WO2015011936A1 - 熱式空気流量計 - Google Patents
熱式空気流量計 Download PDFInfo
- Publication number
- WO2015011936A1 WO2015011936A1 PCT/JP2014/052383 JP2014052383W WO2015011936A1 WO 2015011936 A1 WO2015011936 A1 WO 2015011936A1 JP 2014052383 W JP2014052383 W JP 2014052383W WO 2015011936 A1 WO2015011936 A1 WO 2015011936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- sensor assembly
- flow rate
- thermal air
- air flow
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/684—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/684—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
- G01F1/6842—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/684—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
- G01F1/688—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
- G01F1/69—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
- G01F1/692—Thin-film arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/14—Casings, e.g. of special material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F5/00—Measuring a proportion of the volume flow
Definitions
- the present invention relates to a thermal air flow meter including a sensor assembly in which a sensor chip having a flow rate detection unit and an LSI that processes a signal detected by the flow rate detection unit are covered with resin.
- a thermal air flow meter that measures the gas flow rate has a flow rate detection unit for measuring the flow rate, and measures the gas flow rate by transferring heat between the flow rate detection unit and the gas to be measured. Is configured to do.
- the flow rate measured by the thermal air flow meter is widely used as an important control parameter in various apparatuses.
- a feature of the thermal air flow meter is that a gas flow rate, for example, a mass flow rate can be measured with relatively high accuracy compared to other types of flow meters.
- a thermal air flow meter for measuring the amount of intake air led to an internal combustion engine includes a sub-passage that takes in a part of the intake air amount and a flow rate detection unit disposed in the sub-passage, and the flow rate detection unit is a gas to be measured.
- the state of the gas to be measured flowing through the sub-passage is measured by performing heat transfer between and the electric signal, and an electric signal representing the amount of intake air guided to the internal combustion engine is output.
- a housing that forms an internal flow path through which captured air flows, a sensor chip that is disposed in a sub-flow path, and a circuit chip that processes an electrical signal generated by the sensor chip,
- the sensor chip and the circuit chip are assembled as a sensor assembly as one component (paragraphs 0027 and 0031).
- the housing has a hole into which the sensor assembly is fitted, and two contact surfaces that are in surface contact with the two contact surfaces provided in the sensor assembly are provided on the surface that forms the hole (paragraph 0033).
- the surface forming the hole is provided with ribs on the surface portion excluding the two contact surfaces, and the sensor assembly is fixed to the casing by being press-fitted into the hole so as to press-contact the tip of the rib ( Paragraph 0034).
- the transmission of the linear expansion between the sensor assembly and the housing is cut off so that the stress caused by the linear expansion difference is not applied to the sensor chip or the circuit chip, and the resistance value of the element of the sensor chip or the circuit chip varies. (Summary).
- the flow rate detector In order to measure the air flow rate with high accuracy using a thermal air flow meter, the flow rate detector is highly accurate in the sub-passage provided in the thermal air flow meter for measuring the air flow rate through the main passage. Therefore, it is required to accurately measure the flow rate detected by the flow rate detector.
- a housing including an internal flow path in which a hole for fitting the sensor assembly is opened is manufactured in advance, and a sensor assembly including a flow rate detection unit is manufactured separately from the housing. Then, the sensor assembly is fixed to the housing in a state where the sensor assembly is inserted into the hole of the internal flow path.
- the gap between the hole opened in the internal flow path and the sensor assembly, and the gap between the fitting part of the sensor assembly and the housing are filled with elastic adhesive, and the difference in linear expansion coefficient between each other is determined by the elastic force of the adhesive. It absorbs with.
- the thermal stress generated in the resistance in the LSI: Large Scale Integration (circuit chip) due to the difference in coefficient of linear expansion between the sensor assembly and the housing is higher than when adhesive is used. There is a problem that the measurement accuracy decreases.
- An object of the present invention is to provide a thermal air flow meter with high measurement accuracy by reducing the influence of thermal stress generated in a resistor in an LSI while ensuring high positioning accuracy of a flow rate detection unit. is there.
- the thermal air flow meter of the present invention is constructed by insert molding a circuit part having a resistor and a flow rate detection part so that at least a part of the flow rate detection part is exposed.
- a sensor assembly, and a housing having a sub-passage and housing the sensor assembly by disposing the flow rate detector in the sub-passage, the sensor assembly being molded with a first resin, and the housing
- the sensor assembly In the thermal air flow meter molded with the second resin, the sensor assembly is fixed to the casing with the second resin forming the casing, and the flow rate relative to the sensor assembly is A resin structure that generates a tensile stress in a direction parallel to the surface from which the detection unit is exposed is provided. ..
- the resistance arrangement surface side of the circuit part (LSI) is the front surface, it is formed on the front surface side of the sensor assembly and formed on the back surface side of the sensor assembly rather than the housing resin volume covering the sensor assembly Then, the volume of the housing resin that covers the sensor assembly may be increased.
- the resistance arrangement surface side of the LSI is the front side
- the relationship between the thickness t1 of the sensor assembly resin formed on the front side of the LSI and the thickness t2 of the sensor assembly resin formed on the back side of the LSI is t1 It is preferable to satisfy ⁇ t2.
- the stress generated on the LSI is reduced. Therefore, the thermal type with high measurement accuracy is ensured while ensuring high positioning accuracy of the flow rate detection unit. An air flow meter can be obtained.
- FIG. 3 is a cross-sectional view showing a III-III cross section of FIG. 2.
- 4 is a cross-sectional view schematically showing a cross section IV-IV in FIG. 1B.
- FIG. 5 is a schematic diagram showing a state of deformation of the sensor assembly with respect to a VV cross section of FIG. 2.
- It is a top view of the sensor assembly in the 2nd example concerning the present invention.
- It is sectional drawing which shows the III-III cross section of FIG. It is sectional drawing shown by the cross section similar to FIG.3 and FIG.7 about the sensor assembly in 3rd Example which concerns on this invention.
- FIG. 1A is a plan view showing the upper surface of the thermal air flow meter 300.
- FIG. 1B is a plan view showing the side surface of the thermal air flow meter 300 with the cover members 302 and 303 provided on the side surface removed.
- FIG. 1B shows the right side of FIG. 1A.
- An arrow 26 shown in FIG. 1B represents the direction of air flowing through an intake pipe (not shown).
- the overall configuration described with reference to FIGS. 1A and 1B is common to the embodiments described below.
- the thermal air flow meter 300 is provided toward the upstream side of the air flow flowing in the intake pipe.
- the vertical direction in the thermal air flow meter 300 will be described with the direction positioned on the upstream side of the air flow flowing in the intake pipe as the upper side and the direction positioned on the downstream side as the lower side.
- This up-down direction does not mean the up-down direction in a mounted state where the thermal air flow meter 300 is attached to an internal combustion engine such as an automobile.
- the length direction 300L and the width direction 300W of the thermal air flow meter 300 are defined as shown by arrows in FIG.
- a direction perpendicular to the length direction 300L and the width direction 300W is defined as a height direction.
- 300C represents a center line in the width direction 300L.
- thin plate-like cover members 302 and 303 are attached to both side surfaces of a housing (housing) 301 of the thermal air flow meter 300.
- a flange portion (attachment portion) 304 is fixed to the wall surface of the intake pipe, and a sub-passage 305 that takes in part of the air flowing through the intake pipe is provided on the distal end side of the housing 301.
- Reference numeral 305a denotes an inlet opening of the auxiliary passage 305.
- the inlet opening 305 a is provided over the entire width direction 300 ⁇ / b> L of the housing 301.
- the passage section 305i of the sub-passage 305 is narrowed toward the left side of the center line 300C as it goes downstream from the entrance opening 305a.
- An outlet-side passage portion 305o of the sub-passage 305 is formed on the back side of the inlet-side passage portion 305i in a portion on the right side of the center line 300C of the inlet-side passage portion 305i. Since the outlet side passage portion 305o cannot be shown on FIG. 1A, parentheses are attached and the lead lines are also indicated by dotted lines.
- the auxiliary passage 305 is provided between the inlet-side passage portion 305i, the outlet-side passage portion 305o, and the inlet-side passage portion 305i and the outlet-side passage portion 305o in the air flow direction, and the flow rate of the sensor assembly 100 (see FIG. 1B). It is composed of a flow rate measurement passage portion 305s (described later) in which the detection unit 4a is disposed.
- the flange portion 304 is provided with a connector portion 307 on the side opposite to the side where the auxiliary passage 305 is provided.
- the connector unit 307 is connected to a signal line (communication line) connected to an external device (for example, an engine control device).
- an outlet side passage portion 305o and a flow rate measurement passage portion 305s constituting the sub passage 305 are provided on the front end side (the lower side of the drawing) of the housing 301.
- the downstream end of the outlet side passage portion 305o communicates with the outlet opening 305b.
- an inlet-side passage portion 305i of the sub-passage 305 is provided on the back side of the outlet-side passage portion 305o.
- the flow rate measurement passage portion 305s is formed so as to straddle both sides in the width direction via the center line 300C shown in FIG. 1A, and the inlet-side passage portion 305i formed on one (left) side of the center line 300C.
- the upstream end of the outlet side passage portion 305o formed on the other (right) side surface with respect to the center line 300C are communicated with each other by the flow rate measurement passage portion 305s.
- the sensor assembly 100 is disposed between the auxiliary passage 305 and the flange portion 304.
- the sensor assembly 100 is fixed to the housing 301 by a fixing portion 306 with a resin forming the housing 301.
- a gap through which air flows is provided between the surface of the sensor assembly 100 where the flow rate detector 4a is exposed and the back surface on the opposite side to the wall surface of the flow rate measurement passage portion 305s. That is, the sensor assembly 100 is disposed in the middle portion of the flow rate measurement passage portion 305s in the width direction 300L.
- the sensor assembly 100 is disposed such that the flow rate detection portion 4a faces the side surface where the outlet side passage portion 305o of the thermal air flow meter 300 is formed.
- the connector unit 307 is provided with a connection terminal 307a for performing communication by electrically connecting the thermal air flow meter 300 to a signal line (communication line) connected to an external device (for example, an engine control device). Yes.
- the connection terminal 307a is electrically connected to the terminal 307b exposed inside the housing 301, and is electrically connected to the lead 102b drawn from the sensor assembly 100 via the terminal 307b.
- the lead 102b constitutes an input / output terminal of the LSI 103 and an intake air temperature detection element (not shown).
- FIGS. A first embodiment of the thermal air flow meter will be described with reference to FIGS.
- the assembly 100 and the holding portions 20 and 21 which are characteristic parts of the present embodiment will be described.
- FIG. 2 is a plan view after the sensor assembly 100 is formed
- FIG. 3 is a cross-sectional view showing a III-III cross section of FIG.
- the internal lead frame 1, ventilation plate 2, LSI 3, and sensor chip 4 are shown through the first resin 24 covering the periphery.
- the sensor assembly 100 includes a lead frame 1, a ventilation plate 2, an LSI (circuit unit) 3, and a sensor chip 4, which are covered with a first resin 24.
- each insert of the lead frame 1, the ventilation plate 2, the LSI (circuit unit) 3, and the sensor chip 4 is arranged so that at least a part of the flow rate detection unit 4a of the sensor chip 4 is exposed.
- the component is configured by insert molding with the first resin 24.
- the above-described lead 102b is configured to be separated from the lead frame 1.
- the flow rate detection unit 4a is configured on the sensor chip 4.
- a diaphragm 4 a is formed on the sensor chip 4.
- a heating resistor and a temperature sensitive resistor are formed on the diaphragm 4a, and the flow rate detection unit 4a is configured.
- the ventilation plate 2 is bonded to the lead frame 1 with the adhesive tape 5, and the LSI 3 and the sensor chip 4 are bonded to the ventilation plate 2 with the adhesive tape 6.
- the ventilation plate 2 may be made of glass or resin.
- the LSI 3 and the sensor chip 4 and the LSI 3 and the lead frame 1 are electrically connected by using wire wires 8 and 9 by wire bonding. These are sealed with the first resin 24 to complete the sensor assembly 100.
- the LSI 3 is a circuit unit that converts an analog signal from the sensor chip 4 having the flow rate detection unit 4a into a digital signal, and controls and outputs the digital signal.
- This circuit part is composed of a circuit chip (semiconductor chip).
- a resistor 7 is disposed on the surface of the LSI 3, and this resistor 7 is used for a reference oscillator (clock), an A / D converter, and the like, for example.
- the mounting structure of the sensor assembly 100 will be described with reference to FIGS. 1B and 4.
- 4 is a cross-sectional view taken along the line IV-IV in FIG. 1B.
- the housing 301 has sub passages 305 (305i, 305o) for guiding the air flowing through the main passage to the sensor chip 4, the holding portions 20, 21 of the sensor assembly 100 (becomes side walls of the sub passage), and the holding portion 14 of the terminal 307b.
- the sensor assembly 100 is housed and fixed in the housing 11 simultaneously with the formation of the housing 301 made of the second resin.
- the flow rate detection unit 4a of the sensor chip 4 having the flow rate detection unit 4a needs to measure the air flow rate, and thus is disposed in the sub-passage 305.
- the holding portions 20 and 21 that are the side walls of the sub-passage 305 are located between the sensor chip 4 and the LSI 3.
- the holding portions 20 and 21 are portions shown as a fixing portion 306 in FIG. 1B, and the entire circumference of the sensor assembly 100 in the direction along the flow rate measurement passage portion 305 s is covered with the second resin.
- the holding unit 20 is configured on the front side of the sensor assembly 100
- the holding unit 21 is configured on the back side of the sensor assembly 100.
- the holding portions 20 and 21 are arranged so that the holding portion 21 on the back surface side of the sensor assembly 100 is closer to the resin volume of the holding portion 20 on the front surface side of the sensor assembly 100 as shown in FIG.
- the resin volume is formed to be larger.
- the sensor assembly 100 is formed of the first resin 24, and the housing 301 is formed of the second resin. Further, the first resin 24 and the second resin are made of different materials.
- the first resin 24 uses a thermosetting resin
- the second resin uses a thermoplastic resin.
- compressive stress is applied to the interface with the sensor assembly 100 by the holding portions 20 and 21 due to thermal stress due to the difference in linear expansion coefficient between the first resin 24 and the second resin, or contraction stress due to the resin contraction difference. appear.
- compressive stress is also generated in the resistor 7 in the LSI 3 adjacent to the holding units 20 and 21.
- stress strain
- FIG. 5 is a cross-sectional view taken along the line VV of FIG. 2, showing the shape of warpage deformation.
- warping similar to that of the sensor assembly 100 occurs in the LSI 3.
- the sensor assembly 100 is warped due to a contraction difference between the holding portion 20 and the holding portion 21.
- This warp causes a tensile stress that cancels or reduces the compressive stress received by the LSI 3.
- the contraction amount of the holding portion 21 on the back surface side of the sensor assembly 100 is made larger than the holding portion 20 on the front surface side of the sensor assembly 100.
- FIGS. A second embodiment of the thermal air flow meter will be described with reference to FIGS.
- a sensor assembly 100 ′ that is a characteristic part of the present embodiment will be described.
- FIG. 6 is a front view of the sensor assembly
- FIG. 7 is a cross-sectional view showing a IIV-IIV cross section of FIG.
- the basic configuration of the sensor assembly 100 ′ is the same as that of the first embodiment, but the resin thickness t1 on the front surface side of the sensor assembly 100 ′ and the resin thickness t2 on the back surface side of the sensor assembly 100 ′ are t1 ⁇ It is formed to be t2.
- FIG. 8 is a cross-sectional view showing the sensor assembly 100 ′′ according to the third embodiment of the present invention in the same cross section as FIGS. 3 and 7.
- the sensor chip 4 and the LSI (circuit unit) 3 are integrated to form a single semiconductor chip. Also in this case, by forming the resin thickness t1 on the front surface side of the sensor assembly 100 '' and the resin thickness t2 on the back surface side of the sensor assembly 100 '' such that t1 ⁇ t2, The same effect as in the second embodiment is obtained, and the flow rate measurement accuracy is improved.
- the sensor chip 4 and the LSI 3 may be integrated to form a single semiconductor chip.
- a resin structure that generates tensile stress in a direction parallel to the surface on which the flow rate detection unit 4a is exposed with respect to the sensor assemblies 100, 100 ′, and 100 ′′.
- This resin structure is composed of the volume of the resin existing on the surface side of the sensor assemblies 100, 100 ′, 100 ′′ where the flow rate detector 4 a is exposed to the LSI (circuit unit) 3, and the sensor assemblies 100, 100 ′, 100 ′
- the tensile stress is generated by causing the resin structure to warp and deform the sensor assemblies 100, 100 ′, and 100 ′′, and the resistor 7 of the LSI 3 is located at a portion where the tensile stress acts.
- the compressive stress is canceled or reduced.
- this resin structure is in contact with the volume of the second resin (resin constituting the holding portion 20) that contacts the surface of the sensor assembly 100 and the surface of the back side of the sensor assembly 100. This is a structure in which the volume of the second resin (resin constituting the holding portion 21) to be made is different.
- the volume of the resin) is larger.
- the thickness of the first resin 24 provided on the back surface side of the sensor assembly 100 with respect to the LSI 3 is set to the thickness of the sensor assembly 100 with respect to the LSI 3. You may make it thicker than the thickness of the 1st resin 24 provided in the surface side.
- the resin structure is provided on the front surface side of the sensor assembly 100 ′ with respect to the LSI 3 by the thickness of the first resin provided on the back surface side of the sensor assembly 100 ′ with respect to the LSI 3. This is realized by a structure thicker than the thickness of the obtained first resin.
- this invention is not limited to each above-mentioned Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- the present invention can be applied to the measuring apparatus for measuring the gas flow rate described above.
- SYMBOLS 1 ... Lead frame, 2 ... Ventilation plate, 3 ... LSI, 4 ... Sensor chip, 5 ... Adhesive tape, 6 ... Adhesive tape, 7 ... Resistor, 8 ... Gold wire, 9 ... Gold wire, 100, 100 ', 100 '' ... sensor assembly, 11 ... housing, 12 ... sub-passage, 14 ... holding portion, 20 ... holding portion, 21 ... holding portion, 24 ... first resin, 26 ... air.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
本発明の目的は、流量検出部の高い位置決め精度を確保しつつ、LSI内の抵抗体に発生する熱応力の影響を低減することで、計測精度の高い熱式空気流量計を提供することである。そのため、抵抗体7を有するLSI3と流量検出部4aとを、流量検出部4aの少なくとも一部が露出するようにインサートモールドして構成したセンサアセンブリ100と、副通路305i,305o,305sを有し流量検出部4aを副通路305s内に配置してセンサアセンブリ100を収容する筐体301とを備え、センサアセンブリ100が第一の樹脂でモールド成形され、筐体301が第二の樹脂でモールド成形された熱式空気流量計において、センサアセンブリ100は第二の樹脂で筐体301に固定されており、センサアセンブリ100に対して流量検出部4aの露出面に平行な引張応力を生じさせる樹脂構造20,21を備える。
Description
本発明は、流量検出部を有するセンサチップと流量検出部で検出した信号を処理するLSIとを樹脂で覆って構成したセンサアセンブリを備える熱式空気流量計に関する。
気体流量を計測する熱式空気流量計は、流量を計測するための流量検出部を備え、前記流量検出部と計測対象である気体との間で熱伝達を行うことにより、気体の流量を計測するように構成されている。熱式空気流量計が計測する流量は、様々な装置において重要な制御パラメータとして広く使用されている。熱式空気流量計の特徴は、他方式の流量計に比べ相対的に高い精度で気体流量、例えば質量流量を計測できることである。
しかし、さらなる気体流量の計測精度の向上が望まれている。例えば、内燃機関を搭載した車両では、省燃費の要望や排気ガス浄化の要望が非常に高い。これらの要望に応えるには、内燃機関の主要パラメータである吸入空気量を高い精度で計測することが求められている。内燃機関に導かれる吸入空気量を計測する熱式空気流量計は、吸入空気量の一部を取り込む副通路と前記副通路に配置された流量検出部を備え、前記流量検出部が被計測気体との間で熱伝達を行うことにより、前記副通路を流れる被計測気体の状態を計測して、前記内燃機関に導かれる吸入空気量を表す電気信号を出力する。このような技術は、例えば特開2011-252796号公報(特許文献1)に開示されている。
特許文献1の空気流量測定装置では、取り込んだ空気が流れる内部流路を形成する筐体と、副流路内に配置されるセンサチップと、センサチップが発生する電気信号を処理する回路チップとを備え、センサチップと回路チップとは一つの構成部品としてのセンサアセンブリとして組み立てられている(段落0027,0031)。筐体はセンサアセンブリが嵌る穴を有し、穴を形成する面にはセンサアセンブリに設けられた二つの当接面にそれぞれ面接触する二つの当接面が設けられている(段落0033)。穴を形成する面には、二つの当接面を除く面部にリブが設けられており、センサアセンブリはリブの先端に圧接するように穴に圧入されることにより、筐体に固定される(段落0034)。これにより、センサアセンブリと筐体との間で線膨張の伝達を遮断して線膨張差起因の応力がセンサチップや回路チップにかからないようにし、センサチップや回路チップの素子の抵抗値が変動するのを抑制している(要約)。
熱式空気流量計により、空気の流量を高い精度で計測するためには、主通路を流れる空気流量を計測するための熱式空気流量計に設けられた副通路に、流量検出部を高い精度で位置決めして固定し、流量検出部により検出された流量を正確に計測することが求められる。特許文献1に記載の技術では、センサアセンブリを嵌め込むための穴が開口する内部流路を備える筐体を予め樹脂で製造し、この筐体とは別に、流量検出部を備えるセンサアセンブリを製造し、次に内部流路の穴にセンサアセンブリを挿入した状態で、センサアセンブリを筐体に固定している。内部流路に開口する穴とセンサアセンブリとの間の隙間、およびセンサアセンブリの筐体への嵌め込み部分の隙間には、弾性接着剤が充填され、互いの線膨張係数差を接着剤の弾性力で吸収している。
さらに、センサアセンブリと筐体に設けられた副通路との位置や角度のばらつきを少なくして、副通路(内部流路)に対してセンサアセンブリ(特に、流量検出部)を正確に位置決めするには、流量検出部を含むセンサアセンブリを筐体のモールド成型と同時に固定することが有効となる。
しかし、この場合には、センサアセンブリと筐体との線膨張係数差に起因してLSI:Large Scale Integration(回路チップ)内の抵抗に発生する熱応力が接着剤を使用する場合に比べて高く、測定精度が低下するという課題があった。
本発明の目的は、流量検出部の高い位置決め精度を確保しつつ、LSI内の抵抗体に発生する熱応力の影響を低減することで、計測精度の高い熱式空気流量計を提供することである。
上記目的を達成するために、本発明の熱式空気流量計は、抵抗体を有する回路部と流量検出部とを、前記流量検出部の少なくとも一部が露出するようにインサートモールドして構成したセンサアセンブリと、副通路を有し前記流量検出部を前記副通路内に配置して前記センサアセンブリを収容する筐体とを備え、前記センサアセンブリが第一の樹脂でモールド成形され、前記筐体が第二の樹脂でモールド成形された熱式空気流量計において、前記センサアセンブリは前記筐体を形成する前記第二の樹脂で前記筐体に固定されており、前記センサアセンブリに対して前記流量検出部が露出する面に平行な方向の引張応力を生じさせる樹脂構造を備える。
..このとき、回路部(LSI)の抵抗配置面側を表面とした場合に、センサアセンブリの表面側に形成され、センサアセンブリを被覆する筐体樹脂体積よりも、センサアセンブリの裏面側に形成され、センサアセンブリを被覆する筐体樹脂体積を大きくするとよい。或いは、LSIの抵抗配置面側を表面側とした場合に、LSIの表面側に形成されるセンサアセンブリ樹脂の厚みt1とLSIの裏面側に形成されるセンサアセンブリ樹脂の厚みt2の関係が、t1<t2となるようにするとよい。
..このとき、回路部(LSI)の抵抗配置面側を表面とした場合に、センサアセンブリの表面側に形成され、センサアセンブリを被覆する筐体樹脂体積よりも、センサアセンブリの裏面側に形成され、センサアセンブリを被覆する筐体樹脂体積を大きくするとよい。或いは、LSIの抵抗配置面側を表面側とした場合に、LSIの表面側に形成されるセンサアセンブリ樹脂の厚みt1とLSIの裏面側に形成されるセンサアセンブリ樹脂の厚みt2の関係が、t1<t2となるようにするとよい。
本発明によれば、センサアセンブリを筐体のモールド成型と同時に固定する場合に、LSIへの発生応力が低減されるので、流量検出部の高い位置決め精度を確保しつつ、計測精度の高い熱式空気流量計を得ることができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
以下、本発明の一実施例について、説明する。
まず、熱式空気流量計の全体構成について、図1A及び図1Bを用いて説明する。図1Aは、熱式空気流量計300の上面を表す平面図である。図1Bは、熱式空気流量計300の側面について、側面に設けられたカバー部材302,303を取り除いて示す平面図である。尚、図1Bは図1Aの右側面を示している。また、図1Bに示す矢印26は吸気管(図示せず)を流れる空気の向きを表している。図1A及び図1Bで説明する全体構成は、以下で説明する各実施例に共通する。
熱式空気流量計300の図1Aに示す面は、吸気管の中を流れる空気流れの上流側に向けて設けられる。以下、熱式空気流量計300における上下方向は、吸気管の中を流れる空気流れに対して上流側に位置する方を上、下流側に位置する方を下として説明する。この上下方向は、熱式空気流量計300が自動車等の内燃機関に取り付けられた実装状態での上下方向を意味するものではない。また、熱式空気流量計300の長さ方向300L、幅方向300Wを図1の矢印で示すように定義する。さらに、長さ方向300L及び幅方向300Wに対して垂直な方向を高さ方向と定義する。300Cは幅方向300Lにおける中心線を表す。
図1Aに示すように、熱式空気流量計300のハウジング(筐体)301の両側面には、薄板状のカバー部材302,303が取り付けられている。熱式空気流量計300はフランジ部(取付部)304が吸気管の壁面に固定され、ハウジング301の先端側に吸気管を流れる空気の一部を取り込む副通路305が設けられている。305aは副通路305の入口開口である。入口開口305aはハウジング301の幅方向300Lの全体にわたって設けられている。副通路305の入口側通路部分305iは入口開口305aから下流側に進むにつれて通路断面が中心線300Cの左側に向かって絞られる。入口側通路部分305iの中心線300Cから右側の部分には入口側通路部分305iの奥側に副通路305の出口側通路部分305oが形成されている。出口側通路部分305oは図1A上に示すことができないので、括弧を付けて引き出し線も点線で示している。副通路305は入口側通路部分305iと、出口側通路部分305oと、空気の流れ方向において入口側通路部分305iと出口側通路部分305oとの間に設けられセンサアセンブリ100(図1B参照)の流量検出部4aが配置される流量計測通路部分305s(後述)とで構成されている。
フランジ部304には、副通路305が設けられるのとは反対側に、コネクタ部307が設けられている。このコネクタ部307には、外部装置(例えばエンジン制御装置)に接続された信号線(通信線)が接続される。
図1Bに示すように、ハウジング301の先端側(紙面下側)には、副通路305を構成する出口側通路部分305oと流量計測通路部分305sとが設けられている。出口側通路部分305oの下流端は出口開口305bに連通する。図1Bには示されていないが、出口側通路部分305oの奥側に副通路305の入口側通路部分305iが設けられている。流量計測通路部分305sは図1Aに示す中心線300Cを介して幅方向両側に跨るように形成されており、中心線300Cに対して一方(左)の側面側に形成された入口側通路部分305iの下流端と、中心線300Cに対して他方(右)の側面側に形成された出口側通路部分305oの上流端とは、この流量計測通路部分305sによって連通することになる。
副通路305とフランジ部304との間には、センサアセンブリ100が配置されている。本実施例では、センサアセンブリ100は、ハウジング301を形成する樹脂によって、固定部306でハウジング301に固定されている。センサアセンブリ100の流量検出部4aが露出する表面とその反対側の裏面とには、それぞれ流量計測通路部分305sの壁面との間に、空気の流れる隙間が設けられている。すなわち、センサアセンブリ100は幅方向300Lにおいて、流量計測通路部分305sの中間部に配置されている。また、図1Bに示すように、センサアセンブリ100は、その流量検出部4aが、熱式空気流量計300における出口側通路部分305oが形成される側面側に面するように、配置されている。
コネクタ部307には、熱式空気流量計300を外部装置(例えばエンジン制御装置)に接続された信号線(通信線)と電気的に接続して通信を行うための接続端子307aが設けられている。接続端子307aはハウジング301の内部に露出した端子307bに電気的につながっており、端子307bを介してセンサアセンブリ100から引き出されたリード102bに電気的に接続されている。リード102bは、LSI103や吸気温度検出素子(図示せず)の入出力端子を構成する。
以下、センサアセンブリ100、100’及び保持部20、21の実施例について、実施例1乃至実施例3に分けて説明する。
図2乃至図5を用いて、熱式空気流量計の第1実施例について、説明する。以下、本実施例の特徴的部分であるアセンブリ100及び保持部20,21について説明する。
図2はセンサアセンブリ100形成後の平面図であり、図3は図2のIII-III断面を示す断面図である。図2では、周囲を被覆する第1樹脂24を透視して、内部のリードフレーム1、換気プレート2、LSI3、センサチップ4を示している。
図2、図3に示すように、センサアセンブリ100はリードフレーム1、換気プレート2、LSI(回路部)3、センサチップ4を備えており、これらが第1樹脂24で覆われている。具体的には、センサアセンブリ100は、センサチップ4の流量検出部4aの少なくとも一部が露出するようにして、リードフレーム1、換気プレート2、LSI(回路部)3、センサチップ4の各インサート部品を、第1樹脂24でインサートモールドして構成されている。
ここで、上述のリード102bはリードフレーム1から切り離されて構成される。また、流量検出部4aはセンサチップ4上に構成される。センサチップ4には、ダイヤフラム4aが形成されている。ダイヤフラム4a上には発熱抵抗体や感温抵抗体が形成され、流量検出部4aが構成されている。
第1樹脂24としては、例えば熱硬化性樹脂を用いる。具体的な製造方法は、まず、リードフレーム1上に換気プレート2を接着テープ5で接着し、さらに換気プレート2上にLSI3とセンサチップ4とを接着テープ6で接着する。なお、この換気プレート2には、ガラスを用いても樹脂を用いても構わない。
次に、LSI3とセンサチップ4との間、及びLSI3とリードフレーム1との間をワイヤボンディングにより金線8、9を用いて電気的に結線する。これらを第1樹脂24によって樹脂封止し、センサアセンブリ100が完成する。LSI3は流量検出部4aを有するセンサチップ4からのアナログ信号をデジタル信号に変換し、制御、出力する回路部である。この回路部は、回路チップ(半導体チップ)で構成されている。LSI3の表面には、抵抗体7が配置され、この抵抗体7は例えば基準発信器(クロック)やA/D変換器などに用いられる。
図1B及び図4を参照して、センサアセンブリ100の実装構造を説明する。図4は図1BのIV-IV断面図である。筐体301は主通路を流れる空気をセンサチップ4に導くための副通路305(305i、305o)とセンサアセンブリ100の保持部20、21(副通路の側壁となる)と端子307bの保持部14を備えており、第2樹脂からなる筐体301の形成と同時にセンサアセンブリ100が筐体11に収容されて固定される。この際、流量検出部4aを有するセンサチップ4の流量検出部4aは空気流量を測定する必要があるため、副通路305中に配置される。LSI3とセンサチップ4は隣接するように配置されているので、副通路305の側壁となる保持部20、21はセンサチップ4とLSI3との間に位置する。なお、保持部20、21は図1Bに固定部306として示す部分であり、センサアセンブリ100の流量計測通路部分305sに沿う方向の全周が第2樹脂によって覆われている。これにより、センサアセンブリ100の表面側には保持部20が、またセンサアセンブリ100の裏面側には保持部21が構成されている。そして、筐体11の形成の際には保持部20、21は、図4に示すようにセンサアセンブリ100の表面側の保持部20の樹脂体積よりもセンサアセンブリ100の裏面側の保持部21の樹脂体積のほうが大きくなるように形成されている。
次に第1実施例による作用効果について説明する。センサアセンブリ100は第1樹脂24により形成され、筐体301は第2樹脂により形成されている。また、第1樹脂24と第2樹脂とは材料が異なる。例えば、第1樹脂24は熱硬化性樹脂を用い、第2樹脂は熱可塑性樹脂を用いる。このため、保持部20、21によってセンサアセンブリ100との界面に、第1樹脂24と第2樹脂との線膨張係数差に起因する熱応力、もしくは樹脂収縮差に起因する収縮応力により圧縮応力が発生する。これにより、保持部20、21に隣接するLSI3内の抵抗体7にも圧縮応力が発生する。抵抗体7に応力(ひずみ)が発生すると、ピエゾ効果によって抵抗値が変化し、LSI3の出力特性が変化するため、空気流量の測定精度が悪化する。
本実施例では、保持部20の樹脂体積を保持部21の樹脂体積よりも小さくした。これにより、保持部20、21の樹脂収縮差によって、センサアセンブリ100に図5に示すような反りを発生させる。図5は、図2のV-V断面を示す断面図であり、反り変形の形状を示している。図5に示すように、LSI3にもセンサアセンブリ100と同様の反りが発生する。その結果、抵抗体7に引張応力が印加されるため、保持部20、21によって抵抗体7に発生する圧縮応力を低減することができる。すなわち、本実施例では、保持部20と保持部21との収縮差によってセンサアセンブリ100に反りを発生させる。この反りはLSI3が受ける上記圧縮応力を相殺或いは低減する引張応力を生じさせる。この反りを発生するために、センサアセンブリ100の表面側の保持部20よりもセンサアセンブリ100の裏面側の保持部21の収縮量を大きくしている。
図6及び図7を用いて、熱式空気流量計の第2実施例について説明する。以下、本実施例の特徴的部分であるセンサアセンブリ100’について説明する。
図6はセンサアセンブリの正面図であり、図7は図6のIIV-IIV断面を示す断面図である。センサアセンブリ100’の基本構成は実施例1と同様であるが、センサアセンブリ100’の表面側にある樹脂の厚さt1とセンサアセンブリ100’の裏面側にある樹脂の厚さt2が、t1<t2となるように形成されている。
次に、第2実施例による作用効果について説明する。センサアセンブリ100’において、LSI3と第1樹脂24との界面で第1樹脂24の樹脂収縮及び熱収縮による圧縮応力が抵抗体7に発生する。本実施例では、センサアセンブリ100’の表面側と裏面側との樹脂厚みt1、t2について、t1<t2なる関係が成り立っているため、第1樹脂24の表面側と裏面側との熱収縮差によってセンサアセンブリ100’に図5に示す反りが発生し、LSI3にも同様の反りが発生する。その結果、LSI3内の抵抗体7に引張応力が印加され、抵抗体7に発生する圧縮応力を低減或いは相殺することができる。なお、本実施例で示したセンサアセンブリ100’の構造に、実施例1で示した筐体301の構造を組み合わせた構成をとっても、抵抗体7に発生する圧縮応力を低減できることは言うまでもない。
図8を用いて、熱式空気流量計の第3実施例について説明する。以下、本実施例の特徴的部分であるセンサアセンブリ100’’について説明する。図8は、本発明に係る第3実施例におけるセンサアセンブリ100’’について、図3及び図7と同様な断面で示す断面図である。
本実施例では、第2実施例のセンサアセンブリ100’において、センサチップ4とLSI(回路部)3とが一体化され、一つの半導体チップとして構成されている。この場合においても、センサアセンブリ100’’の表面側にある樹脂の厚さt1とセンサアセンブリ100’’の裏面側にある樹脂の厚さt2が、t1<t2となるように形成することにより、実施例2と同様な効果が得られ、流量の計測精度が向上する。
本実施例においても、実施例1の保持部20、21と組み合わせることができる。或いは、実施例1において、本実施例のように、センサチップ4とLSI3とを一体化して、一つの半導体チップとして構成してもよい。
第1実施例、第2実施例及び第3実施例では、センサアセンブリ100、100’、100’’に対して流量検出部4aが露出する面に平行な方向の引張応力を生じさせる樹脂構造を備えている。この樹脂構造は、LSI(回路部)3に対して流量検出部4aが露出するセンサアセンブリ100、100’、100’’の表面側に存在する樹脂の体積とセンサアセンブリ100、100’、100’’の裏面側に存在する樹脂の体積とを異ならせた構造である。そして、引張応力は、この樹脂構造がセンサアセンブリ100、100’、100’’に反り変形を生じさせることにより発生され、LSI3の抵抗体7は引張応力が作用する部分に位置することにより、上述の圧縮応力が相殺或いは軽減される。この樹脂構造は、第1実施例においては、センサアセンブリ100の表面側の表面に接触する第二の樹脂(保持部20を構成する樹脂)の体積と、センサアセンブリ100の裏面側の表面に接触する第二の樹脂(保持部21を構成する樹脂)の体積とを異ならせた構造である。そして、センサアセンブリ100の表面側の表面に接触する第二の樹脂(保持部20を構成する樹脂)の体積よりも、センサアセンブリ100の裏面側の表面に接触する第二の樹脂(保持部21を構成する樹脂)の体積の方が大きい。このとき、第2実施例に記載したセンサアセンブリ100’のように、LSI3に対してセンサアセンブリ100の裏面側に設けられた第一の樹脂24の厚さを、LSI3に対してセンサアセンブリ100の表面側に設けられた第一の樹脂24の厚さよりも厚くしてもよい。また、第2実施例においては、樹脂構造は、LSI3に対してセンサアセンブリ100’の裏面側に設けられた第一の樹脂の厚さを、LSI3に対してセンサアセンブリ100’の表面側に設けられた第一の樹脂の厚さよりも厚くした構造により実現されている。
なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
本発明は、上述した気体流量を計測するための計測装置に適用できる。
1…リードフレーム、2…換気プレート、3…LSI、4…センサチップ、5…接着テープ、6…接着テープ、7…抵抗体、8…金線、9…金線、100,100’ ,100’’…センサアセンブリ、11…筐体、12…副通路、14…保持部、20…保持部、21…保持部、24…第1樹脂、26…空気。
Claims (8)
- 抵抗体を有する回路部と流量検出部とを、前記流量検出部の少なくとも一部が露出するようにインサートモールドして構成したセンサアセンブリと、副通路を有し前記流量検出部を前記副通路内に配置して前記センサアセンブリを収容する筐体とを備え、前記センサアセンブリが第一の樹脂でモールド成形され、前記筐体が第二の樹脂でモールド成形された熱式空気流量計において、
前記センサアセンブリは前記筐体を形成する前記第二の樹脂で前記筐体に固定されており、
前記センサアセンブリに対して前記流量検出部が露出する面に平行な方向の引張応力を生じさせる樹脂構造を備えたことを特徴とする熱式空気流量計。 - 請求項1に記載の熱式空気流量計において、
前記樹脂構造は、前記回路部に対して前記流量検出部が露出する前記センサアセンブリの表面側に存在する樹脂の体積と前記センサアセンブリの裏面側に存在する樹脂の体積とを異ならせた構造であることを特徴とする熱式空気流量計。 - 請求項2に記載の熱式空気流量計において、
前記引張応力は、前記樹脂構造が前記センサアセンブリに反り変形を生じさせることにより発生され、前記回路部の抵抗体は前記引張応力が作用する部分に位置することを特徴とする熱式空気流量計。 - 請求項3に記載の熱式空気流量計において、
前記樹脂構造は、前記センサアセンブリの表面側の表面に接触する前記第二の樹脂の体積と、前記センサアセンブリの裏面側の表面に接触する前記第二の樹脂の体積とを異ならせた構造であることを特徴とする熱式空気流量計。 - 請求項4に記載の熱式空気流量計において、
前記センサアセンブリの表面側の表面に接触する前記第二の樹脂の体積よりも、前記センサアセンブリの裏面側の表面に接触する前記第二の樹脂の体積の方が大きいことを特徴とする熱式空気流量計。 - 請求項5に記載の熱式空気流量計において、
前記回路部に対して前記センサアセンブリの裏面側に設けられた前記第一の樹脂の厚さを、前記回路部に対して前記センサアセンブリの表面側に設けられた前記第一の樹脂の厚さよりも厚くしたことを特徴とする熱式空気流量計。 - 請求項3に記載の熱式空気流量計において、
前記樹脂構造は、前記回路部に対して前記センサアセンブリの裏面側に設けられた前記第一の樹脂の厚さを、前記回路部に対して前記センサアセンブリの表面側に設けられた前記第一の樹脂の厚さよりも厚くした構造であることを特徴とする熱式空気流量計。 - 請求項5又は7に記載の熱式空気流量計において、
前記第一の樹脂は熱硬化性樹脂であり、前記第二の樹脂は熱可塑性樹脂であることを特徴とする熱式空気流量計。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/907,118 US9945706B2 (en) | 2013-07-24 | 2014-02-03 | Thermal-type air flow meter |
EP14828738.6A EP3026402B1 (en) | 2013-07-24 | 2014-02-03 | Thermal air flowmeter |
CN201480041230.0A CN105408727B (zh) | 2013-07-24 | 2014-02-03 | 热式空气流量计 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013153119A JP6043248B2 (ja) | 2013-07-24 | 2013-07-24 | 熱式空気流量計 |
JP2013-153119 | 2013-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015011936A1 true WO2015011936A1 (ja) | 2015-01-29 |
Family
ID=52392999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/052383 WO2015011936A1 (ja) | 2013-07-24 | 2014-02-03 | 熱式空気流量計 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9945706B2 (ja) |
EP (1) | EP3026402B1 (ja) |
JP (1) | JP6043248B2 (ja) |
CN (1) | CN105408727B (ja) |
WO (1) | WO2015011936A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5675706B2 (ja) * | 2012-06-15 | 2015-02-25 | 日立オートモティブシステムズ株式会社 | 熱式流量計 |
JP2016090413A (ja) | 2014-11-06 | 2016-05-23 | 日立オートモティブシステムズ株式会社 | 熱式空気流量計 |
JP6426205B2 (ja) | 2015-01-30 | 2018-11-21 | 日立オートモティブシステムズ株式会社 | 電子装置 |
JP6891571B2 (ja) * | 2017-03-21 | 2021-06-18 | 株式会社リコー | 情報処理システム及び情報処理方法 |
DE102017206226A1 (de) * | 2017-04-11 | 2018-10-11 | Robert Bosch Gmbh | Sensor zur Erfassung mindestens einer Eigenschaft eines fluiden Mediums |
JP7054328B2 (ja) * | 2017-09-11 | 2022-04-13 | Koa株式会社 | センサユニット、及びそれを用いた多連式センサ |
DE102017218893A1 (de) * | 2017-10-23 | 2019-04-25 | Robert Bosch Gmbh | Sensoranordnung zur Bestimmung wenigstens eines Parameters eines durch einen Messkanal strömenden fluiden Mediums |
DE112019001828T5 (de) * | 2018-05-17 | 2020-12-24 | Hitachi Automotive Systems, Ltd. | Detektionsvorrichtung physikalischer grössen |
JP7162961B2 (ja) * | 2019-03-04 | 2022-10-31 | 日立Astemo株式会社 | 流量測定装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03263625A (ja) * | 1990-03-14 | 1991-11-25 | Asahi Chem Ind Co Ltd | 情報記録用媒体 |
JP2011148293A (ja) * | 2009-12-21 | 2011-08-04 | Denso Corp | 中空体の製造方法、中空体、流量測定装置の製造方法および流量測定装置 |
JP2011252796A (ja) | 2010-06-02 | 2011-12-15 | Denso Corp | 空気流量測定装置 |
JP2012202786A (ja) * | 2011-03-25 | 2012-10-22 | Hitachi Automotive Systems Ltd | 熱式センサおよびその製造方法 |
JP2013036892A (ja) * | 2011-08-09 | 2013-02-21 | Denso Corp | 空気流量測定装置 |
WO2013084259A1 (ja) * | 2011-12-07 | 2013-06-13 | 日立オートモティブシステムズ株式会社 | 空気流量測定装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6988399B1 (en) * | 2000-05-02 | 2006-01-24 | Hitachi, Ltd. | Physical quantity detecting device having second lead conductors connected to the electrodes and extending to the circumference of the substrate |
JP3785338B2 (ja) * | 2001-07-25 | 2006-06-14 | 株式会社日立製作所 | 熱式流量計測装置 |
JP4177183B2 (ja) * | 2003-06-18 | 2008-11-05 | 株式会社日立製作所 | 熱式空気流量計 |
JP4609019B2 (ja) * | 2004-09-24 | 2011-01-12 | 株式会社デンソー | 熱式流量センサ及びその製造方法 |
JP4894669B2 (ja) * | 2007-08-01 | 2012-03-14 | 株式会社デンソー | センサ装置及びその製造方法 |
JP2010071724A (ja) * | 2008-09-17 | 2010-04-02 | Mitsubishi Electric Corp | 樹脂モールド半導体センサ及び製造方法 |
JP5183683B2 (ja) * | 2010-07-02 | 2013-04-17 | 三菱電機株式会社 | 流量測定装置 |
-
2013
- 2013-07-24 JP JP2013153119A patent/JP6043248B2/ja active Active
-
2014
- 2014-02-03 EP EP14828738.6A patent/EP3026402B1/en active Active
- 2014-02-03 US US14/907,118 patent/US9945706B2/en active Active
- 2014-02-03 CN CN201480041230.0A patent/CN105408727B/zh active Active
- 2014-02-03 WO PCT/JP2014/052383 patent/WO2015011936A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03263625A (ja) * | 1990-03-14 | 1991-11-25 | Asahi Chem Ind Co Ltd | 情報記録用媒体 |
JP2011148293A (ja) * | 2009-12-21 | 2011-08-04 | Denso Corp | 中空体の製造方法、中空体、流量測定装置の製造方法および流量測定装置 |
JP2011252796A (ja) | 2010-06-02 | 2011-12-15 | Denso Corp | 空気流量測定装置 |
JP2012202786A (ja) * | 2011-03-25 | 2012-10-22 | Hitachi Automotive Systems Ltd | 熱式センサおよびその製造方法 |
JP2013036892A (ja) * | 2011-08-09 | 2013-02-21 | Denso Corp | 空気流量測定装置 |
WO2013084259A1 (ja) * | 2011-12-07 | 2013-06-13 | 日立オートモティブシステムズ株式会社 | 空気流量測定装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3026402A4 (en) | 2017-04-05 |
EP3026402B1 (en) | 2020-05-13 |
CN105408727A (zh) | 2016-03-16 |
JP6043248B2 (ja) | 2016-12-14 |
CN105408727B (zh) | 2018-11-16 |
US20160161312A1 (en) | 2016-06-09 |
JP2015021953A (ja) | 2015-02-02 |
EP3026402A1 (en) | 2016-06-01 |
US9945706B2 (en) | 2018-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6043248B2 (ja) | 熱式空気流量計 | |
JP5496027B2 (ja) | 熱式空気流量計 | |
JP5883887B2 (ja) | 流量計測装置 | |
JP6096070B2 (ja) | 熱式流量計の製造方法 | |
WO2016072166A1 (ja) | 熱式空気流量計 | |
JP5904959B2 (ja) | 熱式空気流量計 | |
JP6101619B2 (ja) | 熱式空気流量計 | |
JP2012242298A (ja) | 流量検出装置 | |
JP5164753B2 (ja) | 発熱抵抗体式流量測定装置 | |
JP6336833B2 (ja) | 熱式空気流量計 | |
JP5870748B2 (ja) | 流量センサ | |
JP6674917B2 (ja) | 熱式流量計 | |
JP6064022B2 (ja) | 熱式空気流量計 | |
JP5711399B2 (ja) | 熱式空気流量計 | |
JP5609841B2 (ja) | 流量センサ | |
WO2020202721A1 (ja) | 物理量測定装置 | |
JP2017181521A (ja) | 流量センサ | |
JP6156523B2 (ja) | 流量センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480041230.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14828738 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014828738 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14907118 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |