tダイスの温度は355℃、単軸押出成形機とTダイスとを連結する連結管の温度は355℃にそれぞれ調整した。
 実施例1で得られたポリイミド樹脂粉末を用いて得られた実施例5の樹脂フィルムの誘電特性の結果を表3に示した。また、参考に、特開2018-109090号公報の熱可塑性液晶ポリマーを用いて得られた実施例1の樹脂フィルムの誘電特性の結果を表4に示した。
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 表3に示される樹脂フィルム(ポリイミド樹脂含有)は、10GHzにおける、40℃での誘電正接Q40と120℃での誘電正接Q120との比(Q120/Q40)が1.29であり、20GHzにおける、40℃での誘電正接Q40と120℃での誘電正接Q120との比(Q120/Q40)が1.5であることが分かる。したがって、実施例1のポリイミド樹脂粉末を用いて得られた実施例5の樹脂フィルムによれば、高温下での誘電正接の上昇を抑制することができることが示された。なお、表3に示される、実施例5の樹脂フィルムの測定周波数10GHzにおける各温度での誘電率P及び誘電正接Qの測定結果を図11に、測定周波数20GHzにおける各温度での誘電率P及び誘電正接Qの測定結果を図12に示した。
 一方、表4は、特開2018-109090号公報の熱可塑性液晶ポリマーを用いて得られた実施例1の樹脂フィルムの誘電特性を示すものである。
 表4に示される樹脂フィルム(熱可塑性液晶ポリマー含有)は、20GHzにおける、40℃での誘電正接Q40と120℃での誘電正接Q120との比(Q120/Q40)が3であることが分かる。
 以上のことから、表3に示される樹脂フィルム(ポリイミド樹脂含有)は、表4に示される樹脂フィルム(熱可塑性液晶ポリマー含有)よりも、高温下での誘電正接の上昇を抑制する効果に優れることも示された。
[実施例6]
<銅張積層板の製造>
 実施例5で得られた厚さ50μmの樹脂フィルムをA4サイズに切り出し、銅張積層板の製造に用いた。
 上記樹脂フィルムと、厚さ12μmの圧延銅箔(JX金属(株)製「BHM-102F-HA-V2」、A4サイズ、樹脂フィルムとの溶着面のRz:0.67μm)とを、銅箔、樹脂フィルム、銅箔の順に重ね合わせた。これを(株)ディムコ製のラボダブルベルトプレス装置を用いて、加熱温度300℃、圧力0.22MPaにて10秒間滞留させて積層し、銅箔層、樹脂フィルム層、銅箔層を順に有する、3層構造の銅張積層板を作製した。得られた銅張積層板について、樹脂フィルムと銅箔との接着性を90°剥離試験(JIS K6854-1:1999)により測定した。また銅張積層板の外観について、シワの発生の有無を目視観察により評価した。
 樹脂フィルムと銅箔との接着性、及び外観は、いずれも実施例6の評価結果を「A」基準として、AA、A、B、Cの4段階で評価した。
[実施例7~10]
 使用した銅箔、使用装置、及び樹脂フィルムと銅箔との積層条件を表5に示す通りに変更したこと以外は、実施例6と同様の方法で銅張積層板を作製し、評価を行った。結果を表5に示す。
 表5に記載の銅箔、使用装置は下記の通りである。
(銅箔)
・圧延銅箔(BHM-102F-HA-V2) JX金属(株)製、A4サイズ、樹脂フィルムとの溶着面のRz:0.67μm、厚さ12μm
・電解銅箔(TQ-M5-VSP) 三井金属鉱業(株)製、A4サイズ、樹脂フィルムとの溶着面のRz:0.70μm、厚さ12μm
(使用装置)
・ラボダブルベルトプレス装置 (株)ディムコ製
・真空プレス装置 小平製作所製
Figure JPOXMLDOC01-appb-T000035
 本発明の製造方法によれば、体積平均粒径D50が特定の範囲(具体的には5~50μm)にあり、且つ良好な粒径分布を有するポリイミド樹脂粉末を得ることができる。また、本発明の製造方法により得られた、特定組成のポリイミド樹脂粉末を用いて得られる樹脂フィルムによれば、高温下での誘電正接の上昇を抑制することができる。
 上記樹脂フィルムは、例えば、高周波回路基板、銅張積層板(CCL)、特に低粗度(算術平均粗さRa=1μm以下、最大高さRz=1μm以下)銅箔を用いた銅張積層板、プリント配線基板、同軸線路、ストリップ線路、マイクロストリップ線路、コプレナー線路、平行線路など伝送線路、マイクロ波用アンテナ、ミリ波用アンテナ、導波管スロットアンテナ、ホーンアンテナ、レンズアンテナ、プリントアンテナ、トリプレートアンテナ、マイクロストリップアンテナ、パッチアンテナ、各種センサ、車載用レーダ、航空宇宙用レーダ、半導体素子材、ベアリング用コート、断熱軸、トレー、シームレスベルトなどの各種ベルト、耐熱低誘電テープ、耐熱低誘電チューブ、低誘電電線被覆材、レドーム(レーダードーム)、5G用スマートフォン/5G端末のアンテナ基板、6G用スマートフォン/6G端末のアンテナ基板、チップオンフィルム(COF)フレキシブル基板、光通信モジュール(TOSA/ROSA)、77GHz車載ミリ波レーダのアンテナ基板、テラヘルツ波レーダのアンテナ基板、航空機用レーダのアンテナ基板、装軌車両用アンテナ基板、8K-TVのケーブル、WiGigのアンテナ基板、タブレット端末、ノートPC、薄型TV、巻き取り式TV、デジカメ等のモバイル端末やデジタル家電、マクロセル基地局、スモールセル基地局、C-RAN基地局、商業用ドローン、長距離移動ドローン、監視カメラ、スマートグラス、スマートウォッチ、高周波デバイス用ウエハ、無線通信デバイス、Wi-Fiチップ、タッチセンサ、室内サーバ、屋外サーバ、産業用ロボット基板、家庭用ロボットの通信用基盤、人工衛星、宇宙ステーション用通信機器、等に適用できる。
 また、粉末そのものの用途としては、ドライブレンド用原料、パッキンやIC検査治具等の圧縮成形品原料、CFRP用の靱性付与剤、熱硬化樹脂や熱可塑性樹脂の靱性付与剤や耐熱性向上剤、コーティング材料、潤滑剤、3Dプリンター用原料、UDテープ用原料、等に適用できる。

Claims (16)

  1.  ポリイミド樹脂粉末の製造方法であって、
     前記製造方法は、テトラカルボン酸二無水物を含むテトラカルボン酸成分(A)と脂肪族ジアミンを含むジアミン成分(B)とを、式(1)で表されるアルキレングリコール系溶媒を含む溶媒(C)の存在下で反応させる工程を含み、
     前記工程は、前記溶媒(C)中に前記テトラカルボン酸成分(A)を含ませてなる溶液(a)と、前記溶媒(C)中に前記ジアミン成分(B)を含ませてなる溶液(b)を別々に調製した後、溶液(a)に対し溶液(b)を添加して又は溶液(b)に対し溶液(a)を添加して、ポリアミド酸を含むポリイミド樹脂前駆体を含有する溶液(c)を調製し、
     次いで、前記溶液(c)を加熱することにより前記ポリアミド酸を含むポリイミド樹脂前駆体をイミド化して、該溶液中でポリイミド樹脂粉末を析出させる工程を含み、
     前記溶液(c)の固形分濃度が15~25質量%であり、前記溶液(c)の前記加熱時の温度70~130℃の範囲における平均昇温速度が0.5~8℃/分である、ポリイミド樹脂粉末の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (Raは水素原子又は炭素数1~4のアルキル基であり、Raは炭素数2~6の直鎖のアルキレン基であり、nは1~3の整数である。)
  2.  前記アルキレングリコール系溶媒が2-(2-メトキシエトキシ)エタノール及び2-(2-エトキシエトキシ)エタノールからなる群から選ばれる少なくとも1種である、請求項1に記載の製造方法。
  3.  前記ジアミン成分(B)が、前記脂肪族ジアミンとして、式(B1-1)で表されるジアミン(B1)及び式(B2-1)で表されるジアミン(B2)を含む、請求項1又は2に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-I000003

    (Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基であり、Rは炭素数5~20の2価の鎖状脂肪族基である。)
  4.  前記テトラカルボン酸二無水物が式(A-1)で表される、請求項1~3のいずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000004

    (Xは、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
  5.  前記テトラカルボン酸二無水物がピロメリット酸二無水物である、請求項1~4のいずれかに記載の製造方法。
  6.  前記溶媒(C)が2-エチルヘキサノールを含む、請求項1~5のいずれかに記載の製造方法。
  7.  請求項1~6のいずれかに記載の方法により製造されるポリイミド樹脂粉末であって、下記式(I)で示される繰り返し構成単位及び下記式(II)で示される繰り返し構成単位を含み、該式(I)の繰り返し構成単位と該式(II)の繰り返し構成単位の合計に対する該式(I)の繰り返し構成単位の含有比が20~70モル%である、ポリイミド樹脂粉末。
    Figure JPOXMLDOC01-appb-C000005

    (Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
  8.  前記ポリイミド樹脂粉末において、前記式(I)の繰り返し構成単位と前記式(II)の繰り返し構成単位の合計に対する前記式(I)の繰り返し構成単位の含有比が20モル%以上、40モル%未満である、請求項7に記載のポリイミド樹脂粉末。
  9.  前記ポリイミド樹脂粉末の体積平均粒径D50が13~35μmである、請求項7又は8に記載のポリイミド樹脂粉末。
  10.  請求項7~9のいずれかに記載のポリイミド樹脂粉末を含む成形材料を用いて得られる、樹脂フィルム。
  11.  10GHzにおける、40℃での誘電率P40と120℃での誘電率P120との比(P120/P40)が0.8~1.2である、請求項10に記載の樹脂フィルム。
  12.  10GHzにおける、40℃での誘電正接Q40と120℃での誘電正接Q120との比(Q120/Q40)が1.0~1.5である、請求項10又は11に記載の樹脂フィルム。
  13.  20GHzにおける、40℃での誘電率P40と120℃での誘電率P120との比(P120/P40)が0.8~1.2である、請求項10~12のいずれかに記載の樹脂フィルム。
  14.  20GHzにおける、40℃での誘電正接Q40と120℃での誘電正接Q120との比(Q120/Q40)が1.0~1.7である、請求項10~13のいずれかに記載の樹脂フィルム。
  15.  請求項10~14のいずれかに記載の樹脂フィルムを含む、高周波回路基板。
  16.  請求項10~14のいずれかに記載の樹脂フィルムからなる層を含む、銅張積層板。
PCT/JP2022/008643 2021-03-26 2022-03-01 ポリイミド樹脂粉末の製造方法 WO2022202150A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022535800A JP7156580B1 (ja) 2021-03-26 2022-03-01 ポリイミド樹脂粉末の製造方法
CN202280023900.0A CN117043232A (zh) 2021-03-26 2022-03-01 聚酰亚胺树脂粉末的制造方法
KR1020237032282A KR102635873B1 (ko) 2021-03-26 2022-03-01 폴리이미드 수지분말의 제조방법
EP22774947.0A EP4317254A1 (en) 2021-03-26 2022-03-01 Method for producing polyimide resin powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-053994 2021-03-26
JP2021053994 2021-03-26
JP2021-110954 2021-07-02
JP2021110954 2021-07-02

Publications (1)

Publication Number Publication Date
WO2022202150A1 true WO2022202150A1 (ja) 2022-09-29

Family

ID=83395574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008643 WO2022202150A1 (ja) 2021-03-26 2022-03-01 ポリイミド樹脂粉末の製造方法

Country Status (5)

Country Link
EP (1) EP4317254A1 (ja)
JP (1) JP7156580B1 (ja)
KR (1) KR102635873B1 (ja)
TW (1) TW202300568A (ja)
WO (1) WO2022202150A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733875A (ja) * 1993-07-16 1995-02-03 Toho Rayon Co Ltd 高結晶性ポリイミドパウダー及びその製造方法
JPH07300524A (ja) * 1994-05-09 1995-11-14 Hitachi Chem Co Ltd 粒子状ポリイミドの製造法及び粒子状ポリイミド
JP2010221694A (ja) 2009-02-24 2010-10-07 Panasonic Electric Works Co Ltd フレキシブルプリント配線板用積層板の製造方法、フレキシブルプリント配線板用積層板及びフレキシブルプリント配線板
JP2013023606A (ja) * 2011-07-22 2013-02-04 Ube Industries Ltd ポリイミド粒子の製造方法及びポリイミド粒子
JP2013144751A (ja) * 2012-01-13 2013-07-25 Ube Industries Ltd ポリイミド前駆体アルコール溶液組成物、及びポリイミド前駆体アルコール溶液組成物の製造方法
WO2015020019A1 (ja) * 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 ポリイミド樹脂粉末の製造方法及び熱可塑性ポリイミド樹脂粉末
JP2018109090A (ja) 2016-12-28 2018-07-12 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよびそれを用いた回路基板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4443870B2 (ja) 2003-07-07 2010-03-31 克雄 庄司 超砥粒ホイール及びその製造方法
JP2020177987A (ja) 2019-04-16 2020-10-29 信越ポリマー株式会社 高周波回路基板及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733875A (ja) * 1993-07-16 1995-02-03 Toho Rayon Co Ltd 高結晶性ポリイミドパウダー及びその製造方法
JPH07300524A (ja) * 1994-05-09 1995-11-14 Hitachi Chem Co Ltd 粒子状ポリイミドの製造法及び粒子状ポリイミド
JP2010221694A (ja) 2009-02-24 2010-10-07 Panasonic Electric Works Co Ltd フレキシブルプリント配線板用積層板の製造方法、フレキシブルプリント配線板用積層板及びフレキシブルプリント配線板
JP2013023606A (ja) * 2011-07-22 2013-02-04 Ube Industries Ltd ポリイミド粒子の製造方法及びポリイミド粒子
JP2013144751A (ja) * 2012-01-13 2013-07-25 Ube Industries Ltd ポリイミド前駆体アルコール溶液組成物、及びポリイミド前駆体アルコール溶液組成物の製造方法
WO2015020019A1 (ja) * 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 ポリイミド樹脂粉末の製造方法及び熱可塑性ポリイミド樹脂粉末
JP2018109090A (ja) 2016-12-28 2018-07-12 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよびそれを用いた回路基板

Also Published As

Publication number Publication date
KR20230147182A (ko) 2023-10-20
EP4317254A1 (en) 2024-02-07
TW202300568A (zh) 2023-01-01
JP7156580B1 (ja) 2022-10-19
JPWO2022202150A1 (ja) 2022-09-29
KR102635873B1 (ko) 2024-02-13

Similar Documents

Publication Publication Date Title
JP6024859B1 (ja) ポリイミド樹脂
JP6037088B1 (ja) ポリイミド樹脂
EP3031844B1 (en) Method for producing polyimide resin powder, and thermoplastic polyimide resin powder
KR101503332B1 (ko) 폴리이미드 필름 및 이의 제조방법
CN112135880A (zh) 聚酰亚胺粉末组合物
JPWO2019220969A1 (ja) 樹脂成形体
WO2020179391A1 (ja) ポリイミド樹脂組成物
DE102020115671A1 (de) Polymerfilme und elektronische vorrichtungen
US20220135797A1 (en) Polyimide film and method for manufacturing same
JP7156580B1 (ja) ポリイミド樹脂粉末の製造方法
TWI794491B (zh) 聚醯亞胺樹脂組成物
TWI510552B (zh) 聚醯亞胺聚合物、聚醯亞胺膜以及軟性銅箔基板
CN117043232A (zh) 聚酰亚胺树脂粉末的制造方法
WO2024122349A1 (ja) 樹脂組成物及び成形体
WO2021024625A1 (ja) ポリイミド樹脂組成物及び成形体
WO2024122348A1 (ja) 樹脂組成物及び成形体
TW202346419A (zh) 聚醯亞胺樹脂組成物及成形體
TW202411350A (zh) 熱塑性樹脂組成物、成形體、金屬箔疊層板、接合片、纖絲、及三維造形用材料
JP2024071297A (ja) 多層ポリイミドフィルム、及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022535800

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18551213

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237032282

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032282

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280023900.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022774947

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022774947

Country of ref document: EP

Effective date: 20231026