WO2015019862A1 - トレンチゲートmos型半導体装置およびその製造方法 - Google Patents

トレンチゲートmos型半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2015019862A1
WO2015019862A1 PCT/JP2014/069630 JP2014069630W WO2015019862A1 WO 2015019862 A1 WO2015019862 A1 WO 2015019862A1 JP 2014069630 W JP2014069630 W JP 2014069630W WO 2015019862 A1 WO2015019862 A1 WO 2015019862A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
electrode
conductivity type
type
polysilicon
Prior art date
Application number
PCT/JP2014/069630
Other languages
English (en)
French (fr)
Inventor
恵理 小川
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201480013055.4A priority Critical patent/CN105027295B/zh
Priority to JP2015530817A priority patent/JP5935948B2/ja
Priority to EP14833749.6A priority patent/EP2955758B1/en
Publication of WO2015019862A1 publication Critical patent/WO2015019862A1/ja
Priority to US14/848,201 priority patent/US9461154B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate

Definitions

  • the present invention relates to a trench gate MOS type semiconductor device used for a power conversion device and the like and a manufacturing method thereof, and more particularly to an insulated gate bipolar transistor having a trench gate structure.
  • Insulated Gate Bipolar Transistors Insulated Gate Bipolar Transistors
  • the planar gate structure is a structure in which a conductive polysilicon electrode (hereinafter sometimes simply referred to as a polysilicon electrode) formed in a planar shape along a wafer surface via a gate oxide film is used as a gate electrode.
  • the trench gate structure is a structure using, as a gate electrode, a polysilicon electrode or the like embedded through a gate oxide film in a trench dug in a direction perpendicular to the depth direction from the wafer surface.
  • An IGBT having a trench gate structure (hereinafter referred to as a trench gate type IGBT) has a structure in which a channel serving as a current path is formed in a p-type base region along a trench side wall surface when turned on. For this reason, the trench gate type IGBT can increase the channel density relatively easily by narrowing the trench interval or the like. In recent years, the number of IGBTs to which a trench gate structure is applied has been increasing in order to increase the channel density to further reduce the on-voltage.
  • the structure of this IEGT device is characterized in that the n + type emitter region and the p type base region are partially covered with an insulating film so that the emitter electrode is not electrically contacted (hereinafter referred to as a p type floating region). ).
  • a p type floating region When injected, holes injected from the collector are stored on the lower side (drift layer side) of the p-type floating region, which is electrically insulated from the emitter electrode, because it is difficult to be discharged to the emitter electrode. Easy to do.
  • the carrier concentration distribution of the n-type drift layer of IEGT is close to the carrier concentration distribution of the diode, and can be lower than the on-voltage of a normal trench gate type IGBT.
  • the total generated loss of the power device is the sum of the steady loss determined by the on-voltage and the switching loss generated during the on / off operation.To reduce the total generated loss, the switching loss is reduced together with the on-voltage. It is important to reduce the gate capacitance.
  • the gate capacitance is almost a gate-collector capacitance (mirror capacitance), which causes an increase in turn-on loss.
  • the Miller capacitance when a normal trench gate type IGBT is turned on, when the gate voltage is raised, the gate-emitter capacitance is charged first, and then the gate-collector capacitance (mirror capacitance). ) Is charged.
  • the IEGT since the IEGT has a p-type floating region portion, the gate capacitance is almost a gate-collector capacitance (mirror capacitance).
  • FIG. 3 is a cross-sectional view of a principal part showing a cross-sectional structure taken along line B1-B2 of FIG.
  • FIG. 4 is a plan view of a main part showing a polysilicon gate electrode of a conventional trench gate type IGBT having a p-type floating region.
  • FIG. 3 (for example, corresponding to FIG. 1 of Patent Document 2 below) shows a cross-sectional structure of a main part of a conventional n-channel trench gate type IGBT 100 having trenches arranged in a stripe-like plane pattern.
  • An IEGT structure including a p-type floating region 111 having no n + -type emitter region 104 in the base region 103 is characterized.
  • the trench 110 has a depth reaching the n ⁇ type drift layer 102 from the surface of the n + type emitter region 104 through the p type base region 103.
  • the trench 110 is filled with a gate electrode 106 (hatched hatching) made of a polysilicon electrode via a gate oxide film 105.
  • Non-Patent Document 1 has room for improvement in turn-on characteristics.
  • FIG. 5 is a cross-sectional view of a main part of a conventional trench gate type IGBT.
  • FIG. 5 corresponds to FIG. That is, the polysilicon electrode filled in the trench 215 of FIG. 5 is not one, but is divided into two polysilicon electrodes 222a and 222b at the center of the trench along the trench 215 side wall. Of the divided polysilicon electrodes 222a and 222b, only the divided polysilicon electrode 222a on the side having the n + -type emitter region 219 and the p-type base region 217 (active region 210 side) is used as an effective gate electrode. The divided polysilicon electrode 222b on the floating region 220 side is connected to the emitter electrode 224 instead of the gate electrode.
  • Patent Document 3 also discloses a method for dividing such a polysilicon electrode. That is, first, a polysilicon electrode having a thickness that does not completely fill the trench 215 is formed. The polysilicon electrode at the bottom of the trench is etched using the oxide film as a mask while leaving the polysilicon electrode on the surface of the substrate to form divided polysilicon electrodes 222a and 222b separated on both side walls. Further, the space between the divided polysilicon electrodes 222a and 222b in the trench 215 is filled with a silicon oxide film 223 or the like so that the divided polysilicon electrodes 222a and 222b on both side walls are mutually insulated, This is a method of forming a drawer portion.
  • Reference numeral 212 denotes a collector electrode
  • 213 denotes a collector layer
  • 214 denotes a drift layer
  • 216 denotes a gate oxide film
  • 225 denotes an interlayer insulating film.
  • the gate electrode embedded in the trench has a bottom gate insulating film, an upper interlayer insulating film, and a cavity surrounded by electrode films on both side walls.
  • a description about the structure for example, see Patent Document 4 below.
  • JP-A-5-243561 JP 2001-308327 A (FIG. 1) US Pat. No. 6,815,769 (FIG. 1) Japanese Patent Laying-Open No. 2005-243932 (FIG. 1, paragraph 0012)
  • a silicon oxide film 223 for insulation is filled between the divided polysilicon electrodes 222a and 222b. How to do is shown. However, due to the difference in thermal expansion coefficient between the divided polysilicon electrodes 222a and 222b and the silicon oxide film 223 sandwiched between them, the filled silicon oxide film 223 and the divided polysilicon electrode 222a are affected by the thermal history received during the manufacturing process. , 222b are repeatedly subjected to compression and tensile stress.
  • the gate characteristics may be degraded, or cracks may occur in the silicon oxide film 223, the divided polysilicon electrodes 222a and 222b, and the silicon substrate, increasing the leakage current.
  • the silicon oxide film 223 (insulating film) sandwiched between the divided polysilicon electrodes 222a and 222b causes a problem that the gate capacitance increases at the time of turn-on and the switching characteristics are deteriorated.
  • the trench gate type MOSFET described in Patent Document 4 has a structure in which a cavity is provided between the divided gate electrodes, so that the above-described thermal history is obtained. There is a description that the generation of stress due to the above is suppressed and the gate capacitance is also reduced.
  • the insulation between the divided polysilicon electrodes is not a problem at all.
  • the insulation between the polysilicon electrodes may be insufficient only by providing a cavity.
  • An object of the present invention is to provide a trench gate MOS type capable of ensuring insulation and reducing stress between divided polysilicon electrodes connected to different electrodes in a trench and suppressing an increase in gate capacitance due to an insulating film.
  • a semiconductor device and a manufacturing method thereof are provided.
  • the present invention provides a plurality of p-type floating regions arranged on the surface layer of one main surface of an n-type semiconductor substrate to be a drift layer, and the p-type floating from the surface of the n-type semiconductor substrate.
  • a surface layer of the n-type semiconductor substrate having a p-type base region shallower than a depth of the trench, and a surface layer of the p-type base region has an n-type emitter region in contact with the trench, and the emitter electrode
  • the surface of the p-type base region and the surface of the n-type emitter region are in common contact, and the trench is surrounded by a cavity surrounded by an insulating film.
  • the interlayer insulating film is preferably a BPSG (Boro Phospho Silicate Glass) film or PSG (Phospho Silicate Glass) film, and the insulating film is preferably HTO (High Temperature Oxide) or TEOS (Tetra Ethyl Ortho).
  • the conductive polysilicon first electrode is connected to a gate electrode, and the conductive polysilicon second electrode is connected to an emitter electrode.
  • a collector electrode is provided on the other main surface of the drift layer via a p-type collector layer disposed on the surface layer.
  • the trench gate MOS semiconductor device is preferably an IGBT.
  • the object of the present invention is to form a conductive polysilicon first electrode along one side wall of the trench and a conductive polysilicon second electrode along the other side wall in the trench, and A silicon oxide film including a cavity surrounded by an insulating film is formed between the first conductive polysilicon first electrode and the conductive polysilicon second electrode using a reaction gas containing silane gas by a high temperature or low temperature CVD method.
  • This can also be achieved by providing a method for manufacturing a trench gate MOS type semiconductor device having the step of:
  • a trench gate MOS type semiconductor which reduces stress while ensuring insulation between divided polysilicon electrodes connected to different electrodes in the trench and suppresses increase in gate capacitance due to the insulating film.
  • FIG. 1 is an essential part cross-sectional view showing an enlarged cross-sectional structure taken along line A1-A2 of FIG.
  • FIG. 2 is a plan view of a principal part showing a planar layout of the trench gate type IGBT according to the first embodiment of the present invention.
  • 3 is a cross-sectional view of a principal part showing a cross-sectional structure taken along line B1-B2 of FIG.
  • FIG. 4 is a plan view of a main part showing a polysilicon gate electrode of a conventional trench gate type IGBT having a p-type floating region.
  • FIG. 5 is a cross-sectional view of a main part of a conventional trench gate type IGBT.
  • FIG. 1 is an essential part cross-sectional view showing an enlarged cross-sectional structure taken along line A1-A2 of FIG.
  • FIG. 2 is a plan view of a principal part showing a planar layout of the trench gate type IGBT according to the first embodiment of the present invention.
  • 3
  • FIG. 6 is principal part sectional drawing for demonstrating the manufacturing method of the trench gate type IGBT concerning Example 1 of this invention (the 1).
  • FIG. 7 is principal part sectional drawing for demonstrating the manufacturing method of the trench gate type IGBT concerning Example 1 of this invention (the 2).
  • FIG. 8 is principal part sectional drawing for demonstrating the manufacturing method of the trench gate type IGBT concerning Example 1 of this invention (the 3).
  • FIG. 9 is principal part sectional drawing for demonstrating the manufacturing method of the trench gate type IGBT concerning Example 1 of this invention (the 4).
  • FIG. 10 is principal part sectional drawing for demonstrating the manufacturing method of the trench gate type IGBT concerning Example 1 of this invention (the 5).
  • FIG. 11 is principal part sectional drawing for demonstrating the manufacturing method of the trench gate type IGBT concerning Example 1 of this invention (the 6).
  • a trench gate type IGBT structure according to the present invention will be described with reference to FIGS.
  • FIG. 2 is a plan view of a principal part showing a planar layout of the trench gate type IGBT according to the first embodiment of the present invention.
  • FIG. 2 shows the divided polysilicon electrode 21 and the contact portion of the trench gate type IGBT according to the first embodiment of the present invention.
  • FIG. 2 also shows an active region 10 sandwiched between parallel trenches 15 in a striped planar pattern indicated by oblique lines, a p-type floating region 16 surrounded by an annular trench 15, and a gate runner provided on the outer periphery thereof.
  • the top view which looked down at the part containing the layer 30 from the upper part is shown.
  • FIG. 1 is an essential part cross-sectional view showing an enlarged cross-sectional structure taken along line A1-A2 of FIG.
  • the trench gate type IGBT according to Example 1 of the present invention includes a trench gate structure having divided polysilicon electrodes 21 and 22 inside the trench 15, and a p-type floating region 16 that is not in electrical contact with the emit
  • a p-type base region 17 (and p + -type contact region 18) is formed on the silicon substrate in the active region 10, and an n + -type emitter region is formed on the surface layer along the trench 15. 19, and the emitter electrode 24 is in common contact with both surfaces through an emitter contact opening 27 formed in the interlayer insulating film 25.
  • a polysilicon gate electrode 21 on the active region 10 side connected to the gate electrode, which is indicated by hatching, and a polysilicon emitter electrode 22 on the p-type floating region 16 side connected to the emitter electrode 24. are separated and are provided along the side wall of the trench 15 via the gate insulating film 20, respectively.
  • An HTO oxide film 23 is formed between the polysilicon gate electrode 21 and the polysilicon emitter electrode 22 separated and divided in the trench 15.
  • the HTO oxide film 23 is closed in the vicinity of the opening above the trench 15, leaving a cavity 26 inside.
  • the HTO oxide film 23 may be a low temperature CVD (Chemical Vapor Deposition) oxide film.
  • the length of the cavity 26 is shorter than the length in the direction perpendicular to the substrate of the two polysilicon electrodes 21 and 22 formed in the trench 15, and the width is the gate insulation of each of the polysilicon gate electrode 21 and the polysilicon emitter electrode 22. 1/4 or more of the distance between the boundary with the film 20 is desirable. The reason is to obtain a crack suppressing effect while ensuring the withstand voltage of the two polysilicon electrodes 21 and 22 inside the trench 15.
  • the present invention provides the cavity 26 between the polysilicon gate electrode 21 and the polysilicon emitter electrode 22 in the trench 15 via the HTO oxide film 23, thereby reducing the gate capacitance and lowering the switching characteristics. And switching loss can be reduced. Further, even if the trench 15 has the polysilicon gate electrode 21 and the polysilicon emitter electrode 22 that are separated and divided to be connected to different electrodes and have the same potential, the HTO oxide film 23 is between them. Since it is provided, insulation can be reliably maintained. Further, since the cavity 26 in the HTO oxide film 23 absorbs stress, it has an effect of reducing or relaxing the stress generated due to the difference in thermal expansion coefficient between the oxide film and the polysilicon or silicon substrate.
  • the p-type floating region 16 having a lower concentration than the p-type base region 17 and deeper than the trench 15 has a low on-voltage, Since the concentration of the electric field at the bottom of the trench 15 can be suppressed, electrical characteristics without a breakdown voltage can be obtained.
  • the polysilicon gate electrode 21 on the active region 10 side in the trench 15 is formed on the gate runner layer 30, and the polysilicon emitter electrode 22 on the p-type floating region 16 side is formed in the p-type floating region 16.
  • Each may be connected to the surface emitter electrode contact region 31.
  • a lead extending from the planar pattern of the trench 15 toward the gate runner layer 30 and the p-type floating region 16, for example, in a perpendicular direction, respectively.
  • trenches 32 and 33 are provided.
  • a polyimide film, a nitride film, an amorphous silicon layer, or the like may be formed as a passivation film on the emitter electrode 24, but this is omitted in this figure.
  • a trench gate MOS type semiconductor device in which the gate mirror capacitance is significantly low, the turn-on characteristics are improved, and not only the on-voltage is reduced but also the switching loss is reduced, is achieved by increasing the number of process steps. It can be provided with a slight increase.
  • FIGS. 6 to 11 are cross-sectional views of relevant parts for explaining a method of manufacturing a trench gate type IGBT according to Example 1 of the invention.
  • 6 to 11 are cross-sectional views of a substrate surface layer portion for explaining a process flow of a structure in which a conductive polysilicon electrode formed inside a trench which is a characteristic portion of the trench gate type IGBT of the present invention is divided and divided. Indicates.
  • an FZ-n type semiconductor substrate (silicon substrate) 14 having a resistivity of about 30 to 60 ⁇ cm is prepared.
  • a dose amount of 5 ⁇ 10 14 cm ⁇ 2 to 3 ⁇ is used to selectively form the p-type floating region 16. Ion implantation of boron (B) of 10 15 cm ⁇ 2 is performed.
  • a p-type region having a depth of about 6 ⁇ m to 7 ⁇ m is obtained by diffusing a boron ion implantation layer by a high temperature diffusion drive at about 1150 ° C.
  • a width of about 1 ⁇ m to 3 ⁇ m and a depth of about 5 ⁇ m are formed in a striped plane pattern from the substrate surface so as to straddle the outer peripheral edge of the p-type floating region 16 formed by ion implantation.
  • the vertical trench 15 is formed by anisotropic RIE etching or the like.
  • the polysilicon layer is not buried in the trench 15.
  • Grow to thickness For example, it is desirable to grow a polysilicon layer having a thickness of about 0.5 ⁇ m for a trench width of 2 ⁇ m.
  • the polysilicon layer is doped with impurities such as boron (FIG. 7).
  • an oxide film 23 such as HTO or TEOS is formed on the inner surface of the trench 15 by the CVD method (FIG. 9).
  • the oxide film 23 and the gate insulating film 20 on the substrate surface are removed by the etch back, the oxide film 23 having a cavity 26 is filled between the divided polysilicon gate electrode 21 and polysilicon emitter electrode 22 (FIG. 10). The step of forming the oxide film 23 will be described in detail later.
  • a p-type base region 17 and an n + -type emitter region 19 are formed in a silicon substrate portion between adjacent trenches 15 by a general ion implantation method.
  • the p-type base region 17 may be formed by, for example, 2 ions by implanting boron with a dose of 1 ⁇ 10 13 cm ⁇ 2 to 1 ⁇ 10 14 cm ⁇ 2 and drive thermal diffusion at 1150 ° C.
  • the depth is ⁇ 4 ⁇ m.
  • the depth of the p-type base region 17 is made shallower than the depth of the trench 15, for example.
  • an n + -type emitter region 19 in contact with the sidewall of the trench 15 is selectively formed by ion implantation.
  • the n + -type emitter region 19 is preferably formed by ion implantation of arsenic (As).
  • the surface of the p-type floating region 16 is insulated from the emitter electrode 24 by covering the surface with an interlayer insulating film 25, and then openings are provided on the surfaces of the p-type base region 17 and the n + -type emitter region 19 that become the active region 10.
  • the emitter electrode 24 is formed by sputter deposition.
  • the interlayer insulating film 25 may be, for example, a BPSG film or a PSG film. Further, a passivation film such as a polyimide film (not shown) is formed thereon.
  • CMP Chemical Mechanical Polishing Device
  • a p + -type collector layer 13 is formed by boron ion implantation, and the collector electrode 12 is brought into ohmic contact (FIG. 11). Thereafter, the semiconductor substrate is divided into individual IGBT chips by a dicing process, thereby completing a trench gate type IGBT.
  • a conductive polysilicon electrode formed in the trench 15 is separated and divided by anisotropic etching at the bottom of the trench 15 to form a polysilicon gate electrode 21 and a polysilicon emitter electrode 22. Thereafter, when the HTO oxide film 23 is formed between the divided polysilicon electrodes 21 and 22, the opening of the trench 15 is left so that the cavity 26 remains along the inner surface of each polysilicon electrode 21 and 22. The HTO oxide film 23 is closed at this portion.
  • the formation condition of the HTO oxide film 23 for confining the cavity 26 between the two polysilicon electrodes in this way is, for example, a high temperature CVD method at a temperature of 700 ° C.
  • the gas pressure in the chamber is preferably 30 to 200 Pa low pressure CVD.
  • the HTO oxide film 23 has been described.
  • an LTO (Low Temperature Oxide) oxide film may be used instead of the HTO oxide film 23.
  • the formation conditions in that case are, for example, a temperature of 400 ° C., and silane and oxygen (O 2 ) are used as the supply gas.
  • the pressure in the chamber may be 30 to 200 Pa or normal pressure.
  • the gas reactivity is increased on the surface, and gas molecules are sufficiently generated between the polysilicon gate electrode 21 and the polysilicon emitter electrode 22 in the trench 15. It becomes difficult to wrap around and the cavity 26 is easily formed.
  • the stress distortion generated in the polysilicon gate electrode 21 on the active region 10 side and the polysilicon emitter electrode 22 on the p-type floating region 16 side is absorbed by the cavity 26. Therefore, cracks in the polysilicon electrodes 21 and 22 or the silicon substrate 14 are suppressed. Therefore, an increase in leakage current is suppressed and the reliability becomes high.
  • the cavity 26 enters between the polysilicon electrodes 21 and 22 in the trench 15, the gate capacity is reduced as compared with the conventional device having a structure in which the insulating film is filled without any gap, so that the device operates at higher speed. be able to. That is, it is possible to provide a trench gate type IGBT having a small leakage current, a gate mirror capacitance that is significantly low, and an improved turn-on characteristic without extremely increasing the number of process steps.
  • the dimensions and impurity concentrations of each part are variously set according to required specifications.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the present invention is similarly established when the first conductivity type is p-type and the second conductivity type is n-type.
  • the trench gate MOS type semiconductor device and the manufacturing method thereof according to the present invention are useful for power semiconductor devices used for power conversion devices, power supply devices such as various industrial machines, and the like.
  • collector electrode 13 p + type collector layer 14 semiconductor substrate (drift layer) 15 trench 16 p-type floating region 17 p-type base region 19 n + -type emitter region 20 gate insulating film 21 polysilicon gate electrode 22 polysilicon emitter electrode 24 emitter electrode 25 interlayer insulating film 30 gate runner layer 32 lead trench 33 lead trench

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 n型の半導体基板(14)の一方の主面の表面層には、n+型エミッタ領域(19)が形成されたp型ベース領域(17)と、n+型エミッタ領域(19)が形成されていないp型フローティング領域(16)と、が設けられる。p型ベース領域(17)とp型フローティング領域(16)とは、トレンチ(15)によって分離される。p型フローティング領域(16)を層間絶縁膜(25)を介して覆い、かつp型ベース領域(17)およびn+型エミッタ領域(19)に接するエミッタ電極(24)が設けられる。トレンチ(15)内部には、絶縁膜(23)で囲まれる空洞(26)を挟んでトレンチ(15)の両側壁に沿った領域に二分割されるポリシリコン電極(21、22)が設けられ、それぞれ異なる電極に接続される。これにより、トレンチ(15)内部のポリシリコン電極(21、22)間の絶縁確保と応力低減を図るとともに、ゲート容量の増加を抑制することができる。

Description

トレンチゲートMOS型半導体装置およびその製造方法
 本発明は、電力変換装置などに使用されるトレンチゲートMOS型半導体装置およびその製造方法に関し、特にはトレンチゲート構造の絶縁ゲート型バイポーラトランジスタに関する。
 電力変換装置の低消費電力化が進む中で、特に、その中でも中心的な役割を果たすパワーデバイスへの低消費電力化に対する期待は大きい。そのパワーデバイスの中でも、伝導度変調効果により低オン電圧を達成でき、また電圧駆動のためゲート制御が容易である絶縁ゲート型バイポーラトランジスタ(以降IGBT:Insulated Gate Bipolar Transistorとする)の使用は定着してきている。
 このIGBTのゲート構造としては、プレーナゲート構造とトレンチゲート構造が知られている。プレーナゲート構造はウエハ表面に沿ってゲート酸化膜を介して平面状に形成される導電性ポリシリコン電極(以降、単にポリシリコン電極と記すこともある)などをゲート電極とする構造である。トレンチゲート構造は、ウエハ表面から深さ方向に垂直な方向に掘られたトレンチ内部にゲート酸化膜を介して埋設されるポリシリコン電極などをゲート電極とする構造である。
 トレンチゲート構造を有するIGBT(以降トレンチゲート型IGBT)は、オン時に、トレンチ側壁面に沿ったp型ベース領域に電流の通路となるチャネルが形成される構造を有する。このため、トレンチゲート型IGBTは、トレンチ間隔を狭くすることなどにより、比較的容易にチャネル密度を高くすることができる。チャネルの高密度化は、オン電圧のいっそうの低減を可能にするため、近年トレンチゲート構造を適用したIGBTが増えつつある。
 このトレンチゲート型IGBTのオン電圧をさらに低減するためにさまざまな改善方法が提案されている。例えば、下記特許文献1に記載されている注入促進型絶縁ゲートトランジスタ(IEGT:Injection Enhanced Gate Bipolar Transistor)がある。このIEGTはダイオードのオン電圧に近い限界の特性を有するとされている。
 このIEGTデバイスの構造の特徴は、n+型エミッタ領域およびp型ベース領域の一部表面を絶縁膜で被覆することにより、エミッタ電極が電気的にコンタクト(接触)しない領域(以降p型フローティング領域)を有することである。このIEGTでは、オン時に、コレクタから注入された正孔は、エミッタ電極に対して電気的に絶縁されたp型フローティング領域の下側(ドリフト層側)において、エミッタ電極に排出され難いために蓄積し易い。その結果、IEGTのn型のドリフト層のキャリア濃度分布はダイオードのキャリア濃度分布近くまでになり、通常のトレンチゲート型IGBTのオン電圧よりも低くできる。
 一方、パワーデバイスには低オン電圧以外に高速スイッチング特性も要求されており、この特性の改善も重要な課題となっている。ところが、トレンチゲート型IGBTおよびIEGTでは、低オン電圧にするためにトレンチ構造を高密度化すればするほど、ゲート容量が大きくなり、スイッチング特性は低下することが問題となる。すなわち、トレンチゲート型IGBTでは、オンオフ動作時にはそれぞれゲート-エミッタ間およびゲート-コレクタ間容量に充放電する必要があるので、ゲート容量が大きくなると充放電時間が増加してスイッチング特性が低下するのである。また、スイッチング特性の低下はスイッチング損失の増加を意味する。また、パワーデバイスのトータルの発生損失は、オン電圧で決まる定常損失とオンオフ動作時に発生するスイッチング損失との和であるので、トータルの発生損失の低減には、オン電圧と共にスイッチング損失の低減、すなわちゲート容量も低減することが重要である。
 しかしながら、IEGTでは、ゲート容量はほとんどゲート-コレクタ間容量(ミラー容量)となるため、ターンオン損失の増大を招くという問題がある。このミラー容量に関しては、通常のトレンチゲート型構造のIGBTがターンオンする際には、ゲート電圧を上げていくと、まず、ゲート-エミッタ間容量が充電され、次にゲート-コレクタ間容量(ミラー容量)が充電される。しかし、IEGTでは、p型フローティング領域部分を有するのでゲート容量はほとんどゲート-コレクタ間容量(ミラー容量)となる。
 このようなIGBTのスイッチング損失の低減に関する公知文献には以下のものがある。図3は、図4のB1-B2線における断面構造を示す要部断面図である。図4は、従来のp型フローティング領域を有するトレンチゲート型IGBTのポリシリコンゲート電極を示す要部平面図である。図3(例えば、下記特許文献2の図1に相当)には、ストライプ状の平面パターンで配置されたトレンチを有する従来のnチャネルトレンチゲート型IGBT100の要部断面構造を示す。
 図3に示すIGBT100では、隣り合うトレンチ110間に挟まれるp型ベース領域103およびこのp型ベース領域103内に選択的に形成されるn+型エミッタ領域104を有する活性領域112と、p型ベース領域103内にn+型エミッタ領域104を有しないp型フローティング領域111とを備えるIEGT構造を特徴としている。トレンチ110は、このn+型エミッタ領域104の表面からp型ベース領域103を貫通してn-型のドリフト層102に達する深さを有する。トレンチ110内部にはゲート酸化膜105を介してポリシリコン電極からなるゲート電極106(斜線ハッチング)が充填されている。ゲート電極106の上部を層間絶縁膜107が覆うことにより、さらにその上を覆うエミッタ電極108に対して絶縁を保持する。n-型のドリフト層102はp+型基板101のおもて面上にエピタキシャル成長により形成され、p+型基板101の裏面にはコレクタ電極109が形成される。
 このため、p型フローティング領域111の下側近傍では、オン時に正孔がエミッタ電極108に吐き出され難くなって蓄積するようになる。その結果、前述のように、n-型のドリフト層102中のキャリア濃度分布がダイオードのキャリア濃度分布に近くなり、オン電圧を低減させる効果を奏する(例えば、下記特許文献2参照。)。
 この下記特許文献2の構造と下記特許文献1の構造に共通することとして、下記非特許文献1には、ターンオン特性に改善の余地があることが報告されている。
 また、下記特許文献3には、下記特許文献1と下記特許文献2に記載のIGBT(IEGT)のターンオン特性をさらに改良する構造が示されている。図5は、従来のトレンチゲート型IGBTの要部断面図である。図5は、下記特許文献3の図1に相当する。すなわち、図5のトレンチ215内部に充填されたポリシリコン電極が一つではなく、トレンチ215側壁に沿ってトレンチ中央部分で二つのポリシリコン電極222a、222bに分割された構造となっている。この分割されたポリシリコン電極222a、222bのうち、n+型エミッタ領域219とp型ベース領域217を有する側(活性領域210側)の分割ポリシリコン電極222aのみを有効なゲート電極とし、p型フローティング領域220側の分割ポリシリコン電極222bはゲート電極ではなくエミッタ電極224に接続する構造となっている。
 さらに、下記特許文献3には、このようなポリシリコン電極を分割する方法についても開示されている。すなわち、まず、トレンチ215内を完全に充填しない程度の厚さのポリシリコン電極を形成する。基板表面のポリシリコン電極を残した状態で酸化膜をマスクに用いてトレンチ底部のポリシリコン電極をエッチングし両側壁に分離された分割ポリシリコン電極222a、222bとする。さらにトレンチ215内の分割ポリシリコン電極222a、222b間をシリコン酸化膜223等で充填して両側壁の分割ポリシリコン電極222a、222bを相互に絶縁構造にした後に、基板表面のポリシリコン電極との引き出し部を形成する方法である。符号212はコレクタ電極、213はコレクタ層、214はドリフト層、216はゲート酸化膜、225は層間絶縁膜である。
 またさらに、信頼性の高いトレンチゲート構造の半導体装置とするために、トレンチに埋設されたゲート電極が底部のゲート絶縁膜、上部の層間絶縁膜、両側壁を電極膜で囲まれた空洞を有する構造に関する記述がある(例えば、下記特許文献4参照。)。
特開平5-243561号公報(図101) 特開2001-308327号公報(図1) 米国特許第6815769号明細書(図1) 特開2005-243932号公報(図1、段落0012)
M.Yamaguchi他,"IEGT Design Criterion for Reducing EMI Noise",in Proc.ISPSD’2004 pp.115-118,2004(要約)
 前述した特許文献3の記載にあるように、トレンチ215内に分割ポリシリコン電極222a、222bを形成する方法では、分割ポリシリコン電極222a、222bの間に、絶縁のためのシリコン酸化膜223を充填する方法が示されている。しかしながら、分割ポリシリコン電極222a、222bとその間に挟まれたシリコン酸化膜223との熱膨張係数の違いから、製造プロセス中に受ける熱履歴により、充填されたシリコン酸化膜223および分割ポリシリコン電極222a、222bには繰り返し圧縮、引っ張り応力が加わる。その結果、ゲート特性の劣化、あるいはシリコン酸化膜223または分割ポリシリコン電極222a、222bやシリコン基板にまでクラックが発生しリーク電流が増大するおそれがある。さらに、分割ポリシリコン電極222a、222bに挟まれるシリコン酸化膜223(絶縁膜)によりターンオン時にゲート容量が増大し、スイッチング特性が低下するという問題も生じる。
 このような応力の発生によるクラックや特性低下の問題に関して、上記特許文献4に記載のトレンチゲート型のMOSFETでは、分割ゲート電極の間に空洞を設ける構造とすることにより、前述のような熱履歴による応力発生を抑制し、ゲート容量も小さく抑えることの記述がある。上記特許文献4に記載のように、ポリシリコン電極が単に二分割されるだけの構造では分割されたポリシリコン電極間の絶縁は全く問題にならない。しかしながら、分割したポリシリコン電極の一方をゲート電極、他方をエミッタ電極に分離して接続する構造の場合、単に空洞を設けるだけでは両ポリシリコン電極間の絶縁が不十分となることがある。
 本発明は、このような課題を解決するために成されたものである。本発明の目的は、トレンチ内部に、それぞれ異なる電極に接続される分割ポリシリコン電極間の絶縁の確保と応力を低減するとともに、絶縁膜によるゲート容量の増加を抑制することができるトレンチゲートMOS型半導体装置およびその製造方法を提供することである。
 本発明は前記目的を達成するために、ドリフト層となるn型半導体基板の一方の主面の表層に配置される複数のp型フローティング領域と、前記n型半導体基板の表面から前記p型フローティング領域の底面近傍に到達する深さのトレンチをそれぞれ備え、前記p型フローティング領域の表面には層間絶縁膜を介して覆うエミッタ電極を有し、平行パターンに配置された複数の前記トレンチ間に挟まれる前記n型半導体基板の表層に前記トレンチの深さより浅いp型ベース領域を有し、該p型ベース領域の表層には前記トレンチに沿って接するn型エミッタ領域を有するとともに、前記エミッタ電極が前記p型ベース領域の表面と前記n型エミッタ領域の表面とに共通に接触し、前記トレンチ内部には、絶縁膜で囲まれる空洞を挟んで前記トレンチの両側壁に沿った領域に二分割される導電性ポリシリコン第1電極と導電性ポリシリコン第2電極を有しそれぞれ異なる電極に接続されているトレンチゲートMOS型半導体装置とする。前記層間絶縁膜がBPSG(Boro Phospho Silicate Glass)膜またはPSG(Phospho Silicate Glass)膜であり、前記絶縁膜がHTO(High Temperature Oxide)またはTEOS(Tetra Ethyl OrthoSilicate)であることが好ましい。前記導電性ポリシリコン第1電極がゲート電極に接続され、前記導電性ポリシリコン第2電極がエミッタ電極に接続されることが好適である。前記ドリフト層の他方の主面には、表層に配置されるp型コレクタ層を介してコレクタ電極を備える。前記トレンチゲートMOS型半導体装置がIGBTであることが望ましい。
 また、本発明の前記目的は、トレンチ内に前記トレンチの一方の側壁に沿った導電性ポリシリコン第1電極と他方の側壁に沿った導電性ポリシリコン第2電極とを形成した後、前記導電性ポリシリコン第1電極と前記導電性ポリシリコン第2電極との間に、シランガスを含む反応ガスを用いて高温または低温CVD法により絶縁膜で囲まれる空洞を内部に含んだシリコン酸化膜を形成する工程を有するトレンチゲートMOS型半導体装置の製造方法とすることによっても達成される。
 本発明によれば、トレンチ内部で、それぞれ異なる電極に接続される分割ポリシリコン電極の間の絶縁を確保しつつ応力を低減するとともに、絶縁膜によるゲート容量の増加を抑制するトレンチゲートMOS型半導体装置およびその製造方法を提供することができる。
図1は、図2のA1-A2線における断面構造を拡大して示す要部断面図である。 図2は、本発明の実施例1にかかるトレンチゲート型IGBTの平面レイアウトを示す要部平面図である。 図3は、図4のB1-B2線における断面構造を示す要部断面図である。 図4は、従来のp型フローティング領域を有するトレンチゲート型IGBTのポリシリコンゲート電極を示す要部平面図である。 図5は、従来のトレンチゲート型IGBTの要部断面図である。 図6は、本発明の実施例1にかかるトレンチゲート型IGBTの製造方法を説明するための要部断面図である(その1)。 図7は、本発明の実施例1にかかるトレンチゲート型IGBTの製造方法を説明するための要部断面図である(その2)。 図8は、本発明の実施例1にかかるトレンチゲート型IGBTの製造方法を説明するための要部断面図である(その3)。 図9は、本発明の実施例1にかかるトレンチゲート型IGBTの製造方法を説明するための要部断面図である(その4)。 図10は、本発明の実施例1にかかるトレンチゲート型IGBTの製造方法を説明するための要部断面図である(その5)。 図11は、本発明の実施例1にかかるトレンチゲート型IGBTの製造方法を説明するための要部断面図である(その6)。
 以下、本発明のトレンチゲートMOS型半導体装置およびその製造方法にかかる実施例について、図面を参照して詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれ相対的に不純物濃度が高いまたは低いことを意味する。なお、以下の実施例の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、実施例で説明される添付図面は、見易くまたは理解し易くするために正確なスケール、寸法比で描かれていない。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。また、本明細書では、ミラー指数の表記において、“-”はその直後の指数につくバーを意味しており、指数の前に“-”を付けることで負の指数を表している。
 本発明にかかるトレンチゲート型IGBT構造について、図1、図2を参照して説明する。
 図2は、本発明の実施例1にかかるトレンチゲート型IGBTの平面レイアウトを示す要部平面図である。図2には、本発明の実施例1にかかるトレンチゲート型IGBTの分割されたポリシリコン電極21およびコンタクト部を示す。また図2には、斜線で示すストライプ状平面パターンの平行部分のトレンチ15間に挟まれる活性領域10と、環状のトレンチ15に取り囲まれるp型フローティング領域16と、これらの外周に設けられるゲートランナー層30と、を含む部分を上部から俯瞰した平面図を示す。図1は、図2のA1-A2線における断面構造を拡大して示す要部断面図である。本発明の実施例1にかかるトレンチゲート型IGBTは、分割されたポリシリコン電極21、22をトレンチ15の内部に有するトレンチゲート構造と、エミッタ電極24に電気的にコンタクトしないp型フローティング領域16と、を備える。
 具体的には、図1に示すように、活性領域10内のシリコン基板にはp型ベース領域17(およびp+型コンタクト領域18)と、トレンチ15に沿った表面層にn+型エミッタ領域19と、が設けられ、この両表面にエミッタ電極24が層間絶縁膜25に形成されたエミッタコンタクト開口部27を通して共通に接触する。
 環状のトレンチ15内には、斜線ハッチングで示されゲート電極に接続される活性領域10側のポリシリコンゲート電極21と、エミッタ電極24に接続されるp型フローティング領域16側のポリシリコンエミッタ電極22とが、分離分割されてなり、それぞれゲート絶縁膜20を介してトレンチ15の側壁に沿って設けられている。このトレンチ15内で分離分割されたポリシリコンゲート電極21とポリシリコンエミッタ電極22との間にはHTO酸化膜23が形成される。このHTO酸化膜23はトレンチ15上部の開口部の近傍で内部に空洞26を残して閉じられる。このようにトレンチ15内のHTO酸化膜23内に空洞26が封じ込められていることが本発明にかかるトレンチゲート型IGBTの特徴である。HTO酸化膜23は低温CVD(Chemical Vapor Deposition:化学気相成長)酸化膜でもよい。空洞26の長さはトレンチ15内に形成された2つのポリシリコン電極21、22の基板に垂直方向の長さよりも短く、幅はポリシリコンゲート電極21とポリシリコンエミッタ電極22のそれぞれのゲート絶縁膜20との境界間の距離の1/4以上が望ましい。その理由は、トレンチ15内部にある2つのポリシリコン電極21、22の絶縁耐圧を確保しつつクラックの抑制効果を得るためである。
 本発明はこのように、トレンチ15内のポリシリコンゲート電極21、ポリシリコンエミッタ電極22の間に、HTO酸化膜23を介して空洞26を設けることにより、ゲート容量を低減し、スイッチング特性の低下を抑え、スイッチング損失を小さくすることができる。さらに、トレンチ15内に、それぞれ異なる電極に接続され同電位にされる分離分割されたポリシリコンゲート電極21、ポリシリコンエミッタ電極22を有していても、両者の間にはHTO酸化膜23が設けられているので、確実に絶縁を保持することができる。さらに、HTO酸化膜23中の空洞26が応力を吸収するので、酸化膜とポリシリコンまたはシリコン基板間の熱膨張係数差に起因して発生する応力を低減または緩和する効果を有する。
 またさらに、本発明にかかるトレンチゲート型IGBTによれば、p型ベース領域17よりも低濃度で、トレンチ15よりも深いp型フローティング領域16を有しているので、低オン電圧であるとともに、トレンチ15の底部における電界の集中を抑制することができるので、耐圧低下のない電気特性を得ることができる。
 さらに、トレンチ15内の活性領域10側のポリシリコンゲート電極21は、図2に示すようにゲートランナー層30に、p型フローティング領域16側のポリシリコンエミッタ電極22はp型フローティング領域16内の表層のエミッタ電極コンタクト領域31にそれぞれ接続されてもよい。そのように、それぞれゲートランナー層30とエミッタ電極コンタクト領域31に容易に接続するために、トレンチ15の平面パターンからゲートランナー層30とp型フローティング領域16へ向かってそれぞれ、例えば直角方向に延びる引き出しトレンチ32、33を備えることが好ましい。
 さらに、エミッタ電極24の上部に、パッシベーション膜として、ポリイミド膜や窒化膜、アモルファスシリコン層などが形成されることがあるが、この図では省略されている。
 以上の実施例1によれば、ゲートミラー容量が大幅に低く、ターンオン特性が改善され、オン電圧の低減だけでなく、スイッチング損失の低減も得られるトレンチゲートMOS型半導体装置を、プロセスステップ数をわずかに増加させるだけで、提供することが可能となる。
 本発明のトレンチゲートMOS型半導体装置の製造方法について、図6~図11を参照して詳細に説明する。図6~図11は、本発明の実施例1にかかるトレンチゲート型IGBTの製造方法を説明するための要部断面図である。図6~図11には、本発明のトレンチゲート型IGBTの特徴部分であるトレンチ内部に形成される導電性ポリシリコン電極を分離分割した構造のプロセスフローを説明するための基板表層部分の断面図を示す。
 本発明にかかるトレンチゲート型IGBTの製造方法では、まず、耐圧600V~1200Vクラスの場合、ドリフト層となる抵抗率30~60Ωcm程度のFZ-n型半導体基板(シリコン基板)14を用意する。次に、FZ-n型半導体基板14の(100)面に形成した絶縁膜をマスクとして、選択的なp型フローティング領域16の形成のために、ドーズ量5×1014cm-2~3×1015cm-2のボロン(B)をイオン注入する。その後、例えば、ボロンのイオン注入層を1150℃程度の高温拡散ドライブにより拡散させることで、深さ6μm~7μm程度のp型領域が得られる。再度基板14全面を絶縁膜で覆った後、イオン注入により形成した前記p型フローティング領域16の外周辺のエッジを跨ぐように、基板表面からストライプ状平面パターンで幅1μm~3μm、深さ5μm程度の垂直トレンチ15を異方性RIEエッチングなどにより形成する。
 次に、シリコン基板14の表面から垂直に形成されるトレンチ15内面に熱酸化法によりゲート絶縁膜20を形成(図6)した後、トレンチ15内にポリシリコン層をトレンチ15が埋まらない程度の厚さに成長させる。例えば2μmのトレンチ幅に対して、厚さ0.5μm程度のポリシリコン層を成長させるのが望ましい。ポリシリコン層を導電性にするために、ポリシリコン層にはボロンなどの不純物をドーピングする(図7)。この導電性ポリシリコン層を異方性エッチングによってエッチバックすることによって、図8に示すように、トレンチ15上部の基板14表面と底部の導電性ポリシリコン層が除去されて、トレンチ15内の側壁部分に沿ってゲート絶縁膜20を介して張り付いた形状のポリシリコンゲート電極21、ポリシリコンエミッタ電極22を形成することができる。
 その後、例えばHTOやTEOSのような酸化膜23をCVD法によりトレンチ15内面に形成する(図9)。エッチバックにより基板表面の酸化膜23とゲート絶縁膜20を除去すると、分割されたポリシリコンゲート電極21、ポリシリコンエミッタ電極22間に空洞26を有する酸化膜23が充填された状態となる(図10)。この酸化膜23を形成する工程については、後述して詳しく説明する。
 次に隣接トレンチ15間のシリコン基板部分に、一般的なイオン注入法によりp型ベース領域17、n+型エミッタ領域19を形成する。具体的には、例えば、p型ベース領域17の形成条件は、ドーズ量が1×1013cm-2~1×1014cm-2のボロンのイオン注入と1150℃のドライブ熱拡散により例えば2~4μmの深さとする。p型ベース領域17の深さは、例えばトレンチ15の深さより浅くする。その後、p型ベース領域17の表面に形成したフォトレジストをマスクとして、トレンチ15側壁に接するn+型エミッタ領域19をイオン注入により選択的に形成する。n+型エミッタ領域19は砒素(As)のイオン注入で形成することが好ましい。
 その後、p型フローティング領域16表面を層間絶縁膜25で覆うことによりエミッタ電極24から絶縁した後、活性領域10となるp型ベース領域17とn+型エミッタ領域19の表面に開口部を設け、エミッタ電極24をスパッタ蒸着により形成する。層間絶縁膜25は、例えば、BPSG膜またはPSG膜であってもよい。さらにその上に、図示しないポリイミド膜などのパッシベーション膜を形成する。半導体基板14の表面側プロセスを終えた後、半導体基板14の裏面側をCMP(化学的機械的研磨装置)などで所要の厚さに研磨する。次に、所要の表面処理を経た後、ボロンのイオン注入によりp+型コレクタ層13を形成し、コレクタ電極12をオーミック接触させる(図11)。その後、ダイシングプロセスにより半導体基板を個々のIGBTチップに分割することで、トレンチゲート型IGBTが完成する。
 ここで、酸化膜23を形成する工程について詳しく説明する。トレンチ15内に形成される導電性ポリシリコン電極をトレンチ15底部で異方性エッチングにより分離分割してポリシリコンゲート電極21、ポリシリコンエミッタ電極22を形成する。その後、分割されたポリシリコン電極21、22の間に、HTO酸化膜23を形成する際には、それぞれのポリシリコン電極21、22の内面に沿って空洞26が残るように、トレンチ15の開口部でHTO酸化膜23が閉じられる。このように2つのポリシリコン電極の間に空洞26を封じ込めるHTO酸化膜23の形成条件は、例えば、温度700℃~800℃の高温CVD法であり、供給ガスとして、シラン(SiH4)、亜酸化窒素(N2O)を用いる。チャンバー内のガス圧力は30~200Pa減圧CVDが好ましい。このようなHTO酸化膜23の形成条件とすることにより、ポリシリコンゲート電極21、ポリシリコンエミッタ電極22間のHTO酸化膜23内に空洞26が閉じ込められる。HTO酸化膜23内に空洞26が閉じ込められる理由は、表面で、ガスの反応性が大きくなって、トレンチ15内のポリシリコンゲート電極21、ポリシリコンエミッタ電極22間にガス分子が充分に回り込みにくくなり、トレンチ15開口近傍でHTO酸化膜23が厚くなり閉じられ易くなるためである。
 前述の説明では、HTO酸化膜23について説明したが、HTO酸化膜23に代えて、LTO(Low Temperature Oxide)酸化膜を用いることもできる。その場合の形成条件は、例えば温度400℃、供給ガスはシランと酸素(O2)を用いる。チャンバー内圧力は30~200Paまたは常圧でもよい。このLTO酸化膜の形成条件の場合も、前述と同様に、表面で、ガスの反応性が大きくなって、トレンチ15内のポリシリコンゲート電極21、ポリシリコンエミッタ電極22間にガス分子が充分に回り込みにくくなり、空洞26ができ易くなる。
 その後のプロセスで高温熱処理環境に晒されても、活性領域10側にあるポリシリコンゲート電極21とp型フローティング領域16側にあるポリシリコンエミッタ電極22に発生する応力の歪みは空洞26に吸収されるので、それらのポリシリコン電極21、22またはシリコン基板14に亀裂が入ることが抑制される。従って、リーク電流の増加が抑えられて信頼性の高いものとなる。また、トレンチ15内のポリシリコン電極21、22の間に空洞26が入ることで、絶縁膜が隙間無く充填される構造の従来のデバイスと比べてゲート容量が低下するため、より高速に動作することができる。すなわち、リーク電流が小さく、ゲートミラー容量が大幅に低く、ターンオン特性が改善されたトレンチゲート型IGBTを、プロセスステップ数を極端に増加させること無く提供することが可能となる。
 以上において本発明では、本発明の趣旨を逸脱しない範囲で種々変更可能であり、例えば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。上述した実施例では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
 以上のように、本発明にかかるトレンチゲートMOS型半導体装置およびその製造方法は、電力変換装置や種々の産業用機械などの電源装置などに使用されるパワー半導体装置に有用である。
 12     コレクタ電極
 13     p+型コレクタ層
 14     半導体基板(ドリフト層)
 15     トレンチ
 16     p型フローティング領域
 17     p型ベース領域
 19     n+型エミッタ領域
 20     ゲート絶縁膜
 21     ポリシリコンゲート電極
 22     ポリシリコンエミッタ電極
 24     エミッタ電極
 25     層間絶縁膜
 30     ゲートランナー層
 32     引き出しトレンチ
 33     引き出しトレンチ

Claims (6)

  1.  ドリフト層となる第1導電型半導体基板の一方の主面の表層に配置される第2導電型フローティング領域と、
     前記第1導電型半導体基板の表面から所定の深さに到達する複数のトレンチと、
     平行パターンに配置された複数の前記トレンチ間に挟まれる前記第1導電型半導体基板の表層に形成され、前記トレンチによって前記第2導電型フローティング領域と分離された第2導電型ベース領域と、
     前記第2導電型ベース領域の表層に形成され、前記トレンチに沿って接する第1導電型エミッタ領域と、
     前記第2導電型ベース領域および前記第1導電型エミッタ領域に接し、かつ層間絶縁膜を介して前記第2導電型フローティング領域を覆うエミッタ電極と、
     を備え、
     前記トレンチの内部には、絶縁膜で囲まれる空洞を挟んで、かつ前記トレンチの両側壁に沿って互いに離して形成された導電性ポリシリコン第1電極および導電性ポリシリコン第2電極を有し、
     前記導電性ポリシリコン第1電極および前記導電性ポリシリコン第2電極は、それぞれ異なる電極に接続されていることを特徴とするトレンチゲートMOS型半導体装置。
  2.  前記層間絶縁膜がBPSGまたはPSGであり、前記絶縁膜がHTOまたはTEOS酸化膜であることを特徴とする請求項1記載のトレンチゲートMOS型半導体装置。
  3.  前記導電性ポリシリコン第1電極がゲート電極に接続され、前記導電性ポリシリコン第2電極が前記エミッタ電極に接続されることを特徴とする請求項1記載のトレンチゲートMOS型半導体装置。
  4.  前記第1導電型半導体基板の他方の主面には、表層に配置されるp型コレクタ層を介してコレクタ電極を備えることを特徴とする請求項1記載のトレンチゲートMOS型半導体装置。
  5.  IGBTであることを特徴とする請求項1記載のトレンチゲートMOS型半導体装置。
  6.  ドリフト層となる第1導電型半導体基板の一方の主面の表層に配置される第2導電型フローティング領域と、前記第1導電型半導体基板の表面から所定の深さに到達する複数のトレンチと、平行パターンに配置された複数の前記トレンチ間に挟まれる前記第1導電型半導体基板の表層に形成され、前記トレンチによって前記第2導電型フローティング領域と分離された第2導電型ベース領域と、前記第2導電型ベース領域の表層に形成され、前記トレンチに沿って接する第1導電型エミッタ領域と、前記第2導電型ベース領域および前記第1導電型エミッタ領域に接し、かつ層間絶縁膜を介して前記第2導電型フローティング領域を覆うエミッタ電極と、を備えたトレンチゲートMOS型半導体装置の製造方法であって、
     前記第1導電型半導体基板の表面から所定の深さの前記トレンチを形成する工程と、
     前記トレンチ内に、前記トレンチの一方の側壁に沿った導電性ポリシリコン第1電極と、他方の側壁に沿った導電性ポリシリコン第2電極とを形成する工程と、
     前記導電性ポリシリコン第1電極と前記導電性ポリシリコン第2電極との間に、シランガスを含む反応ガスを用いて高温または低温CVD法により内部に空洞を含むように絶縁膜を形成する工程と、
     を含むことを特徴とするトレンチゲートMOS型半導体装置の製造方法。
PCT/JP2014/069630 2013-08-06 2014-07-24 トレンチゲートmos型半導体装置およびその製造方法 WO2015019862A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480013055.4A CN105027295B (zh) 2013-08-06 2014-07-24 沟槽栅mos型半导体装置及其制造方法
JP2015530817A JP5935948B2 (ja) 2013-08-06 2014-07-24 トレンチゲートmos型半導体装置およびその製造方法
EP14833749.6A EP2955758B1 (en) 2013-08-06 2014-07-24 Trench gate mos semiconductor device and method for manufacturing same
US14/848,201 US9461154B2 (en) 2013-08-06 2015-09-08 Trench gate MOS semiconductor device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-162948 2013-08-06
JP2013162948 2013-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/848,201 Continuation US9461154B2 (en) 2013-08-06 2015-09-08 Trench gate MOS semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2015019862A1 true WO2015019862A1 (ja) 2015-02-12

Family

ID=52461201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069630 WO2015019862A1 (ja) 2013-08-06 2014-07-24 トレンチゲートmos型半導体装置およびその製造方法

Country Status (5)

Country Link
US (1) US9461154B2 (ja)
EP (1) EP2955758B1 (ja)
JP (1) JP5935948B2 (ja)
CN (1) CN105027295B (ja)
WO (1) WO2015019862A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088241A1 (ja) * 2017-11-03 2019-05-09 株式会社デンソー 半導体装置
CN110504314A (zh) * 2019-08-30 2019-11-26 电子科技大学 一种沟槽型绝缘栅双极晶体管及其制备方法
JP2022107025A (ja) * 2019-02-25 2022-07-20 株式会社東芝 半導体装置
JP2022143238A (ja) * 2021-03-17 2022-10-03 株式会社東芝 半導体装置
WO2022249753A1 (ja) * 2021-05-24 2022-12-01 富士電機株式会社 半導体装置
US11876132B2 (en) 2021-03-19 2024-01-16 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420175B2 (ja) 2014-05-22 2018-11-07 ルネサスエレクトロニクス株式会社 半導体装置
US10020362B2 (en) * 2015-09-04 2018-07-10 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
CN107425056A (zh) * 2016-05-24 2017-12-01 常州中明半导体技术有限公司 一种绝缘栅双极型晶体管器件
CN108346692B (zh) * 2017-01-25 2023-11-21 杭州士兰集成电路有限公司 功率半导体器件及其制造方法
KR20180104236A (ko) * 2017-03-10 2018-09-20 매그나칩 반도체 유한회사 전력 반도체 소자의 제조 방법
JP6958093B2 (ja) * 2017-08-09 2021-11-02 富士電機株式会社 半導体装置
US10424646B2 (en) 2017-09-26 2019-09-24 Nxp Usa, Inc. Field-effect transistor and method therefor
US10600911B2 (en) 2017-09-26 2020-03-24 Nxp Usa, Inc. Field-effect transistor and method therefor
US10522677B2 (en) 2017-09-26 2019-12-31 Nxp Usa, Inc. Field-effect transistor and method therefor
US10600879B2 (en) 2018-03-12 2020-03-24 Nxp Usa, Inc. Transistor trench structure with field plate structures
EP3621116B1 (en) * 2018-09-06 2022-11-02 Infineon Technologies Austria AG Semiconductor device and manufacturing method thereof
US10833174B2 (en) 2018-10-26 2020-11-10 Nxp Usa, Inc. Transistor devices with extended drain regions located in trench sidewalls
US10749023B2 (en) 2018-10-30 2020-08-18 Nxp Usa, Inc. Vertical transistor with extended drain region
US10749028B2 (en) 2018-11-30 2020-08-18 Nxp Usa, Inc. Transistor with gate/field plate structure
US11387348B2 (en) 2019-11-22 2022-07-12 Nxp Usa, Inc. Transistor formed with spacer
US11329156B2 (en) 2019-12-16 2022-05-10 Nxp Usa, Inc. Transistor with extended drain region
JP7249269B2 (ja) 2019-12-27 2023-03-30 株式会社東芝 半導体装置およびその製造方法
US10937899B1 (en) * 2020-02-07 2021-03-02 Renesas Electronics Corporation Semiconductor device
CN113497121B (zh) * 2020-03-18 2024-04-16 芯恩(青岛)集成电路有限公司 分离栅沟槽结构功率器件的形成方法
US11075110B1 (en) 2020-03-31 2021-07-27 Nxp Usa, Inc. Transistor trench with field plate structure
US11217675B2 (en) 2020-03-31 2022-01-04 Nxp Usa, Inc. Trench with different transverse cross-sectional widths
DE102020119738B4 (de) 2020-07-27 2022-02-03 Infineon Technologies Dresden GmbH & Co. KG Verfahren zur Herstellung eines Halbleiterbauelements und Halbleiterbauelement mit tiefen Gräben
CN112802841B (zh) * 2021-04-08 2021-07-09 成都蓉矽半导体有限公司 一种具有密勒钳位功能的功率mosfet
CN116153989A (zh) * 2021-11-23 2023-05-23 无锡华润华晶微电子有限公司 Iegt结构及其制作方法
CN114093934B (zh) * 2022-01-20 2022-05-20 深圳市威兆半导体有限公司 一种igbt器件及其制造方法
CN115775823B (zh) * 2022-11-29 2023-07-21 上海功成半导体科技有限公司 屏蔽栅功率器件及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243561A (ja) 1991-08-08 1993-09-21 Toshiba Corp 電力用半導体素子
JP2001308327A (ja) 2000-04-26 2001-11-02 Fuji Electric Co Ltd 絶縁ゲート型半導体装置
US20030160270A1 (en) * 2002-01-28 2003-08-28 Frank Pfirsch Power semiconductor component, IGBT, IEGT, field-effect transistor, and method for fabricating the semiconductor component
JP2005243932A (ja) 2004-02-26 2005-09-08 Toshiba Corp 半導体装置およびその製造方法
US20090294843A1 (en) * 2008-05-30 2009-12-03 Freescale Semiconductor, Inc. Enclosed void cavity for low dielectric constant insulator
JP2010171074A (ja) * 2009-01-20 2010-08-05 Renesas Technology Corp 半導体装置
JP5059989B1 (ja) * 2011-06-28 2012-10-31 パナソニック株式会社 半導体装置とその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035841A (ja) * 2005-07-26 2007-02-08 Toshiba Corp 半導体装置
JP2007180310A (ja) * 2005-12-28 2007-07-12 Toshiba Corp 半導体装置
US7919388B2 (en) * 2008-05-30 2011-04-05 Freescale Semiconductor, Inc. Methods for fabricating semiconductor devices having reduced gate-drain capacitance
US8319278B1 (en) * 2009-03-31 2012-11-27 Maxpower Semiconductor, Inc. Power device structures and methods using empty space zones
WO2011111500A1 (ja) * 2010-03-09 2011-09-15 富士電機システムズ株式会社 半導体装置
US8563987B2 (en) 2011-06-28 2013-10-22 Panasonic Corporation Semiconductor device and method for fabricating the device
US8907408B2 (en) * 2012-03-26 2014-12-09 Infineon Technologies Austria Ag Stress-reduced field-effect semiconductor device and method for forming therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243561A (ja) 1991-08-08 1993-09-21 Toshiba Corp 電力用半導体素子
JP2001308327A (ja) 2000-04-26 2001-11-02 Fuji Electric Co Ltd 絶縁ゲート型半導体装置
US20030160270A1 (en) * 2002-01-28 2003-08-28 Frank Pfirsch Power semiconductor component, IGBT, IEGT, field-effect transistor, and method for fabricating the semiconductor component
US6815769B2 (en) 2002-01-28 2004-11-09 Infineon Technologies Ag Power semiconductor component, IGBT and field-effect transistor
JP2005243932A (ja) 2004-02-26 2005-09-08 Toshiba Corp 半導体装置およびその製造方法
US20090294843A1 (en) * 2008-05-30 2009-12-03 Freescale Semiconductor, Inc. Enclosed void cavity for low dielectric constant insulator
JP2010171074A (ja) * 2009-01-20 2010-08-05 Renesas Technology Corp 半導体装置
JP5059989B1 (ja) * 2011-06-28 2012-10-31 パナソニック株式会社 半導体装置とその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. YAMAGUCHI ET AL.: "IEGT Design Criterion for Reducing EMI Noise", PROC. ISPSD, 2004, pages 115 - 118, XP010723347
See also references of EP2955758A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088241A1 (ja) * 2017-11-03 2019-05-09 株式会社デンソー 半導体装置
JP2022107025A (ja) * 2019-02-25 2022-07-20 株式会社東芝 半導体装置
JP7383760B2 (ja) 2019-02-25 2023-11-20 株式会社東芝 半導体装置
CN110504314A (zh) * 2019-08-30 2019-11-26 电子科技大学 一种沟槽型绝缘栅双极晶体管及其制备方法
CN110504314B (zh) * 2019-08-30 2023-03-03 电子科技大学 一种沟槽型绝缘栅双极晶体管及其制备方法
JP2022143238A (ja) * 2021-03-17 2022-10-03 株式会社東芝 半導体装置
JP7474214B2 (ja) 2021-03-17 2024-04-24 株式会社東芝 半導体装置
US11876132B2 (en) 2021-03-19 2024-01-16 Kabushiki Kaisha Toshiba Semiconductor device
JP7471250B2 (ja) 2021-03-19 2024-04-19 株式会社東芝 半導体装置
WO2022249753A1 (ja) * 2021-05-24 2022-12-01 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
CN105027295A (zh) 2015-11-04
JP5935948B2 (ja) 2016-06-15
JPWO2015019862A1 (ja) 2017-03-02
EP2955758B1 (en) 2018-03-07
CN105027295B (zh) 2018-02-06
EP2955758A1 (en) 2015-12-16
US20150380538A1 (en) 2015-12-31
EP2955758A4 (en) 2016-10-19
US9461154B2 (en) 2016-10-04

Similar Documents

Publication Publication Date Title
JP5935948B2 (ja) トレンチゲートmos型半導体装置およびその製造方法
US20230197712A1 (en) Semiconductor device
JP5867617B2 (ja) 半導体装置
KR100661109B1 (ko) 종형 반도체장치 및 그 제조방법
TWI518803B (zh) 用於負載開關和直流-直流器件的高密度mosfet的器件結構及其制備方法
JP5089284B2 (ja) 省スペース型のエッジ構造を有する半導体素子
US10186609B2 (en) Semiconductor device, RC-IGBT, and method of manufacturing semiconductor device
US9941395B2 (en) Insulated gate semiconductor device and method for manufacturing the same
US9954074B2 (en) Insulated gate bipolar transistor and manufacturing method therefor
US20150021685A1 (en) Semiconductor device and manufacturing method of the same
JP6102092B2 (ja) 半導体装置及びその製造方法
JP6561611B2 (ja) 半導体装置
KR20080020461A (ko) 전력용 반도체장치
US9000516B2 (en) Super-junction device and method of forming the same
JP2013058575A (ja) 半導体装置及びその製造方法
US11075285B2 (en) Insulated gate power semiconductor device and method for manufacturing such a device
JP2018503268A (ja) 絶縁ゲートパワー半導体デバイスおよびそのデバイスの製造方法
JP2013182935A (ja) 半導体装置およびその製造方法
JP7125339B2 (ja) 半導体装置およびその製造方法
JP2020038986A (ja) 半導体装置
US11239352B2 (en) Self-aligned and robust IGBT devices
JP2015188104A (ja) トレンチゲート型電力半導体素子
KR100742779B1 (ko) 다중 트렌치를 적용한 절연 게이트 바이폴라 트랜지스터 및그 제조 방법
JP2012124518A (ja) 電力用半導体装置
JP2013251464A (ja) 半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013055.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530817

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014833749

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE