WO2015016283A1 - 非水系蓄電素子用結着剤及び非水系蓄電素子 - Google Patents

非水系蓄電素子用結着剤及び非水系蓄電素子 Download PDF

Info

Publication number
WO2015016283A1
WO2015016283A1 PCT/JP2014/070129 JP2014070129W WO2015016283A1 WO 2015016283 A1 WO2015016283 A1 WO 2015016283A1 JP 2014070129 W JP2014070129 W JP 2014070129W WO 2015016283 A1 WO2015016283 A1 WO 2015016283A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
storage element
aqueous
composition
separator
Prior art date
Application number
PCT/JP2014/070129
Other languages
English (en)
French (fr)
Inventor
直人 大山
太一 上村
Original Assignee
協立化学産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協立化学産業株式会社 filed Critical 協立化学産業株式会社
Priority to CN201480042444.XA priority Critical patent/CN105453306B/zh
Priority to US14/908,644 priority patent/US20160172678A1/en
Priority to JP2015529603A priority patent/JP6417512B2/ja
Priority to KR1020167005009A priority patent/KR20160040611A/ko
Publication of WO2015016283A1 publication Critical patent/WO2015016283A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a binder for a non-aqueous storage element, and includes a non-aqueous storage element electrode, a separator or a current collector obtained by using the binder, a non-aqueous storage element electrode, a separator, and a current collector.
  • the present invention relates to a non-aqueous energy storage device including at least one of them.
  • non-aqueous power storage elements can extract higher voltage than water-based power storage devices, they can store energy at a high energy density and have high utility value as power sources for mobile devices and automobiles.
  • lithium ion primary batteries and secondary batteries are widely used as power sources for portable electronic devices such as mobile phones and laptop computers, and electric double layer capacitors are used as power sources for power tools and energy regeneration devices for heavy machinery.
  • electric double layer capacitors are used as power sources for power tools and energy regeneration devices for heavy machinery.
  • calcium ion primary batteries and secondary batteries, magnesium ion primary potentials and secondary batteries, sodium ion primary batteries, secondary batteries, and the like are also promising as power storage elements having both high voltage and high energy density.
  • Securing the current safety includes a shutdown function that blocks the pores of the separator made of polyolefin when the electricity storage element generates heat and blocks ionic conduction.
  • the shutdown function works to suppress heat generation and prevent thermal runaway.
  • the melting point of the polyolefin separator is 200 ° C. or less, and if the heat is intense, the separator shrinks, causing a direct contact between the positive and negative electrodes, leading to a risk of thermal runaway.
  • the separator made of polyolefin is softer than the active material and metal foreign matter and is very thin with a thickness of about 10 to 30 ⁇ m, if the active material falls off or metal foreign matter is mixed in the manufacturing process of the storage element, the separator is removed. There is a risk of breaking through and causing electrical contact between the positive and negative electrodes. Thus, the safety of the non-aqueous power storage element is not sufficient, and further improvement in safety is required.
  • Patent Document 1 a method has been devised in which a highly heat-resistant porous film layer is formed on the active material coating layer applied to the current collector to prevent the active material from falling off the electrode. Since this porous membrane has an inorganic filler as its skeleton, even when a separator with a low melting point melts and shrinks due to a temperature rise at the time of short circuit, it can prevent contact between positive and negative electrodes and suppress thermal runaway. There is an effect as a layer. Moreover, even if an active material or a metal foreign substance is mixed, the piercing strength of the rigid inorganic filler film is high, and there is an effect of preventing the hole from being broken through the separator.
  • heat-resistant coating layer suppresses the generation of dendrites and also functions as a layer for holding an electrolytic solution.
  • the heat-resistant coating layer buffers and accelerates local deterioration due to the concentration of electrode reactions due to electrode surface non-uniformity, thereby preventing the active material layer from deteriorating when used for a long time. is there.
  • Patent Document 2 a rubber resin having electrolytic solution resistance has been proposed for the heat-resistant coating layer.
  • a binder having a hydrophilic group and a hydrophobic group has been proposed to form a heat-resistant coating layer, and a composition for forming a heat-resistant layer by mixing the binder, inorganic particles, and a solvent is proposed. It is used for production (Patent Document 3).
  • binders for active materials and collectors for current collectors have also been proposed.
  • binders for active materials are also proposed.
  • Various compositions such as a composition containing an adhesive and a base treatment composition have been proposed (Patent Documents 4 and 5).
  • Patent Document 6 a member to be manufactured is required to have a low water content.
  • a hydrophilic group when introduced into the binder in order to increase the resistance to electrolyte, a composition such as an electrode, a separator, or a current collector is used using a composition containing the binder.
  • a composition such as an electrode, a separator, or a current collector is used using a composition containing the binder.
  • the moisture content of the layer tends to increase.
  • a hydrophobic group is introduced, the moisture content of the layer can be lowered, but the resistance to electrolytic solution tends to deteriorate.
  • the difference in polarity between the hydrophilic group and the hydrophobic group is extremely large, and the balance is poor, the layer is easily peeled off from the substrate and the water content tends to be high. The following can be considered as these causes.
  • the composition when applying the composition to a substrate, if the wettability with respect to the substrate surface cannot be secured sufficiently, the composition is repelled on the substrate surface, and the adhesion of the formed layer tends to be insufficient.
  • the binder has both a hydrophilic group and a hydrophobic group, the hydrophilic group surrounds the water molecule, and the hydrophobic group further surrounds the periphery, thereby making it difficult for water to escape. , Moisture content tends to be high. It can be mentioned that this water easily reacts with the electrode active material and the electrolytic solution component, and easily deteriorates the characteristics of the non-aqueous power storage element.
  • An object of the present invention is to provide a binder used for forming a layer having good adhesion to a substrate such as an electrode, a separator and a current collector and having a low moisture content, It is preferable to provide a binder used for forming a layer having heat resistance.
  • the layer formed using the binder of the present invention has excellent adhesion to the base material and low moisture content, so the life of the non-aqueous storage element is shortened and the high-speed charge / discharge characteristics are reduced. Can be avoided.
  • Another object of the present invention is to provide an electrode, a separator or a current collector for a non-aqueous storage element using the binder, and at least any one of the electrode for the non-aqueous storage element, the separator and the current collector.
  • a layer formed on the surface of a substrate such as an electrode, a separator, and a current collector using the binder of the present invention is referred to as a “coat layer”. At least a part of the coat layer may enter the substrate.
  • the binder of the present invention can be used not only for forming a coat layer but also for forming an active material layer.
  • the “layer” includes “active material layer” and “coat layer”.
  • the present inventor has good adhesion to substrates such as electrodes, separators, and current collectors by using a polymer containing a unit derived from a compound having a specific functional group as a binder.
  • the inventors have found that it is possible to form a layer having a low moisture content, and that it is possible to impart heat resistance to the layer, thereby completing the present invention.
  • the gist of the present invention is as follows.
  • the present invention 1 Formula (1): (Where R 1 is independently an alkyl group having 1 to 40 carbon atoms which is unsubstituted or substituted with a halogen atom and / or a hydroxyl group (wherein —CH 2 — in the alkyl group is Or may be replaced with a group selected from oxygen atom, sulfur atom and cycloalkanediyl); or —OR 2 (wherein R 2 is a carbocyclic or heterocyclic ring having 3 to 10 ring members) A valent group), and When the sum of x, y and z is 1, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, The units enclosed by x, y and z may be present in blocks or randomly.
  • R a is independently a hydrogen atom or a fluorine atom)
  • z can be, for example, 0.0001 or more, and preferably 0.0005 or more.
  • the number average molecular weight of the polymer of the formula (1) can be 100 to 8000000, preferably 300 to 7000000, more preferably 500 to 5000000.
  • the number average molecular weight is a value determined by gel permeation chromatography.
  • R 1 in the formula (1) is — (CH 2 ) m —O— (CH 2 ) n —CH 3 (here, m is an arbitrary integer from 0 to 3, n is an arbitrary integer from 0 to 10) It is related with the binder for non-aqueous electrical storage elements of this invention 1 which is group shown by these.
  • R 1 in the formula (1) is — (CH 2 ) m —O— (CH 2 ) n — (CH— (CH 2 ) h CH 3 ) — (CH 2 ) k —CH 3
  • m is an arbitrary integer from 0 to 3
  • n is an arbitrary integer from 0 to 10
  • h is an arbitrary integer from 0 to 10
  • k is an arbitrary integer from 0 to 10.
  • R 1 in Formula (1) is, - (CH 2) n -CH 3 (n is any integer of 0 to 10) It is related with the binder for non-aqueous electrical storage elements of this invention 1 which is group shown by these.
  • R 1 in Formula (1) is an -OR 2
  • R 2 is represented by the following formula: (Where X is —CH 2 —, —NH—, —O— or —S—) It is related with the binder for non-aqueous electrical storage elements of this invention 1 which is group shown by these.
  • R 1 in the formula (1) is — (CH 2 ) m —S— (CH 2 ) n —CH 3 (here, m is an arbitrary integer from 0 to 3, n is an arbitrary integer from 0 to 10) It is related with the binder for non-aqueous electrical storage elements of this invention 1 which is group shown by these.
  • the present invention 7 relates to the binder for a non-aqueous power storage element according to any one of the present inventions 1 to 6, comprising 1 to 10,000 ppm of at least one selected from the group consisting of sodium, lithium, potassium and ammonia.
  • the present invention 8 relates to a nonaqueous storage element electrode having a coating layer formed using the binder for a nonaqueous storage element according to any one of the present inventions 1 to 7.
  • the present invention 9 relates to an electrode for a nonaqueous storage element having an active material layer formed using the binder for a nonaqueous storage element according to any one of the present inventions 1 to 7.
  • the present invention 10 relates to a separator for a nonaqueous storage element having a coating layer formed using the binder for a nonaqueous storage element according to any one of the present inventions 1 to 7.
  • the present invention 11 relates to a current collector for a non-aqueous storage element having a coating layer formed using the binder for a non-aqueous storage element according to any one of the present inventions 1 to 7.
  • the present invention 12 is a nonaqueous system comprising at least one of the electrode for a nonaqueous storage element of the present invention 8 or 9, the separator for a nonaqueous storage element of the present invention 10, and the current collector for a nonaqueous storage element of the present invention 11.
  • the present invention relates to a power storage element.
  • the present invention 13 relates to the nonaqueous storage element of the present invention 12, which is a nonaqueous secondary battery.
  • a layer having good adhesion and low moisture content can be formed on substrates such as electrodes, separators, and current collectors.
  • the binding agent of the present invention uses a combination in which the difference in polarity between the hydrophilic group and the hydrophobic group does not become extremely large, reduces the effect of surrounding water molecules, and thus makes it easier for water to escape from the layer.
  • a low rate layer can be formed.
  • the composition containing the binder for a non-aqueous electricity storage device of the present invention a filler and a solvent is applied to a substrate such as an electrode, a separator, and a current collector, and the solvent is evaporated, thereby achieving high heat resistance. A layer having high cation conductivity is obtained.
  • the above composition When the above composition is applied to a separator, it swells with polyethylene or polypropylene as a component constituting the separator, and the adhesion can be improved by removing the solvent by drying.
  • Binder of the present invention is characterized by including a polymer represented by the above formula (1) (sometimes referred to as “binder containing a specific functional group”).
  • the binder containing a specific functional group can be prepared by mixing a polymerizable compound having a specific functional group and a radical initiator, and performing any one of bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. it can.
  • the specific functional group in the binder containing the specific functional group is an alkyl group having 1 to 40 carbon atoms which is unsubstituted or substituted with a halogen atom and / or a hydroxyl group (here, —CH 2 — in the alkyl group may be replaced with a group selected from an oxygen atom, a sulfur atom and cycloalkanediyl); or —OR 2 (wherein R 2 has 3 ring members) A group represented by ⁇ 10 carbocyclic or heterocyclic monovalent group).
  • a compound having these specific functional group and an unsaturated double bond can be used.
  • the binder containing a specific functional group is selected from the group consisting of A: a compound having an arbitrary oxyalkyl group, B: a compound having an arbitrary thioalkyl group, and C: a compound having an arbitrary alkyl group.
  • Examples of the compound having an arbitrary oxyalkyl group include alkyl vinyl ether derivatives and alkyl allyl ether derivatives.
  • the alkyl vinyl ether derivative is not particularly limited.
  • Alkyl vinyl ether derivatives can also be copolymerized with vinyl acetate.
  • poly (vinyl acetate / alkyl vinyl ether) can be prepared by mixing vinyl acetate with an alkyl vinyl ether derivative in an arbitrary ratio and then copolymerizing by using a radical initiator.
  • This copolymer can be hydrolyzed in the presence of an acid or base to convert all or some of the vinyl acetate-derived units to hydroxyl groups.
  • the hydrolyzed copolymer may or may not have units derived from vinyl acetate.
  • the hydrolyzed copolymer may be used as it is as a binder, but it can also be used after removing ionic impurities and unreacted monomers by purification.
  • the purification method include an ion exchange method using an ion exchange resin, an ultrafiltration method, dialysis, and the like, and these methods may be used alone or in combination.
  • the alkyl allyl ether derivative is not particularly limited, and for example, allyl methyl ether, allyl ethyl ether, allyl ether, acrolein dimethyl acetal, allyl butyl ether, 1,1,1-trimethylolpropane diallyl ether, 2H-hexafluoro Propyl allyl ether, ethylene glycol monoallyl ether, glycerol ⁇ , ⁇ '-diallyl ether, allyl-n-octyl ether, allyl trifluoroacetate, 2,2-bis (allyloxymethyl) -1-butanol, etc. These compounds may be used alone or in combination.
  • the alkyl allyl ether derivative can also be copolymerized with vinyl acetate.
  • poly (vinyl acetate / alkyl allyl ether) can be prepared by mixing vinyl acetate with the alkyl allyl ether derivative at an arbitrary ratio and then copolymerizing by using a radical initiator.
  • This copolymer can be hydrolyzed in the presence of an acid or a base to convert all or part of vinyl acetate-derived units into hydroxyl groups.
  • the hydrolyzed copolymer may or may not have units derived from vinyl acetate.
  • the hydrolyzed copolymer may be used as it is as a binder, but it can also be used after removing ionic impurities and unreacted monomers by purification.
  • the purification method include an ion exchange method using an ion exchange resin, an ultrafiltration method, dialysis, and the like, and these methods may be used alone or in combination.
  • the vinyl (allyl) sulfide derivative is not particularly limited, and examples thereof include ethyl vinyl sulfide, 1,1-bis (methylthio) ethylene, allyl methyl sulfide, allyl propyl sulfide, allyl sulfide, and the like. These may be used alone or in combination.
  • Vinyl (allyl) sulfide derivatives can also be copolymerized with vinyl acetate.
  • copolymerization is performed by using a radical initiator to produce poly (vinyl acetate / alkyl vinyl (allyl) sulfide). it can.
  • This copolymer can be hydrolyzed in the presence of an acid or a base to convert all or part of vinyl acetate-derived units into hydroxyl groups.
  • the hydrolyzed copolymer may or may not have units derived from vinyl acetate.
  • the hydrolyzed copolymer may be used as it is as a binder, but ionic impurities and unreacted monomers can be removed by purification. Purification includes an ion exchange method using an ion exchange resin, an ultrafiltration method, dialysis, and the like, and these methods may be used alone or in combination.
  • the alkene derivative is not particularly limited, and examples thereof include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, There are 1-tridecene, 1-tetradecene, 1-pentadecene, and the like. These compounds may be used alone or in combination.
  • the alkene derivative can also be copolymerized with vinyl acetate.
  • poly (vinyl acetate / (cyclo) alkene) can be prepared by mixing vinyl acetate with the (cyclo) alkene derivative at an arbitrary ratio and then copolymerizing by using a radical initiator.
  • This copolymer can be hydrolyzed in the presence of an acid or a base to convert all or part of vinyl acetate-derived units into hydroxyl groups.
  • the hydrolyzed copolymer may or may not have units derived from vinyl acetate.
  • the unsaturated double bond-containing cycloalkane derivative is not particularly limited, and examples thereof include vinylcyclopentane, vinylcyclohexane, allylcyclohexane, methylenecyclopentane, methylenecyclohexane, plegon and the like. May be used in combination, or may be copolymerized in combination.
  • the unsaturated double bond-containing cycloalkane derivative can also be copolymerized with vinyl acetate.
  • vinyl acetate after mixing vinyl acetate with an unsaturated double bond-containing cycloalkane derivative in an arbitrary ratio, it is copolymerized by using a radical initiator, and poly (vinyl acetate / unsaturated double bond-containing cycloalkane derivative). ) Can be produced.
  • This copolymer can be hydrolyzed in the presence of an acid or a base to convert all or part of vinyl acetate-derived units into hydroxyl groups.
  • the hydrolyzed copolymer may or may not have units derived from vinyl acetate.
  • a binder containing a specific functional group other polymerizable compounds can be used. Specifically, a compound having an ethylenically unsaturated double bond (however, compounds A to C are used). Except). Specific examples include (meth) acrylic acid ester derivatives and (meth) acrylamide derivatives.
  • the (meth) acrylic acid ester derivative is not particularly limited.
  • the (meth) acrylamide derivative is not particularly limited.
  • vinyl crotonic acid allyl methyl carbonate, allyl ethyl carbonate, 2-allyloxybenzaldehyde, 1,1,1-trimethylolpropane diallyl ether, 2,2-bis (4-allyloxy-3,5-dibromophenyl) ) Propane, glycerol ⁇ , ⁇ '-diallyl ether, allyl chloroformate, allyl chloroacetate, diallyl maleate, diallyl carbonate, allyl trifluoroacetate, 2-methyl-2-propenyl acetate, 2,2-bis (allyl) Oxymethyl) -1-butanol, 3-buten-2-yl acetate, allyl methacrylate, allyl glycidyl ether, allyl cyanoacetate, phenyl vinyl sulfide, 4-methyl-5-vinyl thiazole, allyl dimethyldithioca Bameto, allyl
  • polymerizable compounds such as (meth) acrylic acid ester derivatives and (meth) acrylamide derivatives are: A: a compound having an arbitrary oxyalkyl group, B: a compound having an arbitrary thioalkyl group, and C: an arbitrary alkyl group. It can also be copolymerized with vinyl acetate together with at least one polymerizable compound selected from the group consisting of the compounds having. In this case, when copolymerizing with vinyl acetate, the vinyl acetate is mixed in an arbitrary ratio with another polymerizable compound and at least one polymerizable compound of A to C, and then copolymerized by using a radical initiator.
  • a copolymer into which a unit derived from another polymerizable compound is introduced can be produced.
  • the copolymer may be used as it is as a binder, but unreacted monomers and the like can also be removed by purification. Purification includes ultrafiltration, dialysis, and the like, and these methods may be used alone or in combination.
  • a copolymer having a unit derived from a (meth) acrylic acid ester derivative or a unit derived from a (meth) acrylamide derivative is accompanied by a reaction in which the unit derived from vinyl acetate is converted into a hydroxyl group when hydrolyzed in the presence of an acid or a base. Hydrolysis of units derived from (meth) acrylic acid esters and units derived from (meth) acrylamide may occur simultaneously, and the reaction conditions are limited.
  • the molar ratio of at least one polymerizable compound of A to C and vinyl acetate can be 0.001: 9.999 to 9.999: 0.001, preferably Is 0.005: 9.995 to 9.995: 0.005.
  • radical initiator examples include a photo radical initiator and a thermal radical initiator. These radical initiators may be used alone or in combination of two or more.
  • the photo radical initiator is not particularly limited, and 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 4-t-butyl-trichloroacetophenone, diethoxyacetophenone, 2-hydroxy-2-methyl -1-phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropane- 1-one, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenylketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino Acetophenones such as propane; benzoin, benzoin methyl ether, benzoin ethyl Benzoins such as ether, benzoin isopropyl ether, benzoin isobutyl
  • electron donors are used for intermolecular hydrogen abstraction type photoinitiators such as benzophenone, mifiller ketone, dibenzosuberone, 2-ethylanthraquinone, camphorquinone, and isobutylthioxanthone. Body) can be added as a starting aid.
  • electron donors include aliphatic amines and aromatic amines having active hydrogen. Specific examples of the aliphatic amine include triethanolamine, methyldiethanolamine, and triisopropanolamine.
  • aromatic amine examples include 4,4'-dimethylaminobenzophenone, 4,4'-diethylaminobenzophenone, ethyl 2-dimethylaminobenzoate, and ethyl 4-dimethylaminobenzoate.
  • the thermal radical initiator is not particularly limited, and azides such as 4-azidoaniline hydrochloride and 4,4′-dithiobis (1-azidobenzene); 4,4′-diethyl-1,2 -Disulfides such as dithiolane, tetramethylthiuram disulfide, and tetraethylthiuram disulfide; octanoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, decanoyl peroxide, lauroyl peroxide, succinic peroxide, benzoyl peroxide, 2,4-dichloro Diacyl peroxides such as benzoyl peroxide and m-toluyl peroxide; di-n-propyl peroxydicarbonate, diisopropylperoxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and di- Peroxydicarbonates such as (2
  • a decomposition accelerator can be used in combination with the thermal radical generator.
  • the decomposition accelerator include thiourea derivatives, organometallic complexes, amine compounds, phosphate compounds, toluidine derivatives, and aniline derivatives.
  • examples include urea, N, N′-diphenylthiourea, and N, N′-dilaurylthiourea, preferably tetramethylthiourea or benzoylthiourea.
  • organometallic complex examples include cobalt naphthenate, vanadium naphthenate, copper naphthenate, iron naphthenate, manganese naphthenate, cobalt stearate, vanadium stearate, copper stearate, iron stearate, and manganese stearate.
  • Examples of the amine compound include primary to tertiary alkylamines or alkylenediamines represented by an integer of 1 to 18 carbon atoms in the alkyl group or alkylene group, diethanolamine, triethanolamine, dimethylbenzylamine, trisdimethylaminomethylphenol, Trisdiethylaminomethylphenol, 1,8-diazabicyclo (5,4,0) -7-undecene, 1,8-diazabicyclo (5,4,0) -7-undecene, 1,5-diazabicyclo (4,3,0 ) -Nonene-5,6-dibutylamino-1,8-diazabicyclo (5,4,0) -7-undecene, 2-methylimidazole, 2-ethyl-4-methylimidazole and the like.
  • Examples of the phosphate compound include methacrylic phosphate, dimethycyl phosphate, monoalkyl acid phosphate, dialkyl phosphate, trialkyl phosphate, dialkyl phosphate, and trialkyl phosphate.
  • Examples of toluidine derivatives include N, N-dimethyl-p-toluidine and N, N-diethyl-p-toluidine.
  • Examples of aniline derivatives include N, N-dimethylaniline and N, N-diethylaniline.
  • the photo radical initiator and / or thermal radical generator is preferably used in an amount of 0.01 to 50 parts by weight, more preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the polymerizable compound having a specific functional group. 20 parts by mass, more preferably 1 to 10 parts by mass.
  • the above amount is the total content of the photo radical initiator and the thermal radical generator.
  • the amount of the electron donor is preferably 10 to 500 parts by mass with respect to 100 parts by mass of the photo radical initiator.
  • the amount of the decomposition accelerator is preferably 1 to 500 parts by mass with respect to 100 parts by mass of the thermal radical generator.
  • the binder containing the specific functional group is at least one selected from the group consisting of A: a compound having an arbitrary oxyalkyl group, B: a compound having an arbitrary thioalkyl group, and C: a compound having an arbitrary alkyl group. It can be prepared by any one of bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization by mixing a kind of polymerizable compound, a radical initiator, and optionally another polymerizable compound.
  • a liquid binder obtained by dissolving a solid polymer substance in a solvent can be used in combination.
  • the solvent can be appropriately selected from solvents capable of dissolving solid polymer substances, and two or more kinds can be mixed and used.
  • the liquid binder obtained by dissolving a solid polymer substance in a solvent may be a solution or a suspension.
  • various known binders can be used as the solid polymer substance. Specifically, completely saponified polyvinyl alcohol (manufactured by Kuraray Co., Ltd .; Kuraray Poval PVA-124, manufactured by Nihon Vinegar Poval Co., Ltd .; JC-25, etc.), partially saponified polyvinyl alcohol (manufactured by Kuraray Co., Ltd .; Kuraray Poval) PVA-235, manufactured by Nihon Ventures & Poval Co., Ltd .; JP-33, etc.), modified polyvinyl alcohol (manufactured by Kuraray Co., Ltd .; Kuraray K polymer KL-118, Kuraray C polymer CM-318, Kuraray R polymer R-1130, Kuraray LM polymer LM-10HD, manufactured by Nihon Vinegar & Poval Co., Ltd .; D polymer DF-20, anion-modified PVA AF-17, alkyl-modified PVA Z
  • acrylic ester polymerization emulsion Showa Denko KK; Polysol F-361, F-417, S-65, SH-502
  • ethylene / vinyl acetate copolymer emulsion Kuraray Co., Ltd.
  • emulsions such as Panflex OM-4000NT, OM-4200NT, OM-28NT, OM-5010NT, and the like, which can be used in a state of being suspended in water.
  • polyvinylidene fluoride manufactured by Kureha Co., Ltd .; Kureha KF Polymer # 1120
  • modified polyvinyl alcohol manufactured by Shin-Etsu Chemical Co., Ltd .
  • cyanoresin CR-V modified pullulan
  • Polymers such as cyanoresin CR-S manufactured by the company can also be mentioned, and these can be used in a state dissolved in N-methylpyrrolidone.
  • liquid binder obtained by dissolving a solid polymer substance in a solvent a liquid binder obtained by dissolving a water-soluble polymer in water, and a binder obtained by suspending an emulsion in water are preferable.
  • the liquid binder obtained by dissolving a solid polymer substance in a solvent can be solidified by heating and / or reducing the pressure to remove the solvent.
  • Such a binder can impregnate the electrolyte in the layer to form a gel electrolytic layer, and can also enhance the ionic conductivity of the layer.
  • the proportion of the binder containing a specific functional group in the binder of the present invention is preferably 0.01 to 99.99% by mass, more preferably 0.8%, out of 100% by mass of the binder. 1-99.9%. Only binders containing specific functional groups may be used.
  • the liquid binder obtained by dissolving a solid polymer substance in a solvent is based on the amount of the solid polymer substance.
  • the binder of the present invention is a composition combined with a solvent, a filler, an active material, a core-shell type foaming agent, a salt, an ionic liquid, a coupling agent, a stabilizer, an antiseptic, a surfactant, and the like. It can be applied to substrates such as electrodes, separators, and current collectors of non-aqueous energy storage devices.
  • the composition can contain a solvent in addition to the binder of the present invention.
  • the solvent includes a solvent contained in a liquid binder obtained by dissolving a solid polymer substance in a solvent, and a solvent as a medium when the inorganic filler is in the form of a sol.
  • solvent can be blended at an arbitrary ratio in order to adjust the viscosity in accordance with the coating apparatus.
  • Solvents are not particularly limited, but hydrocarbons (propane, n-butane, n-pentane, isohexane, cyclohexane, n-octane, isooctane, benzene, toluene, xylene, ethylbenzene, amylbenzene, turpentine oil, pinene, etc.) , Halogenated hydrocarbon (methyl chloride, chloroform, carbon tetrachloride, ethylene chloride, methyl bromide, ethyl bromide, chlorobenzene, chlorobromomethane, bromobenzene, fluorodichloromethane, dichlorodifluoromethane, difluorochloroethane, etc.), alcohol (methanol Ethanol, 1-propanol, isoprop
  • the amount of the solvent is preferably from 1 to 10,000 mPa ⁇ s from the viewpoint of coatability.
  • the viscosity is more preferably 2 to 5000 mPa ⁇ s, further preferably 3 to 1,000 mPa ⁇ s.
  • the kind and content of the solvent for obtaining such a viscosity can be determined as appropriate.
  • the viscosity is a value measured at 25 ° C. with a cone plate type rotational viscometer (rotation speed: 50 rpm).
  • composition can contain a filler in addition to the binder of the present invention.
  • a filler may be used independently and may combine multiple.
  • the amount of the binder in the composition is preferably a practically sufficient addition amount without filling the voids generated between the fillers.
  • the amount of the binder is preferably 0.01 to 49 parts by mass, more preferably 0.05 to 30 parts by mass, and still more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the filler. is there.
  • the composition when used for the surface treatment of the current collector, it is preferable that the composition contains a conductive filler such as a carbon-based filler.
  • the amount of the binder is preferably 0.1 to 100 parts by mass, more preferably 0.5 to 80 parts by mass, and further preferably 1 to 70 parts by mass with respect to 100 parts by mass of the filler.
  • alumina can be used as the inorganic filler.
  • the production method of alumina include a method of hydrolyzing aluminum alkoxide dissolved in a solvent, a method of thermally decomposing and pulverizing a salt such as aluminum nitrate, etc., but the method of alumina in the present invention is particularly limited. What was manufactured by what kind of technique can be used. Alumina may be used alone or in combination.
  • inorganic fillers are not particularly limited, and powders of metal oxides such as silica, zirconia, beryllia, magnesium oxide, titania, and iron oxide; sols such as colloidal silica, titania sol, and alumina sol, talc, and kaolinite And clay minerals such as smectite; carbides such as silicon carbide and titanium carbide; nitrides such as silicon nitride, aluminum nitride and titanium nitride; borides such as boron nitride, titanium boride and boron oxide; mullite and the like Complex oxides; hydroxides such as aluminum hydroxide, magnesium hydroxide, and iron hydroxide; barium titanate, strontium carbonate, magnesium silicate, lithium silicate, sodium silicate, potassium silicate, and glass It is done.
  • metal oxides such as silica, zirconia, beryllia, magnesium oxide, titania, and iron oxide
  • sols such as
  • inorganic fillers may be used in the form of powder, or in the form of a water-dispersed colloid such as silica sol or aluminum sol or in a state dispersed in an organic solvent such as organosol.
  • the particle size of the inorganic filler is preferably in the range of 0.001 to 100 ⁇ m, more preferably in the range of 0.005 to 10 ⁇ m.
  • the average particle size is preferably in the range of 0.005 to 50 ⁇ m, more preferably in the range of 0.01 to 8 ⁇ m.
  • the average particle size and particle size distribution can be measured by, for example, a laser diffraction / scattering particle size distribution measuring apparatus, and specifically, LA-920 manufactured by Horiba, Ltd. can be used.
  • the inorganic filler preferably contains alumina.
  • the alumina is preferably 50% by mass or more, and may be 100% by mass of alumina.
  • the amount of the other inorganic fillers can be 0.1 to 49.9% by mass in 100% by mass of the total inorganic components including alumina and the other inorganic fillers, 0.5 to 49.5% by mass is preferable, and 1 to 49% by mass is more preferable.
  • organic filler examples include polymers such as acrylic resin, epoxy resin, and polyimide that are three-dimensionally cross-linked and do not substantially plastically deform, cellulose particles, fibers, and flakes.
  • the organic fillers may be used alone or in combination.
  • the filler may be conductive or non-conductive.
  • a conductive filler is preferable.
  • the conductive filler can be added to such an extent that the insulating property is not impaired.
  • metals such as Ag, Cu, Au, Al, Mg, Rh, W, Mo, Co, Ni, Pt, Pd, Cr, Ta, Pb, V, Zr, Ti, In, Fe, Zn, etc.
  • Filler (the shape is not limited, and includes spherical, flaky particles, colloids, etc.); Sn—Pb, Sn—In, Sn—Bi, Sn—Ag, Sn—Zn alloy fillers ( Spherical particles, flaky particles); carbon black such as acetylene black, furnace black, channel black, carbon filler such as graphite, graphite fiber, graphite fibril, carbon fiber, activated carbon, charcoal, carbon nanotube, fullerene; zinc oxide, oxidation Presence of lattice defects in tin, indium oxide, titanium oxide (titanium dioxide, titanium monoxide, etc.) Surplus electrons and metal oxide filler indicating the generated conductivity by.
  • the surface of the conductive filler may be treated with a
  • the conductive filler is preferably in the range of 0.001 to 100 ⁇ m, more preferably in the range of 0.01 to 10 ⁇ m, from the viewpoint of conductivity and liquidity.
  • a conductive filler larger than the above range may be used in order to make the conductive coating layer formed uneven by the composition containing the conductive filler and to improve the adhesion with the active material layer by the anchor effect. it can. In that case, large conductive particles can be combined in an amount of 1 to 50% by weight, more preferably 5 to 10% by weight with respect to the conductive filler in the above range.
  • the conductive filler preferably has an average particle diameter in the range of 0.005 to 50 ⁇ m, more preferably in the range of 0.01 to 8 ⁇ m.
  • the inorganic filler In the composition of the heat-resistant coating layer, it is preferable to use an inorganic filler.
  • the inorganic filler can be contained in an amount of 50 parts by mass or less with respect to 100 parts by mass of the inorganic filler. Part or less, more preferably 20 parts by weight or less, and still more preferably 10 parts by weight or less. It is preferable to use a conductive filler in the current collector treatment composition.
  • composition is an active material, a core-shell type foaming agent, a salt, an ionic liquid, a coupling agent, a stabilizer, an antiseptic, and a surface active material, as long as the object of the present invention is not impaired. Agents and the like.
  • a composition when using a composition in order to form the active material layer of the electrode of a non-aqueous electrical storage element, it is preferable to make a composition contain a binder and an active material.
  • the amount of the binder is preferably 0.01 to 500 parts by weight, more preferably 0.1 to 200 parts by weight, and still more preferably 0.5 to 100 parts by weight with respect to 100 parts by weight of the active material. It is.
  • the active material can be appropriately selected depending on a desired nonaqueous storage element.
  • the non-aqueous storage element is a battery
  • examples include an active material that exchanges alkali metal ions that control charge and discharge.
  • a lithium salt for example, lithium cobaltate, olivine type
  • Examples of the electrode active material layer of the electric double layer capacitor include activated carbon.
  • the shape and amount of the active material can be appropriately selected according to the desired active material layer.
  • the size can be in the range of 0.001 to 100 ⁇ m, and more preferably in the range of 0.005 to 10 ⁇ m.
  • the average particle size is preferably in the range of 0.005 to 50 ⁇ m, more preferably in the range of 0.01 to 8 ⁇ m.
  • the composition can include a core-shell type blowing agent.
  • a foaming agent examples include EXPANCEL (manufactured by Nippon Philite Co., Ltd.).
  • EXPANCEL manufactured by Nippon Philite Co., Ltd.
  • a foaming agent coated with an inorganic substance can also be used.
  • metal oxides such as alumina, silica, zirconia, beryllia, magnesium oxide, titania and iron oxide
  • sols such as colloidal silica, titania sol and alumina sol
  • gels such as silica gel and activated alumina
  • mullite and the like Complex oxides hydroxides such as aluminum hydroxide, magnesium hydroxide and iron hydroxide: and metals such as barium titanate, gold, silver, copper and nickel.
  • the foaming agent foams when the battery runs out of heat.
  • the distance between the electrodes can be increased, and thereby the shutdown function can be exhibited.
  • the shell portion expands greatly, the distance between the electrodes can be increased, thereby preventing a short circuit or the like. Further, since the expanded shell portion maintains its shape even after the heat generation has subsided, the gap between the electrodes is narrowed again, thereby preventing re-shorting.
  • the influence of electrolysis during charging and discharging can be reduced, and the active hydrogen group on the surface of the inorganic substance becomes a counter ion when conducting ions, thereby improving the ionic conductivity. It can also be increased efficiently.
  • the composition may contain the core-shell type foaming agent in an amount of 1 to 99 parts by mass with respect to 100 parts by mass of the binder, and preferably 10 to 98 parts by mass.
  • the core-shell type foaming agent can be contained in an amount of 99 parts by mass or less with respect to 100 parts by mass in total of the inorganic filler and the binder. It is preferably 10 to 98 parts by mass, more preferably 20 to 97 parts by mass.
  • the composition can contain salts that serve as various ion sources. Thereby, ion conductivity can be improved. It is also possible to add the electrolyte of the battery used.
  • a lithium ion battery as an electrolyte, lithium hydroxide, lithium silicate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium bis (trifluoromethanesulfonyl) imide, lithium bis (penta Fluoroethanesulfonyl) imide and lithium trifluoromethanesulfonate can be exemplified.
  • examples of the electrolyte include calcium hydroxide and calcium perchlorate.
  • examples of the electrolyte include magnesium perchlorate.
  • examples of the electrolyte include tetraethylammonium tetrafluoroborate, triethylmethylammonium bis (trifluoromethanesulfonyl) imide, and tetraethylammonium bis (trifluoromethanesulfonyl) imide.
  • the composition may contain the above salt in an amount of 300 parts by mass or less, preferably 0.1 to 300 parts by mass, more preferably 0.5 to 200 parts by mass, more preferably 1 to 100 parts by mass.
  • the salt may be added as a powder, made porous, or dissolved in a compounding component.
  • the composition can include an ionic liquid.
  • the ionic liquid may be a solution in which the salt is dissolved in a solvent or an ionic liquid.
  • examples of the solution in which the salt is dissolved in a solvent include a solution in which a salt such as lithium hexafluorophosphate or tetraethylammonium borofluoride is dissolved in a solvent such as dimethyl carbonate.
  • ionic liquids examples include imidazolium salts such as 1,3-dimethylimidazolium methyl sulfate, 1-ethyl-3-methylimidazolium bis (pentafluoroethylsulfonyl) imide, 1-ethyl-3-methylimidazolium bromide, and the like.
  • pyridinium salt derivatives such as 3-methyl-1-propylpyridium bis (trifluoromethylsulfonyl) imide, 1-butyl-3-methylpyridinium bis (trifluoromethylsulfonyl) imide; tetrabutylammonium heptadecafluorooctane Alkyl ammonium derivatives such as sulfonate and tetraphenylammonium methanesulfonate; phosphonium salt derivatives such as tetrabutylphosphonium methanesulfonate; complex of polyalkylene glycol and lithium perchlorate Etc. can be exemplified a conjugated conductive agent.
  • the composition may contain an ionic liquid in an amount of 0.01 to 40 parts by weight, preferably 0.1 to 40 parts by weight with respect to 100 parts by weight of the binder.
  • the ionic liquid can be contained in an amount of 40 parts by mass or less, preferably 0.01 to 40 parts by mass with respect to 100 parts by mass of the inorganic filler.
  • the amount is more preferably 0.1 to 30 parts by mass, still more preferably 0.5 to 5 parts by mass.
  • the composition can include a coupling agent.
  • the silane coupling agent include (tridecafluoro-1,1,2,2-tetrahydrooctyl) triethoxysilane as a fluorine-based silane coupling agent, and (2-bromo) as a bromine-based silane coupling agent.
  • TESOX vinyltrimethoxysilane
  • vinyltriethoxysilane ⁇ -chloro Propyltrimethoxysilane
  • ⁇ -aminopropyltriethoxysilane N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane
  • N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane ⁇ -glycine Sidoxypropyltrimethoxysilane (commercially available KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.
  • ⁇ -glycidoxypropylmethyldimethoxysilane ⁇ -methacryloxyxypropyltrimethoxysilane
  • ⁇ -methacryloxyxypropylmethyldimethoxysilane ⁇ -mercaptoprop
  • Titanium coupling agents include triethanolamine titanate, titanium acetylacetonate, titanium ethyl acetoacetate, titanium lactate, titanium lactate ammonium salt, tetrastearyl titanate, isopropyltricumylphenyl titanate, isopropyltri (N-aminoethyl-aminoethyl) ) Titanate, dicumylphenyloxyacetate titanate, isopropyl trioctanor titanate, isopropyl dimethacrylisostearoyl titanate, titanium lactate ethyl ester, octylene glycol titanate, isopropyl triisostearoyl titanate, triisostearyl isopropyl titanate, isopropyl tridodecyl benzene sulfonyl Titanate, tetra 2-ethylhexyl) titanate, butyl titanate dimer, isopropyliso
  • titanium coupling agents vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ - Aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -methacryloxypropylpropyl Methoxysilane, ⁇ -methacryloxyxypropylmethyldimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, and cyanohydrin silyl ether are preferred.
  • a silane coupling agent and a titanium coupling agent can be used alone or in combination of
  • Such a coupling agent can improve adhesion by causing interaction with the battery electrode surface or the separator surface. Moreover, by covering the surface of the filler with these coupling agents, gaps are formed between the fillers due to the exclusion effect by the coupling agent molecules, and ions can be conducted between them to improve ion conductivity. Moreover, since these fillers can be hydrophobized by coating the surfaces of fillers such as inorganic fillers, silicone particles, and polyolefin particles with a coupling agent, the defoaming property can be further improved.
  • the amount of water adsorbed on the surface can be reduced by substituting the active hydrogen on the surface of the filler with a silane coupling agent, so that the amount of moisture that causes a deterioration in the characteristics of the non-aqueous storage element can be reduced.
  • the composition may contain the coupling agent in an amount of 0.01 to 500 parts by weight, preferably 0.1 to 100 parts by weight, based on 100 parts by weight of the binder.
  • the composition can include a stabilizer.
  • a stabilizer is not particularly limited, and 2,6-di-t-butylphenol, 2,4-di-t-butylphenol, 2,6-di-t-butyl-4-ethylphenol, Phenolic antioxidants such as 2,4-bis- (N-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine; alkyldiphenylamine, N, Aromatic amine antioxidants such as N'-diphenyl-p-phenylenediamine, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, N-phenyl-N'-isopropyl-p-phenylenediamine Agents; dilauryl-3,3′-thiodipropionate, ditridecyl-3,3′-thiodipropionate, bis [2-methyl-4-
  • the composition can contain a stabilizer in an amount of 0.01 to 10 parts by weight, preferably 0.05 to 5 parts by weight, based on 100 parts by weight of the binder.
  • the stabilizer can be contained in an amount of 10 parts by mass or less with respect to 100 parts by mass of the inorganic filler, preferably 0.01 to 10 parts by mass, more preferably 0.05. To 5 parts by mass, more preferably 0.1 to 1 part by mass.
  • the composition can include a preservative. Thereby, the storage stability of the composition can be adjusted.
  • Preservatives include acids such as benzoic acid, salicylic acid, dehydroacetic acid, sorbic acid, salts such as sodium benzoate, sodium salicylate, sodium dehydroacetate, and potassium sorbate, 2-methyl-4-isothiazoline-3- ON, and isothiazoline-based preservatives such as 1,2-benzisothiazolin-3-one, alcohols such as methanol, ethanol, isopropyl alcohol, and ethylene glycol, parahydroxybenzoates, phenoxyethanol, benzalkonium chloride, And chlorhexidine hydrochloride.
  • acids such as benzoic acid, salicylic acid, dehydroacetic acid, sorbic acid, salts such as sodium benzoate, sodium salicylate, sodium dehydroacetate, and potassium sorbate, 2-methyl-4-isothiazoline-3- ON, and isothiazoline-based preservatives such as 1,2-benzisothiazolin-3-one, alcohols such as methanol, ethanol
  • preservatives may be used alone or in combination.
  • the composition may contain a preservative in an amount of 0.0001 to 1 part by mass with respect to 100 parts by mass of the binder.
  • the preservative can be contained in an amount of 1 part by mass or less with respect to 100 parts by mass of the inorganic filler, preferably 0.0001 to 1 part by mass, and more preferably 0.0005. Is 0.5 parts by mass.
  • the composition can contain a surfactant for the purpose of adjusting the wettability and antifoaming property of the composition.
  • the composition may contain an ionic surfactant for the purpose of improving ionic conductivity.
  • any of an anionic surfactant, a double-sided surfactant, and a nonionic surfactant can be used.
  • Anionic surfactants include soap, lauryl sulfate, polyoxyethylene alkyl ether sulfate, alkyl benzene sulfonate (eg, dodecyl benzene sulfonate), polyoxyethylene alkyl ether phosphate, polyoxyethylene alkyl phenyl ether.
  • a lithium ion type surfactant is more preferable
  • sodium ion type surfactant is more preferable.
  • Amphoteric surfactants include alkyldiaminoethylglycine hydrochloride, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, lauryldimethylaminoacetic acid betaine, coconut oil fatty acid amide propyl betaine, fatty acid alkyl betaine, sulfobetaine And amine oxides.
  • Nonionic (nonionic) surfactants include polyethylene glycol alkyl ester compounds, alkyl ether compounds such as triethylene glycol monobutyl ether, ester compounds such as polyoxysorbitan esters, alkylphenol compounds, acetylene skeleton compounds, A fluorine type compound, a silicone type compound, etc. are mentioned.
  • Surfactants may be used alone or in combination of two or more.
  • the composition may contain a surfactant in an amount of 0.01 to 50 parts by weight, preferably 0.05 to 20 parts by weight with respect to 100 parts by weight of the binder.
  • a surfactant in an amount of 0.01 to 50 parts by weight, preferably 0.05 to 20 parts by weight with respect to 100 parts by weight of the binder.
  • the surfactant can be contained in an amount of 50 parts by mass or less, preferably 0.01 to 50 parts by mass, and more preferably 0.05 to 100 parts by mass of the inorganic filler.
  • To 20 parts by mass more preferably 0.1 to 10 parts by mass.
  • the composition is for a non-aqueous storage element, and can be used specifically to protect an electrode or a separator.
  • the composition of the present invention can be used to form a coat layer on at least the surface of the electrode or separator, but a part of it may enter the electrode or separator.
  • composition for heat-resistant coating layer Composition for heat-resistant coating layer
  • composition for active material layer Composition for active material layer
  • Composition for surface treatment of current collector Composition for current collector surface treatment
  • the heat-resistant coating layer composition can be used to form a heat-resistant layer on the separator, electrode, and current collector.
  • the separator and the electrode surface have ion conductivity, the safety of the battery can be improved by forming an electrically insulating coating layer to enhance the insulating property.
  • the heat-resistant coating layer composition can further contain an organic filler or an inorganic filler having high heat resistance.
  • an organic filler or an inorganic filler having high heat resistance for example, when alumina is used as the inorganic filler, the alumina may be mixed in a state dispersed in a solvent.
  • the composition containing an inorganic filler, the binder of this invention, and a solvent is mentioned. Suitable amounts of these components are as described above.
  • the composition for active material layer can be used to form an active material layer of an electrode of a non-aqueous energy storage device.
  • the active material layer composition can be formulated by appropriately selecting the active material depending on the desired non-aqueous energy storage device.
  • the non-aqueous storage element is a battery
  • examples thereof include active materials that give and receive alkali metal ions that control charging and discharging of the battery.
  • lithium salt particles such as lithium cobaltate and olivine type lithium iron phosphate
  • the negative electrode Graphite, silicon alloy particles, and the like can be used, and the above-described carbon-based filler can be further used to increase electron conductivity.
  • the current collector surface treatment composition can be used to reduce resistance and increase resistance to electrolysis by coating the current collector surface. As a result, it is possible to improve the characteristics and extend the life of the non-aqueous energy storage device.
  • a conductive filler such as a carbon-based filler can be blended as a conductive additive.
  • a composition containing a conductive filler (for example, carbon-based filler), the binder of the present invention, and a solvent can be mentioned. Suitable amounts of these components are as described above.
  • a stirring device such as a propeller mixer, a planetary mixer, a hybrid mixer, a kneader, an emulsifier homogenizer, and an ultrasonic homogenizer.
  • a stirring device such as a propeller mixer, a planetary mixer, a hybrid mixer, a kneader, an emulsifier homogenizer, and an ultrasonic homogenizer.
  • these binders can be applied not only to these examples, but also to members used in parts that come into contact with the electrolyte solution.
  • they are also used as adhesion improvers, sealants, and tab improvers. Can be used.
  • the composition is for a non-aqueous power storage element.
  • the composition can be applied to the surface of the electrode, separator, or current collector of the non-aqueous power storage element, and the layer can be formed by evaporating the solvent.
  • the layer thus formed is excellent in adhesion with the substrate and has a low water content.
  • the layer excellent in electrolyte solution resistance and heat resistance can be formed, and also the surface protection of an electrode or a separator can be performed by formation of a layer.
  • the present invention includes various layers obtained using the composition of the present invention. That is, in the method for forming various layers using the composition of the present invention, when the binder is dissolved in a solvent, at least one composition layer of the composition is formed on the surface of the electrode, separator or current collector. The process of forming above and the process of evaporating a solvent are included. In the case where the binder is a solid that does not dissolve in the solvent, the step of forming at least one composition layer of the composition on the surface of the electrode, separator or current collector, the step of evaporating the solvent, and the solvent In the case where the solid binder is not heat-sealed under the temperature conditions to evaporate, a step of heat-sealing the solid binder is included.
  • composition layer on the electrode, separator or current collector can be carried out by applying the composition to the surface by using a gravure coater, slit die coater, spray coater, dipping or the like.
  • the thickness of the applied composition is preferably in the range of 0.01 to 100 ⁇ m, and more preferably in the range of 0.05 to 50 ⁇ m from the viewpoint of electrical characteristics and adhesion.
  • the thickness after drying the composition layer that is, the thickness of the coat layer is preferably in the range of 0.01 to 100 ⁇ m, and more preferably in the range of 0.05 to 50 ⁇ m.
  • the thickness of the coat layer is in this range, the insulation against electric conduction is sufficient, and the risk of short circuit can be sufficiently reduced.
  • the resistance increases in proportion to the thickness, but within this range, the resistance to ionic conduction becomes too high, and the charge / discharge characteristics of the nonaqueous storage element deteriorate. Easy to avoid.
  • the thickness of the layer can be changed by the design of the non-aqueous power storage element, but the thickness of the applied composition is preferably in the range of 0.01 to 1000 ⁇ m, and the electrical characteristics Further, from the viewpoint of adhesion, the range of 1 to 500 ⁇ m is more preferable.
  • the thickness after drying the composition layer is preferably in the range of 2 to 300 ⁇ m, more preferably in the range of 10 to 200 ⁇ m. Within this range, it is possible to avoid a situation where the thickness of the active material layer is too thin, the battery capacity becomes too small, or the resistance to ion conduction becomes high due to too thick, and the charge / discharge characteristics of the non-aqueous storage element deteriorate. It's easy to do.
  • the thickness of the applied composition is preferably in the range of 0.01 to 100 ⁇ m, and more preferably in the range of 0.05 to 50 ⁇ m from the viewpoint of electrical characteristics and adhesion.
  • the thickness after application is dried that is, the thickness of the surface treatment layer is preferably in the range of 0.01 to 100 ⁇ m, and more preferably in the range of 0.05 to 50 ⁇ m. If it is this range, the thickness of the surface treatment layer will be too thin, the adhesion will be lowered and it will be easy to peel off, or it will be too thick, the resistance to electrical conduction will be high, and the charge / discharge characteristics of the non-aqueous storage element will be It is easy to avoid situations such as decline.
  • solvent evaporation method When the composition contains a solvent, the solvent can be evaporated by heating or applying a vacuum in the formation of each layer.
  • a heating method a hot stove, an infrared heater, a heat roll, or the like can be used. Vacuum drying can be performed by introducing a composition layer of the composition into a chamber and applying a vacuum.
  • a solvent when using a solvent with sublimation property, a solvent can also be evaporated by freeze-drying.
  • the heating temperature and heating time in the heating method are not particularly limited as long as the temperature and time at which the solvent evaporates, and can be set at, for example, 80 to 120 ° C. and 0.1 to 2 hours.
  • each composition excluding the solvent By evaporating the solvent, the components of each composition excluding the solvent are brought into close contact with the electrode, the separator, and the current collector, and when the binder is a hot melt type, heat fusion can be performed.
  • the composition contains a filler, a porous film is thereby formed, and in the case of the composition for a heat resistant coating layer, a heat resistant porous film is formed.
  • the binder when the binder is in the form of particles, the binder can be solidified by heat fusion. In that case, the particles can be thermally fused and solidified at a temperature at which the particles are completely melted. It can also be solidified in the open state. According to the former heat fusion solidification, there are many portions in a continuous phase, and ion conductivity, mechanical strength, and heat resistance are high. According to the latter heat fusion solidification, since there are few portions in the continuous phase, the ion conductivity, mechanical strength and heat resistance through the fused organic particles are inferior. Impregnation can improve ion conductivity.
  • the effect of preventing a short circuit can be enhanced by preventing the linear growth when dentlite is generated.
  • Various known methods such as hot air, hot plate, oven, infrared ray, ultrasonic fusion can be used as the heat fusion method at the time of hot melt, and the density of the protective agent layer can be increased by pressing during heating. it can.
  • various known methods such as cooling gas and pressing against a heat sink can be used for cooling. Further, when heating to a temperature at which the binder is melted, the heating can be performed at a temperature at which the binder is melted for 0.1 to 1000 seconds.
  • the electrode, separator, and current collector having a layer corresponding to each composition can be obtained by the forming method including the above steps. That is, when a heat-resistant coating layer composition is used, a heat-resistant coating layer is formed. When an active material layer composition is used, an active material layer is formed and a current collector surface treatment composition is used. In this case, a surface treatment layer is formed. About a heat-resistant coating layer and a surface treatment layer, when the electrode, the separator, and the electrical power collector are porous bodies, the inside may enter
  • the porosity of these layers is 10% or more, preferably 15 to 90%, more preferably 20 to 80%. The porosity can be calculated from density measurement.
  • the hole When the hole is impregnated with the electrolytic solution, the charge / discharge characteristics of a battery such as a power storage element are improved.
  • the current collector is a porous body, the heat-resistant coating layer and the surface treatment layer are preferably porous bodies, and the surface area per unit area of the current collector can be increased to improve the ionic conductivity.
  • Such a current collector can be preferably applied to an electric double layer type capacitor.
  • the present invention relates to an electrode, a separator or a current collector having the above layer.
  • the nonaqueous storage element provided with the electrode, separator or current collector is not particularly limited, and may be various known batteries (primary battery or secondary battery. For example, a lithium ion battery, Sodium ion battery, calcium ion battery, magnesium ion battery, etc.) and capacitors (electric double layer type capacitors, etc.). Therefore, as an electrode, it does not restrict
  • a coating layer can be formed by applying or impregnating the composition to at least one of these surfaces and evaporating the solvent.
  • the composition can be applied to either the positive electrode or the negative electrode, or both.
  • separators include polypropylene and polyethylene porous materials, cellulose, polypropylene, polyethylene, polyester nonwoven fabrics, etc., which are coated or impregnated on both sides or one side, and the coating layer is formed by evaporating the solvent. can do.
  • the coating layer of the present invention can be used in close contact with the opposing separator or electrode, and the separator and electrode are in close contact before the solvent evaporates and then dried, or hot pressing is performed after battery assembly. By doing so, these members can be brought into close contact with each other.
  • the present invention relates to a non-aqueous storage element including an electrode and / or a separator and / or a current collector having a coating layer formed on the surface thereof using a composition containing the binder of the present invention.
  • the present invention also relates to a non-aqueous storage element including an electrode having an active material layer formed using a composition including the binder of the present invention.
  • the non-aqueous storage element can be manufactured by a known method.
  • the non-aqueous power storage element can be impregnated with an electrolytic solution in a coating layer to impart ionic conductivity, or the coating layer itself can have ionic conductivity and can be incorporated into a battery as a solid electrolyte membrane.
  • Example 1 (Preparation of oxyalkyl group-containing polymer starting from butyl vinyl ether) A 500 ml glass three-necked flask equipped with a stirrer, thermometer, and reflux condenser is prepared.
  • a copolymer monomer 10 parts by weight of vinyl acetate (manufactured by Kanto Chemical), 1 part by weight of butyl vinyl ether (manufactured by Tokyo Chemical Industry), heat Add 0.01 parts by mass of AIBN (reagent name: 2,2′-azobis (isobutyronitrile), manufactured by Wako Pure Chemical Industries, Ltd.) as a radical initiator and 1.3 ml of methanol as a solvent in a three-necked flask and stir at room temperature for 10 minutes. To mix evenly. Thereafter, the mixture was stirred with heating at 70 ° C. for 2 hours. The progress of the reaction was confirmed by following the vinyl group (1400 cm ⁇ 1 ) with FT-IR.
  • reaction mixture was cooled and 100 ml of methanol was added to dissolve the reaction product to obtain a copolymer methanol solution of poly (vinyl acetate / butyl vinyl ether). This solution was used for the next reaction as it was.
  • the ion exchange resin is removed using a nylon mesh (product name: nylon mesh 200, manufactured by Tokyo Screen), the filtrate is transferred to a 500 ml eggplant flask, and the solvent methanol and ion exchange water are distilled off under reduced pressure using a rotary evaporator.
  • a target copolymer of poly (vinyl alcohol / butyl vinyl ether) was obtained.
  • the ratio of the number of vinyl alcohol units to the number of butyl vinyl ether units in the copolymer was 10: 1, and the number average molecular weight was 50000.
  • Example 2 (Preparation of oxyalkyl group-containing polymer starting from butyl allyl ether) A 500 ml glass three-necked flask equipped with a stirrer, a thermometer, and a reflux condenser is prepared.
  • copolymer monomer 10 parts by mass of vinyl acetate (manufactured by Kanto Chemical), 1 part by mass of butyl allyl ether (manufactured by Tokyo Chemical Industry), 0.01 parts by mass of AIBN (reagent name: 2,2′-azobis (isobutyronitrile), manufactured by Wako Pure Chemical Industries, Ltd.) as a thermal radical initiator, and 1.3 ml of methanol as a solvent are placed in a three-necked flask and allowed to stand at room temperature for 10 minutes. The mixture was uniformly mixed by stirring. Thereafter, the mixture was stirred with heating at 70 ° C. for 2 hours.
  • AIBN reaction name: 2,2′-azobis (isobutyronitrile)
  • the progress of the reaction was confirmed by following the allyl group (1400 cm ⁇ 1 ) with FT-IR. After completion of the reaction, the reaction mixture was cooled and 100 ml of methanol was added to dissolve the reaction product, thereby obtaining a copolymer methanol solution of poly (vinyl acetate / butyl allyl ether). This solution was used for the next reaction as it was.
  • Example 3 (Preparation of an oxyalkyl group-containing polymer starting from 2-ethylhexyl vinyl ether) A 500 ml glass three-necked flask equipped with a stirrer, a thermometer and a reflux condenser is prepared.
  • copolymer monomer 10 parts by mass of vinyl acetate (manufactured by Kanto Chemical), 1 part by mass of 2-ethylhexyl vinyl ether (manufactured by Tokyo Chemical Industry)
  • AIBN agent name: 2,2′-azobis (isobutyronitrile), manufactured by Wako Pure Chemical Industries, Ltd.
  • thermal radical initiator 0.01 part by mass of AIBN (reagent name: 2,2′-azobis (isobutyronitrile), manufactured by Wako Pure Chemical Industries, Ltd.) as a thermal radical initiator and 1.3 ml of methanol as a solvent are placed in a three-necked flask, and 10 Mix uniformly by stirring for a minute. Thereafter, the mixture was stirred with heating at 70 ° C. for 2 hours.
  • the progress of the reaction was confirmed by following the vinyl group (1400 cm ⁇ 1 ) with FT-IR. After completion of the reaction, the reaction mixture was cooled and 100 ml of methanol was added to dissolve the reaction product to obtain a copolymer methanol solution of poly (vinyl acetate / 2-ethylhexyl vinyl ether). This solution was used for the next reaction as it was.
  • Example 2 Hydrolysis of oxyalkyl group-containing polymer starting from 2-ethylhexyl vinyl ether
  • the reaction was carried out in the same manner as the hydrolysis of the polymer using butyl vinyl ether as the starting material in Example 1 to obtain a target poly (vinyl alcohol / 2-ethylhexyl vinyl ether) copolymer.
  • the copolymer had a ratio of vinyl alcohol units to 2-ethylhexyl vinyl ether units of 10: 1 and a number average molecular weight of 40,000.
  • Example 4 (Production of alkyl group-containing polymer starting from 1-hexene) A 500 ml glass three-necked flask equipped with a stirrer, a thermometer, and a reflux condenser was prepared.
  • copolymer monomer 10 parts by mass of vinyl acetate (manufactured by Kanto Chemical), 1 part by mass of 1-hexene (manufactured by Tokyo Chemical Industry), 0.01 parts by mass of AIBN (reagent name: 2,2′-azobis (isobutyronitrile), manufactured by Wako Pure Chemical Industries, Ltd.) as a thermal radical initiator, and 1.3 ml of methanol as a solvent are placed in a three-necked flask and allowed to stand at room temperature for 10 minutes. The mixture was uniformly mixed by stirring. Thereafter, the mixture was stirred with heating at 70 ° C. for 2 hours.
  • AIBN reaction name: 2,2′-azobis (isobutyronitrile)
  • the progress of the reaction was confirmed by following the alkene group (1400 cm ⁇ 1 ) with FT-IR. After completion of the reaction, the reaction mixture was cooled and 100 ml of methanol was added to dissolve the reaction product to obtain a copolymer methanol solution of poly (vinyl acetate / hexene). This solution was used for the next reaction as it was.
  • Example 5 (Preparation of oxyalkyl group-containing polymer starting from cyclohexyl vinyl ether) A 500 ml glass three-necked flask equipped with a stirrer, thermometer and reflux condenser is prepared.
  • a copolymer monomer 10 parts by weight of vinyl acetate (manufactured by Kanto Chemical), 1 part by weight of cyclohexyl vinyl ether (manufactured by Tokyo Chemical Industry), heat Add 0.01 parts by mass of AIBN (reagent name: 2,2′-azobis (isobutyronitrile), manufactured by Wako Pure Chemical Industries, Ltd.) as a radical initiator and 1.3 ml of methanol as a solvent in a three-necked flask and stir at room temperature for 10 minutes. To mix evenly. Thereafter, the mixture was stirred with heating at 70 ° C. for 2 hours. The progress of the reaction was confirmed by following the vinyl group (1400 cm ⁇ 1 ) with FT-IR.
  • reaction mixture was cooled and 100 ml of methanol was added to dissolve the reaction product to obtain a copolymer methanol solution of poly (vinyl acetate / cyclohexyl vinyl ether). This solution was used for the next reaction as it was.
  • Example 6 (Preparation of thioalkyl group-containing polymer starting from ethyl vinyl sulfide) A 500 ml glass three-necked flask equipped with a stirrer, thermometer and reflux condenser is prepared.
  • copolymer monomer 10 parts by weight of vinyl acetate (manufactured by Kanto Chemical), 1 part by weight of ethyl vinyl sulfide (manufactured by Tokyo Chemical Industry)
  • thermal radical initiator 0.01 part by weight of AIBN (reagent name: 2,2′-azobis (isobutyronitrile), manufactured by Wako Pure Chemical Industries, Ltd.) and 1.3 ml of methanol as a solvent are placed in a three-necked flask at room temperature. The mixture was uniformly mixed by stirring for 10 minutes. Thereafter, the mixture was stirred with heating at 70 ° C. for 2 hours.
  • the progress of the reaction was confirmed by following the vinyl group (1400 cm ⁇ 1 ) with FT-IR. After completion of the reaction, the reaction mixture was cooled and 100 ml of methanol was added to dissolve the reaction product to obtain a copolymer methanol solution of poly (vinyl acetate / ethyl vinyl sulfide). This solution was used for the next reaction as it was.
  • the mixture was uniformly mixed by stirring at room temperature for 10 minutes. Thereafter, the mixture was stirred with heating at 70 ° C. for 2 hours. The progress of the reaction was confirmed by following the vinyl group (1400 cm ⁇ 1 ) with FT-IR. After completion of the reaction, the reaction mixture was cooled and 100 ml of methanol was added to dissolve the reaction product to obtain a copolymer methanol solution of poly (vinyl acetate / Nn-butylacrylamide). This solution was used for the next reaction as it was.
  • the progress of the reaction was confirmed by following the vinyl group (1400 cm ⁇ 1 ) with FT-IR. After completion of the reaction, the reaction mixture was cooled and 100 ml of methanol was added to dissolve the reaction product to obtain a methanol solution of polyvinyl acetate. This solution was used for the next reaction as it was.
  • Example 9 10 L of ion exchange water and 10 kg of alumina particles were added to a 100 L polypropylene tank and stirred for 12 hours to prepare a 50% dispersion. The dispersion was filtered with a nylon mesh having an opening of 20 ⁇ m, and water removed in the process was added to prepare a dispersion containing 50% alumina particles (average particle size 0.5 ⁇ m).
  • Example 1 20 kg of water was added to 50 kg of the above dispersion, 200 g of poly (vinyl alcohol / butyl vinyl ether) prepared in Example 1 was added thereto, and the mixture was stirred for 6 hours to dissolve, thereby obtaining Composition 1.
  • the content of alumina among the components excluding the solvent was 96.1% by mass.
  • Example 10 to 14 Compositions 2 to 6 were obtained as Examples 10 to 14 in the same manner as in Example 9, except that 200 g of the polymer shown in Table 1 was used instead of 200 g of poly (vinyl alcohol / butyl vinyl ether). In the composition, the content of alumina among the components excluding the solvent was 96.1% by mass.
  • composition of composition 9 20 kg of water was added to 50 kg of the dispersion, and 200 g of poly (vinyl alcohol / butylacrylic acid) obtained in Reference Example 7 was added and stirred for 6 hours. The composition could not be prepared.
  • Comparative Example 2 A composition 10 was obtained as Comparative Example 2 in the same manner as in Example 9, except that 200 g of the polymer shown in Table 1 was used instead of 200 g of poly (vinyl alcohol / butyl vinyl ether).
  • composition 11 was obtained as Comparative Example 3.
  • the content of alumina among the components excluding the solvent was 96.1% by mass.
  • Examples 18 to 23 and Comparative Examples 4 to 5 are lithium ion secondary batteries in which a coating layer is formed on the negative electrode using the composition, and the negative electrode, the positive electrode, and the separator are used.
  • Example 18 Manufacture of positive electrode
  • PVdF polyvinylidene fluoride
  • LCO lithium cobaltate
  • Cell seed C-5H 1140 parts
  • Acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd .
  • Denka Black HS-100 120 parts, NMP 5400 parts added, until the liquid temperature is kept below 30 ° C.
  • composition 1 for active material layer This was coated on a rolled aluminum current collector (manufactured by Nippon Foil Co., Ltd .; width 300 mm, thickness 20 ⁇ m) with a width of 180 mm and a thickness of 200 ⁇ m, and dried in a 130 ° C. hot air oven for 30 seconds. This was roll-pressed at a linear pressure of 530 kgf / cm. The thickness of the positive electrode active material layer after pressing was 22 ⁇ m.
  • the composition 1 is coated on the negative electrode using a gravure coater so that the dry thickness is 5 ⁇ m, heated at 100 ° C. for 60 seconds, and the thickness of the battery electrode or the microporous membrane separator coat layer is 5 ⁇ m A negative electrode having a layer was produced.
  • the positive electrode and the negative electrode having a coating layer are cut at 40 mm ⁇ 50 mm so that the active material layer is not coated on both ends with a width of 10 mm on the short side, and the positive electrode is in the part where the metal is exposed.
  • An aluminum tab and a nickel tab were joined to the negative electrode by resistance welding.
  • a microporous membrane separator (manufactured by Celgard; # 2400) was cut to a width of 45 mm and a length of 120 mm, folded back into three pieces, and sandwiched so that the positive electrode and the negative electrode faced each other, and this was aluminum having a width of 50 mm and a length of 100 mm
  • the laminate cell was sandwiched between two folds, and the tab sandwiched the sealant in the tar part, and the sealant part and the side perpendicular to it were heat laminated to form a bag. This was put in a vacuum oven at 100 ° C.
  • Lithium ion secondary batteries were produced as Examples 19 to 23 and Comparative Examples 4 to 5 in the same manner as in Example 18 except that the composition shown in Table 2 was used instead of Composition 1.
  • Example 24 Manufacture of negative electrode
  • a negative electrode (without a coating layer) was produced by the method of Example 18.
  • a positive electrode was produced by the method of Example 18, and then a positive electrode having a coat layer was produced using the composition 1 in the same manner as in Example 18 in which the coat layer was formed on the negative electrode.
  • a lithium ion secondary battery was manufactured in the same manner as in Example 18 except that a positive electrode having a coat layer was used as the positive electrode and a negative electrode having no coat layer was used as the negative electrode.
  • Lithium ion secondary batteries were produced as Examples 25 to 29 and Comparative Examples 6 to 7 in the same manner as in Example 24 except that the composition shown in Table 2 was used instead of the composition 1.
  • Example 30 Manufacture of negative electrode and positive electrode
  • a negative electrode (without a coating layer) and a positive electrode (without a coating layer) were produced by the method of Example 18.
  • the composition 1 was applied to a microporous membrane separator (manufactured by Celgard Corp .; # 2400) using a gravure coater so that the dry thickness was 5 ⁇ m, heated at 60 ° C. for 60 seconds, and the coating layer thickness was 2 ⁇ m A separator having a coating layer was produced.
  • a lithium ion secondary battery was produced in the same manner as in Example 18, except that a microporous membrane separator having a coating layer was used as the microporous membrane separator and a negative electrode having no coating layer was used as the negative electrode.
  • Examples 31 to 35, Comparative Examples 8 to 9 Lithium ion secondary batteries were produced as Examples 31 to 35 and Comparative Examples 8 to 9 in the same manner as in Example 30, except that the composition shown in Table 2 was used instead of the composition 1.
  • Example 36 and Comparative Example 10 are lithium ion secondary batteries in which a coating layer is formed on the negative electrode using the composition, and this negative electrode, positive electrode, and separator are used.
  • a lithium ion secondary battery was produced as Example 36 and Comparative Example 10 in the same manner as in Example 18 except that the composition shown in Table 2 was used and a nonwoven fabric separator was used instead of the porous membrane separator. did.
  • Example 37 and Comparative Example 11 are lithium ion secondary batteries in which a coating layer is formed on the positive electrode using the composition, and the positive electrode, the negative electrode, and the separator are used.
  • a lithium ion secondary battery was produced as Example 37 and Comparative Example 11 in the same manner as in Example 24 except that the composition shown in Table 2 was used and a nonwoven fabric separator was used instead of the porous membrane separator. did.
  • Example 38 and Comparative Example 12 are lithium ion secondary batteries in which a coating layer is formed on a separator using the composition, and this separator, positive electrode, and negative electrode are used.
  • a lithium ion secondary battery was produced as Example 38 and Comparative Example 12 in the same manner as in Example 30 except that the composition shown in Table 2 was used and a nonwoven fabric separator was used instead of the porous membrane separator. did.
  • Comparative Example 13 A lithium ion secondary battery was manufactured as Comparative Example 13 in the same manner as in Example 18 except that a negative electrode having no coating layer was used as the negative electrode. Comparative Example 13 is an example of a lithium ion secondary battery in which no composition is used and any of the positive electrode, the negative electrode, and the microporous membrane separator does not have a coating layer.
  • Comparative Example 14 A lithium ion secondary battery was produced as Comparative Example 14 in the same manner as Comparative Example 13, except that a nonwoven fabric separator was used instead of the microporous membrane separator. Comparative Example 14 is an example of a lithium ion secondary battery in which no composition is used and any of the positive electrode, the negative electrode, and the nonwoven fabric separator does not have a coating layer.
  • Example 39 instead of 520 parts of a 15% NMP solution of PVdF as a binder for the positive electrode active material (manufactured by Kureha Corporation; Kureha KF Polymer # 1120), 78 parts of the poly (vinyl alcohol / butyl vinyl ether) copolymer of Example 1 was used. This is an example of a lithium ion secondary battery produced in the same manner as Comparative Example 13 except that the composition for active material layer 2 was produced.
  • Example 40 Into a 10 L polypropylene tank, 1 L of ion-exchanged water was added, and 50 g of the poly (vinyl alcohol / butyl vinyl ether) copolymer of Example 1 was added with stirring and dissolved by stirring for 12 hours. Thereto was added 65 g of acetylene black (Denka Black HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.), and the mixture was further stirred for 12 hours to prepare a collector surface treatment composition 1.
  • acetylene black Denki Kagaku Kogyo Co., Ltd.
  • This conductive composition 1 was applied to an aluminum current collector foil to a thickness of 0.5 ⁇ m after drying and dried at 120 ° C. for 10 minutes.
  • Lithium ion 2 prepared in the same manner except that the composition 2 for collector surface treatment was prepared using the polyvinyl alcohol of Comparative Example 4 instead of the poly (vinyl alcohol / butyl vinyl ether) copolymer of Example 40. This is an example of a secondary battery.
  • Example 41 Example 9 except that 0.1 kg of a silane coupling agent (KBE-403, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 10 L of ion exchange water in a 100 L polypropylene tank, and alumina was added after stirring for 10 minutes.
  • the composition 12 was obtained in the same manner as the composition 1 in the above.
  • Example 42 After adding 10 kg of ion-exchanged water and 0.1 kg of silane coupling agent (Shin-Etsu Chemical Co., Ltd., KBM403) to a 100 L polypropylene tank, adding 10 kg of alumina particles, and stirring for 12 hours to prepare a 50% dispersion Then, it was heated and dried in a 150 ° C. oven for 24 hours, and then the obtained dried product was stirred for 12 hours with a stirring lyi machine (manufactured by Ishikawa Factory, No. 6R No. B type) to obtain surface-treated alumina.
  • a composition 13 was obtained in the same manner as the composition 1 of Example 9 except that this surface-treated alumina was used as alumina particles.
  • composition 14 was prepared using an acrylic copolymer (manufactured by Daido Kasei Kogyo Co., Ltd., POVACOAT Type F) instead of the copolymer of poly (vinyl alcohol / butyl vinyl ether) of Example 35.
  • POVACOAT Type F the copolymer of poly (vinyl alcohol / butyl vinyl ether) of Example 35.
  • 5 is an example of a lithium ion secondary battery manufactured in the same manner as in Example 30.
  • the discharge rate was obtained from the initial capacity, and the discharge capacity for each discharge rate was measured.
  • the charge was increased to 4.2 V with a constant current over 10 hours each time, and then charged with a 4.2 V constant voltage for 2 hours.
  • the battery was discharged at a constant current to 3.5 V over 10 hours, and the discharge capacity at this time was set to a discharge capacity of 0.1 C.
  • the battery was charged in the same manner, and then discharged at a current value at which discharge was completed in 1 hour from the discharge capacity obtained at 0.1 C, and the discharge capacity at that time was obtained and used as the discharge capacity at 1 C.
  • the discharge dose at 3C, 5C, and 10C was obtained, and the capacity retention rate when the discharge capacity at 0.1C was 100% was calculated.
  • each composition was cast on a polyethylene terephthalate film so that the film thickness after drying was 50 ⁇ m, dried at 60 ° C. ⁇ 1 h, cut into 10 mm pieces, and the water content of 20 test pieces. The rate was determined.
  • the moisture content was determined by measuring water vaporized by heating with a coulometric Karl Fischer. The heating conditions were 150 ° C. ⁇ 10 minutes, and Carl Fisher used a CA-200 model manufactured by Mitsubishi Analitech.
  • the moisture contents described in Examples 18 to 38, Examples 41 to 42 and Comparative Examples 4 to 12 and 15 to 16 in the table are the moisture contents measured for the compositions 1 to 6 and 10 to 14 by the above method. It corresponds to the rate.
  • Example 39 corresponds to the moisture content when the composition 2 for active material layer is used.
  • Example 40 and Comparative Example 15 correspond to the moisture content when the current collector surface treatment compositions 1 and 2 were used, respectively.
  • the water content described in Comparative Examples 13 to 14 corresponds to the water content in the case of using the composition 1 for active material layer (used for producing a positive electrode active material layer; see Example 18).
  • the present invention it is possible to form a layer that can improve the adhesion to a substrate such as an electrode, a separator, and a current collector, and has a low moisture content and does not deteriorate the high-speed charge / discharge characteristics of a nonaqueous storage element. Since the agent is provided, the industrial utility is high.

Abstract

電極やセパレーターといった基材に対する密着性を向上しつつ、非水系蓄電素子の高速充放電特性を低下させない層を形成することができる結着剤を提供する。式(1)で示される重合体を含む結着剤を含む非水系蓄電素子用結着剤、この結着剤を用いた非水系蓄電素子用電極、セパレーター又は集電体、この非水系蓄電素子用電極、セパレーター及び集電体の少なくともいずれかを備えた非水系蓄電素子である。

Description

非水系蓄電素子用結着剤及び非水系蓄電素子
 本発明は、非水系蓄電素子用結着剤に関し、この結着剤を用いて得られる非水系蓄電素子用電極、セパレーター又は集電体、この非水系蓄電素子用電極、セパレーター及び集電体の少なくともいずれかを備えた非水系蓄電素子に関するものである。
 非水系の蓄電素子は水系と比較して高い電圧を取り出すことが可能であるため、高いエネルギー密度でエネルギーを蓄積することができ、モバイル機器や自動車用の電源として利用価値が高い。例えば、リチウムイオン一次電池及び二次電池は、携帯電話やノートパソコン等の携帯型電子機器の電源として広範に普及しており、電気二重層キャパシタは電動工具の電源や重機のエネルギー回生デバイスとして利用されている。さらに、カルシウムイオン一次電池及び二次電池や、マグネシウムイオン一次電位及び二次電池、ナトリウムイオン一次電池及び二次電池等も高電圧と高エネルギー密度を兼ね備えた蓄電素子として有望である。しかし、これらの非水系蓄電素子は可燃性の物質を電解液として使用するため、正極と負極が短絡することで生じる発熱により発火、爆発に至る危険性を有し、安全性の確保が重要な課題となっている。
 現状の安全性確保として、蓄電素子が発熱した際にポリオレフィンでできているセパレーターの細孔が閉塞し、イオン伝導を遮断するシャットダウン機能が挙げられる。正負極の短絡等の異常が電池に生じた場合、このシャットダウン機能が働くことで、発熱は抑制され、熱暴走を防ぐことができる。
 しかしながら、ポリオレフィン製のセパレーターの融点は200℃以下であり、発熱が激しい場合はセパレーターがシュリンクしてしまい、正負極の直接接触を引き起こし、熱暴走に至るという危険性がある。また、ポリオレフィン製のセパレーターは、活物質や金属異物より柔らかく、かつ厚みが10~30μm程度で非常に薄いため、蓄電素子の製造プロセスにおいて活物質の脱落や金属異物の混入が生じると、セパレーターを突き破って正負極の電気的接触を引き起こすという危険性がある。このように、非水系蓄電素子の安全性は十分ではなく、更なる安全性の向上が要求されている。
 上記の問題に対する改善策として、集電体に塗布される活物質塗布層に、耐熱性の高い多孔質膜層を形成し、活物質が電極から脱落するのを防ぐ方法が考案されている(特許文献1)。この多孔質膜は無機フィラーを骨格とするため、融点が低いセパレーターが短絡時の温度上昇により溶けてシュリンクした場合も、正負極の接触を防ぎ、熱暴走を抑制することができるため、耐熱コート層としての効果がある。また、活物質や金属異物が混入したとしても剛直な無機フィラーの膜の突き刺し強度は高く、セパレーターを突き破って穴が開くことを防ぐ効果がある。
 また、このような耐熱コート層はデンドライトの発生を抑えたり、電解液を保持する層としても機能したりする。また、電極表面の不均一さに伴う電極反応の集中に由来する局所的な劣化の加速を耐熱コート層が緩衝均一化することで、長期間使用した場合の活物質層の劣化を防ぐ効果もある。
 耐熱コート層に、ポリフッ化ビニリデンの他、耐電解液性を有するゴム樹脂が提案されている(特許文献2)。
 また、耐熱コート層を形成するために親水性基と疎水性基を有する結着剤が提案されており、この結着剤と無機粒子と溶媒を混合し耐熱層を形成する為の組成物の作製に用いられている(特許文献3)。
 このような結着剤の他にも、活物質の結着剤や集電体の下地処理剤の結着剤も提案されており、前述の耐熱コート層組成物の他に、活物質と結着剤とを含む組成物、下地処理剤組成物等の各組成物が提案されている(特許文献4、5)。
 また、電池内部に水が入ると充放電特性や電池寿命が悪くなる問題があるため、作製される部材は含水率が低いものが求められている(特許文献6)。
特開平7-220759号公報 特開2009-54455号公報 特表2010-520095号公報 特開平8-157677号公報 特開2010-146726号公報 特開2010-232048号公報
 しかしながら、上記で挙げた従来技術では、耐電解液性を上げるために、結着剤に親水性基を導入すると、結着剤を含む組成物を用いて、電極、セパレーター、集電体といった基材上に層を形成した場合に、層の含水率が高くなる傾向がある。疎水性基を導入すれば、層の含水率を下げることはできるが、耐電解液性が悪くなる傾向がある。さらに、極端に親水性基と疎水性基の極性の差が大きく、また、バランスが悪いと、層が基材から剥離しやすく、含水率も高くなりやすい。
 これらの原因としては、以下が考えられる。まず、組成物を基材に適用する際に、基材表面に対するぬれ性が十分確保できないと、基材表面で組成物がはじかれ、形成される層の密着性が不十分となりやすい。
 また、結着剤が親水性基と疎水性基の両方を有すると、水分子の周りを親水性基が取り囲み、その周りを疎水性基がさらに取り囲むことで、水が抜けにくくなり、その結果、含水率が高くなりやすい。この水が電極活物質や電解液成分と反応し、非水系蓄電素子の特性を低下させやすいことが挙げられる。
 このように、従来の組成物を利用して層を形成した場合、基材と層の密着性が不十分で、層の含水率が高くなりやすく、非水系蓄電素子に用いると、充放電特性の低下を招くばかりでなく、層の脱落によって耐熱性が確保できなくなる問題や水分と反応して非水系蓄電素子の寿命が短くなるといった問題があった。
 本発明の目的は、電極、セパレーター、集電体といった基材に対して、良好な密着性を有し、含水率が低い層を形成するために用いられる結着剤を提供することであり、好適には耐熱性をも有する層を形成するために用いられる結着剤を提供することである。本発明の結着剤を用いて形成される層は、基材との密着性に優れ、含水率も低いため、非水系蓄電素子の寿命が短くなったり、高速充放電特性が低下するといった事態を回避することができる。
 また、本発明の目的は、この結着剤を用いた非水系蓄電素子用電極、セパレーター又は集電体を提供することであり、この非水系蓄電素子用電極、セパレーター及び集電体の少なくともいずれかを備えた非水系蓄電素子を提供することである。
 ここで、本発明の結着剤を用いて、電極、セパレーター、集電体といった基材の表面に形成される層を「コート層」ということとする。コート層の少なくとも一部が、基材に入り込んでいてもよい。本発明の結着剤はコート層のみならず、活物質層の形成にも使用することができる。「層」は、「活物質層」及び「コート層」を包含する。
 本発明者は、結着剤として、特定の官能基を有する化合物に由来する単位を含む重合体を用いることで、電極、セパレーター、集電体といった基材に対して、良好な密着性を有し、含水率が低い層の形成が可能であることを見出し、さらに層に耐熱性をもたせることも可能であることを見出して、本発明を完成させた。
 本発明の要旨は、以下のとおりである。
本発明1は、
 式(1):
Figure JPOXMLDOC01-appb-C000003

(式中、
 Rは、独立して、非置換であるか、又はハロゲン原子及び/若しくは水酸基で置換されている、炭素原子数1~40のアルキル基(ここで、該アルキル基中の-CH-は、酸素原子、硫黄原子及びシクロアルカンジイルから選択される基で置き換えられていてもよい);あるいは-OR(ここで、Rは、環員数が3~10の炭素環又はヘテロ環の1価基である)で示される基であり、
 x、y及びzの合計を1とした場合、
 0≦x<1、0≦y<1、0<z<1であり、
 x、y及びzで括られる単位は、ブロックで存在していても、ランダムで存在していてもよく、
 Rは、独立して、水素原子又はフッ素原子である)
で示される重合体を含む非水系蓄電素子用結着剤に関する。
 式(1)において、好ましくは0≦x<0.5、0≦y<1、0<z<1であり、より好ましくは0≦x<0.1、0≦y<1、0<z<1である。zは、例えば、0.0001以上とすることができ、好ましくは0.0005以上である。
 式(1)の重合体の数平均分子量は、100~8000000とすることができ、好ましくは300~7000000であり、より好ましくは500~5000000である。ここで、数平均分子量は、ゲルパーミエーションクロマトグラフィー法により求めた値である。
 本発明2は、式(1)におけるRが、-(CH-O-(CH-CH
(ここで、
 mは0~3の任意の整数であり、
 nは0~10の任意の整数である)
で示される基である、本発明1の非水系蓄電素子用結着剤に関する。
 本発明3は、式(1)におけるRが、-(CH-O-(CH-(CH-(CHCH)-(CH-CH
(ここで、
 mは0~3の任意の整数であり、
 nは0~10の任意の整数であり、
 hは0~10の任意の整数であり、
 kは0~10の任意の整数である)
で示される基である、本発明1の非水系蓄電素子用結着剤に関する。
 本発明4は、式(1)におけるRが、-(CH-CH (nは0~10の任意の整数である)
で示される基である、本発明1の非水系蓄電素子用結着剤に関する。
 本発明5は、式(1)におけるRが、-ORであって、Rは、下記式:
Figure JPOXMLDOC01-appb-C000004

(ここで、Xは、-CH-、-NH-、-O-又は-S-である)
で示される基である、本発明1の非水系蓄電素子用結着剤に関する。
 本発明6は、式(1)におけるRが、-(CH-S-(CH-CH
(ここで、
 mは0~3の任意の整数であり、
 nは0~10の任意の整数である)
で示される基である、本発明1の非水系蓄電素子用結着剤に関する。
 本発明7は、ナトリウム、リチウム、カリウム及びアンモニアからなる群より選択される少なくとも1種を1~10,000ppm含む、本発明1~6のいずれかの非水系蓄電素子用結着剤に関する。
 本発明8は、本発明1~7のいずれかの非水系蓄電素子用結着剤を用いて形成されるコート層を有する非水系蓄電素子用電極に関する。
 本発明9は、本発明1~7のいずれかの非水系蓄電素子用結着剤を用いて形成される活物質層を有する非水系蓄電素子用電極に関する。
 本発明10は、本発明1~7のいずれかの非水系蓄電素子用結着剤を用いて形成されるコート層を有する非水系蓄電素子用セパレーターに関する。
 本発明11は、本発明1~7のいずれかの非水系蓄電素子用結着剤を用いて形成されるコート層を有する非水系蓄電素子用集電体に関する。
 本発明12は、本発明8又は9の非水系蓄電素子用電極、本発明10の非水系蓄電素子用セパレーター及び本発明11の非水系蓄素子用集電体の少なくともいずれかを備えた非水系蓄電素子に関する。
 本発明13は、非水系二次電池である、本発明12の非水系蓄電素子に関する。
 本発明の非水系蓄電素子用結着剤を用いて、電極、セパレーター、集電体といった基材に対して、良好な密着性を有し、含水率が低い層を形成することができる。本発明の結着剤は、親水性基と疎水性基の極性の差が極端に大きくならない組み合わせを用いており、水分子を取り囲む効果を低減させ、ひいては層から水を抜けやすくすることで含水率の低い層が形成できる。この層を有する電極、セパレーター及び集電体の少なくともいずれかを非水系蓄電素子に用いることで、高速充放電特性の悪化を伴わずに、事故による非水系蓄電素子の圧壊や導電性の異物の混入や熱暴走等によるセパレーターの融解等に伴う正負極のショートを防ぐことができる。好適には、本発明の非水系蓄電素子用結着剤、フィラー及び溶媒を含む組成物を、電極、セパレーター、集電体といった基材に適用し、溶媒を蒸散させることにより、高い耐熱性と共に高いカチオン伝導性を有する層が得られる。
 上記の組成物はセパレーターに塗工すると、セパレーターを構成する成分のポリエチレンもしくはポリプロピレンと膨潤し、さらに乾燥により溶媒を除去することによって密着性を向上させることができる
コート層を有する電池用電極の断面図である。 コート層を有するセパレーターの断面図である。
(A)結着剤
 本発明の結着剤は、上記式(1)で示される重合体(「特定の官能基を含む結着剤」ということがある)を含むことを特徴とする。特定の官能基を含む結着剤は、特定の官能基を有する重合性化合物とラジカル開始剤を混合し、塊状重合、溶液重合、懸濁重合、乳化重合のいずれかの手段により作製することができる。
[特定の官能基を含む結着剤]
 特定の官能基を含む結着剤における、特定の官能基としては、非置換であるか、又はハロゲン原子及び/若しくは水酸基で置換されている、炭素原子数1~40のアルキル基(ここで、該アルキル基中の-CH-は、酸素原子、硫黄原子及びシクロアルカンジイルから選択される基で置き換えられていてもよい);あるいは-OR(ここで、Rは、環員数が3~10の炭素環又はヘテロ環の1価基である)で示される基が挙げられる。特定の官能基を有する重合性化合物として、これらの特定の官能基と不飽和二重結合を有する化合物を使用することができる。
 具体的には、特定の官能基を含む結着剤は、A:任意のオキシアルキル基を有する化合物、B:任意のチオアルキル基を有する化合物及びC:任意のアルキル基を有する化合物からなる群より選択される少なくとも1種の重合性化合物、ラジカル開始剤及び場合により他の重合性化合物を混合し、塊状重合、溶液重合、懸濁重合、乳化重合のいずれかの手段により作製された重合体であることができる。
 A:任意のオキシアルキル基を有する化合物として、アルキルビニルエーテル誘導体、アルキルアリルエーテル誘導体が挙げられ、B:任意のチオアルキル基を有する化合物として、ビニルスルフィド誘導体、アリルスルフィド誘導体が挙げられ、C:任意のアルキル基を有する化合物として、アルケン誘導体、不飽和二重結合含有シクロアルカン誘導体が挙げられる。これらの誘導体は、各々ラジカル開始剤を混合して重合することにより、不飽和二重結合が付加重合した重合体を生成することができる。
 アルキルビニルエーテル誘導体は、特に制限されることはなく、例えばエチルビニルエーテル、プロピルビニルエーテル、イソプロピルビニルエーテル、ブチルビニルエーテル、イソブチルビニルエーテル、2-メトキシプロペン、2-クロロエチルビニルエーテル、2-エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、2,2,2-トリフルオロエチルビニルエーテル、トリエチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、2-ブロモテトラフルオロエチルトリフルオロビニルエーテル、4-(ヒドロキシメチル)シクロヘキシルメチルビニルエーテル、2-(ペルフルオロプロポキシ)ペルフルオロプロピルトリフルオロビニルエーテル、ジエチレングリコールモノビニルエーテル、エチレングリコールモノビニルエーテル、2-(ヘプタフルオロプロポキシ)ヘキサフルオロプロピルトリフルオロビニルエーテル、オクタデシルビニルエーテル、パーフルオロプロポキシエチレン、テトラメチレングリコールモノビニルエーテル、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、アリルビニルエーテルなどがあり、これらの化合物は、単独で用いてもよいし、組み合わせて共重合させてもよい。
 アルキルビニルエーテル誘導体は、酢酸ビニルと共重合させることもできる。この場合、アルキルビニルエーテル誘導体に酢酸ビニルを任意の割合で混合させた後、ラジカル開始剤を用いることにより共重合させ、ポリ(酢酸ビニル/アルキルビニルエーテル)を作製することができる。この共重合体は、酸又は塩基の存在下で加水分解させて、全部又は一部の酢酸ビニル由来の単位を水酸基に変えることができる。なお、加水分解した共重合体には酢酸ビニル由来の単位が残っていてもよいし、残らなくてもよい。
 加水分解した共重合体は結着剤としてそのまま用いてもよいが、精製によりイオン性不純物や未反応のモノマー等を除去して用いることもできる。精製方法としては、イオン交換樹脂によるイオン交換法や、限外ろ過法、透析等があり、これらの手法を単独で用いて精製してもよいし、組み合わせて精製してもよい。
 アルキルアリルエーテル誘導体は、特に制限されることはなく、例えばアリルメチルエーテル、アリルエチルエーテル、アリルエーテル、アクロレインジメチルアセタール、アリルブチルエーテル、1,1,1-トリメチロールプロパンジアリルエーテル、2H-ヘキサフロオロプロピルアリルエーテル、エチレングリコールモノアリルエーテル、グリセロールα,α’-ジアリルエーテル、アリル-n-オクチルエーテル、アリルトリフルオロアセテート、2,2-ビス(アリルオキシメチル)-1-ブタノール等があり、これらの化合物は、単独で用いてもよいし、組み合わせて共重合させてもよい。
 アルキルアリルエーテル誘導体は、酢酸ビニルと共重合させることもできる。この場合、アルキルアリルエーテル誘導体に酢酸ビニルを任意の割合で混合させた後、ラジカル開始剤を用いることにより共重合させ、ポリ(酢酸ビニル/アルキルアリルエーテル)を作製することができる。この共重合体は、酸又は塩基の存在下で加水分解させることで、全部又は一部の酢酸ビニル由来の単位を水酸基に変えることができる。なお、加水分解した共重合体には酢酸ビニル由来の単位が残っていてもよいし、残らなくてもよい。
 加水分解した共重合体は結着剤としてそのまま用いてもよいが、精製によりイオン性不純物や未反応のモノマー等を除去して用いることもできる。精製方法としては、イオン交換樹脂によるイオン交換法や、限外ろ過法、透析等があり、これらの手法を単独で用いて精製してもよいし、組み合わせて精製してもよい。
 ビニル(アリル)スルフィド誘導体としては、特に制限されることはなく、例えばエチルビニルスルフィド、1,1-ビス(メチルチオ)エチレン、アリルメチルスルフィド、アリルプロピルスルフィド、アリルスルフィド等があり、これらの化合物は、単独で用いてもよいし、組み合わせて共重合させてもよい。
 ビニル(アリル)スルフィド誘導体は、酢酸ビニルと共重合させることもできる。この場合、ビニル(アリル)スルフィド誘導体に酢酸ビニルを任意の割合で混合させた後、ラジカル開始剤を用いることにより共重合させ、ポリ(酢酸ビニル/アルキルビニル(アリル)スルフィド)を作製することができる。この共重合体は、酸又は塩基の存在下で加水分解させることで、全部又は一部の酢酸ビニル由来の単位を水酸基に変えることができる。なお、加水分解した共重合体には酢酸ビニル由来の単位が残っていてもよいし、残らなくてもよい。
 加水分解した共重合体は結着剤としてそのまま用いてもよいが、精製によりイオン性不純物や未反応のモノマー等を除去することもできる。精製は、イオン交換樹脂によるイオン交換法や、限外ろ過法、透析等があり、これらの手法を単独で用いて精製してもよいし、組み合わせて精製してもよい。
 アルケン誘導体としては、特に制限されることはなく、例えば1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン等があり、これらの化合物は、単独で用いてもよいし、組み合わせて共重合させてもよい。
 アルケン誘導体は、酢酸ビニルと共重合させることもできる。この場合、(シクロ)アルケン誘導体に酢酸ビニルを任意の割合で混合させた後、ラジカル開始剤を用いることにより共重合させ、ポリ(酢酸ビニル/(シクロ)アルケン)を作製することができる。この共重合体は、酸又は塩基の存在下で加水分解させることで、全部又は一部の酢酸ビニル由来の単位を水酸基に変えることができる。なお、加水分解した共重合体には酢酸ビニル由来の単位が残っていてもよいし、残らなくてもよい。
 不飽和二重結合含有シクロアルカン誘導体としては、、特に制限されることはなく、例えばビニルシクロペンタン、ビニルシクロヘキサン、アリルシクロヘキサン、メチレンシクロペンタン、メチレンシクロヘキサン、プレゴン等があり、これらの化合物は、単独で用いてもよいし、組み合わせて共重合させてもよい。
 不飽和二重結合含有シクロアルカン誘導体は、酢酸ビニルと共重合させることもできる。この場合、不飽和二重結合含有シクロアルカン誘導体に酢酸ビニルを任意の割合で混合させた後、ラジカル開始剤を用いることにより共重合させ、ポリ(酢酸ビニル/不飽和二重結合含有シクロアルカン誘導体)を作製することができる。この共重合体は、酸又は塩基の存在下で加水分解させることで、全部又は一部の酢酸ビニル由来の単位を水酸基に変えることができる。なお、加水分解した共重合体には酢酸ビニル由来の単位が残っていてもよいし、残らなくてもよい。
 特定の官能基を含む結着剤の作製においては、他の重合性化合物を使用することができ、具体的には、エチレン性不飽和二重結合を有する化合物(ただし、A~Cの化合物を除く)が挙げられる。具体的には、(メタ)アクリル酸エステル誘導体、(メタ)アクリルアミド誘導体が挙げられる。
 (メタ)アクリル酸エステル誘導体としては、特に制限されることはなく、例えばメチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イソブチルアクリレート、ヘキシルアクリレート、アリルアクリレート、2-メトキシエチルアクリレート、テトラエチレングリコールジアクリレート、メチル 3,3-ジメチルアクリレート、2-(2-エトキシエトキシ)エチルアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、2-ヒドロキシエチルアクリレート、2,2,2-トリフルオロエチルアクリレート、1,4-ビス(アクリロイルオキシ)ブタン、ネオペンチルグリコールジアクリレート、イソアミルアクリレート、メチルアンゲレート、1,6-ビス(アクリロイオキシ)ヘキサン、1,5-ビス(アクリロイオキシ)ペンタン、2-シアノエチルアクリレート、エチル3-メチルクロトネート、メチルチグレート、テトラ(メタ)アクリロキシエタン、メチルメタクリレート、エチルメタクリレート、イソブチルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ネオペンチルグリコールジメタクリレート、2-エトキシエチルメタクリレート、ジエチレングリコールモノメチルエーテルメタクリレート等があり、これらの化合物は、単独で用いてもよいし、組み合わせて共重合させてもよい。
 (メタ)アクリルアミド誘導体としては、特に制限されることはなく、例えばN-t-ブチルアクリルアミド、N-イソプロピルアクリルアミド、N,N-エチルアクリルアミド、N-t-ブチルメタクリルアミド、N-[3-(ジメチルアミノ)プロピル]アクリルアミド、N-(3-ジメチルアミノプロピル)メタクリルアミド、N-ドデシルアクリルアミド、N-(2-ヒドロキシエチル)アクリルアミド、ジアセトンアクリルアミド、6-アクリルアミドへキサン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、4-アクリロイルモルホリン等があり、これらの化合物は、単独で用いてもよいし、組み合わせて共重合させてもよい。
 上記の他、クロトン酸ビニル、アリルメチルカーボネート、アリルエチルカーボネート、2-アリルオキシベンズアルデヒド、1,1,1-トリメチロールプロパンジアリルエーテル、2,2-ビス(4-アリルオキシ-3,5-ジブロモフェニル)プロパン、グリセロールα,α’-ジアリルエーテル、アリルクロロホルメート、アリルクロロアセテート、マレイン酸ジアリル、ジアリルカルボネート、アリルトリフルオロアセテート、2-メチル-2-プロペニルアセテート、2,2-ビス(アリルオキシメチル)-1-ブタノール、3-ブテン-2-イルアセテート、アリルメタクリレート、アリルグリシジルエーテル、アリルシアノアセテート、フェニルビニルスルフィド、4-メチル-5-ビニルチアゾール、アリルジメチルジチオカルバメート、アリルフェニルスルフィド、S-アリルシステイン、アリル1-ピロリジノンカルボジチオエート、ビス(4-メタクリロイルチオフェニル)スルフィド等を使用することができる。
 (メタ)アクリル酸エステル誘導体、(メタ)アクリルアミド誘導体等の他の重合性化合物は、A:任意のオキシアルキル基を有する化合物、B:任意のチオアルキル基を有する化合物及びC:任意のアルキル基を有する化合物からなる群より選択される少なくとも1種の重合性化合物とともに、酢酸ビニルと共重合させることもできる。この場合、酢酸ビニルと共重合させる場合、他の重合性化合物及びA~Cの少なくとも1種の重合性化合物に酢酸ビニルを任意の割合で混合させた後、ラジカル開始剤を用いることにより共重合させ、他の重合性化合物由来の単位が導入された共重合体を作製することができる。共重合体は結着剤としてそのまま用いてもよいが、精製により未反応のモノマー等を除去することもできる。精製は、限外ろ過法、透析等があり、これらの手法を単独で用いて精製してもよいし、組み合わせて精製してもよい。
 ただし、(メタ)アクリル酸エステル誘導体由来の単位、(メタ)アクリルアミド誘導体由来の単位を有する共重合体は、酸又は塩基の存在下で加水分解すると、酢酸ビニル由来の単位が水酸基に変わる反応とともに(メタ)アクリル酸エステル由来の単位、(メタ)アクリルアミド由来の単位の加水分解が同時に起こる場合があり、その反応条件は制限される。
 酢酸ビニルとともに共重合させる場合、A~Cの少なくとも1種の重合性化合物と酢酸ビニルは、モル比で、0.001:9.999~9.999:0.001とすることができ、好ましくは、0.005:9.995~9.995:0.005である。
 ラジカル開始剤としては、光ラジカル開始剤と熱ラジカル開始剤が挙げられる。これらのラジカル開始剤は、単独で用いてもよいし、複数を組み合わせて使用してもよい。
 光ラジカル開始剤としては、特に制限されることはなく、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、4-t-ブチル-トリクロロアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン等のアセトフェノン系;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール等のベンゾイン系;ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系;チオキサントン、2-クロルチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジエチルチオキサントン、及び2,4-ジイソプロピルチオキサントン等のチオキサントン系;1-フェニル-1,2-プロパンジオン-2(O-エトキシカルボニル)オキシム、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、メチルフェニルグリオキシレート、9,10-フェナントレンキノン、カンファーキノン、ジベンゾスベロン、2-エチルアントラキノン、4’,4’’-ジエチルイソフタロフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、1-[4-(3-メルカプトプロピルチオ)フェニル]-2-メチル-2-モルホリン-4-イル-プロパン-1-オン、1-[4-(10-メルカプトデカニルチオ)フェニル]-2-メチル-2-モルホリン-4-イルプロパン-1-オン、1-(4-{2-[2-(2-メルカプト-エトキシ)エトキシ]エチルチオ}フェニル)-2-メチル-2-モルホリン-4-イルプロパン-1-オン、1-[3-(メルカプトプロピルチオ)フェニル]-2-ジメチルアミノ-2-ベンジルプロパン-1-オン、1-[4-(3-メルカプトプロピルアミノ)フェニル]-2-ジメチルアミノ-2-ベンジルプロパン-1-オン、1-[4-(3-メルカプトプロポキシ)フェニル]-2-メチル-2-モルホリン-4-イル-プロパン-1-オン、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス[2,6-ジフルオロ-3-(1H-ピロール1-イル)フェニル]チタニウム、α-アリルベンゾイン、α-アリルベンゾインアリールエーテル、1,2-オクタンジオン、1-4-フェニルチオ)-2-(O-ベンゾイルオキシム)]エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール3-イル]-1-(O-アセチルオキシム)、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、及び1,3-ビス(p-ジメチルアミノベンジリデン)アセトン等を例示することができる。
 光ラジカル開始剤のうち、ベンゾフェノン、ミフィラーケトン、ジベンゾスベロン、2-エチルアントラキノン、カンファーキノン、イソブチルチオキサントンのような分子間水素引き抜き型の光開始剤に対しては、電子供与体(水素供与体)を開始助剤として添加できる。このような電子供与体として、活性水素を有する脂肪族アミン及び芳香族アミンが挙げられる。脂肪族アミンとして、具体的には、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミンが例示できる。芳香族アミンとして、具体的には、4,4’-ジメチルアミノベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、2-ジメチルアミノ安息香酸エチル、及び4-ジメチルアミノ安息香酸エチルが例示できる。
 熱ラジカル開始剤としては、特に制限されることはなく、4-アジドアニリン塩酸塩、及び4,4’-ジチオビス(1-アジドベンゼン)等のアジ化物;4,4’-ジエチル-1,2-ジチオラン、テトラメチルチウラムジスルフィド、及びテトラエチルチウラムジスルフィド等のジスルフィド;オクタノイルペルオキシド、3,5,5-トリメチルヘキサノイルペルオキシド、デカノイルペルオキシド、ラウロイルペルオキシド、コハク酸ペルオキシド、ベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、及びm-トルイルペルオキシドのようなジアシルペルオキシド;ジ-n-プロピルペルオキシジカーボネート、ジイソプロピルペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート、及びジ-(2-エトキシエチル)ペルオキシジカーボネートのようなペルオキシジカーボネート;t-ブチルペルオキシイソブチラート、t-ブチルペルオキシピバラート、t-ブチルペルオキシオクタノアート、オクチルペルオキシオクタノアート、t-ブチルペルオキシ-3,5,5-トリメチルヘキサノアート、t-ブチルペルオキシネオドデカノアート、オクチルペルオキシネオドデカノアート、t-ブチルペルオキシラウラート、及びt-ブチルペルオキシベンゾアートのようなペルオキシエステル;ジ-t-ブチルペルオキシド、t-ブチルクミルペルオキシド、ジクミルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、及び2,5-ジメチル-2,5-ジ(t-ブチル)ヘキサンのようなジアルキルペルオキシド;2,2-ビス(t-ブチルペルオキシ)ブタン、1,1-ビス(t-ブチルペルオキシ)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、及びN-ブチル-4,4-ビス(t-ブチルペルオキシ)バレレートのようなペルオキシケタール;メチルエチルケトンペルオキシドのようなケトンペルオキシド;p-メンタンヒドロペルオキシド、及びクメンヒドロペルオキシド等の過酸化物;2,2’-アゾビス(4-メトキシ2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチルニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、及び2-フェニルアゾ-4-メトキシ2,4-ジメチルバレロニトリル等のアゾニトリル類;2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[N-(4-ヒドロキシフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(4-フェニルメチル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]等のアゾアミド類;2,2’-アゾビス(2,4,4-トリメチルペンタン)、及び2,2’-アゾビス(2-メチルプロパン)等のアルキルアゾ化合物類;並びに、その他ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(4-シアノバレリックアシッド)、及び2,2’-アゾビス[2-(ヒドロキシメチル)プロピオネート]等のアゾ化合物;ビピリジン;遷移金属を有する開始剤(例えば、塩化銅(I)及び塩化銅(II));メチル2-ブロモプロピオネート、エチル2-ブロモプロピオネート、エチル2-ブロモイソブチレート等のハロゲン化合物が例示できる。
 熱ラジカル発生剤に対して、分解促進剤を併用することができる。分解促進剤として、チオ尿素誘導体、有機金属錯体、アミン化合物、ホスフェート化合物、トルイジン誘導体、アニリン誘導体が例示できる。
 チオ尿素誘導体として、N,N’-ジメチルチオ尿素、テトラメチルチオ尿素、N,N’-ジエチルチオ尿素、N,N’-ジブチルチオ尿素、ベンゾイルチオ尿素、アセチルチオ尿素、エチレンチオ尿素、N,N’-ジエチレンチオ尿素、N,N’-ジフェニルチオ尿素、及びN,N’-ジラウリルチオ尿素が挙げられ、好ましくは、テトラメチルチオ尿素又はベンゾイルチオ尿素である。有機金属錯体として、ナフテン酸コバルト、ナフテン酸バナジウム、ナフテン酸銅、ナフテン酸鉄、ナフテン酸マンガン、ステアリン酸コバルト、ステアリン酸バナジウム、ステアリン酸銅、ステアリン酸鉄、及びステアリン酸マンガン等が例示できる。アミン化合物として、アルキル基又はアルキレン基の炭素数が1~18の整数で表わされる1~3級のアルキルアミン類又はアルキレンジアミン類、ジエタノールアミン、トリエタノールアミン、ジメチルベンジルアミン、トリスジメチルアミノメチルフェノール、トリスジエチルアミノメチルフェノール、1,8-ジアザビシクロ(5,4,0)-7-ウンデセン、1,8-ジアザビシクロ(5,4,0)-7-ウンデセン,1,5-ジアザビシクロ(4,3,0)-ノネン-5,6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)-7-ウンデセン、2-メチルイミダゾール、及び2-エチル-4-メチルイミダゾール等が例示できる。ホスフェート化合物として、メタクリルホスフェート、ジメチクリルホスフェート、モノアルキルアシッドホスフェート、ジアルキルホスフェート、トリアルキルホスフェート、ジアルキルホスファイト、及びトリアルキルホスファイト等が例示できる。トルイジン誘導体として、N,N-ジメチル-p-トルイジン、及びN,N-ジエチル-p-トルイジン等が例示できる。アニリン誘導体として、N,N-ジメチルアニリン、及びN,N-ジエチルアニリン等が例示できる。
 光ラジカル開始剤及び/又は熱ラジカル発生剤は、特定の官能基を有する重合性化合物100質量部に対して、0.01~50質量部で使用するのが好ましく、より好ましくは0.1~20質量部、さらに好ましくは1~10質量部である。光ラジカル開始剤及び熱ラジカル発生剤を併用するときは、上記の量は、光ラジカル開始剤及び熱ラジカル発生剤の合計の含有量である。また、電子供与体の量は、光ラジカル開始剤100質量部に対して、10~500質量部であるのが好ましい。分解促進剤の量は、熱ラジカル発生剤100質量部に対して、1~500質量部であるのが好ましい。
 特定の官能基を含む結着剤は、A:任意のオキシアルキル基を有する化合物、B:任意のチオアルキル基を有する化合物及びC:任意のアルキル基を有する化合物からなる群より選択される少なくとも1種の重合性化合物、ラジカル開始剤及び場合により他の重合性化合物を混合し、塊状重合、溶液重合、懸濁重合、乳化重合のいずれかの手段により作製することができる。
[固形の高分子物質を溶媒に溶かした液状の結着剤]
 本発明には、特定の官能基を含む結着剤に加え、固形の高分子物質を溶媒に溶かした液状の結着剤を併用することができる。溶媒は、固形の高分子物質を溶かすことができる溶媒から適宜選択することができ、2種類以上を混合して用いることもできる。
 固形の高分子物質を溶媒に溶かした液状の結着剤は、溶液であっても、懸濁液であってもよい。
 固形の高分子物質として、各種公知の結着剤を用いることができる。具体的には、完全ケン化ポリビニルアルコール(株式会社クラレ製;クラレポバールPVA-124、日本酢ビ・ポバール株式会社製;JC-25等)、部分ケン化ポリビニルアルコール(株式会社クラレ製;クラレポバールPVA-235、日本酢ビ・ポバール株式会社製;JP-33等)、変性ポリビニルアルコール(株式会社クラレ製;クラレKポリマーKL-118、クラレCポリマーCM-318、クラレRポリマーR-1130、クラレLMポリマーLM-10HD、日本酢ビ・ポバール株式会社製;DポリマーDF-20、アニオン変性PVA AF-17、アルキル変性PVA ZF-15、カルボキシメチルセルロース(ダイセル工業株式会社製;H-CMC、DN-100L、1120、2200、日本製紙ケミカル株式会社製;MAC200HC等)、ヒドロキシエチルセルロース(ダイセル工業株式会社製;SP-400等)、ポリアクリルアミド(MTアクアポリマー株式会社製;アコフロックA-102)、ポリオキシエチレン(明成化学工業株式会社製;アルコックスE-300)、エポキシ樹脂(ナガセケムテックス株式会社製;EX-614、ジャパンケムテック株式会社製;エピコート5003-W55等)、ポリエチレンイミン(日本触媒株式会社製;エポミンP-1000)、ポリアクリル酸エステル(MTアクアポリマー株式会社製;アコフロックC-502等)、並びに糖類及びその誘導体(和光純薬工業株式会社;キトサン5、日澱化学株式会社製;エステル化澱粉乳華、グリコ株式会社製;クラスタ-デキストリン)、ポリスチレンスルホン酸(東ソー有機化学株式会社製;ボリナスPS-100等)等が挙げられ、これらの水溶性高分子を水に溶かした状態で用いることができる。
 固形の高分子物質として、アクリル酸エステル重合エマルジョン(昭和電工株式会社製;ポリゾールF-361、F-417、S-65、SH-502)、及びエチレン・酢酸ビニル共重合エマルジョン(株式会社クラレ製;パンフレックスOM-4000NT、OM-4200NT、OM-28NT、OM-5010NT)等のエマルジョンを挙げることもでき、これらは水に懸濁させた状態で用いることができる。また、固形の高分子物質として、ポリフッ化ビニリデン(株式会社クレハ製;クレハKF重合体#1120)、変性ポリビニルアルコール(信越化学工業株式会社製;シアノレジンCR-V)、変性プルラン(信越化学工業株式会社製;シアノレジンCR-S)等の高分子も挙げることができ、これらをN-メチルピロリドンに溶かした状態で用いることができる。
 固形の高分子物質を溶媒に溶かした液状の結着剤として、水溶性高分子を水に溶かした液状の結着剤、及びエマルジョンを水に懸濁させた結着剤が好ましい。
 固形の高分子物質を溶媒に溶かした液状の結着剤は、加熱及び/又は減圧することで溶媒を除去し固化させることができる。このような結着剤は、層中に電解液を含浸しゲル電解層を形成することができ、層のイオン伝導性を高めることもできる。
 本発明の結着剤に占める、特定の官能基を含む結着剤の割合は、結着剤100質量%中、0.01~99.99質量%であることが好ましく、より好ましくは0.1~99.9%である。特定の官能基を含む結着剤のみを使用してもよい。ここで、固形の高分子物質を溶媒に溶かした液状の結着剤については、固形の高分子物質の量に基づく。
 本発明の結着剤は、溶媒、フィラー、活物質、コアシェル型の発泡剤、塩、イオン性を有する液体、カップリング剤、安定剤、防腐剤及び界面活性剤等と組み合わせた組成物とし、非水系蓄電素子の電極、セパレーター、集電体といった基材に適用することができる。
(B)溶媒
 組成物は、本発明の結着剤に加えて、溶媒を含むことができる。溶媒は、固形の高分子物質を溶媒に溶かした液状の結着剤に含まれる溶媒、無機フィラーがゾル等の形態の場合の媒体としての溶媒も包含する。
 溶媒は、塗工装置に合わせて粘度調整等の目的を行なうために、任意の比率で配合することできる。溶媒としては、特に制限されることなく、炭化水素(プロパン、n-ブタン、n-ペンタン、イソヘキサン、シクロヘキサン、n-オクタン、イソオクタン、ベンゼン、トルエン、キシレン、エチルベンゼン、アミルベンゼン、テレビン油、ピネン等)、ハロゲン系炭化水素(塩化メチル、クロロホルム、四塩化炭素、塩化エチレン、臭化メチル、臭化エチル、クロロベンゼン、クロロブロモメタン、ブロモベンゼン、フルオロジクロロメタン、ジクロロジフルオロメタン、ジフルオロクロロエタン等)、アルコール(メタノール、エタノール、1-プロパノール、イソプロパノール、1-ブタノール、1-ペンタノール、イソアミルアルコール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、2-オクタノール、1-ドデカノール、ノナノール、シクロヘキサノール、グリシドール等)、エーテル(ジエチルエーテル、ジクロロジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジイソアミルエーテル、メチルフェニルエーテル、エチルベンジルエーテル)、フラン(テトラヒドロフラン、フルフラール、2-メチルフラン、シネオール、メチラール)、ケトン(アセトン、メチルエチルケトン、メチル-N-プロピルケトン、メチル-N-アミルケトン、ジイソブチルケトン、ホロン、イソホロン、シクロヘキサノン、アセトフェノン等)、エステル(ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸-n-アミル、シクロヘキサン酢酸メチル、酪酸メチル、酪酸エチル、酪酸プロピル、ステアリン酸ブチル、炭酸プロピレン、炭酸ジエチル、エチレンカーボネート、ビニレンカーボネート等)、多価アルコールとその誘導体(エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、メトキシメトキシエタノール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノエチルエーテル、2-(2-ブトキシエトキシ)エタノール等)、脂肪酸及びフェノール(ギ酸、酢酸、無水酢酸、プロピオン酸、無水プロピオン酸、酪酸、イソ吉草酸、フェノール、クレゾール、o-クレゾール、キシレノール等)、窒素化合物(ニトロメタン、ニトロエタン、1-ニトロプロパン、ニトロベンゼン、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジアミルアミン、アニリン、モノメチルアニリン、o-トルイジン、o-クロロアニリン、ジクロヘキシルアミン、ジシクロヘキシルアミン、モノエタノールアミン、ホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、アセトニトリル、ピリジン、α-ピコリン、2,4-ルチジン、キノリン、モルホリン等)、硫黄、リン、その他化合物(二硫化炭素、ジメチルスルホキシド、4,4-ジエチル-1,2-ジチオラン、ジメチルスルフィド、ジメチルジスルフィド、メタンチオール、プロパンスルトン、リン酸トリエチル、リン酸トフェニル、炭酸ジエチル、炭酸エチレン、ホウ酸アミル等)、無機溶媒(液体アンモニア、シリコーンオイル等)、水等の液体が例示できる。
 溶媒は、塗工性の観点から、1~10,000mPa・sの粘度となる量が好ましい。粘度としては2~5000mPa・sがより好ましく、3~1,000mPa・sがさらに好ましい。このような粘度とするための溶媒の種類及び含有量は適宜決定できる。本発明において、粘度は、コーンプレート型回転粘度計(回転数50rpm)で、25℃にて測定した値である。
(C)フィラー
 組成物は、本発明の結着剤に加えて、フィラーを含むことができる。フィラーは単独で用いてもよいし、複数を組み合わせてもよい。
 特に、耐熱コート層を形成するために組成物を用いる場合は、多孔質膜であるコート層が生成するので、フィラーを組成物に含有させることが好ましい。この場合、耐熱性の点から、無機フィラーが好ましい。組成物における結着剤の量は、フィラー間に発生する空隙を埋めず、さらに実用上十分な量の添加量であるのが好ましい。この場合、結着剤の量は、フィラー100質量部に対して、0.01~49質量部が好ましく、より好ましくは0.05~30質量部、さらに好ましくは0.1~20質量部である。
 また、集電体の表面処理のために組成物を用いる場合は、炭素系フィラーのような導電性のフィラーを組成物に含有させることが好ましい。この場合、結着剤の量は、フィラー100質量部に対して、0.1~100質量部が好ましく、より好ましくは0.5~80質量部、さらに好ましくは1~70質量部である。
 無機フィラーとして、アルミナを用いることができる。アルミナの製造方法としては、溶媒に溶解させたアルミニウムアルコキシドを加水分解する手法、硝酸アルミニウム等の塩を熱分解し、粉砕する手法等が挙げられるが、本発明におけるアルミナの手法は、特に制限されることなく、どのような手法で製造したものも使用することができる。アルミナは単独で用いてもよいし、複数を組み合わせて用いてもよい。
 他の無機フィラーとしては、特に制限されることなく、シリカ、ジルコニア、ベリリア、酸化マグネシウム、チタニア、及び酸化鉄等の金属酸化物の粉末;コロイダルシリカやチタニアゾル、アルミナゾル等のゾル、タルク、カオリナイト、及びスメクタイト等の粘土鉱物;炭化ケイ素、及び炭化チタン等の炭化物;窒化ケイ素、窒化アルミニウム、及び窒化チタン等の窒化物;窒化ホウ素、ホウ化チタン、及び酸化ホウ素等のホウ化物;ムライト等の複合酸化物;水酸化アルミニウム、水酸化マグネシウム、及び水酸化鉄等の水酸化物;チタン酸バリウム、炭酸ストロンチウム、ケイ酸マグネシウム、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウム、及びガラス等が挙げられる。
 これらの無機フィラーは、粉体で使用してもよいし、シリカゾルやアルミゾルのような水分散コロイドの形やオルガノゾルのような有機溶媒に分散した状態で使用してもよい。
 無機フィラーの粒子の大きさは、0.001~100μmの範囲が好ましく、さらに好ましくは0.005~10μmの範囲である。平均粒子径で、0.005~50μmの範囲が好ましく、さらに好ましくは0.01~8μmの範囲である。平均粒子径及び粒度分布は、例えばレーザー回折/散乱式粒度分布測定装置で測定でき、具体的には株式会社堀場製作所製LA-920等を用いることができる。
 無機フィラーは、アルミナを含むことが好ましく、無機フィラー中、アルミナが50質量%以上であることが好ましく、アルミナ100質量%であってもよい。他の無機フィラーを併用する場合、他の無機フィラーの量は、アルミナと他の無機フィラーを合わせた全無機成分100質量%のうち、0.1~49.9質量%とすることができ、好ましくは0.5~49.5質量%、より好ましくは1~49質量%である。
 有機フィラーとしては、アクリル樹脂やエポキシ樹脂、ポリイミド等の高分子のうち三次元的に架橋して実質塑性変形しない高分子やセルロースの粒子やファイバー、フレーク等が挙げられる。有機フィラーは、単独で用いても、複数を組み合わせて用いてもよい。
 フィラーは、導電性であっても、非導電性であってもよい。集電体の表面処理のための組成物の用いる場合は、導電性フィラーが好ましい。耐熱コート層の形成に組成物を用いる場合は、導電性フィラーを絶縁性が損なわれない程度に添加できる。
 導電性フィラーとしては、Ag、Cu、Au、Al、Mg、Rh、W、Mo、Co、Ni、Pt、Pd、Cr、Ta、Pb、V、Zr、Ti、In、Fe、Zn等の金属フィラー(形状は限定されず、球状、フレーク状粒子又はコロイド等が挙げられる);Sn-Pb系、Sn-In系、Sn-Bi系、Sn-Ag系、Sn-Zn系等の合金フィラー(球状粒子、フレーク状粒子);アセチレンブラック、ファーネスブラック、チャンネルブラック等のカーボンブラック、グラファイト、グラファイト繊維、グラファイトフィブリル、カーボンファイバー、活性炭、木炭、カーボンナノチューブ、フラーレン等の炭素系フィラー;酸化亜鉛、酸化スズ、酸化インジウム、酸化チタン(二酸化チタン、一酸化チタン等)等のうち格子欠陥の存在により余剰電子が生成し導電性を示す金属酸化物フィラーが挙げられる。導電性フィラーの表面は、カップリング剤等で処理されていてもよい。
 導電性フィラーは、導電性、液性の観点から、0.001~100μmの範囲が好ましく、更に好ましくは0.01~10μmの範囲である。導電性フィラーを含む組成物により、形成される導電性のコート層に凹凸を付け、アンカー効果で活物質層との密着性を上げるために、上述の範囲よりも大きい導電性フィラーを用いることもできる。その場合は、上記範囲の導電性フィラーに対し、1~50重量%、より好ましくは5~10重量%の量で、大きい導電性の粒子を複合することができる。このような導電性フィラーとして、例えば炭素繊維(帝人株式会社製;ラヒーマR-A101=繊維径8μm、繊維長30μm)等が挙げられる。導電性フィラーは、平均粒子径で、0.005~50μmの範囲が好ましく、さらに好ましくは0.01~8μmの範囲である。
 耐熱コート層の組成物には、無機フィラーを使用することが好ましく、その他のフィラーと無機フィラーを併用する場合、無機フィラー100質量部に対して、50質量部以下で含むことができ、30質量部以下が好ましく、より好ましくは20質量部以下であり、さらに好ましくは10質量部以下である。集電体処理用の組成物には、導電フィラーを使用することが好ましい。
(D)その他の成分
 組成物は、本発明の目的を損なわない範囲で、活物質、コアシェル型の発泡剤、塩、イオン性を有する液体、カップリング剤、安定剤、防腐剤、及び界面活性剤等を含むことができる。
[活物質]
 また、非水系蓄電素子の電極の活物質層を形成するために組成物を用いる場合は、結着剤及び活物質を組成物に含有させることが好ましい。この場合、結着剤の量は、活物質100質量部に対して、0.01~500質量部が好ましく、より好ましくは0.1~200質量部、さらに好ましくは0.5~100質量部である。
 活物質は、所望の非水系蓄電素子により、適宜、選択することができる。非水系蓄電素子が電池の場合、充放電をつかさどるアルカリ金属イオンを授受する活物質が挙げられ、リチウム二次電池の正極活物質層の形成には、リチウム塩(例えば、コバルト酸リチウム、オリビン型リン酸鉄リチウム等)が挙げられ、電気二重層キャパシタの電極活物質層の形成には、活性炭等が挙げられる。活物質の形状、量は、所望の活物質層に応じて、適宜、選択することができる。例えば、粒子状の活物質を使用する場合、その大きさは0.001~100μmの範囲とすることができ、さらに好ましくは0.005~10μmの範囲である。平均粒子径で、0.005~50μmの範囲が好ましく、さらに好ましくは0.01~8μmの範囲である。
[コアシェル型の発泡剤]
 組成物は、コアシェル型の発泡剤を含むことができる。このような発泡剤として、EXPANCEL(日本フィライト株式会社製)等が挙げられる。一般に、コアシェル型の発泡剤のシェルは有機物であるから、電解液に対する長期信頼性が乏しく、そのため、この発泡剤をさらに無機物で被覆したものを用いることもできる。このような無機物として、アルミナ、シリカ、ジルコニア、ベリリア、酸化マグネシウム、チタニア、及び酸化鉄等の金属酸化物;コロイダルシリカやチタニアゾル、アルミナゾル等のゾル;シリカゲル、及び活性アルミナ等のゲル;ムライト等の複合酸化物;水酸化アルミニウム、水酸化マグネシウム、水酸化鉄等の水酸化物:並びに、チタン酸バリウム、金、銀、銅、ニッケル等の金属を例示できる。
 一定の温度になると軟化するシェルと、加熱による蒸発等によって体積が膨張する材料からなるコアを組み合わせたコアシェル型発泡剤を用いることによって、電池が熱暴走した際に、発泡剤が発泡することで、電極間距離を広げることができ、これによりシャットダウン機能を発揮することができる。さらに、シェル部が大きく膨張することで、電極間距離を広げることができ、これによりショート等を防ぐことができる。また、発熱が収まっても膨張したシェル部がその形状を維持するため、再び電極間が狭まり再ショートを防ぐこともできる。また、コアシェル型発泡剤を無機物で被覆することで、充放電時の電気分解の影響を低減でき、さらに無機物表面の活性水素基がイオン伝導する際のカウンターイオンとなることで、イオン伝導性を効率よく高めることもできる。
 組成物は、コアシェル型発泡剤を、結着剤100質量部に対して、1~99質量部で含むことができ、10~98質量部が好ましい。上記コアシェル型発泡剤と上記無機フィラーを併用する場合、コアシェル型発泡剤は、無機フィラー及び結着剤の合計100質量部に対して、99質量部以下で含むことができ、1~99質量部が好ましく、より好ましくは10~98質量部、さらに好ましくは20~97質量部である。
[塩]
 組成物は、各種イオン源となる塩を含むことができる。これにより、イオン伝導性を向上させることができる。使用する電池の電解質を加えることもできる。リチウムイオン電池の場合は、電解質として、水酸化リチウム、ケイ酸リチウム、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウム、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(ペンタフルオロエタンスルホニル)イミド、及びトリフルオロメタンスルホン酸リチウム等を例示でき、ナトリウムイオン電池の場合は、水酸化ナトリウム、及び過塩素酸ナトリウム等を例示できる。カルシウムイオン電池の場合は、電解質として、水酸化カルシウム、及び過塩素酸カルシウム等を例示できる。マグネシウムイオン電池の場合は、電解質として、過塩素酸マグネシウム等を例示できる。電気二重層キャパシタの場合は、電解質として、四フッ化ホウ酸テトラエチルアンモニウム、トリエチルメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、及びテトラエチルアンモニウムビス(トリフルオロメタンスルホニル)イミド等を例示できる。
 組成物は、上記塩を、無機フィラー及び結着剤の合計100質量部に対して、300質量部以下で含むことができ、0.1~300質量部が好ましく、より好ましくは0.5~200質量部であり、さらに好ましくは1~100質量部である。上記塩は、粉体で添加したり、多孔質にして添加したり、配合成分に溶解させて用いても良い。
[イオン性を有する液体]
 組成物は、イオン性を有する液体を含むことができる。イオン性を有する液体は、上記塩が溶媒に溶解した溶液又はイオン性液体であり得る。塩が溶媒に溶解した溶液として、六フッ化リン酸リチウム又はホウフッ化テトラエチルアンモニウム等の塩をジメチルカーボネート等の溶媒に溶解した溶液が例示できる。
 イオン性液体としては、1,3-ジメチルイミダゾリウムメチルスルフェート、1-エチル-3-メチルイミダゾリウムビス(ペンタフルオロエチルスルフォニル)イミド、1-エチル-3-メチルイミダゾリウムブロミド等のイミダゾリウム塩誘導体;3-メチル-1-プロピルピリジミウムビス(トリフルオロメチルスルフォニル)イミド、1-ブチル-3-メチルピリジニウムビス(トリフルオロメチルスルフォニル)イミド等のピリジニウム塩誘導体;テトラブチルアンモニウムヘプタデカフルオロオクタンスルホネート、テトラフェニルアンモニウムメタンスルホネート等のアルキルアンモニウム誘導体;テトラブチルホスホニウムメタンスルホネート等のホスホニウム塩誘導体;ポリアルキレングリコールと過塩素酸リチウムの複合体等の複合化導電性付与剤等が例示できる。
 組成物は、イオン性を有する液体を、結着剤100質量部に対して、0.01~40質量部で含むことができ、0.1~40質量部が好ましい。上記イオン性を有する液体と無機フィラーを併用する場合、イオン性を有する液体を、無機フィラー100質量部に対して、40質量部以下で含むことができ、0.01~40質量部が好ましく、より好ましくは0.1~30質量部であり、さらに好ましくは0.5~5質量部である。
[カップリング剤]
 組成物は、カップリング剤を含むことができる。シラン系カップリング剤としては、フッ素系のシランカップリング剤として、(トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)トリエトキシシラン、臭素系のシランカップリン剤として、(2-ブロモ-2-メチル)プロピオニルオキシプロピルトリエトキシシラン、オキセタン変性シランカップリング剤として、東亞合成株式会社製カップリング剤(商品名:TESOX)、あるいは、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン(市販品として、KBM-403(信越化学工業株式会社製))、β-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシキシプロピルトリメトキシシラン、γ-メタクリロキシキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、シアノヒドリンシリルエーテル等のシランカップリング剤が挙げられ、これらシランカップリング剤が予め加水分解され-SiOHを有するものを用いることもできる。
 チタン系カップリング剤として、トリエタノールアミンチタネート、チタニウムアセチルアセトネート、チタニウムエチルアセトアセテート、チタニウムラクテート、チタニウムラクテートアンモニウム塩、テトラステアリルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、イソプロピルトリオクタノルチタネート、イソプロピルジメタクリイソステアロイルチタネート、チタニウムラクテートエチルエステル、オクチレングリコールチタネート、イソプロピルトリイソステアロイルチタネート、トリイソステアリルイソプロピルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、テトラ(2-エチルヘキシル)チタネート、ブチルチタネートダイマー、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、テトラ-i-プロピルチタネート、テトラ-n-ブチルチタネート、ジイソステアロイルエチレンチタネート等を挙げることができる。
 カップリング剤として、チタン系カップリング剤、及び、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシキシプロピルトリメトキシシラン、γ-メタクリロキシキシプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、及びシアノヒドリンシリルエーテルが好ましい。シラン系カップリング剤及びチタン系カップリング剤は、1種類、又は2種類以上を組み合わせて使用することができる。
 このようなカップリング剤は、電池電極表面やセパレーター表面と相互作用を起こすことで、密着力を向上させることができる。また、フィラーの表面をこれらカップリング剤で被覆することで、カップリング剤分子による排斥効果でフィラーの間に隙間ができ、その間をイオンが伝導することでイオン伝導性を向上させることもできる。また、無機フィラー、シリコーン粒子やポリオレフィン粒子などのフィラーの表面をカップリング剤で被覆することで、これらのフィラーを疎水化させることができるため、消泡性をより向上させることができる。また、フィラーの表面の活性水素をシランカップリング剤で置換することで表面吸着水の量を減らすことができるため、非水系蓄電素子の特性低下の原因になる水分の量を減らすことができる。
 組成物は、カップリング剤を、結着剤100質量部に対して、0.01~500質量部で含むことができ、0.1~100質量部が好ましい。
[安定剤]
 組成物は、安定剤を含むことができる。このような安定剤としては、特に制限されることなく、2,6-ジ-t-ブチルフェノール、2,4-ジ-t-ブチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,4-ビス-(N-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン等のフェノール系酸化防止剤;アルキルジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン等の芳香族アミン系酸化防止剤;ジラウリル-3,3’-チオジプロピオネート、ジトリデシル-3,3’-チオジプロピオネート、ビス[2-メチル-4-{3-N-アルキルチオプロピオニルオキシ}-5-t-ブチルフェニル]スルフィド、2-メルカプト-5-メチルベンゾイミダゾール等によって例示されるサルファイド系ヒドロペルオキシド分解剤;トリス(イソデシル)ホスファイト、フェニルジイソオクチルホスファイト、ジフェニルイソオクチルホスファイト、ジ(ノニルフェニル)ペンタエリトリトールジホスファイト、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスファートジエチルエステル、ナトリウムビス(4-t-ブチルフェニル)ホスファート等のリン系ヒドロペルオキシド分解剤;フェニルサリチラート、4-t-オクチルフェニルサリチラート等のサリチレート系光安定剤;2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸等のベンゾフェノン系光安定剤;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾールー2-イル)フェノール]等のベンゾトリアゾール系光安定剤;フェニル-4-ピペリジニルカーボネート、セバシン酸ビス-[2,2,6,6-テトラメチル-4-ピペリジニル]等のヒンダードアミン系光安定剤;[2,2’-チオ-ビス(4-t-オクチルフェノラート)]-2-エチルヘキシルアミン-ニッケル(II)等のNi系光安定剤;シアノアクリレート系光安定剤;シュウ酸アニリド系光安定剤;フラーレン、水添フラーレン、水酸化フラーレン等のフラーレン系光安定剤等を挙げることができる。これらの安定剤は、単独で用いてもよいし、複数を組み合わせて用いてもよい。
 組成物は、安定剤を、結着剤100質量部に対して、0.01~10質量部で含むことができ、0.05~5質量部が好ましい。上記安定剤と無機フィラーを併用する場合、安定剤を、無機フィラー100質量部に対して、10質量部以下で含むことができ、0.01~10質量部が好ましく、より好ましくは0.05~5質量部、さらに好ましくは0.1~1質量部である。
[防腐剤]
 組成物は、防腐剤を含むことができる。これにより、組成物の保存安定性を調節できる。
 防腐剤としては、安息香酸、サリチル酸、デヒドロ酢酸、ソルビン酸のような酸、安息香酸ナトリウム、サリチル酸ナトリウム、デヒドロ酢酸ナトリウム、及びソルビン酸カリウムのような塩、2-メチル-4-イソチアゾリン-3-オン、及び1,2-ベンゾイソチアゾリン-3-オンのようなイソチアゾリン系防腐剤、メタノール、エタノール、イソプロピルアルコール、及びエチレングリコール等のアルコール類、パラヒドロキシ安息香酸エステル類、フェノキシエタノール、塩化ベンザルコニウム、塩酸クロルヘキシジン等が挙げられる。
 これらの防腐剤は、単独で用いてもよいし、複数を組み合わせて用いてもよい。
 組成物は、防腐剤を、結着剤100質量部に対して、0.0001~1質量部で含むことができる。上記防腐剤と無機フィラーを併用する場合、防腐剤を、無機フィラー100質量部に対して、1質量部以下で含むことができ、0.0001~1質量部が好ましく、より好ましくは0.0005~0.5質量部である。
[界面活性剤]
 組成物は、組成物のぬれ性や消泡性を調節する目的で、界面活性剤を含むことができる。また、組成物は、イオン伝導性を向上する目的で、イオン性の界面活性剤を含むことができる。
 界面活性剤としては、アニオン界面活性剤、両面界面活性剤、非イオン(ノニオン)界面活性剤のいずれも使用することができる。
 アニオン界面活性剤としては、石ケン、ラウリル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルベンゼンスルホン酸塩(例えば、ドデシルベンゼンスルホン酸塩)、ポリオキシエチレンアルキルエーテルリン酸、ポリオキシエチレンアルキルフェニルエーテルリン酸、N-アシルアミノ酸塩、α-オレフィンスルホン酸塩、アルキル硫酸エステル塩、アルキルフェニルエーテル硫酸エステル塩、メチルタウリン酸塩、トリフルオロメタンスルホン酸塩、ペンタフルオロエタンスルホン酸塩、ヘプタフルオロプロパンスルホン酸塩、及びノナフルオロブタンスルホン酸塩等が挙げられ、カウンターカチオンとしてはナトリウムイオンやリチウムイオン等を用いることができる。リチウムイオン電池においてはリチウムイオンタイプの界面活性剤がより好ましく、ナトリウムイオン電池においてはナトリウムイオンタイプの界面活性剤がより好ましい。
 両性界面活性剤としては、塩酸アルキルジアミノエチルグリシン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、ヤシ油脂肪酸アミドプロピルベタイン、脂肪酸アルキルベタイン、スルホベタイン、アミンオキシド等が挙げられる。
 非イオン(ノニオン)界面活性剤としては、ポリエチレングリコールのアルキルエステル型化合物、トリエチレングリコールモノブチルエーテル等のアルキルエーテル型化合物、ポリオキシソルビタンエステル等のエステル型化合物、アルキルフェノール型化合物、アセチレン骨格型化合物、フッ素型化合物、シリコーン型化合物等が挙げられる。
 界面活性剤は、単独で用いてもよいし、複数を組み合わせて用いてもよい。
 組成物は、界面活性剤を、結着剤100質量部に対して、0.01~50質量部で含むことができ、0.05~20質量部が好ましい。上記界面活性剤を無機フィラーと併用する場合、無機フィラー100質量部に対して、50質量部以下で含むことができ、0.01~50質量部であるのが好ましく、より好ましくは0.05~20質量部、さらに好ましくは0.1~10質量部である。
 組成物は、非水系蓄電素子用であり、具体的には、電極又はセパレーターを保護するために用いることができる。本発明の組成物を用いて、電極又はセパレーターの少なくとも表面にコート層に形成することができるが、その一部が電極又はセパレーター内部に入り込んでいてもよい。
[組成物の製造方法]
 組成物は、上記成分を混合し撹拌することによって作製することができ、下記3つの組成物を例に説明する。
(1)耐熱コート層を形成するための組成物(耐熱コート層用組成物)
(2)活物質を形成するための組成物(活物質層用組成物)
(3)集電体の表面処理ための組成物(集電体表面処理用組成物)
(1)耐熱コート層組成物は、耐熱性を有する層をセパレーター、電極、集電体上に形成するのに使用することができる。特に、セパレーターや電極表面にイオン伝導性はあるが、電気絶縁性のコート層を形成し、絶縁性を高めることで電池の安全性を高めることができる。耐熱コート層組成物は、耐熱性の高い有機フィラーや無機フィラーをさらに含むことができる、無機フィラーとして例えばアルミナを使用する場合、アルミナは溶媒に分散させた状態で混合してもよい。具体的には、無機フィラー、本発明の結着剤、溶媒を含む組成物が挙げられる。これらの成分の好適な量に関しては、上述のとおりである。
(2)活物質層用組成物は、非水系蓄電素子の電極の活物質層を形成するのに使用することができる。活物質層用組成物は、所望の非水系蓄電素子により、適宜、活物質を選択して配合物することができる。非水系蓄電素子が電池の場合、電池の充放電をつかさどるアルカリ金属イオンを授受する活物質が挙げられ、例えば、正極ではコバルト酸リチウムやオリビン型リン酸鉄リチウムなどのリチウム塩の粒子、負極ではグラファイトや珪素合金粒子などを用いることができ、電子伝導性を高めるために前述の炭素系フィラーをさらに用いることもできる。具体的には、活物質、本発明の結着剤、溶媒を含む組成物が挙げられる。これらの成分の好適な量に関しては、上述のとおりである。
(3)集電体表面処理用組成物は、集電体表面に塗工することで、抵抗を下げ、電気分解に対する耐性を高めるために使用することができる。その結果、非水系蓄電素子の特性の向上と寿命の延長を達成することができる。集電体表面処理用組成物には、炭素系フィラーをはじめとする導電性フィラーを導電助剤として配合することができる。具体的には、導電性フィラー(例えば、炭素系フィラー)、本発明の結着剤、溶媒を含む組成物が挙げられる。これらの成分の好適な量に関しては、上述のとおりである。
 これら組成物を撹拌する場合、プロペラ式ミキサー、プラネタリーミキサー、ハイブリッドミキサー、ニーダー、乳化用ホモジナイザー、及び超音波ホモジナイザー等の撹拌装置を用いて行うことができる。また、必要に応じて加熱又は冷却しながら撹拌することもできる。なお、本結着剤はこれらの例だけではなく、電解液に接する部分に用いられる部材に適応可能で、ラミネートフィルムタイプの電池では密着性向上剤、シール剤、タブの密着向上剤などにも用いることができる。
[組成物による各組成物層の形成方法]
 組成物は、非水系蓄電素子用であり、具体的には、非水系蓄電素子の電極、セパレーター又は集電体表面に塗布し、溶媒を蒸散させることで層を形成することができる。このようにして形成される層は、基材との密着性に優れ、かつ含水率が低い。また、耐電解液性や耐熱性に優れた層を形成することができ、さらに、層の形成により、電極又はセパレーターの表面保護を行なうことができる。
 本発明は、本発明の組成物を用いて得られる各種層を包含する。すなわち、本発明の組成物を用いた各種層の形成方法は、結着剤が溶媒に溶解した状態である場合、電極、セパレーター又は集電体表面に、組成物の組成物層を少なくとも1層以上形成する工程、及び溶媒を蒸散させる工程を含む。また、結着剤が溶媒に溶解しない固体の場合は、電極、セパレーター又は集電体表面に、組成物の組成物層を少なくとも1層以上形成する工程、溶媒を蒸散させる工程、及び前記溶媒を蒸散させる温度条件で固体の結着剤が熱融着しない場合は、前記固体の結着剤を加熱融着する工程を含む。
(組成物層の形成方法)
 電極、セパレーター又は集電体への組成物層の形成は、その表面にグラビアコーターやスリットダイコーター、スプレーコーター、ディッピング等を利用することにより、組成物を適用することにより行うことができる。
(1)耐熱コート層用組成物の場合、適用した組成物の厚みは0.01~100μmの範囲が好ましく、電気特性及び密着性の観点から0.05~50μmの範囲がさらに好ましい。本発明においては、組成物層を乾燥させた後の厚み、つまりコート層の厚みが、0.01~100μmの範囲が好ましく、0.05~50μmの範囲がさらに好ましい。コート層の厚みが、この範囲であれば、電気伝導に対する絶縁性が充分で、ショートの危険性を十分に減らすことができる。また、コート層の厚みが増すと、抵抗が厚みに比例して上がるが、この範囲であれば、イオン伝導に対する抵抗が高くなりすぎて、非水系蓄電素子の充放電特性が低下するといった事態を回避しやすい。
(2)活物質層用組成物の場合、非水系蓄電素子の設計により、層の厚みを変化させることができるが、適用した組成物の厚みは0.01~1000μmの範囲が好ましく、電気特性及び密着性の観点から1~500μmの範囲がさらに好ましい。本発明においては、組成物層を乾燥させた後の厚み、つまり活物質層の厚みが、2~300μmの範囲が好ましく、10~200μmの範囲がさらに好ましい。この範囲であれば、活物質層の厚みが薄すぎて、電池容量が小さくなったり、厚すぎて、イオン伝導に対する抵抗が高くなり、非水系蓄電素子の充放電特性が低下するといった事態を回避しやすい。
(3)集電体表面処理用組成物の場合、適用した組成物の厚みは0.01~100μmの範囲が好ましく、電気特性及び密着性の観点から0.05~50μmの範囲がさらに好ましい。本発明においては、塗布後を乾燥させた後の厚み、つまり表面処理層の厚みが、0.01~100μmの範囲が好ましく、0.05~50μmの範囲がさらに好ましい。この範囲であれば、表面処理層の厚みが薄くなりすぎて、密着性が低下して剥離し易くなったり、厚すぎて、電気伝導に対する抵抗が高くなり、非水系蓄電素子の充放電特性が低下するといった事態を回避しやすい。
(溶媒の蒸散方法)
 組成物が溶媒を含む場合、各層の形成において、加熱したり真空にしたりすることで溶媒を蒸散させることができる。加熱法としては、熱風炉や赤外線ヒーター、ヒートロール等を用いることができ、真空乾燥はチャンバ-内に組成物の組成物層を導入し、真空にすることで乾燥できる。また、昇華性がある溶媒を用いる場合、凍結乾燥させることで溶媒を蒸散させることもできる。加熱法における加熱温度及び加熱時間は、溶媒が蒸散する温度及び時間であれば、特に制限されることなく、例えば80~120℃で、0.1~2時間とすることができる。溶媒を蒸散させることにより、各組成物の溶媒を除いた成分が、電極、セパレーター、集電体と密着し、結着剤がホットメルト型の場合は熱融着することができる。組成物が、フィラーを含む場合、これにより、多孔質膜が形成され、耐熱コート層用組成物の場合は、耐熱性多孔質膜が形成される。
(加熱方法)
 各層の形成において、結着剤が粒子状である場合、結着剤同士を熱融着させて固化させることができる。その場合、粒子が完全に溶融する温度で熱融着させて固化させることもできるし、表面だけが熱溶解して溶着し相互に密着した状態で冷却することで粒子同士が点で密着し隙間が開いた状態で固化させることもできる。前者の熱融着固化によれば、連続相になっている部分が多く、イオン伝導性や機械的強度及び耐熱性が高い。後者の熱融着固化によれば、連続相になっている部分が少ない分、融着した有機物粒子を通じたイオン伝導性や機械的強度及び耐熱性には劣るが、粒子間の空隙に電解液が含浸することでイオン伝導性を向上させることができる。また、後者はランダムに隙間が開いた構造になるため、デントライトが発生した場合、その直線的な成長を妨げることでショートを防ぐ効果を高めることもできる。ホットメルトの際の加熱融着方法は、熱風やホットプレート、オーブン、赤外線、超音波融着等各種公知の方法を用いることができ、加熱時にプレスすることで保護剤層の密度を高めることもできる。また、冷却は自然冷却の他、冷却ガス、放熱板への押し付け等各種公知の方法を用いることができる。また、結着剤が溶融する温度まで加熱する場合は、結着剤が溶融する温度で、0.1~1000秒加熱することができる。
 上記の工程を含む形成方法により、各組成物に対応した層を有する電極、セパレーター、集電体が得られる。すなわち、耐熱コート層用組成物を使用した場合は、耐熱コート層が形成され、活物質層用組成物を使用した場合は、活物質層が形成され、集電体表面処理用組成物を使用した場合は、表面処理層が形成される。耐熱コート層や表面処理層については、その少なくとも一部が、電極、セパレーター及び集電体が多孔質体の場合、内部入り込んで形成されていてもよい。これらの層の空隙率は、10%以上であり、15~90%であるのが好ましく、より好ましくは20~80%である。空隙率は、密度測定から算出することができる。前記孔の中に電解液が含浸することで蓄電素子といった電池の充放電特性が向上する。集電体が多孔質体である場合、耐熱コート層や表面処理層が多孔質体であることが好ましく、集電体の単位面積当たりの表面積を増やしイオン伝導性を向上させることができる。このような集電対は、電気二重層型キャパシタに好ましく適応できる。
[電極及び/又はセパレーター及び/又は集電体]
 本発明は、上記の層を有する電極、セパレーター又は集電体に関する。電極、セパレーター又は集電体が設けられる非水系蓄電素子は、特に制限されることなく、公知の各種電池(一次電池であっても、二次電池であってもよい。たとえば、リチウムイオン電池、ナトリウムイオン電池。カルシウムイオン電池、マグネシウムイオン電池等)、キャパシタ(電機二重層型キャパシタ等)が挙げられる。よって、電極としては、特に制限されることなく、公知の各種電池、キャパシタの正極又は負極を例示できる。これらの少なくとも一面に組成物を塗布又は含浸させ、溶媒を蒸発させることによりコート層を形成することができる。正極又は負極のいずれか一方、あるいは両方に、組成物を適用することができる。セパレーターとしては、ポリプロピレンやポリエチレン製の多孔質材料やセルロース製やポリプロピレン、ポリエチレン、ポリエステル製の不織布等を例示でき、これらの両面又は片面に塗布又は含浸させ、溶媒を蒸発させることによりコート層を形成することができる。本発明のコート層は、対向するセパレーターや電極に密着させた状態で用いることができ、溶媒が蒸散しないうちにセパレーターと電極とを密着させてから乾燥させたり、電池組み立て後にホットプレスを行ったりすることでこれら部材を密着させることもできる。
[電池]
 本発明は、本発明の結着剤を含む組成物を用いて形成したコート層をその表面に有する電極及び/又はセパレーター及び/又は集電体を含む非水系蓄電素子に関する。また、本発明は、本発明の結着剤を含む組成物を用いて形成した活物質層を有する電極を含む非水系蓄電素子に関する。非水系蓄電素子の製造は、公知の方法によって行うことができる。また、非水系蓄電素子は電解液をコート層に含浸させてイオン伝導性を付与したり、コート層自体にイオン伝導性を持たせ固体電解質膜として電池に組み込みこんだりすることもできる。
 以下に実施例を用いて、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。部、%の表示は、断りが無い場合は質量部又は質量%である。
[重合体の作製]
[実施例1]
(ブチルビニルエーテルを出発物質としたオキシアルキル基含有重合体の作製)
 攪拌機、温度計、還流冷却管を備えた500mlのガラス製三ツ口フラスコを用意し、共重合体のモノマーとして酢酸ビニル(関東化学製)10質量部、ブチルビニルエーテル(東京化成製)1質量部、熱ラジカル開始剤としてAIBN(試薬名:2,2’-アゾビス(イソブチロニトリル)、和光純薬製)0.01質量部、溶媒としてメタノール1.3mlを三ツ口フラスコにいれ、室温で10分攪拌することにより均一に混合した。その後、70℃で2時間加熱攪拌した。反応進行はFT-IRでビニル基(1400cm-1)を追跡することによって確認した。反応終了後冷却し、メタノールを100ml加えて反応物を溶解することにより、ポリ(酢酸ビニル/ブチルビニルエーテル)の共重合体メタノール溶液を得た。この溶液はそのまま次の反応に用いた。
(ブチルビニルエーテルを出発物質としたオキシアルキル基含有重合体の加水分解)
 攪拌機、窒素風船を備えた500mlの三ツ口フラスコを用意し、ポリ(酢酸ビニル/ブチルビニルエーテル)共重合体メタノール溶液を入れた。3ツ口フラスコ内に純度99.99%の窒素ガスを30分吹き込み、三ツ口フラスコ系内を窒素雰囲気にした。そこに28%ナトリウムメトキシドメタノール溶液(和光純薬製)を10質量部加え、室温で12h攪拌した。反応進行はFT-IRでアセチル基(1730cm-1)を追跡することによって確認した。反応終了後、イオン交換水を100ml加えて均一に攪拌した。
その後、予めイオン交換水で十分に洗浄したイオン交換樹脂(製品名:SK-1BH、三菱樹脂製)30mlとイオン交換樹脂(製品名:SA-10AOH、三菱樹脂製)60mlを加え、室温で2時間攪拌した。
 その後、ナイロンメッシュ(製品名:ナイロンメッシュ200、東京スクリーン製)を用いてイオン交換樹脂を取り除き、ろ液を500mlナスフラスコに移し変え、ロータリーエバポレーターで溶媒のメタノールとイオン交換水を減圧留去することにより、目的物であるポリ(ビニルアルコール/ブチルビニルエーテル)の共重合体を得た。共重合体のビニルアルコール単位数とブチルビニルエーテル単位数の比率は、10:1であり、数平均分子量は50000であった。
[実施例2]
(ブチルアリルエーテルを出発物質としたオキシアルキル基含有重合体の作製)
 攪拌機、温度計、還流冷却管を備えた500mlのガラス製三ツ口フラスコを用意し、共重合体のモノマーとして酢酸ビニル(関東化学製)10質量部、ブチルアリルエーテル(東京化成製)1質量部、熱ラジカル開始剤としてAIBN(試薬名:2,2’-アゾビス(イソブチロニトリル)、和光純薬製)0.01質量部、溶媒としてメタノール1.3mlを三ツ口フラスコにいれ、室温で10分攪拌することにより均一に混合した。その後、70℃で2時間加熱攪拌した。反応進行はFT-IRでアリル基(1400cm-1)を追跡することによって確認した。反応終了後冷却し、メタノールを100ml加えて反応物を溶解することにより、ポリ(酢酸ビニル/ブチルアリルエーテル)の共重合体メタノール溶液を得た。この溶液はそのまま次の反応に用いた。
(ブチルアリルエーテルを出発物質としたオキシアルキル基含有重合体の加水分解)
 実施例1のブチルビニルエーテルを出発物質とした重合体の加水分解と同様にして反応を行うことにより、目的物であるポリ(ビニルアルコール/ブチルアリルエーテル)の共重合体を得た。共重合体のビニルアルコール単位とブチルアリルエーテル単位の比率は、10:1であり、数平均分子量は50000であった。
[実施例3]
(2-エチルヘキシルビニルエーテルを出発物質としたオキシアルキル基含有重合体の作製)
 攪拌機、温度計、還流冷却管を備えた500mlのガラス製三ツ口フラスコを用意し、共重合体のモノマーとして酢酸ビニル(関東化学製)10質量部、2-エチルヘキシルビニルエーテル(東京化成製)1質量部、熱ラジカル開始剤としてAIBN(試薬名:2,2’-アゾビス(イソブチロニトリル)、和光純薬製)0.01質量部、溶媒としてメタノール1.3mlを三ツ口フラスコにいれ、室温で10分攪拌することにより均一に混合した。その後、70℃で2時間加熱攪拌した。反応進行はFT-IRでビニル基(1400cm-1)を追跡することによって確認した。反応終了後冷却し、メタノールを100ml加えて反応物を溶解することにより、ポリ(酢酸ビニル/2-エチルヘキシルビニルエーテル)の共重合体メタノール溶液を得た。この溶液はそのまま次の反応に用いた。
(2-エチルヘキシルビニルエーテルを出発物質としたオキシアルキル基含有重合体の加水分解)
 実施例1のブチルビニルエーテルを出発物質とした重合体の加水分解と同様にして反応を行うことにより、目的物であるポリ(ビニルアルコール/2-エチルヘキシルビニルエーテル)の共重合体を得た。共重合体のビニルアルコール単位と2-エチルヘキシルビニルエーテル単位の比率は、10:1であり、数平均分子量は40000であった。
[実施例4]
(1-ヘキセンを出発物質としたアルキル基含有重合体の作製)
 攪拌機、温度計、還流冷却管を備えた500mlのガラス製三ツ口フラスコを用意し、共重合体のモノマーとして酢酸ビニル(関東化学製)10質量部、1-ヘキセン(東京化成製)1質量部、熱ラジカル開始剤としてAIBN(試薬名:2,2’-アゾビス(イソブチロニトリル)、和光純薬製)0.01質量部、溶媒としてメタノール1.3mlを三ツ口フラスコにいれ、室温で10分攪拌することにより均一に混合した。その後、70℃で2時間加熱攪拌した。反応進行はFT-IRでアルケン基(1400cm-1)を追跡することによって確認した。反応終了後冷却し、メタノールを100ml加えて反応物を溶解することにより、ポリ(酢酸ビニル/ヘキセン)の共重合体メタノール溶液を得た。この溶液はそのまま次の反応に用いた。
(1-ヘキセンを出発物質としたアルキル基含有重合体の加水分解)
 実施例1のブチルビニルエーテルを出発物質とした重合体の加水分解と同様にして反応を行うことにより、目的物であるポリ(ビニルアルコール/ヘキセン)の共重合体を得た。共重合体のビニルアルコール単位とヘキセン単位の比率は、10:1であり、数平均分子量は40000であった。
[実施例5]
(シクロヘキシルビニルエーテルを出発物質としたオキシアルキル基含有重合体の作製)
 攪拌機、温度計、還流冷却管を備えた500mlのガラス製三ツ口フラスコを用意し、共重合体のモノマーとして酢酸ビニル(関東化学製)10質量部、シクロヘキシルビニルエーテル(東京化成製)1質量部、熱ラジカル開始剤としてAIBN(試薬名:2,2’-アゾビス(イソブチロニトリル)、和光純薬製)0.01質量部、溶媒としてメタノール1.3mlを三ツ口フラスコにいれ、室温で10分攪拌することにより均一に混合した。その後、70℃で2時間加熱攪拌した。反応進行はFT-IRでビニル基(1400cm-1)を追跡することによって確認した。反応終了後冷却し、メタノールを100ml加えて反応物を溶解することにより、ポリ(酢酸ビニル/シクロヘキシルビニルエーテル)の共重合体メタノール溶液を得た。この溶液はそのまま次の反応に用いた。
(シクロヘキシルビニルエーテルを出発物質としたオキシアルキル基含有重合体の加水分解)
 実施例1のブチルビニルエーテルを出発物質とした重合体の加水分解と同様にして反応を行うことにより、目的物であるポリ(ビニルアルコール/シクロヘキシルビニルエーテル)の共重合体を得た。共重合体のビニルアルコール単位とシクロヘキシルビニルエーテル単位の比率は、10:1であり、数平均分子量は40000であった。
[実施例6]
(エチルビニルスルフィドを出発物質としたチオアルキル基含有重合体の作製)
 攪拌機、温度計、還流冷却管を備えた500mlのガラス製三ツ口フラスコを用意し、共重合体のモノマーとして、酢酸ビニル(関東化学製)10質量部、エチルビニルスルフィド(東京化成製)1質量部、熱ラジカル開始剤として、AIBN(試薬名:2,2’-アゾビス(イソブチロニトリル)、和光純薬製)0.01質量部、溶媒としてメタノール1.3mlを三ツ口フラスコにいれ、室温で10分攪拌することにより均一に混合した。その後、70℃で2時間加熱攪拌した。反応進行はFT-IRでビニル基(1400cm-1)を追跡することによって確認した。反応終了後冷却し、メタノールを100ml加えて反応物を溶解することにより、ポリ(酢酸ビニル/エチルビニルスルフィド)の共重合体メタノール溶液を得た。この溶液はそのまま次の反応に用いた。
(エチルビニルスルフィドを出発物質としたチオアルキル基含有重合体の加水分解)
実施例1のブチルビニルエーテルを出発物質とした重合体の加水分解と同様にして反応を行うことにより、目的物であるポリ(ビニルアルコール/エチルビニルスルフィド)の共重合体を得た。共重合体のビニルアルコール単位とエチルビニルスルフィド単位の比率は、10:1であり、数平均分子量は50000であった。
[参考例7]
(n-ブチルアクリレートを出発物質とした重合体の作製)
 攪拌機、温度計、還流冷却管を備えた500mlのガラス製三ツ口フラスコを用意し、共重合体のモノマーとして、酢酸ビニル(関東化学製)10質量部、n-ブチルアクリレート(東京化成製)1質量部、熱ラジカル開始剤として、AIBN(試薬名:2,2’-アゾビス(イソブチロニトリル)、和光純薬製)0.01質量部、溶媒としてメタノール1.3mlを三ツ口フラスコにいれ、室温で10分攪拌することにより均一に混合した。その後、70℃で2時間加熱攪拌した。反応進行はFT-IRでビニル基(1400cm-1)を追跡することによって確認した。反応終了後冷却し、メタノールを100ml加えて反応物を溶解することにより、ポリ(酢酸ビニル/n-ブチルアクリレート)の共重合体メタノール溶液を得た。この溶液はそのまま次の反応に用いた。
(n-ブチルアクリレートを出発物質とした重合体の加水分解)
 実施例1の溶液重合による重合体の加水分解と同様にして反応を行ったが、酢酸ビニル単位のアセチル基が脱離するとともに、n-ブチルアクリレート単位のn-ブチル基も脱離し、目的とするポリ(ビニルアルコール/n-ブチルアクリレート)を得ることができなかった。
[参考例8]
(N-n-ブチルアクリルアミドを出発物質とした重合体の作製)
 攪拌機、温度計、還流冷却管を備えた500mlのガラス製三ツ口フラスコを用意し、共重合体のモノマーとして、酢酸ビニル(関東化学製)10質量部、N-n-ブチルアクリルアミド(東京化成製)1質量部、熱ラジカル開始剤として、AIBN(試薬名:2,2’-アゾビス(イソブチロニトリル)、和光純薬製)0.01質量部、溶媒としてメタノール1.3mlを三ツ口フラスコにいれ、室温で10分攪拌することにより均一に混合した。その後、70℃で2時間加熱攪拌した。反応進行はFT-IRでビニル基(1400cm-1)を追跡することによって確認した。反応終了後冷却し、メタノールを100ml加えて反応物を溶解することにより、ポリ(酢酸ビニル/N-n-ブチルアクリルアミド)の共重合体メタノール溶液を得た。この溶液はそのまま次の反応に用いた。
(N-n-ブチルアクリルアミドを出発物質とした重合体の加水分解)
 実施例1の溶液重合による重合体の加水分解と同様にして反応を行ったが、酢酸ビニル単位のアセチル基が脱離するとともに、n-ブチルアクリルアミド単位のn-ブチル基が一部脱離し、目的とするポリ(ビニルアルコール/n-ブチルアクリルアミド)を得ることができなかった。
[比較例1]
(酢酸ビニルを出発物質とした重合体の作製)
 攪拌機、温度計、還流冷却管を備えた500mlのガラス製三ツ口フラスコを用意し、酢酸ビニル(関東化学製)11質量部、熱ラジカル開始剤として、AIBN(試薬名:2,2’-アゾビス(イソブチロニトリル)、和光純薬製)0.01質量部、溶媒としてメタノール1.3mlを三ツ口フラスコにいれ、室温で10分攪拌することにより均一に混合した。その後、70℃で2時間加熱攪拌した。反応進行はFT-IRでビニル基(1400cm-1)を追跡することによって確認した。反応終了後冷却し、メタノールを100ml加えて反応物を溶解することにより、ポリ酢酸ビニルのメタノール溶液を得た。この溶液はそのまま次の反応に用いた。
(酢酸ビニルを出発物質とした重合体の加水分解)
 実施例1のブチルビニルエーテルを出発物質とした重合体の加水分解と同様にして反応を行うことにより、目的物であるポリビニルアルコールを得た。
[耐熱コート層用組成物の作製]
 実施例9~14、参考例15~17、比較例2~3では、重合体を含有した耐熱コート層用組成物の作製方法について示す。
[実施例9]
 100Lポリプロピレン製タンクにイオン交換水10Lとアルミナ粒子10kgを加え、12時間攪拌して50%分散液を作製した。分散液を目開き20μmのナイロンメッシュでフィルタリングし、工程で抜けた水を加えてアルミナ粒子(平均粒子径0.5μm)を50%含む分散液を作製した。
 前記分散液50kgに水を20kg加え、ここに実施例1で作製した、ポリ(ビニルアルコール/ブチルビニルエーテル)を200g加え6時間攪拌して溶解させて、組成物1を得た。なお、組成物において、溶媒を除いた成分のうちアルミナの含有量は、96.1質量%であった。
[実施例10~14]
 ポリ(ビニルアルコール/ブチルビニルエーテル)200gの代わりに、表1に示す重合体200gを使用した他は、実施例9と同様にして、実施例10~14として組成物2~6を得た。組成物において、溶媒を除いた成分のうちアルミナの含有量は、いずれも96.1質量%であった。
[参考例15~16]
 ポリ(ビニルアルコール/ブチルビニルエーテル)200gの代わりに、表1に示す重合体200gを使用した他は、実施例9と同様にして、組成物を調製しようとしたが、重合体が溶液内で凝集し、一部がダマとなったため、組成物を調製できなかった。
[参考例17]
(アルミナスラリー9の作製)
 実施例9と同様にして、アルミナ粒子(平均粒子径0.5μm)を50%含む分散液を作製した。
(組成物9の配合)
 前記分散液50kgに水を20kg加え、ここに参考例7で得られた、ポリ(ビニルアルコール/ブチルアクリル酸)を200g加え6時間攪拌したところ、凝集が生じ、一部がダマとなったため、組成物を調製できなかった。
[比較例2]
 ポリ(ビニルアルコール/ブチルビニルエーテル)200gの代わりに、表1に示す重合体200gを使用した他は、実施例9と同様にして、比較例2として組成物10を得た。
[比較例3]
 100Lポリプロピレン製タンクにN-メチルピロリドン10Lとアルミナ粒子(平均粒子径0.5μm)10kgを加え、12時間攪拌して50%分散液を作製した。分散液を目開き20μmのナイロンメッシュでフィルタリングし、工程で抜けたN-メチルピロリドンを加えてアルミナ粒子を50%含む分散液を作製した。
 前記分散液50kgにN-メチルピロリドンを20kg加え、ここに、ポリフッ化ビニリデン(クレハ製)を200g加え6時間攪拌して溶解させて、比較例3として、組成物11を得た。なお、組成物において、溶媒を除いた成分のうちアルミナの含有量は、96.1質量%であった。
Figure JPOXMLDOC01-appb-T000005
 次に、組成物1~6、10及び11を用いた、リチウムイオン二次電池を製造する方法を説明する。
[リチウム二次電池の作製(負極にコート層を形成)]
 実施例18~23と、比較例4~5は、組成物を用いて負極にコート層を形成し、この負極と正極とセパレーターを用いたリチウムイオン二次電池である。
[実施例18]
(正極の製造)
 冷却ジャケット付きの10Lプラネタリーミキサーに、PVdF(ポリフッ化ビニリデン)の15%NMP溶液(株式会社クレハ製;クレハKFポリマー#1120)520部、コバルト酸リチウム(略称=LCO)(日本化学工業株式会社製;セルシードC-5H)1140部、アセチレンブラック(電気化学工業株式会社製;デンカブラックHS-100)120部、NMP5400部を加え液温が30℃を超えないように冷却しながら均一になるまで攪拌した(活物質層用組成物1)。これを、圧延アルミ集電体(日本製箔株式会社製;幅300mm、厚さ20μm)に幅180mm、厚さ200μmで塗工し、130℃温風炉で30秒乾燥させた。これを線圧530kgf/cmでロールプレスした。プレス後の正極活物質層の厚みは22μmであった。
(負極の製造)
 冷却ジャケットつきの10Lプラネタリーミキサーに、PVdFの15%NMP溶液(株式会社クレハ製;クレハKFポリマー#9130)530部、グラファイト(日本黒鉛株式会社製;GR-15)1180部、NMP4100部を加え液温が30℃を超えないように冷却しながら均一になるまで攪拌した。これを、圧延銅箔集電体(日本製箔株式会社製;幅300mm、厚さ20μm)に幅180mm、厚さ200μmで塗工し、100℃温風炉で2分間乾燥させた。これを線圧360kgf/cmでロールプレスした。プレス後の負極活物質層の厚みは28μmであった。
(コート層を有する負極の製造)
 前記負極に前記組成物1を乾燥厚みが5μmになるようにグラビアコーターを用いて塗工し、100℃×60秒加熱し、電池電極又は微多孔膜セパレーターコート層の厚みが5μmである、コート層を有する負極を製造した。
(リチウムイオン二次電池の製造)
 正極及びコート層を有する負極を短辺に10mmの幅で両端に活物質層が塗工されていない領域が含まれるように40mm×50mmでカットし、金属がむき出しになっている部分に正極はアルミのタブを、負極にニッケルのタブを抵抗溶接で接合した。微多孔膜セパレーター(セルガード株式会社製;#2400)を幅45mm、長さ120mmにカットし、3つに折り返してその間に正極及び負極が対向するように挟み込み、これを幅50mm長さ100mmのアルミラミネートセルを二つ折りにしたもので挟み、タブが当タール部分にシーラントを挟み込んだ上でシーラント部分とそれに直行する辺を熱ラミネートして袋状にした。これを100℃の真空オーブンに24時間入れて真空乾燥させ、次いでドライブロ-ブボックス中で6フッ化リン酸リチウム/(EC:DEC=1:1、容量比)1M電解液(キシダ化学株式会社製;LBG-96533)を注入し、真空含浸した後、余った電解液を扱き出し、真空シーラーで接合密封して、リチウムイオン二次電池を製造した。
[実施例19~23、比較例4~5]
 組成物1の代わりに、表2に示す組成物を使用した他は、実施例18と同様にして、実施例19~23、比較例4~5として、リチウムイオン二次電池を作製した。
[リチウム二次電池の作製(正極にコート層を形成)]
 実施例24~29、比較例6~7では、組成物を用いて正極にコート層を形成し、この正極と負極とセパレーターを用いたリチウムイオン二次電池の作製方法を示す。
[実施例24]
(負極の製造)
 実施例18の方法で負極(コート層を有しない)を作製した。
(コート層を有する正極の製造)
 実施例18の方法で正極を作製し、次いで、実施例18で負極にコート層を形成したのと同様の方法で、組成物1を用いてコート層を有する正極を製造した。
(リチウムイオン二次電池の製造)
 正極としてコート層を有する正極を用い、負極としてコート層を有しない負極を用いた他は、実施例18と同様にして、リチウムイオン二次電池を製造した。
[実施例25~29、比較例6~7]
 組成物1の代わりに、表2に示す組成物を使用した他は、実施例24と同様にして、実施例25~29、比較例6~7として、リチウムイオン二次電池を作製した。
[リチウム二次電池の作製(セパレータにコート層を形成)]
 実施例30~35、比較例8~9では、組成物を用いてセパレーターにコート層を形成し、このセパレーターと正極と負極を用いたリチウムイオン二次電池を製造する方法を説明する。
[実施例30]
(負極及び正極の製造)
 実施例18の方法で負極(コート層を有しない)及び正極(コート層を有しない)を作製した。
(コート層を有するセパレーターの製造)
 微多孔膜セパレーター(セルガード株式会社製;#2400)に組成物1を乾燥厚みが5μmになるようにグラビアコーターを用いて塗工し、60℃×60秒加熱し、コート層の厚みが2μmである、コート層を有するセパレーターを製造した。
(リチウムイオン二次電池の製造)
 微多孔膜セパレーターとしてコート層を有する微多孔膜セパレーターを用い、負極としてコート層を有しない負極を用いた他は、実施例18と同様にして、リチウムイオン二次電池を製造した。
[実施例31~35、比較例8~9]
 組成物1の代わりに、表2に示す組成物を使用した他は、実施例30と同様にして、実施例31~35、比較例8~9として、リチウムイオン二次電池を作製した。
[リチウム二次電池の作製(負極にコート層を形成)/実施例36及び比較例10]
 実施例36及び比較例10は、組成物を用いて負極にコート層を形成し、この負極と正極とセパレーターを用いたリチウムイオン二次電池である。表2に示す組成物を使用し、多孔質膜セパレーターの代わりに、不織布セパレーターを使用した他は、実施例18と同様にして、実施例36及び比較例10として、リチウムイオン二次電池を作製した。
[リチウム二次電池の作製(正極にコート層を形成)/実施例37及び比較例11]
 実施例37及び比較例11は、組成物を用いて正極にコート層を形成し、この正極と負極とセパレーターを用いたリチウムイオン二次電池である。表2に示す組成物を使用し、多孔質膜セパレーターの代わりに、不織布セパレーターを使用した他は、実施例24と同様にして、実施例37及び比較例11として、リチウムイオン二次電池を作製した。
[リチウム二次電池の作製(セパレーターにコート層を形成)/実施例38及び比較例12]
 実施例38及び比較例12は、組成物を用いてセパレーターにコート層を形成し、このセパレーターと正極と負極を用いたリチウムイオン二次電池である。表2に示す組成物を使用し、多孔質膜セパレーターの代わりに、不織布セパレーターを使用した他は、実施例30と同様にして、実施例38及び比較例12として、リチウムイオン二次電池を作製した。
[比較例13]
 負極としてコート層を有しない負極を用いた他は、実施例18と同様にして、比較例13として、リチウムイオン二次電池を製造した。比較例13は、組成物を使用せず、正極・負極・微多孔膜セパレーターのいずれもコート層を有しないリチウムイオン二次電池の例である。
[比較例14]
 セパレーターとして微多孔膜セパレーターの代わりに不織布セパレーターを用いた他は、比較例13と同様にして、比較例14として、リチウムイオン二次電池を製造した。比較例14は、組成物を使用せず、正極・負極・不織布セパレーターのいずれもコート層を有しないリチウムイオン二次電池の例である。
[リチウム二次電池の作製(結着剤を用いて正極活物質層を形成)/実施例39]
[実施例39]
 正極活物質のバインダーであるPVdFの15%NMP溶液(株式会社クレハ製;クレハKFポリマー#1120)520部の代わりに実施例1のポリ(ビニルアルコール/ブチルビニルエーテル)の共重合体78部を用いて活物質層用組成物2を作製したこと以外は比較例13と同様に作製したリチウムイオン二次電池の例である。
[リチウム二次電池の作製(結着剤を用いて集電体上を表面処理)/実施例40、比較例15]
[実施例40]
 10Lポリプロピレン製タンクにイオン交換水1Lをいれ、攪拌しながら実施例1のポリ(ビニルアルコール/ブチルビニルエーテル)の共重合体50gを加え12時間攪拌して溶解させた。そこに、アセチレンブラック(電気化学工業株式会社製;デンカブラックHS-100)65gを加えさらに12時間攪拌し集電体表面処理用組成物1を作製した。この導電性組成物1をアルミニウム集電体箔に乾燥後厚み0.5μmになるように塗工し120℃×10分乾燥させた。この集電体を用いたこと以外は比較例13と同様に作製したリチウムイオン二次電池の例である。
[比較例15]
 実施例40のポリ(ビニルアルコール/ブチルビニルエーテル)の共重合体の変わりに比較例4のポリビニルアルコールを用いて集電体表面処理用組成物2を作製したこと以外は同様に作製したリチウムイオン二次電池の例である。
[リチウム二次電池の作製(セパレータにコート層を形成)/実施例41、42、比較例16]
 [実施例41]
 100Lポリプロピレン製タンクにイオン交換水10Lに加えてシランカップリング剤(信越化学工業株式会社製、KBM-403)を0.1kg加え10分攪拌してからアルミナを加えたこと以外は、実施例9の組成物1と同様にして、組成物12を得た。組成物12を用いたこと以外は実施例30と同様に作製したリチウムイオン二次電池の例である。
[実施例42]
 100Lポリプロピレン製タンクにイオン交換水10Lとシランカップリング剤(信越化学工業株式会社製、KBM403)を0.1kg加え、次いでアルミナ粒子10kgを加え、12時間攪拌して50%分散液を作製した後、150℃オーブンにて24時間加熱乾燥させ、次いで得られた乾燥物を攪拌ライカイ機(株式会社石川工場製、第6R号B型)で12時間攪拌して表面処理アルミナを得た。この表面処理アルミナをアルミナ粒子として用いたこと以外は、実施例9の組成物1と同様にして、組成物13を得た。組成物13を用いたこと以外は実施例30と同様に作製したリチウムイオン二次電池の例である。
[比較例16]
 実施例35のポリ(ビニルアルコール/ブチルビニルエーテル)の共重合体の変わりにアクリル系共重合体(大同化成工業株式会社製、POVACOAT TypeF)を用いて、組成物14を作製したこと以外は、実施例30と同様に作製したリチウムイオン二次電池の例である。
 実施例及び比較例のリチウムイオン二次電池について、下記の特性を測定した。
(初期容量測定)
 初期容量を出すために0.01mAの定電流で電圧が4.2Vになるまで充電し、次いで4.2Vの定電圧で2時間充電した。その後、0.01mAの定電流で電圧が3.5Vになるまで放電した。これを3回繰り返し、3回目の放電容量を初期容量とした。
(レート特性)
 初期容量から放電レートを求めて、放電レート別の放電容量を測定した。充電は毎回10時間かけて定電流で4.2Vまで電圧を上げた後、4.2V定電圧で2時間充電した。その後、10時間かけて定電流で3.5Vになるまで放電し、このときの放電容量を0.1Cの放電容量とした。次に同様に充電した後0.1Cで求めた放電容量から1時間で放電が完了する電流値で放電しそのときの放電容量を求め1Cのときの放電容量とした。同様に3C、5C、10Cのときの放電用量を求め、0.1Cの時の放電容量を100%としたときの容量維持率を算出した。
(サイクル寿命)
 1Cで4.2Vまで充電し、4.2Vの定電圧で2時間充電したあと1Cで3.5Vまで放電する充電及び放電試験を実施した。このとき、放電容量が最初の1回目の放電に対して500サイクル後に何%になるかを計算した。
(剥離性)
 試験法は、試験後の電池を分解して内部の様子を確認した。評価基準は以下の通りであった。
 ◎:全く脱離は見られない
 ○:一部脱離は見られるが、集電体(セパレーター塗工の場合はセパレーター)はむき出しになっていない。
 △:脱離が進行し、集電体(セパレーター塗工の場合はセパレーター)の一部がむき出しになっている
 ×:集電体が接触しショートしている状態
(含水率)
 試験法は、ポリエチレンテレフタレートフィルム上に各組成物を乾燥後の膜厚が50μmになるようにキャストし、これを60℃×1h乾燥させた後、一片10mmに切り出し、この試験片20個の含水率を求めた。含水率は、加熱気化させた水分を電量式のカールフィッシャーで測定した。加熱条件は、150℃×10分で、カールフィッシャーは三菱アナリテック製CA-200型を用いた。表中の実施例18~38、実施例41~42と比較例4~12及び15~16に記載された含水率は、組成物1~6、10~14について、上記の方法により測定した含水率に相当する。実施例39に記載された含水率は、活物質層用組成物2を用いた場合の含水率に相当する。実施例40と比較例15は、それぞれ集電体表面処理用組成物1及び2を用いた場合の含水率に相当する。なお、比較例13~14に記載された含水率は、活物質層用組成物1(正極活物質層の作製に使用。実施例18参照)を用いた場合の含水率に相当する。
Figure JPOXMLDOC01-appb-T000006
 本発明によれば、電極、セパレーター、集電体といった基材に対する密着性を向上させつつ、含水率が低く、非水系蓄電素子の高速充放電特性を低下させない層を形成することができる結着剤が提供されるため、産業上の有用性が高い。
 1 コート層
 2 活物質層
 3 集電体
 4 コート層
 5 セパレーター

Claims (14)

  1.  式(1):
    Figure JPOXMLDOC01-appb-C000001

    (式中、
     Rは、独立して、非置換であるか、又はハロゲン原子及び/若しくは水酸基で置換されている、炭素原子数1~40のアルキル基(ここで、該アルキル基中の-CH-は、酸素原子、硫黄原子及びシクロアルカンジイルから選択される基で置き換えられていてもよい);あるいは-OR(ここで、Rは、環員数が3~10の炭素環又はヘテロ環の1価基である)で示される基であり、
     x、y及びzの合計を1とした場合、
     0≦x<1、0≦y<1、0<z<1であり、
     x、y及びzで括られる単位は、ブロックで存在していても、ランダムで存在していてもよく、
     Rは、独立して、水素原子又はフッ素原子である)
    で示される重合体を含む非水系蓄電素子用結着剤。
  2.  式(1)におけるRが、-(CH-O-(CH-CH
    (ここで、
     mは0~3の任意の整数であり、
     nは0~10の任意の整数である)
    で示される基である、請求項1記載の非水系蓄電素子用結着剤。
  3.  式(1)におけるRが、-(CH-O-(CH-(CH-(CHCH)-(CH-CH
    (ここで、
     mは0~3の任意の整数であり、
     nは0~10の任意の整数であり、
     hは0~10の任意の整数であり、
     kは0~10の任意の整数である)
    で示される基である、請求項1記載の非水系蓄電素子用結着剤。
  4.  式(1)におけるRが、-(CH-CH (nは0~10の任意の整数である)
    で示される基である、請求項1記載の非水系蓄電素子用結着剤。
  5.  式(1)におけるRが、-ORであって、Rは、下記式:
    Figure JPOXMLDOC01-appb-C000002

    (ここで、Xは、-CH-、-NH-、-O-又は-S-である)
    で示される基である、請求項1記載の非水系蓄電素子用結着剤。
  6.  式(1)におけるRが、-(CH-S-(CH-CH
    (ここで、
     mは0~3の任意の整数であり、
     nは0~10の任意の整数である)
    で示される基である、請求項1記載の非水系蓄電素子用結着剤。
  7.  ナトリウム、リチウム、カリウム及びアンモニアからなる群より選択される少なくとも1種を1~10000ppm含む、請求項1~6のいずれか1項記載の非水系蓄電素子用結着剤。
  8.  カップリング剤を含むことを特徴とする、請求項1~7のいずれか1項記載の非水系蓄電素子用結着剤。
  9.  請求項1~8のいずれか1項に記載の非水系蓄電素子用結着剤を用いて形成されるコート層を有する非水系蓄電素子用電極。
  10.  請求項1~8のいずれか1項に記載の非水系蓄電素子用結着剤を用いて形成される活物質層を有する非水系蓄電素子用電極。
  11.  請求項1~8のいずれか1項に記載の非水系蓄電素子用結着剤を用いて形成されるコート層を有する非水系蓄電素子用セパレーター。
  12.  請求項1~8のいずれか1項に記載の非水系蓄電素子用結着剤を用いて形成されるコート層を有する非水系蓄電素子用集電体。
  13.  請求項9又は10記載の非水系蓄電素子用電極、請求項11記載の非水系蓄電素子用セパレーター及び請求項12記載の非水系蓄素子用集電体の少なくともいずれかを備えた非水系蓄電素子。
  14.  非水系二次電池である、請求項13の非水系蓄電素子。
PCT/JP2014/070129 2013-08-01 2014-07-30 非水系蓄電素子用結着剤及び非水系蓄電素子 WO2015016283A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480042444.XA CN105453306B (zh) 2013-08-01 2014-07-30 非水系蓄电元件用粘结剂和非水系蓄电元件
US14/908,644 US20160172678A1 (en) 2013-08-01 2014-07-30 Binder for non-aqueous electricity storage element, and non-aqueous electricity storage element
JP2015529603A JP6417512B2 (ja) 2013-08-01 2014-07-30 非水系蓄電素子用結着剤及び非水系蓄電素子
KR1020167005009A KR20160040611A (ko) 2013-08-01 2014-07-30 비수계 축전 소자용 결착제 및 비수계 축전 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-160789 2013-08-01
JP2013160789 2013-08-01

Publications (1)

Publication Number Publication Date
WO2015016283A1 true WO2015016283A1 (ja) 2015-02-05

Family

ID=52431813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070129 WO2015016283A1 (ja) 2013-08-01 2014-07-30 非水系蓄電素子用結着剤及び非水系蓄電素子

Country Status (6)

Country Link
US (1) US20160172678A1 (ja)
JP (1) JP6417512B2 (ja)
KR (1) KR20160040611A (ja)
CN (1) CN105453306B (ja)
TW (1) TWI627784B (ja)
WO (1) WO2015016283A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160240839A1 (en) * 2015-02-16 2016-08-18 Toyota Jidosha Kabushiki Kaisha Manufacturing method for non-aqueous electrolyte secondary battery
JP2016219197A (ja) * 2015-05-19 2016-12-22 協立化学産業株式会社 集電体用コート剤組成物、蓄電デバイス用電極板及び蓄電デバイス
EP3193398A1 (en) * 2016-01-15 2017-07-19 Kansai Paint Co., Ltd. Conductive paste for lithium-ion battery positive electrodes and mixture paste for lithium-ion battery positive electrodes
US20180190957A1 (en) * 2015-07-02 2018-07-05 Teijin Limited Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
JPWO2017175838A1 (ja) * 2016-04-08 2019-02-28 出光興産株式会社 電気化学素子用バインダー
US10396346B2 (en) * 2015-02-12 2019-08-27 Toyota Jidosha Kabushiki Kaisha Method of manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2020528200A (ja) * 2017-07-17 2020-09-17 ノームズ テクノロジーズ インコーポレイテッド 変性トリアジン機能性化合物
WO2022264610A1 (ja) * 2021-06-16 2022-12-22 三菱鉛筆株式会社 電極層形成用水分散体
WO2022264611A1 (ja) * 2021-06-16 2022-12-22 三菱鉛筆株式会社 電極層形成用水分散体
WO2024018999A1 (ja) * 2022-07-16 2024-01-25 国立大学法人九州大学 ポリマー化合物

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3459094B1 (en) * 2016-05-20 2022-08-17 KYOCERA AVX Components Corporation Ultracapacitor for use at high temperatures
KR102195163B1 (ko) * 2017-02-28 2020-12-24 아라까와 가가꾸 고교 가부시끼가이샤 리튬이온 전지용 바인더 수용액, 리튬이온 전지용 슬러리 및 그 제조방법, 리튬이온 전지용 전극, 리튬이온 전지용 세퍼레이터, 리튬이온 전지용 세퍼레이터/전극적층체, 및 리튬이온 전지
KR102414896B1 (ko) * 2017-11-29 2022-07-01 에스케이이노베이션 주식회사 이차전지용 복합분리막 및 이를 포함하는 리튬이차전지
CN108963155A (zh) * 2018-07-10 2018-12-07 福建师范大学 两次涂覆法制备聚合物膜的方法
US11552334B1 (en) * 2021-09-01 2023-01-10 Enevate Corporation Nitrogen-containing compounds as additives for silicon-based Li-ion batteries
JP6879289B2 (ja) * 2018-12-13 2021-06-02 トヨタ自動車株式会社 非水電解質二次電池
WO2021039674A1 (ja) * 2019-08-30 2021-03-04 日本ゼオン株式会社 非水系二次電池用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
US20220285723A1 (en) * 2021-03-05 2022-09-08 Enevate Corporation Method And System For Safety Of Silicon Dominant Anodes
CN117652048A (zh) * 2021-05-14 2024-03-05 阿科玛股份有限公司 用于负极的粘合剂组合物及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208125A (ja) * 1999-01-12 2000-07-28 Denki Kagaku Kogyo Kk アルカリ蓄電池用セパレ―タ―と被覆剤
JP2005005276A (ja) * 2004-08-31 2005-01-06 Sony Corp 非水電解液二次電池
JP2010218793A (ja) * 2009-03-16 2010-09-30 Denki Kagaku Kogyo Kk リチウムイオン二次電池及びその製造方法
JP2012129104A (ja) * 2010-12-16 2012-07-05 Daikin Ind Ltd 非水二次電池などの集電積層体の導電性保護層形成用ペースト

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW465137B (en) * 2000-01-26 2001-11-21 Ind Tech Res Inst Stacked battery structure
JP4350625B2 (ja) * 2003-10-09 2009-10-21 株式会社クラレ 極細長繊維不織布とその製造方法およびその用途
JP5426551B2 (ja) * 2007-08-21 2014-02-26 エー123 システムズ, インコーポレイテッド 電気化学セル用セパレータおよびその製造方法
JP5678419B2 (ja) * 2009-08-27 2015-03-04 日産自動車株式会社 電池用電極およびその製造方法
CN103430359B (zh) * 2011-03-18 2017-03-01 日本瑞翁株式会社 锂离子二次电池负极用浆料组合物、锂离子二次电池负极及锂离子二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208125A (ja) * 1999-01-12 2000-07-28 Denki Kagaku Kogyo Kk アルカリ蓄電池用セパレ―タ―と被覆剤
JP2005005276A (ja) * 2004-08-31 2005-01-06 Sony Corp 非水電解液二次電池
JP2010218793A (ja) * 2009-03-16 2010-09-30 Denki Kagaku Kogyo Kk リチウムイオン二次電池及びその製造方法
JP2012129104A (ja) * 2010-12-16 2012-07-05 Daikin Ind Ltd 非水二次電池などの集電積層体の導電性保護層形成用ペースト

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396346B2 (en) * 2015-02-12 2019-08-27 Toyota Jidosha Kabushiki Kaisha Method of manufacturing negative electrode for nonaqueous electrolyte secondary battery
US20160240839A1 (en) * 2015-02-16 2016-08-18 Toyota Jidosha Kabushiki Kaisha Manufacturing method for non-aqueous electrolyte secondary battery
US10461310B2 (en) * 2015-02-16 2019-10-29 Toyota Jidosha Kabushiki Kaisha Manufacturing method for non-aqueous electrolyte secondary battery
JP2016219197A (ja) * 2015-05-19 2016-12-22 協立化学産業株式会社 集電体用コート剤組成物、蓄電デバイス用電極板及び蓄電デバイス
US11777175B2 (en) * 2015-07-02 2023-10-03 Teijin Limited Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
US20180190957A1 (en) * 2015-07-02 2018-07-05 Teijin Limited Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
CN106981662A (zh) * 2016-01-15 2017-07-25 关西涂料株式会社 锂离子电池正极用导电浆料和锂离子电池正极用复合材料浆料
EP3193398A1 (en) * 2016-01-15 2017-07-19 Kansai Paint Co., Ltd. Conductive paste for lithium-ion battery positive electrodes and mixture paste for lithium-ion battery positive electrodes
JPWO2017175838A1 (ja) * 2016-04-08 2019-02-28 出光興産株式会社 電気化学素子用バインダー
JP2020528200A (ja) * 2017-07-17 2020-09-17 ノームズ テクノロジーズ インコーポレイテッド 変性トリアジン機能性化合物
JP7209688B2 (ja) 2017-07-17 2023-01-20 ノームズ テクノロジーズ インコーポレイテッド 変性トリアジン機能性化合物
WO2022264610A1 (ja) * 2021-06-16 2022-12-22 三菱鉛筆株式会社 電極層形成用水分散体
WO2022264611A1 (ja) * 2021-06-16 2022-12-22 三菱鉛筆株式会社 電極層形成用水分散体
WO2024018999A1 (ja) * 2022-07-16 2024-01-25 国立大学法人九州大学 ポリマー化合物

Also Published As

Publication number Publication date
TWI627784B (zh) 2018-06-21
US20160172678A1 (en) 2016-06-16
JPWO2015016283A1 (ja) 2017-03-02
KR20160040611A (ko) 2016-04-14
TW201530866A (zh) 2015-08-01
JP6417512B2 (ja) 2018-11-07
CN105453306B (zh) 2018-02-13
CN105453306A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6417512B2 (ja) 非水系蓄電素子用結着剤及び非水系蓄電素子
JP6058783B2 (ja) 電池電極又はセパレーターコーティング膜組成物、これを用いて得られるコーティング膜を有する電池電極又はセパレーター、及びこの電池電極又はセパレーターを有する電池
JP5991894B2 (ja) 電池電極又はセパレーター保護用セラミックスラリー
EP2903064B1 (en) Electroconductive adhesive composition for electrochemical device electrode, current collector with adhesive layer, and electrode for electrochemical device
JP6088822B2 (ja) 電池電極又はセパレーター表面保護剤組成物、前記組成物を用いた電池電極又はセパレーター表面保護方法、及び、前記組成物を用いた電池電極又はセパレーターの製造方法
CN106063005B (zh) 电池电极用粘合剂、及使用了该粘合剂的电极和电池
TWI359171B (ja)
JP6226355B2 (ja) リチウムイオン二次電池用バインダ、リチウムイオン二次電池用負極活物質層、及びリチウムイオン二次電池
WO2017094252A1 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池
JPWO2012029618A1 (ja) 電池又は電気二重層キャパシタ集電体コート用導電性組成物、電池又は電気二重層キャパシタ集電体、電池および電気二重層キャパシタ
WO2013180103A1 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP2015041502A (ja) 非水系蓄電素子用コート剤組成物及び非水系蓄電素子
JP2016197598A (ja) 電池電極又はセパレーター保護用セラミックスラリー
JP2016103439A (ja) スラリー組成物、その製造方法及びこれを用いて形成される被覆体
WO2017047640A1 (ja) 非水電解質二次電池用の正極材料
JP5872414B2 (ja) 電池電極又はセパレーター保護多孔質膜組成物、これを用いて得られる保護多孔質膜を有する電池電極又はセパレーター、及びこの電池電極又はセパレーターを有する電池
WO2014057749A1 (ja) 電極用バインダー組成物
JP2015079669A (ja) 集電体用コート剤組成物
EP4015544A1 (en) Composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device
JP6015441B2 (ja) 非水二次電池正極用バインダ樹脂、非水二次電池用正極、および非水二次電池
JP2013164972A (ja) 二次電池電極バインダ用重合体とその製造方法、二次電池用電極、およびリチウムイオン二次電池
JP7371633B2 (ja) 全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
JP2014222601A (ja) 非水二次電池負極用バインダー樹脂、非水二次電池負極用スラリー組成物、非水二次電池用負極、および非水二次電池
JP2016143552A (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP6244798B2 (ja) 二次電池電極用バインダ樹脂組成物、二次電池電極用スラリー、二次電池用電極、リチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042444.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529603

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14908644

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167005009

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14831533

Country of ref document: EP

Kind code of ref document: A1