WO2015016185A1 - 粉体塗料、塗装物品およびそれらの製造方法 - Google Patents
粉体塗料、塗装物品およびそれらの製造方法 Download PDFInfo
- Publication number
- WO2015016185A1 WO2015016185A1 PCT/JP2014/069848 JP2014069848W WO2015016185A1 WO 2015016185 A1 WO2015016185 A1 WO 2015016185A1 JP 2014069848 W JP2014069848 W JP 2014069848W WO 2015016185 A1 WO2015016185 A1 WO 2015016185A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- composition
- powder coating
- fluororesin
- curing agent
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/08—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
- B05D5/083—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
- C09D167/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C09D167/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl - and the hydroxy groups directly linked to aromatic rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/50—Multilayers
- B05D7/52—Two layers
- B05D7/53—Base coat plus clear coat type
- B05D7/532—Base coat plus clear coat type the two layers being cured or baked together, i.e. wet on wet
- B05D7/5323—Base coat plus clear coat type the two layers being cured or baked together, i.e. wet on wet the two layers being applied simultaneously
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5003—Polyethers having heteroatoms other than oxygen having halogens
- C08G18/5015—Polyethers having heteroatoms other than oxygen having halogens having fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6216—Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
- C08G18/622—Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
- C08G18/6225—Polymers of esters of acrylic or methacrylic acid
- C08G18/6229—Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6216—Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
- C08G18/625—Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids
- C08G18/6254—Polymers of alpha-beta ethylenically unsaturated carboxylic acids and of esters of these acids containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D127/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
- C09D127/02—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D127/12—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D127/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
- C09D127/02—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D127/12—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C09D127/16—Homopolymers or copolymers of vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/03—Powdery paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/03—Powdery paints
- C09D5/033—Powdery paints characterised by the additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2451/00—Type of carrier, type of coating (Multilayers)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2101/00—Manufacture of cellular products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2150/00—Compositions for coatings
- C08G2150/20—Compositions for powder coatings
Definitions
- the present invention relates to a powder coating material, a coated article, and a manufacturing method thereof.
- acrylic resin powder coating As the powder coating, acrylic resin powder coating, polyester resin powder coating, or epoxy resin powder coating is mainly used. However, cured films formed using these powder paints have the disadvantage of poor weather resistance.
- a hybrid powder coating material obtained by dry blending a powder containing a polyester resin and a powder containing a fluororesin has been proposed (see, for example, Patent Documents 1 to 3).
- a hybrid powder coating material obtained by dry blending a powder containing a polyester resin and a powder containing a fluororesin has been proposed (see, for example, Patent Documents 1 to 3).
- the hybrid powder paint By using the hybrid powder paint, a cured film having a two-layer structure composed of a cured resin layer made of a polyester resin on the substrate side and a fluororesin layer on the air side can be formed in one coat. Since the cured film has a fluororesin layer on the air side, it has excellent weather resistance.
- the cured film formed using the hybrid powder coating described in Patent Documents 1 to 3 is easily peeled off when exposed to an outdoor environment for a long period of time. Has the disadvantages. This is presumably because the cured resin layer deteriorates due to ultraviolet rays, and the adhesion at the interface with the fluororesin layer decreases.
- the hybrid powder paint includes a pigment, the pigment is unevenly distributed in the cured resin layer, and a void is easily formed between the cured product of the polyester resin and the pigment. When water enters the voids, the cured resin layer is more likely to be deteriorated by the photocatalytic action of a pigment (such as titanium oxide).
- An object of the present invention is a cured film having a two-layer structure composed of a cured resin layer and a fluororesin layer, which is excellent in weather resistance and hard to peel off the fluororesin layer over a long period of time.
- Powder coating that can be formed; a coating that has a two-layer structure consisting of a cured resin layer and a fluororesin layer, and that has a cured film on the surface that has excellent weather resistance and is difficult to peel off for a long period of time.
- the present invention provides a powder coating material, a coated article, and methods for producing them having the following configurations [1] to [15].
- Powder (X) comprising a composition ( ⁇ ) containing a fluororesin (A) and an ultraviolet absorber (B);
- a powder (Y) comprising a composition ( ⁇ ) containing a thermosetting resin (C) other than a fluororesin, a curing agent (D), and a light stabilizer (E); Including powder paint.
- the mixing ratio (powder (X) / powder (Y)) of the powder (X) and the powder (Y) is 20/80 to 80/20 (mass ratio). 1].
- thermosetting resin (C) is at least one selected from the group consisting of a curable acrylic resin, a curable polyester resin, a curable epoxy resin, and a curable urethane resin.
- the powder coating material in any one of.
- thermosetting resin (C) is a curable polyester resin and the curing agent (D) is a blocked isocyanate curing agent. .
- A1) A step of obtaining a kneaded product comprising the composition ( ⁇ ) by melting and kneading a mixture containing the fluororesin (A) and the ultraviolet absorber (B).
- B1) A step of obtaining a powder (X) by pulverizing a kneaded product comprising the composition ( ⁇ ).
- A2 A step of melting and kneading a mixture containing a thermosetting resin (C) other than a fluororesin, a curing agent (D), and a light stabilizer (E) to obtain a kneaded product made of the composition ( ⁇ ).
- B2 A step of pulverizing the kneaded product comprising the composition ( ⁇ ) to obtain a powder (Y).
- D) A step of dry blending the powder (X) and the powder (Y).
- F A step of curing the coating film to form a cured film.
- the powder coating material of the present invention is a cured film having a two-layer structure composed of a cured resin layer and a fluororesin layer, which has excellent weather resistance and is difficult to peel off the fluororesin layer over a long period of time. Can be formed with a coat. According to the method for producing a powder coating material of the present invention, a powder coating material having the above effects can be produced.
- the coated article of the present invention is a cured film having a two-layer structure composed of a cured resin layer and a fluororesin layer, and has a cured film that has excellent weather resistance and is difficult to peel off for a long period of time. According to the method for manufacturing a coated article of the present invention, a coated article having the cured film on its surface can be manufactured.
- thermosetting resin means a compound having a reactive group that can react with a curing agent by heating.
- An “ultraviolet absorber” is a compound used as an additive for the purpose of protecting a resin or the like from the chemical action of ultraviolet rays, absorbs ultraviolet rays having a wavelength of 400 nm or less, can be efficiently dispersed in thermal energy, and is capable of absorbing light. And stable compound.
- Light stabilizer is a compound used as an additive for the purpose of suppressing deterioration of resin and the like due to light, and the effect of suppressing deterioration of resin and the like due to light by actions other than ultraviolet absorption (radical trapping, etc.)
- Means a compound having “Dry blend” means mixing two or more powders without melting the powder and without adding a solvent.
- the “coating film” means a film made of a melt of the powder paint formed by applying the powder paint.
- the “cured film” means a film formed by curing the coating film.
- One coat means painting only once. “Melting and curing the powder coating” means that the powder coating is melted, the reaction components in the powder coating are reacted and cured.
- (Meth) acrylate is a general term for acrylate and methacrylate.
- the “unit” means a part derived from a monomer that exists in the polymer and constitutes the polymer.
- the unit derived from the monomer resulting from addition polymerization of a monomer having a carbon-carbon unsaturated double bond is a divalent unit generated by cleavage of the unsaturated double bond.
- the unit derived from a polyvalent carboxylic acid compound constituting the polyester resin is a unit derived from a polyhydric alcohol compound, which is a monovalent or higher unit obtained by removing a hydroxyl group from at least one carboxy group of the polyvalent carboxylic acid compound.
- the powder coating material of the present invention includes the following powder (X) and the following powder (Y).
- Powder (X) Powder composed of a composition ( ⁇ ) containing a fluororesin (A) and an ultraviolet absorber (B).
- the composition ( ⁇ ) may contain a curing agent (D), a light stabilizer (E), a pigment (F), a curing catalyst (G), and other components (H) as necessary.
- Powder (Y) Powder composed of a composition ( ⁇ ) containing a thermosetting resin (C) other than fluororesin, a curing agent (D), and a light stabilizer (E).
- the composition ( ⁇ ) may contain an ultraviolet absorber (B), a pigment (F), a curing catalyst (G), and other components (H) as necessary.
- a coating film made of a melt of a powder coating material is formed by coating the substrate with the powder coating material of the present invention in one coat and heating, and a reaction component in the coating film is reacted to obtain a cured film.
- the fluororesin layer derived from the powder (X) and the cured resin layer mainly composed of a cured product of the thermosetting resin (C) derived from the powder (Y) are separated into layers. To do.
- the reaction, curing, and layer separation may proceed simultaneously.
- a cured resin layer is disposed on the substrate side, and a fluororesin layer is disposed on the air side.
- fluororesin (A) examples include fluoroolefin homopolymers or copolymers.
- a copolymer two or more kinds of copolymers of fluoroolefin, a copolymer of one or more kinds of fluoroolefin and one or more kinds of fluorine-containing monomers other than fluoroolefin, one or more kinds of fluoroolefin And one or more monomers having no fluorine atom, one or more fluoroolefins, one or more fluorine-containing monomers other than fluoroolefins, and one of monomers having no fluorine atoms
- monomers having no fluorine atoms examples thereof include a copolymer with a seed or more.
- the monomer copolymerizable with the fluoroolefin is preferably a compound other than the fluoroolefin having a carbon-carbon double bond.
- a monomer having a carbon-carbon double bond is excellent in alternating copolymerization with a fluoroolefin, and the polymerization yield can be increased. Moreover, even when it remains unreacted, it has little influence on the cured film and can be easily removed in the manufacturing process.
- the fluororesin (A) is made of a heat-meltable fluoroolefin polymer.
- the heat-meltable fluoroolefin polymer may also be a fluoroolefin polymer having a reactive group such as a hydroxyl group.
- the fluoroolefin polymer having a reactive group is preferably one that can be cured by reacting with the curing agent (D). In that case, the fluororesin of the fluororesin layer in the cured film is a cured product of a fluoroolefin polymer having a reactive group.
- the fluoroolefin is a compound in which one or more hydrogen atoms of a hydrocarbon-based olefin (general formula C n H 2n ) are substituted with a fluorine atom.
- the carbon number of the fluoroolefin is preferably 2-8, and particularly preferably 2-6.
- the number of fluorine atoms in the fluoroolefin is preferably 2 or more, particularly preferably 3 to 4. When the number of fluorine atoms is 2 or more, the weather resistance of the cured film is excellent.
- one or more hydrogen atoms not substituted with fluorine atoms may be substituted with chlorine atoms.
- the fluoroolefin has a chlorine atom, it is easy to disperse pigments (especially colored organic pigments such as cyanine blue and cyanine green) in the fluororesin (A). Moreover, the glass transition temperature of a fluororesin (A) can be designed to 50 degreeC or more, and blocking of a cured film can be suppressed.
- fluoroolefin tetrafluoroethylene (hereinafter also referred to as “TFE”), chlorotrifluoroethylene (hereinafter also referred to as “CTFE”), hexafluoropropylene, vinylidene fluoride and vinyl fluoride are preferable, and TFE and CTFE is particularly preferred.
- TFE tetrafluoroethylene
- CTFE chlorotrifluoroethylene
- hexafluoropropylene vinylidene fluoride and vinyl fluoride
- a fluoroolefin may be used individually by 1 type, and may use 2 or more types together.
- fluoroolefin unit a unit directly formed by polymerization of fluoroolefin is preferable.
- Examples of the fluorine-containing monomer other than the fluoroolefin include monomers having a fluorine atom such as fluoro (alkyl vinyl ether) and perfluoro (alkyl vinyl ether).
- the monomer having a fluorine atom may also have a reactive group.
- Examples of the monomer having no fluorine atom include a monomer having no reactive group and a monomer having a reactive group.
- Examples of the monomer having no reactive group include olefin and vinyl ether having no reactive group.
- Examples of the monomer having a reactive group include a monomer having a hydroxyl group.
- fluorine-containing polymer having no reactive group examples include TFE-perfluoro (alkyl vinyl ether) copolymer (hereinafter also referred to as “PFA”), TFE-hexafluoropropylene copolymer, TFE-perfluoro (alkyl). Vinyl ether) -hexafluoropropylene copolymer, ethylene-TFE copolymer (hereinafter also referred to as “ETFE”), polyvinylidene fluoride (hereinafter also referred to as “PVDF”), polyvinyl fluoride, polychlorotrifluoro Examples thereof include ethylene and an ethylene-CTFE copolymer.
- PFA TFE-perfluoro (alkyl vinyl ether) copolymer
- TFE-hexafluoropropylene copolymer examples include TFE-perfluoro (alkyl vinyl ether) copolymer (hereinafter also referred to as “PFA”), TFE-
- the fluorine-containing polymer which does not have a reactive group may further have units derived from other monomers as long as the essential characteristics are not impaired.
- the other monomer is a monomer other than a monomer (for example, ethylene and TFE in ETFE, TFE and perfluoro (alkyl vinyl ether) in PFA) that forms an essential unit as a unit constituting the fluoropolymer. is there.
- the obtained fluoropolymer is excellent in adhesion to a substrate (particularly an aluminum substrate) and is easy to fix an aluminum curtain wall with a sealing agent. Is particularly preferred.
- the melting point of the fluoropolymer having no reactive group is preferably 300 ° C. or lower, more preferably 200 ° C. or lower, and particularly preferably 180 ° C. or lower. If the melting point of the fluoropolymer is not more than the above upper limit, the surface smoothness of the cured film is excellent.
- fluororesin (A) which is a fluoropolymer having no reactive group
- PVDF is preferable from the viewpoint of excellent flexibility and impact resistance of the fluororesin layer.
- acrylic resin (J) is further included from the point which is excellent in the adhesiveness to a base material.
- a fluorine-containing polymer having a reactive group is preferable from the viewpoint of excellent antifouling properties, water resistance, acid resistance and alkali resistance.
- the reactive group include a hydroxyl group, a carboxy group, and an amino group.
- a fluoropolymer (A1) containing a hydroxyl group hereinafter also referred to as “hydroxyl group-containing fluoropolymer (A1)” is particularly preferred.
- the hydroxyl group-containing fluoropolymer (A1) contains a hydroxyl group, the curing rate is excellent when an isocyanate curing agent (particularly, a blocked isocyanate curing agent (D1)) is used as a curing agent. Moreover, it is preferable at the point from which the cured film of high gloss (60 degree gloss is 60 or more) is easy to disperse
- curing agent is mix
- the curing agent (D) contained in the powder (Y) is a blocked isocyanate curing agent or the like, the powder (X) does not contain a curing agent, and the powder (Y) In some cases, it is preferable to cure the hydroxyl group-containing fluoropolymer (A1) with the curing agent (D) contained therein.
- hydroxyl group-containing fluoropolymer (A1) a unit derived from a fluoroolefin and a monomer having a hydroxyl group copolymerizable with the fluoroolefin (hereinafter also referred to as “monomer (a1)”). Hydroxyl-containing inclusions having a unit derived from and a unit derived from a monomer other than the fluoroolefin and monomer (a1) (hereinafter also referred to as “monomer (a2)”) as necessary.
- a fluoropolymer is preferred.
- the hydroxyl group-containing fluorine-containing polymer (A1) may be a hydroxyl group-containing fluorine-containing polymer in which hydroxyl groups are introduced by reactive group conversion of the polymer.
- the hydroxyl group-containing fluoropolymer has a unit derived from a fluoroolefin, a unit derived from a monomer having a reactive functional group other than a hydroxyl group, and, if necessary, the monomer (a2).
- a fluorine-containing polymer obtained by reacting a fluorine-containing polymer with a compound having a hydroxyl group with a second reactive functional group that reacts with the reactive functional group is preferred.
- the monomer (monomer (a1), monomer (a2), etc.) to be copolymerized with the fluoroolefin may be a monomer having a fluorine atom other than the fluoroolefin, but does not have a fluorine atom. Monomers are preferred.
- the monomer (a1) is a monomer having a hydroxyl group.
- the monomer having a hydroxyl group include allyl alcohol, hydroxyalkyl vinyl ether (2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, cyclohexanediol monovinyl ether, etc.), hydroxyalkyl allyl ether (2-hydroxyethyl allyl ether, etc.).
- vinyl hydroxyalkanoate such as vinyl hydroxypropionate
- hydroxyalkyl (meth) acrylate such as hydroxyethyl (meth) acrylate.
- a monomer (a1) may be used individually by 1 type, and may use 2 or more types together.
- Examples of the monomer (a2) include vinyl ethers, allyl ethers, carboxylic acid vinyl esters, carboxylic acid allyl esters, and olefins that do not have a reactive group.
- vinyl ether examples include cycloalkyl vinyl ether (cyclohexyl vinyl ether (hereinafter also referred to as “CHVE”)), alkyl vinyl ether (nonyl vinyl ether, 2-ethylhexyl vinyl ether, hexyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, tert-butyl). Vinyl ether, etc.).
- alkyl ethers examples include alkyl allyl ethers (ethyl allyl ether, hexyl allyl ether, etc.).
- carboxylic acid vinyl esters examples include vinyl esters of carboxylic acids (such as acetic acid, butyric acid, pivalic acid, benzoic acid, and propionic acid). Further, Veova-9, Veova-10 (both manufactured by Shell Chemical Co., Ltd.) and the like that are commercially available as vinyl esters of carboxylic acids having a branched alkyl group may be used.
- carboxylic acid allyl esters examples include allyl esters of carboxylic acids (acetic acid, butyric acid, pivalic acid, benzoic acid, propionic acid, and the like).
- the olefin examples include ethylene, propylene, isobutylene and the like.
- the glass transition temperature of the hydroxyl group-containing fluoropolymer (A1) can be designed to be 50 ° C. or higher, and cycloalkyl vinyl ether is preferable from the viewpoint that blocking of the cured film can be suppressed. Is particularly preferred.
- the monomer (a2) those having a linear or branched alkyl group having 3 or more carbon atoms are preferred from the viewpoint of excellent flexibility of the cured film.
- a monomer (a2) may be used individually by 1 type, and may use 2 or more types together.
- the combination of the monomers constituting the hydroxyl group-containing fluoropolymer (A1) is preferably the following combination (1) from the viewpoint of weather resistance, adhesion, flexibility, and blocking resistance, and the combination (2) Or (3) is particularly preferred.
- Combination (1) Fluoroolefin: TFE or CTFE, Monomer (a1): hydroxyalkyl vinyl ether, Monomer (a2): one or more selected from the group consisting of cycloalkyl vinyl ether, alkyl vinyl ether and carboxylic acid vinyl ester.
- Combination (3) Fluoroolefin: CTFE, Monomer (a1): hydroxyalkyl vinyl ether, Monomer (a2): CHVE or tert-butyl vinyl ether.
- the proportion of the fluoroolefin unit is preferably 30 to 70 mol%, particularly preferably 40 to 60 mol%, based on the total units (100 mol%) in the hydroxyl group-containing fluoropolymer (A1). If a fluoro olefin unit is more than the said lower limit, the weather resistance of a cured film will be excellent. If a fluoro olefin unit is below the said upper limit, it will be excellent in the adhesiveness of a fluororesin layer and a cured resin layer when carrying out layer separation.
- the proportion of the monomer (a1) unit is preferably 0.5 to 20 mol%, particularly preferably 1 to 15 mol%, based on all units (100 mol%) in the hydroxyl group-containing fluoropolymer (A1). .
- the proportion of the monomer (a1) unit is equal to or higher than the lower limit, the adhesion between the fluororesin layer and the cured resin layer is excellent when the layers are separated.
- the ratio of the monomer (a1) unit is not more than the above upper limit value, the scratch resistance of the cured film is excellent.
- the proportion of the monomer (a2) unit is preferably 20 to 60 mol%, particularly preferably 30 to 50 mol%, based on all units (100 mol%) in the hydroxyl group-containing fluoropolymer (A1).
- the proportion of the monomer (a2) unit is not less than the lower limit, the glass transition temperature of the hydroxyl group-containing fluoropolymer (A1) is appropriate, and a powder coating can be easily produced.
- the proportion of the monomer (a2) unit is not more than the above upper limit value, the adhesion between the fluororesin layer and the cured resin layer is excellent when the layers are separated.
- the number average molecular weight of the hydroxyl group-containing fluoropolymer (A1) is preferably 3,000 to 50,000, particularly preferably 5,000 to 30,000. If the number average molecular weight of the hydroxyl group-containing fluoropolymer (A1) is not less than the lower limit, the cured film is excellent in water resistance and salt water resistance. If the number average molecular weight of the hydroxyl group-containing fluoropolymer (A1) is not more than the above upper limit, the surface smoothness of the cured film is excellent.
- the hydroxyl value of the hydroxyl group-containing fluoropolymer (A1) is preferably 5 to 100 mgKOH / g, particularly preferably 10 to 80 mgKOH / g.
- the hydroxyl value of the hydroxyl group-containing fluoropolymer (A1) is not less than the lower limit, the adhesion between the fluororesin layer and the cured resin layer is excellent when the layers are separated.
- the hydroxyl value of the hydroxyl group-containing fluoropolymer (A1) is not more than the above upper limit, the cured film is excellent in crack resistance under a temperature cycle at a high temperature of 100 ° C. or higher and a low temperature of 10 ° C. or lower.
- the hydroxyl value is measured according to JIS K1557-1 (2007 edition).
- the glass transition temperature of the hydroxyl group-containing fluoropolymer (A1) is preferably 40 to 150 ° C, more preferably 45 to 120 ° C, and particularly preferably 50 to 100 ° C. If the glass transition temperature of the hydroxyl group-containing fluoropolymer (A1) is not less than the lower limit, it is easy to produce a powder coating material. When the glass transition temperature of the hydroxyl group-containing fluoropolymer (A1) is not more than the above upper limit value, the surface smoothness of the cured film is good.
- the ultraviolet absorber (B) When the composition ( ⁇ ) that is the material of the powder (X) contains the ultraviolet absorber (B), the ultraviolet absorber (B) is likely to be unevenly distributed in the fluororesin layer. Therefore, the amount of ultraviolet rays that pass through the fluororesin layer and reach the cured resin layer is reduced, deterioration of the cured resin layer is suppressed, and the problem that the fluororesin layer peels from the cured resin layer can be avoided.
- the ultraviolet absorber (B) is included not only in the composition ( ⁇ ) which is a material of the powder (X) but also in the composition ( ⁇ ) which is a material of the powder (Y).
- the ultraviolet absorbent (B) can be unevenly distributed in the cured resin layer, but from the viewpoint of cost reduction, the ultraviolet absorbent (B) is not present in the cured resin layer as much as possible, that is, the powder (Y). It is preferable not to include in the composition ( ⁇ ) which is a material of the above.
- the UV absorber (B) In order to make it easier for the UV absorber (B) to be unevenly distributed in the fluororesin layer during the melting and curing process of the powder coating, taking into account the physical properties of the UV absorber (B), etc. It is preferable to select the agent (B). For example, the lipophilic ultraviolet absorbent (B) tends to be unevenly distributed in the fluororesin layer between the lipophilic ultraviolet absorbent (B) and the hydrophilic ultraviolet absorbent (B).
- the affinity for the fluororesin (A) may vary depending on the type of ultraviolet absorber (B) (difference in chemical structure) and physical properties (molecular weight, melting point, boiling point, etc.).
- any one of an organic ultraviolet absorber and an inorganic ultraviolet absorber can be used.
- a ultraviolet absorber (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
- organic ultraviolet absorbers examples include salicylic acid ester ultraviolet absorbers, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and cyanoacrylate ultraviolet absorbers.
- the organic ultraviolet absorber a compound having a molecular weight of 200 to 1,000 is preferable.
- the molecular weight is 200 or more, it is difficult to volatilize during the melting and curing process of the powder coating material and can remain in the cured film. If the molecular weight is 1,000 or less, it can remain in the fluororesin layer.
- the organic ultraviolet absorber a compound having a melting point of 50 to 150 ° C. is preferable.
- the melting point is 50 ° C. or higher, it is difficult to volatilize during the melting and curing process of the powder coating material, and it can remain in the cured film.
- the melting point is 150 ° C. or lower, the powder coating can be easily melted during the melting and curing process and can remain in the fluororesin layer.
- the organic ultraviolet absorber a compound having a volatilization temperature of 180 to 400 ° C. is preferable, and a compound having a 220 to 350 ° C. is particularly preferable. Since a temperature condition of 150 to 220 ° C. is required in the melting and curing process of the powder coating, it is difficult to volatilize and stay in the fluororesin layer within the above range.
- organic UV absorbers include “Tinuvin (registered trademark)” manufactured by BASF. 326 "(molecular weight: 315.8, melting point: 139 ° C),” Tinuvin (registered trademark) 405 “(molecular weight: 583.8, melting point: 74-77 ° C),” Tinuvin (registered trademark) " 460 ”(molecular weight: 629.8, melting point: 93-102 ° C.),“ Tinuvin® 900 ”(molecular weight: 447.6, melting point: 137-141 ° C.),“ Tinuvin® 928 ”(molecular weight) : 441.6, melting point: 109-113 ° C.), “Sanduvor (registered trademark) VSU powder” manufactured by Clariant (molecular weight: 312.0, melting point: 123-127 ° C.), “Hastavin (registered trademark) manufactured by Clariant PR-25 Gran ”(molecular weight: 250.0, melting point: 55
- inorganic ultraviolet absorbers include filler-type inorganic ultraviolet absorbers containing ultraviolet absorbing oxides (such as zinc oxide and cerium oxide).
- ultraviolet absorbing oxides such as zinc oxide and cerium oxide.
- composite particles of zinc oxide and titanium oxide, composite particles of cerium oxide and titanium oxide, composite particles of zinc oxide and cerium oxide, composite particles of titanium oxide, zinc oxide and cerium oxide are preferable.
- thermosetting resin (C) The thermosetting resin (C) is preferably one that can be separated into layers without being compatible with the fluororesin (A) in the melting and curing process of the powder coating.
- a curable acrylic resin, a curable polyester resin, a curable epoxy resin, and a curable urethane resin are preferable, and the adhesive property to the base material is excellent. From the viewpoint that contamination is difficult, a curable polyester resin and a curable acrylic resin are more preferable, and a curable polyester resin is particularly preferable.
- curable resin means the polymer and compound which have reactive groups, such as a hydroxyl group, a carboxy group, an epoxy group, and an amino group.
- the curable polyester resin is a polymer in which a unit derived from a polyvalent carboxylic acid compound and a unit derived from a polyhydric alcohol compound are linked by an ester bond, and units other than these two types of units (for example, hydroxycarboxylic acid) A unit derived from a compound, etc.).
- the terminal unit is a unit derived from a polycarboxylic acid compound
- the monomer unit present at the terminal of the polymer chain of the curable polyester resin hereinafter referred to as terminal unit
- the terminal unit has a hydroxyl group.
- the unit other than the terminal unit is composed of a divalent or higher unit
- the linear polymer is composed of only a divalent unit excluding the terminal unit. That is, the linear curable polyester resin is composed of only a divalent unit such as a divalent unit derived from a polyvalent carboxylic acid compound and a divalent unit derived from a polyhydric alcohol compound, excluding the terminal unit.
- the branched curable polyester resin has at least one trivalent or higher unit, and is substantially composed of only a divalent unit other than the trivalent or higher unit and the terminal unit.
- the trivalent or higher unit is a unit obtained by removing a hydroxyl group from three or more carboxy groups of a trivalent or higher polyvalent carboxylic acid compound, and each hydrogen atom from three or more hydroxyl groups of a trivalent or higher polyhydric alcohol compound. Units other than are included.
- a unit derived from a polycarboxylic acid compound is also referred to as a “polyhydric carboxylic acid unit”
- a unit derived from a polyhydric alcohol compound is also referred to as a “polyhydric alcohol unit”.
- the curable polyester resin a linear polymer or a branched polymer having a small number of branches is preferable, and a linear polymer is particularly preferable. Since a branched polymer having many branches tends to have a high softening point and melting temperature, when the curable polyester resin is a branched polymer, the softening point is preferably 200 ° C. or lower. As the curable polyester resin, those which are solid at normal temperature and have a softening point of 100 to 150 ° C. are preferable.
- the number average molecular weight of the curable polyester resin is preferably 5,000 or less from the viewpoint that the melt viscosity of the coating film can be appropriately lowered.
- the mass average molecular weight of the curable polyester resin is preferably 6,000 to 20,000, and more preferably 6,000 to 10,000, from the viewpoint that the melt viscosity of the coating film can be appropriately lowered.
- the curable polyester resin is more preferably one having a number average molecular weight of 5,000 or less and a mass average molecular weight of 6,000 to 20,000, a number average molecular weight of 5,000 or less, and a mass. Those having an average molecular weight of 6,000 to 10,000 are particularly preferred.
- the curable polyester resin has a reactive group that can react with the curing agent (D).
- At least a part of the terminal unit of the polymer chain of the curable polyester resin is preferably a polyvalent carboxylic acid unit or a polyhydric alcohol unit.
- the free carboxy group of the unit is the latter.
- the free hydroxyl group of the unit functions as a reactive group.
- the unit having a reactive group may be a unit other than the terminal unit.
- the curable polyester resin contains a divalent or more unit having a reactive group. You may have.
- the reactive group in the curable polyester resin is preferably a hydroxyl group from the viewpoint of excellent water resistance, alkali resistance, and acid resistance of the cured film.
- the curable polyester resin usually has a hydroxyl group and a carboxy group, and the curable polyester resin preferably has mainly a hydroxyl group.
- the hydroxyl value of the curable polyester resin is preferably 20 to 100 mgKOH / g, particularly preferably 30 to 80 mgKOH / g.
- the acid value is preferably from 1 to 80 mgKOH / g, particularly preferably from 3 to 50 mgKOH / g.
- the hydroxyl value and acid value are measured according to JIS K 0070 (1992 version).
- the curable polyester resin is an aromatic polycarbon having 8 to 15 carbon atoms from the viewpoint of excellent adhesion to the fluororesin layer, excellent impact resistance of the cured film, and excellent dispersibility of the pigment (F).
- a curable polyester resin (C1) having units derived from a polyvalent carboxylic acid compound and units derived from a polyhydric alcohol compound having 2 to 10 carbon atoms is preferred.
- the polyvalent carboxylic acid unit is preferably a unit derived from an aromatic polycarboxylic acid compound having 8 to 15 carbon atoms.
- An aromatic polyvalent carboxylic acid compound having 8 to 15 carbon atoms is a compound having an aromatic ring and two or more carboxy groups, and the carboxy group is bonded to a carbon atom of the aromatic ring.
- the anhydride which has a structure which two carboxyl groups dehydrated may be sufficient.
- the aromatic ring a benzene ring or a naphthalene ring is preferable, and a benzene ring is particularly preferable. In the case of a benzene ring, two may exist per molecule.
- the number of carboxy groups in the aromatic polyvalent carboxylic acid compound is preferably 2 to 4, and particularly preferably 2.
- the aromatic polycarboxylic acid compound having 8 to 15 carbon atoms include phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, trimellitic acid, pyromellitic acid, phthalic anhydride, and the like.
- the polyvalent carboxylic acid unit a unit derived from isophthalic acid is preferable because the weather resistance of the cured film is excellent.
- the polyhydric alcohol unit is preferably a unit derived from a polyhydric alcohol compound having 2 to 10 carbon atoms.
- the polyhydric alcohol compound having 2 to 10 carbon atoms is a compound having two or more hydroxyl groups.
- an aliphatic polyhydric alcohol and an alicyclic polyhydric alcohol are preferable, and an aliphatic polyhydric alcohol is particularly preferable.
- the number of hydroxyl groups in the polyhydric alcohol compound is preferably 2 to 4, and particularly preferably 2.
- Examples of the polyhydric alcohol compound having 2 to 10 carbon atoms include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, and 1,4-butane.
- Examples include diol, 1,5-pentanediol, neopentyl glycol, spiroglycol, 1,10-decanediol, 1,4-cyclohexanedimethanol, trimethylolethane, trimethylolpropane, glycerin, and pentaerythritol.
- polyhydric alcohol unit carbon has excellent adhesion to the base material, and even if it has a thermal history (thermal cycle) due to its flexibility, it is difficult to delaminate the fluororesin layer.
- Units derived from polyhydric alcohols having 3 to 8 carbon atoms are preferred, and units derived from polyhydric alcohols having 4 to 6 carbon atoms are particularly preferred.
- the polyhydric alcohol neopentyl glycol, 1,2-pentanediol, 1,5-pentanediol, trimethylolpropane and the like are preferable, and neopentylglycol and trimethylolpropane are more preferable in terms of easy availability.
- the curable polyester resin can be produced by using a known method for producing a polyester resin for powder coating, using an aromatic polyvalent carboxylic acid compound and a polyhydric alcohol compound as raw materials.
- the raw material is esterified or transesterified at 200 to 280 ° C., then subjected to a polycondensation reaction at 230 to 290 ° C. using a catalyst under reduced pressure, and then subjected to a depolymerization reaction with an alcohol component to be curable.
- a polyester resin is obtained.
- a curable polyester resin has an appropriate ester group concentration and aromatic ring concentration. It is preferable to have.
- the ester group concentration represents the content ratio of the ester group in the curable polyester resin in mass%, and can be obtained from the following formula (1).
- Ester group concentration (mass%) 2 m / [(a + b) ⁇ m + a] (1)
- m Average value of the number of units in the curable polyester resin, calculated from the average value of the molecular weight of each unit and the value of the number average molecular weight of the curable polyester resin.
- a Average value of the number of carbon atoms of the polyhydric alcohol unit.
- b Average value of the number of carbon atoms of the polyvalent carboxylic acid unit.
- the ester group concentration of the polyester resin is preferably 20 to 60% by mass, more preferably 25 to 50% by mass, and particularly preferably 30 to 40% by mass.
- the aromatic ring concentration is the content of aromatic rings in the curable polyester resin expressed in mmoL / g, and can be obtained from the following formula (2).
- Aromatic ring concentration (mmoL / g) [(total number of aromatic rings in raw material used to obtain curable polyester resin (moL)) / (total weight of raw material used to obtain curable polyester resin) (G))] ⁇ 1,000
- the aromatic ring concentration of the curable polyester resin is preferably 20 to 35 mmol / g, more preferably 22 to 34 mmol / g, and particularly preferably 25 to 33 mmol / g.
- curable polyester resins include “CRYLCOAT (registered trademark) 4642-3”, “CRYLCOAT (registered trademark) 4890-0” manufactured by Nippon Cytec Industries, Ltd., “GV-250”, “ GV-740 ",” GV-175 “and the like.
- the curable acrylic resin is a polymer having a unit derived from (meth) acrylate, and has a reactive group such as a carboxy group, a hydroxyl group, a sulfo group, and an epoxy group.
- the curable acrylic resin is excellent in the dispersibility of the pigment (F).
- the glass transition temperature of the curable acrylic resin is preferably 30 to 60 ° C. If the glass transition temperature is equal to or higher than the lower limit, blocking is difficult. When the glass transition temperature is not more than the above upper limit, the surface smoothness of the cured film is excellent.
- the acid value of the curable acrylic resin is preferably 150 to 400 mgKOH / g. If the acid value of a curable acrylic resin is more than the said lower limit, it has the dispersibility improvement effect of a pigment (F). If the acid value of a curable acrylic resin is below the said upper limit, a cured film will be excellent in moisture resistance.
- the molecular weight per reactive group is preferably 300 to 800.
- curable acrylic resins include “Fine Dick (registered trademark) A-249”, “Fine Dick (registered trademark) A-251”, “Fine Dick (registered trademark) A-266” manufactured by DIC, Examples include “Almatex (registered trademark) PD6200”, “Almatex (registered trademark) PD7310” manufactured by Mitsui Chemicals, and “Sampex PA-55” manufactured by Sanyo Chemical Industries.
- the curable epoxy resin is a compound (prepolymer) having two or more epoxy groups in the molecule.
- the curable epoxy resin is preferably an aromatic compound having a glycidyloxy group such as bisphenol A-diglycidyl ether or an oligomer thereof or an oligomer thereof.
- Commercially available curable epoxy resins include “Epicoat (registered trademark) 1001”, “Epicoat (registered trademark) 1002”, “Epicoat (registered trademark) 4004P” manufactured by Mitsubishi Chemical Corporation, and “Epicron (registered trademark)” manufactured by DIC.
- the curable urethane resin is a mixture of a polyol (acrylic polyol, polyester polyol, polyether polyol, propylene glycol, propylene oxide, etc.) and an isocyanate compound, or a reacted resin. It is preferable to use a powder coating composed of powder polyol (acrylic polyol, polyester polyol, polyether polyol) and powdered isocyanate.
- the curing agent (D) is a compound that cures the polymer by reacting with a reactive group of the polymer (fluororesin (A) or thermosetting resin (C)) to crosslink the polymer or increase the molecular weight. is there.
- the curing agent (D) has two or more reactive groups that can react with a reactive group (hydroxyl group, carboxy group, epoxy group, etc.) of the polymer.
- the reactive group of the curing agent (D) is preferably a reactive group that can react when the powder coating is heated and melted because it is not preferable to react with the reactive group of the polymer at room temperature. preferable.
- a blocked isocyanate group is preferable to an isocyanate group having a high reactive group at room temperature.
- the blocking agent is released to form an isocyanate group, and the isocyanate group acts as a reactive group.
- the curing agent (D) for curing the curable resin having a hydroxyl group or a carboxy group a known compound can be used.
- a blocked isocyanate curing agent, ⁇ -hydroxyalkylamine curing agent epoxy examples thereof include a curing agent.
- the ⁇ -hydroxyalkylamine curing agent include melamine resin, guanamine resin, sulfoamide resin, urea resin, aniline resin in which a hydroxymethyl group or an alkoxymethyl group is bonded to a nitrogen atom of an amino group or an amide group.
- the curing agent (D) is preferably an isocyanate curing agent and a ⁇ -hydroxyalkylamine curing agent,
- the blocked isocyanate curing agent (D1) is particularly preferred from the viewpoint of excellent workability of the product after painting and water resistance of the cured film.
- the curing agent (D) is preferably an epoxy curing agent such as a ⁇ -hydroxyalkylamine curing agent and triglycidyl isocyanurate.
- thermosetting resin (C) is a curable resin having a hydroxyl group or a carboxy group
- the same curing agent as described above is used.
- a blocked isocyanate curing agent (D1) or an epoxy curing agent is preferable.
- the thermosetting resin (C) is a curable resin having an epoxy group
- curing agent (D) may be used individually by 1 type, and may use 2 or more types together.
- the softening temperature of the curing agent (D) is preferably 10 to 120 ° C, particularly preferably 40 to 100 ° C.
- the softening temperature is equal to or higher than the lower limit, the powder coating is difficult to cure at room temperature, and it is difficult to form a granular lump. If the softening temperature is equal to or lower than the above upper limit, when producing a powder by melt-kneading the composition, it is easy to uniformly disperse the curing agent (D) in the powder, and the surface smoothness of the resulting cured film Excellent in strength and moisture resistance.
- the blocked isocyanate curing agent (D1) is preferably solid at room temperature.
- As the blocked isocyanate curing agent (D1) a polyisocyanate obtained by reacting an aliphatic, aromatic or araliphatic diisocyanate with a low molecular weight compound having active hydrogen is reacted with a blocking agent to mask it. What was manufactured by doing is preferable.
- Diisocyanates include tolylene diisocyanate, 4,4'-diphenylmethane isocyanate, xylylene diisocyanate, hexamethylene diisocyanate, 4,4'-methylene bis (cyclohexyl isocyanate), methylcyclohexane diisocyanate, bis (isocyanatomethyl) cyclohexaneisophorone diisocyanate, dimer acid Examples thereof include diisocyanate and lysine diisocyanate.
- Low molecular weight compounds having active hydrogen include water, ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, ethanolamine, diethanolamine, hexamethylenediamine, isocyanurate, uretidione, a low molecular weight polyester containing a hydroxyl group, Examples include polycaprolactone.
- the blocking agent examples include alcohols (methanol, ethanol, benzyl alcohol, etc.), phenols (phenol, cresol, etc.), lactams (caprolactam, butyrolactam, etc.), oximes (cyclohexanone, oxime, methyl ethyl ketoxime, etc.) and the like. .
- the composition ( ⁇ ) contains a curing agent that cures the fluoropolymer having the reactive group.
- the composition ( ⁇ ) and the composition ( ⁇ ) each include a separate curing agent.
- the composition ( ⁇ ) and the composition ( ⁇ ) each contain a curing agent.
- the composition ( ⁇ ) may not contain a curing agent, and only the composition ( ⁇ ) may contain a curing agent.
- the fluororesin (A) is a hydroxyl group-containing fluoropolymer (A1)
- the thermosetting resin (C) is a curable polyester resin having a hydroxyl group
- the curing agent (D) is an isocyanate curing agent
- the composition ( ⁇ ) and the composition ( ⁇ ) may each be a composition containing a blocked isocyanate curing agent (D1)
- the composition ( ⁇ ) is a blocked isocyanate curing agent ( D1) is not included, and only the composition ( ⁇ ) may be a composition containing the blocked isocyanate curing agent (D1).
- the curing agent (D) constitutes the powder (Y) for the following reason. It is preferable to be contained only in the composition ( ⁇ ). Since the fluororesin (A) contained in the composition ( ⁇ ) (specifically, a fluoropolymer having a reactive group, particularly a hydroxyl group-containing fluoropolymer (A1)) has a high curing rate, a curing agent ( When D) exists, it hardens quickly, leaving many voids in the cured film derived from the powder (X). Therefore, the planar smoothness, flex resistance and impact resistance of the cured film are insufficient.
- the fluororesin (A) contained in the composition ( ⁇ ) is in contact with the curing agent (D) at the initial stage of melting and curing of the powder coating. There is nothing to do. Therefore, the fluororesin (A) is sufficiently melted, and a uniform coating film derived from the powder (X) can be formed. Thereafter, the curing agent (D) contained in the coating film derived from the powder (Y) moves to the coating film derived from the powder (X), and the fluororesin (A) is cured, whereby the voids are formed. A cured film having a small amount, that is, excellent flatness, flexibility, and impact resistance is formed.
- Light stabilizer (E) The light stabilizer (E) protects the cured resin layer from ultraviolet rays that have passed through the fluororesin layer.
- the light stabilizer (E) is a hindered amine type having a molecular weight of 300 to 5,000 and a melting point of 50 to 250 ° C., because it tends to be unevenly distributed in the cured resin layer during the melting and curing process of the powder coating.
- a light stabilizer is preferred.
- a hindered amine light stabilizer having a molecular weight of 400 to 4,000 and a melting point of 60 to 200 ° C. is more preferable from the viewpoint of uniformly diffusing into the composition at the time of kneading.
- a light stabilizer (E) may be used individually by 1 type, and may use 2 or more types together.
- hindered amine light stabilizers include “Tinuvin (registered trademark) 111FDL” (molecular weight: 2,000 to 4,000, melting point: 63 ° C.) and “Tinuvin (registered trademark) 144” (molecular weight) manufactured by BASF.
- the light stabilizer (E) is included not only in the composition ( ⁇ ) that is the material of the powder (Y) but also in the composition ( ⁇ ) that is the material of the powder (X). However, from the viewpoint of cost reduction, it is preferable that the light stabilizer (E) is not present in the fluororesin layer as much as possible, that is, not contained in the composition ( ⁇ ) that is a material of the powder (X).
- composition ( ⁇ ) and the composition ( ⁇ ) may further contain a pigment (F).
- the pigment (F) is preferably at least one selected from the group consisting of bright pigments, rust preventive pigments, colored pigments and extender pigments.
- the bright pigment is a pigment composed of flaky powder particles for brightening the coating film.
- Bright pigments include aluminum powder, nickel powder, stainless steel powder, copper powder, bronze powder, gold powder, silver powder, mica powder, graphite powder, glass flakes, scaly iron oxide powder, mica, and mica whose surface is coated with metal oxide. And mica-like iron oxide.
- the flaky aluminum powder is preferably one in which the surface of aluminum is covered with a single-layer or multi-layer coating in order to improve the adhesion with resin components by corrosion prevention, discoloration prevention, bond method and the like.
- the aluminum powder examples include trade names “PCF7640A”, “PCF1440,“ PCF7160 ”,“ 7640NS ”, and“ 1440YL ”manufactured by Toyo Aluminum Co., Ltd.
- the bright pigment can be mixed with a component such as a resin, melt kneaded, and blended into the composition. Moreover, it can also be made to adhere to the powder particle surface after powder manufacture by the method called a bonding method etc., and can also be set as the powder which has a luster pigment.
- the obtained powder comprising the composition ( ⁇ ) or the composition ( ⁇ )
- the obtained powder bright pigment and binder solution
- the solvent of the solution is a solvent that does not dissolve the powder
- the solvent is removed by evaporation, whereby the glitter pigment is attached to the surface of the powder particles through the binder, and a powder having the glitter pigment can be obtained
- the binder is preferably an adhesive resin, and examples thereof include terpene resins, terpene / phenol resins, and terpene hydrogenated resins.
- the rust preventive pigment is a pigment for preventing the corrosion and alteration of the base material with respect to the base material that requires the antirust property.
- a lead-free rust preventive pigment having a low environmental load is preferable.
- lead-free rust preventive pigments include cyanamide zinc, zinc oxide, zinc phosphate, calcium magnesium phosphate, zinc molybdate, barium borate, and calcium cyanamide zinc.
- the color pigment is a pigment for coloring the cured film.
- examples of the color pigment include titanium oxide, carbon black, iron oxide, phthalocyanine blue, phthalocyanine green, quinacridone, isoindolinone, benzimidazolone, and dioxazine.
- the extender pigment is a pigment for improving the hardness of the cured film and increasing the thickness of the cured film. Moreover, when the base material is cut, blending is also preferable because the cut surface of the cured film can be cleaned.
- extender pigments include talc, barium sulfate, mica, and calcium carbonate.
- Inorganic pigments containing titanium oxide are likely to promote photocatalytic reactions in high temperature and high humidity areas.
- the photocatalytic reaction is promoted by moisture and ultraviolet rays. Since the inorganic pigment tends to be unevenly distributed in the cured resin layer, the titanium oxide tends to be unevenly distributed in the cured resin layer, and a void is easily formed between the cured resin and the titanium oxide. When water enters the gap, the cured resin layer deteriorates due to the photocatalytic action of titanium oxide.
- the amount of ultraviolet rays that permeate the fluororesin layer and reach the cured resin layer is reduced, so that the photocatalytic reaction hardly proceeds in the cured resin layer.
- the cured resin layer is unlikely to deteriorate due to the photocatalytic reaction. Therefore, even if a cured film is formed using a powder coating containing titanium oxide as a pigment, the fluororesin layer is unlikely to peel from the cured resin layer.
- the titanium oxide is preferably one that has been surface-treated so that the photocatalytic reaction does not proceed easily.
- the titanium oxide is surface-treated with silica, alumina, zirconia, selenium, organic components (polyol, etc.), etc. Titanium oxide whose titanium oxide content is adjusted to 83 to 90% by mass by these surface treatments is particularly preferable. If titanium oxide content is more than the said lower limit, it will be excellent in the whiteness of a cured film. When the titanium oxide content is not more than the above upper limit value, the cured resin layer is hardly deteriorated and the fluororesin layer is hardly peeled off.
- titanium oxide Commercially available products of titanium oxide include “Taipec (registered trademark) PFC105” (titanium oxide content: 87% by mass) and “Taipec (registered trademark) CR95” (titanium oxide content: 90% by mass) manufactured by Ishihara Sangyo Co., Ltd. “D918” (titanium oxide content: 85 mass%) manufactured by Sakai Chemical Co., Ltd. “Ti-Pure (registered trademark) R960” (titanium oxide content: 89 mass%) manufactured by DuPont, “Ti-Select ( Registered trademark) ”(titanium oxide content: 90 mass%) and the like.
- the curing catalyst (G) accelerates the curing reaction and imparts good chemical performance and physical performance to the cured film.
- the curing catalyst (G) is preferably a tin catalyst (such as tin octylate, tributyltin laurate, dibutyltin dilaurate).
- a curing catalyst may be used individually by 1 type, and may use 2 or more types together.
- compositions ( ⁇ ) and the composition ( ⁇ ) may contain other components (H) as necessary.
- Other components (H) include, for example, matting agents (such as ultrafine synthetic silica), surfactants (nonionic surfactants, cationic surfactants, or anionic surfactants), leveling agents, and surface conditioning. Agent (to improve the surface smoothness of the cured film), degassing agent (air entrained in the powder, blocking agent coming out of the curing agent (D), moisture, etc.
- the fluororesin (A) is PVDF
- the acrylic resin (J) that is preferably contained in the composition ( ⁇ ) is an example of the non-fluororesin.
- the acrylic resin (J) is a polymer having units derived from (meth) acrylate and is a polymer having substantially no reactive group.
- the acrylic resin (J) is preferably an alkyl methacrylate homopolymer or copolymer, more preferably an alkyl methacrylate homopolymer or copolymer having an alkyl group having 4 or less carbon atoms.
- a homopolymer of methyl methacrylate and a copolymer of methyl methacrylate and ethyl methacrylate are preferable.
- the glass transition temperature of the acrylic resin (J) is preferably 30 to 60 ° C. If the glass transition temperature is equal to or higher than the lower limit, blocking is difficult. When the glass transition temperature is not more than the above upper limit, the surface smoothness of the cured film is excellent.
- the number average molecular weight of the acrylic resin (J) is preferably 5,000 to 100,000, particularly preferably 30,000 to 100,000. If the number average molecular weight of acrylic resin (J) is more than the said lower limit, it will be hard to block. If the number average molecular weight of an acrylic resin (J) is below the said upper limit, it will be excellent in the surface smoothness of a cured film.
- the mass average molecular weight of the acrylic resin (J) is preferably 6,000 to 150,000, more preferably 40,000 to 150,000, and particularly preferably 60,000 to 150,000. If the mass average molecular weight of the acrylic resin (J) is not less than the lower limit, blocking is difficult. If the mass average molecular weight of an acrylic resin (J) is below the said upper limit, it will be excellent in the surface smoothness of a cured film.
- composition ( ⁇ ) The content of the ultraviolet absorber (B) in the composition ( ⁇ ) is preferably 0.01 to 15 parts by mass with respect to 100 parts by mass of the fluororesin (A) in the composition ( ⁇ ).
- amount of the ultraviolet absorber (B) is too small, the effect of reducing the amount of ultraviolet rays that pass through the fluororesin layer and reach the cured resin layer cannot be sufficiently obtained.
- the ultraviolet absorber (B) is an inorganic ultraviolet absorber
- the content of the ultraviolet absorber (B) in the composition ( ⁇ ) is 100 parts by mass of the fluororesin (A) in the composition ( ⁇ ).
- 0.01 to 3 parts by mass is particularly preferable.
- the inorganic ultraviolet absorber is effective even in a small amount and hardly deteriorates, the content may be small.
- the ultraviolet absorber (B) is an organic ultraviolet absorber
- the content of the ultraviolet absorber (B) in the composition ( ⁇ ) is 100 parts by mass of the fluororesin (A) in the composition ( ⁇ ).
- 0.1 to 5 parts by mass is particularly preferable.
- the organic ultraviolet absorber tends to deteriorate, so the content is slightly increased.
- the content of the curing agent (D) in the composition ( ⁇ ) is based on 100 parts by mass of the fluororesin (A) in the composition ( ⁇ ). 1 to 50 parts by mass is preferable, and 3 to 30 parts by mass is particularly preferable.
- the curing agent (D) is a blocked isocyanate curing agent (D1)
- the content of the blocked isocyanate curing agent (D1) in the composition ( ⁇ ) is an isocyanate with respect to the hydroxyl group in the composition ( ⁇ ).
- the amount in which the molar ratio of the groups is 0.05 to 1.5 is preferable, and the amount in which the molar ratio is 0.8 to 1.2 is particularly preferable.
- the molar ratio is not less than the lower limit of the above range, the degree of cure of the coating is increased, and the adhesion to the cured resin layer, the hardness of the cured film, the chemical resistance, and the like are excellent.
- the molar ratio is not more than the upper limit of the above range, the cured film is hardly brittle and the cured film has excellent heat resistance, chemical resistance, moisture resistance, and the like.
- the content of the curing catalyst (G) in the composition ( ⁇ ) is 0 with respect to 100 parts by mass in total of solids other than the pigment (F). 0.0001 to 10 parts by mass is preferable. If the content of the curing catalyst is not less than the lower limit value, the catalytic effect can be sufficiently obtained. If the content of the curing catalyst is less than or equal to the above upper limit value, the heat of the cured film generated by the remaining of the gas, such as air that is easily evacuated in the powder coating during the melting and curing process of the powder coating, is easy to escape. There is little decrease in water resistance, weather resistance and water resistance. 45 mass% or less is preferable among composition ((alpha)) (100 mass%), and, as for total content of the other component (H) in a composition ((alpha)), 30 mass% or less is especially preferable.
- the content of the acrylic resin (J) in the composition ( ⁇ ) is in the composition ( ⁇ ). 10 to 250 parts by mass is preferable with respect to 100 parts by mass of PVDF.
- composition ( ⁇ ) The content of the curing agent (D) in the composition ( ⁇ ) is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the thermosetting resin (C) in the composition ( ⁇ ). Part by mass is particularly preferred.
- the composition ( ⁇ ) does not contain a curing agent that cures the fluororesin (A) and the fluororesin (A) is also cured by the curing agent (D) in the composition ( ⁇ )
- the composition ( ⁇ ) The content of the curing agent (D) includes an amount necessary for curing the fluororesin (A).
- the content of the blocked isocyanate curing agent (D1) in the composition ( ⁇ ) is an isocyanate with respect to the hydroxyl group in the composition ( ⁇ ).
- the amount in which the molar ratio of the groups is 0.05 to 1.5 is preferable, and the amount in which the molar ratio is 0.8 to 1.2 is particularly preferable.
- the molar ratio is not less than the lower limit of the above range, the degree of cure of the coating is increased, and the adhesion to the cured resin layer, the hardness of the cured film, the chemical resistance, and the like are excellent.
- the composition ( ⁇ ) does not contain the blocked isocyanate curing agent (D1) that cures the hydroxyl group-containing fluoropolymer (A1), but contains the hydroxyl group by the blocked isocyanate curing agent (D1) in the composition ( ⁇ ).
- the fluoropolymer (A1) is also cured, the content of the blocked isocyanate curing agent (D1) in the composition ( ⁇ ) is based on the total hydroxyl groups of the composition ( ⁇ ) and the composition ( ⁇ ).
- An amount such that the molar ratio of isocyanate groups is 0.05 to 1.5 is preferred, and an amount such that 0.8 to 1.2 is particularly preferred.
- the content of the light stabilizer (E) in the composition ( ⁇ ) is preferably 0.05 to 20 parts by mass with respect to 100 parts by mass of the thermosetting resin (C) in the composition ( ⁇ ). 0.1 to 15 parts by mass is particularly preferable. If content of a light stabilizer (E) is more than the said lower limit, the protective effect of a cured resin layer will fully be acquired. Even if the content of the light stabilizer (E) exceeds the upper limit, the protective effect of the cured resin layer is not improved more than when the upper limit is used.
- the content of the curing catalyst (G) in the composition ( ⁇ ) is 0 with respect to a total of 100 parts by mass of solids other than the pigment (F). 0.0001 to 10 parts by mass is preferable. If the content of the curing catalyst is not less than the lower limit value, the catalytic effect can be sufficiently obtained. If the content of the curing catalyst is less than or equal to the above upper limit value, the heat of the cured film generated by the remaining of the gas, such as air that is easily evacuated in the powder coating during the melting and curing process of the powder coating, is easy to escape. There is little decrease in water resistance, weather resistance and water resistance. 45 mass% or less is preferable among composition ((beta)) (100 mass%), and, as for total content of the other component (H) in a composition ((beta)), 30 mass% or less is especially preferable.
- the total content of the pigment (F) in the composition ( ⁇ ) and the pigment (F) in the composition ( ⁇ ) depends on the fluororesin (A) and the composition ( ⁇ ) in the composition ( ⁇ ).
- the amount is preferably 20 to 200 parts by weight, particularly preferably 50 to 150 parts by weight, based on a total of 100 parts by weight of the thermosetting resin (C).
- the pigment (F) is a bright pigment, a part or all of the bright pigment is not blended with the composition ( ⁇ ) or the composition ( ⁇ ), and the powder particles of the powder (X) or the powder (Y) It can be adhered to the surface to make a powder coating.
- the total amount of the bright pigment on the powder particle surface is preferably 0.1 to 40 parts by mass with respect to 100 parts by mass in total of the fluororesin (A) and the thermosetting resin (C) in the powder coating, 1 to 20 parts by mass is particularly preferable.
- the fluororesin layer mainly composed of the fluororesin (A) and the cured resin layer mainly composed of a cured product of the thermosetting resin (C) are layered.
- a separated cured film can be formed in one coat. Since the cured resin layer is disposed on the substrate side and the fluororesin layer is disposed on the air side, the cured film is excellent in weather resistance.
- a cured film in which a fluororesin layer in which the ultraviolet absorber (B) is present and a cured resin layer in which the light stabilizer (E) is present is separated. Can be formed.
- the cured resin layer is placed on the substrate side and the fluororesin layer is placed on the air side, the amount of ultraviolet rays that pass through the fluororesin layer and reach the cured resin layer is reduced and cured by permeating the fluororesin layer. Deterioration of the cured resin layer due to ultraviolet rays reaching the resin layer is also suppressed. Therefore, it becomes difficult for a fluororesin layer to peel from a cured resin layer over a long period of time.
- the method for producing a powder coating material of the present invention is a method having the following step (a1), step (b1), step (c1), step (a2), step (b2), step (c2) and step (d). preferable.
- A1 Contains a fluororesin (A) and an ultraviolet absorber (B), and if necessary, a curing agent (D), a light stabilizer (E), a pigment (F), a curing catalyst (G), and other components
- B1 A step of pulverizing the kneaded material comprising the composition ( ⁇ ) to obtain the powder (X).
- thermosetting resin (C) other than fluororesin (C), a curing agent (D), and a light stabilizer (E) are included, and an ultraviolet absorber (B), a pigment (F), a curing catalyst ( G)
- B2 A step of pulverizing the kneaded product comprising the composition ( ⁇ ) to obtain a powder (Y).
- D) A step of dry blending the powder (X) and the powder (Y).
- Steps (a1) and (a2)) After each component is mixed to prepare a mixture, the mixture is melt-kneaded to obtain a kneaded product in which each component is uniformized. Each component is preferably pulverized in advance to form a powder.
- the apparatus used for mixing include a high-speed mixer, a V-type mixer, and an inverting mixer.
- Examples of the apparatus used for melt kneading include a single screw extruder, a twin screw extruder, and a planetary gear.
- the kneaded product is preferably formed into pellets after cooling.
- Process (b1), (b2) Examples of the apparatus used for pulverization include pulverizers such as a pin mill, a hammer mill, and a jet mill.
- Steps (c1) and (c2) In order to remove powder having too large particle diameter or powder having too small particle diameter, it is preferable to perform classification after pulverization. When performing classification, it is preferable to remove at least one of particles having a particle diameter of less than 10 ⁇ m and particles having a particle diameter of more than 100 ⁇ m. Examples of the classification method include a screening method and an air classification method.
- the average particle size of the powder (X) and the powder (Y) is preferably, for example, 25 to 50 ⁇ m with a 50% average volume particle size distribution. Measurement of the particle size of the powder is usually performed using a particle size measuring machine such as a type that captures a change in potential when passing through the pores, a laser diffraction method, an image determination format, a sedimentation velocity measurement method, and the like.
- Examples of the apparatus used for dry blending include a high speed mixer, a double cone mixer, a kneader, a dumpler mixer, a mixing shaker, a drum shaker, and a rocking shaker.
- the mixing ratio of the powder (X) and the powder (Y) is preferably 20/80 to 80/20 (mass ratio), and 25/75 to 75 / 25 (mass ratio) is particularly preferred. If the ratio of powder (X) is more than the said lower limit, the weather resistance of a cured film will be excellent. If the ratio of powder (Y) is more than the said lower limit, the cost of a cured film can be suppressed.
- the bright pigment is adhered to the surface of the powder particles by a method called a bonded method.
- a bonded method For example, after the steps (c1) and (c2), a bright pigment is adhered to the particle surface of at least one of the obtained powder (X) and powder (Y). Then, dry blending is performed using the bright pigment-attached powder (step (d)) to produce a powder coating material containing the bright pigment.
- a powder paint in which a bright pigment is blended by adhering a bright pigment to powder particles after dry blending.
- the powder particles (X) and (Y) When producing a powder coating containing a bright pigment on the surface of the powder particles, before dry blending in the step (d), either or both of the powder particles (X) and (Y) It is preferable that a bright pigment is attached to the surface, and then powder (X) and powder (Y) are dry blended.
- the powder having the bright pigment adhered to the surface of the powder particles may be a part of the powder or all of the powder.
- the powder (Y) only a powder having a bright pigment attached to the powder particle surface may be used, and a powder having a bright pigment attached to the powder particle surface and a powder having no bright pigment attached thereto. May be used in combination.
- the method for producing a coated article of the present invention is a method for producing a coated article having a cured film on the surface of a substrate, and includes the following steps (e) and (f).
- the powder coating material of the present invention is coated on a base material to form a coating film made of a melt of the powder coating material on the base material.
- the upper layer mainly composed of the melt of the fluororesin (A) and the lower layer mainly composed of the melt of the thermosetting resin (C) are separated, and the reaction components in each layer are cured. Cause a reaction.
- ⁇ Base material> As the material of the substrate, metals such as aluminum, iron, and magnesium are preferable. The shape, size, etc. of the substrate are not particularly limited.
- the coating film made of the powder coating melt may be formed at the same time as the coating of the powder coating on the substrate. After the powder coating powder is adhered to the substrate, the powder is applied on the substrate. It may be formed by heating and melting. Since the curing reaction of the reaction components in the composition starts almost simultaneously with the powder coating being melted by heating, the powder coating is heated and melted and adhered to the substrate almost simultaneously, or the powder coating substrate It is necessary to heat and melt the powder coating after adhering to the surface.
- a heating temperature (hereinafter also referred to as “baking temperature”) and a heating maintenance time (hereinafter also referred to as “baking time”) for heating and melting the powder coating material and maintaining the molten state for a predetermined time are: It is appropriately set depending on the kind and composition of the raw material components of the powder coating material, the desired thickness of the cured film, and the like.
- the baking temperature is preferably set according to the reaction temperature of the curing agent (D).
- the baking temperature when the blocked polyisocyanate curing agent (D1) is used as the curing agent (D) is preferably 170 to 210 ° C.
- the baking time is preferably 5 to 120 minutes, particularly preferably 10 to 60 minutes.
- Examples of the coating method include electrostatic coating, electrostatic spraying, electrostatic dipping, spraying, fluidized dipping, spraying, spraying, thermal spraying, plasma spraying, and the like. Even when the coating film is thinned, an electrostatic coating method using a powder coating gun is preferable from the viewpoint of excellent surface smoothness of the coating film and excellent concealment of the cured film.
- Examples of the powder coating gun include a corona charging type coating gun and a friction charging type coating gun.
- the corona electrification type coating gun sprays powder paint after corona discharge treatment.
- the friction charging type coating gun sprays a powder coating after friction charging.
- the discharge amount of the powder paint from the powder coating gun is preferably 50 to 200 g / min.
- the distance from the tip of the gun portion of the powder coating gun to the substrate is preferably 150 to 400 mm from the viewpoint of coating efficiency.
- the load voltage applied to the components constituting the powder coating by corona discharge treatment is preferably ⁇ 50 to ⁇ 100 kV, and the coating efficiency (the ratio at which the powder coating adheres to the substrate) From the viewpoint of excellent appearance of the coating film, ⁇ 60 to ⁇ 80 kV is preferable.
- the internally generated current value of the powder coating by the frictional charging treatment is preferably 1.0 to 8.0 ⁇ A from the viewpoint of excellent coating efficiency and appearance of the coating film.
- the electrostatic coating method When the electrostatic coating method is carried out industrially, for example, an unpainted mirror is installed, and a grounded conductive horizontal belt conveyor for grounding is laid in the coating room and painted. Install a gun at the top of the room.
- the coating pattern width is preferably 50 to 500 mm
- the operation speed of the gun is preferably 1 to 30 m / min
- the conveyor speed is preferably 1 to 50 m / min, and conditions suitable for the purpose may be selected from the above range.
- the fluidized dipping method is preferable in that a relatively thick cured film can be formed.
- a substrate whose coating surface is heated to a temperature equal to or higher than the melting temperature of the powder coating material in a fluid tank in which the powder coating material that is flowing and supported by a gas such as air is accommodated.
- the coated base material is taken out of the fluid tank, and in some cases for a predetermined time. It is preferable to maintain the molten state of the coating film, and then cool to cool and cure the molten coating film to obtain a substrate on which a cured film is formed.
- the temperature in the fluidized tank is preferably 15 to 55 ° C, and the temperature of gas such as air blown into the fluidized tank in order to fluidize the powder is also preferably 15 to 55 ° C.
- the temperature of at least the coated surface of the substrate when immersed in the fluidized tank is preferably 300 to 450 ° C., and the time for which the substrate is immersed in the fluidized tank is preferably 1 to 120 seconds.
- the substrate taken out from the fluidized tank is preferably maintained at a temperature of 150 to 250 ° C. for 1 to 5 minutes.
- the molten coating film is cooled to room temperature (20 to 25 ° C.) and cured to form a cured film. Cooling after baking may be either rapid cooling or slow cooling, and slow cooling is preferable in that interfacial peeling is difficult due to the difference in curing shrinkage between the fluororesin layer and the cured resin layer.
- the thickness of the cured film is not particularly limited, but is preferably 100 to 1,000 ⁇ m. For applications requiring high weather resistance such as outdoor units of air conditioners, signal poles and signs installed along the coast, 100 to 200 ⁇ m is preferable. In addition, as above-mentioned, when thickness is thick, it can achieve by selecting a fluid immersion method.
- Examples 1 to 12 are examples of producing each powder before dry blending
- Examples 13 to 17, 22, and 23 are examples
- Examples 18 to 21 are comparative examples.
- the glass transition temperature is a midpoint glass transition temperature measured by a differential scanning calorimetry (DSC) method.
- DSC differential scanning calorimetry
- the acrylic resin (J) was measured as follows.
- a thermal analysis system manufactured by PerkinElmer was used to measure the heat balance of 10 mg of acrylic resin (J) at a temperature range of ⁇ 25 to 200 ° C. and a heating rate of 10 ° C./min.
- the glass transition temperature was determined from the inflection point by the midpoint method.
- the number average molecular weight and the mass average molecular weight are values determined in terms of polystyrene by gel permeation chromatography (GPC). Specifically, the acrylic resin (J) was measured as follows. For a 0.5% tetrahydrofuran (THF) solution of acrylic resin (J), the flow rate of carrier (THF) was 1.0 mL / min, and the styrene equivalent molecular weight was determined by GPC using column TSKgel G4000XL (manufactured by Tosoh Corporation). .
- the average particle size of the powder is a value determined by a 50% average volume particle size distribution measured with a laser diffraction particle size distribution analyzer (manufactured by Sympatec, Helos-Rodos).
- the residue was removed by cooling and filtration to obtain 119.9 g of a fluororesin (A1-1) which is a hydroxyl group-containing fluoropolymer.
- the glass transition temperature of the fluororesin (A1-1) was 54 ° C., and the number average molecular weight was 12,000.
- thermosetting resin (C-1) Manufacture of thermosetting resin (C-1)
- a stainless steel autoclave with an internal volume of 250 mL with a stirrer was charged with 31.7 g of terephthalic acid, 21.6 g of neopentyl glycol and 2.0 g of xylene, and the temperature was gradually raised from 100 ° C. at 250 ° C. The esterification reaction was performed for 4 hours.
- As a catalyst 0.01 g of antimony trioxide was added, the pressure was reduced to 0.5 mmHg or less, a polycondensation reaction was performed at 280 ° C. for 3 hours, and a thermosetting resin (C-1), which is a curable polyester resin, was obtained. 52.2 g was obtained.
- the thermosetting resin (C-1) had a glass transition temperature of 58 ° C., a number average molecular weight of 4,400, and a mass average molecular weight of 7,200.
- a mixture of 140.2 g of methyl methacrylate, 80.0 g of ethyl methacrylate, and 0.2 g of n-lauryl mercaptan as a chain transfer agent was added dropwise over 1 hour.
- 1 mL of a 2 mass% aqueous solution of ammonium persulfate was added to start the reaction.
- the temperature in the flask was raised to 85 ° C. and held for 1 hour, and then filtered through a 300-mesh wire mesh to obtain a blue-white aqueous dispersion.
- the aqueous dispersion was frozen and coagulated at ⁇ 25 ° C., dehydrated and washed, and then vacuum dried at 80 ° C.
- an acrylic resin (J-1) which is a white powdery acrylic resin.
- the acrylic resin (J-1) had a glass transition temperature of 40 ° C., a number average molecular weight of 65,000 and a mass average molecular weight of 110,000.
- Fluororesin (A-2) PVDF (manufactured by Toga Co., Ltd., PVDF DS203, mass average molecular weight: 270,000, number average molecular weight: 160,000, melting point: 170 ° C.).
- UV absorber (B-1) Organic UV absorber (manufactured by BASF, Tinuvin (registered trademark) 405, molecular weight: 583.8, melting point: 76.3 ° C., volatilization temperature: 348.5 ° C.).
- Light stabilizer (E-1) A hindered amine light stabilizer (manufactured by BASF, Tinuvin (registered trademark) 111FDL).
- Pigment (F-1) Titanium oxide (manufactured by DuPont, Ti-Pure (registered trademark) R960, titanium oxide content: 89% by mass).
- Aluminum flake (F-2) Aluminum flake pigment for powder coating (trade name “PCF7640A” manufactured by Toyo Aluminum Co., Ltd., average particle size 21 ⁇ m, average thickness 0.6 ⁇ m)
- Degassing agent (H-1) benzoin.
- Surface conditioner (H-2) Leveling agent for powder coating (BYK (registered trademark) -360P, manufactured by BYK Chemie).
- Examples 1 to 12 Manufacture of powder for powder coating
- a high-speed mixer manufactured by Amagasaki Co., Ltd.
- the mixture was melt kneaded at a barrel setting temperature of 120 ° C. using a twin screw extruder (manufactured by Thermo Prism, 16 mm extruder) to obtain pellets.
- the pellets were pulverized at room temperature using a pulverizer (manufactured by FRITSCH, rotor speed mill P14) and classified by a 150 mesh sieve to obtain a powder for powder coating having an average particle diameter of about 40 ⁇ m.
- Example 12 after a powder containing no pigment (F-1) was produced in the same manner as described above, the same method as in Example 1 described in JP-A No. 2004-17581 was applied to the surface of the obtained powder particles.
- the powder (Y-4) was produced by attaching the pigment (F-2).
- Example 15 was superior to Example 16 in terms of surface smoothness, bending resistance, and weight drop resistance. This is probably because the powder (X) of Example 15 does not contain the curing agent (D), so that the formation rate of the fluororesin layer can be controlled, and it is difficult for voids (voids) to be generated in the cured film.
- the cured films produced using the powder paints of Examples 18 to 21 were promoted although it was confirmed that the cured resin layer was separated so that the cured resin layer was arranged on the substrate side and the fluororesin layer was arranged on the air side.
- the weather resistance was insufficient.
- the cured film produced using the powder coating material of Example 20 was remarkably insufficient in accelerated weather resistance and insufficient in weather resistance.
- the above results indicate that there is a sufficient amount of UV absorber in the fluororesin layer disposed on the air side, and a sufficient amount of light stabilizer in the cured resin layer on the substrate side. Means.
- the powder coating of the present invention includes traffic lights, utility poles, road marking poles, bridges, railings, building materials (gates, fences, house siding materials, curtain walls, roofs, etc.), automobile bodies and parts (bumpers, wipers). Blades, etc.), household electrical appliances (air conditioner outdoor units, water heater exteriors, etc.), wind power generation blades, solar cell backsheets, solar power collector mirror back surfaces, eggplant battery exterior cured films, etc. Useful for forming.
- the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2013-157168 filed on July 29, 2013 are incorporated herein as the disclosure of the specification of the present invention. Is.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Description
しかし、これら粉体塗料を用いて形成された硬化膜は、耐候性に劣るという欠点を有する。
ハイブリッド粉体塗料を用いることによって、基材側のポリエステル樹脂からなる硬化樹脂層と空気側のフッ素樹脂層とからなる2層構造の硬化膜を1コートで形成できる。該硬化膜は、空気側にフッ素樹脂層を有するため、耐候性に優れる。
また、本発明者らが検討したところ、ポリエステル樹脂を含む粉体およびフッ素樹脂を含む粉体の両方が硬化剤を含む場合、硬化膜の平面平滑性、耐屈曲性および耐衝撃性に劣るという欠点を有する。
[1]フッ素樹脂(A)と紫外線吸収剤(B)とを含む組成物(α)からなる粉体(X)と、
フッ素樹脂以外の熱硬化性樹脂(C)と硬化剤(D)と光安定剤(E)とを含む組成物(β)からなる粉体(Y)と、
を含む、粉体塗料。
[2]前記粉体(X)と前記粉体(Y)との混合比(粉体(X)/粉体(Y))が、20/80~80/20(質量比)である、[1]に記載の粉体塗料。
[4]前記組成物(β)における硬化剤(D)がブロック化イソシアネート系硬化剤であり、前記組成物(α)が前記ブロック化イソシアネート系硬化剤を実質的に含まない、[3]に記載の粉体塗料。
[6]前記組成物(α)がさらにアクリル樹脂(J)を含む、[5]に記載の粉体塗料。
[8]前記熱硬化性樹脂(C)が硬化性ポリエステル樹脂であり、硬化剤(D)がブロック化イソシアネート系硬化剤である、[1]~[7]のいずれかに記載の粉体塗料。
[10]前記粉体(X)および前記粉体(Y)のいずれか一方または両方が、当該粉体を構成する粉体粒子として粉体粒子表面に光輝顔料が付着した粉体粒子を含む、[1]~[8]のいずれかに記載の粉体塗料。
(a1)フッ素樹脂(A)と紫外線吸収剤(B)とを含む混合物を溶融混練して組成物(α)からなる混練物を得る工程。
(b1)前記組成物(α)からなる混練物を粉砕して粉体(X)を得る工程。
(a2)フッ素樹脂以外の熱硬化性樹脂(C)と硬化剤(D)と光安定剤(E)とを含む混合物を溶融混練して組成物(β)からなる混練物を得る工程。
(b2)前記組成物(β)からなる混練物を粉砕して粉体(Y)を得る工程。
(d)前記粉体(X)と、前記粉体(Y)とを、ドライブレンドする工程。
[12]前記工程(a1)における混合物および前記工程(a2)における混合物のいずれか一方または両方が、顔料(F)をさらに含む、[11]に記載の粉体塗料の製造方法。
[13]前記工程(d)においてドライブレンドする前に、粉体(X)および粉体(Y)のいずれか一方または両方の粉体粒子表面に光輝顔料を付着させ、その後に前記粉体(X)および前記粉体(Y)をドライブレンドする、[11]に記載の粉体塗料の製造方法。
[15]基材の表面に硬化膜を有する塗装物品を製造する方法であって、
下記工程(e)および工程(f)を有する、塗装物品の製造方法。
(e)[1]~[10]のいずれかに記載の粉体塗料を基材に塗装し、前記粉体塗料の溶融物からなる塗膜を形成する工程。
(f)前記塗膜を硬化させて硬化膜を形成する工程。
本発明の粉体塗料の製造方法によれば、前記効果を奏する粉体塗料を製造できる。
本発明の塗装物品は、硬化樹脂層とフッ素樹脂層とからなる2層構造を有する硬化膜であって、耐候性に優れ、かつ長期間にわたってフッ素樹脂層が剥離しにくい硬化膜を有する。
本発明の塗装物品の製造方法によれば、前記硬化膜を表面に有する塗装物品を製造できる。
「熱硬化性樹脂」とは、加熱することによって硬化剤と反応し得る反応性基を有する化合物を意味する。
「紫外線吸収剤」とは、紫外線の化学作用から樹脂等を保護する目的で添加物として用いられる化合物であり、波長400nm以下の紫外線を吸収し、効率よく熱エネルギーに分散でき、かつ光に対して安定な化合物を意味する。
「光安定剤」とは、光による樹脂等の劣化を抑制する目的で添加物として用いられる化合物であり、光による樹脂等の劣化を、紫外線吸収以外の作用(ラジカル捕捉等)によって抑制する効果を有する化合物を意味する。
「ドライブレンド」とは、粉体を溶融することなく、また、溶媒を添加することなく、2種以上の粉体を混合することを意味する。
「塗膜」とは、粉体塗料を塗装して形成された該粉体塗料の溶融物からなる膜を意味する。
「硬化膜」とは、前記塗膜を硬化させることにより形成される膜を意味する。
「1コート」とは、1回だけ塗装することを意味する。
「粉体塗料を溶融、硬化させる」とは、粉体塗料を溶融状態にし、その中の反応成分を反応させ、硬化させることを意味する。
「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの総称である。
「単位」とは、重合体中に存在して重合体を構成する、単量体に由来する部分を意味する。炭素-炭素不飽和二重結合を有する単量体の付加重合により生じる、該単量体に由来する単位は、該不飽和二重結合が開裂して生じた2価の単位である。ポリエステル樹脂を構成する、多価カルボン酸化合物に由来する単位は、多価カルボン酸化合物の少なくとも1個のカルボキシ基から水酸基を除いた1価以上の単位であり、多価アルコール化合物に由来する単位は、多価アルコール化合物の少なくとも1個の水酸基から水素原子を除いた1価以上の単位である。また、ある単位の構造を重合体形成後に化学的に変換したものも単位という。
なお、以下、場合により、個々の単量体に由来する単位をその単量体名に「単位」を付した名称で呼ぶ。
本発明の粉体塗料は、下記粉体(X)および下記粉体(Y)を含む。
粉体(X):フッ素樹脂(A)と紫外線吸収剤(B)とを含む組成物(α)からなる粉体。組成物(α)は、必要に応じて硬化剤(D)、光安定剤(E)、顔料(F)、硬化触媒(G)、その他の成分(H)を含んでもよい。
粉体(Y):フッ素樹脂以外の熱硬化性樹脂(C)と硬化剤(D)と光安定剤(E)とを含む組成物(β)からなる粉体。組成物(β)は、必要に応じて紫外線吸収剤(B)、顔料(F)、硬化触媒(G)、その他の成分(H)を含んでもよい。
フッ素樹脂(A)としては、フルオロオレフィンの単独重合体または共重合体が挙げられる。共重合体の場合は、フルオロオレフィンの2種以上の共重合体、フルオロオレフィンの1種以上とフルオロオレフィン以外の含フッ素単量体の1種以上との共重合体、フルオロオレフィンの1種以上とフッ素原子を有しない単量体の1種以上との共重合体、フルオロオレフィンの1種以上とフルオロオレフィン以外の含フッ素単量体の1種以上とフッ素原子を有しない単量体の1種以上との共重合体等が挙げられる。
フルオロオレフィンと共重合性の単量体としては、炭素-炭素二重結合を有するフルオロオレフィン以外の化合物であることが好ましい。炭素-炭素二重結合を有する単量体は、フルオロオレフィンとの交互共重合性に優れ、重合収率が高くできる。また、未反応で残存した場合でも、硬化膜への影響が少なく、かつ、製造工程で容易に除去できる。
フルオロオレフィンの炭素数は、2~8が好ましく、2~6が特に好ましい。
フルオロオレフィンにおけるフッ素原子の数は、2以上が好ましく、3~4が特に好ましい。フッ素原子の数が2以上であれば、硬化膜の耐候性が優れる。フルオロオレフィンにおいては、フッ素原子で置換されていない水素原子の1個以上が塩素原子で置換されていてもよい。フルオロオレフィンが塩素原子を有すると、フッ素樹脂(A)に顔料等(特にシアニンブルー、シアニングリーン等の有色の有機顔料)を分散させやすい。また、フッ素樹脂(A)のガラス転移温度を50℃以上に設計でき、硬化膜のブロッキングを抑えることができる。
フルオロオレフィンは、1種を単独で用いてもよく、2種以上を併用してもよい。
フルオロオレフィン単位としては、フルオロオレフィンの重合により直接形成される単位が好ましい。
フッ素原子を有しない単量体としては、反応性基を有しない単量体と反応性基を有する単量体が挙げられる。反応性基を有しない単量体としては、たとえば、オレフィン、反応性基を有しないビニルエーテル等が挙げられ、反応性基を有する単量体としては、水酸基を有する単量体等が挙げられる。
他の単量体は、含フッ素重合体を構成する単位として必須の単位を形成する単量体(たとえば、ETFEにおけるエチレンおよびTFE、PFAにおけるTFEおよびペルフルオロ(アルキルビニルエーテル))以外の単量体である。
他の単量体としては、得られる含フッ素重合体が基材(特にアルミニウム製基材)への密着性に優れ、シーリング剤によるアルミニウム製カーテンウォールの固定がしやすい等の点から、ビニリデンフルオリドが特に好ましい。
硬化剤は水酸基含有含フッ素重合体(A1)とともに粉体(X)に配合される。しかし後述のように、粉体(Y)に含まれる硬化剤(D)がブロック化イソシアネート系硬化剤等である場合、粉体(X)には硬化剤を配合せず、粉体(Y)に含まれる硬化剤(D)によって水酸基含有含フッ素重合体(A1)を硬化させることが好ましい場合もある。
水酸基を有する単量体としては、たとえば、アリルアルコール、ヒドロキシアルキルビニルエーテル(2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、シクロヘキサンジオールモノビニルエーテル等)、ヒドロキシアルキルアリルエーテル(2-ヒドロキシエチルアリルエーテル等)、ヒドロキシアルカン酸ビニル(ヒドロキシプロピオン酸ビニル等)、ヒドロキシアルキル(メタ)アクリレート(ヒドロキシエチル(メタ)アクリレート等)等が挙げられる。
単量体(a1)は、1種を単独で使用してもよく、2種以上を併用してもよい。
アリルエーテルとしては、たとえば、アルキルアリルエーテル(エチルアリルエーテル、ヘキシルアリルエーテル等)が挙げられる。
カルボン酸アリルエステルとしては、たとえば、カルボン酸(酢酸、酪酸、ピバリン酸、安息香酸、プロピオン酸等)のアリルエステルが挙げられる。
オレフィンとしては、たとえば、エチレン、プロピレン、イソブチレン等が挙げられる。
単量体(a2)としては、硬化膜の柔軟性に優れる点からは、炭素数3以上の直鎖状または分岐状のアルキル基を有するものが好ましい。
単量体(a2)は、1種を単独で使用してもよく、2種以上を併用してもよい。
組み合わせ(1)
フルオロオレフィン:TFEまたはCTFE、
単量体(a1):ヒドロキシアルキルビニルエーテル、
単量体(a2):シクロアルキルビニルエーテル、アルキルビニルエーテルおよびカルボン酸ビニルエステルからなる群から選ばれる1種以上。
組み合わせ(2)
フルオロオレフィン:TFE、
単量体(a1):ヒドロキシアルキルビニルエーテル、
単量体(a2):CHVEまたはtert-ブチルビニルエーテル。
組み合わせ(3)
フルオロオレフィン:CTFE、
単量体(a1):ヒドロキシアルキルビニルエーテル、
単量体(a2):CHVEまたはtert-ブチルビニルエーテル。
粉体(X)の材料である組成物(α)が紫外線吸収剤(B)を含むことによって、フッ素樹脂層に紫外線吸収剤(B)が偏在しやすくなる。そのため、フッ素樹脂層を透過して硬化樹脂層に届く紫外線の量が減り、硬化樹脂層の劣化が抑制され、フッ素樹脂層が硬化樹脂層から剥離する問題を回避できる。
本発明においては、紫外線吸収剤(B)を、粉体(X)の材料である組成物(α)だけでなく、粉体(Y)の材料である組成物(β)にも含ませることにより、硬化樹脂層にも紫外線吸収剤(B)が偏在することができるが、コストを抑える点からは、紫外線吸収剤(B)は、硬化樹脂層にできるだけ存在させない、すなわち粉体(Y)の材料である組成物(β)に含ませないことが好ましい。
紫外線吸収剤(B)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
326」(分子量:315.8、融点:139℃)、「Tinuvin(登録商標) 405」(分子量:583.8、融点:74~77℃)、「Tinuvin(登録商標)
460」(分子量:629.8、融点:93~102℃)、「Tinuvin(登録商標) 900」(分子量:447.6、融点:137~141℃)、「Tinuvin(登録商標) 928」(分子量:441.6、融点:109~113℃)、Clariant社製の「Sanduvor(登録商標) VSU powder」(分子量:312.0、融点:123~127℃)、Clariant社製の「Hastavin(登録商標) PR-25 Gran」(分子量:250.0、融点:55~59℃)等が挙げられる。
無機系紫外線吸収剤としては、酸化亜鉛と酸化チタンの複合粒子、酸化セリウムと酸化チタンの複合粒子、酸化亜鉛と酸化セリウムの複合粒子、酸化チタンと酸化亜鉛と酸化セリウムの複合粒子等が好ましい。
熱硬化性樹脂(C)としては、粉体塗料の溶融、硬化過程においてフッ素樹脂(A)と相溶することなく、層分離できるものが好ましい。熱硬化性樹脂(C)としては、硬化性アクリル樹脂、硬化性ポリエステル樹脂、硬化性エポキシ樹脂、および硬化性ウレタン樹脂が好ましく、基材への密着性に優れる点、フッ素樹脂が硬化樹脂層にコンタミしにくい点から、硬化性ポリエステル樹脂、および硬化性アクリル樹脂がより好ましく、硬化性ポリエステル樹脂が特に好ましい。
なお、硬化性の樹脂とは、水酸基、カルボキシ基、エポキシ基、アミノ基等の反応性基を有する重合体や化合物を意味する。
硬化性ポリエステル樹脂は、多価カルボン酸化合物に由来する単位と多価アルコール化合物に由来する単位とがエステル結合で連結した重合体であり、これら2種の単位以外の単位(たとえば、ヒドロキシカルボン酸化合物に由来する単位等)を有していてもよい。
硬化性ポリエステル樹脂の重合鎖の末端に存在する単量体単位(以下、末端単位と記す。)は、末端単位が多価カルボン酸化合物に由来する単位である場合はその末端単位はカルボキシ基を有し、末端単位が多価アルコール化合物に由来する単位である場合はその末端単位は水酸基を有する。
末端単位以外の単位は2価以上の単位からなり、線状重合体では、末端単位を除き、2価の単位のみからなる。すなわち、線状の硬化性ポリエステル樹脂は、末端単位を除き、多価カルボン酸化合物に由来する2価の単位、多価アルコール化合物に由来する2価の単位等の2価の単位のみからなる。分岐状の硬化性ポリエステル樹脂は少なくとも1個の3価以上の単位を有し、その3価以上の単位と末端単位以外は実質的に2価の単位のみからなる。3価以上の単位としては、3価以上の多価カルボン酸化合物の3個以上のカルボキシ基からそれぞれ水酸基を除いた単位、3価以上の多価アルコール化合物の3個以上の水酸基からそれぞれ水素原子を除いた単位、等が挙げられる。
以下、多価カルボン酸化合物に由来する単位を「多価カルボン酸単位」、多価アルコール化合物に由来する単位を「多価アルコール単位」とも記す。
硬化性ポリエステル樹脂の水酸基価は、20~100mgKOH/gが好ましく、30~80mgKOH/gが特に好ましい。酸価は、1~80mgKOH/gが好ましく、3~50mgKOH/gが特に好ましい。
水酸基価および酸価は、JIS K 0070(1992年度版)に準じて測定される。
芳香環としては、ベンゼン環またはナフタレン環が好ましく、ベンゼン環が特に好ましい。ベンゼン環の場合は1分子に2個存在していてもよい。
芳香族多価カルボン酸化合物におけるカルボキシ基の数は、2~4個が好ましく、2個が特に好ましい。
炭素数8~15の芳香族多価カルボン酸化合物としては、たとえば、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、トリメリット酸、ピロメリット酸、フタル酸無水物等が挙げられる。
多価カルボン酸単位としては、硬化膜の耐候性が優れる点から、イソフタル酸に由来する単位が好ましい。
炭素数2~10の多価アルコール化合物としては、たとえば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、スピログリコール、1,10-デカンジオール、1,4-シクロヘキサンジメタノール、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール等が挙げられる。
多価アルコールとしては、ネオペンチルグリコール、1,2-ペンタンジオール、1,5-ペンタンジオール、トリメチロールプロパン等が好ましく、入手容易の点で、ネオペンチルグリコールおよびトリメチロールプロパンがより好ましい。
エステル基濃度(質量%)=2m/[(a+b)×m+a] ・・・(1)
m:各単位の分子量の平均値と硬化性ポリエステル樹脂の数平均分子量の値から算出される、硬化性ポリエステル樹脂中の単位個数の平均値。
a:多価アルコール単位の炭素原子数の平均値。
b:多価カルボン酸単位の炭素原子数の平均値。
ポリエステル樹脂のエステル基濃度は、20~60質量%が好ましく、25~50質量%がより好ましく、30~40質量%が特に好ましい。
芳香環濃度(mmoL/g)=[(硬化性ポリエステル樹脂を得るのに用いられた原料中の芳香環の総数(moL))/(硬化性ポリエステル樹脂を得るのに用いられた原料の総重量(g))]×1,000
硬化性ポリエステル樹脂の芳香環濃度は、20~35mmoL/gが好ましく、22~34mmoL/gがより好ましく、25~33mmoL/gが特に好ましい。
硬化性アクリル樹脂は、(メタ)アクリレートに由来する単位を有する重合体であり、カルボキシ基、水酸基、スルホ基、エポキシ基等の反応性基を有する。該硬化性アクリル樹脂は、顔料(F)の分散性に優れる。
硬化性アクリル樹脂のガラス転移温度は、30~60℃が好ましい。ガラス転移温度が前記下限値以上であれば、ブロッキングしにくい。ガラス転移温度が前記上限値以下であると、硬化膜の表面平滑性に優れる。
同様の理由で、エポキシ基等の他の反応性基を有する場合、反応性基当たりの分子量(たとえば、エポキシ当量)は300~800が好ましい。
硬化性エポキシ樹脂は、分子内にエポキシ基を2つ以上有する化合物(プレポリマー)である。硬化性エポキシ樹脂としては、ビスフェノールA-ジグリシジルエーテルやそのオリゴマーなどのグリシジルオキシ基を有する芳香族化合物やそのオリゴマーが好ましい。
硬化性エポキシ樹脂の市販品としては、三菱化学社製の「エピコート(登録商標) 1001」、「エピコート(登録商標) 1002」、「エピコート(登録商標) 4004P」、DIC社製の「エピクロン(登録商標) 1050」、「エピクロン(登録商標) 3050」、新日鉄住金化学社製の「エポトート(登録商標) YD-012」、「エポトート(登録商標) YD-014」、ナガセケムテックス社製の「デナコール(登録商標) EX-711」、ダイセル社製の「EHPE3150」等が挙げられる。
注)エポキシ樹脂を「硬化性エポキシ樹脂」という必要はないが、他の硬化性樹脂に「硬化性」を付加したので、エポキシ樹脂にも付加した。
硬化性ウレタン樹脂は、ポリオール(アクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール、プロピレングリコール、プロピレンオキサイド等)と、イソシアネート化合物とを混合した混合物、または反応させた樹脂である。粉体のポリオール(アクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール)と粉体のイソシアネートからなる粉体塗料を用いることが好ましい。
硬化剤(D)は、重合体(フッ素樹脂(A)または熱硬化性樹脂(C))の反応性基と反応して重合体を架橋したり高分子量化して、重合体を硬化させる化合物である。硬化剤(D)は、重合体が有する反応性基(水酸基、カルボキシ基、エポキシ基等)に反応し得る反応性基を2個以上有する。硬化剤(D)の反応性基は、常温で重合体の反応性基に反応しやすいものは好ましくない点から、粉体塗料が加熱溶融された際に反応し得る反応性基であることが好ましい。たとえば、常温で高い反応性基を有するイソシアネート基よりもブロック化イソシアネート基が好ましい。ブロック化イソシアネート基は、粉体塗料が加熱溶融された際にブロック剤が脱離してイソシアネート基となり、該イソシアネート基が反応性基として作用する。
フッ素樹脂(A)として水酸基含有含フッ素重合体(A1)を用いる場合、硬化剤(D)としては、イソシアネート系硬化剤およびβ-ヒドロキシアルキルアミン系硬化剤が好ましく、基材との密着性、塗装後の製品の加工性、硬化膜の耐水性に優れる点から、ブロック化イソシアネート系硬化剤(D1)が特に好ましい。
フッ素樹脂(A)としてカルボキシ基含有含フッ素重合体を用いる場合、硬化剤(D)としては、β-ヒドロキシアルキルアミン系硬化剤およびトリグリシジルイソシアヌレート等のエポキシ系硬化剤が好ましい。
熱硬化性樹脂(C)が水酸基やカルボキシ基を有する硬化性樹脂である場合も、上記と同様の硬化剤が使用される。硬化性ポリエステル樹脂の硬化剤としては、ブロック化イソシアネート系硬化剤(D1)やエポキシ系硬化剤が好ましい。
また、熱硬化性樹脂(C)がエポキシ基を有する硬化性樹脂である場合は、アミン系硬化剤、カルボキシ基を有する硬化剤、イミダゾールやジシアンジアミドなどの硬化剤が使用される。
硬化剤(D)は、1種を単独で用いてもよく、2種以上を併用してもよい。
ブロック化イソシアネート系硬化剤(D1)としては、脂肪族、芳香族または芳香脂肪族のジイソシアネートと、活性水素を有する低分子化合物とを反応させて得たポリイソシアネートを、ブロック剤と反応させ、マスキングすることによって製造したものが好ましい。
組成物(β)における硬化剤が含フッ素重合体を硬化させる硬化剤と異なる場合、組成物(α)と組成物(β)はそれぞれ別個の硬化剤を含む。
反応性基を有する含フッ素重合体を硬化させる硬化剤と組成物(β)における硬化剤が同種の硬化剤の場合、組成物(α)と組成物(β)はそれぞれ硬化剤を含んでいてもよく、組成物(α)は硬化剤を含まず、組成物(β)のみが硬化剤を含んでいてもよい。
具体的には、たとえば、フッ素樹脂(A)が水酸基含有含フッ素重合体(A1)、熱硬化性樹脂(C)が水酸基を有する硬化性ポリエステル樹脂、硬化剤(D)がイソシアネート系硬化剤(D1)の場合、組成物(α)と組成物(β)はそれぞれブロック化イソシアネート系硬化剤(D1)を含む組成物であってもよく、組成物(α)はブロック化イソシアネート系硬化剤(D1)を含まず、組成物(β)のみがブロック化イソシアネート系硬化剤(D1)を含む組成物であってもよい。
組成物(α)に含まれるフッ素樹脂(A)(具体的には反応性基を有する含フッ素重合体、特に水酸基含有含フッ素重合体(A1))は、硬化速度が速いため、硬化剤(D)が存在すると速やかに硬化し、粉体(X)に由来する硬化膜中に空隙が多く残る。そのため、硬化膜の平面平滑性、耐屈曲性および耐衝撃性が不充分となる。
組成物(β)のみが硬化剤(D)を含むことによって、粉体塗料の溶融、硬化過程の初期では、組成物(α)に含まれるフッ素樹脂(A)は硬化剤(D)と接触することがない。そのため、フッ素樹脂(A)が充分に溶融することになり、粉体(X)に由来する均一な塗膜を形成できる。その後、粉体(Y)に由来する塗膜に含まれている硬化剤(D)が粉体(X)に由来する塗膜に移行し、フッ素樹脂(A)が硬化することによって、空隙が少ない、すなわち平面平滑性、耐屈曲性および耐衝撃性に優れる硬化膜が形成される。
光安定剤(E)は、フッ素樹脂層を透過した紫外線から、硬化樹脂層を保護するものである。
光安定剤(E)は、1種を単独で用いてもよく、2種以上を併用してもよい。
本発明においては、光安定剤(E)を、粉体(Y)の材料である組成物(β)だけでなく、粉体(X)の材料である組成物(α)にも含ませてもよいが、コストを抑える点からは、光安定剤(E)は、フッ素樹脂層にできるだけ存在させない、すなわち粉体(X)の材料である組成物(α)に含ませないことが好ましい。
組成物(α)および前記組成物(β)のいずれか一方または両方が、顔料(F)をさらに含んでいてもよい。
顔料(F)としては、光輝顔料、防錆顔料、着色顔料および体質顔料からなる群から選ばれる少なくとも1種が好ましい。
フレーク状のアルミニウム粉は、腐食防止、変色防止、ボンデッド法などによる樹脂成分との接着性向上のために、アルミ二ウム表面が、単層または複層の被膜で覆われたものが好ましい。
アルミニウム粉の具体例としては、東洋アルミニウム社製、商品名「PCF7640A」、「PCF1440、「PCF7160」、「7640NS」、「1440YL」などが挙げられる。
光輝顔料は、他の顔料と同様に、樹脂等の成分とともに混合し、溶融混練して組成物に配合できる。また、ボンデッド法と呼ばれる方法などで粉体製造後に粉体粒子表面に付着させて、光輝顔料を有する粉体とすることもできる。たとえば、本発明において、組成物(α)または組成物(β)からなる粉体を製造後、得られた粉体と光輝顔料と結合剤溶液(ただし、溶液の溶剤は粉体を溶解しない溶剤を使用)とを混合し、次いで溶剤を蒸発除去させることによって、結合剤を介して光輝顔料を粉体粒子表面に付着させて、光輝顔料を有する粉体とすることができる(特開2004-175813号公報等参照)。
結合剤としては、粘着性樹脂が好ましく、たとえば、テルペン系樹脂、テルペン・フェノール系樹脂、テルペン系水素添加系樹脂等が挙げられる。
硬化触媒(G)は、硬化反応を促進し、硬化膜に良好な化学性能および物理性能を付与するものである。
ブロック化イソシアネート系硬化剤(D1)を用いる場合、硬化触媒(G)としては、スズ触媒(オクチル酸スズ、トリブチルスズラウレート、ジブチルスズジラウレート等)が好ましい。
硬化触媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
組成物(α)および組成物(β)のいずれか一方または両方は、必要に応じて、その他の成分(H)を含んでいてもよい。
その他の成分(H)としては、たとえば、つや消し剤(超微粉合成シリカ等)、界面活性剤(ノニオン系界面活性剤、カチオン系界面活性剤、またはアニオン系界面活性剤)、レベリング剤、表面調整剤(硬化膜の表面平滑性を向上させる)、脱ガス剤(粉体に巻き込まれる空気、硬化剤(D)から出てくるブロック剤、水分等が硬化膜内部に留まらないよう、塗膜外へ出す作用がある。なお、通常は、固体だが、溶融すると非常に低粘度になる。)、充填剤、熱安定剤、増粘剤、分散剤、帯電防止剤、防錆剤、シランカップリング剤、防汚剤、低汚染化処理剤、非フッ素樹脂(熱硬化性樹脂(C)を除く。)等が挙げられる。なお、フッ素樹脂(A)がPVDFの場合、組成物(α)に含まれることが好ましいアクリル樹脂(J)は、上記非フッ素樹脂の1例である。
アクリル樹脂(J)は、(メタ)アクリレートに由来する単位を有する重合体であり、反応性基を実質的に有しない重合体である。アクリル樹脂(J)はアルキルメタクリレートの単独重合体や共重合体が好ましく、アルキル基の炭素数が4以下のアルキルメタクリレートの単独重合体や共重合体がより好ましい。特に、メチルメタクリレートの単独重合体やメチルメタクリレートとエチルメタクリレートとの共重合体が好ましい。
アクリル樹脂(J)の数平均分子量は、5,000~10万が好ましく、3万~10万が特に好ましい。アクリル樹脂(J)の数平均分子量が前記下限値以上であれば、ブロッキングしにくい。アクリル樹脂(J)の数平均分子量が前記上限値以下であれば、硬化膜の表面平滑性に優れる。
アクリル樹脂(J)の質量平均分子量は、6,000~15万が好ましく、4万~15万がより好ましく、6万~15万が特に好ましい。アクリル樹脂(J)の質量平均分子量が前記下限値以上であれば、ブロッキングしにくい。アクリル樹脂(J)の質量平均分子量が前記上限値以下であれば、硬化膜の表面平滑性に優れる。
組成物(α)中の紫外線吸収剤(B)の含有量は、組成物(α)中のフッ素樹脂(A)の100質量部に対して、0.01~15質量部が好ましい。紫外線吸収剤(B)の量が少なすぎる場合には、フッ素樹脂層を透過して硬化樹脂層に届く紫外線の量の低減効果が充分に得られない。
紫外線吸収剤(B)が無機系紫外線吸収剤の場合、組成物(α)中の紫外線吸収剤(B)の含有量は、組成物(α)中のフッ素樹脂(A)の100質量部に対して、0.01~3質量部が特に好ましい。無機系紫外線吸収剤は、少量でも効果があり、かつ劣化しにくいため、含有量が少なくてもよい。
紫外線吸収剤(B)が有機系紫外線吸収剤の場合、組成物(α)中の紫外線吸収剤(B)の含有量は、組成物(α)中のフッ素樹脂(A)の100質量部に対して、0.1~5質量部が特に好ましい。有機系紫外線吸収剤は、劣化しやすい傾向にあるため、含有量は少し多めにする。
硬化剤(D)がブロック化イソシアネート系硬化剤(D1)の場合、組成物(α)中のブロック化イソシアネート系硬化剤(D1)の含有量は、組成物(α)中の水酸基に対するイソシアナート基のモル比が0.05~1.5となる量が好ましく、0.8~1.2となる量が特に好ましい。該モル比が前記範囲の下限値以上であれば、塗料の硬化度が高くなり、硬化樹脂層との密着性、硬化膜の硬度および耐薬品性等が優れる。該モル比が前記範囲の上限値以下であれば、硬化膜が脆くなりにくく、しかも、硬化膜の耐熱性、耐薬品性、耐湿性等が優れる。
組成物(α)中のその他の成分(H)の合計の含有量は、組成物(α)(100質量%)のうち、45質量%以下が好ましく、30質量%以下が特に好ましい。
組成物(β)中の硬化剤(D)の含有量は、組成物(β)中の熱硬化性樹脂(C)の100質量部に対して、1~50質量部が好ましく、3~30質量部が特に好ましい。組成物(α)がフッ素樹脂(A)を硬化させる硬化剤を含まず、組成物(β)中の硬化剤(D)によってフッ素樹脂(A)も硬化させる場合は、組成物(β)中の硬化剤(D)の含有量はフッ素樹脂(A)を硬化させるために必要な量も含む。
硬化剤(D)がブロック化イソシアネート系硬化剤(D1)の場合、組成物(β)中のブロック化イソシアネート系硬化剤(D1)の含有量は、組成物(β)中の水酸基に対するイソシアナート基のモル比が0.05~1.5となる量が好ましく、0.8~1.2となる量が特に好ましい。該モル比が前記範囲の下限値以上であれば、塗料の硬化度が高くなり、硬化樹脂層との密着性、硬化膜の硬度および耐薬品性等が優れる。該モル比が前記範囲の上限値以下であれば、硬化膜が脆くなりにくく、しかも、硬化膜の耐熱性、耐薬品性、耐湿性等が優れる。
組成物(α)が水酸基含有含フッ素重合体(A1)を硬化させるブロック化イソシアネート系硬化剤(D1)を含まず、組成物(β)中のブロック化イソシアネート系硬化剤(D1)によって水酸基含有含フッ素重合体(A1)も硬化させる場合、上記組成物(β)中のブロック化イソシアネート系硬化剤(D1)の含有量は、組成物(α)と組成物(β)の合計の水酸基に対するイソシアナート基のモル比が0.05~1.5となる量が好ましく、0.8~1.2となる量が特に好ましい。
組成物(β)中のその他の成分(H)の合計の含有量は、組成物(β)(100質量%)のうち、45質量%以下が好ましく、30質量%以下が特に好ましい。
顔料(F)が光輝顔料である場合、光輝顔料の一部または全量は組成物(α)や組成物(β)に配合せず、粉体(X)や粉体(Y)の粉体粒子表面に付着させて粉体塗料とすることができる。その場合、粉体粒子表面の光輝顔料の合計量は粉体塗料におけるフッ素樹脂(A)および熱硬化性樹脂(C)の合計100質量部に対して、0.1~40質量部が好ましく、1~20質量部が特に好ましい。
以上説明した本発明の粉体塗料にあっては、フッ素樹脂(A)を主成分とするフッ素樹脂層と、熱硬化性樹脂(C)の硬化物を主成分とする硬化樹脂層とが層分離した硬化膜を1コートで形成できる。基材側には硬化樹脂層が、空気側にはフッ素樹脂層が配置するため、該硬化膜は耐候性に優れる。
また、以上説明した本発明の粉体塗料にあっては、紫外線吸収剤(B)が存在するフッ素樹脂層と、光安定剤(E)が存在する硬化樹脂層とが層分離した硬化膜を形成できる。基材側には硬化樹脂層が、空気側にはフッ素樹脂層が配置されるため、フッ素樹脂層を透過して硬化樹脂層に届く紫外線の量が減るとともに、フッ素樹脂層を透過して硬化樹脂層に届く紫外線による硬化樹脂層の劣化も抑制される。そのため、長期間にわたってフッ素樹脂層が硬化樹脂層から剥離しにくくなる。
本発明の粉体塗料の製造方法は、下記工程(a1)、工程(b1)、工程(c1)、工程(a2)、工程(b2)、工程(c2)および工程(d)を有する方法が好ましい。
(a1)フッ素樹脂(A)と紫外線吸収剤(B)とを含み、必要に応じて硬化剤(D)、光安定剤(E)、顔料(F)、硬化触媒(G)、その他の成分(H)を含んでもよい混合物を溶融混練して組成物(α)からなる混練物を得る工程。
(b1)組成物(α)からなる混練物を粉砕して粉体(X)を得る工程。
(c1)必要に応じて、粉体(X)の分級を行う工程。
(a2)フッ素樹脂以外の熱硬化性樹脂(C)と硬化剤(D)と光安定剤(E)とを含み、必要に応じて紫外線吸収剤(B)、顔料(F)、硬化触媒(G)、その他の成分(H)を含んでもよい混合物を溶融混練して組成物(β)からなる混練物を得る工程。
(b2)前記組成物(β)からなる混練物を粉砕して粉体(Y)を得る工程。
(c2)必要に応じて、粉体(Y)の分級を行う工程。
(d)粉体(X)と粉体(Y)とをドライブレンドする工程。
各成分を混合し混合物を調製した後、該混合物を溶融混練して各成分が均一化された混練物を得る。
各成分は、あらかじめ粉砕して粉末状にすることが好ましい。
混合に用いる装置としては、高速ミキサ、V型ミキサ、反転ミキサ等が挙げられる。
溶融混練に用いる装置としては、1軸押出機、2軸押出機、遊星ギア等が挙げられる。
混練物は、冷却後、ペレットとすることが好ましい。
粉砕に用いる装置としては、ピンミル、ハンマーミル、ジェットミル等の粉砕機が挙げられる。
粒子径の大きすぎる粉体や粒子径の小さすぎる粉体を除去するために、粉砕後に分級を行うことが好ましい。分級を行う場合、粒子径が10μm未満の粒子および粒子径が100μmを超える粒子の少なくともいずれかを除去することが好ましい。
分級方法としては、ふるい分けによる方法、空気分級法等が挙げられる。
ドライブレンドに用いる装置としては、ハイスピードミキサ、ダブルコーンミキサ、ニーダ、ダンプラーミキサ、ミキシングシェーカ、ドラムシェーカ、ロッキングシェーカ等が挙げられる。
粉体(X)と粉体(Y)との混合比(粉体(X)/粉体(Y))は、20/80~80/20(質量比)が好ましく、25/75~75/25(質量比)が特に好ましい。粉体(X)の割合が前記下限値以上であれば、硬化膜の耐候性が優れる。粉体(Y)の割合が前記下限値以上であれば、硬化膜のコストを抑えることができる。
粉体粒子表面に光輝顔料を含む粉体塗料を製造する場合は、工程(d)においてドライブレンドする前に、粉体(X)および粉体(Y)のいずれか一方または両方の粉体粒子表面に光輝顔料を付着させ、その後に粉体(X)および粉体(Y)をドライブレンドすることが好ましい。
粉体粒子表面に光輝顔料が付着した粉体は紛体の一部であってもよく、全部であってもよい。たとえば、粉体(Y)として、粉体粒子表面に光輝顔料が付着した粉体のみを用いてもよく、粉体粒子表面に光輝顔料が付着した粉体と光輝顔料が付着していない粉体を併用してもよい。
本発明の塗装物品の製造方法は、基材の表面に硬化膜を有する塗装物品を製造する方法であって、下記工程(e)および工程(f)を有する。
(e)本発明の粉体塗料を基材に塗装し、粉体塗料の溶融物からなる塗膜を形成する工程。
(f)塗膜を硬化させて硬化膜を形成する工程。
本発明の粉体塗料を基材に塗装して基材上に粉体塗料の溶融物からなる塗膜を形成する。塗膜においては、フッ素樹脂(A)の溶融物を主成分とする上層と、熱硬化性樹脂(C)の溶融物を主成分とする下層とに層分離し、各層中の反応成分が硬化反応を起こす。
基材の材質としては、アルミニウム、鉄、マグネシウム等の金属類が好ましい。
基材の形状、サイズ等は、特に限定はされない。
粉体塗料の溶融物からなる塗膜は、基材への粉体塗料の塗装と同時に形成してもよく、基材に粉体塗料の粉体を付着させた後に基材上で粉体を加熱溶融させて形成してもよい。
粉体塗料が加熱溶融されるとほぼ同時に、組成物中の反応成分の硬化反応が開始するため、粉体塗料の加熱溶融と基材への付着はほぼ同時に行うか、粉体塗料の基材への付着の後に粉体塗料の加熱溶融を行う必要がある。
塗装方法としては、静電塗装法、静電吹付法、静電浸漬法、噴霧法、流動浸漬法、吹付法、スプレー法、溶射法、プラズマ溶射法等が挙げられる。塗膜を薄膜化した場合でも、塗膜の表面平滑性に優れ、さらに、硬化膜の隠ぺい性に優れる点からは、粉体塗装ガンを用いた静電塗装法が好ましい。
粉体塗装ガンからの粉体塗料の吐出量は、50~200g/分が好ましい。
粉体塗装ガンのガン部分の先端から基材までの距離は、塗着効率の点から、150~400mmが好ましい。
摩擦帯電型塗装ガンを用いる場合、摩擦帯電処理による粉体塗料の内部発生電流値は、塗着効率と塗膜の外観に優れる点から、1.0~8.0μAが好ましい。
流動浸漬法においては、空気等のガスに担持されて流動している粉体塗料が収容されている流動槽中に、粉体塗料の溶融温度以上の温度に塗装面が加熱されている基材を浸漬し、粉体を基材の塗装面に付着させるとともに溶融し、基材上に所定の厚さの塗膜を形成した後、塗装された基材を流動槽から取り出し、場合により所定時間塗膜の溶融状態を維持し、その後冷却して溶融状態の塗膜を冷却して硬化して、硬化膜が形成された基材とすることが好ましい。
溶融状態の塗膜を室温(20~25℃)まで冷却して硬化させて硬化膜を形成する。
焼付け後の冷却は、急冷、徐冷いずれでもよく、フッ素樹脂層と硬化樹脂層との硬化収縮の違いによる界面剥離がしにくい点で、徐冷が好ましい。
硬化膜の厚さは、特に制限されないが、100~1,000μmが好ましい。海岸沿いに設置してあるエアコンの室外機、信号機のポール、標識等の耐候性の要求が高い用途では、100~200μmが好ましい。なお、上述したように、厚さが厚い場合には、流動浸漬法を選択することで達成できる。
(ガラス転移温度)
ガラス転移温度は、示差走査熱量測定(DSC)法で測定した中間点ガラス転移温度である。
アクリル樹脂(J)については、具体的には下記のようにして測定した。
Thermal Analysis System(パーキンエルマー社製)を用い、アクリル樹脂(J)の10mgについて、-25~200℃の温度範囲、昇温スピード10℃/分で熱収支を測定し、得られたチャートの変曲点から中点法によってガラス転移温度を求めた。
数平均分子量および質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)法によってポリスチレン換算で求めた値である。
アクリル樹脂(J)については、具体的には下記のようにして測定した。
アクリル樹脂(J)の0.5%テトラヒドロフラン(THF)溶液について、キャリアー(THF)の流量を1.0mL/minとし、カラムTSKgelG4000XL(東ソー社製)を用いてGPC法によってスチレン換算分子量を求めた。
Thermal Analysis System(パーキンエルマー社製)を用い、紫外線吸収剤の10mgについて、-25~200℃の温度範囲、昇温スピード10℃/分で熱収支を測定し、ピークトップを紫外線吸収剤の融点とした。
示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー社製、TG/DTA 7200)を用いて、紫外線吸収剤の10mgについて、30~500℃の温度範囲、昇温スピード10℃/分で昇温し、質量が5%減少する温度を紫外線吸収剤の揮発温度とした。
粉体の平均粒子径は、レーザー回折式粒度分布測定機(Sympatec社製、Helos-Rodos)で測定し、50%平均体積粒度分布により求めた値である。
硬化膜の表面の状態を目視し、下記基準で判定した。
○(良好):硬化膜の表面平滑性に優れ、はじきや塗れ性の不良等が確認されなかった。
×(不良):硬化膜の表面平滑性が悪く、はじきや塗れ性の不良等が確認された。
硬化膜付きアルミニウム板を切断し、硬化膜の断面を下記測定条件で走査電子顕微鏡によって断面観察し、下記基準で判定した。
<測定条件>
試験機;日本電子社製、JSM-5900LV、
加速電圧;20kV、
倍率;10,000倍、
測定前処理;日本電子社製オートファインコーター、JFC-1300による、20mA、45秒の白金コート。
<判定基準>
○(良好):フッ素樹脂層と硬化樹脂層との界面が確認された。
×(不良):フッ素樹脂層と硬化樹脂層との界面が確認されなかった。
PCI(パウダーコーティングインスティチュート)により平滑性目視判定用標準板を用いて判定した。標準板は、1~10の10枚あり、数字が大きくなるにしたがい、表面平滑性に優れる。
沖縄県那覇市の屋外に硬化膜付きアルミニウム板を設置し、設置直前の硬化膜の表面の光沢と、3年後における硬化膜の表面の光沢を、光沢計(日本電色工業社製、PG-1M)を用いて測定した。設置直前の光沢の値を100%としたときの、3年後の光沢の値の割合を光沢保持率(単位:%)として算出し、下記基準で耐候性を判定した。なお、光沢保持率は、JIS K 5600-1-7に準拠して測定、算出した。
○(良好):光沢保持率が80%以上であり、硬化膜の変色、フッ素樹脂層の剥離等は見られなかった。
×(不良):光沢保持率が80%未満であり、硬化膜の変色、フッ素樹脂層の剥離等が見られた。
キセノンウェザーメーター(スガ試験機社製)を用い、フッ素樹脂層が剥離するまでの時間(剥離時間)を測定した。なお、通常は水を噴霧するが、水を噴霧する代わりに、1%の過酸化水素水を用いて試験を行った。
<試験条件>
相対湿度:70%RH、
温度:50℃、
光源:80W/m2(300~400nm)。
JIS K 5600-5-1に準拠し、判定した。折り曲げ試験装置を用い、硬化膜の割れまたは剥離が起こりはじめるマンドレルの最小直径を測定した。数字が小さいほど、耐屈曲性に優れることを表している。
○(良好):硬化膜の割れまたは剥離が起こりはじめるマンドレルの最小直径が6mm未満。
×(不良):硬化膜の割れまたは剥離が起こりはじめるマンドレルの最小直径が6mm以上。
JIS K 5600-5-3に準拠し、判定した。デュポン式衝撃変形試験器を用い、500gのおもりを70cmの高さから落下させ、硬化膜の割れおよび剥離の発生を目視により判定した。
○(良好):硬化膜に割れおよび剥離は確認されない。
×(不良):硬化膜に割れまたは剥離が確認された。
(フッ素樹脂(A1-1)の製造)
撹拌機付き内容積250mLのステンレス鋼製オートクレーブに、CHVEの51.2g、4-ヒドロキシブチルビニルエーテルの13.3g、キシレンの55.8g、エタノールの15.7g、炭酸カリウムの1.1g、tert-ブチルペルオキシピバレートの50質量%キシレン溶液の0.7g、およびCTFEの63gを導入した。徐々に昇温し、55℃に達した後、20時間保持した。65℃に昇温し5時間保持した。冷却し、ろ過を行って残渣を除去し、水酸基含有含フッ素重合体であるフッ素樹脂(A1-1)の119.9gを得た。フッ素樹脂(A1-1)のガラス転移温度は54℃であり、数平均分子量は12,000であった。
(熱硬化性樹脂(C-1)の製造)
撹拌機付き内容積250mLのステンレス鋼製オートクレーブに、テレフタル酸の31.7g、ネオペンチルグリコールの21.6g、キシレンの2.0gを仕込み、温度を100℃から徐々に昇温し、250℃で4時間、エステル化反応を行った。触媒として、三酸化アンチモンの0.01gを添加し、0.5mmHg以下に減圧し、280℃で3時間、重縮合反応を行い、硬化性ポリエステル樹脂である熱硬化性樹脂(C-1)の52.2gを得た。熱硬化性樹脂(C-1)のガラス転移温度は58℃であり、数平均分子量は4,400、質量平均分子量は7,200であった。
(アクリル樹脂(J-1)の製造)
冷却管、温度計を備えた内容量1Lの四つ口フラスコに、脱イオン水の200mL、反応性乳化剤(三洋化成工業社製、エレミノール(登録商標)JS-2、コハク酸エステル誘導体)の2g、およびポリオキシエチレンノニルフェニルエーテル(エチレンオキシド10モル付加)の2gを添加した。窒素気流下において温浴中で80℃に達したところで、過硫酸アンモニウムの2質量%水溶液の10mLを添加した。メタクリル酸メチルの140.2gと、メタクリル酸エチルの80.0gと、連鎖移動剤としてのn-ラウリルメルカプタンの0.2gとの混合物を1時間かけて滴下した。直後に過硫酸アンモニウムの2質量%水溶液の1mLを添加し反応を開始した。3時間後に、フラスコ内の温度を85℃に上げ、1時間保持した後、300メッシュの金網でろ過して青白色の水性分散液を得た。水性分散液を-25℃で凍結凝析し、脱水洗浄した後、80℃で真空乾燥し、白色パウダー状のアクリル樹脂であるアクリル樹脂(J-1)の209.2gを得た。アクリル樹脂(J-1)のガラス転移温度は40℃であり、数平均分子量は6.5万、質量平均分子量は11万であった。
フッ素樹脂(A-2):PVDF(東岳社製、PVDF DS203、質量平均分子量:27万、数平均分子量:16万、融点:170℃)。
紫外線吸収剤(B-1):有機系紫外線吸収剤(BASF社製、Tinuvin(登録商標) 405、分子量:583.8、融点:76.3℃、揮発温度:348.5℃)。
硬化剤(D1-1):ブロック化イソシアネート系硬化剤(デグサ社製、ベスタゴン(登録商標)B1530)。
光安定剤(E-1):ヒンダードアミン系光安定剤(BASF社製、Tinuvin(登録商標) 111FDL)。
顔料(F-1):酸化チタン(デュポン社製、Ti-Pure(登録商標) R960、酸化チタン含有量:89質量%)。
アルミフレーク(F-2):粉体塗料用アルミフレーク顔料(東洋アルミニウム社製、商品名「PCF7640A」、平均粒径21μm、平均厚み0.6μm)
硬化触媒(G-1):ジブチルスズジラウレート。
脱ガス剤(H-1):ベンゾイン。
表面調整剤(H-2):粉体塗料用レベリング剤(ビックケミー社製、BYK(登録商標)-360P)。
(粉体塗料用の粉体の製造)
表1に記載の各成分を、高速ミキサ(佑崎有限公司社製)を用いて10~30分間程度混合し、粉末状の混合物を得た。該混合物を2軸押出機(サーモプリズム社製、16mm押出機)を用いて、120℃のバレル設定温度にて溶融混練を行い、ペレットを得た。該ペレットを粉砕機(FRITSCH社製、ロータースピードミルP14)を用いて常温で粉砕し、150メッシュのふるいによる分級を行い、平均粒子径が約40μmの粉体塗料用の粉体を得た。
なお、例12では、顔料(F-1)を含まない粉体を上記と同様に製造した後、得られた粉体粒子表面に特開2004-175813号公報記載の実施例1と同様の方法で顔料(F-2)を付着させて、粉体(Y-4)を製造した。
(粉体塗料の製造)
表2に記載の各粉体を、それぞれ500gずつハイスピードミキサ(アーステクニカ社製、容量2L)を用い、アジテータ羽根の毎分500回転、チョッパ羽根の毎分4,000回転の条件で、室温で1分間、ドライブレンドし、粉体塗料を製造した。
静電塗装機(小野田セメント社製、GX3600C)を用い、クロメート処理を行ったアルミニウム板の一面に粉体塗料の静電塗装を行い、200℃雰囲気中で20分間保持した。放置して室温まで冷却し、厚さ55~65μmの硬化膜付きアルミニウム板を得た。得られた硬化膜付きアルミニウム板を試験片として評価を行った。結果を表2に示す。
例15と例16とを比較すると、例16よりも例15の方が表面平滑性、耐屈曲性、および耐おもり落下性に優れていた。これは、例15の粉体(X)が硬化剤(D)を含まないことによって、フッ素樹脂層の形成速度を制御でき、硬化膜中にボイド(空隙)が生成しにくかったためと考えられる。
例18~21の粉体塗料を用いて製造した硬化膜は、基材側に硬化樹脂層が、空気側にフッ素樹脂層が配置するように層分離していることが確認されたものの、促進耐候性が不充分であった。特に、空気側に配置されたフッ素樹脂層が剥離するという問題が発生した。中でも例20の粉体塗料を用いて製造した硬化膜は、促進耐候性が著しく不充分であり、耐候性も不充分であった。
以上の結果は、空気側に配置されたフッ素樹脂層には、紫外線吸収剤が充分に存在し、かつ基材側の硬化樹脂層には、光安定剤が充分に存在する必要性があることを意味している。
なお、2013年7月29日に出願された日本特許出願2013-157168号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (15)
- フッ素樹脂(A)と紫外線吸収剤(B)とを含む組成物(α)からなる粉体(X)と、
フッ素樹脂以外の熱硬化性樹脂(C)と硬化剤(D)と光安定剤(E)とを含む組成物(β)からなる粉体(Y)と、
を含む、粉体塗料。 - 前記粉体(X)と前記粉体(Y)との混合比(粉体(X)/粉体(Y))が、20/80~80/20(質量比)である、請求項1に記載の粉体塗料。
- 前記フッ素樹脂(A)が、水酸基含有含フッ素重合体(A1)である、請求項1または2に記載の粉体塗料。
- 前記組成物(β)における硬化剤(D)がブロック化イソシアネート系硬化剤であり、前記組成物(α)が前記ブロック化イソシアネート系硬化剤を実質的に含まない、請求項3に記載の粉体塗料。
- 前記フッ素樹脂(A)が、ポリビニリデンフルオリドである、請求項1または2に記載の粉体塗料。
- 前記組成物(α)がさらにアクリル樹脂(J)を含む、請求項5に記載の粉体塗料。
- 前記熱硬化性樹脂(C)が、硬化性アクリル樹脂、硬化性ポリエステル樹脂、硬化性エポキシ樹脂および硬化性ウレタン樹脂からなる群から選ばれる少なくとも1種である、請求項1~6のいずれか一項に記載の粉体塗料。
- 前記熱硬化性樹脂(C)が硬化性ポリエステル樹脂であり、硬化剤(D)がブロック化イソシアネート系硬化剤である、請求項1~7のいずれか一項に記載の粉体塗料。
- 前記組成物(α)および前記組成物(β)のいずれか一方または両方が、顔料(F)をさらに含む、請求項1~8のいずれか一項に記載の粉体塗料。
- 前記粉体(X)および前記粉体(Y)のいずれか一方または両方が、当該粉体を構成する粉体粒子として粉体粒子表面に光輝顔料が付着した粉体粒子を含む、請求項1~8のいずれか一項に記載の粉体塗料。
- 請求項1に記載の粉体塗料の製造方法であり、下記工程(a1)、工程(b1)、工程(a2)、工程(b2)および工程(d)を有することを特徴とする粉体塗料の製造方法。
(a1)フッ素樹脂(A)と紫外線吸収剤(B)とを含む混合物を溶融混練して組成物(α)からなる混練物を得る工程。
(b1)前記組成物(α)からなる混練物を粉砕して粉体(X)を得る工程。
(a2)フッ素樹脂以外の熱硬化性樹脂(C)と硬化剤(D)と光安定剤(E)とを含む混合物を溶融混練して組成物(β)からなる混練物を得る工程。
(b2)前記組成物(β)からなる混練物を粉砕して粉体(Y)を得る工程。
(d)前記粉体(X)と、前記粉体(Y)とを、ドライブレンドする工程。 - 前記工程(a1)における混合物および前記工程(a2)における混合物のいずれか一方または両方が、顔料(F)をさらに含む、請求項11に記載の粉体塗料の製造方法。
- 前記工程(d)においてドライブレンドする前に、粉体(X)および粉体(Y)のいずれか一方または両方の粉体粒子表面に光輝顔料を付着させ、その後に前記粉体(X)および前記粉体(Y)をドライブレンドする、請求項11に記載の粉体塗料の製造方法。
- 基材の表面に、請求項1~10のいずれか一項に記載の粉体塗料の硬化膜を有する、塗装物品。
- 基材の表面に硬化膜を有する塗装物品を製造する方法であって、
下記工程(e)および工程(f)を有する、塗装物品の製造方法。
(e)請求項1~10のいずれか一項に記載の粉体塗料を基材に塗装し、前記粉体塗料の溶融物からなる塗膜を形成する工程。
(f)前記塗膜を硬化させて硬化膜を形成する工程。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480043260.5A CN105452400B (zh) | 2013-07-29 | 2014-07-28 | 粉体涂料、涂装物品和它们的制造方法 |
SG11201600663PA SG11201600663PA (en) | 2013-07-29 | 2014-07-28 | Powder coating material, coated article and processes for their production |
JP2015529568A JP6447498B2 (ja) | 2013-07-29 | 2014-07-28 | 粉体塗料、塗装物品およびそれらの製造方法 |
EP14831838.9A EP3029117B1 (en) | 2013-07-29 | 2014-07-28 | Powder coating material, coated article, and processes for their production |
US14/971,239 US10563087B2 (en) | 2013-07-29 | 2015-12-16 | Powder coating material, coated article and processes for their production |
SA516370472A SA516370472B1 (ar) | 2013-07-29 | 2016-01-26 | مسحوق مادة طلاء، مادة مطلية وعمليات لإنتاجها |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013157168 | 2013-07-29 | ||
JP2013-157168 | 2013-07-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/971,239 Continuation US10563087B2 (en) | 2013-07-29 | 2015-12-16 | Powder coating material, coated article and processes for their production |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015016185A1 true WO2015016185A1 (ja) | 2015-02-05 |
Family
ID=52431718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/069848 WO2015016185A1 (ja) | 2013-07-29 | 2014-07-28 | 粉体塗料、塗装物品およびそれらの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10563087B2 (ja) |
EP (1) | EP3029117B1 (ja) |
JP (1) | JP6447498B2 (ja) |
CN (1) | CN105452400B (ja) |
SA (1) | SA516370472B1 (ja) |
SG (1) | SG11201600663PA (ja) |
WO (1) | WO2015016185A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015099051A1 (ja) * | 2013-12-27 | 2015-07-02 | 旭硝子株式会社 | 塗装物品 |
WO2016002724A1 (ja) * | 2014-07-01 | 2016-01-07 | 旭硝子株式会社 | 粉体塗料用組成物、粉体塗料および塗装物品 |
WO2016052111A1 (ja) * | 2014-09-30 | 2016-04-07 | 大日本塗料株式会社 | 塗装体 |
WO2017043447A1 (ja) * | 2015-09-07 | 2017-03-16 | 旭硝子株式会社 | 塗装物品の製造方法 |
WO2017110924A1 (ja) * | 2015-12-25 | 2017-06-29 | 旭硝子株式会社 | 粉体塗料、粉体塗料の製造方法、および塗装物品 |
WO2017119373A1 (ja) * | 2016-01-04 | 2017-07-13 | 旭硝子株式会社 | 粉体塗料、粉体塗料の製造方法、および塗装物品 |
JP2017179091A (ja) * | 2016-03-30 | 2017-10-05 | 関西ペイント株式会社 | 粉体塗料組成物 |
WO2018174192A1 (ja) * | 2017-03-22 | 2018-09-27 | Agc株式会社 | 粉体塗料の製造方法 |
WO2019159385A1 (ja) * | 2018-02-19 | 2019-08-22 | 日新製鋼株式会社 | 塗装金属板 |
EP3307802B1 (en) | 2015-06-09 | 2019-11-06 | PPG Industries Ohio, Inc. | Stain resistant, soft touch coating compositions and coatings formed therefrom |
JP7221579B2 (ja) | 2016-03-22 | 2023-02-14 | 富士電機株式会社 | 樹脂組成物 |
CN117070120A (zh) * | 2023-06-30 | 2023-11-17 | 山东建筑大学 | 一种水性环氧防腐涂料及其涂覆方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014002964A1 (ja) * | 2012-06-29 | 2014-01-03 | 旭硝子株式会社 | 粉体塗料組成物、硬化膜の製造方法、および塗装物品 |
FR3044320B1 (fr) * | 2015-11-26 | 2017-11-24 | Michelin & Cie | Revetement adhesif au metal, hydrophobe et electriquement conducteur, utilisable notamment comme peinture pour plaque bipolaire de pile a combustible |
FR3054146B1 (fr) | 2016-07-19 | 2018-07-13 | Compagnie Generale Des Etablissements Michelin | Procede de depot d'un revetement adhesif au metal, hydrophobe et electriquement conducteur |
CN109689721B (zh) | 2016-09-18 | 2021-11-19 | 阿克佐诺贝尔国际涂料股份有限公司 | 混合型聚酯-氟碳粉末涂料组合物和用该组合物涂覆基材的方法 |
JP6298198B1 (ja) * | 2017-05-26 | 2018-03-20 | 関西ペイント株式会社 | 粉体塗料組成物 |
CN109971317A (zh) * | 2017-12-27 | 2019-07-05 | Agc株式会社 | 粉体涂料的制造方法 |
US11820908B2 (en) | 2018-04-10 | 2023-11-21 | Swimc Llc | Exterior coating for aluminum and glass |
US11015080B2 (en) * | 2019-08-15 | 2021-05-25 | Ppg Industries Ohio, Inc. | Powder coating compositions and coatings formed therefrom |
CN115322629A (zh) * | 2022-07-28 | 2022-11-11 | 苏州皇冠涂料科技发展有限公司 | 一种氟碳粉末涂料及其制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5243840A (en) * | 1975-10-02 | 1977-04-06 | Kansai Paint Co Ltd | Method for forming layers of plural coatings by the powder coating |
JP2004175813A (ja) | 2002-11-22 | 2004-06-24 | Toyo Aluminium Kk | 粉体塗料組成物 |
JP2010221113A (ja) | 2009-03-23 | 2010-10-07 | Tostem Corp | 機能性塗膜の静電塗装方法及び粉体塗装の機能性塗膜形成建築材料 |
JP2011012119A (ja) * | 2009-06-30 | 2011-01-20 | Dainippon Toryo Co Ltd | 層分離タイプの粉体塗料組成物 |
JP2012040503A (ja) | 2010-08-19 | 2012-03-01 | Lixil Corp | 屋外使用の粉体塗装アルミ建材 |
JP2012041383A (ja) * | 2010-08-12 | 2012-03-01 | Dainippon Toryo Co Ltd | 層分離タイプの艶消し粉体塗料組成物 |
WO2012048650A1 (en) | 2010-10-13 | 2012-04-19 | Akzo Nobel Powder Coatings (Ningbo) Co. , Ltd. | Hybrid polyester fluorocarbon powder coating composition and process for manufacture thereof |
JP2013076019A (ja) * | 2011-09-30 | 2013-04-25 | Dainippon Toryo Co Ltd | 粉体塗料組成物 |
WO2013186832A1 (ja) * | 2012-06-11 | 2013-12-19 | 大日本塗料株式会社 | 粉体塗料組成物及びその製造方法 |
WO2014002964A1 (ja) * | 2012-06-29 | 2014-01-03 | 旭硝子株式会社 | 粉体塗料組成物、硬化膜の製造方法、および塗装物品 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5470893A (en) * | 1990-06-01 | 1995-11-28 | Courtaulds Coatings (Holdings) Limited | Powder coating compositions |
NZ245901A (en) * | 1992-06-02 | 1994-07-26 | Atochem North America Elf | Pigmented blend for powder coatings containing a vdf/tfe/hfp terpolymer |
JP3941128B2 (ja) * | 1995-12-18 | 2007-07-04 | ダイキン工業株式会社 | 粉体塗料用組成物 |
US6472472B2 (en) * | 1996-05-17 | 2002-10-29 | The Valspar Corporation | Powder coating compositions and method |
GB9822527D0 (en) * | 1998-10-15 | 1998-12-09 | Courtaulds Coatings Holdings | Powder coating compositions |
US6251521B1 (en) * | 1999-08-09 | 2001-06-26 | 3M Innovative Properties Company | Polymeric compositions |
CN1305981C (zh) * | 2001-09-27 | 2007-03-21 | 旭硝子株式会社 | 含氟粉体涂料组合物 |
JP4144020B2 (ja) * | 2001-10-23 | 2008-09-03 | 旭硝子株式会社 | フッ素樹脂粉体塗料用粉末及びそれを用いた塗料組成物 |
US20040096669A1 (en) * | 2002-11-20 | 2004-05-20 | Kim Young Jun | Fluorocarbon polymer coating powders |
EP1477534A3 (en) * | 2003-05-16 | 2005-01-19 | Rohm And Haas Company | Multiple-part fast cure powder coatings |
WO2007132736A1 (ja) * | 2006-05-11 | 2007-11-22 | Asahi Glass Company, Limited | 粉体塗料組成物 |
CA2865562C (en) * | 2012-03-21 | 2021-01-12 | Valspar Sourcing, Inc. | Two-coat single cure powder coating |
CN103173073B (zh) * | 2013-03-29 | 2015-06-03 | 宁波南海化学有限公司 | 一种重防腐超耐候粉末涂料及其制备方法和应用 |
-
2014
- 2014-07-28 SG SG11201600663PA patent/SG11201600663PA/en unknown
- 2014-07-28 CN CN201480043260.5A patent/CN105452400B/zh active Active
- 2014-07-28 WO PCT/JP2014/069848 patent/WO2015016185A1/ja active Application Filing
- 2014-07-28 EP EP14831838.9A patent/EP3029117B1/en active Active
- 2014-07-28 JP JP2015529568A patent/JP6447498B2/ja active Active
-
2015
- 2015-12-16 US US14/971,239 patent/US10563087B2/en active Active
-
2016
- 2016-01-26 SA SA516370472A patent/SA516370472B1/ar unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5243840A (en) * | 1975-10-02 | 1977-04-06 | Kansai Paint Co Ltd | Method for forming layers of plural coatings by the powder coating |
JP2004175813A (ja) | 2002-11-22 | 2004-06-24 | Toyo Aluminium Kk | 粉体塗料組成物 |
JP2010221113A (ja) | 2009-03-23 | 2010-10-07 | Tostem Corp | 機能性塗膜の静電塗装方法及び粉体塗装の機能性塗膜形成建築材料 |
JP2011012119A (ja) * | 2009-06-30 | 2011-01-20 | Dainippon Toryo Co Ltd | 層分離タイプの粉体塗料組成物 |
JP2012041383A (ja) * | 2010-08-12 | 2012-03-01 | Dainippon Toryo Co Ltd | 層分離タイプの艶消し粉体塗料組成物 |
JP2012040503A (ja) | 2010-08-19 | 2012-03-01 | Lixil Corp | 屋外使用の粉体塗装アルミ建材 |
WO2012048650A1 (en) | 2010-10-13 | 2012-04-19 | Akzo Nobel Powder Coatings (Ningbo) Co. , Ltd. | Hybrid polyester fluorocarbon powder coating composition and process for manufacture thereof |
JP2013076019A (ja) * | 2011-09-30 | 2013-04-25 | Dainippon Toryo Co Ltd | 粉体塗料組成物 |
WO2013186832A1 (ja) * | 2012-06-11 | 2013-12-19 | 大日本塗料株式会社 | 粉体塗料組成物及びその製造方法 |
WO2014002964A1 (ja) * | 2012-06-29 | 2014-01-03 | 旭硝子株式会社 | 粉体塗料組成物、硬化膜の製造方法、および塗装物品 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3029117A4 |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015099051A1 (ja) * | 2013-12-27 | 2015-07-02 | 旭硝子株式会社 | 塗装物品 |
US10113069B2 (en) | 2013-12-27 | 2018-10-30 | AGC Inc. | Coated article |
US10035916B2 (en) | 2014-07-01 | 2018-07-31 | Asahi Glass Company, Limited | Composition for powder coating material, powder coating material, and coated article |
CN106459645B (zh) * | 2014-07-01 | 2018-05-29 | 旭硝子株式会社 | 粉体涂料用组合物、粉体涂料及涂装物品 |
CN106459645A (zh) * | 2014-07-01 | 2017-02-22 | 旭硝子株式会社 | 粉体涂料用组合物、粉体涂料及涂装物品 |
WO2016002724A1 (ja) * | 2014-07-01 | 2016-01-07 | 旭硝子株式会社 | 粉体塗料用組成物、粉体塗料および塗装物品 |
WO2016052111A1 (ja) * | 2014-09-30 | 2016-04-07 | 大日本塗料株式会社 | 塗装体 |
JP2016068432A (ja) * | 2014-09-30 | 2016-05-09 | 大日本塗料株式会社 | 塗装体 |
EP3307802B1 (en) | 2015-06-09 | 2019-11-06 | PPG Industries Ohio, Inc. | Stain resistant, soft touch coating compositions and coatings formed therefrom |
JPWO2017043447A1 (ja) * | 2015-09-07 | 2018-06-28 | 旭硝子株式会社 | 塗装物品の製造方法 |
CN108025329A (zh) * | 2015-09-07 | 2018-05-11 | 旭硝子株式会社 | 涂装物品的制造方法 |
CN108025329B (zh) * | 2015-09-07 | 2021-08-03 | Agc株式会社 | 涂装物品的制造方法 |
TWI714628B (zh) * | 2015-09-07 | 2021-01-01 | 日商Agc股份有限公司 | 塗裝物品之製造方法 |
US10751753B2 (en) | 2015-09-07 | 2020-08-25 | AGC Inc. | Method for producing coated article |
WO2017043447A1 (ja) * | 2015-09-07 | 2017-03-16 | 旭硝子株式会社 | 塗装物品の製造方法 |
EP3348331A4 (en) * | 2015-09-07 | 2019-04-10 | AGC Inc. | METHOD FOR PRODUCING COATED ARTICLE |
WO2017110924A1 (ja) * | 2015-12-25 | 2017-06-29 | 旭硝子株式会社 | 粉体塗料、粉体塗料の製造方法、および塗装物品 |
JPWO2017110924A1 (ja) * | 2015-12-25 | 2018-10-18 | Agc株式会社 | 粉体塗料、粉体塗料の製造方法、および塗装物品 |
US10738198B2 (en) | 2015-12-25 | 2020-08-11 | AGC Inc. | Powder coating material, method for producing powder coating material, and coated article |
WO2017119373A1 (ja) * | 2016-01-04 | 2017-07-13 | 旭硝子株式会社 | 粉体塗料、粉体塗料の製造方法、および塗装物品 |
US10655022B2 (en) | 2016-01-04 | 2020-05-19 | AGC Inc. | Powder coating material, method for producing powder coating material, and coated article |
JPWO2017119373A1 (ja) * | 2016-01-04 | 2018-10-18 | Agc株式会社 | 粉体塗料、粉体塗料の製造方法、および塗装物品 |
JP7221579B2 (ja) | 2016-03-22 | 2023-02-14 | 富士電機株式会社 | 樹脂組成物 |
JP2017179091A (ja) * | 2016-03-30 | 2017-10-05 | 関西ペイント株式会社 | 粉体塗料組成物 |
WO2018174192A1 (ja) * | 2017-03-22 | 2018-09-27 | Agc株式会社 | 粉体塗料の製造方法 |
JP2019142060A (ja) * | 2018-02-19 | 2019-08-29 | 日鉄日新製鋼株式会社 | 塗装金属板 |
WO2019159385A1 (ja) * | 2018-02-19 | 2019-08-22 | 日新製鋼株式会社 | 塗装金属板 |
JP7102766B2 (ja) | 2018-02-19 | 2022-07-20 | 日本製鉄株式会社 | 塗装金属板 |
CN117070120A (zh) * | 2023-06-30 | 2023-11-17 | 山东建筑大学 | 一种水性环氧防腐涂料及其涂覆方法 |
CN117070120B (zh) * | 2023-06-30 | 2024-05-24 | 山东建筑大学 | 一种水性环氧防腐涂料及其涂覆方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105452400A (zh) | 2016-03-30 |
JPWO2015016185A1 (ja) | 2017-03-02 |
US20160096975A1 (en) | 2016-04-07 |
EP3029117A1 (en) | 2016-06-08 |
SG11201600663PA (en) | 2016-02-26 |
JP6447498B2 (ja) | 2019-01-09 |
CN105452400B (zh) | 2017-05-17 |
SA516370472B1 (ar) | 2016-08-17 |
EP3029117B1 (en) | 2018-03-07 |
EP3029117A4 (en) | 2017-04-12 |
US10563087B2 (en) | 2020-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6447498B2 (ja) | 粉体塗料、塗装物品およびそれらの製造方法 | |
JP6597806B2 (ja) | 粉体塗料組成物、硬化膜の製造方法、および塗装物品 | |
JP5862845B1 (ja) | 粉体塗料用組成物、粉体塗料および塗装物品 | |
JP6451640B2 (ja) | 粉体塗料および塗装物品 | |
JP5920545B1 (ja) | 粉体塗料用組成物、粉体塗料および塗装物品 | |
WO2015159890A1 (ja) | 粉体塗料および塗装物品 | |
US10113069B2 (en) | Coated article | |
EP3031873B1 (en) | Method for manufacturing powder coating material and method for manufacturing carboxyl-group-containing fluororesin | |
JP6927219B2 (ja) | 塗装物品の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480043260.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14831838 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015529568 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014831838 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: P109/2016 Country of ref document: AE |
|
NENP | Non-entry into the national phase |
Ref country code: DE |