WO2015007135A1 - 一种负载型烯烃聚合催化剂及其制备方法与应用 - Google Patents

一种负载型烯烃聚合催化剂及其制备方法与应用 Download PDF

Info

Publication number
WO2015007135A1
WO2015007135A1 PCT/CN2014/080371 CN2014080371W WO2015007135A1 WO 2015007135 A1 WO2015007135 A1 WO 2015007135A1 CN 2014080371 W CN2014080371 W CN 2014080371W WO 2015007135 A1 WO2015007135 A1 WO 2015007135A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
catalyst
titanium
carrier
compound
Prior art date
Application number
PCT/CN2014/080371
Other languages
English (en)
French (fr)
Inventor
王静文
刘柏平
程瑞华
何雪莲
刘振
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Priority to US14/904,691 priority Critical patent/US20160152738A1/en
Publication of WO2015007135A1 publication Critical patent/WO2015007135A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/025Metal oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/16Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of silicon, germanium, tin, lead, titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/04Dual catalyst, i.e. use of two different catalysts, where none of the catalysts is a metallocene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/06Catalyst characterized by its size

Definitions

  • the present invention relates to a supported olefin polymerization catalyst and a process for its preparation and its use in the production of olefin homopolymers and olefin copolymers.
  • the catalyst has the characteristics of simple preparation, low cost, high activity, hydrogen modulation response and excellent copolymerization performance.
  • Polyethylene is the most widely produced variety of general synthetic resins. It has chemical resistance, good mechanical strength and electrical insulation.
  • Polypropylene is a thermoplastic synthetic resin with excellent properties. It is non-toxic and chemically stable. It is easy to process and is the best heat-resistant product in general-purpose resins.
  • Polyethylene and polypropylene are widely used in human life, health care, industry and agriculture. These polyolefin products with excellent properties are closely related to the catalysts used.
  • the initial Ziegler-Natta catalyst has the disadvantages of low activity and low utilization of titanium atoms. Therefore, in the initially developed polyolefin process, there must be a deashing process for removing the catalyst residue, resulting in high production cost of the product.
  • researchers began to explore the preparation of supported catalysts. The late 1960s, Kashiwa Mitsui Chemicals, Inc. (Patent JP 1031698) and Italian company Montecatini GalH (GB 1286867A), respectively, to develop a high activity Ziegler-Natta catalyst as MgCl 2 carrier-supported titanium chloride, MgCl 2 support It has been found that the development of supported catalysts has taken a big step forward.
  • Italy Montecatini developed, that is, first 3 ⁇ 43 ⁇ 4 1 2 alcoholates with an alcohol solution of magnesium chloride, a precipitate formed after a spherical MgCl 2 support, then a carrier with a spherical MgCl 2 and TiC The reaction removes the alcohol in the carrier while achieving the loading of the titanium active component on the surface of the magnesium chloride support.
  • the preparation process is complicated and the catalyst preparation cost is high.
  • Second It is a one-step preparation process developed by Hoechst Company of Germany (THB polyethylene catalyst) and Toho titanium Company of Japan (THC Polypropylene Catalyst, US 4547476 A), which uses Mg(OEt) 2 and 13 ⁇ 43 ⁇ 4 in situ to form MgCl 2 carrier simultaneously.
  • the loading of the titanium active component on the surface of the MgCl 2 support is achieved.
  • the preparation process is simple, but the use of the raw material Mg(OEt) 2 is relatively expensive, resulting in high catalyst preparation cost and difficulty in controlling the morphology of the catalyst particles.
  • amorphous porous silica gel itself is also an excellent carrier material for polyolefin catalysts.
  • a transition metal compound can be supported on a carrier having a functional group (mainly a hydroxyl group) to synthesize a highly active olefin polymerization catalyst.
  • 0 2 has a porous structure and a high specific surface area, and its surface contains a small amount of reactive groups, such as silanol groups, etc.
  • the catalyst component can react with the reactive groups on its surface, and a Ziegler-Natta catalyst supported on SiO 2 can be obtained by loading.
  • Patent US 4293673, US 4302565, US 4302566, US 4303771 report a high-efficiency Ziegler-Natta catalyst supported on a silica gel and magnesium chloride composite support developed by Union Carbide, USA. Representative industrial catalysts are used in UNIPOL vapor phase polyethylene process.
  • the preparation method comprises the steps of: dissolving anhydrous MgCl 2 in THF to form a homogeneous solution, impregnating the surface of the heat activated silica gel to form a composite carrier, and then impregnating the surface of the composite carrier with a titanium active component, and using a sulfhydryl group for a part of the THF coordinated with the magnesium chloride.
  • Aluminum or halogenated fluorenyl aluminum is removed.
  • the catalysts used in the polymerization of olefins exhibit high catalytic activity and have good hydrogen modulation response and copolymerization properties.
  • the preparation process of such magnesium chloride and silica gel composite supported Ziegler-Natta catalysts is complicated, and the catalyst preparation cost is high. Also higher.
  • an object of the present invention is to provide a supported olefin polymerization catalyst, a preparation method thereof and use thereof in the production of an olefin homopolymer and an olefin copolymer, and the present invention employs any porous inorganic carrier and inexpensive any soluble magnesium.
  • the salt is used as a raw material, and the soluble magnesium salt is first immersed on the surface of the inorganic carrier, and after being calcined at a high temperature, a supported magnesium-containing compound layer is formed on the surface of the inorganic carrier, and further reacted with the chlorine-containing titanium compound solution to form magnesium in situ on the surface of the inorganic carrier.
  • the present invention provides a supported olefin polymerization catalyst characterized in that: the catalyst mainly comprises: a porous carrier A, a magnesium-containing carrier B, and a supported transition metal-containing titanium active component.
  • the carrier A is selected from the group consisting of silica, alumina, aluminosilicate (xAl 2 ySiO 2 ), titania, zirconia, magnesia, calcium oxide, inorganic
  • the inorganic clay may include, for example, montmorillonite or the like.
  • the carrier A is selected from the group consisting of silica gel, in particular amorphous silica gel. These vectors are well known in the art and can be synthesized commercially or by known methods. As an example of silica gel, Davison 955 can be mentioned.
  • the carrier A is one selected from the group consisting of silica, alumina, aluminosilicate, titania, and zirconia.
  • the carrier A is selected from the group consisting of silica, alumina, and aluminosilicate.
  • the specific surface area of the carrier A is usually 10 to 800 m 2 /g, preferably 100 to 300 m 2 /g, and the pore volume of the carrier is 0.1 to 6.0 cm 3 /g. It is preferably 0.5 to 3.0 cm 3 /g, and the average pore diameter is 1 to 50 nm, preferably 5 to 40 nm.
  • the carrier A used in the present invention may be any carrier which is generally used in the preparation of an olefin polymerization catalyst.
  • the carrier B is a magnesium-containing compound represented by the formula: R ⁇ MgC m, wherein! ⁇ is ⁇ - ⁇ .
  • the hydrocarbon group may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ m ⁇ 2.
  • the transition metal-containing titanium active component is a titanium-containing compound such as TiO ⁇ nd or Ti (LCl 2 c, wherein L 1 is a hydrocarbon group of dC 2Q R 2 or a hydrocarbyloxy group R 2 0, R 2 may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ n ⁇ 4, 0 ⁇ g ⁇ 3, 0 ⁇ k ⁇ 2, when n, When g and k are 2 or more, the plurality of R 2 present may be the same or different, respectively;
  • the titanium-containing compound is selected from the group consisting of trimethoxytitanium chloride, triethoxytitanium chloride, tri-n-propoxytitanium chloride, and triisopropoxy chlorination.
  • the titanium-containing compound is selected from the group consisting of triethoxytitanium chloride, diethoxytitanium dichloride, methoxytitanium trichloride, tetrachloride One of titanium, tetrabutyl titanate, and titanium trichloride.
  • the titanium-containing compound is selected from the group consisting of triethoxytitanium chloride, diethoxytitanium dichloride, methoxytitanium trichloride, tetrachloro One of titanium.
  • the carrier B is supported on the carrier A and the catalyst is prepared by: impregnating the carrier A with a soluble magnesium salt, and co-impregnating the soluble ammonium salt as needed, at 300 to 900 ° C
  • the calcination is carried out at a high temperature, and then reacted with a solution containing a titanium compound, and an internal electron donor may be simultaneously added to the reaction system as needed to obtain the catalyst.
  • an organometallic cocatalyst may be used for preactivation treatment as needed.
  • the calcined product may be subjected to surface modification treatment by adding an organomagnesium compound, an organoaluminum compound or a hydroxyl group-containing compound as needed.
  • the soluble magnesium salt includes any soluble magnesium-containing salt.
  • the soluble magnesium salt is selected from the group consisting of magnesium carbonate, magnesium hydrogencarbonate, magnesium chromate, magnesium fluoride, magnesium acetate, magnesium nitrate, magnesium fluoride, magnesium chloride, and bromine.
  • magnesium carbonate magnesium hydrogencarbonate
  • magnesium chromate magnesium fluoride
  • magnesium acetate magnesium nitrate
  • magnesium fluoride magnesium chloride
  • bromine magnesium iodide
  • magnesium sulfate magnesium gluconate
  • magnesium chlorate magnesium perchlorate
  • magnesium phosphate, magnesium sulfide magnesium citrate, magnesium amino acid, etc., other suitable soluble magnesium salts, and combinations thereof.
  • the magnesium loading on the carrier A is 0.01 to 50% by weight based on the total weight of the catalyst.
  • the soluble magnesium salt is selected from the group consisting of magnesium acetate, magnesium nitrate, magnesium hydrogencarbonate, magnesium chromate, magnesium fluoride, magnesium sulfate, magnesium gluconate, One of magnesium chlorate, magnesium phosphate, and magnesium sulfide.
  • the soluble magnesium salt is selected from the group consisting of magnesium gluconate, magnesium chlorate, magnesium phosphate, magnesium hydrogencarbonate, magnesium fluoride, magnesium sulfate, magnesium acetate. .
  • the soluble ammonium salt includes any soluble Ammonium-containing salts: such as ammonium acetate, ammonium nitrate, ammonium carbonate, ammonium hydrogencarbonate, etc., other suitable soluble ammonium salts, and combinations thereof.
  • the molar ratio of the soluble ammonium salt to the magnesium salt is from 0.01 to 10.
  • the soluble ammonium salt is selected from one of ammonium acetate, ammonium nitrate and ammonium carbonate.
  • the soluble ammonium salt is one selected from the group consisting of ammonium acetate and ammonium nitrate.
  • the titanium-containing compound reacted with the calcined product such as Ti(L 2 ) h C or Ti(L 2 ) s Cl ⁇ or Ti(L 2 ) t Cl
  • L 2 is -C 2 .
  • the hydrocarbon group R 3 or the hydrocarbon group R 3 0, R 3 may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ h ⁇ 4, 0 ⁇ s ⁇ 3, 0 ⁇ t ⁇ 2, when When h, s and t are 2 or more, a plurality of R 3 present may be the same or different.
  • the titanium-containing compound is selected from the group consisting of trimethoxytitanium chloride, triethoxytitanium chloride, tri-n-propoxytitanium chloride, and triisopropoxy group. Titanium chloride, dimethoxy titanium dichloride, diethoxy titanium dichloride, diisopropoxy titanium dichloride, methoxy titanium trichloride, ethoxylated titanium trichloride, tetrachloro Titanium, titanium trichloride, titanium dichloride, ethyl titanium chloride, and the like.
  • the molar ratio of the titanium-containing compound to the supported amount of magnesium on the carrier A is from 0.01 to 500, preferably from 0.1 to 200.
  • the titanium-containing compound is selected from the group consisting of triethoxytitanium chloride, diethoxytitanium dichloride, methoxytitanium trichloride, One of titanium tetrachloride and titanium trichloride.
  • the titanium-containing compound is selected from the group consisting of triethoxytitanium chloride, methoxytitanium trichloride, titanium tetrachloride, and trichlorination.
  • the titanium-containing compound is selected from the group consisting of triethoxytitanium chloride, methoxytitanium trichloride, titanium tetrachloride, and trichlorination.
  • the titanium-containing compound is selected from the group consisting of triethoxytitanium chloride, methoxytitanium trichloride, titanium tetrachloride, and trichlorination.
  • the titanium-containing compound is selected from the group consisting of triethoxytitanium chloride, methoxytitanium trichloride, titanium tetrachloride, and trichlorination.
  • the titanium is selected from the group consisting of triethoxytitanium chloride, methoxytitanium t
  • the internal electron donor is selected from the group consisting of the following formula (I) (II) (III) (IV) and other mercaptoesters of saturated aliphatic carboxylic acids. Any one or a combination of a mercaptoester of an aromatic carboxylic acid, a fatty ether, a cyclic ether, a saturated aliphatic ketone, a glycol ester compound, or a combination thereof, generally known in the art for internal polymerization of olefin polymerization. body:
  • R S -R 2S are the same or different hydrogen atoms or C r C 2 .
  • the hydrocarbyl group may be a saturated or unsaturated linear, branched or cyclic chain.
  • the internal electron donor is selected from the group consisting of methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl formate, ethyl formate, butyl formate, methyl acetate, ethyl acetate, butyl acetate, p-hydroxyl Methyl benzoate, ethyl p-hydroxybenzoate, butyl p-hydroxybenzoate, methyl aminobenzoate, ethyl aminobenzoate, butyl aminobenzoate, methyl p-benzenesulfonate, ethyl p-benzenesulfonate , p-butyl benzenesulfonate, methyl benzoate, ethyl be
  • the internal electron donor is selected from the group consisting of a mercaptoester, a mercaptoester of an aromatic carboxylic acid, a fatty ether, a cyclic ether, and a saturated aliphatic ketone.
  • the internal electron donor is selected from the group consisting of a mercaptoester, a mercaptoester of an aromatic carboxylic acid, a fatty ether, a cyclic ether, and a saturated aliphatic ketone.
  • the internal electron donor is one selected from the group consisting of a cyclic ether, a mercaptoester of an aromatic carboxylic acid, and a saturated aliphatic ketone.
  • the organomagnesium compound is represented by the formula R 4 p MgX wherein R 4 is C r C 2 .
  • the hydrocarbyl group may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ p ⁇ 2, and X is a halogen such as fluorine, chlorine, bromine and iodine.
  • the organomagnesium compound is selected from the group consisting of methyl chloride Magnesium, ethyl magnesium chloride, butyl magnesium chloride, allyl magnesium chloride, isopropyl magnesium chloride, tert-butyl magnesium chloride, 2-methylbutyl magnesium chloride, 1-heptyl magnesium chloride, 1-pentyl magnesium chloride, 1-hexyl magnesium chloride 1,1-dimethylpropylmagnesium chloride, cyclopentylmagnesium chloride, vinylmagnesium chloride, 2-butylmagnesium chloride, 1-octylmagnesium chloride, and the like.
  • the molar ratio of the magnesium-supporting amount of the organomagnesium compound to the carrier A is from 0.01 to 100.
  • the organoaluminum compound comprises tridecyl aluminum A1R 3 , dinonyl decyl aluminum oxide A1R 2 0R, dinonyl aluminum halide A1R 2 X, aluminoxane And ethyl sesquiamine chloride, etc., wherein R is dd ⁇ fluorenyl, and X is halogen, such as fluorine, chlorine, bromine and iodine.
  • the molar ratio of the organoaluminum compound to the supported amount of magnesium on the carrier A is from 0.01 to 100.
  • the hydroxyl group-containing compound is represented by the formula HOR 5 wherein R 5 is -C 2 .
  • the hydrocarbon group may be a saturated or unsaturated linear, branched or cyclic chain; the hydroxyl group-containing compound is selected from the group consisting of ethanol, n-butanol, n-hexanol, isooctanol, benzyl alcohol and phenylethyl alcohol.
  • the molar ratio of the hydroxyl group-containing compound to the magnesium loading on the carrier A is from 0.01 to 200.
  • the catalyst obtained above may be pre-reduced by adding an organometallic cocatalyst such as an organoaluminum compound, an organolithium compound, an organoboron compound or the like as needed, wherein the organoaluminum compound includes trimethylaluminum A1R 3 and a dimercapto group.
  • organometallic cocatalyst such as an organoaluminum compound, an organolithium compound, an organoboron compound or the like as needed, wherein the organoaluminum compound includes trimethylaluminum A1R 3 and a dimercapto group.
  • the organolithium compound has the general formula shown as LiR s , where is C r C 2 .
  • hydrocarbon group which may be a saturated or unsaturated linear, branched or cyclic chain selected from the group consisting of methyl lithium, ethyl lithium, butyl lithium, t-butyl lithium, pentyl lithium, phenyl lithium, etc.;
  • the compound has the formula shown as BR 7 q 3 ⁇ 4 q , wherein R 7 is C r C 2 .
  • the molar ratio of the organometallic cocatalyst to the titanium active component is from 0.01 to 1000.
  • one of the methods comprises the steps of: a) impregnating the carrier A with a solution containing a soluble magnesium salt, followed by drying, followed by baking at a high temperature of 300 to 900 ° C.
  • step b) The product obtained in the step a is reacted with the titanium-containing compound solution, and an internal electron donor may be simultaneously added to the reaction system as needed, followed by washing and drying to obtain the catalyst for storage.
  • the method comprises the steps of:
  • the immersion time is 0.5 to 12 h, preferably 4 to 8 h
  • the immersion temperature is 0 to 80 ° C, preferably room temperature to 70 ° C, and then drying at room temperature to 250 ° C
  • the temperature is from 80 to 200 ° C
  • the drying time is from 2 to 20 h, preferably from 8 to 15 h
  • vacuum drying can also be used in the drying process
  • the sample is activated by high temperature roasting in an inert gas or oxygen or air, and the calcination temperature is in the range of 300 to 900'.
  • the time is l ⁇ 10h, preferably 3 ⁇ 8h, and then cooling, wherein when it is cooled to 300 ⁇ 400'C, it is switched to an inert gas such as nitrogen or argon, and is naturally cooled; b)
  • the product obtained in the step a is reacted with the titanium-containing compound solution, and the reaction time is 0.5-8 h, preferably l ⁇ 5 h, and the temperature is 3 ⁇ 4 ⁇ 200'C, preferably 80-180'C ; if necessary, it can be added to the reaction system at the same time. Internal electron donor, then C 3 -C 2 .
  • the terpene hydrocarbon solvent such as n-glycol, hexanyl or the like, is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 ° C, dried at room temperature to 2501, preferably at 80 to 160 ° C, and dried for 2 to 20 hours. Preferably, it is 6 ⁇ 12h, and a vacuum may also be used in the drying process to obtain the catalyst for storage.
  • the present invention utilizes the carrier A, first impregnating the magnesium salt thereon, and then calcining at a high temperature to obtain a catalyst precursor supporting the magnesium-containing compound; and then reacting the above catalyst precursor with the titanium-containing compound solution to make the carrier B in situ It is formed and supported on the carrier A, and at the same time, the in-situ loading of the titanium active component is also achieved, and an internal electron donor can be added to the reaction system as needed to prepare a supported olefin polymerization catalyst.
  • the above step a is a method of supporting a soluble magnesium salt on a carrier A such as the carrier described above.
  • the method for supporting the magnesium salt on the carrier A may be any known method of supporting the magnesium salt on the carrier.
  • a method of supporting a magnesium salt on a support comprises impregnating the porous support with a magnesium salt solution, which may be any of the soluble magnesium-containing salts described above.
  • agitation preferably continuous agitation, can be carried out during the impregnation. Generally, the stirring is continued for about 1 to 12 hours, preferably about 4 to 8 hours, and the immersion temperature is 0 to 80 ° C, preferably room temperature to 70 ° C.
  • the magnesium loading is from 0.01 to 50% by weight, preferably from 0.1 to 40% by weight, based on the weight of the total weight of the catalyst.
  • the resulting support loaded with the magnesium salt component is then dried.
  • the drying is usually carried out at room temperature to 250 ° C, preferably 80 to 200 ° C. According to one embodiment, the drying is carried out at about 120 °C. This drying can also be carried out under vacuum.
  • the drying time is not particularly limited, but the drying usually lasts for about 2 to 20 hours, preferably about 7 to 18 hours. More preferably, it is about 8 to 15 hours.
  • the carrier A loaded with the magnesium salt component is calcined.
  • the manner in which the calcination is carried out is not particularly limited, but the calcination is preferably carried out in a fluidized bed.
  • the calcination is usually carried out in two stages, a low temperature stage and a high temperature stage.
  • the low temperature stage is usually carried out at about 100 to 300 'C.
  • the high temperature stage is usually carried out at about 300 to 900 'C.
  • the physical water adsorbed in the carrier at the low temperature stage is substantially removed, the soluble magnesium salt is partially decomposed, and at the high temperature stage, part of the hydroxyl groups on the carrier A are removed, and the soluble magnesium salt is completely decomposed.
  • the low temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the high temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the low temperature stage is carried out under an inert gas or air atmosphere, preferably under an inert gas atmosphere, such as an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, such as high Pure nitrogen.
  • the high temperature stage calcination is carried out under air or oxygen conditions, preferably under dry air conditions.
  • the obtained carrier A loaded with the magnesium compound is cooled from the high temperature stage.
  • the atmosphere can be changed, for example, from air to an inert gas such as nitrogen, argon or the like, upon cooling to a temperature of 300 to 400 °C.
  • the cooling is natural cooling.
  • step b is a method of supporting the carrier B onto the carrier A and preparing a catalyst.
  • the product obtained in step a is reacted with a solution containing a titanium compound, during which stirring may be carried out, preferably with continuous stirring.
  • the agitation is continued for about 0.5 to 8 hours, preferably for 1 to 5 hours.
  • Titanium-containing compounds such as TiO ⁇ hC -h or Ti(L 2 ) s Cl 3 _ s or Ti(L 2 ) t 3 ⁇ 4 t , in the formula! ⁇ is ⁇ - ⁇ .
  • the hydrocarbon group R 3 or the hydrocarbon group R 3 0, R 3 may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ h ⁇ 4, 0 ⁇ s ⁇ 3, 0 ⁇ t ⁇ 2, when When h, s and t are 2 or more, a plurality of R 3 present may be the same or different respectively;
  • the titanium-containing compound is selected from the group consisting of trimethoxytitanium chloride, triethoxytitanium chloride, and tri-n-propoxyoxychloride.
  • the internal electron donor is as described above, and the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.01 to 500, preferably 0.1 to 50. C 3 -C 2 .
  • the terpene hydrocarbon solvent such as n-glycol, hexamethylene, etc., is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 ° C, and dried at room temperature to 250 ° C, preferably 80 to 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process, and the catalyst is transferred under nitrogen protection and stored for use.
  • specific operations for preparing the catalyst of the present invention include:
  • the porous amorphous silica gel is immersed in a certain concentration of magnesium acetate solution, and the magnesium loading is in accordance with the requirements of the present invention (for example, 0.1 to 40 wt%, based on the weight of magnesium); and continuous stirring for a certain period of time (for example, 4 ⁇ ) After 8h), the temperature is dried; the silica support loaded with magnesium acetate is calcined in a fluidized bed at a low temperature stage (for example, 100'C ⁇ 300'C), and the physical water in the carrier is removed by roasting in a nitrogen atmosphere.
  • a low temperature stage for example, 100'C ⁇ 300'C
  • the soluble magnesium salt is partially decomposed, and is partially calcined in a dry air at a high temperature stage (for example, 300'C ⁇ 900'C) to remove a part of the hydroxyl group on the surface of the silica gel.
  • the soluble magnesium salt is completely decomposed and maintained at a high temperature for a certain period of time (for example, 3 ⁇ ) 8h); Natural cooling and cooling, switching to nitrogen protection when cooled to 300 ⁇ 400'C, to obtain a catalyst precursor loaded with magnesium-containing compounds.
  • the catalyst precursor is reacted with titanium tetrachloride at a certain temperature (for example, 80 to 180 'C), and the molar ratio of the titanium tetrachloride to the carrier A on the carrier A is 0.1 to 200.
  • an internal electron donor such as n-butyl phthalate may be added to the reaction system, and the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.1 to 50; continuous stirring for a certain period of time (for example) l ⁇ 5h), after washing the catalyst with a certain temperature (for example, room temperature ⁇ 100'C), and then drying between 80 ⁇ 160'C for 6 ⁇ 12h, the drying is carried out under an inert gas atmosphere, for example, nitrogen It is carried out under an atmosphere of helium, argon or the like, preferably under a nitrogen atmosphere, and the drying process can also be carried out under vacuum. Transfer under nitrogen protection, and the catalyst is stored for later use.
  • an inert gas atmosphere for example, nitrogen
  • a method of supporting a supported olefin polymerization catalyst according to the present invention comprises the steps of: a) impregnating a carrier A with a solution containing a soluble magnesium salt, followed by drying, followed by calcination at a high temperature of 300 to 900 ° C;
  • step b reacting the product obtained in step a with an organomagnesium compound, followed by drying;
  • step b The product obtained in the step b is reacted with the titanium-containing compound solution, and an internal electron donor may be simultaneously added to the reaction system as needed, followed by washing and drying to obtain the catalyst for storage.
  • the method comprises the steps of:
  • the immersion time is 0.5 ⁇ 12h, preferably 4 ⁇ 8h
  • the immersion temperature is 0 ⁇ 80 °C, preferably the room temperature is ⁇ 70 °C, and then drying at room temperature ⁇ 250 °C, preferably 80 ⁇ 200°C, drying time 2 ⁇ 20h, preferably 8 ⁇ 15h, vacuum drying can also be used during drying
  • the sample is activated by high temperature roasting in inert gas or oxygen or air
  • the calcination temperature is 300 ⁇ 900'C
  • it is 400 ⁇ 800'C
  • the time is l ⁇ 10h, preferably 3 ⁇ 8h, and then cooling is performed, wherein when it is cooled to 300 ⁇ 400'C, it is switched to an inert gas such as nitrogen or argon, and is naturally cooled
  • the terpene hydrocarbon solvent such as n-glycol, hexamidine, etc.
  • the terpene hydrocarbon solvent is heated at a temperature of 0 to 150 ° C, preferably a chamber of 3 ⁇ 4 to 100 ° C, dried at room temperature to 250 ° C, preferably 60 to 120 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process to obtain the product for storage.
  • step b reacting the product obtained in step b with a solution containing a titanium compound, the reaction time is 0.5-8 h, preferably l ⁇ 5 h, and the temperature is 3 ⁇ 4 ⁇ 200'C, preferably 80-180'C, and can be simultaneously in the reaction system as needed.
  • the internal electron donor is added, and then washed with a C 3 -C 2Q terpene hydrocarbon solvent, such as n-glycol, hexamethylene or the like, at a temperature of 0 to 150 ° C, preferably room temperature to 100 ° C, between room temperature and 2501 Drying, preferably 80 ⁇ 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process to obtain the catalyst for storage.
  • a C 3 -C 2Q terpene hydrocarbon solvent such as n-glycol, hexamethylene or the like
  • the present invention utilizes a carrier A, which is first impregnated with a magnesium salt, and then calcined at a high temperature to obtain a catalyst precursor supporting a magnesium-containing compound; then, the catalyst precursor is reacted with an organomagnesium compound, and then with a titanium-containing compound solution.
  • the carrier B is formed in situ and supported on the carrier A, and at the same time, the in-situ loading of the titanium active component is also achieved, and an internal electron donor can be added to the reaction system as needed to prepare a supported olefin polymerization catalyst.
  • the above step a is a method of supporting a magnesium salt on a carrier A such as the carrier described above.
  • the method for supporting the magnesium salt on the carrier A may be any known method of supporting the magnesium salt on the carrier.
  • a method of supporting a magnesium salt on a support comprises impregnating the porous support with a magnesium salt solution, which may be any of the soluble magnesium-containing salts described above.
  • agitation preferably continuous agitation, can be carried out during the impregnation.
  • the stirring is carried out for about 1 to 12 hours, preferably about 4 to 8 hours, and the immersion temperature is 0 to 80 ° C, preferably room temperature to 70 ° C.
  • the magnesium loading is from 0.01 to 50% by weight, preferably from 0.1 to 40% by weight, based on the weight of the total weight of the catalyst.
  • the resulting support loaded with the magnesium salt component is then dried.
  • the drying is usually carried out at room temperature to 250 ° C, preferably 80 to 200 ° C. According to one embodiment, the drying is carried out at about 120 °C. This drying can also be carried out under vacuum.
  • the drying time is not particularly limited, but the drying usually lasts for about 2 to 20 hours, preferably about 7 to 18 hours, and more preferably about 8 to 15 hours.
  • the carrier A loaded with the magnesium salt component is calcined.
  • the manner in which the calcination is carried out is not particularly limited, but the calcination is preferably carried out in a fluidized bed.
  • the calcination is usually carried out in two stages, a low temperature stage and a high temperature stage.
  • the low temperature stage is usually carried out at about 100 to 300 'C.
  • the high temperature stage is usually carried out at about 300 to 900 'C.
  • the physical water adsorbed in the carrier in the low temperature stage is substantially removed, the soluble magnesium salt is partially decomposed, and part of the hydroxyl groups on the carrier A are removed during the high temperature stage, and soluble.
  • the magnesium salt is completely decomposed.
  • the low temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the high temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the low temperature stage is carried out under an inert gas or air atmosphere, preferably under an inert gas atmosphere, such as an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, such as high Pure nitrogen.
  • the high temperature stage calcination is carried out under air or oxygen conditions, preferably under dry air conditions.
  • the obtained carrier A loaded with the magnesium compound is cooled from the high temperature stage.
  • the atmosphere can be changed, for example, from air to an inert gas such as nitrogen, argon or the like, upon cooling to a temperature of 300 to 400 °C.
  • the cooling is natural cooling.
  • step b is a method of further surface-modifying the product obtained in the step a.
  • the resulting product of step a with an organomagnesium compound shown in FIG 4 p Mg3 ⁇ 4_ p organomagnesium compound of the general formula R, wherein R 4 is C r C 2.
  • the organomagnesium compound is selected from the group consisting of methyl magnesium chloride and ethyl Magnesium chloride, butyl magnesium chloride, allyl magnesium chloride, isopropyl magnesium chloride, tert-butyl magnesium chloride, 2-methylbutyl magnesium chloride, 1-heptyl magnesium chloride, 1-pentyl magnesium chloride, 1-hexyl magnesium chloride, 1, 1- Dimethyl propyl magnesium chloride, cyclopentyl magnesium chloride, vinyl magnesium chloride, 2-butyl magnesium chloride, 1-octyl magnesium chloride, etc.
  • the molar ratio of the magnesium loading of the organomagnesium compound to the carrier A is 0.01 to 100, preferably 0.1 ⁇ 80.
  • Stirring may be carried out during the reaction, preferably with continuous stirring. Generally, the agitation is continued for about 5 min to 2 h, preferably 10 min to lh. This process is usually carried out at 0 to 150 ° C, preferably at room temperature to 70 ° C, followed by C 3 -C 2 .
  • the terpene hydrocarbon solvent such as n-glycol, hexamidine, etc., is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 ° C, and dried at room temperature to 250 ° C, preferably 60 to 120 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process, and the obtained product is stored for use.
  • step C is a method of supporting the carrier B onto the carrier A and preparing a catalyst.
  • the product of step b is reacted with a solution of the titanium-containing compound, during which stirring may be carried out, preferably with continuous stirring.
  • the agitation is continued for about 0.5 to 8 hours, preferably for 1 to 5 hours.
  • Titanium-containing compounds such as TiO ⁇ hC -h or Ti(L 2 ) s Cl 3 _ s or Ti(L 2 ) t 3 ⁇ 4 t , in the formula! ⁇ is ⁇ - ⁇ .
  • the hydrocarbon group R 3 or the hydrocarbon group R 3 0, R 3 may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ h ⁇ 4, 0 ⁇ s ⁇ 3, 0 ⁇ t ⁇ 2, when When h, s and t are 2 or more, a plurality of R 3 present may be the same or different respectively;
  • the titanium-containing compound is selected from the group consisting of trimethoxytitanium chloride, triethoxytitanium chloride, and tri-n-propoxyoxychloride.
  • the molar ratio of the titanium-containing compound to the magnesium loading on the carrier A is from 0.01 to 500, preferably from 0.1 to 200. This process is usually carried out at room temperature ⁇ 200 'C, preferably 80 to 180 'C. If necessary, an internal electron donor may be simultaneously added to the reaction system.
  • the internal electron donor is as described above, and the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.01 to 500, preferably 0.1 to 50.
  • C 3 -C 2Q terpene hydrocarbon solvent such as n-glycol, hexamidine, etc.
  • the temperature is 0-150'C, preferably room temperature ⁇ 100 ° C, drying between room temperature ⁇ 250 ° C, preferably 80 ⁇ 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process, the catalyst is transferred under nitrogen protection and stored for use.
  • the porous amorphous silica gel is immersed in a certain concentration of magnesium acetate solution, and the magnesium loading is in accordance with the requirements of the present invention (for example, 0.1 to 40 wt%, based on the weight of magnesium); and continuous stirring for a certain period of time (for example, 4 ⁇ ) After 8h), the temperature is dried; the silica support loaded with magnesium acetate is calcined at a high temperature in a fluidized bed, wherein the low temperature stage (for example, 100 'C ⁇ 300'C) is calcined in a nitrogen atmosphere to remove the physical water in the carrier.
  • the soluble magnesium salt is partially decomposed.
  • the partial hydroxyl group on the surface of the silica gel is removed by roasting in dry air, and the soluble magnesium salt is completely decomposed, and is kept at a high temperature for a certain period of time (for example, 3 to 8 hours). Natural cooling and cooling, switching to nitrogen protection when cooled to 300 ⁇ 400'C, to obtain a catalyst precursor loaded with magnesium compounds.
  • the drying is carried out under an inert gas atmosphere, for example, nitrogen. It is carried out under an atmosphere of helium, argon or the like, preferably under a nitrogen atmosphere, and the drying process can also be carried out under vacuum.
  • an organomagnesium compound such as ethyl magnesium chloride
  • the product is stored for standby; finally, at a certain temperature (for example, 80-180 ° C), the catalyst precursor reacts with titanium tetrachloride, and the molar ratio of titanium tetrachloride to the loading of magnesium on carrier A is 0.1 ⁇ 200, if necessary, can also add internal electron donors, such as n-butyl phthalate, the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.1 ⁇ 50; continuous stirring for a certain period of time (eg l ⁇ 5h) ; after washing the catalyst with a certain temperature (for example, room temperature ⁇ 100'C), and then drying at 80 ⁇ 160 °C for 6 ⁇ 12h, the drying is carried out under an inert gas atmosphere, for example The reaction is carried out under an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, and the drying process can also be carried out under vacuum.
  • a certain temperature for example 80-180 ° C
  • the catalyst precursor reacts with titanium
  • a method of supporting a supported olefin polymerization catalyst according to the present invention comprises the steps of: a) impregnating the carrier A with a solution containing a soluble magnesium salt, followed by drying, followed by firing at a high temperature of 300 to 900 ° C;
  • step b reacting the product obtained in step a with an organoaluminum compound, followed by drying;
  • step b The product obtained in the step b is reacted with the titanium-containing compound solution, and an internal electron donor may be simultaneously added to the reaction system as needed, followed by washing and drying to obtain the catalyst for storage.
  • the method comprises the steps of:
  • the immersion time is 0.5 ⁇ 12h, preferably 4 ⁇ 8h
  • the immersion temperature is 0 ⁇ 80 °C, preferably the room temperature is ⁇ 70 °C, and then drying at room temperature ⁇ 250 °C, preferably 80 ⁇ 200°C, drying time 2 ⁇ 20h, preferably 8 ⁇ 15h, vacuum drying can also be used during drying
  • the sample is activated by high temperature roasting in inert gas or oxygen or air
  • the calcination temperature is 300 ⁇ 900'C
  • it is 400 ⁇ 800'C
  • the time is l ⁇ 10h, preferably 3 ⁇ 8h, and then cooling is performed, wherein when it is cooled to 300 ⁇ 400'C, it is switched to an inert gas such as nitrogen or argon, and is naturally cooled
  • the product obtained in the step a is reacted with the organoaluminum compound, and the reaction temperature is generally controlled at -90 to 70 ° C, preferably -70 to 50
  • the terpene hydrocarbon solvent such as n-glycol, hexamethylene or the like, is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 ° C, and dried at room temperature to 250 ° C, preferably 60 to 120 V, and drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process to obtain the product for storage.
  • step b reacting the product obtained in step b with a solution containing a titanium compound, the reaction time is 0.5-8 h, preferably l ⁇ 5 h, and the temperature is 3 ⁇ 4 ⁇ 200'C, preferably 80-180'C, and can be simultaneously in the reaction system as needed.
  • the internal electron donor is added, and then washed with a C 3 -C 2Q terpene hydrocarbon solvent, such as n-glycol, hexamethylene or the like, at a temperature of 0 to 150 ° C, preferably room temperature to 100 ° C, between room temperature and 2501 Drying, preferably 80 ⁇ 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process to obtain the catalyst for storage.
  • a C 3 -C 2Q terpene hydrocarbon solvent such as n-glycol, hexamethylene or the like
  • the present invention utilizes a carrier A, which is first impregnated with a magnesium salt, and then calcined at a high temperature to obtain a catalyst precursor supporting a magnesium-containing compound; then, the catalyst precursor is reacted with an organoaluminum compound, and then with a titanium-containing compound solution.
  • the carrier B is formed in situ and supported on the carrier A, and at the same time, the in-situ loading of the titanium active component is also achieved, and an internal electron donor can be added to the reaction system as needed to prepare a supported olefin polymerization catalyst.
  • the above step a is a method of supporting a magnesium salt on a carrier A such as the carrier described above.
  • the method for supporting the magnesium salt on the carrier A may be any known method of supporting the magnesium salt on the carrier.
  • a method of supporting a magnesium salt on a support comprises impregnating a porous support with a magnesium salt solution, the magnesium salt being the above Any of the soluble magnesium salts described.
  • agitation preferably continuous agitation, can be carried out during the impregnation. Generally, the stirring is carried out for about 1 to 12 hours, preferably about 4 to 8 hours, and the immersion temperature is 0 to 80 ° C, preferably room temperature to 70 ° C.
  • the magnesium loading is from 0.01 to 50% by weight, preferably from 0.1 to 40% by weight, based on the weight of the total weight of the catalyst.
  • the resulting support loaded with the magnesium salt component is then dried.
  • the drying is usually carried out at room temperature to 250 ° C, preferably 80 to 200 ° C. According to one embodiment, the drying is carried out at about 120 °C. This drying can also be carried out under vacuum.
  • the drying time is not particularly limited, but the drying usually lasts for about 2 to 20 hours, preferably about 7 to 18 hours, and more preferably about 8 to 15 hours.
  • the carrier A loaded with the magnesium salt component is calcined.
  • the manner in which the calcination is carried out is not particularly limited, but the calcination is preferably carried out in a fluidized bed.
  • the calcination is usually carried out in two stages, a low temperature stage and a high temperature stage.
  • the low temperature stage is usually carried out at about 100 to 300 'C.
  • the high temperature stage is usually carried out at about 300 to 900 'C.
  • the physical water adsorbed in the carrier at the low temperature stage is substantially removed, the soluble magnesium salt is partially decomposed, and at the high temperature stage, part of the hydroxyl groups on the carrier A are removed, and the soluble magnesium salt is completely decomposed.
  • the low temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the high temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the low temperature stage is carried out under an inert gas or air atmosphere, preferably under an inert gas atmosphere, such as an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, for example High purity nitrogen.
  • the high temperature stage calcination is carried out under air or oxygen conditions, preferably under dry air conditions.
  • the obtained carrier A loaded with the magnesium compound is cooled from the high temperature stage.
  • the atmosphere can be changed, for example, from air to an inert gas such as nitrogen, argon or the like, upon cooling to a temperature of 300 to 400 °C.
  • the cooling is natural cooling.
  • the above step b is a method of further surface-modifying the product obtained in the step a.
  • the product obtained in step a is reacted with an organoaluminum compound comprising tridecyl aluminum A1R 3 , dinonyl decyl aluminum oxide A1R 2 0R, dinonyl aluminum halide A1R 2 X, aluminoxane , ethyl sesquiamine chloride, etc., wherein R is a sulfhydryl group of C r C 12 , X is a halogen such as fluorine, chlorine, bromine and iodine; the molar ratio of the organoaluminum compound to the carrier A on the magnesium loading is 0.01 ⁇ 100, preferably 0.1 to 80.
  • Stirring may be carried out during the reaction, preferably with continuous stirring. Generally, the agitation is continued for about 5 min to 2 h, preferably 10 min to lh. This process is usually carried out at -90 to 70 ° C, preferably -70 to 50 ° C, using C 3 -C 2 .
  • the terpene hydrocarbon solvent such as n-glycol, hexamidine, etc., is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 'C, and dried at room temperature to 250 ° C, preferably 60 to 120 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used during the drying process to obtain the product Transfer under nitrogen protection and store for use.
  • step C is a method of supporting the carrier B onto the carrier A and preparing a catalyst.
  • the product obtained in step b is reacted with a solution containing a titanium compound, during which stirring may be carried out, preferably with continuous stirring.
  • the agitation is continued for about 0.5 to 8 hours, preferably for 1 to 5 hours.
  • Titanium-containing compounds such as TiO ⁇ hC -h or Ti(L 2 ) s Cl 3 _ s or Ti(L 2 ) t 3 ⁇ 4 t , in the formula! ⁇ is ⁇ - ⁇ .
  • the hydrocarbon group R 3 or the hydrocarbon group R 3 0, R 3 may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ h ⁇ 4, 0 ⁇ s ⁇ 3, 0 ⁇ t ⁇ 2, when When h, s and t are 2 or more, a plurality of R 3 present may be the same or different respectively;
  • the titanium-containing compound is selected from the group consisting of trimethoxytitanium chloride, triethoxytitanium chloride, and tri-n-propoxyoxychloride.
  • the internal electron donor is as described above, and the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.01 to 500, preferably 0.1 to 50. C 3 -C 2 .
  • the terpene hydrocarbon solvent such as n-glycol, hexamethylene, etc., is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 ° C, and dried at room temperature to 250 ° C, preferably 80 to 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process, and the catalyst is transferred under nitrogen protection and stored for use.
  • the porous amorphous silica gel is immersed in a certain concentration of magnesium acetate solution, and the magnesium loading is in accordance with the requirements of the present invention (for example, 0.1 to 40 wt%, based on the weight of magnesium); and continuous stirring for a certain period of time (for example, 4 ⁇ ) After 8h), the temperature is dried; the silica support loaded with magnesium acetate is calcined in a fluidized bed at a low temperature stage (for example, 100'C ⁇ 300'C), and the physical water in the carrier is removed by roasting in a nitrogen atmosphere.
  • a low temperature stage for example, 100'C ⁇ 300'C
  • the soluble magnesium salt is partially decomposed, and is partially calcined in a dry air at a high temperature stage (for example, 300'C ⁇ 900'C) to remove a part of the hydroxyl group on the surface of the silica gel.
  • the soluble magnesium salt is completely decomposed and maintained at a high temperature for a certain period of time (for example, 3 ⁇ ) 8h); Natural cooling and cooling, switching to nitrogen protection when cooled to 300 ⁇ 400'C, to obtain a catalyst precursor loaded with magnesium-containing compounds.
  • the molar ratio of the organoaluminum compound to the carrier A on the magnesium loading is 0.1 to 80.
  • a certain temperature for example, -70 to 50 'C
  • the molar ratio of the organoaluminum compound to the carrier A on the magnesium loading is 0.1 to 80.
  • Continuously stir for a certain period of time for example, 10min ⁇ lh
  • wash the catalyst with a certain temperature for example, room temperature ⁇ 100'C
  • the drying is in an inert gas atmosphere.
  • the lowering is carried out, for example, under an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, and the drying process can also be carried out under vacuum.
  • the product is stored for standby; finally, at a certain temperature (for example, 80-180 ° C), the catalyst precursor reacts with titanium tetrachloride, and the molar ratio of titanium tetrachloride to the loading of magnesium on the carrier A is 0.1 to 200, as needed.
  • a certain temperature for example, 80-180 ° C
  • the internal electron donor may be simultaneously added to the reaction system, such as n-butyl phthalate, and the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.1-50; continuous stirring for a certain period of time (for example, l ⁇ ) 5h); After washing the catalyst with a certain temperature (for example, room temperature ⁇ 100'C), and then drying between 80 ⁇ 160'C for 6 ⁇ 12h, the drying is carried out under an inert gas atmosphere, for example, under nitrogen gas, hydrazine It is carried out under an atmosphere of gas, argon or the like, preferably under a nitrogen atmosphere, and the drying process can also be carried out under vacuum. Transfer under nitrogen protection, and the catalyst is stored for later use.
  • a method for supporting a supported olefin polymerization catalyst according to the present invention comprises the steps of: a) impregnating a carrier A with a solution containing a soluble magnesium salt, followed by drying, followed by firing at a high temperature of 300 to 900 ° C;
  • step b) reacting the product obtained in step a with an organoaluminum compound, adding a hydroxyl group-containing compound, and then drying; c) reacting the product obtained in step b with a titanium-containing compound solution, and simultaneously adding internal electron donating to the reaction system as needed The body is then washed and dried to obtain the catalyst for storage.
  • the method comprises the steps of:
  • the immersion time is 0.5 ⁇ 12h, preferably 4 ⁇ 8h
  • the immersion temperature is 0 ⁇ 80 °C, preferably the room temperature is ⁇ 70 °C, and then drying at room temperature ⁇ 250 °C, preferably 80 ⁇ 200°C, drying time 2 ⁇ 20h, preferably 8 ⁇ 15h, vacuum drying can also be used during drying
  • the sample is activated by high temperature roasting in inert gas or oxygen or air
  • the calcination temperature is 300 ⁇ 900'C
  • it is 400 ⁇ 800'C
  • the time is l ⁇ 10h, preferably 3 ⁇ 8h, and then cooling is performed, wherein when it is cooled to 300 ⁇ 400'C, it is switched to an inert gas such as nitrogen or argon, and is naturally cooled
  • the product obtained in the step a is reacted with the organoaluminum compound, and the reaction temperature is generally controlled at -90 to 70 ° C, preferably -70 to 50
  • the reaction time depends on the nature of the reactants and the operating conditions. The time required is generally 5 min to 2 h, preferably 10 min to l h, and then C 3 -C. 2 .
  • the terpene hydrocarbon solvent such as n-glycol, hexamethylene, etc., is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 ° C, and dried at room temperature to 250 ° C, preferably 60 to 120 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process to obtain the product for storage.
  • the reaction time is 0.5-8 h, preferably l ⁇ 5 h, temperature
  • the degree is 3 ⁇ 4 ⁇ 200'C, preferably 80 ⁇ 180'C.
  • the internal electron donor can be added to the reaction system, and then the C 3 -C 2Q terpene hydrocarbon solvent, such as n-glycan, hexamidine, etc. Washing, the temperature is 0 ⁇ 150'C, preferably room temperature ⁇ 100'C, drying between room temperature ⁇ 2501, preferably 80 ⁇ 160 °C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used during drying , the catalyst is obtained for storage.
  • the carrier A is first impregnated with a magnesium salt, and then calcined at a high temperature to obtain a catalyst precursor supporting a magnesium-containing compound; and then the catalyst precursor is reacted with an organoaluminum compound and a hydroxyl group-containing compound, and then
  • the reaction with the titanium-containing compound solution causes the carrier B to be generated in situ and supported on the carrier A, and at the same time, the in-situ loading of the titanium active component is also achieved, and the internal electron donor can be added to the reaction system as needed to prepare the load.
  • Olefin polymerization catalyst is first impregnated with a magnesium salt, and then calcined at a high temperature to obtain a catalyst precursor supporting a magnesium-containing compound; and then the catalyst precursor is reacted with an organoaluminum compound and a hydroxyl group-containing compound, and then
  • the reaction with the titanium-containing compound solution causes the carrier B to be generated in situ and supported on the carrier A, and at the same time, the in-s
  • the above step a is a method of supporting a magnesium salt on a carrier A such as the carrier described above.
  • the method for supporting the magnesium salt on the carrier A may be any known method of supporting the magnesium salt on the carrier.
  • a method of supporting a magnesium salt on a support comprises impregnating the porous support with a magnesium salt solution, which may be any of the soluble magnesium-containing salts described above.
  • agitation preferably continuous agitation, can be carried out during the impregnation.
  • the stirring is carried out for about 1 to 12 hours, preferably about 4 to 8 hours, and the immersion temperature is 0 to 80 ° C, preferably room temperature to 70 ° C.
  • the magnesium loading is from 0.01 to 50% by weight, preferably from 0.1 to 40% by weight, based on the weight of the total weight of the catalyst.
  • the resulting support loaded with the magnesium salt component is then dried.
  • the drying is usually carried out at room temperature to 250 ° C, preferably about 80 to 200 ° C. According to one embodiment, the drying is carried out at about 120 °C. This drying can also be carried out under vacuum.
  • the drying time is not particularly limited, but the drying usually lasts for about 2 to 20 hours, preferably about 7 to 18 hours, and more preferably about 8 to 15 hours.
  • the carrier A loaded with the magnesium salt component is calcined.
  • the manner in which the calcination is carried out is not particularly limited, but the calcination is preferably carried out in a fluidized bed.
  • the calcination is usually carried out in two stages, a low temperature stage and a high temperature stage.
  • the low temperature stage is usually carried out at about 100 to 300 'C.
  • the high temperature stage is usually carried out at about 300 to 900 'C.
  • the physical water adsorbed in the carrier at the low temperature stage is substantially removed, the soluble magnesium salt is partially decomposed, and at the high temperature stage, part of the hydroxyl groups on the carrier A are removed, and the soluble magnesium salt is completely decomposed.
  • the low temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the high temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the low temperature stage is carried out under an inert gas or air atmosphere, preferably under an inert gas atmosphere, such as an atmosphere of nitrogen, helium, argon, etc., preferably under a nitrogen atmosphere, for example High purity nitrogen.
  • the high temperature stage calcination is carried out under air or oxygen conditions, preferably under dry air conditions.
  • the obtained carrier A loaded with the magnesium compound is cooled from the high temperature stage.
  • the atmosphere can be changed, for example, from air to an inert gas such as nitrogen, argon or the like, upon cooling to a temperature of 300 to 400 °C.
  • the cooling is natural cooling.
  • the above step b is a method of further surface-modifying the product obtained in the step a.
  • the product obtained in step a is reacted with an organoaluminum compound comprising tridecyl aluminum A1R 3 , dinonyl decyl aluminum oxide A1R 2 0R, dinonyl aluminum halide A1R 2 X, aluminoxane , ethyl sesquiamine chloride, etc., wherein R is a sulfhydryl group of C r C 12 , X is a halogen such as fluorine, chlorine, bromine and iodine; the molar ratio of the organoaluminum compound to the carrier A on the magnesium loading is 0.01 ⁇ 100, preferably 0.1 to 80.
  • Stirring may be carried out during the reaction, preferably with continuous stirring. Generally, the agitation is continued for about 5 min to 2 h, preferably 10 min to lh. This process is usually carried out at -90 to 70 ° C, preferably -70 to 50 ° C.
  • the above product is then reacted with a hydroxyl group-containing compound, and the hydroxyl group-containing compound is represented by the formula HOR 5 wherein R 5 is -C 2 .
  • the hydrocarbon group may be a saturated or unsaturated linear, branched or cyclic chain; the hydroxyl group-containing compound is selected from the group consisting of ethanol, n-butanol, n-hexanol, isooctanol, benzyl alcohol and phenylethyl alcohol.
  • the molar ratio of the hydroxyl group-containing compound to the magnesium loading on the carrier A is 0.01 to 200, preferably 0.1 to 160.
  • the reaction temperature is 0 to 150 ° C, preferably room temperature to 100 ° C, and the reaction time depends on the nature of the reactants and Operating conditions, the time required is generally 5 min ⁇ 2 h, preferably 10 min ⁇ lh, and then C 3 - C 2 .
  • the terpene hydrocarbon solvent such as n-glycol, hexamethylene or the like, is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 ° C, and dried at room temperature to 250 ° C, preferably 60 to 120 V, and drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used during the drying process, and the product is transferred under the protection of nitrogen and stored for use.
  • step C is a method of supporting the carrier B onto the carrier A and preparing a catalyst.
  • the product of step b is reacted with a solution of the titanium-containing compound, during which stirring may be carried out, preferably with continuous stirring.
  • the agitation is continued for about 0.5 to 8 hours, preferably for 1 to 5 hours.
  • Titanium-containing compounds such as TiO ⁇ hC -h or Ti(L 2 ) s Cl 3 _ s or Ti(L 2 ) t 3 ⁇ 4 t , in the formula! ⁇ is ⁇ - ⁇ .
  • the hydrocarbon group R 3 or the hydrocarbon group R 3 0, R 3 may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ h ⁇ 4, 0 ⁇ s ⁇ 3, 0 ⁇ t ⁇ 2, when When h, s and t are 2 or more, a plurality of R 3 present may be the same or different respectively;
  • the titanium-containing compound is selected from the group consisting of trimethoxytitanium chloride, triethoxytitanium chloride, and tri-n-propoxyoxychloride.
  • the process is usually at It is carried out at room temperature ⁇ 200'C, preferably 80 ⁇ 180'C.
  • an internal electron donor may be simultaneously added to the reaction system, and the internal electron donor is as described above, and the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.01 to 500, preferably 0.1 to 50; C 3 -C 2Q terpene hydrocarbon solvent, such as n-glycol, hexamethylene, etc., the temperature is 0-150'C, preferably room temperature ⁇ 100 ° C, drying between room temperature ⁇ 250 ° C, preferably 80 ⁇ 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process, the catalyst is transferred under nitrogen protection and stored for use.
  • C 3 -C 2Q terpene hydrocarbon solvent such as n-glycol, hexamethylene, etc.
  • the temperature is 0-150'C, preferably room temperature ⁇ 100 ° C, drying between room temperature ⁇ 250 ° C, preferably 80 ⁇ 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h
  • the porous amorphous silica gel is immersed in a certain concentration of magnesium acetate solution, and the magnesium loading is in accordance with the requirements of the present invention (for example, 0.1 to 40 wt%, based on the weight of magnesium); and continuous stirring for a certain period of time (for example, 4 ⁇ ) After 8h), the temperature is dried; the silica support loaded with magnesium acetate is calcined in a fluidized bed at a low temperature stage (for example, 100'C ⁇ 300'C), and the physical water in the carrier is removed by roasting in a nitrogen atmosphere.
  • a low temperature stage for example, 100'C ⁇ 300'C
  • the soluble magnesium salt is partially decomposed, and is partially calcined in a dry air at a high temperature stage (for example, 300'C ⁇ 900'C) to remove a part of the hydroxyl group on the surface of the silica gel.
  • the soluble magnesium salt is completely decomposed and maintained at a high temperature for a certain period of time (for example, 3 ⁇ ) 8h); Natural cooling and cooling, switching to nitrogen protection when cooled to 300 ⁇ 400'C, to obtain a catalyst precursor supporting magnesium-containing compound.
  • a certain temperature for example, -70 to 50'C
  • the molar ratio of the organoaluminum compound to the carrier A on the support of magnesium is 0.1 to 80.
  • Continuous stirring for a certain period of time for example, 10 min ⁇ lh); then at a certain temperature (for example, room temperature ⁇ 100 'C) and n-hexanol reaction, the molar ratio of n-hexanol to the carrier A magnesium loading is 0.1-160.
  • Continuously stir for a certain period of time for example, 10min ⁇ lh
  • wash the catalyst with a certain temperature for example, room temperature ⁇ 100'C
  • the drying is in an inert gas atmosphere.
  • the lowering is carried out, for example, under an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, and the drying process can also be carried out under vacuum.
  • the product is stored for standby; finally, at a certain temperature (for example, 80 ⁇ 180'C), the catalyst precursor reacts with titanium tetrachloride, and the molar ratio of titanium tetrachloride to the loading of magnesium on carrier A is 0.1 ⁇ 200, if necessary, the internal electron donor can be added to the reaction system, such as n-butyl phthalate, the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.1 ⁇ 50; continuous stirring for a certain period of time (for example, l ⁇ 5h) ; after washing the catalyst with a certain temperature (for example, room temperature ⁇ 100'C), and then drying it between 80 ⁇ 160'C for 6 ⁇ 12h, the drying is carried out under an inert gas atmosphere, for example The reaction is carried out under an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, and the drying process can also be carried out under vacuum.
  • a certain temperature for example 80 ⁇ 180'C
  • the catalyst precursor
  • one of the methods comprises the steps of: a) impregnating the carrier A with a solution containing a soluble magnesium salt and an ammonium salt, followed by drying, followed by calcination at a high temperature of 300 to 900 ° C. activation;
  • step b) The product obtained in the step a is reacted with the titanium-containing compound solution, and an internal electron donor may be simultaneously added to the reaction system as needed, followed by washing and drying to obtain the catalyst for storage.
  • the method comprises the steps of:
  • the immersion time is 0.5 ⁇ 12h, preferably 4 ⁇ 8h
  • the immersion temperature is 0 ⁇ 80°C, preferably the room temperature is ⁇ 70°C, and then at room temperature ⁇ 250°C Drying, preferably 80 ⁇ 200°C, drying time 2 ⁇ 20h, preferably 8 ⁇ 15h, vacuum drying can also be used during drying
  • the sample is activated by high temperature roasting in inert gas or oxygen or air
  • the baking temperature is 300 ⁇ 900'C, preferably 400 ⁇ 800'C
  • the time is l ⁇ 10h, preferably 3 ⁇ 8h, and then cooling, wherein when it is cooled to 300 ⁇ 400'C, it is switched to an inert gas such as nitrogen or argon, and is naturally cooled
  • the reaction time is 0.5-8 h, preferably l ⁇ 5 h
  • the temperature is 3 ⁇ 4 ⁇ 200'C, preferably 80-180
  • the carrier A is first impregnated with a magnesium salt and an ammonium salt, and then calcined at a high temperature to obtain a catalyst precursor supporting a magnesium-containing compound; and then the catalyst precursor is reacted with a titanium-containing compound solution to form a carrier.
  • B is generated in situ and supported on the carrier A, and at the same time, the in-situ loading of the titanium active component is also achieved, and an internal electron donor can be added to the reaction system as needed to prepare a supported olefin polymerization catalyst.
  • the above step a is a method of supporting a magnesium salt and an ammonium salt on a carrier A such as the carrier described above.
  • the method for supporting the magnesium salt and the ammonium salt on the carrier A may be any known method of supporting the magnesium salt and the ammonium salt on the carrier.
  • a method of supporting a magnesium salt and an ammonium salt on a support comprises impregnating a porous support with a magnesium salt and an ammonium salt solution, and the magnesium salt may be any of the soluble magnesium salts described above, and the ammonium salt may be It is any of the ammonium salts described above.
  • agitation preferably continuous agitation, can be carried out during the impregnation.
  • the stirring is carried out for about 1 to 12 hours, preferably about 4 to 8 hours, and the immersion temperature is 0 to 80 ° C, preferably room temperature to 70 ° C.
  • the magnesium loading is 0.01 to 50% by weight, preferably 0.1 to 40% by weight, based on the weight of the Mg, of the ammonium salt and the magnesium salt. The ratio is 0.01 ⁇ 10.
  • the resulting support loaded with the magnesium salt and ammonium salt components is then dried. The drying is usually carried out at room temperature to 250 ° C, preferably 80 to 200 ° C. According to one embodiment, the drying is carried out at about 120 'C. This drying can also be carried out under vacuum.
  • the drying time is not particularly limited, but the drying usually lasts for about 2 to 20 hours, preferably about 7 to 18 hours, and more preferably about 8 to 15 hours.
  • the carrier A after the loading is baked.
  • the manner in which the calcination is carried out is not particularly limited, but the calcination is preferably carried out in a fluidized bed. According to one embodiment, the calcination is usually carried out in two stages, a low temperature stage and a high temperature stage.
  • the low temperature stage is usually carried out at about 100 to 300 'C.
  • the high temperature stage is usually carried out at about 300 to 900 'C.
  • the physical water adsorbed in the carrier in the low temperature stage is substantially removed, the soluble magnesium salt and the ammonium salt are partially decomposed, and part of the hydroxyl groups on the carrier A are removed in the high temperature stage, soluble magnesium salt and ammonium.
  • the salt is completely decomposed.
  • the low temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the high temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the low temperature stage is carried out under an inert gas or air atmosphere, preferably under an inert gas atmosphere, such as an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, such as high Pure nitrogen.
  • the high temperature stage calcination is carried out under air or oxygen conditions, preferably under dry air conditions. After the completion of the calcination, the obtained carrier A loaded with the magnesium compound is cooled from the high temperature stage.
  • the atmosphere can be changed, for example, from air to an inert gas such as nitrogen, argon or the like, upon cooling to a temperature of 300 to 400 °C.
  • the cooling is natural cooling.
  • step b is a method of supporting the carrier B onto the carrier A and preparing a catalyst.
  • the product obtained in step b is reacted with a solution containing a titanium compound, during which stirring may be carried out, preferably with continuous stirring.
  • the agitation is continued for about 0.5 to 8 hours, preferably for 1 to 5 hours.
  • Titanium-containing compounds such as TiO ⁇ hC -h or Ti(L 2 ) s Cl 3 _ s or Ti(L 2 ) t 3 ⁇ 4 t , in the formula! ⁇ is ⁇ - ⁇ .
  • the hydrocarbon group R 3 or the hydrocarbon group R 3 0, R 3 may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ h ⁇ 4, 0 ⁇ s ⁇ 3, 0 ⁇ t ⁇ 2, when When h, s and t are 2 or more, a plurality of R 3 present may be the same or different respectively;
  • the titanium-containing compound is selected from the group consisting of trimethoxytitanium chloride, triethoxytitanium chloride, and tri-n-propoxyoxychloride.
  • the internal electron donor is as described above, and the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.01 to 500. 0.1-50; Washed with C 3 -C 2Q in a hydrocarbon solvent such as n-glycol, hexamethylene, etc., at a temperature of 0 to 150 ° C, preferably at room temperature to 100 ° C, and dried at room temperature to 250 ° C. Preferably, it is 80-160 ° C, the drying time is 2-20 h, preferably 6-12 h, and vacuum can also be used in the drying process, and the catalyst is transferred under nitrogen protection and stored for use.
  • a hydrocarbon solvent such as n-glycol, hexamethylene, etc.
  • the porous amorphous silica gel is immersed in a certain concentration of magnesium acetate and ammonium acetate solution, and the loading amount of magnesium and ammonium meets the requirements of the present invention with respect to the total weight of the catalyst (for example, 0.1 to 40% by weight, based on the weight of magnesium; ammonium salt and magnesium)
  • the molar ratio of the salt is 0.01-10); after continuous stirring for a certain period of time (for example, 4 ⁇ 8h), the temperature is dried; the silica carrier supported with magnesium acetate and ammonium acetate is calcined in a fluidized bed at a low temperature stage. (eg 100'C ⁇ 300'C)
  • the physical water in the carrier is removed by roasting in a nitrogen atmosphere.
  • the soluble magnesium and ammonium salts are partially decomposed and calcined in dry air at high temperature (eg 300'C ⁇ 900'C). Remove some of the hydroxyl groups on the surface of the silica gel.
  • the soluble magnesium salts and ammonium salts are completely decomposed. They are kept at a high temperature for a certain period of time (for example, 3 ⁇ 8h). Naturally cooled and cooled, and switched to nitrogen protection when cooled to 300 ⁇ 400'C.
  • a catalyst precursor containing a magnesium compound is supported.
  • the catalyst precursor is reacted with titanium tetrachloride, and the molar ratio of titanium tetrachloride to the loading of magnesium on the carrier A is 0.1 to 200, and the reaction system can be simultaneously used as needed.
  • the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.1-50; continuous stirring for a certain period of time (for example, l ⁇ 5h) ; ⁇ Wash the catalyst at a certain temperature (for example, room temperature ⁇ 100 ° C), and then dry at 80 ⁇ 160 ° C for 6 ⁇ 12h, the drying is carried out under an inert gas atmosphere, such as nitrogen, helium, argon, etc. It is carried out under an atmosphere, preferably under a nitrogen atmosphere, and the drying process can also be carried out under vacuum. Transfer under nitrogen protection, and the catalyst is stored for later use.
  • an internal electron donor such as n-butyl phthalate
  • a method for supporting a supported olefin polymerization catalyst according to the present invention comprises the steps of: a) impregnating a carrier A with a solution of a soluble magnesium salt and an ammonium salt, followed by drying, followed by calcination at a high temperature of 300 to 900 ° C; b) reacting the product obtained in step a with an organomagnesium compound, followed by drying;
  • step b The product obtained in the step b is reacted with the titanium-containing compound solution, and an internal electron donor may be simultaneously added to the reaction system as needed, followed by washing and drying to obtain the catalyst for storage.
  • the method comprises the steps of:
  • the immersion time is 0.5 ⁇ 12h, preferably 4 ⁇ 8h
  • the immersion temperature is 0 ⁇ 80°C, preferably the room temperature is ⁇ 70°C, and then at room temperature ⁇ 250°C Dry, preferably 80 ⁇ 200°C, drying time 2 ⁇ 20h, Preferably, it is 8 ⁇ 15h, and vacuum drying can also be used in the drying process
  • the sample is activated by high temperature roasting in inert gas or oxygen or air
  • the calcination temperature is 300 ⁇ 900'C, preferably 400 ⁇ 800'C
  • the time is l ⁇ 10h, preferably 3 ⁇ 8h, and then cooled, wherein when cooled to 300 ⁇ 400'C, it is switched to an inert gas such as nitrogen or argon, and naturally cooled
  • the product obtained in step a is reacted with the organomagnesium compound at a temperature of 0 ⁇ 150 ° C, preferably room temperature ⁇ 70 ° C, the
  • the temperature is 0 ⁇ 150'C, preferably the chamber is 3 ⁇ 4 ⁇ 100'C, and it is dried between room temperature and 250'C, preferably 60 ⁇ 120'C, and the drying time is 2 ⁇ 20h, preferably 6 ⁇ 12h. It can also be used in the drying process. Vacuum, the product was saved for later use.
  • step c) reacting the product obtained in step a with a solution containing a titanium compound, the reaction time is 0.5-8 h, preferably l ⁇ 5 h, and the temperature is 3 ⁇ 4 ⁇ 200'C, preferably 80-180'C, and can be simultaneously in the reaction system as needed.
  • An internal electron donor is added, followed by C 3 -C 2 .
  • the terpene hydrocarbon solvent such as n-glycol, hexanyl or the like, is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 ° C, dried at room temperature to 2501, preferably at 80 to 160 ° C, and dried for 2 to 20 hours.
  • it is 6 ⁇ 12h, and a vacuum may also be used in the drying process to obtain the catalyst for storage.
  • the carrier A is first impregnated with a magnesium salt and an ammonium salt, and then calcined at a high temperature to obtain a catalyst precursor supporting a magnesium-containing compound; and then the catalyst precursor is reacted with an organomagnesium compound, and then The titanium compound solution is reacted, and the carrier B is formed in situ and supported on the carrier A, and the in-situ loading of the titanium active component is also achieved.
  • the internal electron donor can be added to the reaction system as needed to prepare the supported olefin. Polymerization catalyst.
  • the above step a is a method of supporting a magnesium salt and an ammonium salt on a carrier A such as the carrier described above.
  • the method for supporting the magnesium salt and the ammonium salt on the carrier A may be any known method of supporting the magnesium salt and the ammonium salt on the carrier.
  • a method of supporting a magnesium salt and an ammonium salt on a support comprises impregnating a porous support with a magnesium salt and an ammonium salt solution, and the magnesium salt may be any of the soluble magnesium salts described above, and the ammonium salt may be It is any of the ammonium salts described above.
  • agitation preferably continuous agitation, can be carried out during the impregnation.
  • the stirring is carried out for about 1 to 12 hours, preferably about 4 to 8 hours, and the immersion temperature is 0 to 80 ° C, preferably room temperature to 70 ° C.
  • the magnesium loading is from 0.01 to 50% by weight, preferably from 0.1 to 40% by weight, based on the weight of the Mg, and the molar ratio of the ammonium salt to the magnesium salt is from 0.01 to 10.
  • the resulting support loaded with the magnesium salt and ammonium salt components is then dried.
  • the drying is usually carried out at room temperature to 250 ° C, preferably 80 to 200 ° C.
  • the drying is carried out at about 120 'C. This drying can also be carried out under vacuum.
  • the drying time is not particularly limited, but the drying usually lasts for about 2 to 20 hours, preferably about 7 to 18 hours, and more preferably about 8 to 15 hours.
  • the carrier A after the loading is baked.
  • the manner in which the calcination is carried out is not particularly limited, but the calcination is preferably carried out in a fluidized bed. According to one embodiment, the calcination is usually carried out in two stages, a low temperature stage and a high temperature stage.
  • the low temperature stage is usually carried out at about 100 to 300 'C.
  • the high temperature stage is usually carried out at about 300 to 900 'C.
  • the physical water adsorbed in the carrier in the low temperature stage is substantially removed, the soluble magnesium salt and the ammonium salt are partially decomposed, and part of the hydroxyl groups on the carrier A are removed in the high temperature stage, soluble magnesium salt and ammonium.
  • the salt is completely decomposed.
  • the low temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the high temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the low temperature stage is carried out under an inert gas or air atmosphere, preferably under an inert gas atmosphere, such as an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, such as high Pure nitrogen.
  • the high temperature stage calcination is carried out under air or oxygen conditions, preferably under dry air conditions. After the completion of the calcination, the obtained carrier A loaded with the magnesium compound is cooled from the high temperature stage.
  • the atmosphere can be changed, for example, from air to an inert gas such as nitrogen, argon or the like, upon cooling to a temperature of 300 to 400 °C.
  • the cooling is natural cooling.
  • step b is a method of further surface-modifying the product obtained in the step a.
  • the product obtained in step a is reacted with an organomagnesium compound as shown by the formula R 4 p Mg3 ⁇ 4, wherein R 4 is C r C 2 .
  • the organomagnesium compound is selected from the group consisting of methyl magnesium chloride and ethyl Magnesium chloride, butyl magnesium chloride, allyl magnesium chloride, isopropyl magnesium chloride, tert-butyl magnesium chloride, 2-methylbutyl magnesium chloride, 1-heptyl magnesium chloride, 1-pentyl magnesium chloride, 1-hexyl magnesium chloride, 1, 1- Dimethyl propyl magnesium chloride, cyclopentyl magnesium chloride, vinyl magnesium chloride, 2-butyl magnesium chloride, 1-octyl magnesium chloride, etc.
  • the molar ratio of the organomagnesium compound to the carrier A on the magnesium loading is 0.01 to 100, preferably 0.1 ⁇ 80.
  • Stirring may be carried out during the reaction, preferably with continuous stirring. Generally, the agitation is continued for about 5 min to 2 h, preferably 10 min to lh. This process is usually carried out at 0 to 150 ° C, preferably at room temperature to 70 ° C, followed by C 3 -C 2 .
  • the terpene hydrocarbon solvent such as n-glycol, hexamidine, etc., is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 ° C, and dried at room temperature to 250 ° C, preferably 60 to 120 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process, and the obtained product is stored for use.
  • step C is a method of supporting the carrier B onto the carrier A and preparing a catalyst.
  • the product obtained in step b is reacted with a solution containing a titanium compound, during which stirring may be carried out, preferably with continuous stirring.
  • the agitation is continued for about 0.5 to 8 hours, preferably for 1 to 5 hours.
  • a titanium-containing compound such as TiO ⁇ hCl ⁇ h or Ti(L 2 ) s Cl 3 _ s or Ti(L 2 ) t 3 ⁇ 4 t is shown in the formula! ⁇ is ⁇ - ⁇ .
  • Hydrocarbyl R 3 or hydrocarbyloxy R 3 0, R 3 may be saturated or unsaturated Linear, branched or cyclic chain, 0 ⁇ h ⁇ 4, 0 ⁇ s ⁇ 3, 0 ⁇ t ⁇ 2, when h, s and t are 2 or more, the plurality of R 3 present may be the same Or different;
  • the titanium-containing compound is selected from the group consisting of trimethoxytitanium chloride, triethoxytitanium chloride, tri-n-propoxytitanium chloride, triisopropoxytitanium chloride, dimethoxytitanium dichloride, Diethoxytitanium dichloride, diisopropoxy titanium dichloride, methoxy titanium trichloride, ethoxylated titanium trichloride, titanium tetrachloride, titanium trichloride, titanium dichloride, Ethyl titanium chloride or the like; the molar ratio of the titanium-containing compound to the
  • This process is usually carried out at room temperature ⁇ 200 'C, preferably 80 to 180 'C.
  • an internal electron donor may be simultaneously added to the reaction system, and the internal electron donor is as described above, and the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.01 to 500, preferably 0.1 to 50; C 3 -C 2Q terpene hydrocarbon solvent, such as n-glycol, hexamethylene, etc., the temperature is 0-150'C, preferably room temperature ⁇ 100 ° C, drying between room temperature ⁇ 250 ° C, preferably 80 ⁇ 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process, the catalyst is transferred under nitrogen protection and stored for use.
  • the porous amorphous silica gel is immersed in a certain concentration of magnesium acetate and ammonium acetate solution, and the magnesium and ammonium loading amount is in accordance with the total weight of the catalyst (for example, 0.1 to 40 wt%, based on the weight of magnesium; ammonium salt and magnesium salt)
  • the molar ratio is 0.01-10; after continuous stirring for a certain period of time (for example, 4 ⁇ 8h), the temperature is dried; the silica carrier supported with magnesium acetate and ammonium acetate is calcined at a high temperature in a fluidized bed, wherein in the low temperature stage ( For example, 100'C ⁇ 300'C) is calcined in a nitrogen atmosphere to remove the physical water in the carrier.
  • the soluble magnesium salt and ammonium salt are partially decomposed, and are calcined in a dry air at a high temperature stage (for example, 300'C ⁇ 900'C).
  • a high temperature stage for example, 300'C ⁇ 900'C.
  • the soluble magnesium salts and ammonium salts are completely decomposed, and are kept at a high temperature for a certain period of time (for example, 3 to 8 hours); naturally cooled and cooled, and switched to nitrogen protection when cooled to 300-400 ° C.
  • a catalyst precursor containing a magnesium compound is supported.
  • the drying is carried out under an inert gas atmosphere, for example, nitrogen. It is carried out under an atmosphere of helium, argon or the like, preferably under a nitrogen atmosphere, and the drying process can also be carried out under vacuum.
  • an organomagnesium compound such as ethyl magnesium chloride
  • the product is stored for standby; finally, at a certain temperature (for example, 80 ⁇ 180'C), the catalyst precursor reacts with titanium tetrachloride, and the molar ratio of titanium tetrachloride to carrier A on magnesium loading is 0.1 ⁇ 200, if necessary, can also add internal electron donors, such as n-butyl phthalate, the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.1 ⁇ 50; continuous stirring for a certain period of time (eg l ⁇ 5h) ; use positive enthalpy at a certain temperature (eg room temperature ⁇ 100 After the catalyst is washed, it is dried between 80 and 160 ° C for 6 to 12 hours.
  • a certain temperature for example 80 ⁇ 180'C
  • a method for supporting a supported olefin polymerization catalyst according to the present invention comprises the steps of: a) impregnating a carrier A with a solution of a soluble magnesium salt and an ammonium salt, followed by drying, followed by calcination at a high temperature of 300 to 900 ° C; b) reacting the product obtained in step a with an organoaluminum compound, followed by drying;
  • step b The product obtained in the step b is reacted with the titanium-containing compound solution, and an internal electron donor may be simultaneously added to the reaction system as needed, followed by washing and drying to obtain the catalyst for storage.
  • the method comprises the steps of:
  • the immersion time is 0.5 ⁇ 12h, preferably 4 ⁇ 8h, the immersion temperature is 0 ⁇ 80°C, preferably the room temperature is ⁇ 70°C, and then at room temperature ⁇ 250°C Drying, preferably 80 ⁇ 200°C, drying time 2 ⁇ 20h, preferably 8 ⁇ 15h, vacuum drying can also be used during drying;
  • the sample is activated by high temperature roasting in inert gas or oxygen or air, and the baking temperature is 300 ⁇ 900'C, preferably 400 ⁇ 800'C, the time is l ⁇ 10h, preferably 3 ⁇ 8h, and then cooling, wherein when it is cooled to 300 ⁇ 400'C, it is switched to an inert gas such as nitrogen or argon, and is naturally cooled;
  • the terpene hydrocarbon solvent such as n-glycol, hexamethylene or the like, is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 ° C, and dried at room temperature to 250 ° C, preferably 60 to 120 V, and drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process to obtain the product for storage.
  • step b reacting the product obtained in step b with a solution containing a titanium compound, the reaction time is 0.5-8 h, preferably l ⁇ 5 h, and the temperature is 3 ⁇ 4 ⁇ 200'C, preferably 80-180'C, and can be simultaneously in the reaction system as needed.
  • the internal electron donor is added, and then washed with a C 3 -C 2Q terpene hydrocarbon solvent, such as n-glycol, hexamethylene or the like, at a temperature of 0 to 150 ° C, preferably room temperature to 100 ° C, between room temperature and 2501 Drying, preferably 80 ⁇ 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process to obtain the catalyst for storage.
  • a C 3 -C 2Q terpene hydrocarbon solvent such as n-glycol, hexamethylene or the like
  • the carrier A is first impregnated with a magnesium salt and an ammonium salt, and then calcined at a high temperature to obtain a catalyst precursor supporting a magnesium-containing compound; and then the catalyst precursor is reacted with an organoaluminum compound, and then The titanium compound solution is reacted to cause the carrier B to be generated in situ and supported on the carrier A, and the in-situ loading of the titanium active component is also achieved.
  • An internal electron donor can be added to the reaction system as needed to prepare a supported olefin polymerization catalyst.
  • the above step a is a method of supporting a magnesium salt and an ammonium salt on a carrier A such as the carrier described above.
  • the method for supporting the magnesium salt and the ammonium salt on the carrier A may be any known method of supporting the magnesium salt and the ammonium salt on the carrier.
  • a method of supporting a magnesium salt and an ammonium salt on a support comprises impregnating a porous support with a magnesium salt and an ammonium salt solution, and the magnesium salt may be any of the soluble magnesium salts described above, and the ammonium salt may be It is any of the ammonium salts described above.
  • agitation preferably continuous agitation, can be carried out during the impregnation.
  • the agitation is for about 1 to 12 hours, preferably about 4 to 8 hours, and the immersion temperature is 0 to 80 ° C, preferably room temperature to 70 ° C.
  • the magnesium loading is 0.01 to 50% by weight, preferably 0.1 to 40% by weight based on the total weight of the catalyst, and the molar ratio of the ammonium salt to the magnesium salt is 0.01 to 10.
  • the resulting support loaded with the magnesium salt and ammonium salt components is then dried. The drying is usually carried out at room temperature ⁇ 250 ° C, preferably 80 to 200 ° C. According to one embodiment, the drying is carried out at about 120 °C. This drying can also be carried out under vacuum.
  • the drying time is not particularly limited, but the drying usually lasts for about 2 to 20 hours, preferably about 7 to 18 hours, and more preferably about 8 to 15 hours.
  • the carrier A after the loading is baked.
  • the manner in which the calcination is carried out is not particularly limited, but the calcination is preferably carried out in a fluidized bed. According to one embodiment, the calcination is usually carried out in two stages, a low temperature stage and a high temperature stage.
  • the low temperature stage is usually carried out at about 100 to 300 'C.
  • the high temperature stage is usually carried out at about 300 to 900 'C.
  • the physical water adsorbed in the carrier in the low temperature stage is substantially removed, the soluble magnesium salt and the ammonium salt are partially decomposed, and part of the hydroxyl groups on the carrier A are removed in the high temperature stage, soluble magnesium salt and ammonium.
  • the salt is completely decomposed.
  • the low temperature phase lasts for 1 to 10 hours, preferably 2 to 9 hours, more preferably 3 to 8 hours.
  • the high temperature phase lasts for 1 to 10 hours, preferably 2 to 9 hours, more preferably 3 to 8 hours.
  • the low temperature stage is carried out under an inert gas or air atmosphere, preferably under an inert gas atmosphere, such as an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, such as high Pure nitrogen.
  • the high temperature stage calcination is carried out under air or oxygen conditions, preferably under dry air conditions. After the completion of the calcination, the obtained carrier A loaded with the magnesium compound is cooled from the high temperature stage.
  • the atmosphere can be changed, for example, from air to an inert gas such as nitrogen, argon or the like, upon cooling to a temperature of 300 to 400 °C.
  • the cooling is natural cooling.
  • the above step b is a method of further surface-modifying the product obtained in the step a.
  • the product obtained in step a is reacted with an organoaluminum compound comprising tridecyl aluminum A1R 3 , dinonyl decyl aluminum oxide A1R 2 0R, dinonyl aluminum halide A1R 2 X, aluminoxane , ethyl sesquiamine chloride, etc., wherein R is a sulfhydryl group of C r C 12 , X is a halogen such as fluorine, chlorine, bromine and iodine; and the molar ratio of the organoaluminum compound to the supported amount of magnesium on the carrier A is from 0.01 to 100, preferably from 0.1 to 80.
  • Stirring may be carried out during the reaction, preferably with continuous stirring. Generally, the agitation is continued for about 5 min to 2 h, preferably 10 min to lh. This process is usually carried out at -90 to 70 ° C, preferably -70 to 50 ° C, using C 3 -C 2 .
  • the terpene hydrocarbon solvent such as n-glycol, hexamidine, etc., is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 'C, and dried at room temperature to 250 ° C, preferably 60 to 120 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used during the drying process, and the product is transferred under nitrogen protection and stored for use.
  • step C is a method of supporting the carrier B onto the carrier A and preparing a catalyst.
  • the product obtained in step b is reacted with a solution containing a titanium compound, during which stirring may be carried out, preferably with continuous stirring.
  • the agitation is continued for about 0.5 to 8 hours, preferably for 1 to 5 hours.
  • the titanium-containing compound is represented by TiO ⁇ hC-h or Ti(L 2 ) s Cl 3 _ s or Ti(L 2 ) t Cl 2 t t where L 2 is -C 2 .
  • the hydrocarbon group R 3 or the hydrocarbon group R 3 0, R 3 may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ h ⁇ 4, 0 ⁇ s ⁇ 3, 0 ⁇ t ⁇ 2, when When h, s and t are 2 or more, a plurality of R 3 present may be the same or different respectively;
  • the titanium-containing compound is selected from the group consisting of trimethoxytitanium chloride, triethoxytitanium chloride, and tri-n-propoxyoxychloride.
  • an internal electron donor may be simultaneously added to the reaction system, and the internal electron donor is as described above, and the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.01 to 500, preferably 0.1 to 50; C 3 -C 2Q terpene hydrocarbon solvent, such as n-glycol, hexamethylene, etc., the temperature is 0-150'C, preferably room temperature ⁇ 100 ° C, drying between room temperature ⁇ 250 ° C, preferably 80 ⁇ 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process, the catalyst is transferred under nitrogen protection and stored for use.
  • C 3 -C 2Q terpene hydrocarbon solvent such as n-glycol, hexamethylene, etc.
  • the temperature is 0-150'C, preferably room temperature ⁇ 100 ° C, drying between room temperature ⁇ 250 ° C, preferably 80 ⁇ 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h
  • the porous amorphous silica gel is immersed in a certain concentration of magnesium acetate and ammonium acetate solution, and the loading amount of magnesium and ammonium meets the requirements of the present invention with respect to the total weight of the catalyst (for example, 0.1 to 40% by weight, based on the weight of magnesium; ammonium salt and magnesium)
  • the molar ratio of the salt is 0.01-10, ); after continuous stirring for a certain period of time (for example, 4-8 hours), the temperature is dried; the silica gel carrier loaded with magnesium acetate and ammonium acetate is calcined at a high temperature in a fluidized bed, wherein at a low temperature
  • the stage (for example, 100'C ⁇ 300'C) is calcined in a nitrogen atmosphere to remove the physical water in the carrier, and the soluble magnesium salt and ammonium salt are partially decomposed in a high temperature stage (for example, 300'C ⁇ 900 'C) in dry air.
  • Calcination removes some of the hydroxyl groups on the surface of the silica gel, and the soluble magnesium salts and ammonium salts completely decompose.
  • the stage is kept for a certain period of time (for example, 3 ⁇ 8h); natural cooling is cooled, and when it is cooled to 300 ⁇ 400'C, it is switched to nitrogen protection to obtain a catalyst precursor loaded with a magnesium-containing compound.
  • a certain temperature for example, -70 to 50'C
  • the molar ratio of the organoaluminum compound to the carrier A on the support of magnesium is 0.1 to 80.
  • the catalyst precursor reacts with titanium tetrachloride, and the molar ratio of titanium tetrachloride to carrier A on magnesium loading is 0.1 ⁇ 200, if necessary, can also add internal electron donors, such as n-butyl phthalate, the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.1 ⁇ 50; continuous stirring for a certain period of time (for example, l ⁇ 5h) ; after washing the catalyst with a certain temperature (for example, room temperature ⁇ 100'C), and then drying it between 80 ⁇ 160'C for 6 ⁇ 12h, the drying is carried out under an inert gas atmosphere, for example The reaction is carried out under an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, and the drying process can also be carried out under vacuum.
  • a certain temperature for example 80 ⁇ 180'C
  • a method for supporting a supported olefin polymerization catalyst according to the present invention comprises the steps of: a) impregnating a carrier A with a solution of a soluble magnesium salt and an ammonium salt, followed by drying, followed by calcination at a high temperature of 300 to 900 ° C; b) reacting the product obtained in step a with an organoaluminum compound, and then adding a hydroxyl group-containing compound;
  • step b The product obtained in the step b is reacted with a titanium compound solution, and an internal electron donor may be simultaneously added to the reaction system as needed, followed by washing and drying to obtain the catalyst for storage.
  • the method comprises the steps of:
  • the immersion time is 0.5 ⁇ 12h, preferably 4 ⁇ 8h
  • the immersion temperature is 0 ⁇ 80°C, preferably the room temperature is ⁇ 70°C, and then at room temperature ⁇ 250°C Drying, preferably 80 ⁇ 200°C, drying time 2 ⁇ 20h, preferably 8 ⁇ 15h, vacuum drying can also be used during drying
  • the sample is activated by high temperature roasting in inert gas or oxygen or air
  • the baking temperature is 300 ⁇ 900'C, preferably 400 ⁇ 800'C
  • the time is l ⁇ 10h, preferably 3 ⁇ 8h, and then cooling, wherein when it is cooled to 300 ⁇ 400'C, it is switched to an inert gas such as nitrogen or argon, and is naturally cooled
  • step b reacting the product obtained in step b with a solution containing a titanium compound, the reaction time is 0.5-8 h, preferably l ⁇ 5 h, the temperature is 3 ⁇ 4 ⁇ 200'C, preferably 80-180'C, and can be simultaneously in the reaction system as needed.
  • the internal electron donor is added, and then washed with a C 3 -C 2Q terpene hydrocarbon solvent, such as n-glycol, hexamethylene or the like, at a temperature of 0 to 150 ° C, preferably room temperature to 100 ° C, between room temperature and 2501 Drying, preferably 80 ⁇ 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process to obtain the catalyst for storage.
  • a C 3 -C 2Q terpene hydrocarbon solvent such as n-glycol, hexamethylene or the like
  • the carrier A is first impregnated with a magnesium salt and an ammonium salt, and then calcined at a high temperature to obtain a catalyst precursor supporting a magnesium-containing compound; and then the catalyst precursor and the organoaluminum compound and the hydroxyl group-containing compound are prepared.
  • the reaction is further reacted with the titanium-containing compound solution to cause the carrier B to be formed in situ and supported on the carrier A, and at the same time, the in-situ loading of the titanium active component is also achieved, and the internal electron donor can be added to the reaction system as needed, thereby A supported olefin polymerization catalyst is prepared.
  • the above step a is a method of supporting a magnesium salt and an ammonium salt on a carrier A such as the carrier described above.
  • the method for supporting the magnesium salt and the ammonium salt on the carrier A may be any known method of supporting the magnesium salt and the ammonium salt on the carrier.
  • a method of supporting a magnesium salt and an ammonium salt on a support comprises impregnating a porous support with a magnesium salt and an ammonium salt solution, and the magnesium salt may be any of the soluble magnesium salts described above, and the ammonium salt may be It is any of the ammonium salts described above.
  • agitation preferably continuous agitation, can be carried out during the impregnation.
  • the stirring is carried out for about 1 to 12 hours, preferably about 4 to 8 hours, and the immersion temperature is 0 to 80 ° C, preferably room temperature to 70 ° C.
  • the magnesium loading is from 0.01 to 50% by weight, preferably from 0.1 to 40% by weight, based on the weight of the Mg, and the molar ratio of the ammonium salt to the magnesium salt is from 0.01 to 10.
  • the resulting support loaded with the magnesium salt and ammonium salt components is then dried.
  • the drying is usually carried out at room temperature to 250 ° C, preferably about 80 to 200 ° C.
  • the drying is carried out at about 120 'C. This drying can also be carried out under vacuum.
  • the drying time is not particularly limited, but the drying usually lasts for about 2 to 20 hours, preferably about 7 to 18 hours, and more preferably about 8 to 15 hours.
  • the carrier A after the loading is baked.
  • the manner in which the calcination is carried out is not particularly limited, but the calcination is preferably carried out in a fluidized bed. According to one embodiment, the calcination is usually carried out in two stages, a low temperature stage and a high temperature stage.
  • the low temperature stage is usually carried out at about 100 to 300 'C.
  • the high temperature stage is usually carried out at about 300 to 900 'C.
  • the physical water adsorbed in the carrier in the low temperature stage is substantially removed, the soluble magnesium salt and the ammonium salt are partially decomposed, and part of the hydroxyl groups on the carrier A are removed in the high temperature stage, soluble magnesium salt and ammonium.
  • the salt is completely decomposed.
  • the low temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the high temperature phase lasts from 1 to 10 h, preferably from 2 to 9 h, more preferably from 3 to 8 h.
  • the low temperature stage is carried out under an inert gas or air atmosphere, preferably under an inert gas atmosphere, such as an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, such as high Pure nitrogen.
  • the high temperature stage calcination is carried out under air or oxygen conditions, preferably under dry air conditions. After the completion of the calcination, the obtained carrier A loaded with the magnesium compound is cooled from the high temperature stage.
  • the atmosphere can be changed, for example, from air to an inert gas such as nitrogen, argon or the like, upon cooling to a temperature of 300 to 400 °C.
  • the cooling is natural cooling.
  • the above step b is a method of further surface-modifying the product obtained in the step a.
  • the product obtained in step a is reacted with an organoaluminum compound comprising tridecyl aluminum A1R 3 , dinonyl decyl aluminum oxide A1R 2 0R, dinonyl aluminum halide A1R 2 X, aluminoxane , ethyl sesquiamine chloride, etc., wherein R is a fluorenyl group of -C 12 , X is a halogen such as fluorine, chlorine, bromine and iodine; the molar ratio of the organoaluminum compound to the supported amount of magnesium on the carrier A is from 0.01 to 100 , preferably 0.1 to 80.
  • Stirring may be carried out during the reaction, preferably with continuous stirring. Generally, the agitation is continued for about 5 min to 2 h, preferably 10 min to lh. This process is usually carried out at -90 to 70 ° C, preferably -70 to 50 ° C.
  • the above product is then reacted with a hydroxyl group-containing compound, and the hydroxyl group-containing compound is represented by the formula HOR 5 in the formula! ⁇ is ⁇ .
  • the hydrocarbon group may be a saturated or unsaturated linear, branched or cyclic chain; the hydroxyl group-containing compound is selected from the group consisting of ethanol, n-butanol, n-hexanol, isooctanol, benzyl alcohol and phenylethyl alcohol.
  • the molar ratio of the hydroxyl group-containing compound to the magnesium loading on the carrier A is 0.01 to 200, preferably 0.1 to 160.
  • the reaction temperature is 0 to 150 ° C, preferably room temperature to 100 ° C, and the reaction time depends on the nature of the reactants and Operating conditions, the time required is generally 5 min ⁇ 2 h, preferably 10 min ⁇ lh, and then C 3 - C 2 .
  • the terpene hydrocarbon solvent such as n-glycol, hexamethylene or the like, is washed at a temperature of 0 to 150 ° C, preferably at room temperature to 100 ° C, and dried at room temperature to 250 ° C, preferably 60 to 120 V, and drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used during the drying process, and the product is transferred under the protection of nitrogen and stored for use.
  • step C is a method of supporting the carrier B onto the carrier A and preparing a catalyst.
  • the product obtained in step b is reacted with a solution containing a titanium compound, during which stirring may be carried out, preferably with continuous stirring.
  • the agitation is continued for about 0.5 to 8 hours, preferably for 1 to 5 hours.
  • a titanium-containing compound such as TiO ⁇ hC-h or Ti(L 2 ) s Cl 3 _ s or Ti(L 2 ) t 3 ⁇ 4 t , in the formula! ⁇ is ⁇ - ⁇ .
  • the hydrocarbon group R 3 or the hydrocarbon group R 3 0, R 3 may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ h ⁇ 4, 0 ⁇ s ⁇ 3, 0 ⁇ t ⁇ 2, when When h, s and t are 2 or more, a plurality of R 3 present may be the same or different respectively;
  • the titanium-containing compound is selected from the group consisting of trimethoxytitanium chloride, triethoxytitanium chloride, and tri-n-propoxyoxychloride.
  • an internal electron donor may be simultaneously added to the reaction system, and the internal electron donor is as described above, and the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.01 to 500, preferably 0.1 to 50; C 3 -C 2Q terpene hydrocarbon solvent, such as n-glycol, hexamethylene, etc., the temperature is 0-150'C, preferably room temperature ⁇ 100 ° C, drying between room temperature ⁇ 250 ° C, preferably 80 ⁇ 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h, vacuum can also be used in the drying process, the catalyst is transferred under nitrogen protection and stored for use.
  • C 3 -C 2Q terpene hydrocarbon solvent such as n-glycol, hexamethylene, etc.
  • the temperature is 0-150'C, preferably room temperature ⁇ 100 ° C, drying between room temperature ⁇ 250 ° C, preferably 80 ⁇ 160 ° C, drying time 2 ⁇ 20h, preferably 6 ⁇ 12h
  • the porous amorphous silica gel is immersed in a certain concentration of magnesium acetate and ammonium acetate solution, and the loading amount of magnesium and ammonium meets the requirements of the present invention with respect to the total weight of the catalyst (for example, 0.1 to 40% by weight, based on the weight of magnesium; ammonium salt and magnesium)
  • the molar ratio of the salt is 0.01-10, ); after continuous stirring for a certain period of time (for example, 4-8 hours), the temperature is dried; the silica gel carrier loaded with magnesium acetate and ammonium acetate is calcined at a high temperature in a fluidized bed, wherein at a low temperature
  • the stage (for example, 100'C ⁇ 300'C) is calcined in a nitrogen atmosphere to remove the physical water in the carrier, and the soluble magnesium salt and ammonium salt are partially decomposed in a high temperature stage (for example, 300'C ⁇ 900 'C) in dry air.
  • Calcination removes some of the hydroxyl groups on the surface of the silica gel.
  • the soluble magnesium salts and ammonium salts are completely decomposed, and are kept at a high temperature for a certain period of time (for example, 3 to 8 hours).
  • a catalyst precursor loaded with a magnesium-containing compound was prepared. Then, at a certain temperature (for example, -70 to 50'C), the molar ratio of the organoaluminum compound to the carrier A on the support of magnesium is 0.1 to 80.
  • Continuous stirring for a certain period of time for example, 10 min ⁇ lh
  • a certain temperature for example, room temperature ⁇ 100 'C
  • n-hexanol reaction the molar ratio of n-hexanol to the carrier A magnesium loading is 0.1-160.
  • Continuously stir for a certain period of time for example, 10min ⁇ lh
  • wash the catalyst with a certain temperature for example, room temperature ⁇ 100'C
  • the drying is in an inert gas atmosphere.
  • the lowering is carried out, for example, under an atmosphere of nitrogen, helium, argon or the like, preferably under a nitrogen atmosphere, and the drying process can also be carried out under vacuum. Transfer under nitrogen protection, the product is stored for standby; finally, at a certain temperature (for example, 80 ⁇ 180'C), the catalyst precursor reacts with titanium tetrachloride, and the molar ratio of magnesium tetrachloride to the loading of magnesium on carrier A is 0.1-200, if necessary, an internal electron donor such as n-butyl phthalate may be added to the reaction system, and the molar ratio of the internal electron donor to the magnesium loading on the carrier A is 0.1 to 50; continuous stirring For a certain period of time (for example, l ⁇ 5h) ; after washing the catalyst with a certain temperature (for example, room temperature ⁇ 100'C), and then drying between 80 ⁇ 160'C for 6 ⁇ 12h, the drying is carried out under an inert gas atmosphere.
  • a certain temperature for example, 80 ⁇
  • a method for supporting a supported olefin polymerization catalyst according to the present invention comprises the steps of: a) preparing any one of the catalysts according to one of the above-mentioned eight catalyst preparation methods;
  • the catalyst prepared in the step a is added to an organometallic cocatalyst such as an organoaluminum compound, an organolithium compound, an organoboron compound or the like for prereduction, and the molar ratio of the organometallic cocatalyst to the titanium active component is 0.01 to 1000;
  • organometallic cocatalyst such as an organoaluminum compound, an organolithium compound, an organoboron compound or the like for prereduction, and the molar ratio of the organometallic cocatalyst to the titanium active component is 0.01 to 1000;
  • organometallic cocatalyst such as an organoaluminum compound, an organolithium compound, an organoboron compound or the like for prereduction, and the molar ratio of the organometallic cocatalyst to the titanium active component is 0.01 to 1000;
  • the catalyst described is kept for use.
  • the method comprises the steps of:
  • the catalyst obtained in the step a is subjected to pre-reduction by adding an organometallic cocatalyst such as an organoaluminum compound, an organolithium compound, an organic boron compound or the like.
  • the reaction time is 0.1 ⁇ 5h, preferably 0.5 ⁇ 2h, the temperature is 0 ⁇ 200°C, preferably room temperature ⁇ 160°C, drying between room temperature ⁇ 250°C, preferably 80 ⁇ 160°C, drying time 2 ⁇ 20h, Preferably, it is 6 ⁇ 12h, and vacuum can also be used in the drying process to obtain the catalyst for storage.
  • the present invention prepares a supported olefin polymerization catalyst by reacting the obtained catalyst with an organometallic cocatalyst such as an organoaluminum compound, an organolithium compound, an organoboron compound or the like to pre-reactivate the catalyst.
  • an organometallic cocatalyst such as an organoaluminum compound, an organolithium compound, an organoboron compound or the like to pre-reactivate the catalyst.
  • the above step a is a method of preparing any one of the catalysts according to one of the above-described eight catalyst preparation methods.
  • the above step b is a method of pre-reduction activation of the catalyst.
  • agitation preferably continuous agitation, may be carried out during the reaction. Generally, the agitation is continued for about 0.1 to 5 hours, preferably 0.5 to 2 hours.
  • the catalyst obtained in the step a is pre-reduced by adding an organoaluminum compound, an organolithium compound, an organoboron compound or the like, wherein the organoaluminum compound comprises tridecyl aluminum A1R 3 , dinonyl decyl aluminum oxide A1R 2 0R, dimercaptoaluminum halide A1R 2 X, aluminoxane, ethyl sesquiamine chloride, etc., wherein 1 is a fluorenyl group of 12 , X is a halogen such as fluorine, chlorine, bromine and iodine; As shown by LiR s , in the formula! ⁇ is ⁇ - ⁇ .
  • Hydrocarbyl group can be saturated or not a saturated linear, branched or cyclic chain selected from the group consisting of methyl lithium, ethyl lithium, butyl lithium, t-butyl lithium, pentyl lithium, phenyl lithium, etc.; organoboron compounds of the formula such as BR 7 q Cl 3-q , in the formula! ⁇ is ⁇ - ⁇ .
  • the molar ratio of the organometallic cocatalyst to the titanium active component is from 0.01 to 1000, preferably from 0.05 to 500, more preferably from 0.1 to 300, of dichloroethoxy boron, boron trichloride and dichlorobutoxy boron.
  • the reaction time is 0.1 ⁇ 5h, preferably 0.5 ⁇ 2h, the temperature is 0 ⁇ 200°C, preferably room temperature ⁇ 160°C, drying between room temperature ⁇ 250°C, preferably 80 ⁇ 160°C, drying time 2 ⁇ 20h, Preferably, it is 6 ⁇ 12h, and vacuum can also be used in the drying process to obtain the catalyst for storage.
  • the use of the supported olefin polymerization catalyst of the present invention in the polymerization of olefins or olefins is preferably carried out in the polymerization of ethylene, propylene, butene, hexene and octene or copolymerization therebetween.
  • An organometallic cocatalyst, an external electron donor or hydrogen may be added as needed during the polymerization.
  • the olefin used in the polymerization generally contains ethylene or propylene as a polymerization monomer.
  • the olefin used in the polymerization further comprises a comonomer.
  • the comonomer may be a C 3 -C 2.
  • the comonomer is preferably 1-butene, 1-hexene, 1-octene and 1-decene.
  • ethylene can also be used as a comonomer.
  • the amount of comonomer is generally from 0 to 30 vol%, preferably from 0 to 10 ⁇ / ⁇ , based on the volume concentration of the comonomer during polymerization.
  • an organometallic cocatalyst can be added as needed during the polymerization (for example, organometallic catalysis as described above)
  • the organometallic cocatalyst may use an organoaluminum compound, and the organoaluminum compound may mention triethylaluminum, triisobutylaluminum, diethylaluminum ethoxide, and Chloroethylaluminum and methylaluminum oxime.
  • the organometallic aluminum compound is usually used in an amount of from 0 to 1,000, preferably from 0 to 500, more preferably from 0 to 300, in terms of aluminum/titanium molar ratio.
  • the external electron donor which can be added as needed during the polymerization is selected from the group consisting of a nonoxyl siloxane compound represented by the following formula (V) or other monocarboxylic acid, polycarboxylic acid, carboxylic anhydride, carboxylic acid ester, aromatic ester, ketone. Any one or combination of an ether, an alcohol, an amine, a lactone, an organophosphorus compound, and a methoxysilicone compound, etc., is generally an external electron donor for the polymerization of an olefin known in the art.
  • R 27 -R 3Q are the same or different hydrogen atoms or -C 2 .
  • the hydrocarbyl group may be a saturated or unsaturated linear, branched or cyclic chain.
  • the external electron donor is selected from the group consisting of methyl formate, ethyl acetate, butyl acetate, diethyl ether, hexyl ether, tetrahydrofuran (THF), acetone, methyl isobutyl ketone, methyl benzoate, ethyl benzoate, phthalic acid Diethyl formate, n-butyl phthalate, N-propyltrimethoxysilane, methyltrimethoxysilane, N-octyltrimethoxysilane, n-butylmethyldimethoxysilane , phenyltriethoxysilane, cyclohexyldimethoxysilane, dicyclopentyldimeth
  • the above polymerization reaction may include a molecular weight modifier, and hydrogen may be mentioned as an example.
  • the above polymer production method of the present invention is not subject to any particular limitation in terms of its polymerization method.
  • the above process for producing an olefin homopolymer and an olefin copolymer using the supported catalyst of the present invention may include a gas phase polymerization method, a slurry polymerization method, a suspension polymerization method, a bulk polymerization method, a solution polymerization method, and the like.
  • the method for producing an olefin polymer using the catalyst of the present invention is not particularly limited, and a gas phase polymerization method, a slurry polymerization method, a suspension polymerization method, a bulk polymerization method, which are known in the art, may be employed. Conventional embodiments of the solution polymerization method, polymerization conditions, and the like are carried out.
  • a slurry polymerization process including adding ethylene or propylene to the reactor, and then adding A solvent and a cocatalyst (e.g., an organoaluminum compound) and optionally hydrogen, an external electron donor, a comonomer, and the like are added, and finally, the supported olefin polymerization catalyst of the present invention is added to start polymerization.
  • a solvent and a cocatalyst e.g., an organoaluminum compound
  • optionally hydrogen, an external electron donor, a comonomer, and the like are added, and finally, the supported olefin polymerization catalyst of the present invention is added to start polymerization.
  • the solvent used in the above slurry polymerization is generally any solvent known in the art for the polymerization of olefins.
  • the solvent may be 3 - 2 .
  • Terpene hydrocarbons such as acetamidine, n-butyl hydrazine, isobutyl hydrazine, n-pentamidine, isovalerone, pentylene, hexamidine, cyclohexanthene, n-glycan, n-octane, etc.; these solvents can be used alone or It can be used in combination of two or more.
  • the solvent is preferably isobutyl hydrazine, isovaleryl, n-hexyl hydrazine, cyclohexyl hydrazine, n-glyoxime or the like.
  • the polymerization is carried out by a conventional slurry polymerization method, as follows: First, the polymerization reactor is vacuum-heated to remove impurities, and then replaced with high-purity nitrogen gas, three times of repeated operation, and a small amount of ethylene or propylene monomer.
  • the supported olefin polymerization catalyst provided by the invention and the preparation method thereof and the application thereof in the production of olefin homopolymer and olefin copolymer adopts any porous inorganic carrier and cheap any soluble magnesium salt as raw material, firstly soluble magnesium The salt is immersed on the surface of the inorganic carrier, and after being calcined at a high temperature, a supported magnesium-containing compound layer is formed on the surface of the inorganic carrier, and further reacted with the chlorine-containing titanium compound solution to form a magnesium-containing carrier in situ on the surface of the inorganic carrier to realize the active species of titanium.
  • FIG. 1 is a schematic view of a catalyst precursor baking procedure.
  • the molecular weight and molecular weight distribution of the polymer were determined by high temperature gel chromatography: This experiment used a PL-220 high temperature gel permeation chromatograph (Polymer Laboratories) to determine the molecular weight of the polyolefin and its molecular weight distribution. In the experiment, 1,2,4-trichlorobenzene was used as a solvent, and it was measured at 160 °C. Data were processed using a universally calibrated method using narrowly distributed polystyrene as a standard.
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium nitrate (Mg loading 15 wt%), immersed continuously for 5 h at room temperature, and then heated to Dry at 120 ° C for 5 h, then transfer to a 120 ° C oven for 6 h ; place the silica gel impregnated with magnesium nitrate in a quartz fluidized bed for calcination activation, use a nitrogen atmosphere before 300 ° C, and then switch to high purity air. It was kept at 600 ° C for 4 h, cooled to 400 ° C by natural cooling, switched to a nitrogen atmosphere, and transferred under the protection of a nitrogen atmosphere.
  • Mg loading 15 wt% magnesium nitrate
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate (Mg loading 15 wt%), and continuously immersed for 5 h at room temperature, and then heated to 120'C was dried for 5h, then transferred to a 120'C oven for 6h ; the silica gel impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, and a nitrogen atmosphere was used before 300'C, and then switched to high purity air. It was kept at 600 ° C for 4 h, cooled to 400 ° C by natural cooling, switched to a nitrogen atmosphere, and transferred under the protection of a nitrogen atmosphere.
  • Mg loading 15 wt% magnesium acetate
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate (Mg loading 15 wt%), and continuously immersed for 5 h at room temperature, and then heated to 120'C was dried for 5h, then transferred to a 120'C oven for 6h ; the silica gel impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, and a nitrogen atmosphere was used before 300'C, and then switched to high purity air. It was kept at 600 ° C for 4 h, cooled to 400 ° C by natural cooling, switched to a nitrogen atmosphere, and transferred under the protection of a nitrogen atmosphere.
  • Mg loading 15 wt% magnesium acetate
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate (Mg loading is 1 wt%), immersed continuously for 5 h at room temperature, and then heated to 120'C was dried for 5h, then transferred to a 120'C oven for 6h ; the silica gel carrier impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, and a nitrogen atmosphere was used before 300'C, and then switched to high purity air. It was kept at 600 ° C for 4 h, cooled to 400 ° C by natural cooling, switched to a nitrogen atmosphere, and transferred under the protection of a nitrogen atmosphere.
  • Mg loading 1 wt%
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate (Mg loading 15 wt%), and continuously immersed for 5 h at room temperature, and then heated to 120'C was dried for 5h, then transferred to a 120'C oven for 6h ; the silica gel impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, and a nitrogen atmosphere was used before 300'C, and then switched to high purity air. It was kept at 600 ° C for 4 h, cooled to 400 ° C by natural cooling, switched to a nitrogen atmosphere, and transferred under the protection of a nitrogen atmosphere.
  • Mg loading 15 wt% magnesium acetate
  • the calcination temperature control procedure shown in Figure 1 is shown.
  • organic Mg loading Mg 0.1
  • Example 6 10 g of silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate (Mg loading 15 wt%), and continuously immersed for 5 h at room temperature, and then heated to 120'C was dried for 5h, then transferred to a 120'C oven for 6h ; the silica gel impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, and a nitrogen atmosphere was used before 300'C, and then switched to high purity air. It was kept at 600 ° C for 4 h, cooled to 400 ° C by natural cooling, switched to a nitrogen atmosphere, and transferred under the protection of a nitrogen atmosphere.
  • Mg loading 15 wt% magnesium acetate
  • the calcination temperature control procedure shown in Figure 1 is shown.
  • the reaction was carried out for 2 h, washed several times with n-hexane at room temperature, and dried under vacuum to obtain a catalyst for use.
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate (Mg loading 15 wt%), and continuously immersed for 5 h at room temperature, and then heated to 120'C was dried for 5h, then transferred to a 120'C oven for 6h ; the silica gel impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, and a nitrogen atmosphere was used before 300'C, and then switched to high purity air. It was kept at 600 ° C for 4 h, cooled to 400 ° C by natural cooling, switched to a nitrogen atmosphere, and transferred under the protection of a nitrogen atmosphere.
  • Mg loading 15 wt% magnesium acetate
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate (Mg loading was 5 wt%), and continuously immersed for 5 h at room temperature, and then heated to 120'C was dried for 5h, then transferred to a 120'C oven for 6h ; the silica gel carrier impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, and a nitrogen atmosphere was used before 300'C, and then switched to high purity air. It was kept at 600 ° C for 4 h, cooled to 400 ° C by natural cooling, switched to a nitrogen atmosphere, and transferred under the protection of a nitrogen atmosphere.
  • Mg loading magnesium acetate
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate and ammonium acetate (Mg loading was 15 wt%, ammonium acetate and magnesium acetate were equimolar
  • Mg loading was 15 wt%, ammonium acetate and magnesium acetate were equimolar
  • the mixture was immersed for 5 h under continuous stirring at room temperature, then heated to 120 ° C for 5 h, then transferred to a 120 ° C oven for 6 h ; the silica gel impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, 300' Before using C, a nitrogen atmosphere is used, and then switched to high-purity air, and kept at 600 °C for 4 hours.
  • the above-mentioned baking temperature control program is as shown in the figure. 1 is shown. 2 g of the obtained catalyst precursor was reacted in a solution of 30 ml of TiCl4 at 140 ° C for 2 h, washed several times with n-hexane at room temperature, and finally vacuum dried to obtain a catalyst for use.
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate and ammonium acetate (Mg loading was 15 wt%, ammonium acetate and magnesium acetate were equimolar
  • Mg loading was 15 wt%, ammonium acetate and magnesium acetate were equimolar
  • the mixture was immersed for 5 h under continuous stirring at room temperature, then heated to 120 ° C for 5 h, then transferred to a 120 ° C oven for 6 h ; the silica gel impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, 300' Before using C, a nitrogen atmosphere is used, and then switched to high-purity air, and kept at 600 °C for 4 hours.
  • the above-mentioned baking temperature control program is as shown in the figure. 1 is shown.
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate and ammonium acetate (Mg loading was 15 wt%, ammonium acetate and magnesium acetate were equimolar
  • Mg loading was 15 wt%, ammonium acetate and magnesium acetate were equimolar
  • the mixture was immersed for 5 h under continuous stirring at room temperature, then heated to 120 ° C for 5 h, then transferred to a 120 ° C oven for 6 h ; the silica gel carrier impregnated with magnesium acetate was placed.
  • the quartz fluidized bed is calcined and activated. Before 300'C, the nitrogen atmosphere is used, then switched to high purity air, and kept at 600 °C for 4 h.
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate and ammonium acetate (Mg loading was 15 wt%, ammonium acetate and magnesium acetate were equimolar
  • Mg loading was 15 wt%, ammonium acetate and magnesium acetate were equimolar
  • the mixture was immersed for 5 h under continuous stirring at room temperature, then heated to 120 ° C for 5 h, then transferred to a 120 ° C oven for 6 h ; the silica gel impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, 300' Before using C, a nitrogen atmosphere is used, and then switched to high-purity air, and kept at 600 °C for 4 hours.
  • the above-mentioned baking temperature control program is as shown in the figure. 1 is shown.
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate (Mg loading 15 wt%), and continuously immersed for 5 h at room temperature, and then heated to 120'C was dried for 5h, then transferred to a 120'C oven for 6h ; the silica gel impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, and a nitrogen atmosphere was used before 300'C, and then switched to high purity air. It was kept at 600 ° C for 4 h, cooled to 400 ° C by natural cooling, switched to a nitrogen atmosphere, and transferred under the protection of a nitrogen atmosphere.
  • Mg loading 15 wt% magnesium acetate
  • the calcination temperature control procedure shown in Figure 1 is shown. 2 g of the obtained catalyst precursor was reacted in a solution of 30 ml of TiCl4 and a certain amount of ethyl benzoate at 140 ° C for 2 h, and the volume ratio of the titanium-containing compound to the internal electron donor was 15 and washed several times with n-hexane at room temperature. Drying in vacuo, the catalyst was saved for use.
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate (Mg loading 15 wt%), and continuously immersed for 5 h at room temperature, and then heated to 120'C dry for 5h, then transfer to 120 'C oven drying for 6h ; the silica gel carrier impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, before the 300'C nitrogen atmosphere, then switched to high purity air, and kept at 600 ° C for 4 h, naturally After cooling to 400 ° C, the mixture was switched to a nitrogen atmosphere and transferred under a nitrogen atmosphere.
  • Mg loading 15 wt% magnesium acetate
  • the above calcination temperature control procedure is shown in FIG. 2 g of the obtained catalyst precursor was reacted in a solution of 30 ml of TiCl4 with a certain amount of n-butyl phthalate solution at 140 ° C for 2 h, the volume ratio of the titanium-containing compound to the internal electron donor was 15, and the number of washings was performed at room temperature with n-hexane. After the final vacuum drying, the catalyst was saved for use.
  • silica gel (pore volume 1.5-1.7 cm 3 /g, surface area 250-300 m 2 /g) was immersed in an aqueous solution of magnesium acetate (Mg loading 15 wt%), and continuously immersed for 5 h at room temperature, and then heated to 120'C was dried for 5h, then transferred to a 120'C oven for 6h ; the silica gel impregnated with magnesium acetate was placed in a quartz fluidized bed for calcination activation, and a nitrogen atmosphere was used before 300'C, and then switched to high purity air. It was kept at 600 ° C for 4 h, cooled to 400 ° C by natural cooling, switched to a nitrogen atmosphere, and transferred under the protection of a nitrogen atmosphere.
  • Mg loading 15 wt% magnesium acetate
  • the lOg zirconia is immersed in an aqueous solution of magnesium chlorate and ammonium nitrate (molar loading: 15 wt%, molar ratio of ammonium nitrate to magnesium chlorate), and continuously immersed for 5 h at room temperature, and then heated to 120 ° C for 5 h.
  • titanium dioxide 10 g was immersed in a solution of magnesium phosphate and ammonium carbonate (molar loading of 15 wt%, molar ratio of ammonium carbonate to magnesium phosphate), immersed continuously for 5 h at room temperature, then heated to 120 ° C for 5 h, then transferred to 120'C oven drying for 6h ; the titanium dioxide carrier impregnated with magnesium phosphate and ammonium carbonate was placed in a quartz fluidized bed for calcination activation, using a nitrogen atmosphere before 300'C, then switching to high purity air, and at 600'C After 4 hours of heat preservation, the temperature was cooled to 400 ° C, and then switched to a nitrogen atmosphere, and transferred under the protection of a nitrogen atmosphere.
  • magnesium phosphate and ammonium carbonate 10 g was immersed in a solution of magnesium phosphate and ammonium carbonate (molar loading of 15 wt%, molar ratio of ammonium carbonate to magnesium phosphate)
  • the above-mentioned baking temperature control program is shown in FIG. 2 g of the obtained catalyst precursor was reacted in a solution of 30 ml of titanium trichloride solution and a certain amount of diethyl ether at 140 ° C for 2 h, and the volume ratio of the titanium-containing compound to the internal electron donor was 15 and washed several times with n-hexane at room temperature. Finally, it was vacuum dried to obtain a catalyst for storage.
  • Example 25 1Og of aluminum oxide was immersed in an aqueous solution of magnesium hydrogencarbonate (Mg loading is 15wt%), immersed continuously for 5h at room temperature, then heated to 120'C for 5h, then transferred to a 120'C oven for 6h ;
  • the aluminum oxide carrier impregnated with magnesium bicarbonate is placed in a quartz fluidized bed for calcination activation, and a nitrogen atmosphere is used before 300 ° C, then switched to high purity air, and kept at 600 ° C for 4 h, and naturally cooled to cool. After 400'C, it was switched to a nitrogen atmosphere and transferred under the protection of a nitrogen atmosphere.
  • the above calcination temperature control program is shown in Fig. 1.
  • Example 1 The catalyst of 100 mg in Example 1 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the ethylene pressure was adjusted to 0.15 MPa, and after the temperature in the autoclave was constant at 70 ° C, the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to the computer) was collected online during the reaction and recorded by a computer. After lh, a hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 2 The catalyst of 100 mg in Example 2 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • Example 2 100 mg of the catalyst of Example 2 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the catalysts (corresponding to Examples 28-1, 28-2, and 28-3, respectively) were further added with 40 mL of dehydrated and deoxidized purified n-glycol solvent to adjust the ethylene pressure to 0.15 MPa.
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer.
  • a 50 mL hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 3 The catalyst of 100 mg in Example 3 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • Example 3 The catalyst of 100 mg in Example 3 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TSA triethylaluminum
  • Example 4 100 mg of the catalyst of Example 4 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • TiBA triisobutylaluminum
  • the cocatalyst (corresponding to Examples 31-1, 31-2, 31-3, and 31-4, respectively) was further added with 40 mL of dehydrated and deoxidized purified n-glycol solvent to adjust the ethylene pressure to 0.15 MPa.
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer.
  • a 50 mL hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 5 The catalyst of 100 mg in Example 5 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • the ethylene pressure was adjusted to 0.15 MPa, and the temperature in the kettle was constant.
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer.
  • a hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • the catalyst of 100 mg in Example 6 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TAA triethylaluminum
  • the ethylene pressure was adjusted to 0.15 MPa, and after the temperature in the kettle was constant at 70 ° C, the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer. After lh, a hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 7 100 mg of the catalyst of Example 7 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • TiBA triisobutylaluminum
  • the ethylene pressure was adjusted to 0.15 MPa, and after the temperature in the kettle was constant at 70 ° C, the catalyst was added to start the reaction.
  • Instantaneous consumption of monomeric ethylene during on-line reaction (by connecting electricity)
  • the brain's high-precision ethylene mass flow meter) is recorded by a computer.
  • a hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • the catalyst of Example 8 was weighed at 100 mg for atmospheric pressure polymerization.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online and recorded by a computer.
  • a 50 mL hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 9 The catalyst of 100 mg in Example 9 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online and recorded by a computer.
  • a 50 mL hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 10 100 mg of the catalyst of Example 10 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • TiBA triisobutylaluminum
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (on the high-precision ethylene mass flowmeter connected to the computer) is collected online during the reaction. Brain records. After lh, a 50 mL hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 11 The catalyst of 100 mg in Example 11 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • DEC diethylaluminum chloride
  • the ethylene pressure was adjusted to 0.15 MPa, and after the temperature in the autoclave was constant at 70 ° C, the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer. After lh, a hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 12 The catalyst of 100 mg in Example 12 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TAA triethylaluminum
  • the ethylene pressure was adjusted to 0.15 MPa, and after the temperature in the autoclave was constant at 70 ° C, the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to the computer) was collected online during the reaction and recorded by a computer. After lh, a hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • the catalyst of 100 mg in Example 13 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the ethylene pressure was adjusted to 0.15 MPa, and the temperature in the kettle was constant.
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer.
  • a hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • TiBA triisobutylaluminum
  • the siloxane was added with 40 mL of dehydrated and deoxygenated purified n-glycol solvent.
  • the propylene pressure was adjusted to 0.15 MPa, and after the temperature in the kettle was constant at 70 ° C, the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric propylene (through a high-precision propylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer. After lh, a hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 15 The catalyst of 100 mg in Example 15 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally, the reactor was charged with a trace amount of purified propylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the siloxane was added with 40 mL of dehydrated and deoxygenated purified n-glycol solvent.
  • the propylene pressure was adjusted to 0.15 MPa, and after the temperature in the kettle was constant at 70 ° C, the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric propylene (collected by a high-precision propylene mass flow meter connected to a computer) was recorded online during the reaction and recorded by a computer. After lh, a hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • the catalyst of 100 mg in Example 16 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the ethylene pressure was adjusted to 0.15 MPa, and the temperature in the kettle was constant.
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer.
  • a hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 17 100 mg of the catalyst of Example 17 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor is vacuum-heated to remove impurities, and The mixture was pumped three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the ethylene pressure was adjusted to 0.15 MPa, and after the temperature in the kettle was constant at 70 ° C, the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer. After lh, a hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 18 The catalyst of 100 mg in Example 18 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TAA triethylaluminum
  • the ethylene pressure was adjusted to 0.15 MPa, and after the temperature in the autoclave was constant at 70 ° C, the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to the computer) was collected online during the reaction and recorded by a computer. After lh, a hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • the catalyst of 100 mg in Example 19 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the ethylene pressure was adjusted to 0.15 MPa, and the temperature in the kettle was constant.
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer.
  • a hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 20 100 mg of the catalyst of Example 20 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • TiBA triisobutylaluminum
  • Example 21 The catalyst of 100 mg in Example 21 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • the ethylene pressure was adjusted to 0.15 MPa, and the temperature in the kettle was constant.
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer.
  • a hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • the catalyst of 100 mg in Example 22 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally, the reactor was charged with a trace amount of purified propylene to 0.12 MPa.
  • the siloxane was added with 40 mL of dehydrated and deoxygenated purified n-glycol solvent.
  • the propylene pressure was adjusted to 0.15 MPa, and after the temperature in the kettle was constant at 70 ° C, the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric propylene (collected by a high-precision propylene mass flow meter connected to a computer) was recorded online during the reaction and recorded by a computer. After lh, a hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 23 100 mg of the catalyst of Example 23 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • TiBA triisobutylaluminum
  • the siloxane was added with 40 mL of dehydrated and deoxygenated purified n-glycol solvent.
  • the propylene pressure was adjusted to 0.15 MPa, and after the temperature in the kettle was constant at 70 ° C, the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric propylene (on the high-precision propylene mass flow meter connected to the computer) is collected online during the reaction. Recorded by computer. After lh, a hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 24 The catalyst of 100 mg in Example 24 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally, the reactor was charged with a trace amount of purified propylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the siloxane was added with 40 mL of dehydrated and deoxygenated purified n-glycol solvent.
  • the propylene pressure was adjusted to 0.15 MPa, and after the temperature in the kettle was constant at 70 ° C, the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric propylene (collected by a high-precision propylene mass flow meter connected to a computer) was recorded online during the reaction and recorded by a computer. After lh, a hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • the catalyst of 100 mg in Example 25 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally, the reactor was charged with a trace amount of purified propylene to 0.12 MPa.
  • the siloxane was added with 40 mL of dehydrated and deoxygenated purified n-glycol solvent.
  • the propylene pressure was adjusted to 0.15 MPa, and after the temperature in the kettle was constant at 70 ° C, the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric propylene (collected by a high-precision propylene mass flow meter connected to a computer) was recorded online during the reaction and recorded by a computer. After lh, a hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 2 100 mg of the catalyst of Example 2 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • TiBA triisobutylaluminum
  • Example 3 100 mg of the catalyst of Example 3 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • TiBA triisobutylaluminum
  • Example 8 100 mg of the catalyst of Example 8 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • TiBA triisobutylaluminum
  • Example 9 100 mg of the catalyst of Example 9 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • TiBA triisobutylaluminum
  • Example 10 100 mg of the catalyst of Example 10 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • TiBA triisobutylaluminum
  • Example 2 100 mg of the catalyst of Example 2 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the volume ratio of the olefin, i.e., 1-hexene, to the solvent used for the polymerization was 1, 3, and 5 vol%, respectively (corresponding to Examples 58-1, 58-2, and 58-3, respectively), and 40 mL of dehydrated and deoxidized purified product was added.
  • Ginger solvent adjust the ethylene pressure to 0.15 MPa.
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer.
  • a 50 mL hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example 8 100 mg of the catalyst of Example 8 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • TiBA triisobutylaluminum
  • the volume ratio of the olefin, i.e., 1-hexene, to the solvent used for the polymerization is 1, 3, and 5 vol%, respectively (corresponding to Examples 59-1, 59-2, and 59-3, respectively), and 40 mL of dehydrated and deoxidized product is added.
  • the solvent was adjusted to adjust the ethylene pressure to 0.15 MPa.
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer. After lh, a 50 mL hydrochloric acid/ethanol mixed solution was added to terminate the reaction. After filtration, the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • the catalyst of 100 mg in Example 9 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the volume ratio of the olefin, i.e., 1-hexene, to the solvent used for the polymerization is 1, 3, and 5 vol%, respectively (corresponding to Examples 60-1, 60-2, and 60-3, respectively), and 40 mL of dehydrated and deoxidized purified product is added.
  • Ginger solvent adjust the ethylene pressure to 0.15 MPa.
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer.
  • a 50 mL hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • the catalyst of 100 mg in Example 10 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the volume ratio of the olefin, i.e., 1-hexene, to the solvent used for the polymerization is 1, 3, and 5 vol%, respectively (corresponding to Examples 61-1, 61-2, and 61-3, respectively), and 40 mL of dehydrated and deoxidized purified product is added.
  • Ginger solvent adjust the ethylene pressure to 0.15 MPa.
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer.
  • a 50 mL hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • the TiCl 3 and MgCl 2 -nEtOH complexes were added to a tetrahydrofuran solution, and magnetically stirred until completely dissolved at 60 ° C. Then, a certain amount of pretreated silica gel was added, and the mixture was vacuum dried under a nitrogen atmosphere, and the obtained catalyst was stored for use.
  • the magnetic rotor is placed in the centrifuge bottle in advance, and stirred on a magnetic stirrer for 10 minutes. After centrifugation for 10 min, after centrifugation, the supernatant was extracted, 100 ml of hexamidine was added, the above centrifugation was repeated, and the washing was carried out 4-5 times or more, and the washed catalyst was transferred to a horn bottle for storage.
  • the atmospheric pressure polymerization experiment was carried out by weighing 100 mg of the catalyst of Comparative Example 1.
  • the polymerization reactor is vacuum-heated to remove impurities.
  • the mixture was pumped three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the catalyst of 100 mg in Comparative Example 2 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the ethylene pressure was adjusted to 0.15 MPa, and the temperature in the kettle was constant.
  • the catalyst of 100 mg in Comparative Example 3 was weighed and subjected to an atmospheric pressure polymerization experiment.
  • the polymerization reactor was vacuum-heated to remove impurities, and was evacuated three times with high-purity nitrogen gas, and finally the reactor was charged with a trace amount of refined ethylene to 0.12 MPa.
  • TiBA triisobutylaluminum
  • the ethylene pressure was adjusted to 0.15 MPa, and the temperature in the kettle was constant.
  • the catalyst was added to start the reaction.
  • the instantaneous consumption of monomeric ethylene (by a high-precision ethylene mass flow meter connected to a computer) was collected online during the reaction and recorded by a computer.
  • a hydrochloric acid/ethanol mixed solution was added to terminate the reaction.
  • the obtained polymer was vacuum dried in a vacuum oven at 60 ° C for 4 hours, and weighed and analyzed.
  • Example activity (kg polymer/mol Ti-h) Example 26 46.93 Example 27-1 59.78 Example 27-2 66.86 Example 27-3 65.55 Example 274 57.65 Example 27-5 41.58 Example 28-1 44.32 Example 28-2 43.54 Example 28-3 42.11 Example 29-1 54.53 Example 29-2 60.06 Example 29-3 59.63 Example 294 59.25 Example 29-5 56.78 Example 30-1 34.54 Example 30-2 38.58 Example 30-3 36.47 Example 31-1 47.96 Example 31-2 44.20 Example 31-3 40.53 Example 314 36.83 Example 32 45.37 Example 33 50.95 Example 34 57.88 Example 35-1 68.02 Example 35-2 72.00 Example 35-3 66.00 Example 36-1 57.93 Example 36-2 67.47 Example 36-3 60.46 Example 37-1 44.91 Example 37-2 52.74 Example 37-3 43.05 Example 38 39.02 Example 39 45.42 Example 40 49.39 Example 41 50.74 Example 42 54.21 Example 43 65.41 Example 44 51.45 Example 45 50.88
  • Example 27-1 TiBA 25 59.78 1.36 6.2
  • Example 27-2 TiBA 50 66.86 1.38 5.8
  • Example 27-3 TiBA 100 65.55 1.33 6.2
  • Example 27-4 TiBA 150 57.65 1.27 6.6
  • Example 27-5 TiBA 200 41.58 1.25 5.1
  • Example 29-1 TiBA 10 54.53 1.15 4.8
  • Example 29-2 TiBA 15 60.06 1.32 5.3
  • Example 29-3 TiBA 25 59.63 1.30 6.4
  • Example 29-4 TiBA 50 59.25 1.26 5.4
  • Example 29-5 TiBA 100 56.78 1.24 6.0
  • Example 31-1 TiBA 5 47.96 1.97 3.4
  • Example 31-2 TiBA 10 44.20 1.91 5.3
  • Example 31-3 TiBA 15 40.53 1.81 4.7
  • Example 31-4 TiBA 25 36.83 1.79 6.6
  • Example 35-2 TiBA 15 72.00 1.45 4.6
  • Example 35-3 TiBA 25 66.00 1.
  • Example 8 had the highest activity when Al/Ti was 15.
  • Table 3 Effect of cocatalyst species on ethylene homopolymerization catalyzed by supported olefin polymerization catalysts
  • Example 27-2 TiBA 50 66.86 1.38 5.8
  • Example 28-3 TEA 50 42.11 0.91 8.4
  • Example 29-2 TiBA 15 60.06 1.32 5.3
  • Example 29-3 15% 25 59.63 1.30 6.4
  • Example 31-4 1% 25 36.83 1.79 6.6
  • Example 27-1 15% 25 59.78 1.36 6.2
  • Example 36-3 10% 25 60.46 1.40 7.0
  • Table 4 shows different magnesium contents (Example 29-3, Example 31-4 and Example 27-1, Example 36-3, Example) The ethylene homopolymerization result of the supported olefin polymerization catalyst under 35-3).
  • the magnesium content of the catalyst is 15%, the activity is greatly improved compared with 1%.
  • the magnesium content of the catalyst increased from 5% to 10% to 15%, the activity decreased gradually, indicating that the increase of magnesium content is beneficial to the improvement of catalyst activity, but there is an optimum value.
  • the molecular weight of the polymer decreases as the magnesium content increases.
  • Example 27-1 25 59.78 1.36 6.2
  • Example 29-3 25 59.63 1.30 6.4
  • Example 27-2 50 66.86 1.38 5.8
  • Example 294 50 59.25 1.26 5.4
  • Example 27-3 100 65.55 1.33 6.2
  • Example 29-5 100 56.78 1.24
  • Example 27-1 25 59.78 1.36 6.2
  • Example 37-2 25 52.74 1.41 7.0
  • Example 27-2 50 66.86 1.38 5.8
  • Example 37-3 50 43.05 1.42 7.0
  • Table 6 shows the effect of the addition of ammonium acetate on the ethylene homopolymerization of the supported olefin polymerization catalyst during the preparation of the catalyst.
  • Examples 27-1 and 27-2 are ethylene polymerization experiments of the catalyst without ammonium acetate added, and found in the same Al. Under /Ti, the homopolymerization performance of the catalyst was not improved after the addition of ammonium acetate in the impregnation process.
  • Example 27-2 0 50 66.86 1.38 5.8
  • Example 58-1 0.8 50 82.54 0.72 7.2
  • Example 58-2 2.4 50 79.33 0.48 6.1
  • Example 58-3 4.0 50 78.11 0.32 6.9 Example 35-2 0 15 72.00 1.45 4.6
  • Example 59-1 0.8 15 77.26 0.83 6.8
  • Example 59-2 2.4 15 84.37 0.54 7.1
  • Example 36-2 0 15 67.47 1.41 6.8
  • Example 60-1 0.8 15 88.42 0.80 7.2
  • Example 60-2 2.4 15 78.56 0.52 6.7
  • Example 37-2 0 25 52.74 1.41 7.0
  • Example 61-1 0.8 25 81.35 0.75 6.3
  • Example 61-2 2.4 25 78.32 0.71 9.1
  • Example 61-3 4.0 25 76.98 0.46 6.8
  • Example 2 The ethylene/1-hexene copolymerization activity of the catalysts prepared in Example 2, Example 8, Example 9, and Example 10 showed an increasing tendency relative to the polymerization experiment without 1-hexene.
  • the polymerization activity tends to increase first and then decrease. And after copolymerization of ethylene and 1-hexene, the molecular weight of the polymer is remarkably lowered.
  • Example 27-2 0 50 66.86 1.38 5.8
  • Example 53 10 50 52.66 0.68 8.5
  • Example 29-2 0 15 60.06 1.32 5.3
  • Example 54 10 15 51.60 0.74 6.1
  • Example 35-2 0 15 72.00 1.45 4.6
  • the supported olefin polymerization catalyst provided by the invention and the preparation method thereof and the application thereof in the production of olefin homopolymer and olefin copolymer adopts any porous inorganic carrier and cheap any soluble magnesium salt as raw material, firstly soluble magnesium The salt is immersed on the surface of the inorganic carrier, and after being calcined at a high temperature, a supported magnesium-containing compound layer is formed on the surface of the inorganic carrier, and further reacted with the chlorine-containing titanium compound solution to form a magnesium-containing carrier in situ on the surface of the inorganic carrier to realize the active species of titanium.
  • the catalyst is simple in preparation, low in cost, easy to control in catalyst form, and the obtained composite carrier-supported Ziegler-Natta catalyst has excellent olefin polymerization performance.
  • the supported olefin polymerization catalyst of the present invention the molecular weight and molecular weight distribution of the olefin homopolymer and the olefin copolymer and the comonomer content can be conveniently and easily adjusted by changing the kind and amount of the promoter, the molecular weight regulator and the like. The distribution results in a polymer product having the desired properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

一种负载型烯烃聚合催化剂及其制备方法与其在烯烃均聚物和烯烃共聚物生产中的应用,所述催化剂主要包括:多孔的载体A、含镁的载体B和负载的含过渡金属钛活性组分,是一种镁化合物和硅化合物形成的复合载体型高效Ziegler-Natta钛系催化剂,所用镁化合物载体的原料为任意可溶性镁盐。本发明的复合载体负载型烯烃聚合催化剂可用于制备烯烃均聚物或烯烃共聚物,该催化剂制备方法简单、成本低、催化剂形态易于控制、聚合性能良好,通过改变有机金属助催化剂的种类和用量、分子量调节剂等因素,可以方便和容易地调整烯烃均聚物和烯烃共聚物的分子量和分子量分布以及共聚单体含量及分布,从而得到具有所需性能的聚合物产品。

Description

一种负载型烯烃聚合催化剂及其制备方法与应用 技术领域
本发明涉及一种负载型烯烃聚合催化剂及其制备方法与其在烯烃均聚物和烯烃共聚 物生产中的应用。 该催化剂具有制备简单、 成本低、 活性高、 氢调响应和共聚性能优越等 特性。
背景技术
聚乙烯是通用合成树脂中产量最大的品种, 它具有耐化学药品性、 良好的机械强度、 电绝缘性等特点; 聚丙烯是一种性能优良的热塑性合成树脂, 具有无毒、 化学性质稳定、 易加工等优点, 是通用树脂中耐热性最好的产品。 聚乙烯与聚丙烯均广泛应用于人类的曰 常生活、 医疗卫生、 工农业等各个方面, 这些具有优良性能的聚烯烃产品与所使用的催化 剂有着密切的关系。
Ziegler和 Natta在 20世纪 50年代相继发现了 TiCl^AlEfe催化剂体系和 TiCl3-AlEt2Cl 催化剂体系, 并分别用其成功地在低温低压下合成了高密度聚乙烯和具有较高等规度的聚 丙烯。 一些专利在此基础上对该类催化剂进行了深入研究和改性, 包括专利 US 6221803、 US 6825146, US 6930071 , US 7078362, US 7348383等。
最初的 Ziegler-Natta催化剂存在活性以及钛原子利用率低等缺点, 所以, 起初开发的 聚烯烃工艺中都必须有一个脱除催化剂残渣的脱灰工艺, 导致产品的生产成本高。 为此, 研究人员开始探索负载型催化剂的制备方法。 20 世纪 60 年代末, 日本三井化学公司 Kashiwa (专利 JP 1031698) 以及意大利 Montecatini公司的 GalH ( GB 1286867A) 分别开 发出以 MgCl2为载体负载氯化钛的高活性 Ziegler-Natta催化剂, MgCl2载体的发现使负载 型催化剂的开发向前迈进了一大步, 由于催化活性的显著提高, 免除了脱灰工艺, 使聚烯 烃产品的产业化和应用推广进程不断加快。 经过多年来不断的发展, 目前 ¾ 2负载的高 活性 Ziegler-Natta催化剂仍然是聚烯烃生产的主要工业催化剂, 该类催化剂中 MgCl2载体 的制备方法主要有以下两种, 1 ) 第一种是由日本三井化学公司和意大利 Montecatini公司 开发的两步法制备工艺, 即先将 ¾¾ 12与醇形成氯化镁醇合物溶液, 经过沉淀后形成球形 MgCl2载体, 然后再将球形 MgCl2载体与 TiC 反应, 脱除载体中的醇, 同时实现钛活性组 分在氯化镁载体表面的负载。 该制备工艺过程较复杂, 催化剂制备成本较高。 2) 第二种 是由德国 Hoechst公司 (THB聚乙烯催化剂)和日本 Toho titanium公司(THC聚丙烯催化 剂, US 4547476 A)开发的一步法制备工艺,即使用 Mg(OEt)2与 1¾¾原位反应生成 MgCl2 载体同时实现钛活性组分在 MgCl2载体表面的负载化。 该制备工艺简单, 但是由于使用原 料 Mg(OEt)2价格较贵, 从而导致催化剂制备成本高, 并且催化剂颗粒形态控制较为困难。
另一类主要的工业负载型 Ziegler-Natta催化剂则使用包含氯化镁和无定型多孔硅胶的 复合型载体。 首先, 无定型多孔硅胶本身也是一种优良的聚烯烃催化剂的载体材料, Chien 等发现将过渡金属化合物负载于具有功能基团 (主要是羟基) 的载体上可以合成高活性的 烯烃聚合催化剂, 而 02具有多孔结构和高比表面积, 其表面含有少量活性基团, 如硅羟 基等, !^^等催化剂组分能与其表面的活性基团反应, 可以通过负载得到以 Si02为载体 的 Ziegler-Natta催化剂。 专利 US 4293673、 US 4302565, US 4302566, US 4303771报道 了美国 Union Carbide公司开发的负载于硅胶和氯化镁复合载体上的高效 Ziegler-Natta催化 剂,其代表性的工业催化剂有应用于 UNIPOL气相聚乙烯工艺中的 M-1催化剂。其制备方 法是将无水 MgCl2溶解于 THF中形成均匀溶液, 浸渍到热活化硅胶表面从而形成复合载 体,再在复合载体表面浸渍钛活性组分, 与氯化镁配位的部分 THF需要使用垸基铝或者卤 代垸基铝脱除。 该类催化剂应用于烯烃聚合表现出较高的催化活性, 并且具有良好的氢调 响应以及共聚性能, 但是, 该类氯化镁和硅胶复合载体负载型 Ziegler-Natta催化剂的制备 工艺较为复杂, 催化剂制备成本也较高。
综上可知,尽管在 Ziegler-Natta催化剂领域巳经开展了大量的工作,但是传统的 MgCl2 载体以及 MgCl2/Si02复合载体负载型 Ziegler-Natta催化剂仍存在制备方法较为复杂、 成本 较高、 催化剂形态控制较难等缺点, 所以, 该领域仍需要开发一种制备方法简单、 成本低 廉、 催化剂形态和性能可控的高效 Ziegler-Natta催化剂。
发明内容
为了解决上述问题, 本发明目的在于提供了一种负载型烯烃聚合催化剂及其制备方法 与其在烯烃均聚物和烯烃共聚物生产中的应用, 本发明采用任意多孔无机载体与廉价的任 意可溶性镁盐为原料, 先将可溶性镁盐浸渍于无机载体表面, 经过高温焙烧后在无机载体 表面形成负载的含镁化合物层, 进一步与含氯的钛化合物溶液反应, 在无机载体表面原位 形成含镁载体的同时实现钛活性物种的负载化, 该催化剂制备方法简单、 成本低、 催化剂 形态易于控制, 并且得到的复合载体负载型 Ziegler-Natta催化剂的烯烃聚合性能优良。 本发明的技术方案:
本发明提供一种负载型烯烃聚合催化剂, 其特征在于: 所述的催化剂主要包括: 多孔 的载体 A、 含镁的载体 B和负载的含过渡金属钛活性组分。
根据本发明提供的负载型烯烃聚合催化剂, 所述载体 A选自二氧化硅、 三氧化二铝、 硅铝酸盐 (xAl20 ySi02)、 二氧化钛、 氧化锆、 氧化镁、 氧化钙、 无机粘土中的一种或一 种以上; 所述无机粘土可以包括例如蒙脱石等。 根据本发明的一个实施方案, 所述载体 A 选自硅胶, 特别是无定型多孔硅胶。 这些载体是本领域公知的, 可以商购或通过巳知的方 法合成。 作为硅胶的一个例子, 可以提及 Davison 955。
根据本发明提供的负载型烯烃聚合催化剂, 优选的是, 所述载体 A选自二氧化硅、 三 氧化二铝、 硅铝酸盐、 二氧化钛、 氧化锆中的一种。
根据本发明提供的负载型烯烃聚合催化剂, 进一步优选的是, 所述载体 A选自二氧化 硅、 三氧化二铝、 硅铝酸盐。
根据本发明提供的负载型烯烃聚合催化剂, 所述载体 A 的比表面积通常在 10~800 m2/g, 优选 100~300 m2/g, 载体的孔体积为 0.1~6.0 cm3/g, 优选 0.5~3.0 cm3/g, 平均孔径 为 l~50nm,优选 5~40nm。本发明中使用的载体 A可以是通常用于烯烃聚合催化剂制备中 的任何载体。
根据本发明提供的负载型烯烃聚合催化剂, 所述的载体 B是一种含镁的化合物, 通式 如 R^MgC m所示, 式中!^是 ^-^。的烃基, 可以是饱和或不饱和的直链、 支链或环状 链, 0≤m<2。
根据本发明提供的负载型烯烃聚合催化剂, 所述的含过渡金属钛活性组分为含钛化合 物, 如 TiO^nd或者 或者 Ti(L Cl2 c所示, 式中 L1是 d-C2Q的烃基 R2或者 烃氧基 R20, R2可以是饱和或不饱和的直链、 支链或环状链, 0≤n≤4, 0≤g≤3, 0≤k≤2, 当 n、 g和 k为 2或 2以上时, 存在的多个 R2可以分别相同或者不同;
根据本发明提供的负载型烯烃聚合催化剂, 所述的含钛化合物选自三甲氧基氯化钛、 三乙氧基氯化钛、 三正丙氧基氯化钛、 三异丙氧基氯化钛、 二甲氧基二氯化钛、 二乙氧基 二氯化钛、 二异丙氧基二氯化钛、 甲氧基三氯化钛、 乙氧基三氯化钛、 四氯化钛、 四乙氧 基钛、 钛酸四乙酯、 钛酸四丁酯、 三氯化钛、 三乙氧基钛、 二氯化钛、 二正丁基钛、 乙基 氯化钛中的一种。
根据本发明提供的负载型烯烃聚合催化剂, 优选的是, 所述含钛化合物选自三乙氧基 氯化钛、 二乙氧基二氯化钛、 甲氧基三氯化钛、 四氯化钛、 钛酸四丁酯、 三氯化钛中的一 种。
根据本发明提供的负载型烯烃聚合催化剂, 进一步优选的是, 所述含钛化合物选自三 乙氧基氯化钛、 二乙氧基二氯化钛、 甲氧基三氯化钛、 四氯化钛中的一种。
根据本发明提供的负载型烯烃聚合催化剂,载体 B负载在载体 A上以及催化剂制备的 方法是: 将载体 A浸渍可溶性镁盐, 根据需要还可以共浸渍可溶性铵盐, 经 300~900'C下 高温焙烧, 然后与含钛化合物溶液反应, 根据需要可同时在反应体系中加入内给电子体, 得到所述催化剂, 最后, 根据需要还可以使用有机金属助催化剂进行预活化处理。 在高温 焙烧后和与含钛化合物溶液反应前, 根据需要可以加入有机镁化合物、 有机铝化合物或含 羟基类化合物等对焙烧后产物进行表面改性处理。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 所述可溶性镁盐包括任何可溶 性含镁盐。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 所述可溶性镁盐选自碳酸镁、 碳酸氢镁、 铬酸镁、 硅氟化镁、 醋酸镁、 硝酸镁、 氟化镁、 氯化镁、 溴化镁、 碘化镁、 硫 酸镁、 葡萄糖酸镁、 氯酸镁、 高氯酸镁、 磷酸镁、 硫化镁、 柠檬酸镁、 氨基酸镁等, 其它 合适的可溶性镁盐以及它们的组合。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 所述载体 A上镁负载量按 Mg 重量计为催化剂总重量的 0.01~50wt%。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 优选的是, 所述可溶性镁盐选 自醋酸镁、 硝酸镁、 碳酸氢镁、 铬酸镁、 氟化镁、 硫酸镁、 葡萄糖酸镁、 氯酸镁、 磷酸镁、 硫化镁中的一种。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 进一步优选的是, 所述可溶性 镁盐选自葡萄糖酸镁、 氯酸镁、 磷酸镁、 碳酸氢镁、 氟化镁、 硫酸镁、 醋酸镁。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 所述可溶性铵盐包括任何可溶 性含铵盐: 如醋酸铵、 硝酸铵、 碳酸铵、 碳酸氢铵等, 其它合适的可溶性铵盐以及它们的 组合。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 所述可溶性铵盐与镁盐的摩尔 比为 0.01~10。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 优选的是, 所述可溶性铵盐选 自醋酸铵、 硝酸铵、 碳酸铵中的一种。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 进一步优选的是, 所述可溶性 铵盐选自醋酸铵、 硝酸铵中的一种。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 所述与焙烧后产物反应的含钛 化合物如 Ti(L2)hC 或者 Ti(L2)sCl^或者 Ti(L2)tCl 所示, 式中 L2是 -C2。的烃基 R3或 者烃氧基 R30, R3可以是饱和或不饱和的直链、 支链或环状链, 0≤h<4, 0≤s<3, 0≤t<2, 当 h、 s和 t为 2或 2以上时, 存在的多个 R3可以分别相同或者不同。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 所述含钛化合物选自三甲氧基 氯化钛、 三乙氧基氯化钛、 三正丙氧基氯化钛、 三异丙氧基氯化钛、 二甲氧基二氯化钛、 二乙氧基二氯化钛、 二异丙氧基二氯化钛、 甲氧基三氯化钛、 乙氧基三氯化钛、 四氯化钛、 三氯化钛、二氯化钛、乙基氯化钛等。含钛化合物与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1~200。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 优选的是, 所述含钛化合物选 自三乙氧基氯化钛、 二乙氧基二氯化钛、 甲氧基三氯化钛、 四氯化钛、 三氯化钛中的一种。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 进一步优选的是, 所述含钛化 合物选自三乙氧基氯化钛、 甲氧基三氯化钛、 四氯化钛、 三氯化钛中的一种。
根据本发明提供的负载型烯烃聚合催化剂的制备方法,所述内给电子体选自如下式(I) (II) (III) (IV) 所示的物质以及其它饱和脂肪羧酸的垸基酯、 芳香羧酸的垸基酯、 脂肪 醚、 环醚、 饱和脂肪酮、 二元醇酯类化合物的任何一种或者是它们的组合, 一般为本领域 所公知的用于烯烃聚合的内给电子体:
Figure imgf000007_0001
(II) π) (IV)
其中 RS-R2S为相同或不相同的氢原子或 CrC2。的烃基, 可以是饱和或不饱和的直链、 支链或环状链。 内给电子体选自甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丁酯、 甲 酸甲酯、 甲酸乙酯、 甲酸丁酯、 乙酸甲酯、 乙酸乙酯、 乙酸丁酯、 对羟基苯甲酸甲酯、 对 羟基苯甲酸乙酯、 对羟基苯甲酸丁酯、 氨基苯甲酸甲酯、 氨基苯甲酸乙酯、 氨基苯甲酸丁 酯、 对苯磺酸甲酯、 对苯磺酸乙酯、 对苯磺酸丁酯、 苯甲酸甲酯、 苯甲酸乙酯、 苯甲酸丁 酯、 水杨酸甲酯、 水杨酸乙酯、 水杨酸丁酯、 对苯二乙酸二乙酯、 间苯二甲酸二甲酯、 间 苯二甲酸二乙酯、 间苯二甲酸二丁酯、 邻苯二甲酸二甲酯、 邻苯二甲酸二乙酯、 邻苯二甲 酸二正丙酯、 邻苯二甲酸二正丁酯、 邻苯二甲酸二异丁酯、 邻苯二丁酸二丁酯、 邻苯二甲 酸二异辛酯、 乙二酸二甲酯、 乙二酸二乙酯、 乙二酸二丁酯、 2,2-二乙基丙二酸二正丁酯、 2,3-二甲基琥珀酸甲酯、 β-甲基戊二酸二异丙酯、 苯二甲酸 1,3-二戊酯、 乙醚、 己醚、 2,2- 二异丁基 -1,3-甲氧基丙垸、 四氢呋喃 (THF)、 丙酮、 甲基异丁基酮、 2-乙基 -1,3-丙二醇二 苯甲酸酯、 2-异丙基 -2-异戊基基 -1,3丙二醇二苯甲酸酯、 1,3-丁二醇二甲基苯甲酸酯、 1,3- 戊二醇新戊酸酯、 2,4-戊二醇二苯甲酸酯、 2-甲基 -1,3-戊二醇苯甲酸肉桂酸酯、 2,4-庚二醇 二苯甲酸酯、 2-甲基 -3,5-庚二醇二苯甲酸酯、 9,9-双 (甲氧基甲基)^等或是它们的组合。 内 给电子体加入量与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1~50。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 优选的是, 所述内给电子体选 自垸基酯、 芳香羧酸的垸基酯、 脂肪醚、 环醚、 饱和脂肪酮中的一种。
根据本发明提供的负载型烯烃聚合催化剂, 进一步优选的是, 所述内给电子体选自环 醚、 芳香羧酸的垸基酯、 饱和脂肪酮中的一种。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 所述有机镁化合物如通式 R4 pMgX 所示, 式中 R4是 CrC2。的烃基, 可以是饱和或不饱和的直链、 支链或环状链, 0<p<2, X是卤素, 例如氟、 氯、 溴和碘。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 所述有机镁化合物选自甲基氯 化镁、 乙基氯化镁、 丁基氯化镁、 烯丙基氯化镁、 异丙基氯化镁、 叔丁基氯化镁、 2-甲基 丁基氯化镁、 1-庚基氯化镁、 1-戊基氯化镁、 1-己基氯化镁、 1,1-二甲基丙基氯化镁、 环戊 基氯化镁、 乙烯基氯化镁、 2-丁基氯化镁、 1-辛基氯化镁等。
根据本发明提供的负载型烯烃聚合催化剂的制备方法,所述有机镁化合物与载体 A上 镁负载量的摩尔比为 0.01~100。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 所述有机铝化合物包括三垸基 铝 A1R3、 二垸基垸氧基铝 A1R20R、 二垸基卤化铝 A1R2X、 铝氧垸、 乙基倍半铝氯化物等, 其中 R是 d-d^ 垸基, X是卤素, 例如氟、 氯、 溴和碘。
根据本发明提供的负载型烯烃聚合催化剂的制备方法,所述有机铝化合物与载体 A上 镁负载量的摩尔比为 0.01~100。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 所述含羟基类化合物如通式 HOR5所示, 式中 R5是 -C2。的烃基, 可以是饱和或不饱和的直链、 支链或环状链; 含羟 基类化合物选自乙醇、 正丁醇、 正己醇、 异辛醇、 苯甲醇和苯乙醇等。
根据本发明提供的负载型烯烃聚合催化剂的制备方法, 所述含羟基类化合物与载体 A 上镁负载量的摩尔比为 0.01~200。
对于上述得到的催化剂还可根据需要, 加入有机金属助催化剂如有机铝化合物、 有机 锂化合物、 有机硼化合物等进行预还原, 其中所述的有机铝化合物包括三垸基铝 A1R3、 二 垸基垸氧基铝 A1R20R、 二垸基卤化铝 A1R2X、 铝氧垸、 乙基倍半铝氯化物等, 其中 R是 ^的垸基, X是卤素, 例如氟、 氯、 溴和碘; 有机锂化合物通式如 LiRs所示, 式中 是 CrC2。的烃基, 可以是饱和或不饱和的直链、 支链或环状链, 选自甲基锂、 乙基锂、 丁基锂、 叔丁基锂、 戊基锂、 苯基锂等; 有机硼化合物通式如 BR7 q¾q所示, 式中 R7是 CrC2。的垸基或垸氧基, 0≤q≤3, 选自三甲基硼、 三乙基硼、 二氯甲基硼、 二氯乙基硼、 二 氯丁基硼、 二氯甲氧基硼、 二氯乙氧基硼、 三氯化硼和二氯丁氧基硼等。 有机金属助催化 剂与钛活性组分的摩尔比为 0.01~1000。 根据本发明提供的负载型烯烃聚合催化剂的方法, 其中一种方法包含如下步骤: a)将载体 A浸渍含有可溶性镁盐的溶液, 然后干燥,接着在高温 300~900'C下焙烧活 化;
b) 将步骤 a所得的产物与含钛化合物溶液反应,根据需要可同时在反应体系中加入内 给电子体, 然后洗涤、 干燥, 得到所述催化剂保存备用。
根据一个优选的制备负载型催化剂的方法, 包含如下步骤:
a)将可溶性镁盐浸渍在载体 A上,浸渍时间为 0.5~12h,优选 4~8h,浸渍温度为 0~80 °C, 优选室温〜 70°C, 然后在室温〜 250°C下干燥, 优选 80~200°C, 干燥时间 2~20h, 优选 8~15h, 干燥过程中也可以采用真空干燥; 将上述样品在惰性气体或者氧气或者空气中进 行高温焙烧活化, 焙烧温度在 300~900'C, 优选 400~800'C, 时间为 l~10h, 优选 3~8h, 然后进行冷却, 其中在冷却到 300~400'C时切换成惰性气体如氮气或氩气等, 自然冷却; b) 将步骤 a所得的产物与含钛化合物溶液反应, 反应时间为 0.5~8h, 优选 l~5h, 温 度为室 ¾~200'C, 优选 80~180'C ; 根据需要可同时在反应体系中加入内给电子体, 然后用 C3-C2。的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室 温~2501之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采 用真空, 得到所述催化剂保存备用。
一般地, 本发明是利用载体 A, 先将镁盐浸渍于其上, 然后高温焙烧, 制得负载含镁 化合物的催化剂母体; 然后将上述催化剂母体与含钛化合物溶液反应, 使载体 B原位生成 并负载于载体 A上, 同时还实现了钛活性组分的原位负载, 根据需要可在反应体系中加入 内给电子体, 从而制备得到负载型烯烃聚合催化剂。
上述步骤 a是将可溶性镁盐负载于载体 A (例如上文所述的载体) 上的方法。 用于将 镁盐负载于载体 A上的方法可以是巳知的任何可以将镁盐负载于载体上的方法。根据本发 明的一个实施方案, 将镁盐负载于载体上的方法包括用镁盐溶液浸渍多孔载体, 镁盐可以 是上文所述的任意可溶性含镁盐。 根据一个实施方案, 在浸渍过程中, 可以实施搅拌, 优 选连续搅拌。 一般地, 该搅拌持续约 l~12h, 优选约 4~8h, 浸渍温度为 0~80'C, 优选室温 ~70°C。 根据一个实施方案, 镁负载量按 Mg重量计为催化剂总重量的 0.01~50wt%, 优选 0.1~40wt%。 然后将得到的负载有镁盐组分的载体进行干燥。 该干燥通常在室温〜 250'C进 行, 优选 80~200°C。 根据一个实施方案, 该干燥在约 120°C进行。 该干燥亦可在真空条件 下进行。对该干燥进行的时间没有特别限定,但是该干燥通常持续约 2~20h,优选约 7~18h, 进一步优选约 8~15h。 在干燥完毕之后, 将负载有镁盐组分的载体 A进行焙烧。 对焙烧进 行的方式没有特别限定, 但是该焙烧优选在流化床内进行。 根据一个实施方案, 该焙烧通 常以两个阶段进行, 即低温阶段和高温阶段。 低温阶段通常在约 100~300'C进行。 高温阶 段通常在约 300~900'C进行。 不受任何理论限制, 在所述低温阶段载体中吸附的物理水基 本被除去, 可溶性镁盐部分分解, 而在所述高温阶段载体 A上的部分羟基被除去, 可溶性 镁盐完全分解。 根据一个实施方案, 所述低温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据另一个实施方案, 所述高温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据一个实施 方案, 所述低温阶段在惰性气体或者空气气氛下进行, 优选在惰性气体气氛下进行, 所述 惰性气体例如氮气、 氦气、 氩气等气氛, 优选在氮气气氛下进行, 例如高纯氮气。 根据一 个实施方案,所述高温阶段焙烧在空气或者氧气条件下进行,优选在干燥空气条件下进行。 在所述焙烧结束后, 将得到的负载有含镁化合物的载体 A从高温阶段冷却。 根据一个实施 方案, 在冷却到 300~400'C的温度时, 可以变换气氛, 例如从空气变为惰性气体, 例如氮 气、 氩气等。 根据一个实施方案, 该冷却为自然降温冷却。
上述步骤 b是将载体 B负载到载体 A上以及制备催化剂的方法。 根据一个实施方案, 步骤 a所得产物与含钛化合物溶液反应, 在反应过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅拌持续约 0.5~8h, 优选 l~5h。 含钛化合物如 TiO^hC -h或者 Ti(L2)sCl3_s或者 Ti(L2)t¾t所示, 式中!^是 ^-^。的烃基 R3或者烃氧基 R30, R3可以是饱和或不饱和的 直链、 支链或环状链, 0≤h<4, 0≤s<3, 0≤t<2, 当 h、 s和 t为 2或 2以上时, 存在的多个 R3可以分别相同或者不同; 含钛化合物选自三甲氧基氯化钛、 三乙氧基氯化钛、 三正丙氧 基氯化钛、 三异丙氧基氯化钛、 二甲氧基二氯化钛、 二乙氧基二氯化钛、 二异丙氧基二氯 化钛、 甲氧基三氯化钛、 乙氧基三氯化钛、 四氯化钛、 三氯化钛、 二氯化钛、 乙基氯化钛 等; 含钛化合物与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1~200。 该过程通常在 室温 ~200'C下进行, 优选 80~180'C。 根据需要可同时在反应体系中加入内给电子体, 内给 电子体如上文所述, 内给电子体加入量与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1-50.用 C3-C2。的垸烃溶剂, 如正庚垸、 正己垸等洗涤,温度为 0~150'C, 优选室温〜 100 °C, 在室温 ~250°C之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中 也可以采用真空, 得到所述催化剂在氮气保护下转移, 保存备用。 作为一个实例, 制备本发明催化剂的具体操作包括:
将多孔无定形硅胶浸渍在一定浓度的醋酸镁溶液中, 镁负载量相对于催化剂总重量符 合本文的要求 (例如 0.1~40wt%, 以镁的重量计); 在连续搅拌一定时间 (例如 4~8h) 后, 升温干燥; 将负载有醋酸镁的硅胶载体在流化床内进行高温焙烧, 其中在低温阶段 (例如 100'C~300'C ) 在氮气气氛中焙烧脱除载体中的物理水, 可溶性镁盐部分分解, 在高温阶 段 (例如 300'C~900'C ) 在干燥空气中焙烧脱除硅胶表面的部分羟基, 可溶性镁盐完全分 解, 在此高温阶段保持一定时间 (例如 3~8h); 自然降温冷却, 在冷却到 300~400'C时切 换为氮气保护, 制得负载有含镁化合物的催化剂母体。 然后, 在一定温度下 (例如 80~180 'C )催化剂母体与四氯化钛进行反应, 四氯化钛与载体 A上镁负载量的摩尔比为 0.1~200。 根据需要可同时在反应体系中加入内给电子体, 如邻苯二甲酸正丁酯, 内给电子体加入量 与载体 A上镁负载量的摩尔比为 0.1~50; 连续搅拌一定时间 (例如 l~5h), 用正己垸在一 定温度下 (例如室温〜 100'C ) 洗涤催化剂后, 再在 80~160'C之间干燥 6~12h, 该干燥在惰 性气体气氛下进行, 例如在氮气、 氦气、 氩气等气氛下进行, 优选在氮气气氛下进行, 该 干燥过程也可在真空条件下进行。 在氮气保护下转移, 催化剂保存备用。 根据本发明提供的负载型烯烃聚合催化剂的方法, 其中一种方法包含如下步骤: a)将载体 A浸渍含有可溶性镁盐的溶液, 然后干燥,接着在高温 300~900'C下焙烧活 化;
b) 将步骤 a所得产物与有机镁化合物反应, 然后干燥;
c)将步骤 b所得的产物与含钛化合物溶液反应,根据需要可同时在反应体系中加入内 给电子体, 然后洗涤、 干燥, 得到所述催化剂保存备用。
根据一个优选的制备负载型催化剂的方法, 包含如下步骤:
a)将可溶性镁盐浸渍在载体上, 浸渍时间为 0.5~12h, 优选 4~8h, 浸渍温度为 0~80 °C, 优选室温〜 70°C, 然后在室温〜 250°C下干燥, 优选 80~200°C, 干燥时间 2~20h, 优选 8~15h, 干燥过程中也可以采用真空干燥; 将上述样品在惰性气体或者氧气或者空气中进 行高温焙烧活化, 焙烧温度在 300~900'C, 优选 400~800'C, 时间为 l~10h, 优选 3~8h, 然后进行冷却, 其中在冷却到 300~400'C时切换成惰性气体如氮气或氩气等, 自然冷却; b) 将步骤 a所得产物与有机镁化合物反应, 温度为 0~150°C, 优选室温〜 70°C, 反应 所需时间一般在 5min~2h, 优选 10min~lh; 然后用 C3-C2。的垸烃溶剂, 如正庚垸、 正己垸 等洗涤, 温度为 0~150'C, 优选室 ¾~100'C, 在室温 ~250'C之间干燥, 优选 60~120'C, 干 燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采用真空, 得到产物保存备用。
c)将步骤 b所得的产物与含钛化合物溶液反应, 反应时间为 0.5~8h, 优选 l~5h, 温 度为室 ¾~200'C, 优选 80~180'C, 根据需要可同时在反应体系中加入内给电子体, 然后用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室 温~2501之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采 用真空, 得到所述催化剂保存备用。
一般地, 本发明是利用载体 A, 先将镁盐浸渍于其上, 然后高温焙烧, 制得负载含镁 化合物的催化剂母体; 然后将上述催化剂母体与有机镁化合物反应, 再与含钛化合物溶液 反应, 使载体 B原位生成并负载于载体 A上, 同时还实现了钛活性组分的原位负载, 根据 需要可在反应体系中加入内给电子体, 从而制备得到负载型烯烃聚合催化剂。
上述步骤 a是将镁盐负载于载体 A (例如上文所述的载体) 上的方法。 用于将镁盐负 载于载体 A上的方法可以是巳知的任何可以将镁盐负载于载体上的方法。根据本发明的一 个实施方案, 将镁盐负载于载体上的方法包括用镁盐溶液浸渍多孔载体, 镁盐可以是上文 所述的任意可溶性含镁盐。 根据一个实施方案, 在浸渍过程中, 可以实施搅拌, 优选连续 搅拌。 一般地, 该搅拌持续约 l~12h, 优选约 4~8h, 浸渍温度为 0~80'C, 优选室温〜 70'C。 根据一个实施方案, 镁负载量按 Mg 重量计为催化剂总重量的 0.01~50wt%, 优选 0.1~40wt%。 然后将得到的负载有镁盐组分的载体进行干燥。 该干燥通常在室温〜 250'C进 行, 优选 80~200°C。 根据一个实施方案, 该干燥在约 120°C进行。 该干燥亦可在真空条件 下进行。对该干燥进行的时间没有特别限定,但是该干燥通常持续约 2~20h,优选约 7~18h, 进一步优选约 8~15h。 在干燥完毕之后, 将负载有镁盐组分的载体 A进行焙烧。 对焙烧进 行的方式没有特别限定, 但是该焙烧优选在流化床内进行。 根据一个实施方案, 该焙烧通 常以两个阶段进行, 即低温阶段和高温阶段。 低温阶段通常在约 100~300'C进行。 高温阶 段通常在约 300~900'C进行。 不受任何理论限制, 在所述低温阶段载体中吸附的物理水基 本被除去, 可溶性镁盐部分分解, 而在所述高温阶段载体 A上的部分羟基被除去, 可溶性 镁盐完全分解。 根据一个实施方案, 所述低温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据另一个实施方案, 所述高温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据一个实施 方案, 所述低温阶段在惰性气体或者空气气氛下进行, 优选在惰性气体气氛下进行, 所述 惰性气体例如氮气、 氦气、 氩气等气氛, 优选在氮气气氛下进行, 例如高纯氮气。 根据一 个实施方案,所述高温阶段焙烧在空气或者氧气条件下进行,优选在干燥空气条件下进行。 在所述焙烧结束后, 将得到的负载有含镁化合物的载体 A从高温阶段冷却。 根据一个实施 方案, 在冷却到 300~400'C的温度时, 可以变换气氛, 例如从空气变为惰性气体, 例如氮 气、 氩气等。 根据一个实施方案, 该冷却为自然降温冷却。
上述步骤 b是将步骤 a所得产物进一步表面改性处理的方法。 根据一个实施方案, 将 步骤 a所得产物与有机镁化合物反应, 有机镁化合物如通式 R4 pMg¾_p所示, 式中 R4是 CrC2。的烃基, 可以是饱和或不饱和的直链、 支链或环状链, 0<p<2, X是卤素, 例如氟、 氯、 溴和碘, 有机镁化合物选自甲基氯化镁、 乙基氯化镁、 丁基氯化镁、 烯丙基氯化镁、 异丙基氯化镁、 叔丁基氯化镁、 2-甲基丁基氯化镁、 1-庚基氯化镁、 1-戊基氯化镁、 1-己基 氯化镁、 1,1-二甲基丙基氯化镁、 环戊基氯化镁、 乙烯基氯化镁、 2-丁基氯化镁、 1-辛基氯 化镁等, 有机镁化合物与载体 A上镁负载量的摩尔比为 0.01~100, 优选 0.1~80。 在反应过 程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅拌持续约 5min~2h, 优选 10min~lh。 该过程通常在 0~150'C下进行, 优选室温〜 70'C, 然后用 C3-C2。的垸烃溶剂, 如正庚垸、 正 己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室温 ~250'C之间干燥,优选 60~120'C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采用真空, 得到的产物保存备用。
上述步骤 C是将载体 B负载到载体 A上以及制备催化剂的方法。 根据一个实施方案, 步骤 b所的产物与含钛化合物溶液反应, 在反应过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅拌持续约 0.5~8h, 优选 l~5h。 含钛化合物如 TiO^hC -h或者 Ti(L2)sCl3_s或者 Ti(L2)t¾t所示, 式中!^是 ^-^。的烃基 R3或者烃氧基 R30, R3可以是饱和或不饱和的 直链、 支链或环状链, 0≤h<4, 0≤s<3, 0≤t<2, 当 h、 s和 t为 2或 2以上时, 存在的多个 R3可以分别相同或者不同; 含钛化合物选自三甲氧基氯化钛、 三乙氧基氯化钛、 三正丙氧 基氯化钛、 三异丙氧基氯化钛、 二甲氧基二氯化钛、 二乙氧基二氯化钛、 二异丙氧基二氯 化钛、 甲氧基三氯化钛、 乙氧基三氯化钛、 四氯化钛、 三氯化钛、 二氯化钛、 乙基氯化钛 等; 含钛化合物与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1~200。 该过程通常在 室温 ~200'C下进行, 优选 80~180'C。 根据需要可同时在反应体系中加入内给电子体, 内给 电子体如上文所述, 内给电子体加入量与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1-50.用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤,温度为 0~150'C, 优选室温〜 100 °C, 在室温 ~250°C之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中 也可以采用真空, 得到所述催化剂在氮气保护下转移, 保存备用。
作为一个实例, 制备本发明催化剂的具体操作包括:
将多孔无定形硅胶浸渍在一定浓度的醋酸镁溶液中, 镁负载量相对于催化剂总重量符 合本文的要求 (例如 0.1~40wt%, 以镁的重量计); 在连续搅拌一定时间 (例如 4~8h) 后, 升温干燥;将负载有醋酸镁的硅胶载体在流化床内进行高温焙烧,其中低温阶段(例如 100 'C~300'C ) 在氮气气氛中焙烧脱除载体中的物理水, 可溶性镁盐部分分解, 高温阶段 (例 如 300'C~900'C ) 在干燥空气中焙烧脱除硅胶表面的部分羟基, 可溶性镁盐完全分解, 在 此高温阶段保持一定时间 (例如 3~8h); 自然降温冷却, 在冷却到 300~400'C时切换为氮 气保护, 制得负载有含镁化合物的催化剂母体。 然后, 在一定温度下 (例如室温〜 70'C ) 与有机镁化合物(例如乙基氯化镁) 反应, 有机镁化合物与载体 A上镁负载量的摩尔比为 0.1-80, 连续搅拌一定时间 (例如 10min~lh), 用正己垸在一定温度下 (例如室温〜 100'C ) 洗涤催化剂后, 再在 60~120'C之间干燥 6~12h, 该干燥在惰性气体气氛下进行, 例如在氮 气、 氦气、 氩气等气氛下进行, 优选在氮气气氛下进行, 该干燥过程也可在真空条件下进 行。 在氮气保护下转移, 产物保存备用; 最后在一定温度下 (例如 80~180°C )催化剂母体 与四氯化钛进行反应, 四氯化钛与载体 A上镁负载量的摩尔比为 0.1~200, 根据需要可同 时在反应体系中加入内给电子体, 如邻苯二甲酸正丁酯, 内给电子体加入量与载体 A上镁 负载量的摩尔比为 0.1~50; 连续搅拌一定时间 (例如 l~5h); 用正己垸在一定温度下 (例 如室温〜 100'C ) 洗涤催化剂后, 再在 80~160°C之间干燥 6~12h, 该干燥在惰性气体气氛下 进行, 例如在氮气、 氦气、 氩气等气氛下进行, 优选在氮气气氛下进行, 该干燥过程也可 在真空条件下进行。 在氮气保护下转移, 催化剂保存备用。 根据本发明提供的负载型烯烃聚合催化剂的方法, 其中一种方法包含如下步骤: a)将载体 A浸渍含有可溶性镁盐的溶液, 然后干燥,接着在高温 300~900'C下焙烧活 化;
b) 将步骤 a所得产物与有机铝化合物反应, 然后干燥;
c)将步骤 b所得的产物与含钛化合物溶液反应,根据需要可同时在反应体系中加入内 给电子体, 然后洗涤、 干燥, 得到所述催化剂保存备用。
根据一个优选的制备负载型催化剂的方法, 包含如下步骤:
a)将可溶性镁盐浸渍在载体上, 浸渍时间为 0.5~12h, 优选 4~8h, 浸渍温度为 0~80 °C, 优选室温〜 70°C, 然后在室温〜 250°C下干燥, 优选 80~200°C, 干燥时间 2~20h, 优选 8~15h, 干燥过程中也可以采用真空干燥; 将上述样品在惰性气体或者氧气或者空气中进 行高温焙烧活化, 焙烧温度在 300~900'C, 优选 400~800'C, 时间为 l~10h, 优选 3~8h, 然后进行冷却, 其中在冷却到 300~400'C时切换成惰性气体如氮气或氩气等, 自然冷却; b) 将步骤 a所得产物与有机铝化合物反应,反应温度一般控制在 -90~70°C,优选 -70~50 °C, 反应的时间一般在 5min~2h, 优选 10min~lh, 然后用 C3-C2。的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室温 ~250'C之间干燥, 优选 60~120 V, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采用真空, 得到产物保存备用。
c)将步骤 b所得的产物与含钛化合物溶液反应, 反应时间为 0.5~8h, 优选 l~5h, 温 度为室 ¾~200'C, 优选 80~180'C, 根据需要可同时在反应体系中加入内给电子体, 然后用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室 温~2501之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采 用真空, 得到所述催化剂保存备用。
一般地, 本发明是利用载体 A, 先将镁盐浸渍于其上, 然后高温焙烧, 制得负载含镁 化合物的催化剂母体; 然后将上述催化剂母体与有机铝化合物反应, 再与含钛化合物溶液 反应, 使载体 B原位生成并负载于载体 A上, 同时还实现了钛活性组分的原位负载, 根据 需要可在反应体系中加入内给电子体, 从而制备得到负载型烯烃聚合催化剂。
上述步骤 a是将镁盐负载于载体 A (例如上文所述的载体) 上的方法。 用于将镁盐负 载于载体 A上的方法可以是巳知的任何可以将镁盐负载于载体上的方法。根据本发明的一 个实施方案, 将镁盐负载于载体上的方法包括用镁盐溶液浸渍多孔载体, 镁盐可以是上文 所述的任意可溶性含镁盐。 根据一个实施方案, 在浸渍过程中, 可以实施搅拌, 优选连续 搅拌。 一般地, 该搅拌持续约 l~12h, 优选约 4~8h, 浸渍温度为 0~80'C, 优选室温〜 70'C。 根据一个实施方案, 镁负载量按 Mg 重量计为催化剂总重量的 0.01~50wt%, 优选 0.1~40wt%。 然后将得到的负载有镁盐组分的载体进行干燥。 该干燥通常在室温〜 250'C进 行, 优选 80~200°C。 根据一个实施方案, 该干燥在约 120°C进行。 该干燥亦可在真空条件 下进行。对该干燥进行的时间没有特别限定,但是该干燥通常持续约 2~20h,优选约 7~18h, 进一步优选约 8~15h。 在干燥完毕之后, 将负载有镁盐组分的载体 A进行焙烧。 对焙烧进 行的方式没有特别限定, 但是该焙烧优选在流化床内进行。 根据一个实施方案, 该焙烧通 常以两个阶段进行, 即低温阶段和高温阶段。 低温阶段通常在约 100~300'C进行。 高温阶 段通常在约 300~900'C进行。 不受任何理论限制, 在所述低温阶段载体中吸附的物理水基 本被除去, 可溶性镁盐部分分解, 而在所述高温阶段载体 A上的部分羟基被除去, 可溶性 镁盐完全分解。 根据一个实施方案, 所述低温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据另一个实施方案, 所述高温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据一个实施 方案, 所述低温阶段在惰性气体或者空气气氛下进行, 优选在惰性气体气氛下进行, 所述 惰性气体例如是氮气、 氦气、 氩气等气氛, 优选在氮气气氛下进行, 例如高纯氮气。 根据 一个实施方案, 所述高温阶段焙烧在空气或者氧气条件下进行, 优选在干燥空气条件下进 行。 在所述焙烧结束后, 将得到的负载有含镁化合物的载体 A从高温阶段冷却。 根据一个 实施方案, 在冷却到 300~400°C的温度时, 可以变换气氛, 例如从空气变为惰性气体, 例 如氮气、 氩气等。 根据一个实施方案, 该冷却为自然降温冷却。
上述步骤 b是将步骤 a所得产物进一步表面改性处理的方法。 根据一个实施方案, 将 步骤 a所得产物与有机铝化合物反应, 有机铝化合物包括三垸基铝 A1R3、 二垸基垸氧基铝 A1R20R、 二垸基卤化铝 A1R2X、 铝氧垸、 乙基倍半铝氯化物等, 其中 R是 CrC12的垸基, X是卤素,例如氟、氯、溴和碘;有机铝化合物与载体 A上镁负载量的摩尔比为 0.01~100, 优选 0.1~80。在反应过程中,可以实施搅拌,优选连续搅拌。一般地,该搅拌持续约 5min~2h, 优选 10min~lh。 该过程通常在 -90~70°C下进行, 优选 -70~50°C, 用 C3-C2。的垸烃溶剂, 如 正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100 'C, 在室温〜 250 'C之间干燥, 优 选 60~120°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采用真空, 得到所述产物 在氮气保护下转移, 保存备用。
上述步骤 C是将载体 B负载到载体 A上以及制备催化剂的方法。 根据一个实施方案, 步骤 b所得产物与含钛化合物溶液反应, 在反应过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅拌持续约 0.5~8h, 优选 l~5h。 含钛化合物如 TiO^hC -h或者 Ti(L2)sCl3_s或者 Ti(L2)t¾t所示, 式中!^是 ^-^。的烃基 R3或者烃氧基 R30, R3可以是饱和或不饱和的 直链、 支链或环状链, 0≤h<4, 0≤s<3, 0≤t<2, 当 h、 s和 t为 2或 2以上时, 存在的多个 R3可以分别相同或者不同; 含钛化合物选自三甲氧基氯化钛、 三乙氧基氯化钛、 三正丙氧 基氯化钛、 三异丙氧基氯化钛、 二甲氧基二氯化钛、 二乙氧基二氯化钛、 二异丙氧基二氯 化钛、 甲氧基三氯化钛、 乙氧基三氯化钛、 四氯化钛、 三氯化钛、 二氯化钛、 乙基氯化钛 等; 含钛化合物与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1~200。 该过程通常在 室温 ~200'C下进行, 优选 80~180'C。 根据需要可同时在反应体系中加入内给电子体, 内给 电子体如上文所述, 内给电子体加入量与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1-50.用 C3-C2。的垸烃溶剂, 如正庚垸、 正己垸等洗涤,温度为 0~150'C, 优选室温〜 100 °C, 在室温 ~250°C之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中 也可以采用真空, 得到所述催化剂在氮气保护下转移, 保存备用。
作为一个实例, 制备本发明催化剂的具体操作包括:
将多孔无定形硅胶浸渍在一定浓度的醋酸镁溶液中, 镁负载量相对于催化剂总重量符 合本文的要求 (例如 0.1~40wt%, 以镁的重量计); 在连续搅拌一定时间 (例如 4~8h) 后, 升温干燥; 将负载有醋酸镁的硅胶载体在流化床内进行高温焙烧, 其中在低温阶段 (例如 100'C~300'C ) 在氮气气氛中焙烧脱除载体中的物理水, 可溶性镁盐部分分解, 在高温阶 段 (例如 300'C~900'C ) 在干燥空气中焙烧脱除硅胶表面的部分羟基, 可溶性镁盐完全分 解, 在此高温阶段保持一定时间 (例如 3~8h) ; 自然降温冷却, 在冷却到 300~400'C时切 换为氮气保护, 制得负载有含镁化合物的催化剂母体。 然后, 在一定温度下 (例如 -70~50 'C ) 与三乙基铝反应, 有机铝化合物与载体 A上镁负载量的摩尔比为 0.1~80。 连续搅拌一 定时间 (例如 10min~lh), 用正己垸在一定温度下 (例如室温〜 100'C ) 洗涤催化剂后, 再 在 60~120'C之间干燥 6~12h, 该干燥在惰性气体气氛下进行, 例如在氮气、 氦气、 氩气等 气氛下进行, 优选在氮气气氛下进行, 该干燥过程也可在真空条件下进行。 在氮气保护下 转移, 产物保存备用; 最后在一定温度下(例如 80~180°C )催化剂母体与四氯化钛进行反 应, 四氯化钛与载体 A上镁负载量的摩尔比为 0.1~200, 根据需要可同时在反应体系中加 入内给电子体, 如邻苯二甲酸正丁酯, 内给电子体加入量与载体 A上镁负载量的摩尔比为 0.1-50; 连续搅拌一定时间 (例如 l~5h); 用正己垸在一定温度下 (例如室温〜 100'C ) 洗 涤催化剂后,再在 80~160'C之间干燥 6~12h,该干燥在惰性气体气氛下进行,例如在氮气、 氦气、 氩气等气氛下进行, 优选在氮气气氛下进行, 该干燥过程也可在真空条件下进行。 在氮气保护下转移, 催化剂保存备用。 根据本发明提供的负载型烯烃聚合催化剂的方法, 其中一种方法包含如下步骤: a)将载体 A浸渍含有可溶性镁盐的溶液, 然后干燥,接着在高温 300~900'C下焙烧活 化;
b) 将步骤 a所得产物与有机铝化合物反应, 再加入含羟基类化合物, 然后干燥; c)将步骤 b所得的产物与含钛化合物溶液反应,根据需要可同时在反应体系中加入内 给电子体, 然后洗涤、 干燥, 得到所述催化剂保存备用。
根据一个优选的制备负载型催化剂的方法, 包含如下步骤:
a)将可溶性镁盐浸渍在载体上, 浸渍时间为 0.5~12h, 优选 4~8h, 浸渍温度为 0~80 °C, 优选室温〜 70°C, 然后在室温〜 250°C下干燥, 优选 80~200°C, 干燥时间 2~20h, 优选 8~15h, 干燥过程中也可以采用真空干燥; 将上述样品在惰性气体或者氧气或者空气中进 行高温焙烧活化, 焙烧温度在 300~900'C, 优选 400~800'C, 时间为 l~10h, 优选 3~8h, 然后进行冷却, 其中在冷却到 300~400'C时切换成惰性气体如氮气或氩气等, 自然冷却; b) 将步骤 a所得产物与有机铝化合物反应,反应温度一般控制在 -90~70°C,优选 -70~50 °C,反应的时间一般在 5min~2h,优选 10min~lh;继而与含羟基类化合物反应,温度为 0~150 °C, 优选室温〜 100 °C, 反应的时间取决于反应物的性质和操作条件, 所需时间一般在 5min~2h, 优选 10min~lh, 然后用 C3-C2。的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150°C, 优选室温〜 100°C, 在室温〜 250°C之间干燥, 优选 60~120°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采用真空, 得到产物保存备用。
c)将步骤 b所得的产物用含钛化合物溶液反应, 反应时间为 0.5~8h, 优选 l~5h, 温 度为室 ¾~200'C, 优选 80~180'C, 根据需要可同时在反应体系中加入内给电子体, 然后用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室 温~2501之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采 用真空, 得到所述催化剂保存备用。
一般地, 本发明是利用载体 A, 先将镁盐浸渍于其上, 然后高温焙烧, 制得负载含镁 化合物的催化剂母体; 然后将上述催化剂母体与有机铝化合物以及含羟基类化合物反应, 再与含钛化合物溶液反应,使载体 B原位生成并负载于载体 A上, 同时还实现了钛活性组 分的原位负载, 根据需要可在反应体系中加入内给电子体, 从而制备得到负载型烯烃聚合 催化剂。
上述步骤 a是将镁盐负载于载体 A (例如上文所述的载体) 上的方法。 用于将镁盐负 载于载体 A上的方法可以是巳知的任何可以将镁盐负载于载体上的方法。根据本发明的一 个实施方案, 将镁盐负载于载体上的方法包括用镁盐溶液浸渍多孔载体, 镁盐可以是上文 所述的任意可溶性含镁盐。 根据一个实施方案, 在浸渍过程中, 可以实施搅拌, 优选连续 搅拌。 一般地, 该搅拌持续约 l~12h, 优选约 4~8h, 浸渍温度为 0~80'C, 优选室温〜 70'C。 根据一个实施方案, 镁负载量按 Mg 重量计为催化剂总重量的 0.01~50wt%, 优选 0.1~40wt%。 然后将得到的负载有镁盐组分的载体进行干燥。 该干燥通常在室温〜 250'C进 行, 优选约 80~200°C。 根据一个实施方案, 该干燥在约 120°C进行。 该干燥亦可在真空条 件下进行。 对该干燥进行的时间没有特别限定, 但是该干燥通常持续约 2~20h, 优选约 7~18h, 进一步优选约 8~15h。 在干燥完毕之后, 将负载有镁盐组分的载体 A进行焙烧。 对焙烧进行的方式没有特别限定, 但是该焙烧优选在流化床内进行。 根据一个实施方案, 该焙烧通常以两个阶段进行, 即低温阶段和高温阶段。低温阶段通常在约 100~300'C进行。 高温阶段通常在约 300~900'C进行。 不受任何理论限制, 在所述低温阶段载体中吸附的物 理水基本被除去, 可溶性镁盐部分分解, 而在所述高温阶段载体 A上的部分羟基被除去, 可溶性镁盐完全分解。 根据一个实施方案, 所述低温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据另一个实施方案, 所述高温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据一 个实施方案,所述低温阶段在惰性气体或者空气气氛下进行,优选在惰性气体气氛下进行, 所述惰性气体例如是氮气、 氦气、 氩气等气氛, 优选在氮气气氛下进行, 例如高纯氮气。 根据一个实施方案, 所述高温阶段焙烧在空气或者氧气条件下进行, 优选在干燥空气条件 下进行。 在所述焙烧结束后, 将得到的负载有含镁化合物的载体 A从高温阶段冷却。 根据 一个实施方案, 在冷却到 300~400'C的温度时, 可以变换气氛, 例如从空气变为惰性气体, 例如氮气、 氩气等。 根据一个实施方案, 该冷却为自然降温冷却。
上述步骤 b是将步骤 a所得产物进一步表面改性处理的方法。 根据一个实施方案, 将 步骤 a所得产物与有机铝化合物反应, 有机铝化合物包括三垸基铝 A1R3、 二垸基垸氧基铝 A1R20R、 二垸基卤化铝 A1R2X、 铝氧垸、 乙基倍半铝氯化物等, 其中 R是 CrC12的垸基, X是卤素,例如氟、氯、溴和碘;有机铝化合物与载体 A上镁负载量的摩尔比为 0.01~100, 优选 0.1~80。在反应过程中,可以实施搅拌,优选连续搅拌。一般地,该搅拌持续约 5min~2h, 优选 10min~lh。 该过程通常在 -90~70°C下进行, 优选 -70~50°C。 然后将上述产物与含羟基 类化合物反应, 含羟基类化合物如通式 HOR5所示, 式中 R5是 -C2。的烃基, 可以是饱和 或不饱和的直链、 支链或环状链; 含羟基类化合物选自乙醇、 正丁醇、 正己醇、 异辛醇、 苯甲醇和苯乙醇等。 含羟基类化合物与载体 A 上镁负载量的摩尔比为 0.01~200, 优选 0.1-160. 反应温度为 0~150°C, 优选室温〜 100°C, 反应的时间取决于反应物的性质和操作 条件, 所需时间一般在 5min~2h, 优选 10min~lh, 然后用 C3-C2。的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室温 ~250'C之间干燥, 优选 60~120 V, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采用真空, 得到所述产物在氮气保 护下转移, 保存备用。
上述步骤 C是将载体 B负载到载体 A上以及制备催化剂的方法。 根据一个实施方案, 步骤 b所的产物与含钛化合物溶液反应, 在反应过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅拌持续约 0.5~8h, 优选 l~5h。 含钛化合物如 TiO^hC -h或者 Ti(L2)sCl3_s或者 Ti(L2)t¾t所示, 式中!^是 ^-^。的烃基 R3或者烃氧基 R30, R3可以是饱和或不饱和的 直链、 支链或环状链, 0≤h<4, 0≤s<3, 0≤t<2, 当 h、 s和 t为 2或 2以上时, 存在的多个 R3可以分别相同或者不同; 含钛化合物选自三甲氧基氯化钛、 三乙氧基氯化钛、 三正丙氧 基氯化钛、 三异丙氧基氯化钛、 二甲氧基二氯化钛、 二乙氧基二氯化钛、 二异丙氧基二氯 化钛、 甲氧基三氯化钛、 乙氧基三氯化钛、 四氯化钛、 三氯化钛、 二氯化钛、 乙基氯化钛 等; 含钛化合物与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1~200。 该过程通常在 室温 ~200'C下进行, 优选 80~180'C。 根据需要可同时在反应体系中加入内给电子体, 内给 电子体如上文所述, 内给电子体加入量与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1-50; 用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤,温度为 0~150'C, 优选室温〜 100 °C, 在室温 ~250°C之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中 也可以采用真空, 得到所述催化剂在氮气保护下转移, 保存备用。
作为一个实例, 制备本发明催化剂的具体操作包括:
将多孔无定形硅胶浸渍在一定浓度的醋酸镁溶液中, 镁负载量相对于催化剂总重量符 合本文的要求 (例如 0.1~40wt%, 以镁的重量计); 在连续搅拌一定时间 (例如 4~8h) 后, 升温干燥; 将负载有醋酸镁的硅胶载体在流化床内进行高温焙烧, 其中在低温阶段 (例如 100'C~300'C ) 在氮气气氛中焙烧脱除载体中的物理水, 可溶性镁盐部分分解, 在高温阶 段 (例如 300'C~900'C ) 在干燥空气中焙烧脱除硅胶表面的部分羟基, 可溶性镁盐完全分 解, 在此高温阶段保持一定时间 (例如 3~8h); 自然降温冷却, 在冷却到 300~400'C时切 换为氮气保护, 制得负载含镁化合物的催化剂母体。 然后, 在一定温度下(例如 -70~50'C ) 与三乙基铝反应, 有机铝化合物与载体 A上镁负载量的摩尔比为 0.1~80。 连续搅拌一定时 间 (例如 10min~lh); 随后在一定温度下 (例如室温〜 100'C ) 与正己醇反应, 正己醇与载 体 A上镁负载量的摩尔比为 0.1~160。 连续搅拌一定时间 (例如 10min~lh), 用正己垸在 一定温度下 (例如室温〜 100'C ) 洗涤催化剂后, 再在 60~120'C之间干燥 6~12h, 该干燥在 惰性气体气氛下进行, 例如在氮气、 氦气、 氩气等气氛下进行, 优选在氮气气氛下进行, 该干燥过程也可在真空条件下进行。 在氮气保护下转移, 产物保存备用; 最后在一定温度 下 (例如 80~180'C ) 催化剂母体与四氯化钛进行反应, 四氯化钛与载体 A上镁负载量的 摩尔比为 0.1~200, 根据需要可同时在反应体系中加入内给电子体, 如邻苯二甲酸正丁酯, 内给电子体加入量与载体 A 上镁负载量的摩尔比为 0.1~50; 连续搅拌一定时间 (例如 l~5h); 用正己垸在一定温度下 (例如室温〜 100'C ) 洗涤催化剂后, 再在 80~160'C之间干 燥 6~12h, 该干燥在惰性气体气氛下进行, 例如在氮气、 氦气、 氩气等气氛下进行, 优选 在氮气气氛下进行, 该干燥过程也可在真空条件下进行。 在氮气保护下转移, 催化剂保存 备用。 根据本发明提供的负载型烯烃聚合催化剂的方法, 其中一种方法包含如下步骤: a)将载体 A浸渍含有可溶性镁盐和铵盐的溶液, 然后干燥,接着在高温 300~900'C下 焙烧活化;
b) 将步骤 a所得的产物与含钛化合物溶液反应,根据需要可同时在反应体系中加入内 给电子体, 然后洗涤、 干燥, 得到所述催化剂保存备用。
根据一个优选的制备负载型催化剂的方法, 包含如下步骤:
a)将可溶性镁盐和铵盐浸渍在载体上, 浸渍时间为 0.5~12h, 优选 4~8h, 浸渍温度为 0~80°C, 优选室温〜 70°C, 然后在室温〜 250°C下干燥, 优选 80~200°C, 干燥时间 2~20h, 优选 8~15h, 干燥过程中也可以采用真空干燥; 将上述样品在惰性气体或者氧气或者空气 中进行高温焙烧活化,焙烧温度在 300~900'C,优选 400~800'C,时间为 l~10h,优选 3~8h, 然后进行冷却, 其中在冷却到 300~400'C时切换成惰性气体如氮气或氩气等, 自然冷却; b) 将步骤 a所得的产物与含钛化合物溶液反应, 反应时间为 0.5~8h, 优选 l~5h, 温 度为室 ¾~200'C, 优选 80~180'C, 根据需要可同时在反应体系中加入内给电子体, 然后用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室 温~2501之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采 用真空, 得到所述催化剂保存备用。
一般地, 本发明是利用载体 A, 先将镁盐与铵盐浸渍于其上, 然后高温焙烧, 制得负 载含镁化合物的催化剂母体; 然后将上述催化剂母体与含钛化合物溶液反应, 使载体 B原 位生成并负载于载体 A上, 同时还实现了钛活性组分的原位负载, 根据需要可在反应体系 中加入内给电子体, 从而制备得到负载型烯烃聚合催化剂。
上述步骤 a是将镁盐和铵盐负载于载体 A (例如上文所述的载体) 上的方法。 用于将 镁盐和铵盐负载于载体 A上的方法可以是巳知的任何可以将镁盐和铵盐负载于载体上的方 法。 根据本发明的一个实施方案, 将镁盐和铵盐负载于载体上的方法包括用镁盐与铵盐溶 液浸渍多孔载体, 镁盐可以是上文所述的任意可溶性含镁盐, 铵盐可以是上文所述的任意 铵盐。 根据一个实施方案, 在浸渍过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅 拌持续约 l~12h, 优选约 4~8h, 浸渍温度为 0~80°C, 优选室温〜 70°C。 根据一个实施方案, 镁负载量按 Mg重量计为催化剂总重量的 0.01~50wt%, 优选 0.1~40wt%, 铵盐与镁盐的摩 尔比为 0.01~10。 然后将得到的负载有镁盐和铵盐组分的载体进行干燥。 该干燥通常在室 温〜 250'C进行, 优选 80~200'C。 根据一个实施方案, 该干燥在约 120'C进行。 该干燥亦可 在真空条件下进行。 对该干燥进行的时间没有特别限定, 但是该干燥通常持续约 2~20h, 优选约 7~18h, 进一步优选约 8~15h。 在干燥完毕之后, 将负载之后的载体 A进行焙烧。 对焙烧进行的方式没有特别限定, 但是该焙烧优选在流化床内进行。 根据一个实施方案, 该焙烧通常以两个阶段进行, 即低温阶段和高温阶段。低温阶段通常在约 100~300'C进行。 高温阶段通常在约 300~900'C进行。 不受任何理论限制, 在所述低温阶段载体中吸附的物 理水基本被除去, 可溶性镁盐和铵盐部分分解, 而在所述高温阶段载体 A上的部分羟基被 除去, 可溶性镁盐和铵盐完全分解。 根据一个实施方案, 所述低温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据另一个实施方案, 所述高温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据一个实施方案, 所述低温阶段在惰性气体或者空气气氛下进行, 优选在惰性气 体气氛下进行, 所述惰性气体例如氮气、 氦气、 氩气等气氛, 优选在氮气气氛下进行, 例 如高纯氮气。 根据一个实施方案, 所述高温阶段焙烧在空气或者氧气条件下进行, 优选在 干燥空气条件下进行。 在所述焙烧结束后, 将得到的负载有含镁化合物的载体 A从高温阶 段冷却。 根据一个实施方案, 在冷却到 300~400°C的温度时, 可以变换气氛, 例如从空气 变为惰性气体, 例如氮气、 氩气等。 根据一个实施方案, 该冷却为自然降温冷却。
上述步骤 b是将载体 B负载到载体 A上以及制备催化剂的方法。 根据一个实施方案, 步骤 b所得产物与含钛化合物溶液反应, 在反应过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅拌持续约 0.5~8h, 优选 l~5h。 含钛化合物如 TiO^hC -h或者 Ti(L2)sCl3_s或者 Ti(L2)t¾t所示, 式中!^是 ^-^。的烃基 R3或者烃氧基 R30, R3可以是饱和或不饱和的 直链、 支链或环状链, 0≤h<4, 0≤s<3, 0≤t<2, 当 h、 s和 t为 2或 2以上时, 存在的多个 R3可以分别相同或者不同; 含钛化合物选自三甲氧基氯化钛、 三乙氧基氯化钛、 三正丙氧 基氯化钛、 三异丙氧基氯化钛、 二甲氧基二氯化钛、 二乙氧基二氯化钛、 二异丙氧基二氯 化钛、 甲氧基三氯化钛、 乙氧基三氯化钛、 四氯化钛、 三氯化钛、 二氯化钛、 乙基氯化钛 等; 含钛化合物与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1~200。 该过程通常在 室温 ~200'C下进行, 优选 80~180'C。 根据需要可同时在反应体系中加入内给电子体, 内给 电子体如上文所述, 内给电子体加入量与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1-50; 用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤,温度为 0~150'C, 优选室温〜 100 °C, 在室温 ~250°C之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中 也可以采用真空, 得到所述催化剂在氮气保护下转移, 保存备用。
作为一个实例, 制备本发明催化剂的具体操作包括:
将多孔无定形硅胶浸渍在一定浓度的醋酸镁与醋酸铵溶液中, 镁和铵的负载量相对于 催化剂总重量符合本文的要求 (例如 0.1~40wt%, 以镁的重量计; 铵盐与镁盐的摩尔比为 0.01-10); 在连续搅拌一定时间 (例如 4~8h) 后, 升温干燥; 将负载有醋酸镁和醋酸铵的 硅胶载体在流化床内进行高温焙烧, 其中在低温阶段 (例如 100'C~300'C ) 在氮气气氛中 焙烧脱除载体中的物理水, 可溶性镁盐和铵盐部分分解, 在高温阶段(例如 300'C~900'C ) 在干燥空气中焙烧脱除硅胶表面的部分羟基, 可溶性镁盐和铵盐完全分解, 在此高温阶段 保持一定时间 (例如 3~8h); 自然降温冷却, 在冷却到 300~400'C时切换为氮气保护, 制 得负载有含镁化合物的催化剂母体。 然后, 在一定温度下(例如 80~180'C )催化剂母体与 四氯化钛进行反应, 四氯化钛与载体 A上镁负载量的摩尔比为 0.1~200, 根据需要可同时 在反应体系中加入内给电子体, 如邻苯二甲酸正丁酯, 内给电子体加入量与载体 A上镁负 载量的摩尔比为 0.1~50; 连续搅拌一定时间 (例如 l~5h); 用正己垸在一定温度下 (例如 室温〜 100'C ) 洗涤催化剂后, 再在 80~160°C之间干燥 6~12h, 该干燥在惰性气体气氛下进 行, 例如在氮气、 氦气、 氩气等气氛下进行, 优选在氮气气氛下进行, 该干燥过程也可在 真空条件下进行。 在氮气保护下转移, 催化剂保存备用。 根据本发明提供的负载型烯烃聚合催化剂的方法, 其中一种方法包含如下步骤: a)将载体 A浸渍可溶性镁盐和铵盐的溶液,然后干燥,接着在高温 300~900'C下焙烧; b) 将步骤 a所得产物与有机镁化合物反应, 然后干燥;
c)将步骤 b所得的产物与含钛化合物溶液反应,根据需要可同时在反应体系中加入内 给电子体, 然后洗涤、 干燥, 得到所述催化剂保存备用。
根据一个优选的制备负载型催化剂的方法, 包含如下步骤:
a)将可溶性镁盐和铵盐浸渍在载体上, 浸渍时间为 0.5~12h, 优选 4~8h, 浸渍温度为 0~80°C, 优选室温〜 70°C, 然后在室温〜 250°C下干燥, 优选 80~200°C, 干燥时间 2~20h, 优选 8~15h, 干燥过程中也可以采用真空干燥; 将上述样品在惰性气体或者氧气或者空气 中进行高温焙烧活化,焙烧温度在 300~900'C,优选 400~800'C,时间为 l~10h,优选 3~8h, 然后进行冷却, 其中在冷却到 300~400'C时切换成惰性气体如氮气或氩气等, 自然冷却; b) 将步骤 a所得产物与有机镁化合物反应, 温度为 0~150°C, 优选室温〜 70°C, 反应 所需时间一般在 5min~2h, 优选 10min~lh, 然后用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸 等洗涤, 温度为 0~150'C, 优选室 ¾~100'C, 在室温 ~250'C之间干燥, 优选 60~120'C, 干 燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采用真空, 得到产物保存备用。
c)将步骤 a所得的产物与含钛化合物溶液反应, 反应时间为 0.5~8h, 优选 l~5h, 温 度为室 ¾~200'C, 优选 80~180'C, 根据需要可同时在反应体系中加入内给电子体, 然后用 C3-C2。的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室 温~2501之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采 用真空, 得到所述催化剂保存备用。
一般地, 本发明是利用载体 A, 先将镁盐与铵盐浸渍于其上, 然后高温焙烧, 制得负 载含镁化合物的催化剂母体; 然后将上述催化剂母体与有机镁化合物反应, 再与含钛化合 物溶液反应,使载体 B原位生成并负载于载体 A上,同时还实现了钛活性组分的原位负载, 根据需要可在反应体系中加入内给电子体, 从而制备得到负载型烯烃聚合催化剂。
上述步骤 a是将镁盐和铵盐负载于载体 A (例如上文所述的载体) 上的方法。 用于将 镁盐和铵盐负载于载体 A上的方法可以是巳知的任何可以将镁盐和铵盐负载于载体上的方 法。 根据本发明的一个实施方案, 将镁盐和铵盐负载于载体上的方法包括用镁盐与铵盐溶 液浸渍多孔载体, 镁盐可以是上文所述的任意可溶性含镁盐, 铵盐可以是上文所述的任意 铵盐。 根据一个实施方案, 在浸渍过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅 拌持续约 l~12h, 优选约 4~8h, 浸渍温度为 0~80°C, 优选室温〜 70°C。 根据一个实施方案, 镁负载量按 Mg重量计为催化剂总重量的 0.01~50wt%, 优选 0.1~40wt%, 铵盐与镁盐的摩 尔比为 0.01~10。 然后将得到的负载有镁盐和铵盐组分的载体进行干燥。 该干燥通常在室 温〜 250'C进行, 优选 80~200'C。 根据一个实施方案, 该干燥在约 120'C进行。 该干燥亦可 在真空条件下进行。 对该干燥进行的时间没有特别限定, 但是该干燥通常持续约 2~20h, 优选约 7~18h, 进一步优选约 8~15h。 在干燥完毕之后, 将负载之后的载体 A进行焙烧。 对焙烧进行的方式没有特别限定, 但是该焙烧优选在流化床内进行。 根据一个实施方案, 该焙烧通常以两个阶段进行, 即低温阶段和高温阶段。低温阶段通常在约 100~300'C进行。 高温阶段通常在约 300~900'C进行。 不受任何理论限制, 在所述低温阶段载体中吸附的物 理水基本被除去, 可溶性镁盐与铵盐部分分解, 而在所述高温阶段载体 A上的部分羟基被 除去, 可溶性镁盐和铵盐完全分解。 根据一个实施方案, 所述低温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据另一个实施方案, 所述高温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据一个实施方案, 所述低温阶段在惰性气体或者空气气氛下进行, 优选在惰性气 体气氛下进行, 所述惰性气体例如氮气、 氦气、 氩气等气氛, 优选在氮气气氛下进行, 例 如高纯氮气。 根据一个实施方案, 所述高温阶段焙烧在空气或者氧气条件下进行, 优选在 干燥空气条件下进行。 在所述焙烧结束后, 将得到的负载有含镁化合物的载体 A从高温阶 段冷却。 根据一个实施方案, 在冷却到 300~400°C的温度时, 可以变换气氛, 例如从空气 变为惰性气体, 例如氮气、 氩气等。 根据一个实施方案, 该冷却为自然降温冷却。
上述步骤 b是将步骤 a所得产物进一步表面改性处理的方法。 根据一个实施方案, 将 步骤 a所得产物与有机镁化合物反应, 有机镁化合物如通式 R4 pMg¾ 所示, 式中 R4是 CrC2。的烃基, 可以是饱和或不饱和的直链、 支链或环状链, 0<p<2, X是卤素, 例如氟、 氯、 溴和碘, 有机镁化合物选自甲基氯化镁、 乙基氯化镁、 丁基氯化镁、 烯丙基氯化镁、 异丙基氯化镁、 叔丁基氯化镁、 2-甲基丁基氯化镁、 1-庚基氯化镁、 1-戊基氯化镁、 1-己基 氯化镁、 1,1-二甲基丙基氯化镁、 环戊基氯化镁、 乙烯基氯化镁、 2-丁基氯化镁、 1-辛基氯 化镁等, 有机镁化合物与载体 A上镁负载量分的摩尔比为 0.01~100, 优选 0.1~80。 在反应 过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅拌持续约 5min~2h, 优选 10min~lh。 该过程通常在 0~150'C下进行, 优选室温〜 70'C, 然后用 C3-C2。的垸烃溶剂, 如正庚垸、 正 己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室温 ~250'C之间干燥,优选 60~120'C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采用真空, 得到的产物保存备用。
上述步骤 C是将载体 B负载到载体 A上以及制备催化剂的方法。 根据一个实施方案, 步骤 b所得产物与含钛化合物溶液反应, 在反应过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅拌持续约 0.5~8h, 优选 l~5h。 含钛化合物如 TiO^hCl^h或者 Ti(L2)sCl3_s或者 Ti(L2)t¾t所示, 式中!^是 ^-^。的烃基 R3或者烃氧基 R30, R3可以是饱和或不饱和的 直链、 支链或环状链, 0≤h<4, 0≤s<3, 0≤t<2, 当 h、 s和 t为 2或 2以上时, 存在的多个 R3可以分别相同或者不同; 含钛化合物选自三甲氧基氯化钛、 三乙氧基氯化钛、 三正丙氧 基氯化钛、 三异丙氧基氯化钛、 二甲氧基二氯化钛、 二乙氧基二氯化钛、 二异丙氧基二氯 化钛、 甲氧基三氯化钛、 乙氧基三氯化钛、 四氯化钛、 三氯化钛、 二氯化钛、 乙基氯化钛 等; 含钛化合物与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1~200。 该过程通常在 室温 ~200'C下进行, 优选 80~180'C。 根据需要可同时在反应体系中加入内给电子体, 内给 电子体如上文所述, 内给电子体加入量与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1-50; 用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤,温度为 0~150'C, 优选室温〜 100 °C, 在室温 ~250°C之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中 也可以采用真空, 得到所述催化剂在氮气保护下转移, 保存备用。
作为一个实例, 制备本发明催化剂的具体操作包括:
将多孔无定形硅胶浸渍在一定浓度的醋酸镁与醋酸铵溶液中, 镁与铵负载量相对于催 化剂总重量符合本文的要求 (例如 0.1~40wt%, 以镁的重量计; 铵盐与镁盐的摩尔比为 0.01-10); 在连续搅拌一定时间 (例如 4~8h) 后, 升温干燥; 将负载有醋酸镁和醋酸铵的 硅胶载体在流化床内进行高温焙烧, 其中在低温阶段 (例如 100'C~300'C ) 在氮气气氛中 焙烧脱除载体中的物理水, 可溶性镁盐和铵盐部分分解, 在高温阶段(例如 300'C~900'C ) 在干燥空气中焙烧脱除硅胶表面的部分羟基, 可溶性镁盐和铵盐完全分解, 在此高温阶段 保持一定时间 (例如 3~8h); 自然降温冷却, 在冷却到 300~400'C时切换为氮气保护, 制 得负载有含镁化合物的催化剂母体。 然后, 在一定温度下 (例如室温〜 70'C ) 与有机镁化 合物(例如乙基氯化镁) 反应, 有机镁化合物与载体 A上镁负载量的摩尔比为 0.1~80, 连 续搅拌一定时间 (例如 10min~lh), 用正己垸在一定温度下 (例如室温〜 100'C ) 洗涤催化 剂后, 再在 60~120°C之间干燥 6~12h, 该干燥在惰性气体气氛下进行, 例如在氮气、氦气、 氩气等气氛下进行, 优选在氮气气氛下进行, 该干燥过程也可在真空条件下进行。 在氮气 保护下转移, 产物保存备用; 最后在一定温度下(例如 80~180'C )催化剂母体与四氯化钛 进行反应, 四氯化钛与载体 A上镁负载量的摩尔比为 0.1~200, 根据需要可同时在反应体 系中加入内给电子体, 如邻苯二甲酸正丁酯, 内给电子体加入量与载体 A上镁负载量的摩 尔比为 0.1~50; 连续搅拌一定时间 (例如 l~5h); 用正己垸在一定温度下 (例如室温〜 100 'C ) 洗涤催化剂后, 再在 80~160'C之间干燥 6~12h, 该干燥在惰性气体气氛下进行, 例如 在氮气、 氦气、 氩气等气氛下进行, 优选在氮气气氛下进行, 该干燥过程也可在真空条件 下进行。 在氮气保护下转移, 催化剂保存备用。 根据本发明提供的负载型烯烃聚合催化剂的方法, 其中一种方法包含如下步骤: a)将载体 A浸渍可溶性镁盐和铵盐的溶液,然后干燥,接着在高温 300~900'C下焙烧; b)将步骤 a所得产物与有机铝化合物反应, 然后干燥;
c)将步骤 b所得的产物与含钛化合物溶液反应,根据需要可同时在反应体系中加入内 给电子体, 然后洗涤、 干燥, 得到所述催化剂保存备用。
根据一个优选的制备负载型催化剂的方法, 包含如下步骤:
a)将可溶性镁盐和铵盐浸渍在载体上, 浸渍时间为 0.5~12h, 优选 4~8h, 浸渍温度为 0~80°C, 优选室温〜 70°C, 然后在室温〜 250°C下干燥, 优选 80~200°C, 干燥时间 2~20h, 优选 8~15h, 干燥过程中也可以采用真空干燥; 将上述样品在惰性气体或者氧气或者空气 中进行高温焙烧活化,焙烧温度在 300~900'C,优选 400~800'C,时间为 l~10h,优选 3~8h, 然后进行冷却, 其中在冷却到 300~400'C时切换成惰性气体如氮气或氩气等, 自然冷却; b) 将步骤 a所得产物与有机铝化合物反应,反应温度一般控制在 -90~70°C,优选 -70~50 °C, 反应的时间一般在 5min~2h, 优选 10min~lh, 然后用 C3-C2。的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室温 ~250'C之间干燥, 优选 60~120 V, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采用真空, 得到产物保存备用。
c)将步骤 b所得的产物与含钛化合物溶液反应, 反应时间为 0.5~8h, 优选 l~5h, 温 度为室 ¾~200'C, 优选 80~180'C, 根据需要可同时在反应体系中加入内给电子体, 然后用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室 温~2501之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采 用真空, 得到所述催化剂保存备用。
一般地, 本发明是利用载体 A, 先将镁盐与铵盐浸渍于其上, 然后高温焙烧, 制得负 载含镁化合物的催化剂母体; 然后将上述催化剂母体与有机铝化合物反应, 再与含钛化合 物溶液反应,使载体 B原位生成并负载于载体 A上,同时还实现了钛活性组分的原位负载, 根据需要可在反应体系中加入内给电子体, 从而制备得到负载型烯烃聚合催化剂。
上述步骤 a是将镁盐和铵盐负载于载体 A (例如上文所述的载体) 上的方法。 用于将 镁盐和铵盐负载于载体 A上的方法可以是巳知的任何可以将镁盐和铵盐负载于载体上的方 法。 根据本发明的一个实施方案, 将镁盐和铵盐负载于载体上的方法包括用镁盐与铵盐溶 液浸渍多孔载体, 镁盐可以是上文所述的任意可溶性含镁盐, 铵盐可以是上文所述的任意 铵盐。 根据一个实施方案, 在浸渍过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅 拌持续约 l~12h, 优选约 4~8h, 浸渍温度为 0~80°C, 优选室温〜 70°C。 根据一个实施方案, 镁负载量按 Mg重量计为催化剂总重量的 0.01~50wt%, 优选 0.1~40wt%, 铵盐与镁盐的摩 尔比为 0.01~10。 然后将得到的负载有镁盐和铵盐组分的载体进行干燥。 该干燥通常在室 温〜 250'C进行, 优选 80~200'C。 根据一个实施方案, 该干燥在约 120'C进行。 该干燥亦可 在真空条件下进行。 对该干燥进行的时间没有特别限定, 但是该干燥通常持续约 2~20h, 优选约 7~18h, 进一步优选约 8~15h。 在干燥完毕之后, 将负载之后的载体 A进行焙烧。 对焙烧进行的方式没有特别限定, 但是该焙烧优选在流化床内进行。 根据一个实施方案, 该焙烧通常以两个阶段进行, 即低温阶段和高温阶段。低温阶段通常在约 100~300'C进行。 高温阶段通常在约 300~900'C进行。 不受任何理论限制, 在所述低温阶段载体中吸附的物 理水基本被除去, 可溶性镁盐和铵盐部分分解, 而在所述高温阶段载体 A上的部分羟基被 除去, 可溶性镁盐和铵盐完全分解。 根据一个实施方案, 所述低温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据另一个实施方案, 所述高温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据一个实施方案, 所述低温阶段在惰性气体或者空气气氛下进行, 优选在惰性气 体气氛下进行, 所述惰性气体例如氮气、 氦气、 氩气等气氛, 优选在氮气气氛下进行, 例 如高纯氮气。 根据一个实施方案, 所述高温阶段焙烧在空气或者氧气条件下进行, 优选在 干燥空气条件下进行。 在所述焙烧结束后, 将得到的负载有含镁化合物的载体 A从高温阶 段冷却。 根据一个实施方案, 在冷却到 300~400°C的温度时, 可以变换气氛, 例如从空气 变为惰性气体, 例如氮气、 氩气等。 根据一个实施方案, 该冷却为自然降温冷却。
上述步骤 b是将步骤 a所得产物进一步表面改性处理的方法。 根据一个实施方案, 将 步骤 a所得产物与有机铝化合物反应, 有机铝化合物包括三垸基铝 A1R3、 二垸基垸氧基铝 A1R20R、 二垸基卤化铝 A1R2X、 铝氧垸、 乙基倍半铝氯化物等, 其中 R是 CrC12的垸基, X是卤素,例如氟、氯、溴和碘;有机铝化合物与载体 A上镁负载量的摩尔比为 0.01~100, 优选 0.1~80。在反应过程中,可以实施搅拌,优选连续搅拌。一般地,该搅拌持续约 5min~2h, 优选 10min~lh。 该过程通常在 -90~70°C下进行, 优选 -70~50°C, 用 C3-C2。的垸烃溶剂, 如 正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100 'C, 在室温〜 250 'C之间干燥, 优 选 60~120°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采用真空, 得到所述产物 在氮气保护下转移, 保存备用。
上述步骤 C是将载体 B负载到载体 A上以及制备催化剂的方法。 根据一个实施方案, 步骤 b所得产物与含钛化合物溶液反应, 在反应过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅拌持续约 0.5~8h, 优选 l~5h。 含钛化合物如 TiO^hC -h或者 Ti(L2)sCl3_s或者 Ti(L2)tCl2_t所示, 式中 L2是 -C2。的烃基 R3或者烃氧基 R30, R3可以是饱和或不饱和的 直链、 支链或环状链, 0≤h<4, 0≤s<3, 0≤t<2, 当 h、 s和 t为 2或 2以上时, 存在的多个 R3可以分别相同或者不同; 含钛化合物选自三甲氧基氯化钛、 三乙氧基氯化钛、 三正丙氧 基氯化钛、 三异丙氧基氯化钛、 二甲氧基二氯化钛、 二乙氧基二氯化钛、 二异丙氧基二氯 化钛、 甲氧基三氯化钛、 乙氧基三氯化钛、 四氯化钛、 三氯化钛、 二氯化钛、 乙基氯化钛 等; 含钛化合物与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1~200。 该过程通常在 室温 ~200'C下进行, 优选 80~180'C。 根据需要可同时在反应体系中加入内给电子体, 内给 电子体如上文所述, 内给电子体加入量与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1-50; 用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤,温度为 0~150'C, 优选室温〜 100 °C, 在室温 ~250°C之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中 也可以采用真空, 得到所述催化剂在氮气保护下转移, 保存备用。
作为一个实例, 制备本发明催化剂的具体操作包括:
将多孔无定形硅胶浸渍在一定浓度的醋酸镁与醋酸铵溶液中, 镁和铵的负载量相对于 催化剂总重量符合本文的要求 (例如 0.1~40wt%, 以镁的重量计; 铵盐与镁盐的摩尔比为 0.01-10, ); 在连续搅拌一定时间 (例如 4~8h) 后, 升温干燥; 将负载有醋酸镁和醋酸铵 的硅胶载体在流化床内进行高温焙烧, 其中在低温阶段 (例如 100'C~300'C ) 在氮气气氛 中焙烧脱除载体中的物理水, 可溶性镁盐和铵盐部分分解, 在高温阶段 (例如 300'C~900 'C ) 在干燥空气中焙烧脱除硅胶表面的部分羟基, 可溶性镁盐和铵盐完全分解, 在此高温 阶段保持一定时间 (例如 3~8h); 自然降温冷却, 在冷却到 300~400'C时切换为氮气保护, 制得负载有含镁化合物的催化剂母体。 然后, 在一定温度下 (例如 -70~50'C ) 与三乙基铝 反应, 有机铝化合物与载体 A上镁负载量的摩尔比为 0.1~80。 连续搅拌一定时间 (例如 10min~lh), 用正己垸在一定温度下 (例如室温〜 100'C ) 洗涤催化剂后, 再在 60~120'C之 间干燥 6~12h, 该干燥在惰性气体气氛下进行, 例如在氮气、 氦气、 氩气等气氛下进行, 优选在氮气气氛下进行, 该干燥过程也可在真空条件下进行。 在氮气保护下转移, 产物保 存备用; 最后在一定温度下 (例如 80~180'C )催化剂母体与四氯化钛进行反应, 四氯化钛 与载体 A上镁负载量的摩尔比为 0.1~200,根据需要可同时在反应体系中加入内给电子体, 如邻苯二甲酸正丁酯, 内给电子体加入量与载体 A上镁负载量的摩尔比为 0.1~50; 连续搅 拌一定时间 (例如 l~5h); 用正己垸在一定温度下 (例如室温〜 100'C ) 洗涤催化剂后, 再 在 80~160'C之间干燥 6~12h, 该干燥在惰性气体气氛下进行, 例如在氮气、 氦气、 氩气等 气氛下进行, 优选在氮气气氛下进行, 该干燥过程也可在真空条件下进行。 在氮气保护下 转移, 催化剂保存备用。 根据本发明提供的负载型烯烃聚合催化剂的方法, 其中一种方法包含如下步骤: a)将载体 A浸渍可溶性镁盐和铵盐的溶液,然后干燥,接着在高温 300~900'C下焙烧; b)将步骤 a所得产物先与有机铝化合物反应, 再加入含羟基类化合物;
c)将步骤 b所得的产物与钛化合物溶液反应,根据需要可同时在反应体系中加入内给 电子体, 然后洗涤、 干燥, 得到所述催化剂保存备用。
根据一个优选的制备负载型催化剂的方法, 包含如下步骤:
a)将可溶性镁盐和铵盐浸渍在载体上, 浸渍时间为 0.5~12h, 优选 4~8h, 浸渍温度为 0~80°C, 优选室温〜 70°C, 然后在室温〜 250°C下干燥, 优选 80~200°C, 干燥时间 2~20h, 优选 8~15h, 干燥过程中也可以采用真空干燥; 将上述样品在惰性气体或者氧气或者空气 中进行高温焙烧活化,焙烧温度在 300~900'C,优选 400~800'C,时间为 l~10h,优选 3~8h, 然后进行冷却, 其中在冷却到 300~400'C时切换成惰性气体如氮气或氩气等, 自然冷却; b) 将步骤 a所得产物与有机铝化合物反应,反应温度一般控制在 -90~70°C,优选 -70~50 °C,反应的时间一般在 5min~2h,优选 10min~lh;继而与含羟基类化合物反应,温度为 0~150 °c, 优选室温〜 100 °C, 反应的时间取决于反应物的性质和操作条件, 所需时间一般在 5min~2h, 优选 10min~lh, 然后用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150°C, 优选室温〜 100°C, 在室温〜 250°C之间干燥, 优选 60~120°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采用真空, 得到产物保存备用。
c)将步骤 b所得的产物用含钛化合物溶液反应, 反应时间为 0.5~8h, 优选 l~5h, 温 度为室 ¾~200'C, 优选 80~180'C, 根据需要可同时在反应体系中加入内给电子体, 然后用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室 温~2501之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采 用真空, 得到所述催化剂保存备用。
一般地, 本发明是利用载体 A, 先将镁盐与铵盐浸渍于其上, 然后高温焙烧, 制得负 载含镁化合物的催化剂母体; 然后将上述催化剂母体与有机铝化合物以及含羟基类化合物 反应, 再与含钛化合物溶液反应, 使载体 B原位生成并负载于载体 A上, 同时还实现了钛 活性组分的原位负载, 根据需要可在反应体系中加入内给电子体, 从而制备得到负载型烯 烃聚合催化剂。
上述步骤 a是将镁盐和铵盐负载于载体 A (例如上文所述的载体) 上的方法。 用于将 镁盐和铵盐负载于载体 A上的方法可以是巳知的任何可以将镁盐和铵盐负载于载体上的方 法。 根据本发明的一个实施方案, 将镁盐和铵盐负载于载体上的方法包括用镁盐与铵盐溶 液浸渍多孔载体, 镁盐可以是上文所述的任意可溶性含镁盐, 铵盐可以是上文所述的任意 铵盐。 根据一个实施方案, 在浸渍过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅 拌持续约 l~12h, 优选约 4~8h, 浸渍温度为 0~80°C, 优选室温〜 70°C。 根据一个实施方案, 镁负载量按 Mg重量计为催化剂总重量的 0.01~50wt%, 优选 0.1~40wt%, 铵盐与镁盐的摩 尔比为 0.01~10。 然后将得到的负载有镁盐和铵盐组分的载体进行干燥。 该干燥通常在室 温〜 250'C进行, 优选约 80~200'C。 根据一个实施方案, 该干燥在约 120'C进行。 该干燥亦 可在真空条件下进行。对该干燥进行的时间没有特别限定,但是该干燥通常持续约 2~20h, 优选约 7~18h, 进一步优选约 8~15h。 在干燥完毕之后, 将负载之后的载体 A进行焙烧。 对焙烧进行的方式没有特别限定, 但是该焙烧优选在流化床内进行。 根据一个实施方案, 该焙烧通常以两个阶段进行, 即低温阶段和高温阶段。低温阶段通常在约 100~300'C进行。 高温阶段通常在约 300~900'C进行。 不受任何理论限制, 在所述低温阶段载体中吸附的物 理水基本被除去, 可溶性镁盐和铵盐部分分解, 而在所述高温阶段载体 A上的部分羟基被 除去, 可溶性镁盐和铵盐完全分解。 根据一个实施方案, 所述低温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据另一个实施方案, 所述高温阶段持续 l~10h, 优选 2~9h, 更优选 3~8h。 根据一个实施方案, 所述低温阶段在惰性气体或者空气气氛下进行, 优选在惰性气 体气氛下进行, 所述惰性气体例如氮气、 氦气、 氩气等气氛, 优选在氮气气氛下进行, 例 如高纯氮气。 根据一个实施方案, 所述高温阶段焙烧在空气或者氧气条件下进行, 优选在 干燥空气条件下进行。 在所述焙烧结束后, 将得到的负载有含镁化合物的载体 A从高温阶 段冷却。 根据一个实施方案, 在冷却到 300~400°C的温度时, 可以变换气氛, 例如从空气 变为惰性气体, 例如氮气、 氩气等。 根据一个实施方案, 该冷却为自然降温冷却。
上述步骤 b是将步骤 a所得产物进一步表面改性处理的方法。 根据一个实施方案, 将 步骤 a所得产物与有机铝化合物反应, 有机铝化合物包括三垸基铝 A1R3、 二垸基垸氧基铝 A1R20R、 二垸基卤化铝 A1R2X、 铝氧垸、 乙基倍半铝氯化物等, 其中 R是 -C12的垸基, X是卤素,例如氟、氯、溴和碘;有机铝化合物与载体 A上镁负载量的摩尔比为 0.01~100, 优选 0.1~80。在反应过程中,可以实施搅拌,优选连续搅拌。一般地,该搅拌持续约 5min~2h, 优选 10min~lh。 该过程通常在 -90~70°C下进行, 优选 -70~50°C。 然后将上述产物与含羟基 类化合物反应, 含羟基类化合物如通式 HOR5所示, 式中!^是 ^。的烃基, 可以是饱和 或不饱和的直链、 支链或环状链; 含羟基类化合物选自乙醇、 正丁醇、 正己醇、 异辛醇、 苯甲醇和苯乙醇中等。 含羟基类化合物与载体 A上镁负载量的摩尔比为 0.01~200, 优选 0.1-160. 反应温度为 0~150°C, 优选室温〜 100°C, 反应的时间取决于反应物的性质和操作 条件, 所需时间一般在 5min~2h, 优选 10min~lh, 然后用 C3-C2。的垸烃溶剂, 如正庚垸、 正己垸等洗涤, 温度为 0~150'C, 优选室温〜 100'C, 在室温 ~250'C之间干燥, 优选 60~120 V, 干燥时间 2~20h, 优选 6~12h, 干燥过程中也可以采用真空, 得到所述产物在氮气保 护下转移, 保存备用。
上述步骤 C是将载体 B负载到载体 A上以及制备催化剂的方法。 根据一个实施方案, 步骤 b所得产物与含钛化合物溶液反应, 在反应过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅拌持续约 0.5~8h, 优选 l~5h。 含钛化合物如 TiO^hC -h或者 Ti(L2)sCl3_s或者 Ti(L2)t¾t所示, 式中!^是 ^-^。的烃基 R3或者烃氧基 R30, R3可以是饱和或不饱和的 直链、 支链或环状链, 0≤h<4, 0≤s<3, 0≤t<2, 当 h、 s和 t为 2或 2以上时, 存在的多个 R3可以分别相同或者不同; 含钛化合物选自三甲氧基氯化钛、 三乙氧基氯化钛、 三正丙氧 基氯化钛、 三异丙氧基氯化钛、 二甲氧基二氯化钛、 二乙氧基二氯化钛、 二异丙氧基二氯 化钛、 甲氧基三氯化钛、 乙氧基三氯化钛、 四氯化钛、 三氯化钛、 二氯化钛、 乙基氯化钛 等; 含钛化合物与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1~200。 该过程通常在 室温 ~200'C下进行, 优选 80~180'C。 根据需要可同时在反应体系中加入内给电子体, 内给 电子体如上文所述, 内给电子体加入量与载体 A上镁负载量的摩尔比为 0.01~500, 优选 0.1-50; 用 C3-C2Q的垸烃溶剂, 如正庚垸、 正己垸等洗涤,温度为 0~150'C, 优选室温〜 100 °C, 在室温 ~250°C之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过程中 也可以采用真空, 得到所述催化剂在氮气保护下转移, 保存备用。
作为一个实例, 制备本发明催化剂的具体操作包括:
将多孔无定形硅胶浸渍在一定浓度的醋酸镁与醋酸铵溶液中, 镁和铵的负载量相对于 催化剂总重量符合本文的要求 (例如 0.1~40wt%, 以镁的重量计; 铵盐与镁盐的摩尔比为 0.01-10, ); 在连续搅拌一定时间 (例如 4~8h) 后, 升温干燥; 将负载有醋酸镁和醋酸铵 的硅胶载体在流化床内进行高温焙烧, 其中在低温阶段 (例如 100'C~300'C ) 在氮气气氛 中焙烧脱除载体中的物理水, 可溶性镁盐和铵盐部分分解, 在高温阶段 (例如 300'C~900 'C ) 在干燥空气中焙烧脱除硅胶表面的部分羟基, 可溶性镁盐和铵盐完全分解, 在此高温 阶段保持一定时间 (例如 3~8h); 自然降温冷却, 在冷却到 300~400'C时切换为氮气保护, 制得负载有含镁化合物的催化剂母体。 然后, 在一定温度下 (例如 -70~50'C ) 与三乙基铝 反应, 有机铝化合物与载体 A上镁负载量的摩尔比为 0.1~80。 连续搅拌一定时间 (例如 10min~lh); 随后在一定温度下 (例如室温〜 100'C ) 与正己醇反应, 正己醇与载体 A上镁 负载量的摩尔比为 0.1~160。 连续搅拌一定时间(例如 10min~lh), 用正己垸在一定温度下 (例如室温〜 100'C ) 洗涤催化剂后, 再在 60~120'C之间干燥 6~12h, 该干燥在惰性气体气 氛下进行, 例如在氮气、 氦气、 氩气等气氛下进行, 优选在氮气气氛下进行, 该干燥过程 也可在真空条件下进行。 在氮气保护下转移, 产物保存备用; 最后在一定温度下 (例如 80~180'C ) 催化剂母体与四氯化钛进行反应, 四氯化钛与载体 A 上镁负载量的摩尔比为 0.1-200, 根据需要可同时在反应体系中加入内给电子体, 如邻苯二甲酸正丁酯, 内给电子 体加入量与载体 A上镁负载量的摩尔比为 0.1~50; 连续搅拌一定时间 (例如 l~5h); 用正 己垸在一定温度下 (例如室温〜 100'C ) 洗涤催化剂后, 再在 80~160'C之间干燥 6~12h, 该 干燥在惰性气体气氛下进行, 例如在氮气、 氦气、 氩气等气氛下进行, 优选在氮气气氛下 进行, 该干燥过程也可在真空条件下进行。 在氮气保护下转移, 催化剂保存备用。 根据本发明提供的负载型烯烃聚合催化剂的方法, 其中一种方法包含如下步骤: a)根据上述八种所述的催化剂制备方法之一制备任意一种催化剂;
b) 将步骤 a制得的催化剂加入有机金属助催化剂如有机铝化合物、有机锂化合物、有 机硼化合物等进行预还原, 有机金属助催化剂与钛活性组分的摩尔比为 0.01~1000; 得到 所述的催化剂保存备用。
根据一个优选的制备负载型催化剂的方法, 包含如下步骤:
a)根据上述八种所述的催化剂制备方法之一制备任意一种催化剂;
b)将步骤 a所得的催化剂加入有机金属助催化剂如有机铝化合物、有机锂化合物、有 机硼化合物等进行预还原。 反应时间为 0.1~5h, 优选 0.5~2h, 温度为 0~200°C, 优选室温 ~160°C, 在室温 ~250°C之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干燥过 程中也可以采用真空, 得到所述催化剂保存备用。
一般地, 本发明是将制得的催化剂与有机金属助催化剂如有机铝化合物、 有机锂化合 物、 有机硼化合物等反应, 从而对催化剂进行预还原活化, 制备得到负载型烯烃聚合催化 剂。
上述步骤 a是根据上述八种所述的催化剂制备方法之一制备任意一种催化剂的方法。 上述步骤 b是对催化剂进行预还原活化的方法。 根据一个实施方案, 在反应过程中, 可以实施搅拌, 优选连续搅拌。 一般地, 该搅拌持续约 0.1~5h, 优选 0.5~2h。 根据一个实 施方案, 步骤 a所得的催化剂加入有机铝化合物、 有机锂化合物、 有机硼化合物等进行预 还原, 其中所述的有机铝化合物包括三垸基铝 A1R3、 二垸基垸氧基铝 A1R20R、 二垸基卤 化铝 A1R2X、铝氧垸、 乙基倍半铝氯化物等, 其中 1 是 12的垸基, X是卤素, 例如氟、 氯、 溴和碘; 有机锂化合物通式如 LiRs所示, 式中!^是 ^-^。的烃基, 可以是饱和或不 饱和的直链、 支链或环状链, 选自甲基锂、 乙基锂、 丁基锂、 叔丁基锂、 戊基锂、 苯基锂 等; 有机硼化合物通式如 BR7 qCl3-q所示, 式中!^是^-^。的垸基或垸氧基, 0≤q≤3, 选自 三甲基硼、 三乙基硼、 二氯甲基硼、 二氯乙基硼、 二氯丁基硼、 二氯甲氧基硼、 二氯乙氧 基硼、三氯化硼和二氯丁氧基硼等,有机金属助催化剂与钛活性组分的摩尔比为 0.01~1000, 优选 0.05~500, 更优选 0.1~300。 反应时间为 0.1~5h, 优选 0.5~2h, 温度为 0~200°C, 优选 室温〜 160°C, 在室温 ~250°C之间干燥, 优选 80~160°C, 干燥时间 2~20h, 优选 6~12h, 干 燥过程中也可以采用真空, 得到所述催化剂保存备用。
作为一个实例, 制备本发明催化剂的具体操作包括:
根据上述八种所述的催化剂制备方法之一制备任意一种催化剂; 在一定温度 (例如室 温〜 160'C ) 下, 缓慢滴加三正己基铝, 三正己基铝与钛活性组分的摩尔比为 0.1~300。 连 续搅拌一定时间 (例如 0.5~2h), 再在 80~160'C之间干燥 6~12h, 该干燥在惰性气体气氛 下进行, 例如在氮气、 氦气、 氩气等气氛下进行, 优选在氮气气氛下进行, 该干燥过程也 可在真空条件下进行。 在氮气保护下转移, 催化剂保存备用。 本发明所述的负载型烯烃聚合催化剂在烯烃聚合或烯烃共聚合反应中的应用, 优选在 乙烯、 丙烯、 丁烯、 己烯和辛烯聚合或它们之间的共聚合反应中的应用。 聚合过程中根据 需要可以再添加有机金属助催化剂、 外给电子体或者氢气等。
因此, 根据本发明的另一个方面, 提供了采用本发明所述负载型烯烃聚合催化剂生产 烯烃均聚物以及烯烃共聚物的方法。
对于上述方法, 聚合所使用的烯烃一般包含乙烯或丙烯作为聚合单体。 在一个实施方 案中, 所述聚合使用的烯烃还包含共聚单体。 所述共聚单体可以是 C3-C2。的 α-烯烃, 例如 丙烯、 1-丁烯、 1-戊烯、 1-己烯、 1-庚烯、 1-辛烯、 1-壬烯、 1-癸烯、 1-十二碳烯、 4-甲基 -1- 戊烯、 4-甲基 -1-己烯等; 这些可以单独使用或可以两种或更多种组合使用。 所述共聚单体 优选是 1-丁烯、 1-己烯、 1-辛烯和 1-癸烯, α-烯烃聚合时, 乙烯也可以作为共聚单体使用。 当共聚单体存在时, 共聚单体的量一般为 0-30vol%, 优选 0-10 νοΡ/ο, 基于聚合时共聚单 体的体积浓度。
聚合过程中根据需要可以添加有机金属助催化剂 (例如上文所述的有机金属助催化 剂) 到聚合体系中, 根据一个实施方案, 所述有机金属助催化剂可以使用有机铝化合物, 有机铝化合物可以提及三乙基铝、 三异丁基铝、 二乙基乙氧基铝、 一氯二乙基铝和甲基铝 氧垸等。 所述有机金属铝化合物的使用量通常是按铝 /钛摩尔比计 0~1000, 优选 0~500, 更 优选 0~300。
聚合过程中根据需要可以添加的外给电子体选自如下式 (V) 所示的垸氧基硅垸化合 物或其它的一元羧酸、 多元羧酸、 羧酸酐、 羧酸酯、 芳香酯、 酮、 醚、 醇、 胺、 内酯、 有 机磷化合物和垸氧基硅垸化合物等的任何一种或者是它们的组合, 一般为本领域所公知的 用于烯烃聚合的外给电子体。
Figure imgf000037_0001
(V)
其中 R27-R3Q为相同或不相同的氢原子或 -C2。的烃基, 可以是饱和或不饱和的直链、 支链或环状链。 外给电子体选自甲酸甲酯、 乙酸乙酯、 乙酸丁酯、 乙醚、 己醚、 四氢呋喃 (THF) , 丙酮、 甲基异丁基酮、 苯甲酸甲酯、 苯甲酸乙酯、 邻苯二甲酸二乙酯、 邻苯二甲 酸正丁酯、 N-丙基三甲氧基硅垸、 甲基三甲氧基硅垸、 N-辛基三甲氧基硅垸、 正丁基甲基 二甲氧基硅垸、 苯基三乙氧基硅垸、 环己基二甲氧基硅垸、 双环戊基二甲氧基硅垸、 双异 丙基二甲氧基硅垸、 双异丁基二甲氧基硅垸等的任何一种或者是它们的组合。 外给电子体 加入量与钛活性组分的摩尔比为 0.01~500, 更优选 0.1~300。
上述聚合反应可以包括分子量调节剂, 作为例子可以提及氢气。
本发明的上述聚合物制造方法在其聚合方法方面没有任何特别限制。 上述采用本发明 负载型催化剂生产烯烃均聚物和烯烃共聚物的方法可以包括气相聚合方法、 淤桨聚合方 法、 悬浮聚合方法、本体聚合方法、 溶液聚合方法等等。 如本领域技术人员所理解的那样, 对采用本发明催化剂的生产烯烃聚合物的方法没有特别限制, 可以采用本领域巳知的气相 聚合方法、 淤桨聚合方法、 悬浮聚合方法、 本体聚合方法、 溶液聚合方法的常规实施方案 和聚合条件等实施。
在一个实施方案中, 使用淤桨聚合方法, 包括向反应釜内加入乙烯或丙烯, 然后加入 溶剂和助催化剂 (如有机铝化合物) 并任选地加入氢气、 外给电子体和共聚单体等, 最后 加入本发明的负载型烯烃聚合催化剂开始聚合。
上述淤桨聚合所使用的溶剂一般为本领域所公知的用于烯烃聚合的任何溶剂。 所述溶 剂可以是 3- 2。的垸烃, 例如丙垸、 正丁垸、 异丁垸、 正戊垸、 异戊垸、 新戊垸、 正己垸、 环己垸、 正庚垸、 正辛垸等; 这些溶剂可以单独使用或可以两种或更多种组合使用。 所述 溶剂优选异丁垸、 异戊垸、 正己垸、 环己垸、 正庚垸等。
在一个实施方案中, 采用传统的淤桨聚合法实施聚合, 具体操作如下: 先将聚合反应 釜进行真空加热除杂, 然后置换为高纯氮气, 反复操作三次, 再用少量乙烯或丙烯单体置 换一次, 并最后将反应釜内充满乙烯或丙烯至微正压 (0.12MPa); 向反应釜内加入脱水脱 氧处理后的精制溶剂如正庚垸, 一定量的垸基铝作为助催化剂, 在氢调和共聚实验中需分 别加入一定量的氢气和共聚单体, 在丙烯聚合中还可以加入外给电子体, 待乙烯或丙烯压 力调至 0.15MPa, 最后加入本发明的催化剂开始聚合反应; 反应过程中在线采集单体乙烯 或丙烯的瞬时消耗量 (通过连接电脑的高精密的乙烯或丙烯质量流量计) 并由电脑记录, 在一定温度下 (例如 35'C-100'C ) 反应进行一定时间 (例如 lh) 后, 加入盐酸 /乙醇混合 溶液终止反应; 聚合物经洗涤, 真空干燥后称重并分析。 有益技术效果:
本发明提供的负载型烯烃聚合催化剂及其制备方法与其在烯烃均聚物和烯烃共聚物 生产中的应用, 本发明是采用任意多孔无机载体与廉价的任意可溶性镁盐为原料, 先将可 溶性镁盐浸渍于无机载体表面, 经过高温焙烧后在无机载体表面形成负载的含镁化合物 层, 进一步与含氯的钛化合物溶液反应, 在无机载体表面原位形成含镁载体的同时实现钛 活性物种的负载化, 该催化剂制备方法简单、 成本低、 催化剂形态易于控制, 并且得到的 复合载体负载型 Ziegler-Natta催化剂的烯烃聚合性能优良。 使用本发明的负载型烯烃聚合 催化剂, 通过改变助催化剂的种类和用量、 分子量调节剂等因素, 可以方便和容易地调整 烯烃均聚物和烯烃共聚物的分子量和分子量分布以及共聚单体含量及分布, 从而得到具有 所需性能的聚合物产品。 附图说明 附图 1为催化剂母体焙烧程序示意图。
具体实施方法
本发明参照下列实施例进行更详细地解释, 这些实施例不限制本发明的范围。 实施例 中采用的硅胶是可商购的 Davison 955。
实施例中的各种聚合物性质根据以下方法测量:
高温凝胶色谱 (HT-GPC)
聚合物的分子量和分子量分布用高温凝胶色谱测定: 本实验采用 PL-220 型高温凝胶 潫透色谱仪 (Polymer Laboratories公司) 来测定聚烯烃分子量及其分子量分布。 实验中以 1,2,4一三氯苯为溶剂, 在 160'C下测定。 采用窄分布聚苯乙烯作为标样的普适校正法处理 数据。
实施例 1 :
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g,表面积为 250-300 m2/g)浸渍在硝酸镁水溶液中(Mg 负载量为 15wt%), 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120 'C烘箱干燥 6h; 将浸渍有硝酸镁的硅胶载体置于石英流化床内进行焙烧活化, 300'C之前 使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切 换到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的 催化剂母体在 30mlTiCl4溶液中 140'C下反应 2h, 用正己垸在室温下洗涤数次, 最后真空 干燥, 得到催化剂保存待用。
实施例 2:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g,表面积为 250-300 m2/g)浸渍在醋酸镁水溶液中(Mg 负载量为 15wt%), 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120 'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于石英流化床内进行焙烧活化, 300'C之前 使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切 换到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的 催化剂母体在 30mlTiCl4溶液中 140'C下反应 2h, 用正己垸在室温下洗涤数次, 最后真空 干燥, 得到催化剂保存待用。
实施例 3:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g,表面积为 250-300 m2/g)浸渍在醋酸镁水溶液中(Mg 负载量为 15wt%), 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120 'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于石英流化床内进行焙烧活化, 300'C之前 使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切 换到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的 催化剂母体在 30mlTiCl4溶液中 140'C下反应 2h, 用正己垸在 70 'C下洗涤三次, 室温下洗 涤数次, 最后真空干燥, 得到催化剂保存待用。
实施例 4:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g,表面积为 250-300 m2/g)浸渍在醋酸镁水溶液中(Mg 负载量为 lwt%), 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120'C 烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于石英流化床内进行焙烧活化, 300'C之前使 用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切换 到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的催 化剂母体在 30mlTiCl4溶液中 140'C下反应 2h, 用正己垸在 70 'C下洗涤三次, 室温下洗漆 数次, 最后真空干燥, 得到催化剂保存待用。
实施例 5:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g,表面积为 250-300 m2/g)浸渍在醋酸镁水溶液中(Mg 负载量为 15wt%), 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120 'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于石英流化床内进行焙烧活化, 300'C之前 使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切 换到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 将产物与乙基 氯化镁(有机 Mg负载 Mg=0.1 )在 25'C下反应 30min, 用正己垸在室温下洗涤数次, 真空 干燥; 取 2g得到的催化剂母体在 30mlTiCl4溶液中 140°C下反应 2h, 用正己垸在室温下洗 涤数次, 真空干燥, 得到催化剂保存待用。
实施例 6: 将 10g硅胶 (孔体积为 1.5-1.7 cm3/g,表面积为 250-300 m2/g)浸渍在醋酸镁水溶液中(Mg 负载量为 15wt%), 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120 'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于石英流化床内进行焙烧活化, 300'C之前 使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切 换到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 将产物与三乙 基铝 (A1/负载 Mg=0.1 ) 在 25'C下反应 30min, 用正己垸在室温下洗涤数次, 真空干燥; 取 2g得到的催化剂母体在 30πιΠ ¾溶液中 140'C下反应 2h,用正己垸在室温下洗涤数次, 真空干燥, 得到催化剂保存待用。
实施例 7:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g,表面积为 250-300 m2/g)浸渍在醋酸镁水溶液中(Mg 负载量为 15wt%), 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120 'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于石英流化床内进行焙烧活化, 300'C之前 使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切 换到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 将产物与三乙 基铝 (A1/负载 Mg=0.1 ) 在 25°C下反应 30min, 再与正己醇 (醇 /负载 Mg =2) 在 90°C下反 应 30min,然后用正己垸在室温下洗涤数次,真空干燥;取 2g得到的催化剂母体在 30mlTiCl4 溶液中 140'C下反应 2h, 用正己垸在室温下洗涤数次, 真空干燥, 得到催化剂保存待用。 实施例 8:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g,表面积为 250-300 m2/g)浸渍在醋酸镁水溶液中(Mg 负载量为 5wt%), 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120'C 烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于石英流化床内进行焙烧活化, 300'C之前使 用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切换 到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的催 化剂母体在 30mlTiCl4溶液中 140°C下反应 2h, 用正己垸在室温下洗涤数次, 最后真空干 燥, 得到催化剂保存待用。
实施例 9:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g,表面积为 250-300 m2/g)浸渍在醋酸镁水溶液中(Mg 负载量为 10wt%), 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120 'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于石英流化床内进行焙烧活化, 300'C之前 使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切 换到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的 催化剂母体在 30mlTiCl4溶液中 140'C下反应 2h, 用正己垸在室温下洗涤数次, 最后真空 干燥, 得到催化剂保存待用。
实施例 10:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g, 表面积为 250-300 m2/g)浸渍在醋酸镁与醋酸铵的 水溶液中 (Mg负载量为 15wt%, 醋酸铵与醋酸镁等摩尔比), 室温下连续搅拌浸渍 5h, 然 后升温至 120'C干燥 5h, 然后转移至 120'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于 石英流化床内进行焙烧活化, 300'C之前使用氮气气氛, 之后切换为高纯空气, 并在 600 °C时保温 4h, 自然降温冷却到 400'C后切换到氮气气氛, 并在氮气气氛保护下转移, 上述 焙烧控温程序如图 1所示。 取 2g得到的催化剂母体在 30mlTiCl4溶液中 140°C下反应 2h, 用正己垸在室温下洗涤数次, 最后真空干燥, 得到催化剂保存待用。
实施例 11 :
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g, 表面积为 250-300 m2/g)浸渍在醋酸镁与醋酸铵的 水溶液中 (Mg负载量为 15wt%, 醋酸铵与醋酸镁等摩尔比), 室温下连续搅拌浸渍 5h, 然 后升温至 120'C干燥 5h, 然后转移至 120'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于 石英流化床内进行焙烧活化, 300'C之前使用氮气气氛, 之后切换为高纯空气, 并在 600 °C时保温 4h, 自然降温冷却到 400'C后切换到氮气气氛, 并在氮气气氛保护下转移, 上述 焙烧控温程序如图 1所示。 将产物与乙基氯化镁 (有机 Mg负载 Mg=0.1 ) 在 25'C下反应 30min, 用正己垸在室温下洗涤数次, 真空干燥; 取 2g得到的催化剂母体在 30mlTiCl4溶 液中 140'C下反应 2h, 用正己垸在室温下洗涤数次, 真空干燥, 得到催化剂保存待用。 实施例 12:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g, 表面积为 250-300 m2/g)浸渍在醋酸镁与醋酸铵的 水溶液中 (Mg负载量为 15wt%, 醋酸铵与醋酸镁等摩尔比), 室温下连续搅拌浸渍 5h, 然 后升温至 120'C干燥 5h, 然后转移至 120'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于 石英流化床内进行焙烧活化, 300'C之前使用氮气气氛, 之后切换为高纯空气, 并在 600 °C时保温 4h, 自然降温冷却到 400'C后切换到氮气气氛, 并在氮气气氛保护下转移, 上述 焙烧控温程序如图 1所示。 将产物与三乙基铝 (A1/负载 Mg=0.1 ) 在 25'C下反应 30min, 用正己垸在室温下洗涤数次, 真空干燥; 取 2g得到的催化剂母体在 30mlTiCl4溶液中 140 'C下反应 2h, 用正己垸在室温下洗涤数次, 真空干燥, 得到催化剂保存待用。
实施例 13:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g, 表面积为 250-300 m2/g)浸渍在醋酸镁与醋酸铵的 水溶液中 (Mg负载量为 15wt%, 醋酸铵与醋酸镁等摩尔比), 室温下连续搅拌浸渍 5h, 然 后升温至 120'C干燥 5h, 然后转移至 120'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于 石英流化床内进行焙烧活化, 300'C之前使用氮气气氛, 之后切换为高纯空气, 并在 600 °C时保温 4h, 自然降温冷却到 400'C后切换到氮气气氛, 并在氮气气氛保护下转移, 上述 焙烧控温程序如图 1所示。 将产物与三乙基铝 (A1/负载 Mg=0.1 ) 在 25'C下反应 30min, 与正己醇 (醇 /负载 Mg =2)在 90'C下反应 30min, 然后用正己垸在室温下洗涤数次, 真空 干燥; 取 2g得到的催化剂母体在 30mlTiCl4溶液中 140°C下反应 2h, 用正己垸在室温下洗 涤数次, 真空干燥, 得到催化剂保存待用。
实施例 14:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g,表面积为 250-300 m2/g)浸渍在醋酸镁水溶液中(Mg 负载量为 15wt%), 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120 'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于石英流化床内进行焙烧活化, 300'C之前 使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切 换到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的 催化剂母体在 30mlTiCl4与一定量苯甲酸乙酯的溶液中 140'C下反应 2h, 含钛化合物与内 给电子体的体积比为 15, 用正己垸在室温下洗涤数次, 最后真空干燥, 得到催化剂保存待 用。
实施例 15:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g,表面积为 250-300 m2/g)浸渍在醋酸镁水溶液中(Mg 负载量为 15wt%), 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120 'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于石英流化床内进行焙烧活化, 300'C之前 使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切 换到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的 催化剂母体在 30mlTiCl4与一定量的邻苯二甲酸正丁酯溶液中 140°C下反应 2h, 含钛化合 物与内给电子体的体积比为 15, 用正己垸在室温下洗涤数次, 最后真空干燥, 得到催化剂 保存待用。
实施例 16:
将 10g硅胶 (孔体积为 1.5-1.7 cm3/g,表面积为 250-300 m2/g)浸渍在醋酸镁水溶液中(Mg 负载量为 15wt%), 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120 'C烘箱干燥 6h; 将浸渍有醋酸镁的硅胶载体置于石英流化床内进行焙烧活化, 300'C之前 使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切 换到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的 催化剂母体在 SOmlTiC 溶液中 140'C下反应 2h, 用正己垸在室温下洗涤数次, 然后真空 干燥, 制得催化剂前驱体, 在 110'C下将催化剂前驱体与三正己基铝反应 lh, Al/Ti=10, 最后真空干燥, 得到的催化剂保存待用。
实施例 17:
将 10g三氧化二铝浸渍在碳酸氢镁水溶液中 (Mg负载量为 15wt%) , 室温下连续搅 拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120'C烘箱干燥 6h; 将浸渍有碳酸氢镁 的三氧化二铝载体置于石英流化床内进行焙烧活化, 300'C之前使用氮气气氛, 之后切换 为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切换到氮气气氛, 并在氮气 气氛保护下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的催化剂母体在 30ml三乙氧 基氯化钛溶液中 140'C下反应 2h, 用正己垸在室温下洗涤数次, 最后真空干燥, 得到催化 剂保存待用。
实施例 18:
将 10g硅铝酸盐浸渍在铬酸镁水溶液中 (Mg负载量为 15wt%) , 室温下连续搅拌浸 渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120'C烘箱干燥 6h; 将浸渍有铬酸镁的硅铝 酸盐载体置于石英流化床内进行焙烧活化, 300'C之前使用氮气气氛, 之后切换为高纯空 气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切换到氮气气氛, 并在氮气气氛保护 下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的催化剂母体在 30ml二乙氧基二氯化 钛溶液中 145'C下反应 2h, 用正己垸在室温下洗涤数次, 最后真空干燥, 得到催化剂保存 待用。
实施例 19:
将 10g二氧化钛浸渍在氟化镁溶液中 (Mg负载量为 15wt%) , 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120'C烘箱干燥 6h; 将浸渍有氟化镁的二氧化 钛载体置于石英流化床内进行焙烧活化, 300'C之前使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切换到氮气气氛, 并在氮气气氛保护下转 移, 上述焙烧控温程序如图 1所示。 取 2g得到的催化剂母体在 30ml甲氧基三氯化钛溶液 中 140'C下反应 2h, 用正己垸在室温下洗涤数次, 最后真空干燥, 得到催化剂保存待用。 实施例 20:
将 10g氧化锆浸渍在硫酸镁水溶液中 (Mg负载量为 15wt%) , 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120'C烘箱干燥 6h; 将浸渍有硫酸镁的氧化锆 载体置于石英流化床内进行焙烧活化, 300'C之前使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切换到氮气气氛, 并在氮气气氛保护下转 移, 上述焙烧控温程序如图 1所示。 取 2g得到的催化剂母体在 30ml三氯化钛溶液中 140 'C下反应 2h, 用正己垸在室温下洗涤数次, 最后真空干燥, 得到催化剂保存待用。
实施例 21 :
将 10g三氧化二铝浸渍在葡萄糖酸镁水溶液中 (Mg负载量为 15wt%) , 室温下连续 搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120'C烘箱干燥 6h; 将浸渍有葡萄糖 酸镁的三氧化二铝载体置于石英流化床内进行焙烧活化, 300'C之前使用氮气气氛, 之后 切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切换到氮气气氛, 并在 氮气气氛保护下转移, 上述焙烧控温程序如图 1所示。 将产物与二乙基乙氧基铝(A1/负载 Mg=0.1 ) 在 25'C下反应 30min, 用正己垸在室温下洗涤数次, 真空干燥; 取 2g得到的催 化剂母体在 30ml三乙氧基氯化钛溶液中 140'C下反应 2h, 用正己垸在室温下洗涤数次, 真空干燥, 得到催化剂保存待用。 实施例 22:
将 lOg氧化锆浸渍在氯酸镁与硝酸铵的水溶液中 (Mg负载量为 15wt%, 硝酸铵与氯 酸镁等摩尔比) , 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120'C 烘箱干燥 6h;将浸渍有氯酸镁与硝酸铵的氧化锆载体置于石英流化床内进行焙烧活化, 300 'C之前使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400 °C后切换到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1 所示。 取 2g 得到的催化剂母体在 30ml二乙氧基二氯化钛与一定量 2-乙基乙酸丁酯的溶液中 145'C下反 应 2h, 含钛化合物与内给电子体的体积比为 15, 用正己垸在室温下洗涤数次, 最后真空 干燥, 得到催化剂保存待用。
实施例 23:
将 10g二氧化钛浸渍在磷酸镁与碳酸铵的溶液中 (Mg负载量为 15wt%, 碳酸铵与磷 酸镁等摩尔比) , 室温下连续搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120'C 烘箱干燥 6h; 将浸渍有磷酸镁与碳酸铵的二氧化钛载体置于石英流化床内进行焙烧活化, 300'C之前使用氮气气氛, 之后切换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切换到氮气气氛, 并在氮气气氛保护下转移, 上述焙烧控温程序如图 1 所示。 取 2g得到的催化剂母体在 30ml三氯化钛溶液与一定量乙醚的溶液中 140'C下反应 2h, 含钛 化合物与内给电子体的体积比为 15, 用正己垸在室温下洗涤数次, 最后真空干燥, 得到催 化剂保存待用。
实施例 24:
将 10g三氧化二铝浸渍在硫化镁的溶液中 (Mg负载量为 15wt%) , 室温下连续搅拌 浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120'C烘箱干燥 6h; 将浸渍有硫化镁的三 氧化二铝载体置于石英流化床内进行焙烧活化, 300'C之前使用氮气气氛, 之后切换为高 纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切换到氮气气氛, 并在氮气气氛 保护下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的催化剂母体在 30ml三乙氧基氯 化钛与一定量四氢呋喃的溶液中 140°C下反应 2h,含钛化合物与内给电子体的体积比为 15, 用正己垸在室温下洗涤数次, 最后真空干燥, 得到催化剂保存待用。
实施例 25: 将 lOg三氧化二铝浸渍在碳酸氢镁的水溶液中 (Mg负载量为 15wt%) , 室温下连续 搅拌浸渍 5h, 然后升温至 120'C干燥 5h, 然后转移至 120'C烘箱干燥 6h; 将浸渍有碳酸氢 镁的三氧化二铝载体置于石英流化床内进行焙烧活化, 300'C之前使用氮气气氛, 之后切 换为高纯空气, 并在 600'C时保温 4h, 自然降温冷却到 400'C后切换到氮气气氛, 并在氮 气气氛保护下转移, 上述焙烧控温程序如图 1所示。 取 2g得到的催化剂母体在 30ml甲氧 基三氯化钛与一定量甲基异丁基酮的溶液中 140'C下反应 2h, 含钛化合物与内给电子体的 体积比为 15, 用正己垸在室温下洗涤数次, 最后真空干燥, 得到催化剂保存待用。
实施例 26:
称取实施例 1中催化剂 lOOmg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用 高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内加 入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA)作助催化剂, 再 加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量 (通过连接电 脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。 实施例 27:
称取实施例 2中催化剂 lOOmg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用 高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内加 入 40 mL精制正庚垸溶剂, 分别加入用量为 Al/ i=25、 50、 100、 150、 200的三异丁基铝 (TiBA) 助催化剂 (分别对应实施例 27-1、 27-2, 27-3, 27-4、 27-5 ), 再加入 40mL脱水 脱氧精制后的正庚垸溶剂, 调节乙烯压力至 0.15MPa。 待釜内温度恒定在 70'C后, 加入催 化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量 (通过连接电脑的高精密的乙 烯质量流量计)并由电脑记录。 lh后加入 50mL盐酸 /乙醇混合溶液终止反应。过滤后将所 得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 28:
称取实施例 2中催化剂 lOOmg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用 高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12 MPa。 接着依次向反应釜内加 入 40 mL精制正庚垸溶剂, 分别加入用量为 Al/Ti=15、 25、 50的三乙基铝 (TEA) 作为助 催化剂, (分别对应实施例 28-1、 28-2, 28-3 ), 再加入 40mL脱水脱氧精制后的正庚垸溶 剂, 调节乙烯压力至 0.15 MPa。 待釜内温度恒定在 70 'C后, 加入催化剂开始反应。 反应 过程中在线采集单体乙烯的瞬时消耗量 (通过连接电脑的高精密的乙烯质量流量计) 并由 电脑记录。 lh后加入 50 mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干 燥箱中 60 'C下真空干燥 4h后称重并分析。
实施例 29:
称取实施例 3中催化剂 lOOmg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用 高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内加 入 40 mL精制正庚垸溶剂,分别加入用量为 Al/ i=10、 15、 25、 50、 100的三异丁基铝(TiBA) 助催化剂 (分别对应实施例 29-1、 29-2, 29-3, 29-4、 29-5 ), 再加入 40mL脱水脱氧精制 后的正庚垸溶剂, 调节乙烯压力至 0.15MPa。 待釜内温度恒定在 70'C后, 加入催化剂开始 反应。 反应过程中在线采集单体乙烯的瞬时消耗量 (通过连接电脑的高精密的乙烯质量流 量计)并由电脑记录。 lh后加入 50mL盐酸 /乙醇混合溶液终止反应。过滤后将所得聚合物 在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 30:
称取实施例 3中催化剂 lOOmg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用 高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12 MPa。 接着依次向反应釜内加 入 40 mL精制正庚垸溶剂, 分别加入用量为 Al/Ti=10、 15、 25的三乙基铝 (TEA) 作为助 催化剂, (分别对应实施例 30-1、 30-2, 30-3 ), 再加入 40mL脱水脱氧精制后的正庚垸溶 剂, 调节乙烯压力至 0.15 MPa。 待釜内温度恒定在 70 'C后, 加入催化剂开始反应。 反应 过程中在线采集单体乙烯的瞬时消耗量 (通过连接电脑的高精密的乙烯质量流量计) 并由 电脑记录。 lh后加入 50 mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干 燥箱中 60 'C下真空干燥 4h后称重并分析。
实施例 31 :
称取实施例 4中催化剂 lOOmg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用 高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内加 入 40 mL精制正庚垸溶剂, 分别加入用量为 Al/Ti=5、 10、 15、 25的三异丁基铝 (TiBA) 助催化剂 (分别对应实施例 31-1、 31-2, 31-3、 31-4), 再加入 40mL脱水脱氧精制后的正 庚垸溶剂, 调节乙烯压力至 0.15MPa。 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量 (通过连接电脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入 50mL盐酸 /乙醇混合溶液终止反应。过滤后将所得聚合物在真空 干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 32:
称取实施例 5中催化剂 lOOmg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用 高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内加 入 40mL精制的正庚垸溶剂, 加入用量为 Al/ i=50的二乙基氯化铝(DEAC)作助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定 在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量(通过连接 电脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 33:
称取实施例 6中催化剂 lOOmg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用 高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内加 入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三乙基铝 (TEA) 作助催化剂, 再加 入 40mL脱水脱氧精制后的正庚垸溶剂。调节乙烯压力至 0.15 MPa,待釜内温度恒定在 70 'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量 (通过连接电脑 的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过 滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 34:
称取实施例 7中催化剂 lOOmg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用 高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内加 入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA)作助催化剂, 再 加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量 (通过连接电 脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 35:
称取实施例 8中催化剂 lOOmg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用 高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内加 入 40 mL精制正庚垸溶剂, 分别加入用量为 Al/Ti=10、 15、 25的三异丁基铝 (TiBA) 助 催化剂(分别对应实施例 35-1、 35-2, 35-3 ), 再加入 40mL脱水脱氧精制后的正庚垸溶剂, 调节乙烯压力至 0.15MPa。 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反应过程中 在线采集单体乙烯的瞬时消耗量 (通过连接电脑的高精密的乙烯质量流量计) 并由电脑记 录。 lh后加入 50mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 36:
称取实施例 9中催化剂 lOOmg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用 高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内加 入 40 mL精制正庚垸溶剂, 分别加入用量为 Al/Ti=10、 15、 25的三异丁基铝 (TiBA) 助 催化剂(分别对应实施例 36-1、 36-2, 36-3 ), 再加入 40mL脱水脱氧精制后的正庚垸溶剂, 调节乙烯压力至 0.15MPa。 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反应过程中 在线采集单体乙烯的瞬时消耗量 (通过连接电脑的高精密的乙烯质量流量计) 并由电脑记 录。 lh后加入 50mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 37:
称取实施例 10中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内 加入 40 mL精制正庚垸溶剂, 分别加入用量为 Al/Ti=15、 25、 50的三异丁基铝 (TiBA) 助催化剂 (分别对应实施例 37-1、 37-2, 37-3 ), 再加入 40mL脱水脱氧精制后的正庚垸溶 剂, 调节乙烯压力至 0.15MPa。 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反应过 程中在线采集单体乙烯的瞬时消耗量 (通过连接电脑的高精密的乙烯质量流量计) 并由电 脑记录。 lh后加入 50mL盐酸 /乙醇混合溶液终止反应。过滤后将所得聚合物在真空干燥箱 中 60'C下真空干燥 4h后称重并分析。
实施例 38:
称取实施例 11中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=25的二乙基氯化铝 (DEAC ) 作助催化 剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度 恒定在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量(通过 连接电脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止 反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 39:
称取实施例 12中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=25的三乙基铝 (TEA) 作助催化剂, 再 加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量 (通过连接电 脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 40:
称取实施例 13中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=25的三异丁基铝 (TiBA) 作助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定 在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量(通过连接 电脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 41 : 称取实施例 14中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制丙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA) 作助催化剂, 加入用量为 DCPMS/Ti=10的双环戊基二甲氧基硅垸,再加入 40mL脱水脱氧精制后的正庚 垸溶剂。 调节丙烯压力至 0.15 MPa, 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反 应过程中在线采集单体丙烯的瞬时消耗量 (通过连接电脑的高精密的丙烯质量流量计) 并 由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱 中 60'C下真空干燥 4h后称重并分析。
实施例 42:
称取实施例 15中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制丙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA) 作助催化剂, 加入用量为 DCPMS/Ti=10的双环戊基二甲氧基硅垸,再加入 40mL脱水脱氧精制后的正庚 垸溶剂。 调节丙烯压力至 0.15 MPa, 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反 应过程中在线采集单体丙烯的瞬时消耗量 (通过连接电脑的高精密的丙烯质量流量计) 并 由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱 中 60'C下真空干燥 4h后称重并分析。
实施例 43:
称取实施例 16中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA) 作助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定 在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量(通过连接 电脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 44:
称取实施例 17中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA) 作助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定 在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量(通过连接 电脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 45:
称取实施例 18中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三乙基铝 (TEA) 作助催化剂, 再 加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量 (通过连接电 脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 46:
称取实施例 19中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA) 作助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定 在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量(通过连接 电脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 47:
称取实施例 20中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA) 作助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定 在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量(通过连接 电脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 48:
称取实施例 21中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的甲基铝氧垸 (MAO) 作助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定 在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量(通过连接 电脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
实施例 49:
称取实施例 22中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制丙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA) 作助催化剂, 加入用量为 DCPMS/Ti=10的双环戊基二甲氧基硅垸,再加入 40mL脱水脱氧精制后的正庚 垸溶剂。 调节丙烯压力至 0.15 MPa, 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反 应过程中在线采集单体丙烯的瞬时消耗量 (通过连接电脑的高精密的丙烯质量流量计) 并 由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱 中 60'C下真空干燥 4h后称重并分析。
实施例 50:
称取实施例 23中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制丙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA) 作助催化剂, 加入用量为 DCPMS/Ti=10的双环戊基二甲氧基硅垸,再加入 40mL脱水脱氧精制后的正庚 垸溶剂。 调节丙烯压力至 0.15 MPa, 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反 应过程中在线采集单体丙烯的瞬时消耗量 (通过连接电脑的高精密的丙烯质量流量计) 并 由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱 中 60'C下真空干燥 4h后称重并分析。
实施例 51 :
称取实施例 24中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制丙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA) 作助催化剂, 加入用量为 DCPMS/Ti=10的双环戊基二甲氧基硅垸,再加入 40mL脱水脱氧精制后的正庚 垸溶剂。 调节丙烯压力至 0.15 MPa, 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反 应过程中在线采集单体丙烯的瞬时消耗量 (通过连接电脑的高精密的丙烯质量流量计) 并 由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱 中 60'C下真空干燥 4h后称重并分析。
实施例 52:
称取实施例 25中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制丙烯至 0.12MPa。 接着依次向反应釜内 加入 40mL精制的正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA) 作助催化剂, 加入用量为 DCPMS/Ti=10的双环戊基二甲氧基硅垸,再加入 40mL脱水脱氧精制后的正庚 垸溶剂。 调节丙烯压力至 0.15 MPa, 待釜内温度恒定在 70'C后, 加入催化剂开始反应。 反 应过程中在线采集单体丙烯的瞬时消耗量 (通过连接电脑的高精密的丙烯质量流量计) 并 由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱 中 60'C下真空干燥 4h后称重并分析。
实施例 53:
称取实施例 2中催化剂 100 mg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12 MPa。 接着向反应釜内加入 40 mL精制正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA) 助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂, 再向釜内加入 10mLH2, 调节乙烯压力至 0.15 MPa。 待釜内温度恒定在 70 'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时 消耗量(通过连接电脑的高精密的乙烯质量流量计)并由电脑记录。 lh后加入 50 mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60 'C下真空干燥 4h后称 重并分析。
实施例 54:
称取实施例 3中催化剂 100 mg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12 MPa。 接着向反应釜内加入 40 mL精制正庚垸溶剂, 加入用量为 Al/Ti=15的三异丁基铝 (TiBA) 助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂, 再向釜内加入 10mLH2, 调节乙烯压力至 0.15 MPa。 待釜内温度恒定在 70 'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时 消耗量(通过连接电脑的高精密的乙烯质量流量计)并由电脑记录。 lh后加入 50 mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60 'C下真空干燥 4h后称 重并分析。
实施例 55:
称取实施例 8中催化剂 100 mg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12 MPa。 接着向反应釜内加入 40 mL精制正庚垸溶剂, 加入用量为 Al/Ti=15的三异丁基铝 (TiBA) 助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂, 再向釜内加入 10mLH2, 调节乙烯压力至 0.15 MPa。 待釜内温度恒定在 70 'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时 消耗量(通过连接电脑的高精密的乙烯质量流量计)并由电脑记录。 lh后加入 50 mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60 'C下真空干燥 4h后称 重并分析。
实施例 56:
称取实施例 9中催化剂 100 mg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12 MPa。 接着向反应釜内加入 40 mL精制正庚垸溶剂, 加入用量为 Al/Ti=15的三异丁基铝 (TiBA) 助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂, 再向釜内加入 10mLH2, 调节乙烯压力至 0.15 MPa。 待釜内温度恒定在 70 'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时 消耗量(通过连接电脑的高精密的乙烯质量流量计)并由电脑记录。 lh后加入 50 mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60 'C下真空干燥 4h后称 重并分析。
实施例 57:
称取实施例 10中催化剂 100 mg进行常压聚合实验。将聚合反应釜真空加热除杂, 并 用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12 MPa。 接着向反应釜内加入 40 mL精制正庚垸溶剂, 加入用量为 Al/Ti=25的三异丁基铝 (TiBA) 助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂, 再向釜内加入 10mLH2, 调节乙烯压力至 0.15 MPa。 待釜内温度恒定在 70 'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时 消耗量(通过连接电脑的高精密的乙烯质量流量计)并由电脑记录。 lh后加入 50 mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60 'C下真空干燥 4h后称 重并分析。
实施例 58:
分别称取实施例 2中催化剂 100 mg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12 MPa。 接着依次向反应釜 内加入 40 mL精制正庚垸溶剂, 加入用量为 Al/Ti=50的三异丁基铝 (TiBA) 助催化剂, 分别加入经脱水处理的 0.8、 2.4, 4.0mL 1-己烯, 即 1-己烯与聚合所用溶剂的体积比分别 为 1、 3、 5vol%, (分别对应实施例 58-1、 58-2、 58-3 ), 再加入 40mL脱水脱氧精制后的 正庚垸溶剂, 调节乙烯压力至 0.15 MPa。 待釜内温度恒定在 70 'C后, 加入催化剂开始反 应。 反应过程中在线采集单体乙烯的瞬时消耗量 (通过连接电脑的高精密的乙烯质量流量 计) 并由电脑记录。 lh后加入 50 mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物 在真空干燥箱中 60 'C下真空干燥 4h后称重并分析。
实施例 59:
分别称取实施例 8中催化剂 100 mg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12 MPa。 接着依次向反应釜 内加入 40 mL精制正庚垸溶剂, 加入用量为 Al/Ti=15的三异丁基铝 (TiBA) 助催化剂, 分别加入经脱水处理的 0.8、 2.4, 4.0mL 1-己烯, 即 1-己烯与聚合所用溶剂的体积比分别 为 1、 3、 5vol%, (分别对应实施例 59-1、 59-2、 59-3 ), 再加入 40mL脱水脱氧精制后的 正庚垸溶剂, 调节乙烯压力至 0.15 MPa。 待釜内温度恒定在 70 'C后, 加入催化剂开始反 应。 反应过程中在线采集单体乙烯的瞬时消耗量 (通过连接电脑的高精密的乙烯质量流量 计) 并由电脑记录。 lh后加入 50 mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物 在真空干燥箱中 60 'C下真空干燥 4h后称重并分析。
实施例 60:
分别称取实施例 9中催化剂 100 mg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12 MPa。 接着依次向反应釜 内加入 40 mL精制正庚垸溶剂, 加入用量为 Al/Ti=15的三异丁基铝 (TiBA) 助催化剂, 分别加入经脱水处理的 0.8、 2.4, 4.0mL 1-己烯, 即 1-己烯与聚合所用溶剂的体积比分别 为 1、 3、 5vol%, (分别对应实施例 60-1、 60-2、 60-3 ), 再加入 40mL脱水脱氧精制后的 正庚垸溶剂, 调节乙烯压力至 0.15 MPa。 待釜内温度恒定在 70 'C后, 加入催化剂开始反 应。 反应过程中在线采集单体乙烯的瞬时消耗量 (通过连接电脑的高精密的乙烯质量流量 计) 并由电脑记录。 lh后加入 50 mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物 在真空干燥箱中 60 'C下真空干燥 4h后称重并分析。
实施例 61 :
分别称取实施例 10中催化剂 100 mg进行常压聚合实验。将聚合反应釜真空加热除杂, 并用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12 MPa。 接着依次向反应釜 内加入 40 mL精制正庚垸溶剂, 加入用量为 Al/Ti=25的三异丁基铝 (TiBA) 助催化剂, 分别加入经脱水处理的 0.8、 2.4, 4.0mL 1-己烯, 即 1-己烯与聚合所用溶剂的体积比分别 为 1、 3、 5vol%, (分别对应实施例 61-1、 61-2、 61-3 ), 再加入 40mL脱水脱氧精制后的 正庚垸溶剂, 调节乙烯压力至 0.15 MPa。 待釜内温度恒定在 70 'C后, 加入催化剂开始反 应。 反应过程中在线采集单体乙烯的瞬时消耗量 (通过连接电脑的高精密的乙烯质量流量 计) 并由电脑记录。 lh后加入 50 mL盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物 在真空干燥箱中 60 'C下真空干燥 4h后称重并分析。
对比实施例 1 :
在氮气保护下, 向带有磁力搅拌的反应瓶内依次加入一定量的无水 MgCl2和回流好的 正庚垸, 充分搅拌后加入一定量的无水乙醇 (n[EtOH]:n[MgCl2]=4:l )。 加热升温到 120'C, 反应至 MgCl2完全溶解后继续反应 lh, 然后降至室温, 抽出上层的正庚垸, 真空干燥的 MgCl2-nEtOH 复合物, 高纯氮气保护下转移至单口瓶中密闭保存。 在氮气保护下, 将 5g 左右的巳经合成的 MgCl2 醇合物加入冰浴冷却的三口瓶中, 加入一定量的 TiC (n[Ti]:n[Mg]=20:l mol比) , 搅拌, 然后缓慢升温至 120'C, 在氮气气氛中反应 2h, 冷却 至 60°C, 用 50ml正庚垸洗涤数次, 再加入计量的 TiC (n[Ti]:n[Mg]=20:l mol比), 加热 至 120'C, 保温 2h, 冷却至 60'C, 用 50ml正庚垸洗涤数次, 真空干燥, 得到的催化剂保 存备用
对比实施例 2:
在氮气保护下, 将 2g经过预活化, 去除掉物理水的硅胶 (孔体积为 1.5-1.7 cm3/g, 表 面积为 250-300 m2/g)、 50ml正庚垸和 20ml三乙基铝加入到反应瓶中, 60°C下搅拌, 反应 2h后,再加入少量乙醇,然后用正庚垸洗涤数次,真空干燥,得到经过预处理的硅胶载体。 在氮气保护下, 向带有磁力搅拌的反应瓶内依次加入一定量的无水 ¾¾ 2和回流好的正庚 垸, 充分搅拌后加入一定量的无水乙醇 (n[EtOH]:n[MgCl2]=4:l )。 加热升温到 120'C, 反 应至 MgCl2完全溶解后继续反应 lh, 然后降至室温, 抽出上层的正庚垸, 真空干燥的 MgCl2_nEtOH复合物, 高纯氮气保护下转移至单口瓶中密闭保存。 将 TiCl3、 MgCl2-nEtOH 复合物加入到四氢呋喃溶液中, 60°C下磁力搅拌至完全溶解, 再加入一定量经过预处理的 硅胶, 氮气气氛下真空干燥, 得到的催化剂保存备用。
对比实施例 3:
在氮气保护下, 将 10gMg(OEt)2、 100ml精制的正辛垸加入到反应瓶中, 开启搅拌同 时开始升温, 温度至 85'C后缓慢均匀的滴加 20πιΠ ¾, 滴加完毕后, 继续升温至 120'C, 保温; 保温完毕后停止搅拌, 同时降低温度, 但不低于 60'C, 静置 10h后, 准备后处理。 后处理过程为: 将反应瓶上层清液先抽出, 后打入 100ml精制的正己垸, 在氮气氛围下转 移至离心瓶中, 离心瓶中预先放入磁性转子, 在磁力搅拌器上搅拌 10min, 离心 10min, 离心完毕后, 再抽取上层清液, 打入 100ml正己垸, 重复上述离心操作, 如此洗涤 4-5次 以上, 将洗涤后的催化剂转移至羊角瓶中保存。
对比实施例 4:
称取对比实施例 1中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜 内加入 40mL精制的正庚垸溶剂,加入用量为 Al/ i=50的三异丁基铝(TiBA)作助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定 在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量(通过连接 电脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。 对比实施例 5:
称取对比实施例 2中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜 内加入 40mL精制的正庚垸溶剂,加入用量为 Al/ i=50的三异丁基铝(TiBA)作助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定 在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量(通过连接 电脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。 对比实施例 6:
称取对比实施例 3中催化剂 lOOmg进行常压聚合实验。 将聚合反应釜真空加热除杂, 并用高纯氮气抽排三次, 最后向反应釜内充微量精制乙烯至 0.12MPa。 接着依次向反应釜 内加入 40mL精制的正庚垸溶剂,加入用量为 Al/ i=50的三异丁基铝(TiBA)作助催化剂, 再加入 40mL脱水脱氧精制后的正庚垸溶剂。 调节乙烯压力至 0.15 MPa, 待釜内温度恒定 在 70'C后, 加入催化剂开始反应。 反应过程中在线采集单体乙烯的瞬时消耗量(通过连接 电脑的高精密的乙烯质量流量计) 并由电脑记录。 lh后加入盐酸 /乙醇混合溶液终止反应。 过滤后将所得聚合物在真空干燥箱中 60'C下真空干燥 4h后称重并分析。
各实施例的烯烃聚合活性
实施例 活性 (kg聚合物 /mol Ti-h) 实施例 26 46.93 实施例 27-1 59.78 实施例 27-2 66.86 实施例 27-3 65.55 实施例 274 57.65 实施例 27-5 41.58 实施例 28-1 44.32 实施例 28-2 43.54 实施例 28-3 42.11 实施例 29-1 54.53 实施例 29-2 60.06 实施例 29-3 59.63 实施例 294 59.25 实施例 29-5 56.78 实施例 30-1 34.54 实施例 30-2 38.58 实施例 30-3 36.47 实施例 31-1 47.96 实施例 31-2 44.20 实施例 31-3 40.53 实施例 314 36.83 实施例 32 45.37 实施例 33 50.95 实施例 34 57.88 实施例 35-1 68.02 实施例 35-2 72.00 实施例 35-3 66.00 实施例 36-1 57.93 实施例 36-2 67.47 实施例 36-3 60.46 实施例 37-1 44.91 实施例 37-2 52.74 实施例 37-3 43.05 实施例 38 39.02 实施例 39 45.42 实施例 40 49.39 实施例 41 50.74 实施例 42 54.21 实施例 43 65.41 实施例 44 51.45 实施例 45 50.88 实施例 46 53.43 实施例 47 52.64 实施例 48 49.35 实施例 49 51.23 实施例 50 49.78 实施例 51 52.13 实施例 52 50.76 实施例 53 52.66 实施例 54 51.60 实施例 55 53.62 实施例 56 50.45 实施例 57 48.44 实施例 58-1 82.54 实施例 58-2 79.33 实施例 58-3 78.11 实施例 59-1 77.26 实施例 59-2 84.37 实施例 59-3 73.49 实施例 60-1 88.42 实施例 60-2 78.56 实施例 60-3 77.81 实施例 61-1 81.35 实施例 61 -2 78.32 实施例 61 -3 76.98 对比实施例 4 64.43 对比实施例 5 61.77 对比实施例 6 63.99 催化剂的影响
表 2助催化剂浓度对负载型烯烃聚合催化剂催化乙烯均聚的影响 活性 重均分子量
实施例 助催化剂 Al/Ti 分子量分布
( kg聚合物 /mol Ti'h ) C xios)
实施例 27-1 TiBA 25 59.78 1.36 6.2 实施例 27-2 TiBA 50 66.86 1.38 5.8 实施例 27-3 TiBA 100 65.55 1.33 6.2 实施例 27-4 TiBA 150 57.65 1.27 6.6 实施例 27-5 TiBA 200 41.58 1.25 5.1 实施例 29-1 TiBA 10 54.53 1.15 4.8 实施例 29-2 TiBA 15 60.06 1.32 5.3 实施例 29-3 TiBA 25 59.63 1.30 6.4 实施例 29-4 TiBA 50 59.25 1.26 5.4 实施例 29-5 TiBA 100 56.78 1.24 6.0 实施例 31-1 TiBA 5 47.96 1.97 3.4 实施例 31-2 TiBA 10 44.20 1.91 5.3 实施例 31-3 TiBA 15 40.53 1.81 4.7 实施例 31-4 TiBA 25 36.83 1.79 6.6 实施例 35-1 TiBA 10 68.02 1.59 7.8 实施例 35-2 TiBA 15 72.00 1.45 4.6 实施例 35-3 TiBA 25 66.00 1.44 6.2 实施例 36-1 TiBA 10 57.93 1.43 7.2 实施例 36-2 TiBA 15 67.47 1.41 6.8 实施例 36-3 TiBA 25 60.46 1.40 7.0 实施例 37-1 TiBA 15 44.91 1.44 7.4 实施例 37-2 TiBA 25 52.74 1.41 7.0 实施例 37-3 TiBA 50 43.05 1.42 7.0 聚合条件: 乙烯压力 =0.15MPa; 聚合时间 =lhr; 聚合温度 =7(TC ; 正庚垸 =80mL; 助催化剂=1¾ , 实施例 27、 29, 31 , 35 , 36, 37。 考察了助催化剂用量对负载型烯烃聚合催化剂的乙烯均聚活性的影响, 如表 2。
从表 2可知, 在以 TiBA为助催化剂的条件下, 对于实施例 2催化剂, 随着助催化剂 的铝钛比从 25到 200不断加大, 负载型烯烃聚合催化剂乙烯均聚的活性呈现先增高后降 低的趋势, 说明要达到聚合高活性, 助催化剂的用量是有一个合适的值或者范围, 实施例 2催化剂在 Al/ i为 50时, 活性最高。 对于其他催化剂, 乙烯均聚活性与铝钛比之间存在 类似的规律。 实施例 3催化剂在 Al/Ti为 15时, 活性最高。 实施例 4催化剂在 Al/Ti为 5 时, 活性最高。 实施例 8催化剂在 Al/Ti为 15时, 活性最高。 实施例 9催化剂在 Al/Ti为 15时, 活性最高, 实施例 10催化剂在 Al/Ti为 25时, 活性最高。 表 3 助催化剂种类对负载型烯烃聚合催化剂催化乙烯均聚的影响 活性 重均分子量
实施例 助催化剂 Al/Ti 分子量
( kg聚合物 /mol Ti'h ) Cxios)
实施例 27-2 TiBA 50 66.86 1.38 5.8 实施例 28-3 TEA 50 42.11 0.91 8.4 实施例 29-2 TiBA 15 60.06 1.32 5.3 实施例 30-2 TEA 15 38.58 1.09 14.3 聚合条件: 乙烯压力 =0.15MPa; 聚合时间 =lhr; 聚合温度 =7(TC ; 正庚垸 =80mL; Mg=15%(wt), 实施例 27-2、 28-3和实施例 29-2、 30-2。 表 3表示采用不同助催化剂对负载型烯烃聚合催化剂催化乙烯均聚活性的影响。 采用 TEA做助催化剂活性低于用 TiBA做助催化剂。进一步通过对上述产品聚乙烯的分析可知, 在不同助催化剂作用下的产品聚乙烯分子量和分子量分布大不相同,采用 TEA做助催化剂 得到的聚合物分子量较低, 但分子量分布明显变宽。 说明助催化剂对催化剂活性中心的还 原程度和还原后的分布有较大的影响。
(2) 镁含量对聚合性能的影响
表 4 镁含量对负载型烯烃聚合催化剂催化乙烯均聚的影响 活性 重均分子量
实施例 模含量 Al/Ti 分子量分布
( kg聚合物 /mol Ti'h ) Cxios)
实施例 29-3 15% 25 59.63 1.30 6.4 实施例 31-4 1% 25 36.83 1.79 6.6 实施例 27-1 15% 25 59.78 1.36 6.2 实施例 36-3 10% 25 60.46 1.40 7.0 实施例 35-3 5% 25 66.00 1.42 7.0 聚合条件: 乙烯压力 =0.15MPa; 聚合时间 =lhr; 正庚烧 =80mL; 助催化剂=1¾ , 实施例 29-3、 314 和 27-1、 36-3 , 35-3。
表 4为不同镁含量 (实施例 29-3、 实施例 31-4和实施例 27-1、 实施例 36-3、 实施例 35-3 ) 下的负载型烯烃聚合催化剂的乙烯均聚结果。 在高温洗涤条件下, 催化剂镁含量为 15%时活性和 1%的相比有较大程度的提高。 而在室温洗涤条件下, 催化剂镁含量从 5%、 10%升至 15%时, 活性却逐渐下降, 说明镁含量的提高有利于催化剂活性的提高, 但存在 最佳值。 在相同催化剂制备条件下, 聚合物分子量随着镁含量的升高而降低。
(3 ) 催化剂制备中洗涤温度对乙烯均聚性能的比较
表 5 不同洗涤温度下所得催化剂的聚合性能 活性 重均分子量
实施例 Al/Ti 分子量分布
( kg聚合物 /mol Ti'h ) Cxios)
实施例 27-1 25 59.78 1.36 6.2 实施例 29-3 25 59.63 1.30 6.4 实施例 27-2 50 66.86 1.38 5.8 实施例 294 50 59.25 1.26 5.4 实施例 27-3 100 65.55 1.33 6.2 实施例 29-5 100 56.78 1.24 6.0 聚合条件: 乙烯压力 =0.15MPa; 聚合时间 =lhr; 聚合温度: 7(TC, 正庚烧 =80mL; Mg=15%(wt); 助催化剂=1¾ ; 实施例 27-1、 实施例 29-3 ; 实施例 27-2、 实施例 29-4和实施例 27-3、 实施例 29-5。
表 5中的实施例是实施例 2和实施例 3两种催化剂分别在 Al/ i=25、 50、 100时进行 的乙烯聚合实验, 由于实施例 2催化剂制备中是在室温下洗涤的, 而实施例 3催化剂时在 高温 (70'C ) 洗涤得到的, 可见在相同的铝钛比下, 室温洗涤制备的催化剂活性均较高。 (4) 醋酸铵对催化剂聚合性能的影响
表 6 醋酸铵对负载型烯烃聚合催化剂催化乙烯均聚的影响 活性 重均分子量
实施例 Al/Ti 分子量分布
( kg聚合物 /mol Ti'h ) ( 10s)
实施例 27-1 25 59.78 1.36 6.2 实施例 37-2 25 52.74 1.41 7.0 实施例 27-2 50 66.86 1.38 5.8 实施例 37-3 50 43.05 1.42 7.0 聚合条件: 乙烯压力 =0.15MPa; 聚合时间 =lhr; 正庚烧 =80mL; 助催化剂=1¾ , 实施例 27-1、 实 施例 37-2和实施例 27-2、 实施例 37-3。
表 6为催化剂制备过程中添加醋酸铵对负载型烯烃聚合催化剂乙烯均聚的影响, 实施 例 27-1和实施例 27-2均为未添加醋酸铵的催化剂的乙烯聚合实验, 发现在相同 Al/Ti下, 浸渍过程中添加醋酸铵后, 催化剂的均聚性能并没有得到改善。
( 5 ) 1-己烯的用量对乙烯 /1-己烯共聚性能的影响
7 乙烯、 J-己烯共聚对负载型烯烃聚合催化剂共聚特性的影响
1-己烯 活性 重均分子量
实施例 Al/Ti 分子量分布
(mL) ( kg聚合物 /mol Ti'h ) C xios)
实施例 27-2 0 50 66.86 1.38 5.8 实施例 58-1 0.8 50 82.54 0.72 7.2 实施例 58-2 2.4 50 79.33 0.48 6.1 实施例 58-3 4.0 50 78.11 0.32 6.9 实施例 35-2 0 15 72.00 1.45 4.6 实施例 59-1 0.8 15 77.26 0.83 6.8 实施例 59-2 2.4 15 84.37 0.54 7.1 实施例 59-3 4.0 15 73.49 0.46 6.5 实施例 36-2 0 15 67.47 1.41 6.8 实施例 60-1 0.8 15 88.42 0.80 7.2 实施例 60-2 2.4 15 78.56 0.52 6.7 实施例 60-3 4.0 15 77.81 0.41 6.5 实施例 37-2 0 25 52.74 1.41 7.0 实施例 61-1 0.8 25 81.35 0.75 6.3 实施例 61-2 2.4 25 78.32 0.71 9.1 实施例 61-3 4.0 25 76.98 0.46 6.8 聚合条件: 乙烯压力 =0.15MPa; 聚合时间 =lhr; 聚合温度: 7(TC, 正庚烧 =80mL; 助催化剂=1¾6 , 实施例 27-2、 58-1、 实施例 58-2、 实施例 58-3 ; 实施例 35-2、 实施例 59-1、 实施例 59-2、 实施例 59-3 ; 实施例 36-2、 实施例 60-1、 实施例 60-2、 实施例 60-3和实施例 37-2、 61-1 , 实施例 61 -2、 实施例 61 -3 ; 表 7给出了负载型烯烃聚合催化剂乙烯 /1-己烯共聚合的结果。相对于未加 1-己烯的聚 合实验, 实施例 2、 实施例 8、 实施例 9和实施例 10所制催化剂的乙烯 /1-己烯共聚活性均 呈现出升高的趋势。 但随着 1-己烯加入量的增加, 聚合活性呈现出先增大后减小的趋势。 并且乙烯、 1-己烯共聚之后, 聚合物的分子量明显下降。
( 6 ) 氢气对聚合性能的影响
表《 氢气对乙烯均聚的影响 活性 重均分子量
实施例 H3(mL) Al/Ti 分子量分布
( kg聚合物 /mol Ti'h ) C xios)
实施例 27-2 0 50 66.86 1.38 5.8 实施例 53 10 50 52.66 0.68 8.5 实施例 29-2 0 15 60.06 1.32 5.3 实施例 54 10 15 51.60 0.74 6.1 实施例 35-2 0 15 72.00 1.45 4.6 实施例 55 10 15 53.62 1.10 8.8 实施例 36-2 0 15 67.47 1.41 6.8 实施例 56 10 15 50.45 0.65 7.7 实施例 37-2 0 25 52.74 1.41 7.0 实施例 57 10 25 48.44 0.80 5.9 聚合条件: 乙烯压力 =0.15MPa; 聚合时间 =lhr; 聚合温度: 7(TC, 正庚烧 =80mL; 助催化剂=1¾ ; 实施例 27-2、 实施例 53 ; 实施例 29-2、 实施例 54; 实施例 35-2、 实施例 55 ; 实施例 36-2、 实施例 56; 实施例 37-2、 实施例 57。
由表 8可见, 不同催化剂加入氢气之后的乙烯均聚活性比没有氢气存在时的都有所降 低且聚乙烯的分子量也有所降低, 说明氢气起到链转移剂的作用导致其分子量下降。
( 7 ) 不同制备方法的催化剂聚合性能比较
表 9不同制备方法的催化剂聚合性能比较 活性 重均分子量
实施例 Al/Ti 分子量分布
( kg聚合物 /mol Ti'h ) C xios)
实施例 27-2 50 66.86 1.38 5.8 对比实施例 4 50 64.43 1.21 6.2 对比实施例 5 50 61.77 1.09 5.9 对比实施例 6 50 63.99 1.08 6.5 聚合条件: 乙烯压力 =0.15MPa; 聚合时间 =lhr; 正庚烧 =80mL; 助催化剂=1¾ , 实施例 27-2、 对 比实施例 4、 对比实施例 5和对比实施例 6。
由表 9可见, 在上述相同的聚合条件下, 采用本发明制备的负载型烯烃聚合催化剂的 活性要高于其它三种方法 (对比实施例 1、 对比实施例 2和对比实施例 3 ), 并且本发明所述 催化剂的制备方法相对简单, 因此综合比较后体现出一定的优越性。
本发明提供的负载型烯烃聚合催化剂及其制备方法与其在烯烃均聚物和烯烃共聚物 生产中的应用, 本发明是采用任意多孔无机载体与廉价的任意可溶性镁盐为原料, 先将可 溶性镁盐浸渍于无机载体表面, 经过高温焙烧后在无机载体表面形成负载的含镁化合物层 , 进一步与含氯的钛化合物溶液反应, 在无机载体表面原位形成含镁载体的同时实现钛活 性物种的负载化, 该催化剂制备方法简单、 成本低、 催化剂形态易于控制, 并且得到的复 合载体负载型 Ziegler-Natta催化剂的烯烃聚合性能优良。使用本发明的负载型烯烃聚合催化 剂, 通过改变助催化剂的种类和用量、 分子量调节剂等因素, 可以方便和容易地调整烯烃 均聚物和烯烃共聚物的分子量和分子量分布以及共聚单体含量及分布, 从而得到具有所需 性能的聚合物产品。
6S

Claims

权 利 要 求 书
1. 一种负载型烯烃聚合催化剂, 其特征在于: 所述催化剂主要包括: 多孔的载体 A、 含镁的载体 B和负载的含过渡金属钛活性组分。
2. 根据权利要求 1所述催化剂, 其特征在于, 所述载体 A选自二氧化硅、 三氧化二 铝、 硅铝酸盐、 二氧化钛、 氧化锆、 氧化镁、 氧化钙、 无机粘土中的一种或一种以上。
3. 根据权利要求 1所述催化剂, 其特征在于, 所述载体 B是含镁的化合物, 通式为: R^MgCl^,式中 R1是 d-C^的烃基,所述烃基选自饱和或不饱和的直链、支链或环状链, 0≤m<2。
4. 根据权利要求 1所述催化剂, 其特征在于, 所述含过渡金属钛活性组分为含钛化合 物, 通式为!!^ ^^或者 TiO^gCl^g或者
Figure imgf000070_0001
式中 L1是 CrC2。的烃基 R2或者 烃氧基 R20, R2选自饱和或不饱和的直链、 支链或环状链, 0≤n≤4, 0<g<3 , 0<k<2; 当 n、 g和 k为 2或 2以上时, 存在的多个 R2可以分别相同或者不同; 所述含钛化合物选自三甲 氧基氯化钛、 三乙氧基氯化钛、 三正丙氧基氯化钛、 三异丙氧基氯化钛、 二甲氧基二氯化 钛、 二乙氧基二氯化钛、 二异丙氧基二氯化钛、 甲氧基三氯化钛、 乙氧基三氯化钛、 四氯 化钛、 四乙氧基钛、 钛酸四乙酯、 钛酸四丁酯、 三氯化钛、 三乙氧基钛、 二氯化钛、 二正 丁基钛、 乙基氯化钛中的一种。
5. 根据权利要求 1所述催化剂, 其特征在于, 所述载体 B负载在载体 A上, 其负载 量按 Mg的重量计为催化剂总重量的 0.01~50wt%。
6. 一种权利要求 1所述催化剂的制备方法,其特征在于:将载体 A浸渍可溶性镁盐或 者可溶性镁盐和可溶性铵盐的混合溶液, 经 300~900°C下高温焙烧, 然后与含钛化合物溶 液反应, 得到所述催化剂。
7. 根据权利要求 6所述催化剂的制备方法,其特征在于,所述可溶性镁盐选自碳酸镁、 碳酸氢镁、 铬酸镁、 硅氟化镁、 醋酸镁、 硝酸镁、 氟化镁、 氯化镁、 溴化镁、 碘化镁、 硫 酸镁、 葡萄糖酸镁、 氯酸镁、 高氯酸镁、 磷酸镁、 硫化镁、 柠檬酸镁、 氨基酸镁中的一种 或一种以上; 载体 A上镁负载量按 Mg重量计为催化剂总重量的 0.01~50wt%;
所述可溶性铵盐选自醋酸铵、 硝酸铵、 碳酸铵、 碳酸氢铵中的一种或者一种以上; 所 述铵盐与镁盐的摩尔比为 0.01 10。
8. 根据权利要求 6所述催化剂的制备方法, 其特征在于, 所述与焙烧后产物反应的含 钛化合物通式为 Ti(L2;>hCl4.h或者 Ti(L2;>sCl3.s或者 Ti(L2;>tCl2.t, 式中 L2是 CrC2。的烃基 R3 或者烃氧基 R30, R3选自饱和或不饱和的直链、 支链或环状链, 0≤h<4, 0<s<3 , 0≤t<2; 当 h、 s和 t为 2或 2以上时, 存在的多个 R3可以分别相同或者不同; 含钛化合物选自三 甲氧基氯化钛、 三乙氧基氯化钛、 三正丙氧基氯化钛、 三异丙氧基氯化钛、 二甲氧基二氯 化钛、 二乙氧基二氯化钛、 二异丙氧基二氯化钛、 甲氧基三氯化钛、 乙氧基三氯化钛、 四 氯化钛、 三氯化钛、 二氯化钛、 乙基氯化钛中的一种; 所述含钛化合物与载体 A上镁负载 量的摩尔比为 0.01 500。
9. 根据权利要求 6所述催化剂的制备方法,其特征在于,所述与含钛化合物溶液反应, 同时在反应液中加入内给电子体; 所述内给电子体选自饱和脂肪羧酸的烷基酯、 芳香羧酸 的烷基酯、 脂肪醚、 环醚、 饱和脂肪酮、 二元醇酯类化合物中的一种或者一种以上; 内给 电子体加入量与载体 A上镁负载量的摩尔比为 0.01 500。
10. 根据权利要求 6所述催化剂的制备方法, 其特征在于, 在高温焙烧后和与含钛化 合物溶液反应前, 加入选自有机镁化合物、 有机铝化合物或者含羟基类化合物中的一种或 两种对焙烧后产物进行表面改性处理;
所述有机镁化合物的通式 R4pMgX2_p, 式中 R4是 d-C^的烃基, 所述烃基选自饱和或 不饱和的直链、 支链或环状链; 0<p<2;, X是卤素, 选自氟、 氯、 溴和碘中的一种; 有机 镁化合物选自甲基氯化镁、 乙基氯化镁、 丁基氯化镁、 烯丙基氯化镁、 异丙基氯化镁、 叔 丁基氯化镁、 2-甲基丁基氯化镁、 1-庚基氯化镁、 1-戊基氯化镁、 1-己基氯化镁、 1,1-二甲 基丙基氯化镁、 环戊基氯化镁、 乙烯基氯化镁、 2-丁基氯化镁、 1-辛基氯化镁中的一种或 者一种以上; 有机镁化合物与载体 A上镁负载量的摩尔比为 0.01 100;
所述有机铝化合物选自三烷基铝 A1R3、 二烷基烷氧基铝 A1R20R、 二烷基 ¾化铝 A1R2X、 铝氧烷、 乙基倍半铝氯化物中的一种, 其中 R是 12的烷基, X是卤素; 选自 氟、 氯、 溴和碘中的一种或者一种以上; 有机铝化合物与载体 A上镁负载量的摩尔比为 0.01-100;
所述含羟基类化合物通式 HOR5, 式中 R5是 d-C^的烃基, 所述烃基选自饱和或不饱 和的直链、 支链或环状链; 含羟基类化合物选自甲醇、 乙醇、 正丁醇、 正己醇、 异辛醇、 苯甲醇和苯乙醇中的一种或者一种以上;含羟基类化合物与载体 A上镁负载量的摩尔比为
0.01~200。
11. 根据权利要求 6所述催化剂的制备方法, 其特征在于, 所述方法还包括使用有机 金属助催化剂进行预活化处理;所述有机金属助催化剂选自有机铝化合物、有机锂化合物、 有机硼化合物一种或者一种以上; 所述有机铝化合物选自三烷基铝 A1R3、二烷基烷氧基铝 A1R20R、 二烷基卤化铝 A1R2X、 铝氧烷、 乙基倍半铝氯化物中的一种, 其中 R是 d-C12 的烷基, X是卤素, 选自氟、 氯、 溴和碘; 有机锂化合物通式 LiR6, 式中 R6是 CH^o的 烃基, 所述烃基选自饱和或不饱和的直链、支链或环状链; 所述有机铝化合物选自甲基锂、 乙基锂、 丁基锂、 叔丁基锂、 戊基锂、 苯基锂中的一种; 有机硼化合物通式 BR7 qCl3_q, 式 中 R7是 d- o的烷基或烷氧基, 0≤q≤3, 选自三甲基硼、 三乙基硼、 二氯甲基硼、 二氯乙 基硼、 二氯丁基硼、 二氯甲氧基硼、 二氯乙氧基硼、 三氯化硼和二氯丁氧基硼中的一种; 有机金属助催化剂与钛活性组分的摩尔比为 0.01 1000。
12. 一种权利要求 1-5所述催化剂的制备方法, 其特征在于, 包括如下步骤: a) 将载体 A浸渍可溶性镁盐的溶液, 或者可溶性镁盐和铵盐的混合溶液, 然后干燥, 接着在高温 300~900°C下焙烧;
b) 将步骤 a所得产物与含钛化合物溶液反应,同时在反应体系中加入或不加入内给电 子体, 然后洗涤、 干燥, 得到所述催化剂保存备用。
13. 一种权利要求 1-5所述催化剂的制备方法, 其特征在于, 包括如下步骤: a) 将载体 A浸渍可溶性镁盐的溶液, 或者可溶性镁盐和铵盐的混合溶液, 然后干燥, 接着在高温 300~900°C下焙烧;
b) 将步骤 a所得产物与有机镁化合物或者有机铝化合物反应, 然后干燥;
c) 将步骤 b所得的产物与含钛化合物溶液反应,同时在反应体系中加入或者不加入内 给电子体, 然后洗涤、 干燥, 得到所述催化剂保存备用。
14. 一种权利要求 1-5所述催化剂的制备方法, 其特征在于, 包括如下步骤: a) 将载体 A浸渍可溶性镁盐的溶液, 或者可溶性镁盐和铵盐的混合溶液, 然后干燥, 接着在高温 300~900°C下焙烧;
b) 将步骤 a所得产物先与有机铝化合物反应, 再加入含羟基类化合物;
c) 将步骤 b所得的产物与钛化合物溶液反应,同时在反应体系中加入或者不加入内给 电子体, 然后洗涤、 干燥, 得到所述催化剂保存备用。
15. 一种根据权利要求 1-5所述催化剂的制备方法, 其特征在于, 包括如下步骤: a) 根据权利要求 12-14所述催化剂制备方法之一制备任意一种催化剂;
b) 将步骤 a制得的催化剂加入有机金属助催化剂;所述有机金属助催化剂为有机铝化 合物、 有机锂化合物或有机硼化合物进行预活化处理, 得到所述催化剂保存备用。
16. 根据权利要求 1-5所述负载型催化剂在烯烃聚合或烯烃共聚合反应中的应用; 所 述在烯烃聚合或烯烃共聚合反应选自乙烯、 丙烯、 丁烯、 己烯和辛烯聚合或它们之间的共 聚合反应中的应用; 所述聚合过程中不添加或添加有机金属助催化剂、 外给电子体或者氢 气; 有机金属助催化剂与钛活性组分的摩尔比为 0.01 1000, 外给电子与钛活性组分的摩 尔比为 0.01-500;
所述外给电子体选自一元羧酸、 多元羧酸、 羧酸酐、 羧酸酯、 芳香酯、 酮、 醚、 醇、 胺、 内酯、 有机磷化合物和烷氧基硅烷化合物中的一种或者一种以上。
PCT/CN2014/080371 2013-07-16 2014-06-20 一种负载型烯烃聚合催化剂及其制备方法与应用 WO2015007135A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/904,691 US20160152738A1 (en) 2013-07-16 2014-06-20 Supported Catalyst for Olefin Polymerization, Preparation Method and Use Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310298051.2A CN103351443B (zh) 2013-07-16 2013-07-16 一种负载型烯烃聚合催化剂及其制备方法与应用
CN201310298051.2 2013-07-16

Publications (1)

Publication Number Publication Date
WO2015007135A1 true WO2015007135A1 (zh) 2015-01-22

Family

ID=49307868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080371 WO2015007135A1 (zh) 2013-07-16 2014-06-20 一种负载型烯烃聚合催化剂及其制备方法与应用

Country Status (3)

Country Link
US (1) US20160152738A1 (zh)
CN (1) CN103351443B (zh)
WO (1) WO2015007135A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103351443B (zh) * 2013-07-16 2016-02-10 华东理工大学 一种负载型烯烃聚合催化剂及其制备方法与应用
CN104017117B (zh) * 2014-06-19 2017-01-25 中国科学院长春应用化学研究所 茂金属催化剂及其制备方法、聚乙烯纳米纤维的制备方法
EP3169436B1 (en) * 2014-07-18 2021-04-07 Lyondell Chemical Technology, L.P. Complexes useful as active components in supported epoxidation catalysts
CN104437546B (zh) * 2014-12-09 2016-05-18 易志坚 一种非均相臭氧催化剂及其制备方法
CN105985462B (zh) * 2015-02-02 2018-12-25 中国石油天然气股份有限公司 粘土改性硅胶复合载体及其制备方法
HRP20221540T1 (hr) 2016-06-20 2023-03-03 Shionogi & Co., Ltd. Postupak za proizvodnju supstituiranog derivata policikličkog piridona i njegovog kristala
CN106188349B (zh) * 2016-07-17 2018-10-23 北京化工大学 负载型Ziegler-Natta催化剂及制备方法与应用
CN111499777B (zh) * 2020-04-29 2023-02-17 江苏扬农化工集团有限公司 一种超高分子量聚乙烯催化剂及其制备方法和应用
CN114057912B (zh) * 2020-07-31 2023-06-16 中国石油化工股份有限公司 一种载铬硅胶控制颗粒形态的干燥方法和制备方法
CN114716748B (zh) * 2021-07-14 2023-07-18 中塑新材料技术(吉林)有限公司 一种矿渣/聚烯烃复合材料及其制备方法
CN115785308B (zh) * 2022-11-30 2024-05-28 上海化工研究院有限公司 一种用于生产增强聚烯烃的催化剂及其制备和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1066273A (zh) * 1991-03-27 1992-11-18 希蒙特公司 用于烯烃聚合的催化组分和催化剂
CN103028442A (zh) * 2011-09-30 2013-04-10 中国石油化工股份有限公司 多孔载体及制备方法和应用以及催化剂和加氢裂化方法
CN103351443A (zh) * 2013-07-16 2013-10-16 华东理工大学 一种负载型烯烃聚合催化剂及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293673A (en) * 1978-12-28 1981-10-06 Union Carbide Corporation Spheroidal polymerization catalyst, process for preparing, and use for ethylene polymerization
US4855271A (en) * 1987-06-22 1989-08-08 Phillips Petroleum Company Catalyst and polymerization of olefins
US5104837A (en) * 1990-03-16 1992-04-14 Phillips Petroleum Company Catalyst and polymerization of olefins
US6376416B1 (en) * 1998-07-21 2002-04-23 Japan Polychem Corporation Olefin polymerization catalyst and process for producing olefin polymer
CN101864013B (zh) * 2010-06-24 2013-04-24 东北石油大学 一种用于乙烯气相聚合或共聚合的催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1066273A (zh) * 1991-03-27 1992-11-18 希蒙特公司 用于烯烃聚合的催化组分和催化剂
CN103028442A (zh) * 2011-09-30 2013-04-10 中国石油化工股份有限公司 多孔载体及制备方法和应用以及催化剂和加氢裂化方法
CN103351443A (zh) * 2013-07-16 2013-10-16 华东理工大学 一种负载型烯烃聚合催化剂及其制备方法与应用

Also Published As

Publication number Publication date
US20160152738A1 (en) 2016-06-02
CN103351443B (zh) 2016-02-10
CN103351443A (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2015007135A1 (zh) 一种负载型烯烃聚合催化剂及其制备方法与应用
US9725530B2 (en) Supported metal oxide double active center polyethylene catalyst, process for preparing the same and use thereof
CN105440185B (zh) 一种负载型催化剂及其制备方法,以及其用于丙烯聚合的方法
US10053523B2 (en) Supported polymetal olefin polymerization catalyst, preparation method and use thereof
US9611339B2 (en) Supported double center hybrid polyethylene catalyst, process for preparing the same and use thereof
JP6023069B2 (ja) 活性剤組成物、その製造及び触媒中でのその使用
JP2004527635A (ja) 改良されたオレフィン重合触媒組成物及び製造方法
JP2003510381A (ja) オレフィンの重合用触媒系および方法
JPH02501393A (ja) 変性シリカ基材触媒
MXPA01012020A (es) Proceso para la preparacion in-situ de catalizadores de metal de transicion de sitio-unitario y procesos de polimerizacion.
WO2014117307A1 (zh) 一种烯烃聚合催化剂及其制备和应用
CN107344974B (zh) 烯烃配位聚合催化剂及制备方法与应用
WO2012044063A2 (ko) 혼성 담지 메탈로센 촉매의 제조방법
CN111019023B (zh) 烯烃聚合用催化剂及其制备方法、烯烃聚合用催化剂组合物及其应用
WO2014134761A1 (zh) 一种负载型聚烯烃催化剂及其制备和应用
JP2019137830A (ja) オレフィン配位重合触媒及びその応用
JP4316885B2 (ja) オレフィン重合のための触媒組成物およびその調製方法
JP4089968B2 (ja) 新規の触媒組成物およびそれを用いたオレフィン重合およびアルファオレフィンとのオレフィン共重合のための方法
CN108690153B (zh) 烯烃聚合催化剂及其制备方法与应用
CN112778441B (zh) 一种负载型茂金属催化剂及其制备与应用
CN112552437B (zh) 一种铬钼双中心负载型催化剂及其制备方法与应用
CN112759679B (zh) 一种负载型非茂金属催化剂及其制备与应用
US7094726B2 (en) Catalyst composition and process for olefin polymerization and copolymerization using supported metallocene catalyst systems
JP2000344820A (ja) エチレン系重合体製造用触媒、その製造方法及びエチレン系重合体の製造方法
CN117264097A (zh) 一种双金属中心非均相催化剂组合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14904691

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826455

Country of ref document: EP

Kind code of ref document: A1