WO2015005407A1 - ゼオライトの製造方法 - Google Patents

ゼオライトの製造方法 Download PDF

Info

Publication number
WO2015005407A1
WO2015005407A1 PCT/JP2014/068369 JP2014068369W WO2015005407A1 WO 2015005407 A1 WO2015005407 A1 WO 2015005407A1 JP 2014068369 W JP2014068369 W JP 2014068369W WO 2015005407 A1 WO2015005407 A1 WO 2015005407A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
tubular reactor
raw material
producing
reactor
Prior art date
Application number
PCT/JP2014/068369
Other languages
English (en)
French (fr)
Inventor
達也 大久保
徹 脇原
振東 劉
武脇 隆彦
大島 一典
大輔 西岡
Original Assignee
三菱化学株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社, 国立大学法人東京大学 filed Critical 三菱化学株式会社
Priority to JP2015526388A priority Critical patent/JP6399557B2/ja
Priority to EP14823636.7A priority patent/EP3020688B1/en
Priority to CN201480038927.2A priority patent/CN105358483B/zh
Publication of WO2015005407A1 publication Critical patent/WO2015005407A1/ja
Priority to US14/990,431 priority patent/US10308516B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/243Tubular reactors spirally, concentrically or zigzag wound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7015CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates [APO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/085Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/087Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/10Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the replacing atoms being at least phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00283Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/06Details of tube reactors containing solid particles
    • B01J2208/065Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00099Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor the reactor being immersed in the heat exchange medium

Definitions

  • the present invention relates to a method for producing a zeolite, and more particularly, to a method for producing a zeolite capable of obtaining a highly crystalline zeolite having a relatively large particle diameter in a shorter time than conventional methods.
  • the crystal structure of zeolite is a porous material, for example, it is used as a molecular sieve that allows only molecules of a specific molecular size to pass through. In addition, it is used as an adsorption-type cooler, an air conditioner capable of adjusting humidity, etc. by taking advantage of the property of selectively adsorbing and releasing specific molecules. Coolers and air conditioners that use zeolite can be operated with much lower energy than conventional coolers and air conditioners, and can also be operated using waste heat. Has been developed for use in various fields.
  • zeolite raw material zeolite precursor gel: (Hereafter, what is equivalent to the zeolite precursor used for hydrothermal synthesis may be displayed in parentheses for easy understanding.)
  • this indication is only for the purpose of helping understanding so that it can be easily distinguished from individual raw materials (aluminum source, etc., and does not change the meaning of the basic application). Only the method of manufacturing by the formula has been put into practical use, and the manufacturing cost is expensive due to the problems of cost and productivity. And this is why it is not widely spread despite the excellent energy efficiency of zeolites.
  • Patent Document 1 introduces a microwave synthesis method as part of shortening the long-time crystallization process, which is a fundamental problem of hydrothermal synthesis, and synthesis by activation of water and ions in the synthesis solution.
  • zeolite can be synthesized within 5 minutes by microwave heating of 60 to 1200 W. It also describes the effect that the production time can be shortened by adding 0-20% of molecular sieve.
  • microwaves when microwaves are used, microwaves do not pass through metals such as stainless steel, and thus materials such as fluororesin must be used as part of the reactor.
  • Such a resin material has a safety problem in hydrothermal synthesis performed at high pressure.
  • Non-Patent Document 1 as a method of continuously synthesizing zeolite in a tubular reactor heated with a heat medium, an example of continuously synthesizing silicalite by oil bath heating using a stainless capillary reactor. are listed. According to this method, it is said that silicalite can be continuously synthesized in a stainless capillary reactor heated to 150 ° C. with a residence time of 5.8 minutes.
  • the particle size of the obtained zeolite is as small as 10 to 100 nm, and there is a problem that it is difficult to recover by a usual solid-liquid separation method such as filtration.
  • the resulting zeolite contains many amorphous components, has poor crystallinity, and is of low quality.
  • Patent Document 2 also describes a method of continuously synthesizing zeolite in a tubular reactor heated by a heat medium.
  • a turbulent flow is generated in a tubular reactor, and thereby the reaction is promoted, whereby the zeolite formation reaction can be performed efficiently.
  • Non-Patent Document 2 shows an example in which A-type zeolite, Y-type zeolite and silicalite-1 zeolite were synthesized using a 6 mm diameter tubular reactor heated in an oil bath.
  • Non-Patent Document 2 when a zeolite is continuously synthesized using a tubular reactor having a diameter of 3 cm or less, the application of continuous synthesis is a template represented by A-type zeolite and Y-type zeolite.
  • the zeolite is crystallized from a low-viscosity raw material mixture (zeolite precursor gel) that does not use, or a zeolite that crystallizes from a low-viscosity transparent solution typified by silicalite-1 zeolite. Also, from the viewpoint of ease of crystallization, continuous synthesis can be applied to A-type zeolite and Y-type zeolite that are easily synthesized so as not to require a template, or silicalite- that has a high skeleton density and can be easily crystallized. 1 zeolite (MFI type, skeleton density 17.9 T / 17 3 ) and the like.
  • the zeolite is crystallized from a raw material mixture (zeolite precursor gel) containing aluminum or phosphorus
  • zeolite precursor gel aluminosilicate mixture
  • the raw material mixture (zeolite precursor) Since the gel) has a high viscosity, there was no example of continuous synthesis in a tubular reactor having a diameter of 3 cm or less by a heating method using a normal heat medium. From the viewpoint of difficulty in crystallization, it is considered difficult to continuously synthesize zeolite having a low skeleton density, that is, having a large space in the crystal, from the viewpoint of difficulty in crystallization.
  • JP 2002-186849 A Japanese Patent Laid-Open No. 2002-137717
  • zeolite particularly aluminophosphate zeolite containing at least an aluminum atom and a phosphorus atom in the skeleton structure or 5 ⁇ SiO 2 / Al 2 O 3 ⁇ 2000 (moles) by the method described in Patent Document 2. Ratio) aluminosilicate zeolite was produced, it was found that the reaction time required several hours, and the merit of continuous production could not be obtained sufficiently.
  • the present invention provides an aluminophosphate zeolite containing at least aluminum atoms and phosphorus atoms in a highly crystalline and particle structure grown in a short time in a method for continuously producing zeolite in a tubular reactor, or 5 It is an object of the present invention to provide a method for efficiently producing an aluminosilicate zeolite of ⁇ SiO 2 / Al 2 O 3 ⁇ 2000 (molar ratio).
  • an aluminophosphate zeolite containing at least an aluminum atom and a phosphorus atom in the skeleton structure or an aluminosilicate zeolite of 5 ⁇ SiO 2 / Al 2 O 3 ⁇ 2000 (molar ratio) is simply referred to as “zeolite”.
  • zeolite an aluminophosphate zeolite containing at least an aluminum atom and a phosphorus atom in the skeleton structure or an aluminosilicate zeolite of 5 ⁇ SiO 2 / Al 2 O 3 ⁇ 2000 (molar ratio)
  • the inventors of the present invention have synthesized zeolite in four stages: (1) a stage in which raw materials are dissolved to form a solution; and (2) a subunit in which the basic structure of zeolite is about 10 units (hereinafter referred to as “SB”). It has been found that it has undergone a formation stage (sometimes referred to as “unit”), (3) a stage in which it further grows to form an amorphous phase, and (4) a stage in which it crystallizes.
  • the present invention has been achieved on the basis of such knowledge, and the gist thereof is as follows.
  • a raw material (zeolite precursor gel) is continuously supplied to a tubular reactor, and an aluminophosphate zeolite containing at least aluminum atoms and phosphorus atoms in the framework structure or 5 ⁇ SiO 2 / Al 2 O 3 ⁇
  • a method for producing zeolite, wherein volume / side surface area is 0.75 cm or less, and seed crystals are added to the raw material (zeolite precursor gel).
  • the zeolite precursor gel is further added to the tubular reactor so as to contact the raw material after heating.
  • [1] or [2] A method for producing zeolite.
  • the skeleton density of the zeolite is 12.0 T / 1,000 to 3 or more and 17.5 T / 1,000 to 3 or less [1] to [6]
  • a raw material (zeolite precursor gel) is supplied into a tubular reactor, and this is heated to aluminophosphate zeolite containing at least aluminum atoms and phosphorus atoms in the skeleton structure or 5 ⁇ SiO 2 / Al 2 O 3.
  • a method for continuously producing an aluminosilicate zeolite of ⁇ 2000 (molar ratio), wherein the diameter of the tubular reactor is 3 cm or less, and seed crystals are added to the raw material (zeolite precursor gel) A method for producing zeolite, characterized by
  • the tubular reactor comprises an independent tubular reactor having an openable / closable lid. After the raw material (zeolite precursor gel) is supplied to the tubular reactor and the lid is closed, this The zeolite according to any one of [1] to [9], wherein the tubular reactor is taken out from the heat medium after being heated in a heat medium, and the product is removed by opening the lid. Manufacturing method.
  • the tubular reactor is composed of an independent tubular reactor having a lid that can be opened and closed. After the raw material is supplied to the tubular reactor and the lid is closed, the tubular reactor is put into a heat medium. After heating, the tubular reactor is removed from the heat medium, the lid is opened, the product is removed, and the product is held at a temperature lower than that during the reaction.
  • the manufacturing method of the zeolite of description is described.
  • a zeolite production apparatus having at least one raw material tank, a seed crystal tank, a reflux liquid tank, and a tubular reactor, the raw material (zeolite precursor gel) and the seed crystal from the raw material tank A seed crystal from the tank, means for joining the reflux from the reflux liquid tank at an appropriate ratio and supplying the seed crystal to the tubular reactor, and a heating tank holding a heat medium for heating the tubular reactor; , A means for separating the produced zeolite, and a means for returning the remaining raw material after the separation of the zeolite to the reflux liquid tank, the ratio of the volume (internal volume) of the tubular reactor to the side surface area, (volume) / An apparatus for producing zeolite having (side surface area) of 0.75 cm or less.
  • the present invention further includes the following gist.
  • a method for producing propylene characterized in that propylene is produced from ethylene as a raw material using the zeolite obtained by the production method according to any one of [1] to [11] and [13] as a catalyst.
  • a method for producing an exhaust gas treatment catalyst wherein the zeolite obtained by the production method according to any one of [1] to [11] and [13] is used for purification of exhaust gas as a catalyst.
  • a raw material (zeolite precursor gel) is continuously supplied to a tubular reactor heated using a heat medium, and an aluminophosphate zeolite containing at least aluminum atoms and phosphorus atoms in the framework structure or 5 ⁇
  • a method for continuously producing an aluminosilicate zeolite having SiO 2 / Al 2 O 3 ⁇ 2000, wherein the diameter of the tubular reactor is 3 cm or less, and seed crystals are added to the raw material (zeolite precursor gel) And a method for producing a zeolite.
  • zeolite having high crystallinity and particle diameter grown can be stably and efficiently produced in a short time by continuously producing “zeolite” which can be industrially implemented.
  • FIG. 1 is a schematic diagram showing an example of an apparatus used in the method for producing “zeolite” of the present invention.
  • FIG. 2 is a schematic diagram showing a tubular reactor portion of the apparatus of FIG.
  • FIG. 3 is a schematic diagram showing an example of a tubular reactor portion suitable for adding a zeolite precursor gel to the raw material after being heated in the tubular reactor.
  • 4 is an XRD chart of the AlPO zeolite obtained in Example 1 and the AlPO zeolite obtained in Comparative Example 1.
  • FIG. FIG. 5 is a graph showing the state of pressure fluctuations applied to the reactor when seed crystals are added in Example 1.
  • FIG. 6 is a graph showing the state of pressure fluctuation applied to the reactor when no seed crystal is added in Comparative Example 1.
  • FIG. 7 is a scanning electron micrograph of the AlPO zeolite obtained in Example 1.
  • FIG. 8 is an XRD chart of the AlPO zeolite obtained in Example 2.
  • FIG. 9 is an XRD chart of the aluminosilicate zeolite obtained in Example 3.
  • FIG. 10 is a scanning electron micrograph of the aluminosilicate zeolite obtained in Example 3.
  • FIG. 11 is an XRD chart of the aluminosilicate zeolite obtained in Example 4.
  • 12 is a scanning electron micrograph of the aluminosilicate zeolite obtained in Example 4.
  • FIG. 13 is an XRD chart of the aluminosilicate zeolite obtained in Example 5.
  • FIG. 14 is a scanning electron micrograph of the aluminosilicate zeolite obtained in Example 5.
  • FIG. 15 is an XRD chart of the aluminosilicate zeolite obtained in Example 6.
  • FIG. 16 is a scanning electron micrograph of the aluminosilicate zeolite obtained in Example 6.
  • the “zeolite” production method of the present invention is a method of continuously producing “zeolite” by continuously supplying a raw material (zeolite precursor gel) to a tubular reactor heated using a heat medium.
  • the ratio of the volume (internal volume) of the tubular reactor to be used to the side surface area, (volume) / (side surface area) is 0.75 cm or less, and seed crystals are added to the raw material (zeolite precursor gel).
  • the production method of “zeolite” of the present invention is a tubular reactor having a ratio of volume (internal volume) to side surface area, (volume) / (side surface area) of 0.75 cm or less (this is a case of a straight pipe).
  • zeolite is produced by hydrothermal synthesis of a raw material (zeolite precursor gel) containing a template. That is, a seed crystal is included in the raw material (zeolite precursor gel), and more preferably, a template is further included in the raw material (zeolite precursor gel).
  • the raw material (raw material compound) used for the production of “zeolite” (hereinafter referred to as the material corresponding to the “zeolite” material first prepared for producing the “zeolite” of the present invention)
  • the raw material compound for easy understanding, but this display is only for the purpose of understanding and does not change the meaning of the basic application) .
  • “continuous” includes a case in which a substantially continuous mode is represented and a mode in which the process is performed continuously at regular intervals.
  • the tubular reactor used in the present invention is a tubular reactor having a raw material (zeolite precursor gel) inlet at one end and a product outlet at the other end, which is heated with a heat medium.
  • the ratio (volume) / (side surface area) of the volume (internal volume) and side surface area of the tubular reactor is 0.75 cm or less, preferably 0.5 cm or less, particularly preferably 0.25 cm or less, most preferably Is 0.13 cm or less.
  • the smaller the (volume) / (side surface area) ratio between the volume (internal volume) and the side surface area of the tubular reactor the faster the entire raw material (zeolite precursor gel) can be heated in a shorter time.
  • the reaction can be allowed to proceed, it is less likely to cause troubles such as blockage if it is not too small.
  • the area which receives the heat from a heat medium can be represented using the outer diameter of a tubular reactor, if this relationship is represented by the diameter (outer diameter) of a tube, it will be 3 cm or less in diameter.
  • the blockage is a phenomenon that occurs inside the tubular reactor, the lower limit of the inner diameter of the tubular reactor is preferably 1 mm or more, more preferably 2 mm or more.
  • the area equivalent diameter of the cross section may be considered as the diameter for simple consideration.
  • the tubular reactor is a tubular reactor having a raw material (zeolite precursor gel) inlet at one end and a product outlet at the other end, which is heated with a heat medium.
  • the diameter (inner diameter) of the tubular reactor is 3 cm or less, preferably 2 cm or less, particularly preferably 1 cm or less, and most preferably 5 mm or less.
  • the lower limit of the diameter of the tubular reactor is preferably 1 mm or more, more preferably 2 mm or more. The smaller the diameter of the tubular reactor, the faster the entire raw material (zeolite precursor gel) can be heated in a short time, and the reaction can proceed at a high speed. Less likely to cause trouble.
  • the area equivalent diameter of the cross section may be considered as the diameter.
  • the essence of this aspect is to heat the entire raw material (zeolite precursor gel) in a short time, and the internal volume of the reactor corresponding to the volume of the raw material (zeolite precursor gel) and the heat from the external heat medium. It can also be expressed as the ratio of the surface area of the tubular reactor for receiving energy.
  • the diameter (inner diameter) of the tubular reactor should be 3 cm or less in order to allow the reaction to proceed rapidly using the tubular reactor, so the value of d / 4 is 0. .75 or less.
  • d / 4 is more preferably 0.5 or less, and particularly preferably 0.25 or less.
  • the essence of the present invention is to heat the entire raw material (zeolite precursor gel) in a short time, and the internal volume of the reactor corresponding to the volume of the raw material (zeolite precursor gel) and the external It can be expressed as the ratio of the surface area of the tubular reactor for receiving thermal energy from the heat medium.
  • the inner capacity is estimated larger than the actual inner capacity. That is, the ratio of (inner volume) and (side surface area) of the present invention is greatly estimated.
  • the cross section of the tubular reactor is circular
  • the content amount becomes the length of the [pi] d 2/4 ⁇ reactor
  • the surface area of the tubular reactor (here, the surface area refers to the area of the side peripheral surface of the reactor) is ⁇ d ⁇ the length of the reactor.
  • the inventors of the present invention have found that by making the diameter of the tubular reactor 3 cm or less, the zeolite formation reaction can be advanced rapidly using the tubular reactor.
  • the diameter of the tubular reactor is 3 cm
  • the value of d / 4 [cm] is 0.75 cm. That is, since the thickness is 0.75 cm even when the thickness is zero, the ratio d / 4 of (internal volume) to (side surface area) is 0.75 or less.
  • d / 4 [cm] is more preferably 0.5 cm or less, and particularly preferably 0.25 cm or less.
  • d / 4 [cm] is preferably 0.025 cm or more, more preferably 0.05 cm or more.
  • the “zeolite” raw material (zeolite precursor gel) to be subjected to the reaction contains a seed crystal, and the shortest distance between all the seed crystals present in the tubular reactor and the inner wall of the reactor.
  • the whole is heated in a short time, and “zeolite” continuously in a short time Can be manufactured.
  • This distance is more preferably 1 cm or less, still more preferably 0.5 cm or less.
  • the seed crystal is described here, the seed crystal is dispersed in the raw material (zeolite precursor gel) and may be read as the raw material (zeolite precursor gel).
  • the wall thickness of the tubular reactor is preferably a certain level or more in order to maintain the strength of the tubular reactor, while the amount of heat energy used for heating the tubular reactor itself can be reduced.
  • the wall thickness of the tubular reactor is preferably 0.2 mm or more, and preferably 5 mm or less.
  • the length of the tubular reactor is not particularly limited, and is designed to be long enough to ensure the reaction time required for the production of “zeolite” as the residence time.
  • the length of the tubular reactor is usually 5 cm or more, preferably 10 cm or more, and the upper limit is usually 10 m or less, preferably 5 m or less, preferably 5 times or more the diameter of the tubular reactor, It is particularly preferably 50 times or more, and the upper limit is preferably 5000 times or less, particularly preferably 3000 times or less.
  • the tubular reactor may be designed longer than the above upper limit. In this case, the heat capacity of the heating tank to be described later is increased while the reaction-finished product flows through the tubular reactor. Can stabilize the temperature and the like.
  • the risk of blocking the reactor can be greatly reduced by setting the length of the tubular reactor to 5 m or less, more preferably 3 m or less.
  • Such a thin and long tubular reactor is usually used by being wound in a coil shape. At this time, if there is a part where the flow direction of the raw material that passes through the inside proceeds in a direction against gravity, it tends to block, so the surface on which the coil is wound is made almost horizontal, from higher to lower It is more preferable to make it flow.
  • the material of the tubular reactor is not particularly limited, and a material having no heat problem at the reaction temperature and no problem of contamination with “zeolite” and having good heat conductivity is preferably used, and stainless steel is particularly preferably used. .
  • a stable material such as Teflon (registered trademark) to prevent contamination of “zeolite”, copper or aluminum having good thermal conductivity can also be used as the material of the reactor.
  • such a tubular reactor is heated using a heat medium.
  • a heat medium is a general term for a medium used to transfer heat between an external heat source and a device in order to heat the device and control it to a target temperature.
  • the heat medium for example, oil, steam, a metal block or the like can be used. Air in the air convection heater is included in the heat medium.
  • a liquid heating medium is particularly preferable because it has fluidity and a large heat capacity, and various oils are particularly preferable.
  • the “zeolite” production raw material (zeolite precursor gel) is continuously produced by circulating and heating the inside of the tubular reactor heated by such a heat medium.
  • the flow rate (flow rate) of the raw material (zeolite precursor gel) at that time is 0.5 ml / min or more, more preferably 1 ml / min or more, although it depends on the size of the reactor, particularly the length.
  • the upper limit is preferably 500 ml / min or less, more preferably 100 ml / min or less.
  • the residence time (reaction time) of the raw material (zeolite precursor gel) in the tubular reactor is preferably 0.5 minutes or longer, particularly preferably 0.8 minutes or longer, and most preferably 1 minute or longer.
  • the upper limit is preferably 60 minutes or less, particularly preferably 13 minutes or less, and most preferably 3 minutes or less.
  • the residence time reaction time
  • the residence time of the tubular reactor may exceed the above upper limit.
  • the flow rate need not always be constant, and may be intermittently flowed, and the flow rate in that case may be considered as an average value while passing through the tubular reactor.
  • the raw material in order to control the viscosity and improve the yield in unit time, there is also an aspect in which the raw material is added so as to come into contact with the raw material after the start of heating in the course of the reaction. And the flow rate may be read as the time until the addition so as to come into contact.
  • the reaction time can be shortened by improving the heating efficiency by using a tubular reactor having a small diameter as described above, that is, having a large surface area relative to the volume, and a heat medium. In such a short time, for example, it is possible to produce “zeolite” at the above-described flow rate and reaction time.
  • the reaction temperature that is, the heating temperature of the tubular reactor may be the same as the temperature of hydrothermal synthesis of a general zeolite, and the lower limit is usually 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 150 It is above °C.
  • the upper limit is 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 220 ° C. or lower, and particularly preferably 160 ° C. or higher and 200 ° C. or lower. This heating temperature is adjusted by the temperature of the heat medium.
  • the amount of the heat medium is preferably 0.5 volume times or more, particularly preferably 1 volume time or more, and is preferably used in a ratio of 5000 volume times or less, particularly 1000 volume times or less.
  • the amount of the heat medium is larger than that of the raw material to be heated (zeolite precursor gel) in order to quickly transfer heat energy to the raw material (zeolite precursor gel).
  • zeolite precursor gel a structure such as a double tube heat exchanger is preferable because the amount of the heat medium can be extremely reduced.
  • the entire tubular reactor is preferably present in the heat medium.
  • the pressure during the reaction may be a self-generated pressure as in the case of ordinary hydrothermal synthesis, but it is more desirable to control the pressure in the range of 1 to 1.5 times the steam pressure at that temperature.
  • the pressure is in the above range, gas components generated by decomposition of the raw material compound that may be generated when the pressure is smaller than this range are ejected discontinuously, or the flow path is partly solid (high viscosity lump) Therefore, it is possible to prevent the blockage and to operate more stably.
  • it is preferable from the viewpoint of safety that the pressure is smaller than the above upper limit value.
  • the “zeolite” production method of the present invention in which a “zeolite” production raw material (zeolite precursor gel) containing seed crystals is reacted as described below. Therefore, a “zeolite” having high crystallinity, a relatively large particle size, and a good particle size distribution can be continuously produced efficiently in a short time. Further, as described above, in order to prevent clogging of the tubular reactor and to obtain a large amount of “zeolite”, the raw material (zeolite precursor gel) is added to the heated raw material, that is, the intermediate product during the reaction. It is also preferable to add a).
  • the concentration of the raw material (zeolite precursor gel) added during the reaction is not particularly limited as long as it has a lower viscosity than the SB unit or an amorphous raw material during the reaction, and an aqueous gel containing no seed crystals. However, it is preferable to use the same raw material (zeolite precursor gel) supplied to the tubular reactor.
  • adding so that it may contact with a raw material after a heating is not a simple supply of a raw material but adding to the SB unit in the middle of a reaction and / or a raw material of an amorphous state. That is, it means adding to an intermediate product having a viscosity increased from that of the raw material zeolite precursor gel. This has the effect of both further “zeolite” growth and viscosity reduction.
  • a tube having the above-described characteristics that is, the ratio of the volume (internal volume) to the side surface area of the tubular reactor, (volume) / (side surface area) is 0.75 cm or less. It is possible to produce “zeolite” having high crystallinity by allowing the reaction to reach an amorphous state in a type reactor and then taking it out and placing it under a temperature and pressure lower than the heating temperature in the tubular reactor. In this case, the liquid containing amorphous zeolite extracted from the tubular reactor (hereinafter also referred to as “intermediate liquid” in this specification) is maintained at a temperature lower than the temperature and pressure in the tubular reactor.
  • the lower limit of the holding temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and the holding time is preferably 10 hours or longer, more preferably 1 day or longer. It is. This holding time may be optimized as appropriate depending on the ratio of the raw material to be added during the reaction and the position to be added.
  • zeolite can be continuously produced by charging new raw materials into the tubular reactor after the product is taken out.
  • zeolite is continuously produced in this manner, the raw material is charged into a warmed tubular reactor, so that there is an advantage that less heat is required for heating.
  • the “zeolite” produced in the present invention is usually 75% or more, more preferably 80% or more in terms of crystallinity measured by the method described in the Examples section below. It is preferable that it is 0.1 micrometer or more as an average particle diameter before the template removal measured by the method of description to above, More preferably, it is 1 micrometer or more, Most preferably, it is 2 micrometers or more. On the other hand, the upper limit of the average particle diameter is not particularly limited, but is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the product flowing out from the outlet of the tubular reactor is a slurry containing the product “zeolite” as described above, and this is solid-liquid separated, washed with water and dried as necessary, and calcined as necessary.
  • the template is removed for use.
  • the “zeolite” produced in the present invention has a relatively large particle size, and thus is easily solid-liquid separated by a filtration method or a precipitation method. be able to.
  • FIGS. 1 to 3 An example of a “zeolite” production apparatus used in the zeolite production method of the present invention will be described with reference to FIGS. 1 to 3, but the apparatus that can be employed in the present invention is the one shown in FIGS. It is not limited.
  • the aqueous gel from the aqueous gel tank 1 and the seed crystal from the seed crystal tank 2 generate zeolite precursor gel through the pipes 11, 12 and the pipe 13, respectively.
  • the “zeolite” produced by introduction into the reactor 3A (in the heating tank 3 and not shown in FIG. 1) and the reaction product of the tubular reactor 3A introduced into the filtration tank 4 via the pipe 14 is produced.
  • the filtrate is separated by filtration, and the filtrate is discharged out of the system from the pipe 17, or a part or all of the filtrate is recovered from the pipe 16 through the reflux liquid tank 6 for the recovery and reuse of the unreacted material. It is refluxed to the entrance side.
  • the heating tank 3 as shown in FIG.
  • a heating tank such as an oil bath containing a heat medium 8 for heating the tubular reactor 3A is used.
  • 5 is a heater for heating the heat medium 8 for heating the tubular reactor 3A, and heats the heat medium extracted from the pipe 5B from the heating tank 3 and returns it to the heating tank 3 from the pipe 5A. It is configured.
  • the heating medium 8 in the heating tank 3 can be heated by the heating means directly attached to the heating tank 3 in addition to being heated by the external heater 5 in this way.
  • a mixing tank for mixing the aqueous gel from the aqueous gel tank 1 and the seed crystal from the seed crystal tank 2 and the unreacted material that has been refluxed as necessary may be provided in the front stage of the heating tank 3. .
  • 11A, 12A, and 16A are open / close valves, respectively.
  • a seed crystal may be supplied from the seed crystal tank 2 to the aqueous gel tank 1 to form a zeolite precursor.
  • tubular reactor 3A shown in FIG. 2 is wound in a coil shape so that the coil portion is circular, it may be wound so that the coil portion is a square shape. It may be a shape.
  • the tubular reactor 3A may be linear.
  • a large number of tubular reactors 3A are arranged substantially in parallel, and the parts after the hydrothermal reaction are combined into one, or conversely, the parts before the hydrothermal reaction are in a thick state. It is also possible to make the outer diameter 3 cm or less only in the portion that causes the thermal reaction.
  • the aqueous gel (raw material mixture) from the aqueous gel tank 1 and the seed crystals from the seed crystal tank 2 are respectively supplied to the tubular reactor 3A at a predetermined ratio, and the seed crystals are added.
  • the aqueous zeolite “zeolite” raw material (zeolite precursor gel) is hydrothermally synthesized while flowing through the tubular reactor 3 A heated by the heat medium 8.
  • the reaction product containing “zeolite” produced by hydrothermal synthesis is then solid-liquid separated in the filtration tank 4 to recover the produced zeolite.
  • the filtrate is refluxed to the tubular reactor 3A via the reflux liquid tank 6 and again subjected to hydrothermal synthesis, whereby unreacted substances can be recovered and reused.
  • the yield of can be increased.
  • the apparatus is of a type in which the raw material is added in the middle of the reaction so as to come into contact with the raw material after heating, as shown in FIG. 3, the pipe 20 is connected so that the additional raw material can be joined in the middle of the tubular reactor. It is preferable to use an apparatus provided with
  • 1 to 3 show a production apparatus of a type in which a raw material (zeolite precursor gel) flows through a tubular reactor 3A to produce “zeolite”, but other continuous methods, for example, with a lid Prepare a number of short tubular reactors, fill them with raw materials (zeolite precursor gel), close the lid, and then immerse them in a heating medium one after another to heat the raw materials (zeolite precursor gels). The reactor heated for a period of time is taken out of the heating medium, the lid is opened, the contents are taken out, and the reacted “zeolite” and unreacted substance are separated by solid-liquid separation such as filtration to obtain the desired “zeolite”. It is also possible to manufacture continuously.
  • the length of the tubular reactor is preferably 5 cm or more in terms of efficiency and 1 m or less in terms of handling, and the size, temperature, reaction time, and the like of other tubular reactors are used.
  • the seed crystal, heating tank and other conditions are the same as when the raw material (zeolite precursor gel) is flowed through the tubular reactor.
  • hydrothermal synthesis proceeds in the tubular reactor until the stage of forming the SB unit, and after that, it is taken out as described above and kept at a lower temperature and lower pressure than during the hydrothermal reaction to produce a highly crystalline zeolite. You can also.
  • Zeolite produced by the present invention (hereinafter sometimes referred to as “zeolite” of the present invention) is advantageous for application to a wide range of applications such as adsorption-type coolers, air conditioners, and various adsorbing elements.
  • APO aluminophosphate
  • the framework density of the “zeolite” is preferably 12.0 T / 1,000 to 3 or more and 17.5 T / 1,000 to 3 or less.
  • the “zeolite” preferably has a zeolite structure defined by IZA (International Zeolite Association) of AFI or CHA.
  • Al atoms and phosphorus atoms constituting the skeleton structure may be substituted with other atoms such as transition metals.
  • an aluminum atom is a heteroatom (Me1: where Me1 belongs to the third or fourth period of the periodic table, group 2, group 8, group 11, group 12, group 13 (except for Al) Me-aluminophosphate II) partially substituted with a heteroatom (Me2: where Me2 is a group 14 belonging to the third to fifth periods of the periodic table).
  • Me-aluminophosphates substituted with (element) III Me-aluminophosphates in which both aluminum and phosphorus atoms are substituted with heteroatoms (Me1 and Me2 respectively) are preferred from the standpoint of adsorption properties.
  • Me1 is an element belonging to the third and fourth periods of the periodic table.
  • Me1 preferably has an ionic radius of 0.3 nm to 8 nm in a divalent state, and more preferably has an ionic radius of 0.4 nm to 7 nm in a divalent and tetracoordinate state.
  • the heteroatom Me1 is at least one element selected from copper, iron, cobalt, magnesium, zinc, and tin from the viewpoint of ease of synthesis and adsorption characteristics when used as an adsorption element. Is more preferable, more preferably one or more selected from copper, iron, and tin, and particularly preferably iron.
  • Me2 is a group 14 element belonging to the third or fourth period of the periodic table, and is preferably a silicon atom.
  • the constituent ratio (molar ratio) of Me, Al, and P constituting the framework structure of “zeolite” is usually a molar ratio of the following formulas 1-1 to 3-1, preferably the following formulas 1-2 to 3 -2 molar ratio.
  • x is smaller than the above range, when used as an adsorbing element, the amount of adsorption in the region where the adsorbate pressure is low tends to be small or the synthesis tends to be difficult. Sometimes impurities tend to get mixed in. Further, if y and z are out of the above ranges, synthesis is difficult.
  • the “zeolite” of the present invention is an aluminosilicate zeolite
  • a part of silicon atoms and aluminum atoms in the skeleton structure may be all in the case of aluminum atoms
  • are other atoms such as magnesium and titanium.
  • Zirconium, vanadium, chromium, manganese, iron, cobalt, zinc, gallium, tin, boron and the like may be substituted.
  • aluminosilicate zeolite if the molar ratio of silicon atom to aluminum atom (aluminum atom + heteroatom) is too small, A-type zeolite, Y-type zeolite, etc.
  • the zeolite used in the present invention has a SiO 2 / Al 2 O 3 molar ratio of usually 5 or more, preferably 10 or more, more preferably 15 or more. Moreover, as an upper limit, it is 2000 or less, 1000 or less are preferable and 500 or less are more preferable.
  • This SiO 2 / Al 2 O 3 is obtained by measuring the ratio of the number of silicon atoms and aluminum atoms by composition analysis such as ICP emission spectroscopic analysis and fluorescent X-ray analysis according to the custom of the zeolite industry. It is expressed as a ratio.
  • zeolites include those having exchangeable cation species.
  • the cation species include protons, alkaline elements such as Li and Na, alkaline earth elements such as Mg and Ca, La, Ce, and the like.
  • Rare earth elements, transition metals such as Fe, Co, Ni and the like, and protons, alkali elements, alkaline earth elements, and rare earth elements are preferable.
  • proton, Li, Na, K, Mg, and Ca are more preferable.
  • the “zeolite” of the present invention has a skeleton density (framework density: FD) of 12.0 T / 1,000 to 3 to 17.5 T / 1,000 to 3 , particularly a lower limit of 13.0 T / 1. , 000A 3 or more and especially 14.0T / 1,000 ⁇ 3 or more.
  • the value of the skeleton density is Ch.
  • ATLAS OF ZEOLITE FRAMEWORK TYPES (Sixth Revised Edition, 2007, ELSEVIER) by Baerlocher et al is a value described in, T / 1,000 ⁇ 3 is, T atoms present per unit volume 1,000 ⁇ 3 (1,000 ⁇ zeolite 3 The number of atoms other than oxygen atoms constituting the hit skeleton), and is a unit indicating the skeleton density.
  • the framework density of “zeolite” is not less than the above lower limit value, the structure is stabilized and the durability is improved. On the other hand, if it is below the above upper limit value, the adsorption capacity becomes large, which is suitable for use as an adsorbent or the like.
  • zeolite is a code defined by IZA (International Zeolite Association), LTA, FER, MFI, FAU, DDR, NSI, ACO, AEI, AEL, AET, AFG, AFI, AFN, AFR, AFS.
  • AFT AFT, AFX, AFY, AST, ATN, ATO, ATS, ATT, AWW, * BEA, BEC, BOG, BPH, BRE, CAN, CGF, CGS, CHA, CON, CZP, DFO, DFT, DON, EAB, EDI, EMT, EON, ERI, ESV, ETR, EZT, FAR, FRA, GIS, GIU, GME, HEU, IFR, ISV, ITE, IWR, IWV, IWW, KFI, LEV, LIO, LOS, MAR, MAZ, MEI, MER, MO , MOZ, MSE, MWW, NAB, OBW, OFF, OSO, OWE, PAU, PHI, RHO, RSN, RTE, RTH, SAO, SAS, SAT, SAV, SBE, SBS, SBT, SFF, SFO, SIV, SOD , SOS, STF, STI, STT
  • the “zeolite” of the present invention also preferably has an average particle size of 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 2 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, particularly preferably 50 ⁇ m or less.
  • the aqueous gel (raw material mixture) that is a raw material when the aluminophosphate zeolite of the present invention is produced by hydrothermal synthesis is usually mixed with an aluminum source, a phosphorus source, and a Me source such as Fe, if necessary, and a template. It is prepared by.
  • the aqueous gel may contain other components.
  • when the unreacted material is refluxed. May contain seed crystals and the like. The same applies to a raw material of aluminosilicate zeolite described later.
  • the aluminum source (a raw material compound for supplying aluminum) is not particularly limited, and is usually one kind of aluminum alkoxide such as pseudoboehmite, aluminum isopropoxide, aluminum triethoxide, aluminum hydroxide, alumina sol, sodium aluminate, etc. Alternatively, two or more may be mentioned, but pseudoboehmite is preferable because it is easy to handle and has high reactivity.
  • aluminum alkoxide such as pseudoboehmite, aluminum isopropoxide, aluminum triethoxide, aluminum hydroxide, alumina sol, sodium aluminate, etc.
  • pseudoboehmite is preferable because it is easy to handle and has high reactivity.
  • Phosphoric acid is usually used as the phosphorus source (raw material compound for supplying phosphorus), but aluminum phosphate may be used.
  • Me means a heteroatom in the description of the “zeolite” of the present invention, and is preferably Si, Fe, Co, Mg, Zn or the like.
  • the Me source raw material compound for supplying Me
  • these inorganic acid salts such as sulfates, nitrates and phosphates, organic acid salts such as acetates and oxalates, or organic metal compounds are usually used. It is done. In some cases, a colloidal hydroxide or the like may be used.
  • fumed silica, silica sol, colloidal silica, water glass, ethyl silicate, methyl silicate, and the like are used as the Si source (raw material compound for supplying Si).
  • These Me sources may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • Templates used as raw materials (raw compounds) for aluminophosphate zeolite include tetraalkylammonium such as tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium; morpholine, di-n-propylamine, tri-n- Propylamine, tri-n-isopropylamine, triethylamine, triethanolamine, piperidine, piperazine, cyclohexylamine, 2-methylpyridine, N, N-dimethylbenzylamine, N, N-diethylethanolamine, dicyclohexylamine, N, N -Dimethylethanolamine, choline, N, N'-dimethylpiperazine, 1,4-diazabicyclo (2,2,2) octane, N-methyldiethanolamine, N-methyl Ethanolamine, N-methylpiperidine, 3-methylpiperidine,
  • morpholine, triethylamine, cyclohexylamine, isopropylamine, di-isopropyl-ethylamine, N-methyl-n-butylamine, and tetraethylammonium hydroxide are preferable from the viewpoint of reactivity, and industrially cheaper morpholine, triethylamine, Cyclohexylamine is more preferred. These may be used alone or in combination of two or more.
  • the aqueous gel (raw material mixture) used as a raw material when the aluminosilicate zeolite of the present invention is produced by hydrothermal synthesis is usually an aluminum source, a silicon source, and a Me source such as Fe, if necessary, an alkali metal or an alkaline earth. Prepared by mixing metal and template.
  • an aluminum source a silicon source, and a Me source, the same raw material (raw material compound) as in the case of synthesizing the aluminophosphate can be used.
  • an aluminum source containing crystalline aluminum hydroxide, crystalline aluminum oxyhydroxide or crystalline aluminum oxide hereinafter referred to as “crystalline aluminum source”.
  • Examples of crystalline aluminum hydroxide include gibbsite, buyer light, nordstrandite, and doileate.
  • Examples of the crystalline aluminum oxyhydroxide include boehmite ( ⁇ -AlOOH) and diaspore ( ⁇ -AlOOH).
  • Examples of crystalline aluminum oxide include ⁇ -Al 2 O 3 (corundum), ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , and ⁇ -Al 2 O. 3 , ⁇ -Al 2 O 3 and the like.
  • a crystalline aluminum source containing crystalline aluminum hydroxide or crystalline aluminum oxyhydroxide is preferred, a crystalline aluminum source containing gibbsite, buyerite or boehmite is more preferred, and a crystalline property containing gibbsite or buyerlite An aluminum source is particularly preferred.
  • zeolite crystallization can be accelerated. The reason for this is not clear, but is presumed as follows.
  • Non-crystalline, in other words, amorphous aluminum sources are highly reactive, so that aqueous gels, especially zeolite precursor gels with seed crystals added to the aqueous gel, react with the silicon source before reaching the zeolite crystallization temperature, This produces a silica-alumina compound with poor reactivity.
  • the crystalline aluminum source since the crystalline aluminum source has low reactivity, it reacts with the silicon source for the first time after the zeolite precursor gel reaches the zeolite crystallization temperature, and quickly produces zeolite.
  • amines and quaternary ammonium salts are usually used.
  • organic templates described in US Pat. No. 4,544,538 and US Patent Publication No. 2008/0075656 are preferred.
  • Specific examples include cations derived from alicyclic amines such as cations derived from 1-adamantanamine, cations derived from 3-quinacridinal, and cations derived from 3-exo-aminonorbornene. It is done. Among these, a cation derived from 1-adamantanamine is more preferable.
  • the N, N, N-trialkyl-1-adamantanammonium cation is more preferred.
  • the three alkyl groups of the N, N, N-trialkyl-1-adamantanammonium cation are usually independent alkyl groups, preferably a lower alkyl group, more preferably a methyl group.
  • the most preferred compound among them is the N, N, N-trimethyl-1-adamantanammonium cation.
  • alkali metals and alkaline earth metals used as raw material compounds include hydroxide ions of counter anions of organic templates, alkali metal hydroxides such as NaOH and KOH, and alkaline earth metal hydroxides such as Ca (OH) 2 Etc. can be used.
  • the kind of alkali metal or alkaline earth metal is not particularly limited, and is usually Na, K, Li, Rb, Cs, Ca, Mg, Sr, Ba, preferably Na, K. Two or more alkali metals and alkaline earth metals may be used in combination.
  • seed crystals are used as one component of the “zeolite” production raw material (raw material compound).
  • the seed crystal used in the present invention preferably has the same composition and zeolite structure as the produced “zeolite”.
  • the crystallinity of the seed crystal is not particularly limited, and may contain an amorphous component.
  • any “zeolite” before or after removing the template can be used as a seed crystal. Therefore, the seed crystal is the same as the zeolite precursor gel of the same composition as the zeolite precursor gel used in the production of “zeolite” or the same composition as the zeolite precursor gel used in the production of “zeolite” except that it does not contain seed crystals. It is preferable that it was manufactured from this aqueous gel.
  • These seed crystals may partially dissolve during hydrothermal synthesis and become invisible, but they are not completely dispersed at the atomic level, but are present as fine lumps.
  • rapid crystal growth in the production in a short time as in the present invention As a result, it is possible to suppress the fluctuation of the aqueous gel pressure due to the above, and to obtain the effects of improving the stability of the aqueous gel supply and improving the thermal efficiency by reducing the thickness of the tubular reactor.
  • the method for producing the zeolite to be a seed crystal there is no particular limitation on the method for producing “zeolite” of the present invention, and it may be produced by the method for producing “zeolite” of the present invention, and a general batch method using other methods such as an autoclave. It may be manufactured by.
  • the average particle diameter is 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and the upper limit is preferably 100 ⁇ m or less, particularly preferably 50 ⁇ m or less. . Therefore, when the produced seed crystal has an excessively large particle size, it is preferable to appropriately adjust the particle size such as pulverization.
  • the pulverization method include a method using a ball mill, a bead mill, a planetary ball mill, a jet mill and the like.
  • a bead mill is desirable because it can minimize the amorphous state of zeolite and can be efficiently pulverized.
  • the bead mill is an apparatus for crushing and pulverizing using ceramic beads having a particle diameter of usually 50 to 500 ⁇ m.
  • the average particle size of the seed crystal is obtained by randomly selecting several tens of particles from a scanning electron micrograph, obtaining the cross-sectional area of each particle with image analysis software, and calculating the particle size of each particle by the following formula.
  • the average particle diameter is obtained by arithmetically averaging the obtained particle diameter values.
  • the seed crystal is preferably 0.1% by weight or more, particularly preferably 1% by weight or more based on the Al 2 O 3 equivalent amount of the aluminum source in the aqueous gel used for the production of the aluminophosphate zeolite.
  • the upper limit is preferably 20% by weight, particularly preferably 15% by weight or less.
  • the seed crystal is preferably 0.1% by weight or more, particularly preferably 1% by weight or more, based on the SiO 2 equivalent of the silicon source in the aqueous gel used for the production of the aluminosilicate zeolite.
  • the upper limit is preferably 20% by weight or less, and particularly preferably added in an amount of 15% by weight or less.
  • aqueous gel (mixing of raw material compounds)
  • the mixing order of the above-mentioned aluminum source, phosphorus source, seed crystal, Me source, template and water as required varies depending on conditions.
  • a phosphorus source and an aluminum source are mixed with water, and a Me source and a template are mixed therewith, and aging described below is performed as necessary.
  • seed crystals are added to this aqueous gel (raw material mixture) to obtain a zeolite precursor gel.
  • a mixture of two or more raw material compounds is referred to as a “raw material mixture.”
  • a mixture of all the raw material compounds necessary for producing “zeolite” in a required amount is referred to as a “zeolite precursor gel. ”.
  • the composition of the aqueous gel is expressed as a molar ratio of oxide, and P 2 O 5 / Al 2 O 3 is usually 0.6 or more, and 0.7 or more from the viewpoint of ease of synthesis. Is preferable, and 0.8 or more is more preferable. Also, expressed in terms of mole ratios of oxides, P 2 O 5 / Al 2 O 3 is usually 1.7 or less, preferably 1.6 or less, more preferably 1.5 or less. Further, when using a Me source, usually MeO x (x is 1 when Me is divalent and 1.5 when trivalent) / P 2 O 5 is 0.01 or more and 1.5. Further, from the viewpoint of ease of synthesis, 0.02 or more is preferable, and 0.05 or more is more preferable.
  • MeO x / P 2 O 5 is usually 1.5 or less, preferably 1.0 or less, and more preferably 0.8 or less from the viewpoint of ease of synthesis.
  • the template is preferably mixed so that the molar ratio with respect to Al 2 O 3 is 0.2 or more, particularly 0.5 or more, and 4 or less, particularly 3 or less. If the amount of the template used is too small, crystallization is difficult to occur, and the hydrothermal durability is insufficient. If the amount is too large, the yield of “zeolite” decreases.
  • the lower limit of the proportion of water, relative to Al 2 O 3, is 3 or more in molar ratio, preferably 5 or more from the viewpoint of ease of synthesis, and more preferably 10 or more.
  • the upper limit of the ratio of water is 200 or less, preferably 150 or less, and more preferably 120 or less from the viewpoint of ease of synthesis and high productivity.
  • zeolite precursor gel it may coexist components other than the above in aqueous gel (raw material mixture) if desired.
  • examples of such components include hydrophilic organic solvents such as hydroxides and salts of alkali metals and alkaline earth metals, and alcohols. The above description is the same for the “zeolite precursor gel”.
  • the mixing order of the above-mentioned aluminum source, silicon source, seed crystal, Me source such as Fe, if necessary, alkali metal or alkaline earth metal, template and water depends on the conditions. Usually, first, a Me source, an aluminum source, an alkali metal or an alkaline earth metal, and water are mixed, and a silicon source and a template are mixed therewith, and aging described below is performed as necessary. A seed crystal is finally added to this aqueous gel (raw material mixture) to obtain a final raw material mixture (zeolite precursor gel).
  • the composition of the aqueous gel is expressed by the molar ratio of the oxide, and SiO 2 / Al 2 O 3 is usually 4 or more, and 5 or more is preferable from the viewpoint of ease of synthesis, and 10 or more is more preferable. Especially preferably, it is 15 or more.
  • the composition of the aqueous gel is expressed in terms of the molar ratio of oxide, and SiO 2 / Al 2 O 3 is not particularly limited because the upper limit may be all Si, but is preferably 2000 or less, more preferably 1000 or less, and more preferably 500 or less. Is particularly preferred.
  • MeO x is 1 when Me is divalent and 1.5 when it is trivalent
  • SiO 2 is 0.0001 or more, and is easy to synthesize. From this point of view, 0.0002 or more is preferable, and 0.0005 or more is more preferable.
  • MeO x / SiO 2 is usually 0.1 or less, preferably 0.05 or less, and more preferably 0.02 from the viewpoint of ease of synthesis.
  • the template is preferably 0.02 or more, particularly 0.1 or more, and preferably 1 or less, particularly 0.5 or less in terms of the molar ratio to SiO 2 .
  • the upper limit of the ratio of water is 200 or less in terms of molar ratio with respect to SiO 2 , preferably 150 or less, and more preferably 120 or less from the viewpoint of ease of synthesis and high productivity.
  • Aging refers to holding the raw material mixture for a predetermined time at a temperature at which no new crystals are formed.
  • the aging temperature is not particularly limited as long as it does not cause crystallization of zeolite, phosphate, aluminum compound, silicon compound, etc., but it is usually room temperature or higher, preferably 50 ° C. or higher, more preferably 70 ° C. or higher. Also, it is usually 150 ° C. or lower, preferably 120 ° C. or lower, more preferably 100 ° C. or lower.
  • the room temperature is usually in the range of 10 to 40 ° C.
  • the aging time is at least 2 hours or more, usually 6 hours or more, desirably 12 hours or more, and more desirably 24 hours or more.
  • the aging time is calculated from the time when the composition of the raw material mixture to be aged is obtained by mixing the raw material compound and the raw material mixture. The ripening is completed when another raw material compound or raw material mixture is added to the raw material mixture to be aged, or when the raw material mixture to be aged is subjected to hydrothermal synthesis. If the aging time is too short, the aging effect does not appear. There is no upper limit for the aging time, but it is usually 120 hours or less, preferably 96 hours or less.
  • the “zeolite” obtained by the production method of the present invention can be used as a catalyst capable of producing propylene by contacting ethylene and / or ethanol.
  • the amount of acid on the outer surface of the “zeolite” obtained by silylation is not particularly limited, but usually it is preferably 5% or less of the total amount of acid contained in the crystal.
  • the outer surface acid amount is the amount of acid sites present on the outer surface of the “zeolite”, and the total acid amount contained in the crystal is the amount of acid sites present in the pores of the crystal and the outer surface acid sites. The sum of the quantities.
  • the “zeolite” obtained in the present invention is used as a catalyst in the reaction, it may be used as it is, or it may be granulated and molded by a known method using a substance or binder inert to the known reaction. Alternatively, these may be mixed and used for the reaction. Also, by molding, the outer surface acid amount of “zeolite” can be reduced to a preferred ratio with respect to the total acid amount, and the propylene selectivity can be increased.
  • Examples of substances and binders that are inert to the above reaction include alumina or alumina sol, silica, silica sol, quartz, and mixtures thereof.
  • Examples of the method for reducing the acid amount on the outer surface by molding include a method of bonding the acid sites on the outer surface of the binder and “zeolite”.
  • ⁇ Propylene production method Propylene production using “zeolite” obtained by the production method of the present invention as a catalyst can be carried out by a known method. Specifically, the methods described in JP 2007-2901076 A and International Publication 2010/128644 Pamphlet can be used.
  • the “zeolite” obtained by the production method of the present invention can be used as a catalyst for purifying nitrogen oxides by containing a transition metal.
  • a catalyst containing a transition metal-containing zeolite obtained by adding a transition metal to the “zeolite” obtained in the present invention is effective as a catalyst for purifying nitrogen oxide by contacting exhaust gas containing nitrogen oxide.
  • the exhaust gas may contain components other than nitrogen oxides, and may contain, for example, hydrocarbons, carbon monoxide, carbon dioxide, hydrogen, nitrogen, oxygen, sulfur oxides, and water.
  • reducing agents such as nitrogen-containing compounds, such as hydrocarbon, ammonia, and urea.
  • nitrogen-containing compounds such as hydrocarbon, ammonia, and urea.
  • the transition metal used in the present invention is not particularly limited as long as it is supported on zeolite and has catalytic activity, but preferably iron, cobalt, palladium, iridium, platinum, copper, silver, gold, cerium. , Lanthanum, praseodymium, titanium, zirconium and the like. More preferably, it is iron or copper.
  • the transition metal to be supported on zeolite may be supported in combination of two or more transition metals.
  • the transition metal-containing zeolite includes a method obtained by synthesizing from a gel containing a transition metal during hydrothermal synthesis, and a method of supporting a transition metal on a calcined zeolite.
  • a method of supporting a transition metal on a calcined zeolite When the transition metal is supported on the calcined zeolite, generally used ion exchange method, impregnation support method, precipitation support method, solid phase ion exchange method, CVD method and the like are used.
  • the ion exchange method and the impregnation support method are preferable.
  • heat treatment is usually performed at 400 to 900 ° C. The heat treatment is preferably performed at 700 ° C.
  • the atmosphere for the heat treatment is not particularly limited, and the heat treatment may be performed in an inert atmosphere such as air, nitrogen, or argon, and may include water vapor.
  • Example 1 An aqueous gel was prepared in the same manner as in Synthesis Example 1, and the seed crystal synthesized in Synthesis Example 1 was added to 0.1 part by weight with respect to 1 part by weight of Al 2 O 3 in the aqueous gel.
  • the seed-containing aqueous gel (zeolite precursor gel) of Example 1 was prepared.
  • a tubular reactor in which (thickness 0.5 mm) was coiled was heated in an oil bath to perform hydrothermal synthesis.
  • the amount of oil in the oil bath is about 1000 times the effective volume of the tubular reactor (volume in the reactor).
  • the reactor was heated in an oil bath at 190 ° C., and the seed-containing aqueous gel (zeolite precursor gel) of Example 1 was circulated at a flow rate of 3.4 ml / min with a syringe pump from the reactor inlet.
  • Product slurry was recovered from the reactor outlet.
  • the residence time of the AlPO precursor in the reactor was 3.2 minutes.
  • the obtained product slurry was filtered, washed with water, and dried to obtain AlPO zeolite.
  • the obtained AlPO zeolite was confirmed to have an AFI type structure by XRD analysis.
  • FIG. 4 shows an XRD chart of the obtained AlPO zeolite.
  • Crystallinity (%) (total peak intensity of sample) / (total peak intensity of seed crystal) ⁇ 100 When the crystallinity of the product was high and the total peak intensity exceeded the total peak intensity of the seed crystal, the crystallinity was uniformly 100%.
  • the particle diameter of the obtained AlPO zeolite was calculated based on a scanning electron micrograph of the AlPO zeolite shown in FIG. In an electron micrograph magnified 3000 times, 20 particles were randomly selected, the cross-sectional area of each particle was determined with image analysis software, the particle diameter of each particle was calculated by the following formula, and the obtained particle diameter The average particle diameter was obtained by arithmetically averaging the 20 values.
  • Example 1 Example except that seed crystals were not added to the aqueous gel prepared in the same manner as in Synthesis Example 1 and that an air convection dryer heated to 190 ° C. was used instead of an oil bath as a heat source of the reactor.
  • an AlPO zeolite was obtained.
  • the obtained AlPO zeolite was confirmed to have an AFI type structure by XRD analysis.
  • FIG. 4 shows an XRD chart of the obtained AlPO zeolite.
  • the pressure applied to the tubular reactor was measured in the same manner as in Example 1, the change with time was examined, and the result is shown in FIG. Further, the crystallinity of the obtained AlPO zeolite was determined in the same manner as in Example 1, and the results are shown in Table 1.
  • Table 1 shows the following.
  • the AlPO zeolite of Comparative Example 1 in which no seed crystal was added, many amorphous components were contained in the crystal, the crystallinity was only 21%, and the quality was low.
  • Example 1 to which seed crystals were added an AlPO zeolite having a crystallinity of 100% could be obtained.
  • the average particle diameter of the zeolite obtained in Example 1 was 2.2 ⁇ m, and it was easy to collect by filtration.
  • Example 5 and 6 show the following.
  • the pressure fluctuation applied to the reactor was small, but in Comparative Example 1 where no seed crystal was added, the pressure fluctuation applied to the reactor was large.
  • the reason why a large difference in pressure fluctuation occurs depending on whether or not seed crystals are added is considered as follows.
  • the diameter of the tubular reactor is reduced to 3 cm or less according to the present invention, the reaction takes place in a short time, the ratio of solid to liquid in the reactor fluctuates violently, and the reactor may be temporarily blocked.
  • Pressure fluctuations occur, but when seed crystals exist in the raw material (aqueous gel), the solid / liquid ratio fluctuations are small because the solid seed crystals originally exist in the raw material (aqueous gel), and pressure fluctuations.
  • Example 2 Using the same raw material as in Example 1 (containing 10 wt% seed crystal with respect to Al 2 O 3 : (zeolite precursor gel)), the retention time was 30 seconds, 1 minute, 2 minutes, 3 minutes, or 5 AlPO zeolite was obtained in the same manner as in Comparative Example 3 except that the amount was changed.
  • the (volume) / (side surface area) of the tubular reactor used was 0.076 cm.
  • Example 3 N, N, N-trimethyl-1-adamantanammonium hydroxide (TMADAOH) aqueous solution (containing 25% by weight of TMADAOH, manufactured by Sechem), pure water, sodium hydroxide, aluminum hydroxide (containing 65.5% by weight of Al 2 O 3) , Manufactured by Wako Pure Chemical Industries, Ltd.) and stirred for 1 hour.
  • FIG. 9 shows an XRD chart of the obtained aluminosilicate zeolite.
  • FIG. 10 shows a scanning electron micrograph of the obtained aluminosilicate zeolite. Further, the crystallinity of the aluminosilicate zeolite was determined by the following method, and these results are shown in Table 2.
  • the aluminosilicate zeolite of Example 4 was obtained in the same manner as in Example 3 except that the aging time of the final raw material mixture was 1 day and the temperature of the oil bath was 190 ° C.
  • the (volume) / (side surface area) of the tubular reactor used was 0.076 cm.
  • the obtained aluminosilicate zeolite was confirmed to have a CHA type structure by XRD analysis.
  • FIG. 11 shows an XRD chart of the obtained aluminosilicate zeolite.
  • FIG. 12 shows a scanning electron micrograph of the obtained aluminosilicate zeolite. Further, the crystallinity of the aluminosilicate zeolite was determined in the same manner as in Example 3, and these results are shown in Table 2.
  • Example 5 The alumino of Example 5 was the same as Example 4 except that the aging temperature of the final raw material mixture was 70 ° C., the aging time was 40 hours, the oil bath temperature was 210 ° C., and the heating time in the oil bath was 15 minutes.
  • a silicate zeolite was obtained.
  • the obtained aluminosilicate zeolite was confirmed to have a CHA type structure by XRD analysis.
  • FIG. 13 shows an XRD chart of the obtained aluminosilicate zeolite. About the obtained aluminosilicate zeolite, the average particle diameter was calculated
  • FIG. FIG. 14 shows a scanning electron micrograph of the obtained aluminosilicate zeolite. Further, the crystallinity of the aluminosilicate zeolite was determined in the same manner as in Example 3, and these results are shown in Table 2.
  • FIG. 15 shows an XRD chart of the obtained aluminosilicate zeolite. About the obtained aluminosilicate zeolite, the average particle diameter was calculated
  • FIG. FIG. 16 shows a scanning electron micrograph of the obtained aluminosilicate zeolite. Further, the crystallinity of the aluminosilicate zeolite was determined in the same manner as in Example 3, and these results are shown in Table 2.
  • the hydrothermal synthesis time can be shortened by adjusting the aging conditions.
  • the zeolite obtained in the synthesis time of only 10 minutes according to the present invention shows the same performance in the catalytic reaction as the zeolite obtained by the synthesis by the usual autoclave. According to the present invention, the time required for production of zeolite is shortened, and the production cost of zeolite is greatly reduced.
  • the aluminosilicate zeolite of Example 7 was obtained. (Volume) / (side surface area) was 0.076 cm.
  • the obtained aluminosilicate zeolite was confirmed to have a CHA type structure by XRD analysis.
  • Example 8 The aluminosilicate zeolite of Example 8 was used in the same manner as in Example 7, except that aluminum hydroxide containing Bayerlite (Union Showa Versal B) was used and the heating time in the oil bath was set to 15 minutes. Obtained. The obtained aluminosilicate zeolite was confirmed to have a CHA type structure by XRD analysis. About the obtained aluminosilicate zeolite, the average particle diameter was calculated
  • TMADAOH N, N, N-trimethyl-1-adamantanammonium hydroxide
  • TMADAOH aqueous solution
  • pure water sodium hydroxide
  • aluminum hydroxide containing 65.5% by weight of Al 2 O 3
  • silica sol LUDOX LS colloidal silica
  • the supernatant was added at a flow rate of 0.65 ml / min from an additional raw material inlet different from the reactor inlet, and the product slurry was recovered from the reactor outlet.
  • the residence time of the mixture was 2.5 minutes for the first stage and 15 minutes after the addition of the raw material for the second stage.
  • the obtained product slurry was filtered, washed with water, and dried to obtain an aluminosilicate zeolite.
  • the obtained aluminosilicate zeolite was confirmed to have a CHA type structure by XRD analysis.
  • the average particle diameter was calculated
  • the crystallinity of the aluminosilicate zeolite was determined in the same manner as in Example 3, and the results are shown in Table 4.
  • Example 10 An aluminosilicate zeolite precursor was obtained in the same manner as in Example 7 except that the heating time in the oil bath was 3 minutes. The supernatant for the raw material of Synthesis Example 4 was added to the precursor in an amount three times that of the precursor and stirred at 95 ° C. for 4 days to obtain an aluminosilicate zeolite. The (volume) / (side surface area) of the tubular reactor was 0.076 cm. The obtained aluminosilicate zeolite was confirmed to have a CHA type structure by XRD analysis. About the obtained aluminosilicate zeolite, the average particle diameter was calculated
  • Example 11 The aluminosilicate zeolite of Example 11 was obtained in the same manner as in Example 7 except that the inner diameter of the tubular reactor was 10.7 mm and the outer diameter was 12.7 mm. The (volume) / (side surface area) of the tubular reactor was 0.225 cm. The obtained aluminosilicate zeolite was confirmed to have a CHA type structure by XRD analysis. Further, the crystallinity of the aluminosilicate zeolite was determined in the same manner as in Example 3, and the results are shown in Table 4.
  • Example 12 The aluminosilicate zeolite of Example 12 was obtained in the same manner as Example 7 except that the inner diameter of the tubular reactor was 22.0 mm and the outer diameter was 25.4 mm. The (volume) / (side surface area) of the tubular reactor was 0.476 cm. The obtained aluminosilicate zeolite was confirmed to have a CHA type structure by XRD analysis. Further, the crystallinity of the aluminosilicate zeolite was determined in the same manner as in Example 3, and the results are shown in Table 4.
  • Synthesis was carried out in the same manner as in Comparative Example 4 except that 10% of seed crystals were added, the hydrothermal synthesis temperature was 210 ° C., and the time was 1 hour.
  • the obtained product slurry was filtered, washed with water, dried, and the structure was confirmed by XRD. As a result, it was amorphous and CHA-type aluminosilicate zeolite was not obtained.
  • the amount of Cu in the Cu-supported CHA zeolite catalyst is determined by XRF using a value determined by inductively coupled plasma (ICP) emission spectroscopic analysis and a calibration curve of X-ray fluorescence analysis (XRF). It was. ICP emission spectroscopy was performed after the sample was heated and dissolved in an aqueous hydrochloric acid solution.
  • XRF XRF
  • the above-mentioned calibration curve is used to determine the Cu content W 1 (% by weight), while moisture in the sample is determined by thermogravimetric analysis (TG).
  • W H2O (wt%) is obtained, and the content W (wt%) of Cu in the transition metal-containing zeolite under anhydrous conditions is calculated by the following formula.
  • W W 1 / (1-W H2O )
  • the Cu loading determined by the above method was 3% by weight.
  • the degree of crystallinity is determined by measuring the peak of the lattice spacing corresponding to each XRD after the hydrothermal durability test with the sum of the peak heights of each zeolite before the hydrothermal durability test being 100%. It was confirmed by how much the total value was maintained. As a result, the crystallinity of the zeolite catalyst of Example 7 was 72%, and the crystallinity of the zeolite catalyst of Comparative Example 4 was 18%. In the zeolite of Comparative Example 4, the crystallinity greatly decreased after the hydrothermal durability test, and the purification performance was also greatly decreased, whereas in Example 7, the crystallinity was 72% after the hydrothermal durability test.
  • the catalyst obtained by supporting the transition metal on the zeolite of the present invention has extremely excellent characteristics as an exhaust gas treatment catalyst particularly for diesel engines.
  • zeolite obtained by the production method of the present invention is not particularly limited, and can be used for a wide range of uses such as an adsorption cooler, an air conditioner, and various adsorbing elements.
  • the “zeolite” obtained by the production method of the present invention can be suitably used as a catalyst capable of producing propylene by contacting ethylene and / or ethanol. Moreover, it can be used suitably also as a catalyst for exhaust gas treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

管型反応器に、原料を連続的に供給して、骨格構造に少なくともアルミニウム原子とリン原子を含むアルミノフォスフェートゼオライトまたは5≦SiO/Al≦2000のアルミノシリケートゼオライトを連続的に製造する方法であって、該管型反応器が、熱媒体を用いて加熱され、該管型反応器の体積(内容量)と側面表面積との比、(体積)/(側面表面積)が、0.75cm以下であり、かつ該原料に種晶を添加することを特徴とするゼオライトの製造方法。細径の管型反応器を用いて熱媒体で加熱することにより、短時間で原料(ゼオライト前駆体ゲル)全体を十分に加熱して、高速で反応を進行させることができる。種晶を添加することにより、ゼオライトの連続製造中の不規則な圧力変動の発生を防ぐことができる。

Description

ゼオライトの製造方法
 本発明はゼオライトの製造方法に係り、詳しくは、従来より短時間で安定して粒子径の比較的大きな高結晶性ゼオライトを得ることができるゼオライトの製造方法に関する。
 ゼオライトは、その結晶構造が、多孔質材料となっているため、例えば、特定の分子サイズの分子のみを通過させる分子ふるいとして用いられている。また、特定の分子を選択的に吸着したり、放出したりできる特性を生かして、吸着式の冷却機や、湿度を調節できる空調機などとして用いられている。ゼオライトを利用した冷却機や空調機は、従来型の冷却機や空調機に比べてはるかに低いエネルギーで稼働させることができ、また、廃熱を利用して稼動させることもできるなどの利点を有し、様々な分野での用途が開発されている。
 このような多彩な用途に適用するために、ゼオライトを大量に生産することが必要になる。しかしながら現実には、ゼオライト原料(ゼオライト前駆体ゲル):(以下、水熱合成に供するゼオライトの前駆体に相当するものを、理解しやすいようゼオライト前駆体ゲルとかっこに入れて表示することがあるが、この表示は、あくまで個々の原料(アルミニウム源等)と区別しやすいよう、理解の助けとするためであって、基礎出願の意味を変えるものではない)をオートクレーブの中に入れて、バッチ式で製造する方法しか実用化されておらず、コストと生産性の問題から製造コストが高価なものとなっている。そしてこのことがゼオライトの優れたエネルギー効率にもかかわらず、広く普及していない原因となっている。
 従来、ゼオライトの生産性の向上を目的として、ゼオライトを連続的に製造する方法が、種々開発されてきた。例えば特許文献1には、水熱合成の根本的な問題である長時間の結晶化過程を短縮する一環として、マイクロ波合成法を導入し、合成溶液中の水とイオンとの活性化による合成時間の短縮を可能にする技術として、60~1200Wのマイクロ波加熱により、5分以内にゼオライトを合成できると記載されている。また、分子ふるいを0~20%添加することにより、製造時間を短縮できるという効果も合わせて記載されている。しかし、マイクロ波を使用する場合、マイクロ波はステンレス等の金属を透過しないため、フッ素樹脂などの素材を反応器の一部に使用せざるを得なくなる。このような樹脂素材は高圧で実施する水熱合成において安全上の問題があった。
 一方、非特許文献1には、熱媒体で加熱された管型反応器で連続的にゼオライトを合成する方法として、ステンレスキャピラリー反応器を用い、オイルバス加熱により、シリカライトを連続合成した例が記載されている。この方法によれば、150℃に加熱したステンレスキャピラリー反応器により、滞留時間5.8分でシリカライトを連続合成できるとされている。しかしこの方法で合成すると、得られるゼオライトの粒子径は10~100nmと小さなものとなり、濾過等の通常の固液分離法で回収することが難しいという問題がある。その上、得られるゼオライトはアモルファス成分を多く含み結晶性が悪く、低品質のものである。
 また、特許文献2にも、熱媒体で加熱された管型反応器で連続的にゼオライトを合成する方法が記載されている。ここでは管型反応器内で乱流を発生させ、これにより反応を促進させることにより、ゼオライトの生成反応を効率的に行えることが、例えば[0046]、[0047]段落に記載されている。
 非特許文献2には、オイルバスで加熱された直径6mmの管型反応器を用いてA型ゼオライト、Y型ゼオライト、silicalite-1ゼオライトが合成された例が示されている。しかしながら非特許文献2に示されているように、直径3cm以下の管型反応器を用いてゼオライトを連続合成しようとする場合、連続合成の適用はA型ゼオライトやY型ゼオライトに代表されるテンプレートを用いない低粘度の原料混合物(ゼオライト前駆体ゲル)から結晶化するゼオライト、又はsilicalite-1ゼオライトに代表される低粘度の透明溶液から結晶化するゼオライトに限られていた。また、結晶化の容易性の観点からも、連続合成の適用は、テンプレートが必要ではないほど容易に合成されるA型ゼオライトやY型ゼオライト、又は骨格密度が高く容易に結晶化可能なsilicalite-1ゼオライト(MFI型、骨格密度17.9T/Å)などに限られていた。しかしながら、アルミニウムやリンを含む原料混合物(ゼオライト前駆体ゲル)からゼオライトを結晶化させる場合、及びテンプレートを含むアルミノシリケート混合物(ゼオライト前駆体ゲル)からゼオライトを結晶化させる場合、原料混合物(ゼオライト前駆体ゲル)は高粘度となるため、通常の熱媒体を用いた加熱方法で、直径3cm以下の管型反応器で連続合成された例は存在しなかった。
 骨格密度の低い、すなわち結晶内の空間が多いゼオライトも、結晶化の困難性の観点から、前記方法で連続的に合成することは難しいと考えられている。このように考えられていた理由は、一つには前述の特許文献2が示唆しているように、水熱合成中の原料(ゼオライト前駆体ゲル)の攪拌が重要であると考えると、粘度の高い原料(ゼオライト前駆体ゲル)を使用するゼオライトは作れないと考えられていたこと、またもう一つは粘度が高い原料(ゼオライト前駆体ゲル)中でゼオライトが合成されると、反応管が閉塞しやすいと考えられていたためである。
特開2002-186849号公報 特開2002-137917号公報
Chem.Eng.Technol.32(2009),No.5,732-737 Proceedings of the 12th International Zeolite Conference III,(1998),1553-1560
 本発明者らの検討により、特許文献2に記載の方法で実際にゼオライト、特に骨格構造に少なくともアルミニウム原子とリン原子を含むアルミノフォスフェートゼオライトまたは5≦SiO/Al≦2000(モル比)のアルミノシリケートゼオライトの製造を行うと、反応時間は数時間を要し、連続製造のメリットが十分に得られないことが判明した。
 そこで本発明は、管型反応器でゼオライトを連続的に製造する方法において、短時間で、高結晶性かつ粒子径の成長した骨格構造に少なくともアルミニウム原子とリン原子を含むアルミノフォスフェートゼオライトまたは5≦SiO/Al≦2000(モル比)のアルミノシリケートゼオライトを効率的に製造する方法を提供することを課題とする。尚、以下の明細書においては、骨格構造に少なくともアルミニウム原子とリン原子を含むアルミノフォスフェートゼオライトまたは5≦SiO/Al≦2000(モル比)のアルミノシリケートゼオライトを単に「ゼオライト」と略称することがある。
 本発明者らは、鋭意検討の結果、「ゼオライト」を管型反応器で連続的に製造する場合において、特許文献1に記載されているように、従来の水熱合成法ではなし得なかった、短時間で「ゼオライト」を作製できる水熱合成法を見出した。また、特許文献2に記載されるような乱流による攪拌よりも、短時間で十分な加熱を行うことの方が、良質かつ後工程で分離が容易な十分な大きさの「ゼオライト」を短時間で得ることができることを見出した。具体的には、管型反応器の容積、つまり合成に供される原料の量と、熱を供給するための表面積の比を特定の範囲にすることで、短時間で十分な加熱を行えることに想到した。
 また、その際に、製造しようとする「ゼオライト」と同じタイプの「ゼオライト」を種晶として添加すると、「ゼオライト」の連続製造中の不規則な圧力変動の発生を防ぐことができることを見出した。この圧力変動は、「ゼオライト」が急速に発生、成長することによる、固液相の比の変動や一時的に管が閉塞することに起因すると考えられるため、この圧力変動を抑制することは、管の閉塞による「ゼオライト」の生産効率の悪化を防ぎ、かつ得られる「ゼオライト」の結晶性や粒度分布等の品質の安定性の向上、管型反応器の管の寿命の延長、肉厚を減らすことによるエネルギー効率の向上など、実際の生産における改善効果の大きいものとなる。
 また、種晶を添加しない場合に起こる、多数の結晶成長の始点となる微細な結晶が過剰に生成し、その結果得られる「ゼオライト」の粒子が小さくなりすぎたり、逆に成長の始点となる核が十分に発生せず、結果として粗大な「ゼオライト」が得られたりするなどの問題が、種晶の添加により生じにくくなり、得られる「ゼオライト」の粒度分布が改善されるという効果も奏される。
 さらに、本発明者らは、ゼオライトの合成が、4つの段階、すなわち(1)原料が溶けて溶液になる段階、(2)ゼオライトの基本構造が10ユニット前後できたサブユニット(以降、「SBユニット」と表記することがある)形成段階、(3)それがさらに成長してアモルファスを形成する段階、そして(4)結晶化する段階を経ていることを見出した。この4つの段階のうち、(2)SBユニット形成段階から(3)アモルファス形成段階にかけて、粘度の高い塊が発生し、反応管の閉塞等の問題を引き起こすという知見を得た。さらに(4)結晶化の段階では、それまでの3段階に比べ、温度も圧力も低くても反応が進むという知見を得た。これらの知見から、(3)アモルファスを形成する段階あたりでゼオライト前駆体ゲルをさらに添加することにより、最初から原料濃度を高くした場合に発生する反応管の閉塞を防ぎ、かつ原料濃度が低いことに起因するゼオライト合成の効率の悪さを改善することができることに想到した。また、アモルファスの段階を超えつつある状態になっていれば、その後は温度、圧力ともその前の段階に比べ、低い状態でも結晶化反応を進行させることができ、結晶性の高い「ゼオライト」が得られることも見出した。
 本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。
[1] 管型反応器に、原料(ゼオライト前駆体ゲル)を連続的に供給して、骨格構造に少なくともアルミニウム原子とリン原子を含むアルミノフォスフェートゼオライトまたは5≦SiO/Al≦2000のアルミノシリケートゼオライトを連続的に製造する方法であって、該管型反応器が、熱媒体を用いて加熱され、該管型反応器の体積(内容量)と側面表面積との比、(体積)/(側面表面積)が、0.75cm以下であり、かつ該原料(ゼオライト前駆体ゲル)に種晶を添加することを特徴とするゼオライトの製造方法。
[2] 前記原料(ゼオライト前駆体ゲル)にテンプレートを添加する[1]に記載のゼオライトの製造方法。
[3] 前記管型反応器に供給された前記原料を加熱後、該管型反応器中にさらにゼオライト前駆体ゲルを加熱後原料に接触するように添加する[1]又は[2]に記載のゼオライトの製造方法。
[4] 前記ゼオライトを連続的に製造する方法において、該ゼオライトのIZAで定めるゼオライト構造が、AFIであることを特徴とする[1]乃至[3]のいずれかに記載のゼオライトの製造方法。
[5] 前記ゼオライトを連続的に製造する方法において、該ゼオライトのIZAで定めるゼオライト構造が、CHAであることを特徴とする[1]乃至[3]に記載のゼオライトの製造方法。
[6] 前記原料(ゼオライト前駆体ゲル)が、2時間以上熟成されたものであることを特徴とする[1]乃至[5]のいずれかに記載のゼオライトの製造方法。
[7] 前記ゼオライトを連続的に製造する方法において、該ゼオライトの骨格密度が12.0T/1,000Å以上、17.5T/1,000Å以下であることを特徴とする[1]乃至[6]のいずれかに記載のゼオライトの製造方法。
[8] 前記ゼオライトを連続的に製造する方法において、該ゼオライトが遷移金属を含むことを特徴とする[1]乃至[7]のいずれかに記載のゼオライトの製造方法。
[9] 管型反応器中に原料(ゼオライト前駆体ゲル)を供給し、これを加熱して、骨格構造に少なくともアルミニウム原子とリン原子を含むアルミノフォスフェートゼオライトまたは5≦SiO/Al≦2000(モル比)のアルミノシリケートゼオライトを連続的に製造する方法であって、該管型反応器の直径を3cm以下とし、かつ該原料(ゼオライト前駆体ゲル)に種晶を添加することを特徴とするゼオライトの製造方法。
[10] 前記管型反応器が、開閉可能な蓋を有する独立した管型反応器からなり、該管型反応器に原料(ゼオライト前駆体ゲル)を供給し、該蓋を閉めた後、これを熱媒体中に投入して加熱後、該管型反応器を熱媒体から取り出し、該蓋を開けて生成物を取り出すことを特徴とする[1]乃至[9]のいずれかに記載のゼオライトの製造方法。
[11] 前記管型反応器が、開閉可能な蓋を有する独立した管型反応器からなり、該管型反応器に原料を供給し、該蓋を閉めた後、これを熱媒体中に投入して加熱後、該管型反応器を熱媒体から取り出し、該蓋を開けて生成物を取り出し、該生成物を、反応時より低い温度で保持する[1]乃至[9]のいずれかに記載のゼオライトの製造方法。
[12] 少なくとも一つ以上の原料槽、種晶槽、還流液槽、及び管型反応器を有するゼオライトの製造装置であって、該原料槽からの原料(ゼオライト前駆体ゲル)と該種晶槽からの種晶と、該還流液槽からの還流を適当な割合で合流させ該管型反応器に供給する手段と、該管型反応器を加熱するための熱媒を保持した加熱槽と、生成したゼオライトを分離する手段と、ゼオライト分離後の残存原料を該還流液槽に戻す手段を有し、該管型反応器の体積(内容量)と側面表面積との比、(体積)/(側面表面積)が、0.75cm以下であるゼオライトの製造装置。
 また、本発明は更に以下の要旨をも含む。
[13] 前記遷移金属が銅、鉄、及び錫から選ばれた1種又は2種以上であることを特徴とする[8]に記載のゼオライトの製造方法。
[14] [1]乃至[11]及び[13]のいずれかに記載の製造方法で得られたゼオライトを触媒として、エチレンを原料としてプロピレンを製造することを特徴とするプロピレンの製造方法。
[15] [1]乃至[11]及び[13]のいずれかに記載の製造方法で得られたゼオライトを触媒として、排気ガスの浄化に用いることを特徴とする排ガス処理用触媒の製造方法。
[16] [1]乃至[11]及び[13]のいずれかに記載の製造方法で得られたゼオライトを触媒とした排ガス処理装置。
[17] 該管型反応器が複数である[10]又は[11]に記載のゼオライトの製造方法。
[18] 熱媒体を用いて加熱された管型反応器に、原料(ゼオライト前駆体ゲル)を連続的に供給して、骨格構造に少なくともアルミニウム原子とリン原子を含むアルミノフォスフェートゼオライトまたは5≦SiO/Al≦2000のアルミノシリケートゼオライトを連続的に製造する方法であって、該管型反応器の直径を3cm以下とし、かつ該原料(ゼオライト前駆体ゲル)に種晶を添加することを特徴とするゼオライトの製造方法。
 本発明によれば、工業的に実施可能な「ゼオライト」の連続製造により、高結晶性かつ粒子径の成長した「ゼオライト」を短時間で安定かつ効率的に製造することができる。
図1は、本発明の「ゼオライト」の製造方法に使用される装置の一例を示す模式図である。 図2は、図1の装置の管型反応器部分を示す模式図である。 図3は、管型反応器中で加熱された後の原料に、さらにゼオライト前駆体ゲルを添加する場合に適した管型反応器部分の一例を示す模式図である。 図4は、実施例1で得られたAlPOゼオライトと比較例1で得られたAlPOゼオライトのXRDチャートである。 図5は、実施例1において、種晶を添加した場合に反応器にかかる圧力変動の状態を示すグラフである。 図6は、比較例1において、種晶を添加しない場合に反応器にかかる圧力変動の状態を示すグラフである。 図7は、実施例1で得られたAlPOゼオライトの走査型電子顕微鏡写真である。 図8は、実施例2で得られたAlPOゼオライトのXRDチャートである。 図9は、実施例3で得られたアルミノシリケートゼオライトのXRDチャートである。 図10は、実施例3で得られたアルミノシリケートゼオライトの走査型電子顕微鏡写真である。 図11は、実施例4で得られたアルミノシリケートゼオライトのXRDチャートである。 図12は、実施例4で得られたアルミノシリケートゼオライトの走査型電子顕微鏡写真である。 図13は、実施例5で得られたアルミノシリケートゼオライトのXRDチャートである。 図14は、実施例5で得られたアルミノシリケートゼオライトの走査型電子顕微鏡写真である。 図15は、実施例6で得られたアルミノシリケートゼオライトのXRDチャートである。 図16は、実施例6で得られたアルミノシリケートゼオライトの走査型電子顕微鏡写真である。
 以下、本発明の実施の形態について詳細に説明するが、以下の説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの内容に特定はされない。
 本発明の「ゼオライト」の製造方法は、熱媒体を用いて加熱された管型反応器に、原料(ゼオライト前駆体ゲル)を連続的に供給して「ゼオライト」を連続的に製造する方法において、用いる管型反応器の体積(内容量)と側面表面積との比、(体積)/(側面表面積)が、0.75cm以下とし、原料(ゼオライト前駆体ゲル)に種晶を添加することを特徴とする。
 本発明の「ゼオライト」の製造方法は、体積(内容量)と側面表面積との比、(体積)/(側面表面積)が、0.75cm以下の管型反応器(これは直管の場合に直径3cm以下であることに相当する)を用い、原料(ゼオライト前駆体ゲル)に種晶を添加すること以外は常法に従って行うことができ、「ゼオライト」を構成する原子の原料化合物と、好ましくは更にテンプレートを含む原料(ゼオライト前駆体ゲル)を水熱合成することにより「ゼオライト」を製造する。つまり原料(ゼオライト前駆体ゲル)に種晶が含まれており、より好ましくは原料(ゼオライト前駆体ゲル)にさらにテンプレートを含んでいるということである。なお、水熱合成に先立ち、「ゼオライト」の製造に用いられる原料(原料化合物):(以下、本発明の「ゼオライト」を製造するために最初に用意する「ゼオライト」の材料に相当するものを、理解しやすいよう原料化合物とかっこに入れて表示することがあるが、この表示は、あくまで理解の助けとするためであって、基礎出願の意味を変えるものではない)を熟成してもよい。
 また、本発明において「連続的」とは、ほぼ絶え間なく連続する態様を表す場合と、一定間隔毎に連続的に行われる態様を含む。
[管型反応器]
 まず、本発明で用いる管型反応器について説明する。
 本発明で用いる管型反応器は、一端に原料(ゼオライト前駆体ゲル)の入口と、他端に生成物の出口を有するチューブ状の反応器であり、これを熱媒体で加熱する。その管型反応器の体積(内容量)と側面表面積との比、(体積)/(側面表面積)が、0.75cm以下、好ましくは0.5cm以下、特に好ましくは0.25cm以下、最も好ましくは0.13cm以下である。
 管型反応器の体積(内容量)と側面表面積との比、(体積)/(側面表面積)が小さいほど、短時間で原料(ゼオライト前駆体ゲル)全体を十分に加熱することができ、高速で反応を進行させることができる一方で、小さすぎない方が閉塞などのトラブルを引き起こすおそれが少ない。なお、熱媒からの熱を受け取る面積は管型反応器の外径を用いて表すことができるので、この関係を管の直径(外径)で表すならば、直径3cm以下となる。また、閉塞は管型反応器の内部で起こる現象のため、管型反応器の内径の下限は、好ましくは1mm以上、より好ましくは2mm以上である。管型反応器の断面(管軸方向に直交する断面)が円形ではない場合には、簡易に考えるために、該断面の面積相当径を直径と考えればよい。
 本発明の一態様では、管型反応器は、一端に原料(ゼオライト前駆体ゲル)の入口と、他端に生成物の出口を有するチューブ状の反応器であり、これを熱媒体で加熱する。その管型反応器の直径(内径)は3cm以下、好ましくは2cm以下、特に好ましくは1cm以下、最も好ましくは5mm以下である。本発明において、管型反応器の直径の下限は好ましくは1mm以上、より好ましくは2mm以上である。
 管型反応器の直径が小さいほど、短時間で原料(ゼオライト前駆体ゲル)全体を十分に加熱することができ、高速で反応を進行させることができる一方で、小さすぎない方が閉塞などのトラブルを引き起こすおそれが少ない。なお、管型反応器の断面(管軸方向に直交する断面)が円形ではない場合には、該断面の面積相当径を直径と考えればよい。
 本態様の本質は、短時間で原料(ゼオライト前駆体ゲル)全体を加熱することにあり、原料(ゼオライト前駆体ゲル)の体積に相当する反応器の内容量と、外部の熱媒体からの熱エネルギーを受け取るための管型反応器の表面積の比で表すこともできる。管型反応器の断面が円形の場合には、その内径をd(直径)とした場合、内容量はπd2/4×反応器の長さとなり、一方、管型反応器の表面積(ここで、表面積とは反応器の側周面の面積をさす。)は、πd×反応器の長さとなる。よってその比は、(πd2/4×反応器の長さ)/(πd×反応器の長さ)=d/4となる。前述のように管型反応器を用いて反応を速く進行させるためには、管型反応器の径(内径)を3cm以下にすると良いことがわかっているので、このd/4の値は0.75以下となる。d/4は、より好ましくは、0.5以下、特に好ましくは0.25以下である。
 前述のように、本発明の本質は、短時間で原料(ゼオライト前駆体ゲル)全体を加熱することにあり、原料(ゼオライト前駆体ゲル)の体積に相当する反応器の内容量と、外部の熱媒体からの熱エネルギーを受け取るための管型反応器の表面積の比で表すことができる。なお、本発明においては、便宜上、外径=内径=直径として、管型反応器の内容量と側面表面積との比を求めてもよい。外径=内径=直径として計算する場合、実際の内容量よりも内容量を大きく見積もることになる。すなわち、本発明の(内容量)と(側面表面積)との比を大きく見積もることになる。また、本発明の管型反応器はその厚さを薄くすることができるため、外径=内径=直径として(内容量)と(側面表面積)との比を決定しても、本発明が実施不能になることはない。本発明において、管型反応器の断面が円形の場合には、内径=外径=直径とすると、その直径をdとした場合、内容量はπd2/4×反応器の長さとなり、一方、管型反応器の表面積(ここで、表面積とは反応器の側周面の面積をさす。)は、πd×反応器の長さとなる。よってその比は、(πd2/4×反応器の長さ)/(πd×反応器の長さ)=d/4[cm]となる。本発明者らは、管型反応器の直径を3cm以下にすることで、管型反応器を用いてゼオライトの生成反応を速く進行させられることを見出した。そして、管型反応器の直径が3cmの場合、このd/4[cm]の値は0.75cmとなる。つまり肉厚ゼロでも0.75cmなので、(内容量)と(側面表面積)との比d/4は0.75以下となる。d/4[cm]は、より好ましくは、0.5cm以下、特に好ましくは0.25cm以下である。また、d/4[cm]は、好ましくは0.025cm以上、より好ましくは0.05cm以上である。
 この定義であれば、管型反応器の断面が円形から外れた不規則な形状でも、短時間でゼオライトを製造できる条件が容易に判断できる。例示として断面が縦a、横2aの長方形である角筒形状の反応器の場合を考えると、内容量は(2a×a×反応器の長さ)に対し、表面積は(6a×反応器の長さ)になるので、この比を0.75以下とするためには、内容量/表面積=a/3が0.75cm以下とすればよい。従って、aを2.25cm以下にすればよいことがわかる。
 また、本発明の別の捉え方としては、反応に供する「ゼオライト」原料(ゼオライト前駆体ゲル)が種晶を含み、管型反応器内に存在するすべての種晶と反応器内壁との最短距離(種晶から反応器内壁への垂線長さ)が、1.5cm以内の距離にある管型反応器を用いることにより、全体が短時間で加熱され、短時間で連続的に「ゼオライト」を製造できる。この距離は、より好ましくは1cm以下、更に好ましくは0.5cm以下である。ここでは種晶と説明したが、種晶は原料(ゼオライト前駆体ゲル)中に分散しているので、原料(ゼオライト前駆体ゲル)と読み替えてもよい。
 また、管型反応器の肉厚は、管型反応器の強度を維持するためには一定以上の厚さがあることが好ましく、一方管型反応器自体の加熱に使用する熱エネルギー量を減らせるためには薄いことが好ましい。従って、管型反応器の肉厚は0.2mm以上が好ましく、また5mm以下であることが好ましい。本発明では種晶を用いることによる管型反応器の圧力変動の抑制効果から、管型反応器の肉厚を薄くして加熱効率を高めることができるという利点がある。
 管型反応器の長さは特に制限はなく、「ゼオライト」の製造に必要な反応時間を滞留時間として確保することができるような長さに設計される。管型反応器の長さは、通常5cm以上、好ましくは10cm以上であり、その上限は通常10m以下、好ましくは5m以下であることが好ましく、管型反応器の直径に対して5倍以上、特に好ましくは50倍以上であり、上限としては5000倍以下、特に3000倍以下であることが好ましい。ただし、管型反応器は、上記上限を超えて長く設計してもよく、この場合は、反応が終了した生成物が管型反応器内を流通する間に後述する加熱槽の熱容量を増やすことにより温度等を安定化させることができる。特に管型反応器の直径が10mm以下の場合には、管型反応器の長さを5m以下、より好ましくは3m以下とすることにより、反応器の閉塞の危険性を大きく減らすことが出来る点から好ましい。
 このような細径長尺の管型反応器は、通常、コイル状に巻回されて使用される。この時内部を通過する原料の流れの方向が、重力に逆らう方向に進む部分があると、そこが閉塞しやすいので、コイルの巻回する面を水平に近くして、高い方から低い方に流れるようにすることがより好ましい。
 管型反応器の材質には特に制限はなく、反応温度における耐熱性と、「ゼオライト」に対する汚染の問題が無く、かつ熱伝導の良い材質が好適に用いられ、特に、ステンレスが好適に用いられる。反応器内をテフロン(登録商標)等の安定な素材でライニングし、「ゼオライト」に対する汚染を防ぐことにより、良好な熱伝導性を持つ銅やアルミニウムも反応器の材質として用いることができる。
 本発明においては、このような管型反応器を熱媒体を用いて加熱する。熱媒体とは、装置を加熱して目的の温度に制御するために、外部熱源と装置との間で熱を移動させるために使用される媒体の総称であり、単位体積あたりの熱容量、伝熱係数が大きく、装置を腐食させることがなく、また、環境、経済性の面で好適なものが使用される。熱媒体としては、例えば、オイル、蒸気、金属ブロック等を用いることができる。空気対流式の加熱機における空気は、熱媒体に含まれる。この中で特に好ましくは、流動性があり、熱容量も大きい点から液体の加熱媒体であり、特に好ましくは各種オイルである。このように熱媒体を用いて管型反応器を加熱することにより、管型反応器を均一にかつ効率的に加熱することができる。これに対して、熱媒体を用いず、例えば、マイクロ波などの電磁波を輻射するような加熱機などを用いた場合には、長尺の反応器の全長に亘って均一な温度に加熱することが難しく、結晶性の高い「ゼオライト」を得ることができない。
 本発明においては、「ゼオライト」製造原料(ゼオライト前駆体ゲル)を、このような熱媒体で加熱されている管型反応器内を流通させて加熱することにより連続的に「ゼオライト」を製造するが、その際の原料(ゼオライト前駆体ゲル)の流量(流通速度)としては、反応器の大きさ、特に長さにもよるが、0.5ml/min以上、より好ましくは1ml/min以上であり、上限は500ml/min以下、より好ましくは100ml/min以下であることが好ましい。また管型反応器内の原料(ゼオライト前駆体ゲル)の滞留時間(反応時間)として0.5分以上、特に好ましくは0.8分以上、最も好適には1分以上が好ましい。一方上限としては、60分以下、特に好ましくは13分以下、最も好適には3分以下が好ましい。
 滞留時間(反応時間)がこの範囲であると、従来よりはるかに短い時間で収率よく、かつ十分な大きさの「ゼオライト」を容易に安定して得ることが出来て好ましい。ただし、管型反応器の滞留時間は上記上限を超えてもよい。また流通速度は常に一定である必要は無く、断続的に流通させてもよく、その場合の流速は管型反応器を通過する間の平均値で考えればよい。また、本発明においては、粘度コントロールと単位時間における収率向上のため、反応途中で、原料を既に加熱開始後の原料に接触するように添加する態様もあるが、この場合は、これらの時間や流量は、接触するように添加するまでの時間と読み替えてよい。
 本発明では、上記のような直径の小さい、つまり体積に対し表面積が大きい管型反応器と熱媒体を用いることによる加熱効率の向上で、反応時間を短縮することができ、従来研究者が考えてもいないほど短時間で、例えば上記のような流通速度、反応時間での「ゼオライト」の製造が可能となる。
 反応温度、即ち、管型反応器の加熱温度は、一般的なゼオライトの水熱合成の温度と同等でよく、下限値としては通常100℃以上であり、好ましくは120℃以上、より好ましくは150℃以上である。一方上限は300℃以下であり、好ましくは250℃以下、より好ましくは220℃以下であり、特に好ましくは160℃以上、200℃以下である。この加熱温度は熱媒体の温度で調整される。
 なお、管型反応器を短時間で効率的に加熱するために、管型反応器の大きさに対して熱媒体の量を適切なものに調整することが好ましく、熱媒体の使用量は、用いる熱媒体の種類によっても異なるが、管型反応器の有効体積(反応器内の容積)に対して、管型反応器の加熱に関与する熱媒体、即ち、後述の図1,2の装置では加熱槽3内の熱媒体8を0.5体積倍以上、特に1体積倍以上とすることが好ましく、また5000体積倍以下、特に1000体積倍以下の割合で用いることが好ましい。通常、熱媒体の量は、加熱される原料(ゼオライト前駆体ゲル)よりも大きいことが、原料(ゼオライト前駆体ゲル)に迅速に熱エネルギーを伝えるためには好ましい。しかし、熱媒体を加熱するにもエネルギーが必要であるから、例えば二重管型熱交換器のような構造とすることで、熱媒体の量を非常に少なくすることができ、好ましい。また「ゼオライト」の合成反応中は、管型反応器はその全体が熱媒体中に存在していることが好ましい。
 なお、反応時の圧力については通常の水熱合成と同様に自己発生圧力であればよいが、その温度の水蒸気圧力の1~1.5倍の圧力の範囲で制御することがさらに望ましい。
 圧力が上述の範囲であると、この範囲より小さい場合に発生する恐れがある原料化合物の分解によって発生したガス成分が不連続的に噴出したり、流路が一部固体(粘度の高い塊)により閉塞したりすることを防ぎ、より安定に運転することができる。
 また、圧力を上述の上限値より小さくすることが、安全上好ましい。
 このような熱媒体により加熱が行われる管型反応器を用いて、後述のように種晶を含む「ゼオライト」製造原料(ゼオライト前駆体ゲル)を反応させる本発明の「ゼオライト」の製造方法によれば、結晶性が高く、また、比較的粒子径が大きく、粒度分布も良好な「ゼオライト」を短時間で効率的に連続製造することができる。
 また、前述のように、管型反応器の閉塞を防ぎ、かつ大量の「ゼオライト」を得るためには、加熱されている原料、すなわち、反応途中の中間生成物に、原料(ゼオライト前駆体ゲル)を追加して添加することも好ましい。このように、原料(ゼオライト前駆体ゲル)を加熱後原料に接触するように添加するには、管型反応器の途中に原料(ゼオライト前駆体ゲル)の追加供給用の管を接続することが好ましい。この反応途中で追加される原料(ゼオライト前駆体ゲル)の濃度は、反応途中でSBユニット又はアモルファス状態になった原料より低い粘度であれば特に限定されず、また、種晶を含まない水性ゲルであってもよいが、管型反応器に供給する原料(ゼオライト前駆体ゲル)と同じものを用いることが好ましい。ここで、加熱後原料に接触するように添加するとは、単なる原料の連続供給ではなく、反応途中のSBユニット及び/又はアモルファス状態の原料に添加することである。すなわち、原料であるゼオライト前駆体ゲルより粘度が増加した状態の中間生成物に添加するということを意味する。これにより、さらなる「ゼオライト」の成長と、粘度の低下の両方の効果が得られる。
 また、本発明の別の態様としては、前述の特徴、すなわち管型反応器の体積(内容量)と側面表面積との比、(体積)/(側面表面積)が、0.75cm以下である管型反応器で、アモルファス状態にまで反応させた後、取り出して、管型反応器での加熱温度より低い温度と圧力下におくことにより結晶性の高い「ゼオライト」を製造することもできる。この場合、管型反応器から取りだしたアモルファス状態のゼオライトを含む液(以降、本明細書では「中間液」と表記することもある)は、管型反応器での温度圧力より低い状態に保持すればよく、通常180℃以下、好ましくは160℃以下、特に好ましくは100℃以下に保持する。本発明の実施態様においては、このような100℃以下、つまり加圧の必要のない1気圧の条件下で、結晶性の高いゼオライトが得られることも、大きな効果である。結晶性を向上させるという観点から、保持温度の下限値は、好ましくは70℃以上であり、より好ましくは80℃以上であり、保持時間は好ましくは10時間以上であり、より好ましくは1日以上である。この保持時間は、反応途中で追加する原料の割合や、追加する位置によって、適宜最適化すればよい。この製造方法を用いる場合、管型反応器の長さを短くすることができ、設備がさらにコンパクトにできるというメリットがある。さらに、生成物を取り出した後の管型反応器に新たな原料を投入し、連続してゼオライトを製造することもできる。このように連続してゼオライトを製造する場合、温められた管型反応器に原料を投入することになるので、加熱に要する熱量が少なくて済むというメリットもある。
 本発明で製造される「ゼオライト」は、後述の実施例の項に記載の方法で測定される結晶化度として通常75%以上、より好ましくは80%以上であり、また、後述の実施例の項に記載の方法で測定されるテンプレート除去前の平均粒子径として0.1μm以上であることが好ましく、より好ましくは1μm以上、特に好ましくは2μm以上である。一方、平均粒子径の上限は特に限定されないが、100μm以下であることが好ましく、より好ましくは50μm以下である。
 管型反応器の出口から流出する生成物は、上記のような生成「ゼオライト」を含むスラリーであり、これを固液分離、必要に応じて水洗及び乾燥し、更に、必要に応じて焼成などによりテンプレートを除去して使用に供される。
 この生成物スラリーから「ゼオライト」を固液分離するに当っては、本発明で製造される「ゼオライト」は、比較的粒子径が大きいため、濾過法や沈殿法などにより容易に固液分離することができる。
[ゼオライトの製造装置]
 図1乃至3を参照して本発明のゼオライトの製造方法に使用される「ゼオライト」の製造装置の一例を説明するが、本発明で採用し得る装置は、何ら図1乃至3に示すものに限定されるものではない。
 図1に示す装置では、水性ゲル槽1からの水性ゲルと種晶槽2からの種晶がそれぞれ配管11,12及び配管13を経てゼオライト前駆体ゲルを生成し、加熱槽3内の管型反応器3A(加熱槽3内にあり、図1では図示されていない)に導入され、管型反応器3Aの反応生成物が配管14を経て濾過槽4に導入されて生成した「ゼオライト」が濾過分離され、濾液は配管17より系外へ排出されるか、或いはその一部又は全部が未反応物の回収、再利用のために配管16より還流液槽6を経て管型反応器3Aの入り口側へ還流される。加熱槽3としては、図2に示す如く、管型反応器3Aを加熱する熱媒体8を収容するオイルバス等の加熱槽が用いられる。5は管型反応器3Aを加熱するための熱媒体8を加熱するための加熱器であり、加熱槽3から配管5Bより抜き出した熱媒体を加熱して配管5Aより加熱槽3に戻すように構成されている。なお、加熱槽3の熱媒体8は、このように外部の加熱器5で加熱される他、加熱槽3に直接取り付けられた加熱手段により加熱することもできる。また、水性ゲル槽1からの水性ゲル及び種晶槽2からの種晶と、更に必要に応じ還流された未反応物を混合するための混合槽を、加熱槽3の前段に設けても良い。図1において、11A,12A,16Aはそれぞれ開閉バルブである。尚、例えば水性ゲル槽1に種晶槽2から種晶を供給し、ゼオライト前駆体にする態様等にしてもよい。
 図2に示す管型反応器3Aはコイル部が円形となるようにコイル状に巻回されているが、コイル部が四角形状となるように巻回されたものであってもよく、またつづら折り状であってもよい。また、管型反応器3Aは直線状であってもよい。また、多数の管型反応器3Aを略平行に配置し、水熱反応が行われた後の部分については、1本にまとめる、あるいは逆に水熱反応させる前の部分は太い状態で、水熱反応を生じさせる部分のみ外径3cm以下にすることも可能である。
 図1乃至図3の装置では、水性ゲル槽1からの水性ゲル(原料混合物)及び種晶槽2からの種晶が、それぞれ所定の割合で管型反応器3Aに供給され、種晶が添加された水性ゲルの「ゼオライト」原料(ゼオライト前駆体ゲル)は、熱媒体8で加熱された管型反応器3A内を流通する間に水熱合成される。
 水熱合成で生成した「ゼオライト」を含む反応生成物は、次いで、濾過槽4で固液分離され、生成ゼオライトが回収される。
 なお、濾液の一部又は全部を還流液槽6を経て管型反応器3Aに還流させて再度水熱合成に供することにより、未反応物を回収して再利用することができ、「ゼオライト」の収率を高めることができる。また、加熱後原料に接触するように反応途中で原料を追加するタイプの装置にする場合には、図3に示すように、管型反応器の途中に、追加する原料が合流できるよう配管20を備えた装置を用いることが好ましい。
 図1乃至図3では、管型反応器3Aの中を原料(ゼオライト前駆体ゲル)が流れて「ゼオライト」を生成するタイプの製造装置を示すが、それ以外の連続方法、例えば蓋のついた短い管型反応器を多数用意し、これに原料(ゼオライト前駆体ゲル)を詰め、蓋を閉めた後、次々に熱媒中に浸漬させることにより原料(ゼオライト前駆体ゲル)を加熱し、所定の時間加熱した反応器を熱媒から取り出し、蓋をあけて内容物を取り出し、濾過などの固液分離により反応済みの「ゼオライト」と未反応物を分離することによって、所望の「ゼオライト」を連続的に製造することも可能である。このタイプを用いて製造する場合、管が閉塞するなどのトラブルを避けることができ、管型反応器の内径を細くして、より反応時間を短縮することができる。また、同じ装置で異なったタイプのゼオライト(本発明の「ゼオライト」に限らず)を少量多品種製造するような、品種の切り替えが多い場合には、短い管型反応器を使用するこの方法の方が、それぞれのゼオライトの種類専用の管型反応器を用意できること、管型反応器の洗浄が容易で、使用済みの管型反応器洗浄中に他の管型反応器で他の種類のゼオライトを生産できることなどから好ましい。この方法を用いた場合には、管型反応器の長さは効率の点で5cm以上、取り扱いの点で1m以下が好ましく、その他の管型反応器のサイズや、温度、反応時間、使用する種晶、加熱槽その他の各条件は、原料(ゼオライト前駆体ゲル)を管型反応器の中を流す場合と同様である。もちろんSBユニット形成段階まで管型反応器内で水熱合成を進め、その後は、前述のとおり取り出して、水熱反応時より低温、低圧に保持することにより、高結晶性のゼオライトを製造することもできる。
[ゼオライト]
 次に本発明で製造される好ましいゼオライトについて説明する。
 本発明で製造されるゼオライト(以下、本発明の「ゼオライト」と称す場合がある。)は、吸着式冷却機、空調機、各種の吸着素子等、幅広い用途への適用に有利であることから、骨格構造に少なくともアルミニウム原子とリン原子を含むアルミノフォスフェート(ALPO)ゼオライト、または骨格構造に少なくともアルミニウム原子とケイ素原子を含み、5≦SiO/Al≦2000(モル比)のアルミノシリケートゼオライトである。また、該「ゼオライト」の骨格密度は12.0T/1,000Å以上17.5T/1,000Å以下であることが好ましい。また、該「ゼオライト」はIZA(International Zeolite Association)で定めるゼオライト構造が、AFI、CHAであることが好ましい。
 ALPOゼオライトは、骨格構造を構成するアルミニウム原子及びリン原子が、遷移金属等の他の原子で置換されていても良い。中でも、 I)アルミニウム原子がヘテロ原子(Me1:但し、Me1は周期表第三又は第四周期に属し、2族、7族、8族、11族、12族、13族(Alをのぞく)の元素から選ばれる少なくとも一種類の元素を示す。)で一部置換されたMe-アルミノフォスフェート II)リン原子がヘテロ原子(Me2:但し、Me2は周期表第三乃至第五周期に属する14族元素)で置換されたMe-アルミノフォスフェート III)アルミニウム原子とリン原子の両方がヘテロ原子(それぞれMe1、Me2)で置換されたMe-アルミノフォスフェートが吸着特性の点から好ましい。
 本発明の「ゼオライト」中に、ヘテロ原子Meは1種のみ含まれていてもよく、2種以上含まれていてもよい。好ましいMe(Me1,Me2)は、周期表第三、第四周期に属する元素である。特に、Me1は2価の状態でイオン半径が0.3nm以上、8nm以下であることが好ましく、更に好ましくは2価、4配位の状態でイオン半径が0.4nm以上、7nm以下である。ヘテロ原子Me1としては、上記の中でも、合成の容易さ、吸着素子として用いた場合の吸着特性の点から、銅、鉄、コバルト、マグネシウム、亜鉛、錫から選ばれる少なくとも1種類の元素であることが好ましく、より好ましくは銅、鉄、及び錫から選ばれた1種又は2種以上であり、特に鉄であることが好ましい。Me2は、周期表第三または第四周期に属する14族元素であり、好ましくはケイ素原子である。
 「ゼオライト」の骨格構造を構成しているMe、Al及びPの構成割合(モル比)は、通常下記式1-1~3-1のモル比であり、好ましくは下記式1-2~3-2のモル比である。
   0≦x≦0.3          …1-1
 (xは、Me、Al、Pの合計に対するMeのモル比を示す)
   0.2≦y≦0.6        …2-1
 (yは、Me、Al、Pの合計に対するAlのモル比を示す)
   0.3≦z≦0.6        …3-1
 (zは、Me、Al、Pの合計に対するPのモル比を示す)
   0.01≦x≦0.3       …1-2
 (xは、Me、Al、Pの合計に対するMeのモル比を示す)
   0.3≦y≦0.5        …2-2
 (yは、Me、Al、Pの合計に対するAlのモル比を示す)
   0.4≦z≦0.5        …3-2
 (zは、Me、Al、Pの合計に対するPのモル比を示す)
 xが上記範囲より小さいと、吸着素子として用いた場合において、吸着質の圧力が低い領域での吸着量が小さくなったり、合成が困難となったりする傾向があり、上記範囲より大きいと、合成時に不純物が混入しやすい傾向がある。また、y、zが上記範囲外であると、合成が困難である。
 また、本発明の「ゼオライト」がアルミノシリケートゼオライトの場合には、骨格構造内のケイ素原子、アルミニウム原子の一部(アルミニウム原子の場合は全部もあり得る)が他の原子、例えば、マグネシウム、チタン、ジルコニウム、バナジウム、クロム、マンガン、鉄、コバルト、亜鉛、ガリウム、スズ、硼素等の原子に置換されていてもよい。アルミノシリケートゼオライトの場合にケイ素原子とアルミニウム原子(アルミニウム原子+ヘテロ原子)のモル比が小さすぎると、A型ゼオライトやY型ゼオライトなどが優先的に生成し、所望の「ゼオライト」が得られなくなる。また大きすぎる場合は「ゼオライト」の結晶化が遅くなる。そのため本発明で用いるゼオライトは、SiO/Alのモル比が通常5以上、好ましくは10以上、より好ましくは15以上である。また、上限としては2000以下であって、1000以下が好ましく、500以下がさらに好ましい。このSiO/Alは、ゼオライト業界の慣例に従い、ケイ素原子とアルミニウム原子の原子数の比をICP発光分光分析、蛍光X線分析等の組成分析により、測定し、これを酸化物の比として表したものである。
 これらの「ゼオライト」は交換可能なカチオン種を持つものを含むが、その場合のカチオン種としては、プロトン、Li、Naなどのアルカリ元素、Mg、Caなどのアルカリ土類元素、La、Ce等の希土類元素、Fe、Co、Ni等の遷移金属等が挙げられ、プロトン、アルカリ元素、アルカリ土類元素、希土類元素が好ましい。さらにはプロトン、Li、Na、K、Mg、Caがより好ましい。
 また、本発明の「ゼオライト」は、その骨格密度(フレームワーク密度:FD)が、12.0T/1,000Å以上17.5T/1,000Å以下、特に下限値が13.0T/1,000Å以上、とりわけ14.0T/1,000Å以上であることが好ましい。ここで、骨格密度の値はCh. BaerlocherらによるATLAS OF ZEOLITE FRAMEWORK TYPES (Sixth Revised Edition, 2007, ELSEVIER)に記載の値であり、T/1,000Åは、単位体積1,000Åあたり存在するT原子(ゼオライトの1,000Å当たりの骨格を構成する酸素原子以外の原子の数)を意味し、骨格密度を示す単位である。「ゼオライト」の骨格密度が上記下限値以上であると構造が安定し、耐久性が向上する。一方、上記上限値以下であると吸着容量が大きくなり、吸着材等としての使用に適している。
 また、「ゼオライト」の構造としては、IZA(International Zeolite Association)が定めるコードで、LTA,FER,MFI、FAU,DDR,NSI,ACO、AEI、AEL、AET、AFG、AFI、AFN、AFR、AFS、AFT、AFX、AFY、AST、ATN、ATO、ATS、ATT、AWW、*BEA、BEC、BOG、BPH、BRE、CAN、CGF、CGS、CHA、CON、CZP、DFO、DFT、DON、EAB、EDI、EMT、EON、ERI、ESV、ETR、EZT、FAR、FRA、GIS、GIU、GME、HEU、IFR、ISV、ITE、IWR、IWV、IWW、KFI、LEV、LIO、LOS、MAR、MAZ、MEI、MER、MOR、MOZ、MSE、MWW、NAB、OBW、OFF、OSO、OWE、PAU、PHI、RHO、RSN、RTE、RTH、SAO、SAS、SAT、SAV、SBE、SBS、SBT、SFF、SFO、SIV、SOD、SOS、STF、STI、STT、TER、TOL、TSC、UFI、UOZ、USI、UTL、VFI、VNI、VSV、-WEN、ZONが挙げられるが、本発明のゼオライトは中でも、吸着特性、耐久性の点から、AEI、AEL、AFI、CHA、LEVから選ばれるいずれかであることが好ましく、特にAFI、CHAが好ましく、AFIであることがとりわけ好ましい。
 本発明の「ゼオライト」はまた、平均粒子径が0.1μm以上であることが好ましく、1μm以上がより好ましく、さらに好ましくは2μm以上である。一方上限としては100μm以下が好ましく、特に好ましくは50μm以下である。本発明の「ゼオライト」の製造方法によれば、前述のように、テンプレート除去前の「ゼオライト」として平均粒子径2~50μmの比較的粒子径の大きい「ゼオライト」を製造することができるため、必要に応じて製造された「ゼオライト」を粉砕、整粒して用いることができる。
[水性ゲル]
 次に本発明の「ゼオライト」の製造に用いられる原料である水性ゲルについて説明する。
<原料>
 本発明のアルミノフォスフェートゼオライトを水熱合成により製造する場合の原料となる水性ゲル(原料混合物)は、通常、アルミニウム源、リン源、必要に応じてFeなどのMe源、及びテンプレートを混合することにより調製される。もちろん本発明の効果を阻害しない限り、この水性ゲルは他の成分を含んでいてもよく、例えば本発明で採用し得る装置を説明した際に説明したように、未反応物を還流させる場合には、種晶等が含まれていてもよい。これは後述するアルミノシリケートゼオライトの原料の場合でも同様である。
 アルミニウム源(アルミニウムを供給するための原料化合物)は特に限定されず、通常、擬ベーマイト、アルミニウムイソプロポキシド、アルミニウムトリエトキシド等のアルミニウムアルコキシド、水酸化アルミニウム、アルミナゾル、アルミン酸ナトリウムなどの1種又は2種以上が挙げられるが、擬ベーマイトが取り扱い易く反応性が高いので好ましい。
 リン源(リンを供給するための原料化合物)としては通常リン酸が用いられるが、リン酸アルミニウムを用いてもよい。
 Meは、上記の本発明の「ゼオライト」の説明におけるヘテロ原子を意味し、好ましくは、Si,Fe,Co,Mg、Znなどである。Me源(Meを供給するための原料化合物)としては、通常これらの硫酸塩、硝酸塩、リン酸塩などの無機酸塩、酢酸塩、シュウ酸塩等の有機酸塩、あるいは有機金属化合物が用いられる。場合によっては、コロイド状の水酸化物等を用いても良い。
 このうち、Si源(Siを供給するための原料化合物)としてはfumedシリカ、シリカゾル、コロイダルシリカ、水ガラス、ケイ酸エチル、ケイ酸メチルなどが用いられる。これらのMe源は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 アルミノフォスフェートゼオライトの原料(原料化合物)として用いられるテンプレートとしては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム等のテトラアルキルアンモニウム;モルホリン、ジ-n-プロピルアミン、トリ-n-プロピルアミン、トリ-n-イソプロピルアミン、トリエチルアミン、トリエタノールアミン、ピペリジン、ピペラジン、シクロヘキシルアミン、2-メチルピリジン、N,N-ジメチルベンジルアミン、N,N-ジエチルエタノールアミン、ジシクロヘキシルアミン、N,N-ジメチルエタノールアミン、コリン、N,N’-ジメチルピペラジン、1,4-ジアザビシクロ(2,2,2)オクタン、N-メチルジエタノールアミン、N-メチルエタノールアミン、N-メチルピペリジン、3-メチルピペリジン、N-メチルシクロヘキシルアミン、3-メチルピリジン、4-メチルピリジン、キヌクリジン、N,N’-ジメチル-1,4-ジアザビシクロ-(2,2,2)オクタンイオン、ジ-n-ブチルアミン、ネオペンチルアミン、ジ-n-ペンチルアミン、イソプロピルアミン、t-ブチルアミン、エチレンジアミン、ピロリジン、2-イミダゾリドン、ジ-イソプロピル-エチルアミン、ジメチルシクロヘキシルアミン、シクロペンチルアミン、N-メチル-n-ブチルアミン、ヘキサメチレンイミン等の1級アミン、2級アミン、3級アミン、ポリアミンが挙げられる。
 なかでも、モルホリン、トリエチルアミン、シクロヘキシルアミン、イソプロピルアミン、ジ-イソプロピル-エチルアミン、N-メチル-n-ブチルアミン、テトラエチルアンモニウムヒドロキシドが反応性の点で好ましく、工業的にはより安価なモルホリン、トリエチルアミン、シクロヘキシルアミンがより好ましい。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 本発明のアルミノシリケートゼオライトを水熱合成により製造する場合の原料となる水性ゲル(原料混合物)は、通常、アルミニウム源、ケイ素源、必要に応じてFeなどのMe源、アルカリ金属又はアルカリ土類金属、及びテンプレートを混合することにより調製される。
 アルミニウム源、ケイ素源、Me源としては、上記アルミノフォスフェートを合成する場合と同様の原料(原料化合物)を使用することができる。但し、アルミノシリケートゼオライトを合成する場合は、アルミニウム源として、結晶性水酸化アルミニウム、結晶性アルミニウムオキシ水酸化物又は結晶性酸化アルミニウム(以下「結晶性アルミニウム源」という。)を含むものを用いるのが好ましい。結晶性水酸化アルミニウムとしては、ギブサイト、バイヤーライト、ノルドストランダイト、ドイレイト等が挙げられる。結晶性アルミニウムオキシ水酸化物としては、ベーマイト(γ-AlOOH)、ダイアスポア(α-AlOOH)等が挙げられる。結晶性酸化アルミニウムとしては、α-Al(コランダム)、χ-Al、δ-Al、γ-Al、η-Al、κ-Al、θ-Al等が挙げられる。これらのうち、結晶性水酸化アルミニウム又は結晶性アルミニウムオキシ水酸化物を含む結晶性アルミニウム源が好ましく、ギブサイト、バイヤーライト又はベーマイトを含む結晶性アルミニウム源がさらに好ましく、ギブサイト、バイヤーライトを含む結晶性アルミニウム源がとりわけ好ましい。
 結晶性アルミニウム源を原料化合物として用いた場合、ゼオライトの結晶化を早めることができる。この理由は明らかではないが、次のように推測される。結晶性でない、言い換えればアモルファスのアルミニウム源は、反応性が高いため、水性ゲルや、特に水性ゲルに種晶を追加したゼオライト前駆体ゲルがゼオライト結晶化温度に達する前にケイ素源と反応し、反応性に乏しいシリカ-アルミナ化合物を生成する。一方、結晶性アルミニウム源は、反応性が低いため、ゼオライト前駆体ゲルがゼオライト結晶化温度に達してから初めてケイ素源と反応し、速やかにゼオライトを生成する。
 アルミノシリケートゼオライトの原料(原料化合物)として用いられるテンプレートとしては、通常、アミン類、4級アンモニウム塩類が用いられる。例えば、CHA型のアルミノシリケートを合成する場合には、米国特許第4544538号明細書、米国特許公開第2008/0075656号明細書に記載の有機テンプレートが好ましいものとして挙げられる。具体的には、例えば、1-アダマンタンアミンから誘導されるカチオン、3-キナクリジナールから誘導されるカチオン、3-exo-アミノノルボルネンから誘導されるカチオン等の脂環式アミンから誘導されるカチオンが挙げられる。これらの中で、1-アダマンタンアミンから誘導されるカチオンがより好ましい。1-アダマンタンアミンから誘導されるカチオンのうち、N,N,N-トリアルキル-1-アダマンタンアンモニウムカチオンがさらに好ましい。N,N,N-トリアルキル-1-アダマンタンアンモニウムカチオンの3つのアルキル基は、通常、それぞれ独立したアルキル基であり、好ましくは低級アルキル基、より好ましくはメチル基である。それらの中で最も好ましい化合物は、N,N,N-トリメチル-1-アダマンタンアンモニウムカチオンである。
 原料化合物として用いるアルカリ金属、アルカリ土類金属としては、有機テンプレートのカウンターアニオンの水酸化物イオン、NaOH、KOHなどのアルカリ金属水酸化物、Ca(OH)などのアルカリ土類金属水酸化物などを用いることができる。アルカリ金属、アルカリ土類金属の種類は特に限定されず、通常Na、K、Li、Rb、Cs、Ca、Mg、Sr、Ba、好ましくはNa、Kである。また、アルカリ金属、アルカリ土類金属は2種類以上を併用してもよい。
<種晶>
 本発明において、「ゼオライト」製造原料(原料化合物)の一成分として種晶を用いる。
 本発明で用いる種晶は、製造される「ゼオライト」と組成、ゼオライト構造が同等であることが好ましい。種晶の結晶性は特に限定されず、アモルファス成分を含んでいてもよい。また、テンプレートを除去前又は除去後の「ゼオライト」のいずれをも種晶として用いることができる。
 従って、種晶は、「ゼオライト」の製造に用いるゼオライト前駆体ゲルと同一配合のゼオライト前駆体ゲル、或いは種晶を含まないこと以外は、「ゼオライト」の製造に用いるゼオライト前駆体ゲルと同一配合の水性ゲルから製造されたものであることが好ましい。この種晶は、水熱合成中、一部溶解して目視できなくなってしまうこともあるが、完全に原子レベルで分散しているのではなく、微小な塊として存在し、ゼオライト結晶の成長時のスタート点になるなどして、「ゼオライト」の成長や粒度分布の改善に効果を示すような従来公知の効果のみならず、本発明のような短時間での製造に際しては、急激な結晶成長による水性ゲル圧力の変動を抑えることができ、水性ゲル供給の安定性の向上、管型反応器の肉厚を減らして熱効率を改善するなどの効果を得ることができる。
 種晶となるゼオライトの製造方法には特に限定されず、本発明の「ゼオライト」の製造方法により製造されたものであってもよく、他の方法、例えばオートクレーブ等を用いて一般的なバッチ方式で製造されたものであってもよい。
 種晶はその粒子径が過度に大きいと、前述の本発明で用いる管型反応器において、ゼオライト前駆体ゲルの流通を阻害する恐れがあり、一方で過度に小さいと、種晶としての効果を十分に発揮し得ないおそれがあるので、種晶の粒子径は平均粒子径で0.01μm以上、より好ましくは0.1μm以上であり、上限としては100μm以下、特に50μm以下であることが好ましい。従って、製造された種晶の粒子径が大き過ぎる場合には適宜粉砕等の粒度調製を行うことが好ましい。粉砕の方法としては、ボールミル、ビーズミル、遊星ボールミル、ジェットミルなどを用いる方法が挙げられる。このなかでビーズミルは、ゼオライトの非晶質化を最低限に抑えることができ、効率よく粉砕できるため望ましい。ビーズミルは、通常粒径50~500μmのセラミックビーズを用い、解砕・粉砕を行う装置である。
 種晶の平均粒子径は、走査型電子顕微鏡写真からランダムに数十個の粒子を選び、画像解析ソフトで各粒子の断面積を求め、各粒子の粒子径を以下の式で算出し、得られた粒子径の値について算術平均して、平均粒子径とする。
Figure JPOXMLDOC01-appb-M000001
 種晶の添加量は、少な過ぎると種晶の添加効果を十分に得ることができず、多過ぎると製造される「ゼオライト」に対する種晶の割合が多く生産効率の面で好ましくない。従って、種晶は、アルミノフォスフェートゼオライトの製造に用いる水性ゲル中のアルミニウム源のAl換算量に対して0.1重量%以上が好ましく、特に好ましくは1重量%以上である。一方上限としては20重量%、特に好ましくは15重量%以下となるような量を添加することが好ましい。また、種晶は、アルミノシリケートゼオライトの製造に用いる水性ゲル中のケイ素源のSiO換算量に対して0.1重量%以上が好ましく、特に好ましくは1重量%以上である。一方上限としては20重量%以下が好ましく、15重量%以下となるような量を添加することが特に好ましい。
<水性ゲルの調製(原料化合物の混合)>
 アルミノフォスフェート合成用の水性ゲル(原料混合物)を調製する際の、上述のアルミニウム源、リン源、種晶、必要に応じてMe源、テンプレート及び水の混合順序は条件により異なるが、通常は、先ず、リン源、及びアルミニウム源と水を混合し、これにMe源と、テンプレートとを混合し、必要に応じて後述の熟成を行う。この水性ゲル(原料混合物)に最後に種晶を添加してゼオライト前駆体ゲルとする。(2種類以上の原料化合物を混合したものを「原料混合物」という。本明細書においては、「ゼオライト」を製造するために必要なすべての原料化合物を必要量混合したものを「ゼオライト前駆体ゲル」である。)
 水性ゲル(原料混合物)の組成は、酸化物のモル比で表して、P/Alが、通常0.6以上、さらに合成のし易さの観点からは0.7以上が好ましく、0.8以上がより好ましい。また、酸化物のモル比で表して、P/Alが通常1.7以下であり、1.6以下が好ましく、1.5以下がより好ましい。また、Me源を用いる場合、通常MeO(xはMeが2価の場合は1、3価の場合は1.5)/Pは0.01以上であり、1.5であり、さらに合成のし易さの観点からは0.02以上が好ましく、0.05以上がより好ましい。MeO/Pは通常、1.5以下であり、合成のし易さの観点からは1.0以下が好ましく、0.8以下がより好ましい。また、テンプレートを用いる場合、テンプレートはAlに対するモル比で0.2以上、特に0.5以上が好ましく、4以下、特に3以下となるように混合することが好ましい。テンプレートの使用量が少な過ぎると結晶化が起こり難く、また、水熱耐久性が不十分であり、多過ぎると「ゼオライト」の収率が低下する。また、水の割合の下限としては、Alに対して、モル比で3以上であり、合成のし易さの観点からは5以上が好ましく、10以上がより好ましい。水の割合の上限としては、200以下、合成のし易さや生産性の高さの観点からは150以下が好ましく、120以下がより好ましい。
 なお、水性ゲル(原料混合物)中には、所望により、上記以外の成分を共存させても良い。このような成分としては、アルカリ金属やアルカリ土類金属の水酸化物や塩、アルコール等の親水性有機溶媒が挙げられる。尚、以上の記載は、「ゼオライト前駆体ゲル」においても同様である。
 アルミノシリケート用の水性ゲルを調製する際の、上述のアルミニウム源、ケイ素源、種晶、必要に応じてFeなどのMe源、アルカリ金属又はアルカリ土類金属、テンプレート及び水の混合順序は条件により異なるが、通常は、先ず、Me源、アルミニウム源、アルカリ金属又はアルカリ土類金属、及び水を混合し、これにケイ素源、テンプレートを混合し、必要に応じて後述の熟成を行う。この水性ゲル(原料混合物)に最後に種晶を添加して最終原料混合物(ゼオライト前駆体ゲル)とする。
 水性ゲルの組成は、酸化物のモル比で表して、SiO/Alが、通常4以上であり、さらに合成のし易さの観点からは5以上が好ましく、10以上がより好ましく、特に好ましくは15以上である。水性ゲルの組成は、酸化物のモル比で表して、SiO/Alが、上限は、全てSiでもよいので特に限定されないが、2000以下が好ましく、1000以下がより好ましく、500以下が特に好ましい。また、Me源を用いる場合、通常MeO(xはMeが2価の場合は1、3価の場合は1.5)/SiOは0.0001以上、であり、さらに合成のし易さの観点からは0.0002以上が好ましく、0.0005以上がより好ましい。MeO/SiOは通常0.1以下であり、さらに合成のし易さの観点からは0.05以下が好ましく、0.02がより好ましい。また、テンプレートを用いる場合、テンプレートはSiOに対するモル比で0.02以上、特に0.1以上が好ましく、1以下、特に0.5以下となるように混合することが好ましい。テンプレートの使用量が少な過ぎると結晶化が起こり難く、また、水熱耐久性が不十分であり、多過ぎると「ゼオライト」の収率が低下する。また、水の割合の下限としては、SiOに対して、モル比で3以上であり、合成のし易さの観点からは5以上が好ましく、10以上がより好ましい。水の割合の上限としては、SiOに対して、モル比で200以下、合成のし易さや生産性の高さの観点からは150以下が好ましく、120以下がより好ましい。
<熟成>
 「熟成」とは、原料混合物を、新たに結晶を生成しない温度で、所定時間保持することをいう。熟成により、水熱合成中の原料化合物の溶解、結晶核の生成などを促進させることができ、水熱合成時間をさらに短縮することが出来る。
 熟成温度は、新たにゼオライト、リン酸塩、アルミニウム化合物、ケイ素化合物等が結晶化しない温度範囲であれば特に限定されないが、通常室温以上、望ましくは50℃以上、さらに望ましくは70℃以上であり、また通常150℃以下、望ましくは120℃以下、さらに望ましくは100℃以下である。温度が低すぎると、熟成の効果が現れず、また、温度が高すぎると、ゼオライト等が結晶化を開始することとなる。なお、ここで、室温とは通常10~40℃の範囲である。
 熟成時間は、少なくとも2時間以上、通常6時間以上、望ましくは12時間以上、さらに望ましくは24時間以上である。ここで、熟成時間は、原料化合物及び原料混合物を混ぜ合わせて熟成の対象となる原料混合物の組成が得られた時点から起算する。また、他の原料化合物又は原料混合物を当該熟成の対象となる原料混合物に加えた時点、又は当該熟成の対象となる原料混合物を水熱合成に供した時点で熟成は終了する。熟成時間が短すぎると、熟成の効果が現れない。熟成時間の上限は特に存在しないが、通常120時間以下、望ましくは96時間以下である。
<「ゼオライト」の触媒としての利用>
 本発明の製造方法により得られる「ゼオライト」は、エチレン及び/又はエタノールを接触させることにより、プロピレンを製造することができる触媒として用いることができる。
<「ゼオライト」のシリル化>
 本発明で得られた「ゼオライト」をプロピレン製造用触媒として用いる場合には、「ゼオライト」の外表面をシリル化してもよい。シリル化の方法は特に限定はされないが、例えば国際公開2010/128644号パンフレットに記載の方法を用いることができる。
 シリル化によって得られた「ゼオライト」の外表面酸量は、特に限定されるものではないが、通常は結晶に含まれる全酸量の5%以下であるものが好ましい。
 外表面酸量とは、「ゼオライト」外表面上に存在する酸点の量であり、結晶に含まれる全酸量とは結晶の細孔内に存在する酸点の量と外表面酸点の量の総和である。本発明におけるこれらの値は、国際公開2010/128644号パンフレットに記載の方法で測定したものである。
 外表面酸点が多すぎると、該「ゼオライト」を後述するプロピレン製造用触媒として用いた場合に、触媒の外表面で形状選択的でない反応が起こり、副生成物の増大を引き起こす傾向があるため、外表面酸量は少なければ少ないほどよい。
<成型処理>
 本発明で得られた「ゼオライト」を、触媒として反応に用いる場合は、そのまま用いても良いし、既知の反応に不活性な物質やバインダーを用いて、既知の方法により造粒・成型して、或いはこれらを混合して反応に用いても良い。また、成型により、「ゼオライト」の外表面酸量を全体酸量に対して好ましい比率に低下させ、プロピレン選択性を上げることも可能である。
 上記反応に不活性な物質やバインダーとしては、アルミナまたはアルミナゾル、シリカ、シリカゾル、石英、およびそれらの混合物等が挙げられる。成型による外表面酸量低下の方法としては、例えば、バインダーと「ゼオライト」外表面の酸点を結合させる等の方法が挙げられる。
 <プロピレンの製造方法>
 本発明の製造方法により得られる「ゼオライト」を触媒として用いるプロピレンの製造は、既知の方法にて行なうことができる。具体的には、特開2007-291076号公報や、国際公開2010/128644号パンフレットに記載の方法を用いることができる。
<遷移金属含有ゼオライトの窒素酸化物浄化用触媒としての利用>
 本発明の製造方法により得られる「ゼオライト」は、遷移金属を含有することにより、窒素酸化物浄化用の触媒として利用することができる。
 本発明で得られた「ゼオライト」に遷移金属を含有させた遷移金属含有ゼオライトを含む触媒は、窒素酸化物を含む排ガスを接触させて窒素酸化物を浄化する触媒として有効である。該排ガスには窒素酸化物以外の成分が含まれていてもよく、例えば炭化水素、一酸化炭素、二酸化炭素、水素、窒素、酸素、硫黄酸化物、水が含まれていてもよい。また、炭化水素、アンモニア、尿素等の窒素含有化合物等の公知の還元剤を併せて使用しても良い。具体的には、本発明の自動車排気浄化触媒により、ディーゼル自動車、ガソリン自動車、定置発電・船舶・農業機械・建設機械・二輪車・航空機用の各種ディーゼルエンジン、ボイラー、ガスタービン等から排出される多種多様の排ガスに含まれる窒素酸化物を浄化することができる。
<遷移金属>
 本発明において用いる遷移金属は、ゼオライトに担持させて触媒活性を有するものであれば、特に限定されるものではないが、好ましくは鉄、コバルト、パラジウム、イリジウム、白金、銅、銀、金、セリウム、ランタン、プラセオジウム、チタン、ジルコニウム等の中の群から選ばれる。更に好ましくは、鉄または銅である。またゼオライトに担持させる遷移金属は、2種以上の遷移金属を組み合わせて担持してもよい。
<遷移金属含有ゼオライト>
 遷移金属含有ゼオライトは、水熱合成時に遷移金属を含むゲルから合成することにより得られる方法、及び焼成したゼオライトに遷移金属を担持する方法がある。焼成したゼオライトに遷移金属を担持する場合、一般的に用いられるイオン交換法、含浸担持法、沈殿担持法、固相イオン交換法、CVD法等が用いられる。好ましくは、イオン交換法、含浸担持法である。 乾燥後、通常400℃から900℃で熱処理を行う。熱処理は金属の分散を高め、ゼオライト表面との相互作用を高めるため、700℃以上で熱処理を行うことが好ましい。熱処理の雰囲気は、特に限定はなく、大気下、窒素下、アルゴン下等の不活性雰囲気下で行われ、水蒸気が含まれてもよい。
 以下に本発明を実施例を用いてより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
[合成例1:種晶の合成]
 85重量%リン酸、純水、及び擬ベーマイト(Catapal C、Sasol社製)を24時間攪拌混合した。得られた原料混合物に40重量%テトラプロピルアンモニウムヒドロキシド(Sachem社製(以下「TPAOH」と略記する。))水溶液を添加し、さらに24時間攪拌して、下記組成(モル比)の水性ゲルを調製した。
       Al:P:TPAOH:HO=1:1:1:50
 前記水性ゲルをテフロンライニングされたオートクレーブ中で、自己発生圧力下、180℃で24時間水熱合成した。得られた生成物スラリーを濾過、水洗、乾燥し、種晶用のAFI型AlPOゼオライトを得た。
[実施例1]
 合成例1と同様の方法で水性ゲルを調製し、さらにこの水性ゲル中のAl1重量部に対し、合成例1で合成した種晶を0.1重量部となるよう添加し、実施例1の種晶入り水性ゲル(ゼオライト前駆体ゲル)を調製した。
 この実施例1の種晶入り水性ゲル(ゼオライト前駆体ゲル)を、外径3.15mm、内径2.15mm((体積)/(側面表面積)=0.037cm)、長さ3mのステンレス製チューブ(肉厚0.5mm)をコイル状に巻いてなる管型反応器をオイルバス中で加熱して、水熱合成を行った。オイルバス内のオイル量は管型反応器の有効体積(反応器内の容積)に対して約1000倍である。反応器を190℃のオイルバス中で加熱し、反応器入口から前記実施例1の種晶入り水性ゲル(ゼオライト前駆体ゲル)をシリンジポンプにて3.4ml/minの流量で流通させて、反応器出口から生成物スラリーを回収した。AlPO前駆体の反応器内滞留時間は3.2分であった。得られた生成物スラリーを濾過、水洗、乾燥し、AlPOゼオライトを得た。
 得られたAlPOゼオライトは、XRD分析によりAFI型構造を有することが確認された。図4に得られたAlPOゼオライトのXRDチャートを示す。
 また、連続反応中、管型反応器にかかる圧力を、反応器の入り口と出口に圧力センサーを設けることにより測定し、その経時変化を調べ、結果を図5に示した。図4において、pressure1は反応器の入り口側の圧力を示し、pressure2は出口側の圧力を示す。
 また、得られたAlPOゼオライトについて、以下の方法で結晶化度と平均粒子径を求め、結果を表1に示した。
<結晶化度>
 得られたAlPOゼオライトの結晶化度は、XRD分析データをもとに算出した。サンプルと用いた種晶について、各々、ミラー指数(1 0 0)、(1 1 0)、(2 0 0)、(2 1 0)、(0 0 2)、(2 1 1)、(1 1 2)、(2 2 0)、(2 1 2)、(4 0 0)、(3 0 2)、(4 1 0)のそれぞれの回折ピーク強度を合計し、下記式で結晶化度(%)を算出した。
 結晶化度(%)=(サンプルのピーク強度合計値)/(種晶のピーク強度合計値)×100
 生成物の結晶性が高く、ピーク強度の合計値が種晶のピーク強度合計値を上回る場合には、一律に結晶化度100%とした。
<平均粒子径>
 得られたAlPOゼオライトの粒子径は、図6に示すAlPOゼオライトの走査型電子顕微鏡写真をもとに算出した。3000倍に拡大した電子顕微鏡写真において、ランダムに20個の粒子を選び、画像解析ソフトで各粒子の断面積を求め、各粒子の粒子径を以下の式で算出し、得られた粒子径の値20個について算術平均して、平均粒子径とした。
Figure JPOXMLDOC01-appb-M000002
[比較例1]
 合成例1と同様に調製した水性ゲルに種晶を添加しなかったこと、また、反応器の熱源としてオイルバスではなく190℃に加熱した空気対流式乾燥機を用いたこと以外は、実施例1と同様にしてAlPOゼオライトを得た。
 得られたAlPOゼオライトは、XRD分析によりAFI型構造を有することが確認された。図4に得られたAlPOゼオライトのXRDチャートを示す。
 また、連続反応中、管型反応器にかかる圧力を実施例1におけると同様にして測定し、その経時変化を調べ、結果を図6に示した。
 また、得られたAlPOゼオライトについて、実施例1と同様に結晶化度を求め、結果を表1に示した。
Figure JPOXMLDOC01-appb-T000003
 表1より、次のことが分かる。
 種晶を添加しなかった比較例1のAlPOゼオライトにおいては、結晶中にアモルファス成分が多く含まれ、結晶化度が21%しかなく、低品質であった。
 種晶を添加した実施例1においては、結晶化度が100%のAlPOゼオライトを得ることができた。また、実施例1で得られたゼオライトの平均粒子径は2.2μmであり、濾過による回収が容易であった。
 また、図5,6より以下のことが分かる。
 種晶を添加した実施例1では、反応器にかかる圧力変動が小さいが、種晶を添加していない比較例1では、反応器にかかる圧力変動が大きい。
 このように、種晶の添加の有無で圧力変動に大きな差異が生まれる理由は以下の通り考えられる。
 本発明に従って、管型反応器の直径を3cm以下と細くすると、反応が短時間で起こり、反応器内で固体と液体の比が激しく変動し、また一時的に反応器が閉塞する場合もあり、圧力変動が起きるが、原料(水性ゲル)に種晶が存在する場合、もともと原料(水性ゲル)中に固体の種晶が存在するために、固/液比の変動が小さくなり、圧力変動を抑えることができると推測される。反応器の圧力変動が大きい場合、この変動に耐えられるように反応器の肉厚をある程度大きくする必要があり、この結果、反応器の加熱効率が悪くなって、反応ではなく、反応器の加熱に使用される加熱エネルギーが損失となるが、本発明に従って、種晶を用いて反応器の圧力変動を抑えることにより、反応器の肉厚を薄くすることが可能となり、熱エネルギー効率の面でも有利となる。
[比較例2]
 本発明のもう一つの実施形態である、管型反応器を連続的に加熱媒体中に投入し、連続的にゼオライトを製造する方法をシミュレイトするため、内径4.4mm、肉厚1mm、長さ13.5cmのステンレス製管型反応器を用意した。
 この管型反応器に、種晶を入れない以外は実施例1におけると同じ原料(水性ゲル)を入れ、190℃にした空気対流式乾燥機中に、それぞれ10分、20分、30分、又は60分静置して水熱合成を行い、その後実施例1と同様に濾過、水洗、乾燥し、AlPOゼオライトを得た。
 得られたAlPOゼオライトのXRD分析を行ったところ、反応時間10分のものはAlPOゼオライトのピークがほとんど見えず、20分、30分のものもピーク強度が低く、結晶化度が十分でなかった。唯一60分のものは、はっきりしたピークが得られ、AlPOゼオライトが得られたことが判った。
[比較例3]
 加熱媒体をオイルに変更したことと、保持時間を3分、5分、10分、15分、又は20分とした以外は比較例2と同様にして、AlPOゼオライトを得た。
 得られたAlPOゼオライトのXRD分析を行ったところ、反応時間3分のものはAlPOゼオライトのピークがほとんど見えず、5分、10分のものもピーク強度が弱かったが、15分、20分のものは、はっきりしたピークが得られ、AlPOゼオライトが得られたことが判った。
[実施例2]
 実施例1と同じ原料(Alに対して10重量%の種晶を含む:(ゼオライト前駆体ゲル))を用い、保持時間を30秒、1分、2分、3分、又は5分とした以外は比較例3と同様にしてAlPOゼオライトを得た。用いた管型反応器の(体積)/(側面表面積)は0.076cmであった。
 得られたAlPOゼオライトのXRD分析を行ったところ、反応時間30秒のものはAlPOゼオライトのピークがほとんど見えず、1分のものもピーク強度が弱かったが、2分、3分、5分のものは、はっきりしたピークが得られ、AlPOゼオライトが得られたことが判った。
 これらのAlPOゼオライトの結晶化度を実施例1と同様に求めたところ、30秒のものが20%、1分のものが50%、2分のものが90%、3分と5分のものは100%であった。
 このとき得られたAlPOゼオライトのXRDチャートをstd(標準(合成例1の種晶)サンプルのXRDチャート)と共に図8に示す。
 なお、実施例1,2で得られたAlPOゼオライトの骨格密度は17.3T/1000Åであった。
[合成例2:種晶の合成]
 N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADAOH)水溶液(TMADAOH25重量%含有、セイケム社製)、純水、水酸化ナトリウム、水酸化アルミニウム(Al 53.5重量%含有、アルドリッチ社製)、30重量%シリカゾル(カタロイドSi-30、日揮触媒化成社製)を混合し、2時間攪拌したのち、種晶として、焼成しテンプレートを除去したCHA型アルミノシリケートゼオライト(SiO/Al=15)を原料混合物中のSiO量に対して2重量%となるよう添加した。以上のようにして、下記組成(モル比)の最終原料混合物を調製した。
  Al:SiO:NaOH:TMADAOH:H
              =0.04:1:0.12:0.1:20
 前記最終原料混合物をオートクレーブ中で、自己発生圧力下、160℃で24時間水熱合成した。得られた生成物スラリーを濾過、水洗、乾燥し、種晶用のCHA型アルミノシリケートゼオライト(SiO/Al=23.7)を得た。
[実施例3]
 N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADAOH)水溶液(TMADAOH25重量%含有、セイケム社製)、純水、水酸化ナトリウム、水酸化アルミニウム(Al 65.5重量%含有、和光純薬工業社製)を混合し、1時間攪拌した。なお、本実施例3で用いた水酸化アルミニウムは、ギブサイトを含むものである。得られた原料混合物に30重量%シリカゾル(LUDOX LS コロイダルシリカ)を添加し、さらに1時間攪拌したのち、種晶として合成例2のCHA型アルミノシリケートゼオライト(SiO/Al=23.7)を原料混合物中のSiO量に対して10重量%となるよう添加した。以上のようにして、下記組成(モル比)の最終原料混合物を調製した。
  Al:SiO:NaOH:TMADAOH:H
              =0.04:1:0.12:0.1:20
 前記最終原料混合物を、室温で4日間熟成させ、ゼオライト前駆体ゲルを得た。その後、比較例2で用いた管型反応器((体積)/(側面表面積)=0.11cm)に、前記ゼオライト前駆体ゲルを密封し、210℃に加熱したオイルバスで60分加熱した。得られた生成物スラリーを濾過、水洗、乾燥し、アルミノシリケートゼオライトを得た。
 得られたアルミノシリケートゼオライトは、XRD分析によりCHA型構造を有することが確認された。図9に得られたアルミノシリケートゼオライトのXRDチャートを示す。
 得られたアルミノシリケートゼオライトについて、AlPOゼオライトの場合と同様方法で平均粒子径を求めた。図10に、得られたアルミノシリケートゼオライトの走査型電子顕微鏡写真を示す。
 また、以下の方法でアルミノシリケートゼオライトの結晶化度を求め、これらの結果を表2に示した。
<結晶化度>
 得られたアルミノシリケートゼオライトの結晶化度は、XRD分析データをもとに算出した。サンプルと用いた種晶について、各々、ミラー指数(1 0 0)、(-1 1 1)、(-2 1 0)のそれぞれの回折ピーク強度を合計し、下記式で結晶化度(%)を算出した。
 結晶化度(%)=(サンプルのピーク強度合計値)/(種晶のピーク強度合計値)×100
 生成物の結晶性が高く、ピーク強度の合計値が種晶のピーク強度合計値を上回る場合には、一律に結晶化度100%とした。
[実施例4]
 最終原料混合物の組成を
  Al:SiO:NaOH:TMADAOH:H
             =0.04:1:0.12:0.15:20
としたこと、最終原料混合物の熟成時間を1日間としたこと、オイルバスの温度を190℃としたこと以外は、実施例3と同様にして実施例4のアルミノシリケートゼオライトを得た。用いた管型反応器の(体積)/(側面表面積)は0.076cmであった。
 得られたアルミノシリケートゼオライトは、XRD分析によりCHA型構造を有することが確認された。図11に得られたアルミノシリケートゼオライトのXRDチャートを示す。
 得られたアルミノシリケートゼオライトについて、実施例3の場合と同様の方法で平均粒子径を求めた。図12に、得られたアルミノシリケートゼオライトの走査型電子顕微鏡写真を示す。
 また、実施例3の場合と同様の方法でアルミノシリケートゼオライトの結晶化度を求め、これらの結果を表2に示した。
[実施例5]
 最終原料混合物の熟成温度を70℃、熟成時間を40時間、オイルバスの温度を210℃、オイルバスによる加熱時間を15分としたこと以外は、実施例4と同様にして実施例5のアルミノシリケートゼオライトを得た。
 得られたアルミノシリケートゼオライトは、XRD分析によりCHA型構造を有することが確認された。図13に得られたアルミノシリケートゼオライトのXRDチャートを示す。
 得られたアルミノシリケートゼオライトについて、実施例3の場合と同様の方法で平均粒子径を求めた。図14に、得られたアルミノシリケートゼオライトの走査型電子顕微鏡写真を示す。
 また、実施例3の場合と同様の方法でアルミノシリケートゼオライトの結晶化度を求め、これらの結果を表2に示した。
[合成例3:種晶の粉砕]
 10gの合成例2のCHA型アルミノシリケートゼオライト(SiO/Al=23.7)を50gの純水に分散させ、粒径300μmのジルコニアビーズを用いたビーズミル(アシザワファインテック株式会社製 MiniCer)で60分粉砕処理した。
 スラリーを回収し、磁性皿で乾燥させ、種晶用の粉砕されたCHA型アルミノシリケートゼオライトを回収した。
[合成例4:原料用の上澄み液の調製]
 N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADAOH)水溶液(TMADAOH25重量%含有、セイケム社製)、純水、水酸化ナトリウム、水酸化アルミニウム(Al 65.5重量%含有、和光純薬工業社製)を混合し、得られた原料混合物に30重量%シリカゾル(LUDOX LS コロイダルシリカ)を添加した。以上のようにして、下記組成(モル比)の最終原料混合物を調製した。
  Al:SiO:NaOH:TMADAOH:H
              =0.04:1:0.12:0.15:20
 前記最終原料混合物をオートクレーブ中で、自己発生圧力下、165℃で40時間水熱合成した。得られた生成物スラリーを遠心分離し、原料用の上澄み液を回収した。
[実施例6]
 25gの合成例4の原料用の上澄み液に、2.5gの合成例3の種晶用の粉砕されたCHA型アルミノシリケートゼオライトを添加し、最終原料混合物を調製した。その後、比較例2で用いた管型反応器((体積)/(側面表面積)=0.076cm)に、前記最終原料混合物を密封し、210℃に加熱したオイルバスで10分加熱した。得られた生成物スラリーを濾過、水洗、乾燥し、アルミノシリケートゼオライトを得た。
 得られたアルミノシリケートゼオライトは、XRD分析によりCHA型構造を有することが確認された。図15に得られたアルミノシリケートゼオライトのXRDチャートを示す。
 得られたアルミノシリケートゼオライトについて、実施例3の場合と同様の方法で平均粒子径を求めた。図16に、得られたアルミノシリケートゼオライトの走査型電子顕微鏡写真を示す。
 また、実施例3の場合と同様の方法でアルミノシリケートゼオライトの結晶化度を求め、これらの結果を表2に示した。
[反応評価]
 実施例6で得られたアルミノシリケートゼオライト及び合成例2の種晶用CHA型アルミノシリケートゼオライトをそれぞれ空気雰囲気下、580℃で焼成し、1Mの硝酸アンモニウム水溶液を用いて、80℃で1時間のイオン交換を2回行い、その後、100℃で乾燥してNH型アルミノシリケートとした。さらに空気雰囲気下、500℃で焼成し、H型のCHA型アルミノシリケートを得た。これをそれぞれ実施例6の触媒および合成例2の触媒とした。
 実施例6の触媒および合成例2の触媒を用いて、プロピレンの製造を行った。製造には、常圧固定床流通反応装置を用い、内径6mmの石英製反応管に、上記触媒100mgと石英砂400mgの混合物を充填した。エチレンおよび窒素を、エチレンの空間速度が13mmol/(hr・g-触媒)で、エチレン30体積%と窒素70体積%となるように反応器に供給し、350℃、0.1MPaでプロピレンの合成反応を実施した。反応開始より0.83時間後、2.08時間後、3.33時間後、4.58時間後および5.83時間後にガスクロマトグラフィーで生成物の分析を行い、エチレンの転化率とプロピレンの選択率を調べた。結果を表3に示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表2より、熟成条件を調整することにより、水熱合成時間を短縮することができることが分かる。
 表3より、本発明によってわずか10分の合成時間で得られたゼオライトが、通常のオートクレーブによる合成で得られたゼオライトと、触媒反応において同等の性能を示すことがわかる。本発明により、ゼオライトの製造にかかる時間が短縮され、ゼオライト製造コストは大幅に低減される。
[実施例7]
 最終原料混合物の組成を
  Al:SiO:NaOH:TMADAOH:H
        =0.04:1:0.12:0.2:20
としたこと、最終原料混合物の熟成温度を95℃、熟成時間を2日間としたこと、オイルバスの温度を210℃、オイルバスによる加熱時間を30分としたこと以外は、実施例3と同様にして実施例7のアルミノシリケートゼオライトを得た。(体積)/(側面表面積)は0.076cmであった。
 得られたアルミノシリケートゼオライトは、XRD分析によりCHA型構造を有することが確認された。得られたアルミノシリケートゼオライトについて、実施例3の場合と同様の方法で平均粒子径を求めた。
 また、実施例3の場合と同様の方法でアルミノシリケートゼオライトの結晶化度を求め、これらの結果を表4に示した。
[実施例8]
 水酸化アルミニウムとしてバイヤーライトを含むもの(ユニオン昭和製Versal B)を用いたこと、オイルバスによる加熱時間を15分としたこと以外は、実施例7と同様にして実施例8のアルミノシリケートゼオライトを得た。
 得られたアルミノシリケートゼオライトは、XRD分析によりCHA型構造を有することが確認された。得られたアルミノシリケートゼオライトについて、実施例3の場合と同様の方法で平均粒子径を求めた。
 また、実施例3の場合と同様の方法でアルミノシリケートゼオライトの結晶化度を求め、これらの結果を表4に示した。
[実施例9]
 N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADAOH)水溶液(TMADAOH25重量%含有、セイケム社製)、純水、水酸化ナトリウム、水酸化アルミニウム(Al 65.5重量%含有、和光純薬工業社製、ギブサイト含有)を混合し、1時間攪拌した。得られた原料混合物に30重量%シリカゾル(LUDOX LS コロイダルシリカ)を添加し、さらに1時間攪拌したのち、種晶として合成例2のCHA型アルミノシリケートゼオライト(SiO/Al=23.7)を原料混合物中のSiO量に対して10重量%となるよう添加した。以上のようにして、下記モル組成比の最終原料混合物を調製した。
  Al:SiO:NaOH:TMADAOH:H
       =0.04:1:0.12:0.2:20
 前記最終原料混合物を、95℃で2日間熟成させ、ゼオライト前駆体ゲルを得た。
 また、2段目の追加(添加)用として、合成例4の原料用の上澄み液を使用した。
 反応器として、連続型の管型反応器を使用した。内径4.4mm、肉厚1mm、長さ64cmのステンレス製チューブ((体積)/(側面表面積)=0.076cm)を用い、混合物を供給後2.5分後(長さ4cm)に追加原料を添加できる構造とした。反応器を210℃のオイルバス中で加熱し、反応器入口から前記実施例1の種晶入り水性ゲル(ゼオライト前駆体ゲル)をシリンジポンプにて、圧力2.0MPa、流量0.27ml/minで供給し、反応器入口とは異なる追加原料投入口より、上澄み液を0.65ml/minの流量で添加し、反応器出口から生成物スラリーを回収した。混合物の滞留時間は、第一段階が2.5分、第2段階の原料追加後、15分であった。得られた生成物スラリーを濾過、水洗、乾燥し、アルミノシリケートゼオライトを得た。
 得られたアルミノシリケートゼオライトは、XRD分析によりCHA型構造を有することが確認された。得られたアルミノシリケートゼオライトについて、実施例3の場合と同様の方法で平均粒子径を求めた。
 また、実施例3の場合と同様の方法でアルミノシリケートゼオライトの結晶化度を求め、これらの結果を表4に示した。90%を超える結晶化度のCHA型ゼオライトが、得られた。
[実施例10]
 オイルバスによる加熱時間を3分としたこと以外は、実施例7と同様にしてアルミノシリケートゼオライトの前駆体を得た。その前駆体に合成例4の原料用の上澄み液を、前駆体の3倍量加え、95℃にて4日間撹拌を行い、アルミノシリケートゼオライトを得た。管型反応器の(体積)/(側面表面積)は0.076cmであった。
 得られたアルミノシリケートゼオライトは、XRD分析によりCHA型構造を有することが確認された。得られたアルミノシリケートゼオライトについて、実施例3の場合と同様の方法で平均粒子径を求めた。
 また、実施例3の場合と同様の方法でアルミノシリケートゼオライトの結晶化度を求め、これらの結果を表4に示した。
[実施例11]
 管型反応器の内径を10.7mm、外径12.7mmにしたこと以外は、実施例7と同様にして実施例11のアルミノシリケートゼオライトを得た。管型反応器の(体積)/(側面表面積)は0.225cmであった。
 得られたアルミノシリケートゼオライトは、XRD分析によりCHA型構造を有することが確認された。
 また、実施例3の場合と同様の方法でアルミノシリケートゼオライトの結晶化度を求め、これらの結果を表4に示した。
[実施例12]
管型反応器の内径を22.0mm、外径を25.4mmにしたこと以外は、実施例7と同様にして実施例12のアルミノシリケートゼオライトを得た。管型反応器の(体積)/(側面表面積)は0.476cmであった。
 得られたアルミノシリケートゼオライトは、XRD分析によりCHA型構造を有することが確認された。
 また、実施例3の場合と同様の方法でアルミノシリケートゼオライトの結晶化度を求め、これらの結果を表4に示した。
Figure JPOXMLDOC01-appb-T000006
[比較例4]
 N,N,N-トリメチル-1-アダマンタンアンモニウムヒドロキシド(TMADAOH)水溶液(TMADAOH25重量%含有、セイケム社製)、純水、水酸化ナトリウム、水酸化アルミニウム(Al 53.5重量%含有、アルドリッチ社製)、30重量%シリカゾル(LUDOX LS コロイダルシリカ)を混合し、2時間攪拌した。以上のようにして、下記モル組成比の最終原料混合物を調製した。
  Al:SiO:NaOH:TMADAOH:H
            =0.04:1:0.12:0.2:20
 前記最終原料混合物を23mlオートクレーブ中で、自己発生圧力下、160℃で5日間水熱合成した。得られた生成物スラリーをろ過、水洗、乾燥し、CHA型アルミノシリケートゼオライト(SiO/Al=27.1)を得た。
[比較例5]
 最終原料混合物の組成を
  Al:SiO:NaOH:TMADAOH:H
        =0.04:1:0.12:0.15:20
としたこと、種晶を10%添加したこと水熱合成温度を210℃、時間を1時間としたこと以外は、比較例4と同様にしての合成を実施した。
 得られた生成物スラリーをろ過、水洗、乾燥し、XRDにて構造を確認したところ、アモルファスで、CHA型アルミノシリケートゼオライトは得られなかった。
[Cu担持CHAゼオライト触媒の調製、及び評価]
 実施例7、比較例4で得られたCHA型ゼオライトを空気雰囲気下580℃で焼成し、1Mの硝酸アンモニウム水溶液で80℃・1時間のイオン交換を2回行い、100℃で乾燥してNH4型アルミノシリケートとした。さらに6wt%の酢酸銅溶液を用い室温4時間のイオン交換を行い、ろ過、水で洗浄、乾燥後に、空気雰囲気下で500℃4時間焼成を行い、Cu担持触媒を得た。
 Cu担持CHAゼオライト触媒中のCu量に関しては、誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析により求めた値を用い、蛍光X線分析法(XRF)の検量線を作成し、XRFにより求めた。
 ICP発光分光は、試料を塩酸水溶液で加熱溶解させた後行った。
 蛍光X線分析法(XRF)は、試料を打錠成形した後、上記の検量線を用いCuの含有量W(重量%)を求め、一方、熱重量分析(TG)により試料中の水分WH2O(重量%)を求め、下記式で、無水状態下での遷移金属含有ゼオライト中のCuの含有量W(重量%)を算出したものである。
W=W/(1-WH2O)      
 上記方法にて求めたCuの担持量は3重量%であった。
[SCR触媒活性の評価]
 調製したCu担持CHAゼオライト試料をプレス成形後、破砕して篩を通し、0.6~1mmに整粒した。整粒したゼオライト試料1mlを常圧固定床流通式反応管に充填した。ゼオライト層に下記表5の組成のガスを空間速度SV=200,000/hで流通させながら、ゼオライト層を加熱した。各温度において、出口NO濃度が一定となったとき、
 高温水蒸気耐性試験
 ={(入口NO濃度)―(出口NO濃度)}/(入口NO濃度)×100
の値によって、ゼオライト試料の浄化性能(窒素酸化物除去活性)を評価した。
Figure JPOXMLDOC01-appb-T000007
[高温水蒸気耐性試験後比表面積維持率の評価]
 調製したゼオライト試料(触媒)を900℃、10体積%の水蒸気に、空間速度SV=3,000/hの雰囲気下、1時間通じて高温水蒸気処理する高温水蒸気耐性(水熱耐久)試験を行い、水熱耐久試験前と同様に窒素酸化物除去活性の評価、及びXRDの測定を実施した。結果を表6に記す。
 得られたXRDパターンより、実施例7と比較例4のCu担持ゼオライト触媒の結晶化度を次のようにして、それぞれ求めた。結晶化度は、水熱耐久試験前のそれぞれのゼオライトのピーク高さの和を100%として、水熱耐久試験後のそれぞれのXRDの対応する格子面間隔のピークを測定して、そのピーク高さの合計値が、どの程度維持されているかにより確認した。その結果、実施例7のゼオライト触媒の結晶化度は72%、比較例4のゼオライト触媒の結晶化度は18%であった。
 比較例4のゼオライトにおいては、水熱耐久試験後は結晶化度が大きく減少し、浄化性能も大きく低下したのに対し、実施例7においては、水熱耐久試験後も結晶化度は72%と高く、触媒の劣化が大きく抑えられ、優れた浄化性能を有していたことが確認された。
 すなわち本発明の製造方法により製造されたゼオライトに、遷移金属、特に銅を担持させて排ガス処理用触媒として用いると、驚くべきことに上述の耐久試験後にも250℃から400℃の広い範囲で、85%以上の一酸化窒素の浄化率を保つことができる排ガス処理用触媒として作用することがわかった。このように、本発明のゼオライトに遷移金属を担持して得られる触媒は、特にディーゼルエンジン用の排ガス処理触媒として極めて優れた特性を有していることが示された。
Figure JPOXMLDOC01-appb-T000008
 本発明は、以上の実施の形態、実施例に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。本出願は、2013年7月9日出願の日本特許出願(特願2013-143771号)及び2014年2月25日出願の日本特許出願(特願2014-033684号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の製造方法により得られる「ゼオライト」の用途としては特に制限はなく、吸着式冷却機、空調機、各種の吸着素子等、幅広い用途に用いることができる。また、本発明の製造方法により得られる「ゼオライト」は、エチレン及び/又はエタノールを接触させることにより、プロピレンを製造することができる触媒として好適に用いることができる。また、排ガス処理用の触媒としても好適に用いることができる。
1   水性ゲル槽
2   種晶槽
3   加熱槽
3A  管型反応器
4   濾過槽
5   加熱器
6   還流液槽
8   熱媒体
20  配管

Claims (12)

  1.  管型反応器に、原料を連続的に供給して、骨格構造に少なくともアルミニウム原子とリン原子を含むアルミノフォスフェートゼオライトまたは5≦SiO/Al≦2000のアルミノシリケートゼオライトを連続的に製造する方法であって、該管型反応器が、熱媒体を用いて加熱され、該管型反応器の体積(内容量)と側面表面積との比、(体積)/(側面表面積)が、0.75cm以下であり、かつ該原料に種晶を添加することを特徴とするゼオライトの製造方法。
  2.  前記原料にテンプレートを添加する請求項1に記載のゼオライトの製造方法。
  3.  前記管型反応器に供給された前記原料を加熱後、該管型反応器中にさらにゼオライト前駆体ゲルを加熱後原料に接触するように添加する請求項1または2に記載のゼオライトの製造方法。
  4.  前記ゼオライトを連続的に製造する方法において、該ゼオライトのIZAで定めるゼオライト構造が、AFIであることを特徴とする請求項1乃至3のいずれかに記載のゼオライトの製造方法。
  5.  前記ゼオライトを連続的に製造する方法において、該ゼオライトのIZAで定めるゼオライト構造が、CHAであることを特徴とする請求項1乃至3のいずれかに記載のゼオライトの製造方法。
  6.  前記原料が、2時間以上熟成されたものであることを特徴とする請求項1乃至5のいずれかに記載のゼオライトの製造方法。
  7.  前記ゼオライトを連続的に製造する方法において、該ゼオライトの骨格密度が12.0T/1,000Å以上、17.5T/1,000Å以下であることを特徴とする請求項1乃至6のいずれかに記載のゼオライトの製造方法。
  8.  前記ゼオライトを連続的に製造する方法において、該ゼオライトが遷移金属を含むことを特徴とする請求項1乃至7のいずれかに記載のゼオライトの製造方法。
  9.  管型反応器中に原料を供給し、これを加熱して、骨格構造に少なくともアルミニウム原子とリン原子を含むアルミノフォスフェートゼオライトまたは5≦SiO/Al≦2000(モル比)のアルミノシリケートゼオライトを連続的に製造する方法であって、該管型反応器の直径を3cm以下とし、かつ該原料に種晶を添加することを特徴とするゼオライトの製造方法。
  10.  前記管型反応器が、開閉可能な蓋を有する独立した管型反応器からなり、該管型反応器に原料を供給し、該蓋を閉めた後、これを熱媒体中に投入して加熱後、該管型反応器を熱媒体から取り出し、該蓋を開けて生成物を取り出すことを特徴とする請求項1乃至9のいずれかに記載のゼオライトの製造方法。
  11.  前記管型反応器が、開閉可能な蓋を有する独立した管型反応器からなり、該管型反応器に原料を供給し、該蓋を閉めた後、これを熱媒体中に投入して加熱後、該管型反応器を熱媒体から取り出し、該蓋を開けて生成物を取り出し、該生成物を、反応時より低い温度で保持する請求項1乃至9のいずれかに記載のゼオライトの製造方法。
  12.  少なくとも一つ以上の原料槽、種晶槽、還流液槽、及び管型反応器を有するゼオライトの製造装置であって、該原料槽からの原料と該種晶槽からの種晶と、該還流液槽からの還流を適当な割合で合流させ該管型反応器に供給する手段と、該管型反応器を加熱するための熱媒を保持した加熱槽と、生成したゼオライトを分離する手段と、ゼオライト分離後の残存原料を該還流液槽に戻す手段を有し、該管型反応器の体積(内容量)と側面表面積との比、(体積)/(側面表面積)が、0.75cm以下であるゼオライトの製造装置。
PCT/JP2014/068369 2013-07-09 2014-07-09 ゼオライトの製造方法 WO2015005407A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015526388A JP6399557B2 (ja) 2013-07-09 2014-07-09 ゼオライトの製造方法
EP14823636.7A EP3020688B1 (en) 2013-07-09 2014-07-09 Zeolite production method
CN201480038927.2A CN105358483B (zh) 2013-07-09 2014-07-09 沸石的制造方法
US14/990,431 US10308516B2 (en) 2013-07-09 2016-01-07 Zeolite production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013143771 2013-07-09
JP2013-143771 2013-07-09
JP2014-033684 2014-02-25
JP2014033684 2014-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/990,431 Continuation US10308516B2 (en) 2013-07-09 2016-01-07 Zeolite production method

Publications (1)

Publication Number Publication Date
WO2015005407A1 true WO2015005407A1 (ja) 2015-01-15

Family

ID=52280085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068369 WO2015005407A1 (ja) 2013-07-09 2014-07-09 ゼオライトの製造方法

Country Status (5)

Country Link
US (1) US10308516B2 (ja)
EP (1) EP3020688B1 (ja)
JP (1) JP6399557B2 (ja)
CN (1) CN105358483B (ja)
WO (1) WO2015005407A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204268A1 (ja) * 2016-05-24 2017-11-30 国立大学法人東京大学 結晶性ミクロ多孔質材料の製造方法及び製造装置
JP2018038977A (ja) * 2016-09-08 2018-03-15 国立大学法人 東京大学 ゼオライト分離膜の製造方法
KR20190020752A (ko) * 2016-06-17 2019-03-04 바스프 에스이 제올라이트계 물질의 연속 합성 방법
JP2020510603A (ja) * 2017-03-17 2020-04-09 アルケマ フランス 制御された粒径を有するゼオライト結晶のマルチシーディングを伴う合成方法
CN111111568A (zh) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 用于制备分子筛的气固反应器以及用于制备分子筛的设备
CN111111569A (zh) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 用于制备分子筛的设备
JP2020193135A (ja) * 2019-05-30 2020-12-03 東ソー株式会社 ゼオライトzts−6及びその製造方法
WO2022172764A1 (ja) * 2021-02-10 2022-08-18 日本碍子株式会社 Rho型ゼオライトおよびrho型ゼオライトの製造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3063995A1 (fr) * 2017-03-17 2018-09-21 Arkema France Procede de synthese multi-reacteur de cristaux de zeolithe a granulometrie controlee
DE112018001799T5 (de) * 2017-03-31 2019-12-12 Ngk Insulators, Ltd. Zeolithmembran mit einer afx-struktur, membranstruktur und verfahren zur herstellung einer membranstruktur
CN108946755B (zh) * 2017-05-22 2020-08-07 中国石油化工股份有限公司 无锗iwr沸石分子筛的合成方法
WO2019101854A1 (en) 2017-11-22 2019-05-31 Basf Se Zeolite synthesis in a reactor with controlled velocity profile
US11485644B2 (en) * 2017-11-28 2022-11-01 Mitsui Mining & Smelting Co., Ltd. MWW type zeolite, method for producing same, and cracking catalyst
CN107963639A (zh) * 2017-12-12 2018-04-27 新疆大学 一种均匀纳米粒径zsm-5分子筛的快速合成法
EP3728120A1 (en) 2017-12-21 2020-10-28 Basf Se A fast batch process for preparing a zeolitic material having framework type cha
WO2020014231A1 (en) * 2018-07-09 2020-01-16 Zeolyfe, LLC Methods for preparation of cha zeolite at ambient pressure
JP2021533075A (ja) * 2018-07-27 2021-12-02 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se 骨格型ferを有するゼオライト材料の製造方法
WO2020025799A1 (en) * 2018-08-02 2020-02-06 Basf Se Process for a continuous synthesis of zeolitic materials using seed crystals loaded with organotemplate
US10632447B2 (en) * 2018-08-28 2020-04-28 Molecule Works Inc. Reactor for hydrothermal growth of structured materials
WO2020109292A1 (en) 2018-11-27 2020-06-04 Basf Se Mechanochemical activation in zeolite synthesis
WO2020109290A1 (en) 2018-11-27 2020-06-04 Basf Se Solvent-free mechanochemical activation in zeolite synthesis
US20220153600A1 (en) * 2019-04-15 2022-05-19 Pacific Industrial Development Corporation Method of continuously producing nano-sized aei-type zeolites
US20230028936A1 (en) * 2019-12-19 2023-01-26 Basf Se Continuous synthesis of a titanosilicate zeolitic material, said zeolitic material, molding prepared thereof, and their use
CN111252781B (zh) * 2020-02-05 2022-01-07 浙江大学 无有机模板剂晶种法合成高硅kfi沸石分子筛的方法
CN113929112B (zh) * 2020-06-29 2023-08-29 中国石油化工股份有限公司 一种ats型硅铝分子筛、其制备方法和应用
WO2022047374A1 (en) * 2020-08-31 2022-03-03 Purdue Research Foundation Mfi zeolites using dabco and methylamine reagents
CN117529451A (zh) 2021-06-14 2024-02-06 巴斯夫欧洲公司 以脉动流态在连续流反应器中进行的沸石合成
CN115849398A (zh) * 2022-11-22 2023-03-28 中国科学院工程热物理研究所 一种AlPO-SFO型磷酸铝分子筛合成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544538A (en) 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
JPS61236610A (ja) * 1985-04-15 1986-10-21 Zenji Hagiwara 均質なx型ゼオライトを製造する方法
JP2002137917A (ja) 2000-08-23 2002-05-14 Toshio Shimoda 加熱反応管接触によるゼオライトの連続合成方法およびその連続合成装置
JP2002186849A (ja) 2000-11-03 2002-07-02 Korea Res Inst Of Chem Technol 無機素材の製造方法およびその装置
JP2007291076A (ja) 2006-03-30 2007-11-08 Mitsubishi Chemicals Corp プロピレンの製造方法
US20080075656A1 (en) 2006-09-25 2008-03-27 Zones Stacey I Preparation of Molecular Sieves Using a Structure Directing Agent and An N, N, N-Triakyl Benzyl Quaternary Ammonium Cation
WO2010128644A1 (ja) 2009-05-08 2010-11-11 三菱化学株式会社 プロピレンの製造方法
JP2011093734A (ja) * 2009-10-28 2011-05-12 Mitsubishi Chemicals Corp ゼオライト、それを用いた吸着素子、吸着材モジュール、吸着ヒートポンプおよびデシカントローター

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303494A (en) * 1979-08-06 1981-12-01 Mobil Oil Corporation Continuous reaction/separation method for nucleated growth reactions
JP3308303B2 (ja) 1992-07-06 2002-07-29 花王株式会社 アモルファスアルミノシリケートの連続製造方法
JPH07187653A (ja) 1993-12-24 1995-07-25 Kao Corp アモルファスアルミノシリケート及びその製造方法
TW491814B (en) 1999-09-03 2002-06-21 Etsuro Sakagami Method and device for producing artificial zeolite
JP2002037622A (ja) 2000-07-25 2002-02-06 Akio Henmi 人工ゼオライトの製造方法および人工ゼオライトの製造装置
JP2002068731A (ja) 2000-08-23 2002-03-08 Akio Henmi 人工ゼオライトの製造方法およびその製造装置
JP2002193613A (ja) 2000-12-26 2002-07-10 Etsuro Sakagami 加熱反応管接触による連続式白色人工ゼオライト組成物の製造方法及びその装置
US7122500B2 (en) * 2003-09-22 2006-10-17 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
US7241713B2 (en) 2003-10-02 2007-07-10 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
CN101084065B (zh) * 2004-12-22 2011-09-14 埃克森美孚化学专利公司 硅铝磷酸盐分子筛的合成
US7528201B2 (en) * 2004-12-22 2009-05-05 Exxonmobil Chemical Patents Inc. Synthesis of silicoaluminophosphate molecular sieves
CN101054186B (zh) * 2007-04-30 2010-08-11 南京工业大学 一种利用微通道反应器制备纳米沸石的方法
CN101525140B (zh) * 2009-04-10 2010-12-29 南京工业大学 一种利用两相嵌段流微反应器制备a型沸石的方法
CN101524631B (zh) 2009-04-10 2011-06-08 南京工业大学 电热式微型反应器制备系统
CN101671035B (zh) * 2009-08-20 2011-04-20 南京工业大学 一种合成a型超细沸石的方法
US8470293B2 (en) 2009-12-18 2013-06-25 Exxonmobil Chemical Patents Inc. Method of preparing a molecular sieve and its use in the conversion of oxygenates to olefins

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544538A (en) 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
JPS61236610A (ja) * 1985-04-15 1986-10-21 Zenji Hagiwara 均質なx型ゼオライトを製造する方法
JP2002137917A (ja) 2000-08-23 2002-05-14 Toshio Shimoda 加熱反応管接触によるゼオライトの連続合成方法およびその連続合成装置
JP2002186849A (ja) 2000-11-03 2002-07-02 Korea Res Inst Of Chem Technol 無機素材の製造方法およびその装置
JP2007291076A (ja) 2006-03-30 2007-11-08 Mitsubishi Chemicals Corp プロピレンの製造方法
US20080075656A1 (en) 2006-09-25 2008-03-27 Zones Stacey I Preparation of Molecular Sieves Using a Structure Directing Agent and An N, N, N-Triakyl Benzyl Quaternary Ammonium Cation
WO2010128644A1 (ja) 2009-05-08 2010-11-11 三菱化学株式会社 プロピレンの製造方法
JP2011093734A (ja) * 2009-10-28 2011-05-12 Mitsubishi Chemicals Corp ゼオライト、それを用いた吸着素子、吸着材モジュール、吸着ヒートポンプおよびデシカントローター

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CH. BAERLOCHER: "ATLAS OF ZEOLITE FRAMEWORK TYPES", 2007, ELSEVIER
CHEM. ENG. TECHNOL., vol. 32, no. 5, 2009, pages 732 - 737
LU J. ET AL.: "Continuous-flow Synthesis of Submicron and Nano-zeolites in Capillary Microchannel Reactor", JOURNAL OF INORGANIC MATERIALS, vol. 26, no. 12, 20 November 2011 (2011-11-20), pages 1304 - 1308, XP055252452, Retrieved from the Internet <URL:http://www.jim.org.cn/CN/abstract/abstract12303.shtml> [retrieved on 20140925] *
PAN,Y. ET AL.: "Rapid Crystallization of Silicalite Nanocrystals in a Capillary Microreactor", CHEMICAL ENGINEERING & TECHNOLOGY, vol. 32, no. 5, 2009, pages 732 - 737, XP055252454 *
PROCEEDINGS OF THE 12TH INTERNATIONAL ZEOLITE CONFERENCE III, 1998, pages 1553 - 1560
See also references of EP3020688A4 *
YU L. ET AL.: "A two-phase segmented microfluidic technique for one-step continuousversatile preparation of zeolites", CHEMICAL ENGINEERING JOURNAL, vol. 219, 11 January 2013 (2013-01-11), pages 78 - 85, XP055252456 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990923B2 (ja) 2016-05-24 2022-02-03 国立大学法人 東京大学 結晶性ミクロ多孔質材料の製造方法及び製造装置
WO2017204268A1 (ja) * 2016-05-24 2017-11-30 国立大学法人東京大学 結晶性ミクロ多孔質材料の製造方法及び製造装置
JPWO2017204268A1 (ja) * 2016-05-24 2019-04-25 国立大学法人 東京大学 結晶性ミクロ多孔質材料の製造方法及び製造装置
KR20190020752A (ko) * 2016-06-17 2019-03-04 바스프 에스이 제올라이트계 물질의 연속 합성 방법
JP2019524610A (ja) * 2016-06-17 2019-09-05 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ゼオライト材料の連続合成のための方法
KR102461888B1 (ko) 2016-06-17 2022-11-02 바스프 에스이 제올라이트계 물질의 연속 합성 방법
JP7134099B2 (ja) 2016-06-17 2022-09-09 ビーエーエスエフ ソシエタス・ヨーロピア ゼオライト材料の連続合成のための方法
JP2018038977A (ja) * 2016-09-08 2018-03-15 国立大学法人 東京大学 ゼオライト分離膜の製造方法
JP7082985B2 (ja) 2017-03-17 2022-06-09 アルケマ フランス 制御された粒径を有するゼオライト結晶のマルチシーディングを伴う合成方法
JP2020510603A (ja) * 2017-03-17 2020-04-09 アルケマ フランス 制御された粒径を有するゼオライト結晶のマルチシーディングを伴う合成方法
CN111111568A (zh) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 用于制备分子筛的气固反应器以及用于制备分子筛的设备
CN111111569A (zh) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 用于制备分子筛的设备
JP2020193135A (ja) * 2019-05-30 2020-12-03 東ソー株式会社 ゼオライトzts−6及びその製造方法
JP7326880B2 (ja) 2019-05-30 2023-08-16 東ソー株式会社 ゼオライトzts-6及びその製造方法
WO2022172764A1 (ja) * 2021-02-10 2022-08-18 日本碍子株式会社 Rho型ゼオライトおよびrho型ゼオライトの製造方法

Also Published As

Publication number Publication date
EP3020688A1 (en) 2016-05-18
CN105358483A (zh) 2016-02-24
US10308516B2 (en) 2019-06-04
JPWO2015005407A1 (ja) 2017-03-02
JP6399557B2 (ja) 2018-10-03
CN105358483B (zh) 2019-06-04
US20160115039A1 (en) 2016-04-28
EP3020688A4 (en) 2016-07-06
EP3020688B1 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
JP6399557B2 (ja) ゼオライトの製造方法
US10357760B2 (en) AEI type zeolite, method for producing same, and uses thereof
US20180250663A1 (en) Methods for producing 8-membered oxygen ring zeolite and aei-type zeolite
EP3152162B1 (en) Cha type zeolitic materials and methods for their preparation using combinations of cyclohexyl- and tetramethylammonium compounds
US9409787B2 (en) Transition-metal-containing zeolite
RU2602085C2 (ru) Способ прямого синтеза cu-sapo-34
ES2443030T3 (es) Proceso para la preparación de zeolitas TS-1
WO2017100384A1 (en) Cha type zeolitic materials and methods for their preparation using combinations of cycloal-kyl- and ethyltrimethylammonium compounds
EP2297036A1 (en) Process for the direct synthesis of cu containing zeolites having cha structure
JPS63162521A (ja) 珪酸第二鉄型ゼオライトの新規合成方法、得られた物質およびそれらの用途
JP2019073435A (ja) 金属含有cha型ゼオライト及びその製造方法
KR20210013692A (ko) 유기 질소-함유 구조화제의 존재하에서 매우 높은 순도의 afx-구조 제올라이트의 합성 방법
US11104637B2 (en) Process for the conversion of monoethanolamine to ethylenediamine employing a copper-modified zeolite of the MOR framework structure
Wright et al. Cation-directed syntheses of novel zeolite-like metalloaluminophosphates STA-6 and STA-7 in the presence of azamacrocycle templates
CN110171835B (zh) 一种含铜沸石、其制造方法及用途
CN107848821B (zh) 制备沸石ssz-98的方法
EP3533762A1 (en) Chabazite type zeolite for substrate coating
CN106276964B (zh) 一种晶内含磷的zsm-5分子筛及其制备方法
EP3124435A1 (en) Method for producing transition metal-containing zeolite, transition metal-containing zeolite obtained by said method, and exhaust gas purifying catalyst using said zeolite
CN103118981B (zh) Lev型结构的沸石材料的无碱合成
US8268290B2 (en) UZM-29 family of crystalline zeolitic compositions and a method of preparing the compositions
JP6990923B2 (ja) 結晶性ミクロ多孔質材料の製造方法及び製造装置
KR20210011385A (ko) 질소-함유 유기 구조화제를 사용한 고순도 afx 구조 제올라이트의 제조 방법
CN112551543B (zh) 在氢氧化物和溴化物形式的含氮有机结构化剂的混合物存在下制备izm-2沸石的方法
CN107683256A (zh) 分子筛ssz‑27及其合成

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038927.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014823636

Country of ref document: EP