WO2015005258A1 - 糖化ヘキサペプチドオキシダーゼとその利用 - Google Patents
糖化ヘキサペプチドオキシダーゼとその利用 Download PDFInfo
- Publication number
- WO2015005258A1 WO2015005258A1 PCT/JP2014/068011 JP2014068011W WO2015005258A1 WO 2015005258 A1 WO2015005258 A1 WO 2015005258A1 JP 2014068011 W JP2014068011 W JP 2014068011W WO 2015005258 A1 WO2015005258 A1 WO 2015005258A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- amino acid
- fpox
- dna
- glycated
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/26—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0026—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
- C12N9/0032—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/34—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
- C12Q1/37—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/72—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
- G01N33/721—Haemoglobin
- G01N33/723—Glycosylated haemoglobin
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/72—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
- G01N33/721—Haemoglobin
- G01N33/725—Haemoglobin using peroxidative activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y105/00—Oxidoreductases acting on the CH-NH group of donors (1.5)
- C12Y105/03—Oxidoreductases acting on the CH-NH group of donors (1.5) with oxygen as acceptor (1.5.3)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/795—Porphyrin- or corrin-ring-containing peptides
- G01N2333/805—Haemoglobins; Myoglobins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/902—Oxidoreductases (1.)
- G01N2333/906—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7)
- G01N2333/9065—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7) acting on CH-NH groups of donors (1.5)
- G01N2333/90672—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3) in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/914—Hydrolases (3)
- G01N2333/948—Hydrolases (3) acting on peptide bonds (3.4)
- G01N2333/95—Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
- G01N2333/952—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from bacteria
Definitions
- the present invention relates to a protein having glycated hexapeptide oxidase activity, a DNA encoding the protein, a method for producing the protein, a method for measuring glycated hemoglobin using the protein, and a reagent for measuring glycated hemoglobin.
- Glycated protein is contained in body fluids such as blood and biological samples such as hair.
- concentration of glycated protein present in blood depends on the concentration of saccharides such as glucose dissolved in serum.
- hemoglobin A1c (hereinafter referred to as HbA1c, non-patented) is a glycated protein in blood.
- the concentration measurement in literature 1) is used for diagnosis and monitoring of diabetes.
- Hemoglobin is a hemoprotein having a molecular weight of 64,000, each having two types of subunits, ⁇ chain and ⁇ chain.
- HbA1c is specifically defined as a glycated N-terminal valine residue of the ⁇ chain.
- Non-Patent Document 2 As a method for measuring this HbA1c, an instrumental analytical method using high performance liquid chromatography (HPLC) (Non-Patent Document 2), an immunoassay method using an antigen-antibody reaction (for example, Non-Patent Document 3), etc. are known.
- HPLC high performance liquid chromatography
- Patent Document 3 an immunoassay method using an antigen-antibody reaction
- Enzymatic measurement methods have been developed. For example, a method using a protease and a glycated peptide oxidase (Patent Document 1) has been developed. Enzymatic measurement methods can be applied to versatile automatic analyzers, and their operation is simple.
- the glycated peptide oxidase used in the enzymatic measurement method has a CN bond in the ketose derivative produced by the Amadori rearrangement of glucosylamine produced by the reaction of the hemiacetal of glucose with the N-terminal amino group of the peptide. It is an enzyme that catalyzes a reaction that is oxidatively cleaved in the presence of oxygen molecules to produce sugar oxone ( ⁇ -ketoaldehyde form), peptide, and hydrogen peroxide.
- HbA1c is first decomposed with a protease to produce ⁇ -glycated valylhistidine (hereinafter referred to as ⁇ -FVH) from the N-terminus of the ⁇ chain of hemoglobin.
- ⁇ -FVH ⁇ -glycated valylhistidine
- a quinone dye is produced in the presence of peroxidase with the produced hydrogen peroxide, and the amount of the produced product is colorimetrically determined with a spectrophotometer.
- ⁇ -glycated lysine (hereinafter referred to as ⁇ -FK) in which a sugar is bound to the ⁇ -amino group of lysine by protease treatment and a glycated peptide containing it are by-produced and glycated peptide oxidase acts on them.
- ⁇ -FK ⁇ -glycated lysine
- Glycated peptide oxidase has been found in bacteria, fungi and plants.
- glycated peptide oxidases derived from the genus Acaetomiera, the genus Caetomium (patent document 3), the genus Carbaria (patent document 2), the rose family, the vine family, the serpentaceae family (patent document 5) are known.
- ⁇ -glycated amino acids for example, ⁇ -glycated valine, hereinafter referred to as ⁇ -FV
- ⁇ -FVH ⁇ -glycated valylhistidine
- Patent Document 4 an enzyme having reduced reactivity to ⁇ -FK (Patent Document 4) or an enzyme having increased heat resistance (Non-Patent Document 4) by artificially introducing a mutation into glycated peptide oxidase. ) Etc. have been reported. Furthermore, an enzyme that simultaneously overcomes the above disadvantages (1) to (3) has also been reported (Patent Document 6).
- HbA1c defined by IFCC (International Federation of Clinical Chemistry and Laboratory Medicine)
- IFCC International Federation of Clinical Chemistry and Laboratory Medicine
- a peptide fragment consisting of 6 amino acids containing a glycated N-terminal amino acid by digesting the HbA1c ⁇ chain with Glu-C protease [ ⁇ -glycation Hexapeptide: Fru-Val-His-Leu-Thr-Pro-Glu (hereinafter referred to as ⁇ -F6P)] is released, and this is released by HPLC-CE (HPLC-capillary electrophoresis) or HPLC-MS (HPLC- A method of determining the HbA1c concentration by measurement using a mass spectrometry method is known (Non-Patent Document 5). This method is still widely used as a practical standard method with excellent specificity, but has a problem that a special device is required for detection and complicated operation is required.
- the glycated hexapeptide oxidase that acts on the glycated hexapeptide ⁇ -F6P corresponding to the N-terminal of the ⁇ chain of HbA1c includes glycated peptide oxidase derived from Ginger family plant (Patent Document 7), rose family, vine family, celery family plant Glycated peptide oxidase (Patent Document 5), microorganism-derived glycated peptide oxidase (Patent Document 8), and chimeric enzyme (Non-Patent Document 6) consisting of two types of microorganism-derived glycated peptide oxidase sequences are known. There is a problem that a long time is required for the reaction with the peptide, or the reactivity with the glycated hexapeptide is not sufficient.
- conventional glycated peptide oxidases can only act on peptides consisting of 6 amino acids, and no enzyme having oxidase activity for peptide chains longer than that or glycated hemoglobin is known. Therefore, when measuring glycated hemoglobin using an enzymatic measurement method, the peptide fragment must be released by protease as described above, and then glycated peptide oxidase must be allowed to act. When the measurement other than the measurement is performed at the same time, the protease in the glycated hemoglobin measurement reagent may act on the other reagent and affect the measurement value.
- the present invention has been made in view of the above problems, and its purpose is to provide a protein having an activity of oxidizing glycated hexapeptide derived from glycated hemoglobin to generate hydrogen peroxide (hereinafter referred to as glycated hexapeptide oxidase activity). It is to provide.
- Another object of the present invention is to provide a DNA encoding the protein, a recombinant DNA containing the DNA, a transformant transformed with the recombinant DNA, a glycated hexapeptide using the transformant, etc.
- An object of the present invention is to provide a method for producing a protein having oxidase activity, a method for measuring glycated hemoglobin using the protein, and a reagent for measuring glycated hemoglobin containing the protein. Furthermore, another object of the present invention is to provide a protein having an activity of directly oxidizing glycated hemoglobin, a method for measuring glycated hemoglobin using the protein, and a reagent for measuring glycated hemoglobin containing the protein.
- the present invention relates to the following (1) to (29).
- the 61st arginine of the protein consisting of the amino acid sequence represented by SEQ ID NO: 1 is selected from the group consisting of glycine, alanine, valine, leucine, serine, threonine, proline, cysteine, methionine, asparagine, glutamine and aspartic acid
- a protein comprising an amino acid sequence substituted with an amino acid is selected from the group consisting of glycine, alanine, valine, leucine, serine, threonine, proline, cysteine, methionine, asparagine, glutamine and aspartic acid
- a protein comprising an amino acid sequence substituted with an amino acid.
- a protein comprising an amino acid sequence obtained by deleting, substituting or adding one or more amino acids other than the 61st amino acid in the amino acid sequence of the protein according to (1), and having glycated hexapeptide oxidase
- a protein comprising an amino acid sequence having 90% or more homology with the amino acid sequence of the protein according to (1) and having glycated hexapeptide oxidase activity.
- a protein having oxidase activity (6) A protein comprising the amino acid sequence represented by any of SEQ ID NOs: 3 to 37. (7) A protein comprising an amino acid sequence having 90% or more homology with the amino acid sequence represented by any of SEQ ID NOs: 3 to 37, and having glycated hexapeptide oxidase activity. (8) A protein comprising the amino acid sequence represented by any of SEQ ID NOs: 6 to 37. (9) A protein comprising an amino acid sequence having 90% or more homology with the amino acid sequence represented by any of SEQ ID NOs: 6 to 37, and having an activity of directly oxidizing glycated hemoglobin. (10) The protein according to (9), wherein the glycated hemoglobin is HbA1c.
- (16) encodes a protein that hybridizes under stringent conditions with a DNA having a base sequence complementary to the base sequence encoding the protein according to (8) and has an activity of directly oxidizing glycated hemoglobin;
- DNA. (17) encodes a protein that hybridizes under stringent conditions with DNA having a base sequence complementary to the base sequence represented by any of SEQ ID NOs: 44 to 75 and has an activity of directly oxidizing glycated hemoglobin , DNA.
- (19) A recombinant DNA containing the DNA according to any one of (11) to (18).
- (20) A transformant having the recombinant DNA according to (19).
- the transformant according to (20) is cultured, the protein according to any one of (1) to (10) is produced and accumulated in the culture, and the protein is collected from the culture.
- (1) A method for producing the protein according to any one of (10).
- (22) Glycated hemoglobin in a sample is reacted with a protease to produce a glycated hexapeptide, and the produced glycated hexapeptide is reacted with the protein according to any one of (1) to (10) and produced by the reaction.
- a method for measuring glycated hemoglobin in a sample characterized in that a measured substance or a consumed substance is measured.
- a protein having glycated hexapeptide oxidase activity a DNA encoding the protein, a recombinant DNA containing the DNA, a transformant transformed with the recombinant DNA, the transformant and the like were used.
- Method for producing protein having glycated hexapeptide oxidase activity method for measuring glycated hemoglobin using the protein, reagent for measuring glycated hexapeptide containing the protein, protein having activity to directly oxidize glycated hemoglobin, glycated hemoglobin using the protein And a reagent for measuring glycated hemoglobin containing the protein are provided.
- the 61st arginine of the protein consisting of the amino acid sequence represented by SEQ ID NO: 1 is selected from the group consisting of glycine, alanine, valine, leucine, serine, threonine, proline, cysteine, methionine, asparagine, glutamine and aspartic acid
- a protein comprising an amino acid sequence substituted with an amino acid [2] A protein having an amino acid sequence in which one or more amino acids other than the 61st amino acid are deleted, substituted or added in the protein amino acid sequence of [1], and having glycated hexapeptide oxidase activity; [3] A protein comprising an amino acid sequence having 90% or more homology with the protein amino acid sequence of [1] and having glycated hexapeptide oxidase activity; [4] A protein wherein the amino acid residue of the protein of [1] is modified by at least one mutation selected from the
- a protein consisting of an amino acid sequence in which one or more amino acids are deleted, substituted or added and having glycated hexapeptide oxidase activity is Molecular M Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989 ) (Hereinafter abbreviated as Molecular Cloning Second Edition), Current Protocols in Molecular Biology, John Wiley and Sons (1987-1997) (hereinafter abbreviated as Current Protocols in Molecular Biology), Nucleic Acids Research , 10, 6487 (1982), Proc. Natl. Acad. Sci. USA, 79, 6409 (1982), Gene, 34, 315 (1985), Nucleic Acids Research, 13, 4431 (1985), Proc. Natl.
- site-directed mutagenesis is introduced into DNA encoding a protein consisting of the amino acid sequence represented by SEQ ID NO: 1.
- the Rukoto can be obtained.
- the number of amino acids to be deleted, substituted or added is not particularly limited, but is a number that can be deleted, substituted or added by a known method such as the above-described site-directed mutagenesis method, 1 to several tens, The number is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
- Amino acid selected from the group consisting of glycine, alanine, valine, leucine, serine, threonine, proline, cysteine, methionine, asparagine, glutamine and aspartic acid, wherein the 61st arginine of the protein consisting of the amino acid sequence represented by SEQ ID NO: 1
- amino acids other than the 61st amino acid are deleted, substituted, or added in the amino acid sequence substituted for 1, one or more at any position other than the 61st amino acid in the same sequence (For example, 2 to several amino acids) may be deleted, substituted or added.
- amino acid positions at which amino acid can be deleted or added include glycine, alanine, valine, leucine, serine, threonine, proline, and cysteine as the 61st arginine of the protein consisting of the amino acid sequence represented by SEQ ID NO: 1. And 1 to several amino acids on the N-terminal side and C-terminal side of the amino acid sequence substituted with an amino acid selected from the group consisting of methionine, asparagine, glutamine and aspartic acid.
- Natural amino acids include L-alanine, L-asparagine, L-aspartic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-arginine, L -Methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine and the like.
- amino acids included in the same group can be substituted for each other.
- Group A leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine
- Group B aspartic acid, glutamic acid, isoaspartic acid, Isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid
- Group C asparagine, glutamine
- D lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid
- Group E proline, 3 -Hydroxyproline, 4-hydroxyproline
- Group F serine, threonine, homoserine
- Group G phenyl, threonine
- the 61st arginine of the protein consisting of the amino acid sequence represented by SEQ ID NO: 1 is glycine, alanine, valine, leucine, serine, threonine, proline.
- Cysteine, methionine, asparagine, glutamine and aspartic acid have an amino acid sequence substituted with an amino acid sequence selected from the group consisting of 90% or more, such as 94% or more, preferably 95% or more, more preferably 96% or more Further, it is desirable that the homology is 97% or more, even more preferably 98% or more, and particularly preferably 99% or more.
- Amino acid selected from the group consisting of glycine, alanine, valine, leucine, serine, threonine, proline, cysteine, methionine, asparagine, glutamine and aspartic acid, wherein the 61st arginine of the protein consisting of the amino acid sequence represented by SEQ ID NO: 1 90% or more, such as 94% or more, preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, still more preferably 98% or more, particularly preferably 99% or more.
- the protein of the present invention is also a protein having an amino acid sequence having the homology as described above and having glycated hexapeptide oxidase activity.
- Examples of the protein of the present invention include a protein having an amino acid sequence represented by any of SEQ ID NOs: 3 to 37 (FPOX-16, FPOX-17, FPOX-18, FPOX-18A, FPOX-18B, FPOX, respectively).
- FPOX-18D FPOX-19, FPOX-20, FPOX-21, FPOX-22, FPOX-23, FPOX-24, FPOX-25, FPOX-26, FPOX-27, FPOX-28, FPOX-29 , FPOX-30, FPOX-31, FPOX-32, FPOX-33, FPOX-34, FPOX-35, FPOX-36, FPOX-37, FPOX-38, FPOX-39, FPOX-40, FPOX-41, FPOX -42, FPOX-43, FPOX-44, FPOX-45, and FPOX-46).
- the protein of the present invention is a protein having glycated hexapeptide oxidase activity
- a transformant expressing the protein of the present invention is prepared using a DNA recombination method, and the transformant is used.
- measurement can be carried out by measuring substances produced or consumed by reaction with the substrate.
- hydrogen peroxide is illustrated as a substance produced
- the protein of the present invention uses molecular oxygen to oxidize glycated hexapeptide derived from glycated hemoglobin or HbA1c, which is a kind of glycated hemoglobin, to form a sugar osone ( ⁇ -ketoaldehyde), hexapeptide or hemoglobin, and Generate hydrogen peroxide.
- the optimum pH and stable pH range of the glycated hexapeptide oxidase activity of the protein of the present invention is not particularly limited, but the optimum pH is preferably around 6.0 to 8.0, and the stable pH is treated at 40 ° C. for 10 minutes.
- a pH of 6.0 to 9.0 is preferred.
- the activity of glycated hexapeptide oxidase can be measured by, for example, the following method.
- the amount of enzyme that ⁇ -F6P produces 1 ⁇ mol of hydrogen peroxide per minute is defined as 1 unit (U).
- DNA of the present invention As the DNA of the present invention, [A] DNA encoding the protein of the present invention according to any one of [1] to [10] above; [B] DNA consisting of the base sequence represented by any of SEQ ID NOs: 41 to 75; [C] a DNA that hybridizes under stringent conditions with a DNA having a base sequence complementary to the base sequence encoding the protein of [6] above and encodes a protein having glycated hexapeptide oxidase activity; [D] DNA that hybridizes under stringent conditions with a DNA having a base sequence complementary to the base sequence represented by any of SEQ ID NOs: 41 to 75 and encodes a protein having glycated hexapeptide oxidase activity ; [E] DNA consisting of the base sequence represented by any of SEQ ID NOs: 44 to 75; [F] encodes a protein that hybridizes under stringent conditions with a DNA having a base sequence complementary to the base sequence encoding the protein of [8
- hybridize means that the DNA of interest has hybridized to DNA having a specific base sequence or a part of the DNA. Accordingly, the DNA having the specific base sequence or a part of the base sequence of the DNA is useful as a probe for Northern or Southern blot analysis, or DNA of a length that can be used as an oligonucleotide primer for PCR analysis. May be.
- DNA used as a probe include DNA of at least 100 bases, preferably 200 bases or more, more preferably 500 bases or more, but may be DNA of at least 10 bases, preferably 15 bases or more. .
- the above stringent conditions include, for example, a filter in which DNA is immobilized and a probe DNA, 50% formamide, 5 ⁇ SSC (750 mmol / L sodium chloride, 75 mmol / L sodium citrate), 50 mmol / After incubation overnight at 42 ° C. in a solution containing L sodium phosphate (pH 7.6), 5 ⁇ Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g / L denatured salmon sperm DNA, for example, about
- high stringent conditions can be mentioned for washing the filter in a 0.2 ⁇ SSC solution at 65 ° C., lower stringent conditions can also be used.
- Stringent conditions can be changed by adjusting the concentration of formamide (the lower the formamide concentration, the lower the stringency), and changing the salt concentration and temperature conditions.
- 6 ⁇ SSCE (20 ⁇ SSCE is 320mol / L sodium chloride, 0.2 mol / L sodium dihydrogen phosphate, 0.02 mol / L EDTA, pH 7.4), 0.5%
- Conditions of washing with 1x SSC, 0.1% SDS solution at 50 ° C after overnight incubation at 37 ° C in a solution containing 1% SDS, 30% formamide, 100 ⁇ g / L denatured salmon sperm DNA Can be mentioned.
- examples of lower stringent conditions include conditions in which hybridization is performed using a solution having a high salt concentration (for example, 5 ⁇ SSC) under the low stringent conditions described above, and then washed.
- the various conditions described above can also be set by adding or changing a blocking reagent used to suppress the background of the hybridization experiment.
- the addition of the blocking reagent described above may be accompanied by a change in hybridization conditions in order to adapt the conditions.
- the DNA that can hybridize under the stringent conditions described above is represented by any one of SEQ ID NOs: 41 to 75 when calculated based on the above parameters using, for example, the above-described programs such as BLAST and FASTA. At least 90% or more, such as 94% or more, preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, even more preferably 98% or more, particularly preferably 99% or more. Examples thereof include DNA consisting of a nucleotide sequence having a property.
- the DNA that hybridizes with the above-mentioned DNA under stringent conditions is a DNA that encodes a protein having glycated hexapeptide oxidase activity.
- the protein is purified from a culture obtained by culturing a microorganism obtained by introduction into a host cell, the purified protein is used as an enzyme source, ⁇ -F6P is used as a substrate, and produced by reaction with the substrate. This can be done by measuring hydrogen peroxide.
- Examples of the DNA of the present invention include DNA encoding a protein consisting of the amino acid sequence represented by any of SEQ ID NOs: 3 to 37, DNA consisting of the base sequence represented by any of SEQ ID NOs: 41 to 75, and the like. Can show.
- the transformant of the present invention includes a transformant obtained by transforming a host cell by a known method using the recombinant DNA containing the DNA of the present invention described in 2 above.
- host cells include bacteria, yeast, animal cells, insect cells and plant cells, preferably bacteria, more preferably prokaryotic cells, and more preferably microorganisms belonging to the genus Escherichia .
- DNA of DNA Preparation invention of the present invention for example, using a probe that can be designed based on the nucleotide sequence shown in any of SEQ ID NO: 41 to 75 and microorganisms such as filamentous fungi, preferably Aspergillus (Aspergillus ) , Microorganisms belonging to the genus Emericella and the like, particularly preferably microorganisms belonging to the genus Emericella nidulans and the like .
- microorganisms such as filamentous fungi, preferably Aspergillus (Aspergillus ) , Microorganisms belonging to the genus Emericella and the like, particularly preferably microorganisms belonging to the genus Emericella nidulans and the like .
- nucleotide sequence of DNA encoding the protein consisting of the amino acid sequences represented by SEQ ID NOs: 3 to 37 with respect to various gene sequence databases and 90% or more, such as 94% or more, preferably 95% or more, more preferably A sequence having a homology of 96% or more, more preferably 97% or more, even more preferably 98% or more, particularly preferably 99% or more is searched, and the base sequence is determined based on the base sequence obtained by the search.
- the DNA of the present invention or the DNA used in the production method of the present invention can also be obtained from the chromosomal DNA, cDNA library, etc. of the living organism by the method described above.
- the obtained DNA is cut as it is or with an appropriate restriction enzyme and incorporated into a vector by a conventional method.
- a commonly used nucleotide sequence analysis method such as the dideoxy method [Proc .Natl. Acad. Sci., USA, 74, 5463 (1977)] or 373A DNA sequencer (manufactured by Perkin Elmer) etc. can do.
- pBluescriptII KS (+) (Stratagene)
- pDIRECT [Nucleic Acids Res., 18, 6069 (1990)]
- pCR-Script Amp SK (+) (Stratagene)
- PT7Blue manufactured by Novagen
- pCR II manufactured by Invitrogen
- pCR-TRAP manufactured by Gene Hunter
- Examples of host cells include microorganisms belonging to the genus Escherichia.
- Examples of microorganisms belonging to the genus Escherichia include, for example, Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli MC1000, Escherichia coli ATCC 12435, Escherichia coli W1485, Escherichia coli. ⁇ Cori JM109, Escherichia coli HB101, Escherichia coli No.49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli MP347, Escherichia coli NM522, Escherichia coli BL21, Escherichia coli ME8415, etc. it can.
- any method can be used as long as it is a method for introducing DNA into the host cell.
- a method using calcium ion [Proc. Natl. Acad. Sci., USA, 69, 2110]. (1972)], protoplast method (Japanese Patent Laid-Open No. 63-248394), electroporation method [Nucleic Acids Res., 16, 6127 (1988)] and the like.
- the full-length DNA can be obtained by Southern hybridization to a chromosomal DNA library using the partial length DNA as a probe.
- the target DNA can be prepared by chemical synthesis using a 8905 type DNA synthesizer manufactured by Perceptive Biosystems. Examples of the DNA obtained as described above include a DNA having the base sequence represented by any of SEQ ID NOs: 41 to 75.
- Method for producing transformant used in production method of the present invention Based on the DNA of the present invention, if necessary, a DNA fragment having an appropriate length containing DNA encoding the protein of the present invention is prepared. In addition, a transformant in which the production rate of the protein is improved by modifying the base sequence of the DNA encoding the protein so as to be an optimal codon for host expression and substituting the base in the base sequence Can be obtained.
- a recombinant DNA is prepared by inserting the DNA fragment downstream of the promoter of an appropriate expression vector.
- a transformant producing the protein of the present invention can be obtained by introducing the recombinant DNA into a host cell suitable for the expression vector. Any host cell can be used as long as it can express the target gene, such as bacteria, yeast, animal cells, insect cells, and plant cells.
- the expression vector one that can autonomously replicate in the host cell or can be integrated into a chromosome and contains a promoter at a position where the DNA of the present invention can be transcribed is used.
- the recombinant DNA having the DNA of the present invention can autonomously replicate in the prokaryotic organism, and at the same time, a promoter, a ribosome binding sequence, the DNA of the present invention, a transcription termination sequence. It is preferably a recombinant DNA composed of more. A gene that controls the promoter may also be included.
- Expression vectors include pColdI (Takara Bio), pCDF-1b, pRSF-1b (Novagen), pMAL-c2x (New England Biolabs), pGEX-4T-1 (GE Healthcare Bio) Science), pTrcHis (Invitrogen), pSE280 (Invitrogen), pGEMEX-1 (Promega), pQE-30 (Qiagen), pET-3 (Novagen), pKYP10 58-110600), pKYP200 [Agric. Biol. Chem., 48, 669 (1984)], pLSA1 [Agric. Biol. Chem., 53, 277 (1989)], pGEL1 [Proc. Natl.
- Any promoter can be used as long as it functions in a host cell such as Escherichia coli.
- trp promoter P trp
- lac promoter P lac
- P L promoter P L promoter
- P R promoter P SE
- promoters promoters derived from Escherichia coli or phage, etc.
- SPO1 promoter SPO2 promoter
- penP A promoter etc. can be mentioned.
- Artificially designed and modified promoters such as a promoter in which two P trp are connected in series, tac promoter, lacT7 promoter, and let I promoter can also be used.
- xylA promoter (Appl. Microbiol. Biotechnol., 35, 594-599 (1991)] for expression in microorganisms belonging to the genus Bacillus and P54- for expression in microorganisms belonging to the genus Corynebacterium 6 promoters [Appl. Microbiol. Biotechnol., 53, 674-679 (2000)] can also be used.
- a plasmid in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the initiation codon is adjusted to an appropriate distance (eg, 6 to 18 bases).
- a transcription termination sequence is not necessarily required, but it is preferable to place the transcription termination sequence immediately below the structural gene. Examples of such recombinant DNA include pET21-plu1440.
- any method can be used as long as it is a method for introducing DNA into the host cell.
- a method using calcium ions [Proc. Natl. Acad. Sci., USA] 69, 2110 (1972)]
- protoplast method Japanese Patent Laid-Open No. 63-248394
- electroporation method [Nucleic Acids Res., 16, 6127 (1988)] and the like.
- yeast strains When yeast strains are used as host cells, YEp13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHS19, pHS15 and the like can be used as expression vectors.
- Any promoter may be used as long as it functions in yeast strains.
- PHO5 promoter PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, heat shock polypeptide promoter And promoters such as MF ⁇ 1 promoter and CUP 1 promoter.
- Saccharomyces (Saccharomyces) genus Schizosaccharomyces (Schizosaccharomyces) genus Kluyveromyces (Kluyveromyces) genus Trichosporon (Trichosporon) genus Shiwaniomaisesu (Schwanniomyces) genus Pichia (Pichia) sp or Candida, ( Yeast strains belonging to the genus Candida, etc., specifically, Saccharomyces cerevisiae , Schizosaccharomyces pombe , Kluyveromyces lactis , Trichosporon pullulans (Trichosporon pullulans), Shiwaniomaisesu-Arubiusu (Schwanniomyces alluvius), Pichia pastoris (Pichia pastoris), can be mentioned Candida utilis (Candida utilis), and the like.
- any method for introducing DNA into yeast can be used.
- electroporation Methods ⁇ ⁇ ⁇ ⁇ ⁇ Enzymol., 194, 182 (1990)
- sphero Examples include the plast method [Proc. Natl. Acad. Sci., USA, 81, 4889 (1984)], lithium acetate method [J. ⁇ Bacteriol., 153, 163 (1983)].
- examples of expression vectors include pcDNAI, pcDM8 (commercially available from Funakoshi), pAGE107 (Japanese Patent Laid-Open No. 3-22979), pAS3-3 (Japanese Patent Laid-Open No. 2-227075), pCDM8 [Nature, 329, 840 (1987)], pcDNAI / Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 [J. Biochem, 101, 1307 (1987)], pAGE210, pAMo, pAMoA and the like can be used.
- CMV cytomegalovirus
- SV40 early promoter or metallothionein promoter SV40 early promoter or metallothionein promoter
- retrovirus Promoter heat shock promoter
- SR ⁇ promoter SR ⁇ promoter
- an IE gene enhancer of human CMV may be used together with a promoter.
- Host cells include mouse myeloma cells, rat myeloma cells, mouse hybridoma cells, human cells such as Namalwa cells or Namalva KJM-1 cells, human fetal kidney cells, human leukemia cells, African green monkey kidney cells CHO cells that are Chinese hamster cells, HBT5637 (Japanese Patent Laid-Open No. 63-299), and the like.
- mice myeloma cells As mouse myeloma cells, SP2 / 0, NSO, etc., as rat myeloma cells, YB2 / 0, etc., as human fetal kidney cells, HEK293 (ATCC CRL-1573), as human leukemia cells, as BALL-1, etc., Africa Examples of green monkey kidney cells include COS-1 and COS-7.
- any method can be used as long as it introduces DNA into animal cells.
- electroporation [Cytotechnology, 3, 133 (1990)]
- calcium phosphate method JP-A-2-27075
- lipofection method [Proc. Natl. Acad. Sci., USA, 84, 7413 (1987)]
- Baculovirus Expression Vectors A Laboratory Manual, WH Freeman and Company, New York (1992), Current Protocols in Molecular Biology, Molecular Biology, A Laboratory Manual, Bio Protein can be produced by the method described in / Technology, 6, 47 (1988). That is, the recombinant gene transfer vector and baculovirus are co-introduced into insect cells to obtain the recombinant virus in the insect cell culture supernatant, and then the recombinant virus is further infected into insect cells to produce proteins. it can.
- Examples of the gene transfer vector used in the method include pVL1392, pVL1393, pBlueBacIII (all manufactured by Invitrogen) and the like.
- the baculovirus for example, Autographa californica nuclear polyhedrosis virus, which is a virus that infects the night stealing insects, can be used.
- podocytes of Spodoptera frugiperda As insect cells, podocytes of Spodoptera frugiperda , ovary cells of Trichoplusia ni , cultured cells derived from silkworm ovary, and the like can be used.
- Spodoptera frugiperda ovary cells are Sf9, Sf21 (Baculovirus Expression Vectors A Laboratory Manual), etc.
- Trichopulcia ni ovary cells are High 5, BTI-TN-5B1-4 (manufactured by Invitrogen) Examples of cultured cells derived from silkworm ovary include Bombyx mori N4.
- Examples of the method for co-introducing the recombinant gene introduction vector and the baculovirus into insect cells for preparing a recombinant virus include the calcium phosphate method (JP-A-2-27075) and the lipofection method [Proc. Natl. Acad]. Sci., USA, 84, 7413 (1987)].
- examples of expression vectors include Ti plasmids and tobacco mosaic virus vectors. Any promoter may be used as long as it functions in plant cells. Examples thereof include cauliflower mosaic virus (CaMV) 35S promoter and rice actin 1 promoter. Examples of host cells include plant cells such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat and barley.
- CaMV cauliflower mosaic virus
- host cells include plant cells such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat and barley.
- any method for introducing a recombinant vector into a plant cell any method can be used as long as it is a method for introducing DNA into a plant cell.
- a method using Agrobacterium Japanese Patent Laid-Open No. 59-140885, JP-A-60-70080, WO94 / 00977
- electroporation method JP-A-60-251887
- a method using a particle gun (gene gun) Patent No. 2606856, Patent No. 2517813
- Patent No. 2606856, Patent No. 2517813 Patent No. 2606856, Patent No. 2517813
- the transformant obtained by the above method 5 is cultured in a medium, the protein of the present invention is produced and accumulated in the culture, and the protein is produced by collecting from the culture. can do.
- the host of the transformant for producing the protein of the present invention may be any of bacteria, yeast, animal cells, insect cells, plant cells, etc., preferably bacteria, more preferably belonging to the genus Escherichia. Mention may be made of microorganisms, more preferably microorganisms belonging to Escherichia coli. When expressed in yeast, animal cells, insect cells, or plant cells, a protein with a sugar or sugar chain added can be obtained.
- the method of culturing the transformant in a medium can be performed according to a usual method used for culturing a host.
- the medium As a medium for culturing a transformant obtained by using a prokaryote such as Escherichia coli or a eukaryote such as yeast as a host, the medium contains a carbon source, a nitrogen source, inorganic salts, etc. that can be assimilated by the organism, Either a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the transformant.
- a prokaryote such as Escherichia coli or a eukaryote such as yeast
- the medium contains a carbon source, a nitrogen source, inorganic salts, etc. that can be assimilated by the organism
- Either a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the transformant.
- the carbon source may be anything that can be assimilated by the organism, such as glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, organic acids such as acetic acid and propionic acid, ethanol, Alcohols such as propanol can be used.
- Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium phosphate, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein A hydrolyzate, soybean meal, soybean meal hydrolyzate, various fermented cells, digests thereof, and the like can be used.
- monopotassium phosphate dipotassium phosphate
- magnesium phosphate magnesium sulfate
- sodium chloride ferrous sulfate
- manganese sulfate copper sulfate
- calcium carbonate calcium carbonate
- the culture is usually carried out under aerobic conditions such as shaking culture or deep aeration stirring culture.
- the culture temperature is preferably 15 to 40 ° C., and the culture time is usually 5 to 7 days.
- the pH is maintained at 3.0 to 9.0.
- the pH is adjusted using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia or the like.
- antibiotics such as an ampicillin and a tetracycline, to a culture medium as needed during culture
- an inducer may be added to the medium as necessary.
- an inducer may be added to the medium as necessary.
- an inducer may be added to the medium.
- IPTG isopropyl ⁇ -D-thiogalactopyranoside
- IPTG isopropyl ⁇ -D-thiogalactopyranoside
- Indoleacrylic acid or the like may be added to the medium.
- RPMI1640 medium As a medium for culturing a transformant obtained by using an animal cell as a host, generally used RPMI1640 medium [J. Am. Med. Assoc., 199, 519 (1967)], Eagle's MEM medium [Science, 122, 501 (1952)], DMEM medium [Virology, 8, 396 (1959)], 199 medium [Proc. Soc. Biol. Med., 73, 1 (1950)] or fetal calf serum in these media Etc. can be used.
- the culture is usually carried out for 1 to 7 days under conditions such as pH 6 to 8, 25 to 40 ° C., and the presence of 5% CO 2 .
- TNM-FH medium manufactured by Farmingen
- Sf-900 II SFM medium manufactured by Life Technologies
- ExCell400 ExCell405 all manufactured by JRH Biosciences
- Grace's Insect Medium [Nature, 195, 788 (1962)] and the like
- the culture is usually carried out for 1 to 5 days under conditions of pH 6 to 7, 25 to 30 ° C.
- antibiotics such as a gentamicin, to a culture medium as needed during culture
- a transformant obtained using a plant cell as a host can be cultured as a cell or differentiated into a plant cell or organ.
- a medium for culturing the transformant a generally used Murashige and Skoog (MS) medium, a White medium, or a medium in which a plant hormone such as auxin or cytokinin is added to these mediums or the like is used. be able to. Cultivation is usually carried out under conditions of pH 5-9 and 20-40 ° C. for 3-60 days.
- Examples of the method for producing the protein of the present invention include a method for producing in the host cell, a method for secreting it outside the host cell, and a method for producing it on the outer cell membrane of the host cell.
- the structure can be changed.
- a protein containing the active site of the protein of the present invention can be produced in a form in which a signal peptide is added before the protein to actively secrete the protein outside the host cell. it can.
- the production amount can be increased using a gene amplification system using a dihydrofolate reductase gene or the like.
- the protein of the invention can also be produced.
- the transformant producing the protein of the present invention is an animal individual or a plant individual
- the protein is bred or cultivated according to a normal method, the protein is produced and accumulated, and the protein is collected from the animal individual or plant individual.
- the protein can be produced.
- a method for producing the protein of the present invention using an animal individual for example, a known method [Am. J. Clin. Nutr., 63, 639S (1996), Am. J. Clin. Nutr., 63, 627S ( 1996), Bio / Technology, 9, 830 (1991)], a method for producing the protein of the present invention in an animal constructed by introducing a gene.
- a transgenic non-human animal into which the DNA of the present invention or the DNA used in the production method of the present invention is introduced is bred, and the protein of the present invention is produced and accumulated in the animal. By collecting the protein from the inside, the protein can be produced.
- Examples of the place where the protein in the animal is produced and accumulated include milk of the animal (Japanese Patent Laid-Open No. 63-309192) and eggs.
- Any promoter can be used as long as it functions in animals.
- a casein promoter, ⁇ casein promoter, ⁇ lactoglobulin promoter, whey acidity, which is a mammary cell specific promoter can be used.
- a protein promoter or the like is preferably used.
- a transgenic plant introduced with a DNA encoding the protein of the present invention can be obtained by a known method [tissue culture, 20 (1994), tissue culture, 21 (1995 ), Trends Biotechnol., 15, 45 (1997)], producing and accumulating the protein in the plant, and collecting the protein from the plant to produce the protein. can give.
- a usual enzyme isolation and purification method can be used.
- the cells are collected by centrifugation after culturing, suspended in an aqueous buffer, and then subjected to an ultrasonic crusher, a French press, a manton. Cells are disrupted with a Gaurin homogenizer, dynomill, etc. to obtain a cell-free extract.
- an ordinary enzyme isolation and purification method that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, diethylamino Anion exchange chromatography using a resin such as ethyl (DEAE) -Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Kasei), a cation using a resin such as S-Sepharose FF (manufactured by GE Healthcare Bioscience) Exchange chromatography method, hydrophobic chromatography method using resin such as butyl sepharose, phenyl sepharose, gel filtration method using molecular sieve, affinity chromatography method, chromatofocusing method, electrophoresis method such as isoelectric focusing etc. These methods can be used alone or in combination to obtain a purified preparation.
- a resin such as ethyl (DEAE) -Sepharose, DIAION HPA-75
- the protein when the protein is produced by forming an insoluble substance in the cell, the protein is similarly collected from the precipitate fraction obtained by crushing and then centrifuging the cell, and the protein is obtained by a conventional method. After recovery, the protein insoluble material is solubilized with a protein denaturant.
- the solubilized solution is diluted or dialyzed into a dilute solution that does not contain a protein denaturing agent or the concentration of the protein denaturing agent does not denature the protein, and the protein is constituted into a normal three-dimensional structure.
- a purified sample can be obtained by the same isolation and purification method.
- the protein of the present invention or a derivative such as a sugar modification product thereof is secreted extracellularly
- the protein or its derivative such as a sugar adduct can be recovered in the culture supernatant. That is, a soluble fraction is obtained by treating the culture by a technique such as centrifugation as described above, and a purified preparation is obtained from the soluble fraction by using the same isolation and purification method as described above. be able to.
- the protein thus obtained include a protein comprising the amino acid sequence represented by any of SEQ ID NOs: 3 to 37.
- the protein of the present invention can be produced as a fusion protein with another protein and purified using affinity chromatography using a substance having an affinity for the fused protein.
- affinity chromatography using a substance having an affinity for the fused protein.
- the method described in Law et al. Proc. Natl. Acad. Sci., USA, 86, 8227 (1989), Genes Develop., 4, 1288 (1990)] JP-A-5-336963, WO94 / 23021
- the protein of the present invention can be produced as a fusion protein with protein A and purified by affinity chromatography using immunoglobulin G.
- the protein of the present invention is produced as a fusion protein with a Flag peptide, and affinity chromatography using an anti-Flag antibody [Proc. Natl. Acad. Sci., USA, 86, 8227 (1989), Genes Development., 4, 1288 (1990)], and can also be purified by affinity chromatography using a metal coordination resin produced as a fusion protein with polyhistidine and having high affinity with polyhistidine. Furthermore, it can also be purified by affinity chromatography using an antibody against the protein itself.
- the protein of the present invention has the property of producing hydrogen peroxide by acting on glycated hexapeptide produced from glycated hemoglobin by the action of protease on glycated hemoglobin. It can be used to measure glycated proteins in various samples. Specifically, a sample is reacted with a protease to produce a glycated hexapeptide, the produced glycated hexapeptide is reacted with the protein of the present invention, and the glycated hexapeptide and the protein of the present invention are reacted.
- the glycated hemoglobin in the sample can be measured by measuring the substance consumed or the substance consumed in the reaction of the glycated peptide and the protein of the present invention.
- the reaction relating to the measurement of glycated hemoglobin in the sample may be performed in an aqueous medium described later.
- Examples of the glycated hemoglobin in the present invention include HbA1c.
- the measuring method of the present invention will be described.
- the sample used in the measurement method of the present invention is not particularly limited as long as it is a sample containing glycated hemoglobin.
- whole blood, plasma, serum, blood cells, cell samples, urine, spinal fluid, sweat, tears, saliva examples include biological samples such as skin, mucous membrane, and hair.
- whole blood, plasma, serum, blood cells and the like are preferable, and whole blood, blood cells and the like are particularly preferable.
- the whole blood includes a sample in which plasma is mixed with a blood cell fraction derived from whole blood. These samples may be subjected to pretreatment such as hemolysis, separation, dilution, concentration and purification.
- the N-terminal 3 amino acid sequence of the ⁇ chain of hemoglobin is valine-leucine-serine, and the N-terminal 3 amino acid sequence of the ⁇ chain is valine-histidine-leucine.
- HbA1c is specifically defined as a glycated N-terminal valine residue of the ⁇ chain, but hemoglobin is known to have multiple glycation sites in the molecule including the N-terminus of the ⁇ chain ( The Journal of Biological Chemistry (1980), 256, 3120-3127).
- ⁇ -FV, ⁇ -FVH, and ⁇ -F6P derived from glycated hemoglobin in which the ⁇ -chain N-terminal valine residue is glycated are allowed to react with a sample containing glycated hemoglobin, and the ⁇ -chain N-terminal valine residue ⁇ -FV, ⁇ -glycated valylleucine (hereinafter abbreviated as ⁇ -FVL), ⁇ -Fructosyl Val- Leu- Ser- Pro- Ala- Asp, and ⁇ chain derived from glycated hemoglobin having a glycated group And / or a glycated amino acid and / or a glycated oligopeptide such as ⁇ -FK derived from glycation of the ⁇ -amino group of the lysine residue inside the ⁇ chain is produced.
- ⁇ -FVL ⁇ -glycated valylleu
- a glycated amino acid such as ⁇ -FK is also produced from a glycated protein other than glycated hemoglobin in the whole blood such as glycated albumin. That is, when a protease is allowed to act on a sample containing purified hemoglobin or a sample containing whole blood, for example, ⁇ -F6P, ⁇ -FVH, ⁇ -FV, ⁇ -FK, ⁇ -FVL, etc.
- ⁇ -F6P, ⁇ -FVH and ⁇ -FVL are generated, and ⁇ -F6P, ⁇ -FVH and ⁇ -FVL are derived from glycated hemoglobin, and ⁇ -F6P and ⁇ -FVH are specifically derived from HbA1c. Therefore, when measuring HbA1c, ⁇ -F6P or ⁇ -FVH may be specifically measured. Since the protein of the present invention has high reactivity with ⁇ -F6P, HbA1c can be measured effectively.
- HbA1c In the HbA1c standard measurement procedure by IFCC (International Federation of Clinical Clinical Chemistry), first N-terminal 6 peptide ( ⁇ -F6P) glycated by endoprotease Glu-C (V8 protease) is excised from HbA1c, HPLC HbA1c is measured by analyzing ⁇ -F6P as a target.
- the current enzymatic assay for HbA1c targets glycated dipeptides produced by treating HbA1c with protease, but this does not recognize almost all known glycated peptide oxidases that are longer than glycated dipeptides. Because. Therefore, if an enzymatic measurement method based on the principle of measuring glycated hexapeptide and measuring HbA1c can be developed, enzymatic measurement based on the IFCC standard measurement method becomes possible. Considered meaningful.
- protease As the protease that can be used in the present invention, any protease may be used as long as it acts on the glycated hemoglobin to be measured contained in the sample to generate a glycated hexapeptide. Examples include protease, proteinase K, proteinase P, pronase, thermolysin, subtilisin, carboxypeptidase, chymotrypsin, dispase, papain, ficin, bromelain, aminopeptidase, and the like, particularly preferably endoproteinase Glu-C, V8. A protease is mentioned.
- the protease treatment conditions for the sample may be any conditions as long as the protease used acts on the glycated hemoglobin to be measured and efficiently releases ⁇ -F6P in a short time.
- the amount of protease to be used is appropriately selected depending on the content of HbA1c contained in the sample or the processing conditions. For example, endoproteinase Glu-C (for example, manufactured by Roche Diagnostics) is terminated.
- the concentration is 0.1 to 50 U / mL, preferably 1 to 10 U / mL.
- other proteases may be added as necessary.
- the pH at the time of treatment with protease may be unadjusted.
- an appropriate pH adjuster such as hydrochloric acid, acetic acid, sulfuric acid, sodium hydroxide, hydroxide
- the pH may be adjusted to 2 to 9, preferably 3 to 8, with potassium or the like.
- the treatment temperature may be, for example, 20 to 50 ° C., and depending on the enzyme used, it may be carried out at a higher temperature range of 45 to 70 ° C.
- the treatment time at this time may be a time sufficient to decompose HbA1c.
- the treatment time may be 5 seconds to 180 minutes, preferably 1 to 60 minutes.
- the obtained treatment solution is heated, centrifuged, concentrated, diluted, or the like as it is or as necessary, and then subjected to the reaction of glycated hexapeptide oxidase as a sample containing glycated hexapeptide.
- the glycated hemoglobin to be measured in the sample of the present invention can be measured by sequentially performing the following steps (i) to (iii). (i) reacting glycated hemoglobin in the sample with a protease to produce a glycated hexapeptide; (ii) reacting the produced glycated hexapeptide with the protein of the present invention, and (iii) A step of measuring the substance produced or consumed in the step (ii).
- the above steps (i) to (iii) may be performed in an aqueous medium.
- the aqueous medium include deionized water, distilled water, and a buffer solution, and a buffer solution is preferable.
- the buffer used in the buffer include tris (hydroxymethyl) aminomethane buffer (Tris buffer), phosphate buffer, borate buffer, Good's buffer, and the like.
- Good buffering agents include, for example, 2-morpholinoethanesulfonic acid (MES), bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris), N- (2-acetamido) iminodiacetic acid (ADA) Piperazine-N, N′-bis (2-ethanesulfonic acid) (PIPES), N- (2-acetamido) -2-aminoethanesulfonic acid (ACES), 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) ), N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES), 3-morpholinopropanesulfonic acid (MOPS), N- [tris (hydroxymethyl) methyl] -2-aminoethanesulfone Acid (TES), 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid (HEPE
- the concentration of the buffer solution is not particularly limited as long as it is suitable for measurement, but is preferably 0.001 to 2.0 mol / L, more preferably 0.005 to 1.0 mol / L.
- the reaction temperature of the reaction in each step is, for example, 10 to 50 ° C., preferably 20 to 40 ° C., and the reaction time is 1 second to 60 minutes, preferably 1 to 10 minutes.
- a glycated hemoglobin denaturing agent or an oxidizing agent may coexist in the step of reacting a sample containing glycated hemoglobin with a protease.
- a sample containing glycated hemoglobin may be treated with the denaturant or the oxidizing agent in advance, and the treated sample may be reacted with a protease.
- the modifier is not particularly limited as long as it is a modifier that enables the measurement method of the present invention, and examples thereof include nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. Can be mentioned.
- the oxidizing agent is not particularly limited as long as it is an oxidizing agent that enables the measurement method of the present invention, and examples thereof include potassium iodate, potassium periodate, and potassium bromate.
- step (ii) If the protease does not affect the reaction of step (ii), it does not have to be inactivated after step (i). However, by heating, cooling, centrifugation, membrane filtration, addition of an inhibitor, etc. It is also possible to prevent the enzyme from acting in step (ii).
- examples of the product generated in the reaction solution by the reaction of the glycated hexapeptide and the protein of the present invention include hydrogen peroxide, sugar osone ( ⁇ -ketoaldehyde form), peptide and the like.
- examples of the substance consumed by the reaction between the glycated hexapeptide and the protein of the present invention include oxygen molecules.
- the oxygen molecules consumed in the step (ii) are measured by, for example, an electrochemical measurement method using an oxygen electrode.
- the hydrogen peroxide produced in step (ii) of the present invention can be measured using, for example, an optical technique or an electrochemical technique.
- the optical method include an absorbance method and a luminescence method.
- Specific examples include an optical measurement method using a hydrogen peroxide measurement reagent, an electrochemical measurement method using a hydrogen peroxide electrode, and the like.
- the hydrogen peroxide measuring reagent is a reagent for converting the generated hydrogen peroxide into a detectable substance.
- the detectable substance include a dye and light, but a dye is preferable.
- the hydrogen peroxide measurement reagent contains an oxidation coloring substance chromogen and a peroxidation active substance such as peroxidase.
- the oxidative coloring chromogen include an oxidative coupling chromogen described later and a leuco chromogen described later.
- the hydrogen peroxide measuring reagent contains a chemiluminescent substance.
- the chemiluminescent substance includes a bioluminescent substance, and examples thereof include luminol, isoluminol, lucigenin, acridinium ester, and oxalate ester.
- hydrogen peroxide is oxidized in the presence of the peroxidative active substance.
- the hydrogen peroxide can be measured by reacting with the catalyst to produce a dye and measuring the produced dye.
- hydrogen peroxide can be measured by reacting hydrogen peroxide with the chemiluminescent substance to generate photons and measuring the generated photons. it can.
- An oxidative coupling type chromogen is a chromogen that reacts with hydrogen peroxide in the presence of a peroxidase active substance such as peroxidase to produce a dye by an oxidative coupling reaction.
- a peroxidase active substance such as peroxidase
- Specific examples of the oxidative coupling type chromogen include couplers such as 4-aminoantipyrine, phenolic or aniline hydrogen donors, and the like. The coupler and the phenol-based or aniline-based hydrogen donor compound are oxidatively coupled in the presence of hydrogen peroxide and a peroxide active substance to form a dye.
- coupler examples include 4-aminoantipyrine (4-AA) and 3-methyl-2-benzothiazolinone hydrazone.
- phenolic hydrogen donor examples include phenol, 4-chlorophenol, 3-methylphenol, 3-hydroxy-2,4,6-triiodobenzoic acid (HTIB) and the like.
- aniline hydrogen donors include N- (3-sulfopropyl) aniline, N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methylaniline (TOOS), N-ethyl-N- ( 2-hydroxy-3-sulfopropyl) -3,5-dimethylaniline (MAOS), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (DAOS), N-ethyl -N- (3-sulfopropyl) -3-methylaniline (TOPS), N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (HDAOS), N, N-dimethyl-3-methyl Aniline, N, N-di (3-sulfopropyl) -3,5-dimethoxyaniline, N-ethyl-N- (3-sulfopropyl) -3-methoxyani
- the leuco chromogen is a chromogen that reacts with hydrogen peroxide in the presence of a peroxidase active substance such as peroxidase to produce a pigment alone.
- a peroxidase active substance such as peroxidase to produce a pigment alone.
- CCAP 10-N-carboxymethylcarbamoyl-3,7-bis (dimethylamino) -10H-phenothiazine
- MCDP 10-N-methylcarbamoyl-3,7-bis (dimethylamino) -10H-phenothiazine
- DA-64 N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine sodium salt
- DA-67 10- (carboxymethylaminocarbonyl) -3,7-bis (dimethylamino) Phenothiazine sodium salt
- DA-67 4,4′-bis (dimethylamin
- the concentration of the peroxidation active substance is not particularly limited as long as it is suitable for the measurement. However, when peroxidase is used as the peroxidation active substance, 1 to 100 U / mL is preferable. More preferred is -50 U / mL.
- the concentration of the oxidative coloring type chromogen is not particularly limited as long as it is suitable for measurement, but is preferably 0.01 to 10 g / L, and more preferably 0.02 to 5 g / L.
- the electrode to be used is not particularly limited as long as it is a material that exchanges electrons with hydrogen peroxide. Examples thereof include platinum, gold, and silver. .
- known methods such as amperometry, potentiometry, coulometry, and the like can be used.
- An electron carrier can be interposed in the reaction between the oxidase or substrate and the electrode, and the resulting oxidation, reduction current, or electric quantity thereof can be measured.
- any substance having an electron transfer function can be used, and examples thereof include substances such as ferrocene derivatives and quinone derivatives.
- oxidation, reduction current, or electric quantity thereof obtained by interposing an electron carrier between hydrogen peroxide generated by the oxidase reaction and the electrode can be measured.
- step (ii) sugar oxone ( ⁇ -ketoaldehyde form) is produced together with hydrogen peroxide. Therefore, glycated hemoglobin in the sample can also be measured by measuring the produced sugar oxone ( ⁇ -ketoaldehyde form). Can be measured. By measuring together hydrogen peroxide produced by the action of glucose oxidase on the ⁇ -ketoaldehyde compound, it can be measured with high sensitivity (Japanese Patent Laid-Open No. 2000-333696).
- sample preparation method The sample containing the glycated protein to be measured can be separated from the biological sample as necessary.
- the separation method include centrifugation, filtration, and a method using a blood cell separation membrane.
- the separation method by centrifugation can separate whole blood into blood cells, plasma or serum.
- the blood cells can be washed with an isotonic solution such as physiological saline to obtain washed blood cells from which plasma-derived components have been removed.
- a sample containing blood cells such as whole blood, blood cells, and washed blood cells can be diluted with a hypotonic solution for hemolysis.
- the hypotonic solution may be any solution as long as it can lyse blood cells, but includes water, buffer solution, and the like, and preferably contains an additive such as a surfactant.
- the surfactant include nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants.
- Examples of methods for preparing washed blood cells include the following methods. Blood is collected from healthy individuals and diabetics, mixed by inversion, and then centrifuged (3,000 rpm) at 25 ° C for 5 minutes. After centrifugation, the supernatant plasma is removed. Add 4 volumes of physiological saline to 1 volume of blood cell layer in the lower layer, mix by inversion, and centrifuge (3,000 rpm) at 25 ° C for 5 minutes. After centrifugation, the supernatant saline is removed. After repeating this washing operation three times, 9 volumes of distilled water can be added to 1 volume of the washed blood cell layer to obtain washed blood cells.
- the reagent for measuring glycated hemoglobin and the measurement kit of the present invention can be used in the method for measuring glycated hemoglobin of the present invention.
- the reagent for measuring glycated hemoglobin of the present invention can take the form of a kit as a form suitable for storage, transportation and distribution. Examples of the kit include a two-reagent system, a three-reagent system, and the like.
- the reagent for measuring glycated hemoglobin of the present invention contains a protease and the protein of the present invention. Furthermore, the reagent for measuring glycated hemoglobin of the present invention may include a reagent for measuring a product produced by a reaction between the protein of the present invention and a glycated hexapeptide produced from glycated hemoglobin.
- the product produced by the reaction of the protein of the present invention with a glycated hexapeptide produced from glycated hemoglobin includes hydrogen peroxide, sugar osone ( ⁇ -ketoaldehyde), peptide (Val-His-Leu-Thr). -Pro-Glu).
- Examples of a reagent for measuring a product produced by the reaction of the protein of the present invention with a glycated hexapeptide produced from glycated hemoglobin include, for example, a reagent for measuring hydrogen peroxide, a sugar osone ( ⁇ -ketoaldehyde form). Examples include a reagent for measurement, a reagent for measuring peptide (Val-His-Leu-Thr-Pro-Glu), and a reagent for measuring hydrogen peroxide is preferable.
- kits for measuring glycated hemoglobin to be measured of the present invention include kits of the following modes.
- Kit 1 (2-reagent kit) A kit containing the following two reagents. (1) a reagent containing a protease; (2) A reagent containing the protein of the present invention.
- Kit 2 (2-reagent kit) A kit containing the following two reagents: (1) a reagent containing a protease; (2) A reagent comprising the protein of the present invention and a reagent for measuring a product produced by the reaction of the protein of the present invention and a glycated hexapeptide produced from glycated hemoglobin.
- Kit 3 A kit containing the following two reagents: (1) A reagent comprising a protease and a reagent for measuring a product produced by a reaction between the protein of the present invention and a glycated hexapeptide produced from glycated hemoglobin; (2) A reagent containing the protein of the present invention.
- Kit 4 (2-reagent kit) A kit containing the following two reagents: (1) A reagent comprising a protease and a reagent for measuring a product produced by a reaction between the protein of the present invention and a glycated hexapeptide produced from glycated hemoglobin; (2) A reagent comprising the protein of the present invention and a reagent for measuring a product produced by the reaction of the protein of the present invention and a glycated hexapeptide produced from glycated hemoglobin.
- Kit 5 (3-reagent kit) A kit containing the following three reagents: (1) a reagent containing a protease; (2) a reagent containing the protein of the present invention; and (3) A reagent for measuring a product produced by a reaction between the protein of the present invention and a glycated hexapeptide produced from glycated hemoglobin.
- Kit 6 (3-reagent kit) A kit containing the following three reagents: (1) A reagent comprising a protease and a reagent for measuring a product produced by a reaction between the protein of the present invention and a glycated hexapeptide produced from glycated hemoglobin; (2) a reagent containing the protein of the present invention; and (3) A reagent for measuring a product produced by a reaction between the protein of the present invention and a glycated hexapeptide produced from glycated hemoglobin.
- Kit 7 (3-reagent kit) A kit containing the following three reagents: (1) a reagent containing a protease; (2) a reagent comprising the protein of the present invention and a reagent for measuring a product produced by the reaction of the protein of the present invention with a glycated hexapeptide produced from glycated hemoglobin; (3) A reagent for measuring a product produced by a reaction between the protein of the present invention and a glycated hexapeptide produced from glycated hemoglobin.
- Kit 8 (3-reagent kit) A kit containing the following three reagents: (1) A reagent comprising a protease and a reagent for measuring a product produced by a reaction between the protein of the present invention and a glycated hexapeptide produced from glycated hemoglobin; (2) a reagent comprising the protein of the present invention and a reagent for measuring a product produced by the reaction of the protein of the present invention with a glycated hexapeptide produced from glycated hemoglobin; (3) A reagent for measuring a product produced by a reaction between the protein of the present invention and a glycated hexapeptide produced from glycated hemoglobin.
- protease used in the measurement reagent and measurement kit of the present invention the protein of the present invention, glycated hemoglobin, and the product produced by the reaction of the protein of the present invention and a glycated hexapeptide produced from glycated hemoglobin are measured.
- the reagents for the above include those described above.
- the hydrogen peroxide measuring reagent includes, for example, Examples include the hydrogen peroxide measurement reagent described above.
- the coupler and the phenolic or aniline hydrogen donor may be contained in the same reagent, but are contained in separate reagents. It is preferable that
- the measurement reagent and measurement kit of the present invention may further contain a measurement standard substance such as a standard protein.
- the measurement reagent and measurement kit of the present invention may each contain a buffer, a stabilizer, a preservative, an influence substance removing agent, a nonspecific reaction inhibitor, a surfactant, and the like, if necessary.
- the buffering agent include the aforementioned buffering agents.
- the stabilizer include ethylenediaminetetraacetic acid (EDTA), sucrose, calcium chloride, amino acids, salts such as albumin, dextran, and calcium acetate.
- Examples of the preservative include sodium azide and antibiotics.
- Examples of the influence substance removing agent include ascorbate oxidase for eliminating the influence of ascorbic acid.
- the nonspecific reaction inhibitor include polymer compounds such as dextran sulfate.
- the surfactant include nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants.
- the measurement reagent and measurement kit of the present invention may be lyophilized or dissolved in a reaction solution.
- the kit can be used by dissolving in the aforementioned aqueous medium or reaction solution.
- a reagent for dissolving a lyophilized reagent may be contained in the kit as necessary.
- the content of the protease in the measurement kit of the present invention is preferably such that the concentration when dissolved in an aqueous medium is 0.01 to 1,000,000 U / mL, and more preferably 0.1 to 100,000 U / mL.
- the content of the protein of the present invention in the measurement kit of the present invention is preferably such that the concentration in a state dissolved in an aqueous medium is 0.01 to 10,000 U / mL, more preferably 0.1 to 1,000 U / mL. .
- the content of peroxidase and the oxidative coupling type chromogen was dissolved in an aqueous medium, respectively.
- the content is preferably 1 to 600 U / mL and 0.5 to 40 g / L, more preferably 2 to 150 U / mL and 1 to 20 g / L.
- the proteins of the present invention include those having the activity of directly oxidizing glycated hemoglobin to produce hydrogen peroxide (hereinafter referred to as glycated hemoglobin oxidase activity).
- glycated hemoglobin oxidase activity the protein having the glycated hemoglobin oxidase activity
- the glycated hemoglobin oxidase of the present invention is directly acted on glycated hemoglobin without causing protease to act on glycated hemoglobin.
- Hydrogen can be generated, and glycated hemoglobin can be directly measured by measuring this hydrogen peroxide.
- the glycated hemoglobin oxidase of the present invention may be any glycated hexapeptide oxidase having the ability to directly oxidize glycated hemoglobin, and examples thereof include the following glycated hexapeptide oxidase.
- a protein having an amino acid sequence having a homology of 99% or more and having glycated hemoglobin oxidase activity is particularly preferred.
- a denaturing agent or an oxidizing agent may coexist in the step of reacting a sample containing glycated hemoglobin with glycated hemoglobin oxidase.
- a sample containing glycated hemoglobin may be previously treated with a denaturing agent or an oxidizing agent, and the treated sample may be reacted with glycated hemoglobin oxidase.
- the modifying agent and the oxidizing agent include the aforementioned modifying agents and oxidizing agents, respectively.
- the glycated hemoglobin oxidase activity can be measured, for example, by the following method.
- the above process may be performed in an aqueous medium.
- an aqueous medium the above-mentioned aqueous medium (preferably buffer solution) etc. are mentioned, for example,
- concentration of a buffer solution the above-mentioned buffer solution density
- the reaction temperature of the reaction in each step is, for example, 10 to 50 ° C., preferably 20 to 40 ° C., and the reaction time is 1 second to 120 minutes, preferably 1 to 90 minutes, particularly preferably 1 to 60 minutes. It is.
- the reagent for measuring glycated hemoglobin of the present invention includes a reagent for directly measuring glycated hemoglobin.
- the reagent for direct measurement of glycated hemoglobin of the present invention can be used in the method for measuring glycated hemoglobin of the present invention.
- glycated hemoglobin can be measured by measuring a substance produced by directly oxidizing glycated hemoglobin or a consumed substance without using a protease. .
- the reagent for direct measurement of glycated hemoglobin of the present invention can take the form of a kit as a form suitable for storage, transportation and distribution.
- the kit include a two-reagent system, a three-reagent system, and the like.
- the reagent for direct measurement of glycated hemoglobin of the present invention contains the glycated hemoglobin oxidase of the present invention. Furthermore, the reagent for direct measurement of glycated hemoglobin of the present invention may include a reagent for measuring a product produced by the reaction of the glycated hemoglobin oxidase of the present invention and glycated hemoglobin. Examples of the product produced by the reaction between the glycated hemoglobin oxidase of the present invention and glycated hemoglobin include hydrogen peroxide, sugar osone ( ⁇ -ketoaldehyde), hemoglobin, and the like.
- Examples of the reagent for measuring the product produced by the reaction between the glycated hemoglobin oxidase of the present invention and glycated hemoglobin include, for example, a reagent for measuring hydrogen peroxide, a reagent for measuring sugar osone ( ⁇ -ketoaldehyde), hemoglobin And a reagent for measuring hydrogen peroxide is preferable.
- kits for direct measurement of glycated hemoglobin of the present invention include the kits of the following embodiments.
- the reagent for measuring glycated hemoglobin oxidase and the product produced by the reaction of glycated hemoglobin oxidase and glycated hemoglobin used in the reagent for direct measurement and the kit for direct measurement of the present invention are respectively described above. Can be mentioned.
- the reagent for measuring the product produced by the reaction between the glycated hemoglobin oxidase and the glycated hemoglobin of the present invention is a hydrogen peroxide measuring reagent
- examples of the hydrogen peroxide measuring reagent include the hydrogen peroxide described above. Examples include measuring reagents.
- the coupler and the phenolic or aniline hydrogen donor may be contained in the same reagent, but are contained in separate reagents. It is preferable that
- the reagent for direct measurement and the kit for direct measurement of the present invention may further contain a measurement standard substance such as a standard protein.
- the reagent for direct measurement and the kit for direct measurement of the present invention each contain the aforementioned buffer, stabilizer, preservative, influential substance removing agent, non-specific reaction inhibitor, surfactant, etc., if necessary. May be.
- the reagent for direct measurement and the kit for direct measurement of the present invention may be lyophilized or dissolved in a reaction solution.
- the kit can be used by dissolving in the aforementioned aqueous medium or reaction solution.
- a reagent for dissolving a lyophilized reagent may be contained in the kit as necessary.
- the content of glycated hemoglobin oxidase is preferably such that the concentration in a state dissolved in an aqueous medium is 0.01 to 1,000,000 U / mL, and the content that is 0.1 to 100,000 U / mL. More preferred.
- the content of peroxidase and the oxidative coupling type chromogen was dissolved in an aqueous medium, respectively.
- the content is preferably 1 to 600 ⁇ U / mL, 0.5 to 40 ⁇ g / L, more preferably 2 to 150 ⁇ U / mL, and 1 to 20 ⁇ g / L.
- Example 1 Construction of FPOX-15 expression plasmid and E. coli expression strain (acquisition of pTrc-FPOX-9 expression plasmid) Inoculate the glycated peptide oxidase FPOX-9-expressing E. coli strain XL1-Blue MRF 'deposited under the deposit number FERM BP-11026 in 3 mL of LB medium containing 50 mg / L ampicillin and shake at 37 ° C overnight. Cultured. The cells were collected by centrifuging the culture solution at 8,000 rpm for 2 minutes.
- Expression plasmid pTrc-FPOX that expresses glycated peptide oxidase FPOX-9 having the amino acid sequence represented by SEQ ID NO: 2 in Escherichia coli by using “Wizard Plus SV Minipreps DNA Purification” manufactured by Promega. -9 was extracted.
- Reagent composition ⁇ Reaction buffer ⁇ Template DNA 1-2 ng / ⁇ L ⁇ Forward primer 0.3 ⁇ mol / L ⁇ Reverse primer 0.3 ⁇ mol / L ⁇ DNTP mixture 0.2 mmol / L each ⁇ MgSO 4 1 mmol / L ⁇ DNA polymerase 0.02 U / ⁇ L ⁇ The volume was adjusted to 50 ⁇ L by adding sterile water.
- PCR conditions 1. 94 °C 2 minutes 2. 98 °C 15 seconds 3. 60 °C 30 seconds 4. 68 °C 6 minutes 5. Repeat 2-4 (total 30 cycles) 6. 68 °C 10 minutes
- the sequence of the extracted plasmid was analyzed with a DNA sequencer, and it was confirmed that a plasmid containing DNA consisting of the base sequence represented by SEQ ID NO: 39 encoding FPOX-15 was constructed.
- Example 2 Production of FPOX-15 and the protein of the present invention, and measurement of glycated hexapeptide oxidase activity of FPOX-15 and the protein of the present invention.
- a purified sample was prepared according to the expression and purification method of glycated peptide oxidase and FPOX-15 described in International Publication No. 2010/041715 pamphlet and subjected to activity evaluation.
- the absorbance at a wavelength of 452 nm specifically derived from FAD is obtained.
- the protein concentration can be measured by the following method for measurement. Dilute commercially available glycated peptide oxidase FPOX-CE (manufactured by Kikkoman Corp.) with 10 mmol / L phosphate buffer, and add FPOX-CE solutions at concentrations of 0.7, 1.4, 2.8, 5.6 and 11.2 mg / mL.
- the absorbance of each prepared FPOX-CE solution was measured at 452 nm (primary wavelength) / 600 nm (subwavelength), and FPOX-CE A calibration curve showing the relationship between concentration and absorbance was created.
- the absorbance of the purified protein was measured by the same method except that the purified protein was used instead of the diluted series solution of FPOX-CE (manufactured by Kikkoman). The protein concentration in the purified protein was determined by comparing the measured absorbance of the purified protein against the calibration curve.
- the glycated hexapeptide oxidase activity of the obtained glycated hemoglobin oxidase was evaluated by the following measurement procedure using the following reagents.
- Activity measurement reagent A solution: 50 mmol / L phosphate buffer (pH 7.0) Liquid B: 24 mmol / L DA-67 in DMF Solution C: 1 kU / L peroxidase 10 mmol / L phosphate buffer (pH 7.0) Liquid D: 1 mmol / l ⁇ -F6P aqueous solution Solution E: 0.1 mg / mL 10 mmol / L phosphate buffer (pH 7.0) solution of glycated hexapeptide oxidase of the present invention
- reaction absorbance change Deruta'Abs protein solution
- blank absorbance change Deruta'Abs blank absorbance change Deruta'Abs
- reaction absorbance .DELTA.ABS reaction absorbance .DELTA.ABS
- the same reaction was performed using various concentrations of hydrogen peroxide instead of D solution, and the reaction was performed at 660 nm (primary wavelength) / 750 nm (subwavelength) before and after the reaction.
- the change in absorbance was measured, and a calibration curve representing the relationship between the concentration of hydrogen peroxide and the change in absorbance was prepared.
- Enzymatic reaction was performed using solution D (substrate solution) and solution E (protein solution), and the concentration of hydrogen peroxide produced by the enzyme reaction was determined by comparing the absorbance change accompanying the enzyme reaction with the calibration curve. .
- 1 U was defined as an enzyme activity that generates 1 ⁇ mol of hydrogen peroxide per minute.
- the activity of the purified protein used was expressed as specific activity (U / mg), which is the activity per 1 mg of purified enzyme.
- the activity of the purified enzyme used was expressed as the specific activity (U / mL), which is the total activity per mL of the purified protein solution, based on the specific activity (U / mg).
- Site specific amino acid substitution pTrc-FPOX-15 and an expression plasmid derived therefrom were used as template DNA, and site-specific amino acid substitution was introduced by the method described in Example 1.
- the site-specific saturation mutation is carried out by the same method as the site-specific amino acid substitution introduction method described in Example 1, and the target amino acid position is exemplified by the nucleotide sequences represented by SEQ ID NOs: 90 and 91.
- a primer in which was replaced with NNS was used. N indicates that any nucleotide of A, T, G, and C is included, and S indicates that any nucleotide of G and C is included at random.
- the produced mutant glycated peptide oxidase and mutant glycated peptide oxidase library were evaluated by the following methods. Colonies (transformants) grown by overnight culture on LB agar plates containing ampicillin 50 mg / L were selected. They were cultured with shaking at 37 ° C. for 12 hours in a 96-well microplate containing 100 ⁇ L of LB medium containing 50 ⁇ mg / L of ampicillin. 10 ⁇ L of Novagen's “BugBuster (registered trademark) Protein Extraction Reagent” (hereinafter referred to as BugBuster) was added to lyse, centrifuged, and the supernatant was used as a sample.
- BugBuster Registered trademark
- the ⁇ -FV oxidase activity of the mutant glycated peptide oxidase contained in the prepared mutant glycated peptide oxidase library was evaluated by the following reagents and measurement procedures.
- Activity evaluation reagent ⁇ 50 mmol / L phosphate buffer (pH 7.0) 10 mL ⁇ 10 g / L 4-AA aqueous solution 100 ⁇ L ⁇ 10 g / L EMSE aqueous solution 100 ⁇ L ⁇ 1 ⁇ U / L peroxidase in 10 mmol / L phosphate buffer solution (pH 7.0) 35 ⁇ L ⁇ 80 mmol / L ⁇ -FV 62.5 ⁇ L
- Measurement procedure 100 ⁇ L of the reagent for evaluation was dispensed into each well of a 96-well microplate, and 10 ⁇ L of a sample was further added and incubated at 30 ° C. for 30 minutes. 550 nm (
- the glycated hexapeptide oxidase activity for ⁇ -F6P was evaluated using the following reagents and measurement procedures.
- Activity evaluation reagent ⁇ 50 mmol / L phosphate buffer (pH 7.0) 10 mL ⁇ 24 mmol / L DA-67 in DMF solution 12.6 ⁇ L ⁇ 1 ⁇ U / L peroxidase in 10 mmol / L phosphate buffer solution (pH 7.0) 35 ⁇ L ⁇ 0.25 mmol / L ⁇ -F6P aqueous solution 720 ⁇ L
- 30 ⁇ L of the activity evaluation reagent was dispensed into a 384-well plate, 5 ⁇ L of the sample was added, and incubated at 30 ° C. for 1 hour. Each well was observed after incubation, and clones with significantly strong color were selected.
- a plasmid was prepared from each transformant, and the base sequence of the FPOX gene portion was confirmed using a DNA sequencer according to the method described in Example 1.
- the change in enzyme activity was correlated with the change in nucleotide sequence (amino acid sequence).
- a site-specific saturation mutation was introduced into the plasmid pTrc-FPOX-15 expressing FPOX-15 using a primer pair having a DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 90 and 91.
- a mutant group consisting of proteins in which the 61st arginine of FPOX-15 was replaced with 19 kinds of amino acids other than arginine was prepared.
- mutant group in particular, a mutant in which the 61st is substituted with glycine (hereinafter referred to as FPOX-16), which is 63.9 times the ⁇ -F6P activity of FPOX-15, and a mutant substituted with serine ( (Hereinafter referred to as FPOX-17) increased glycated hexapeptide oxidase activity 67.7 times.
- SEQ ID NOs: 3 and 4 show the amino acid sequences of FPOX-16 and FPOX-17, respectively.
- mutant library was prepared by site-specific saturation mutagenesis using a primer pair having a DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 92 and 93 targeting the 63rd arginine, As a result of evaluating oxidase activity for ⁇ -FV and ⁇ -F6P as an index, mutants substituted with alanine, proline or glycine were obtained.
- the above mutants increased glycated hexapeptide oxidase activity to ⁇ -F6P by 2 to 2.7 times compared to FPOX-16, and the glycated hexapeptide oxidase activity was most increased by substitution with alanine. .
- a mutant library was prepared by site-specific saturation mutagenesis using a saturation mutation using, and evaluated using oxidase activity against ⁇ -FV and ⁇ -F6P as an index, and mutants substituted with glycine (hereinafter referred to as FPOX-18) Called). As shown in Table 3, the above mutation increased the oxidase activity for ⁇ -F6P by 2.8 times compared to FPOX-17.
- SEQ ID NOs: 4 and 5 show the amino acid sequences of FPOX-17 and FPOX-18, respectively.
- the 267th phenylalanine was sequenced using a primer pair having a DNA consisting of the nucleotide sequence represented by SEQ ID NOs: 98 and 99.
- a primer pair having DNA consisting of the nucleotide sequences represented by the numbers 100 and 101 Using a primer pair having DNA consisting of the nucleotide sequences represented by the numbers 100 and 101, a mutant substituted with tyrosine was obtained.
- Table 4 the glycated hexapeptide oxidase activity for ⁇ -F6P increased by 1.3 and 1.5 times compared to FPOX-18, respectively.
- a plasmid pTrc-FPOX-18 containing DNA encoding FPOX-18 was obtained by the same method as in Example 1, and the plasmid was used as a template DNA, by the same method as the site-specific amino acid substitution introduction of Example 1.
- a primer pair having a DNA consisting of the nucleotide sequence represented by SEQ ID NOs: 102 and 103 by substituting 168th adenine of FPOX-18 gene with guanine, Bgl II restriction enzyme site without amino acid substitution was introduced.
- the obtained modified plasmid is referred to as pTrc-FPOX-18 ′.
- Random mutation is a primer pair having a DNA consisting of the nucleotide sequence represented by SEQ ID NOs: 102 and 104 designed to amplify a region corresponding to amino acids 58 to 119 of the FPOX gene contained in pTrc-FPOX-18 ′
- the base substitution was performed at random by PCR using the following reagent composition and PCR conditions. PCR was performed by Error Prone PCR with a partial modification of the protocol of the PCR kit “rTaq DNA polymerase” manufactured by Toyobo.
- Reagent composition ⁇ Reaction buffer ⁇ Template DNA 0.2 ng / ⁇ L ⁇ Forward primer 1 ⁇ mol / L ⁇ Reverse primer 1 ⁇ mol / L ⁇ MgCl2 7 mmol / L ⁇ MnCl2 0.5 mmol / L ⁇ DATP 0.2 mmol / L ⁇ DTTP 1 mmol / L ⁇ DGTP 0.1 mmol / L ⁇ DCTP 1 mmol / L ⁇ DNA polymerase 0.04 U / ⁇ L (PCR conditions) 1. 94 °C 3 minutes 2. 94 °C 30 seconds 3. 50 °C 30 seconds 4. 72 °C 30 seconds 5. Repeat 2-4 (total 45 cycles) 6. 72 ° C for 1 minute
- a PCR product containing a random base substitution was cleaved with restriction enzymes BglII and XhoI, and then purified by "Wizard SV Gel Gel and PCR Clean-Up System” to obtain a digested product.
- the digested product was ligated to pTrc-FPOX-18 ′ treated with the same restriction enzymes using “DNA Ligation Kit Mighty Mix” manufactured by Takara Bio Inc., and E. coli DH5 ⁇ strain was transformed.
- mutant groups prepared by site-specific saturation mutagenesis using pTrc-FPOX-18 ′ as a template DNA and a primer pair having a DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 105 and 106 are ⁇ -FV
- amino acid sequence represented by SEQ ID NO: 7 in which the 71st tyrosine of the amino acid sequence of FPOX-18 having the amino acid sequence represented by SEQ ID NO: 5 was substituted with serine. Plasmid pTrc-FPOX-18B that expresses FPOX-18B was obtained.
- a group of mutants prepared by site-specific saturation mutagenesis using a primer pair having a DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 109 and 110 was evaluated using oxidase activity against ⁇ -FV and ⁇ -F6P as an index.
- amino acid sequence represented by SEQ ID NO: 10 by introducing site-specific amino acid substitution using pTrc-FPOX-19 as a template DNA and a primer pair having a DNA comprising the nucleotide sequence represented by SEQ ID NOs: 111 and 112
- a plasmid pTrc-FPOX-20 expressing FPOX-20 having the amino acid sequence represented by SEQ ID NO: 11 in which the 75th leucine in the amino acid sequence of FPOX-19 was substituted with alanine was obtained.
- the six types of recombinant protein expression plasmids obtained above were transformed into E. coli DH5 ⁇ strain to produce a recombinant protein-expressing E. coli strain.
- a purified protein was prepared according to the expression and purification method of glycated peptide oxidase FPOX-15 described in International Publication No. 2010/041715, and glycated hexapeptide oxidase for ⁇ -F6P of each protein Activity was evaluated.
- glycated hexapeptide oxidase activity of each protein of FPOX-18A, FPOX-18B, FPOX-18C, FPOX-18D, FPOX-19 and FPOX-20 is glycated hexapeptide oxidase activity of FPOX-18 Compared to the glycated hexapeptide oxidase activity of FPOX-15, it increased to 190 to 7240 times.
- Example 3 Enhancing glycated hexapeptide oxidase activity by introducing amino acid mutations Using pTrc-FPOX-19 prepared in Example 2 as a template DNA, a primer pair having a DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 113 and 114 is used. By introduction of the site-specific amino acid substitution used, FPOX- having the amino acid sequence represented by SEQ ID NO: 12 in which the 75th leucine of the amino acid sequence of FPOX-19 having the amino acid sequence represented by SEQ ID NO: 10 was substituted with phenylalanine Plasmid pTrc-FPOX-21 expressing 21 was obtained.
- Random mutation by Error Prone PCR is a base represented by SEQ ID NOs: 87 and 104 designed to amplify a region corresponding to amino acids 1 to 119 of a protein-encoding gene contained in pTrc-FPOX-21. This was performed using a primer pair having DNA consisting of a sequence. By the random mutation, a DNA into which the mutation was randomly introduced was obtained as an amplification product.
- a plasmid containing the DNA into which the mutation was introduced was obtained in the same manner as in Example 2 except for the above procedure.
- a group of mutants expressed from the plasmid was evaluated using oxidase activity against ⁇ -FV and ⁇ -F6P as an index.
- the following plasmid was obtained as a plasmid expressing a protein having improved oxidase activity for ⁇ -F6P compared to FPOX-21.
- FPOX-31 having an amino acid sequence represented by SEQ ID NO: 22 in which the 66th proline in the amino acid sequence of FPOX-21 is substituted with histidine, the 95th aspartic acid with glutamic acid, and the 105th lysine with arginine.
- Plasmid pTrc-FPOX-31 expressing The FPOX-21 amino acid sequence represented by SEQ ID NO: 23, in which the 66th proline is substituted with histidine, the 95th aspartic acid with glutamic acid, the 105th lysine with arginine, and the 108th lysine with arginine, respectively.
- 57th isoleucine is replaced with valine, 66th proline with histidine, 95th aspartic acid with glutamic acid, 105th lysine with arginine, and 108th lysine with arginine.
- FPOX-37 having the amino acid sequence represented by SEQ ID NO: 28, in which the 66th proline in the amino acid sequence of FPOX-21 is substituted with histidine, the 105th lysine with arginine, and the 108th lysine with arginine, respectively.
- FPOX-39 having the amino acid sequence represented by SEQ ID NO: 30, wherein the 66th proline in the amino acid sequence of FPOX-21 is substituted with histidine, the 95th aspartic acid with glutamic acid, and the 355th alanine with serine.
- the 34th serine in the amino acid sequence of FPOX-21 is replaced with threonine, the 66th proline is replaced with histidine, the 105th lysine is replaced with arginine, the 108th lysine is replaced with arginine, and the 355th alanine is replaced with serine.
- the 52nd tyrosine of FPOX-21 is replaced with histidine, 66th proline with histidine, 105th lysine with arginine, 108th lysine with arginine, and 355th alanine with serine.
- 57th isoleucine is replaced with valine, 66th proline with histidine, 105th lysine with arginine, 108th lysine with arginine and 355th alanine with serine.
- the 66th proline in the amino acid sequence of FPOX-21 is replaced with histidine, the 95th aspartic acid is replaced with glutamic acid, the 105th lysine is replaced with arginine, the 108th lysine is replaced with arginine, and the 355th alanine is replaced with serine.
- Plasmid pTrc-FPOX-46 which expresses FPOX-46 having the amino acid sequence represented by SEQ ID NO: 37.
- the 26 types of plasmids obtained above were introduced into Escherichia coli DH5 ⁇ strain to produce a mutant-expressing Escherichia coli strain.
- each mutant was purified according to the expression and purification method of glycated peptide oxidase FPOX-15 described in International Publication No. 2010/041715 pamphlet.
- the glycated hexapeptide oxidase activity for ⁇ -F6P was evaluated.
- the glycated hexapeptide oxidase activity of each variant of FPOX-21 to 46 is 1.3 to 4.7 times that of FPOX-19, -15 to 25,500 times the glycated hexapeptide oxidase activity of -15, indicating that the glycated hexapeptide oxidase activity was significantly improved.
- Example 4 Comparison of glycated hexapeptide oxidase activity of FPOX (AoFPOX) derived from the filamentous fungus Aspergillus oryzae and the protein of the present invention, in WO 2008/108385, it is described as having oxidase activity against ⁇ -F6P FPOX derived from Aspergillus oryzae RIB40 having the amino acid sequence represented by SEQ ID NO: 38 (DOGAN-Datebase of genomes analyzed at NITE, http://www.bio.nite.go.jp/dogan/project/view/ Glycated hexapeptide oxidase activity of AO090023000307 (hereinafter referred to as AoFPOX registered in AO) and glycated hexapeptide oxidase activity of each protein of FPOX-19, FPOX-20, FPOX-32 and FPOX-42 of the present invention. Compared.
- AoFPOX
- a DNA encoding the AoFPOX and consisting of the base sequence represented by SEQ ID NO: 76 was synthesized, and the synthesized DNA was introduced into the multi-cloning site (MCS) of pUC57 to prepare a vector pUC-AoFPOX containing the DNA.
- MCS multi-cloning site
- the obtained DNA fragment was treated with restriction enzymes Nco I and Bam HI to obtain a digested product.
- the digested product was ligated to the expression vector pTrc99a treated with restriction enzymes Nco I and Bam HI using “DNA Ligation Kit Mighty Mix” manufactured by Takara Bio Inc., and transformed into E. coli DH5 ⁇ strain. Converted.
- a plasmid was extracted from a colony grown on a 50 mg / L ampicillin-containing LB agar medium, and a clone containing the AoFPOX gene was defined as an AoFPOX recombinant expression Escherichia coli strain by sequence analysis.
- Reagent composition (final concentration)) ⁇ Reaction buffer ⁇ Template DNA 1-2 ng / ⁇ L ⁇ Forward primer 0.3 ⁇ mol / L ⁇ Reverse primer 0.3 ⁇ mol / L ⁇ DNTP mixture 0.2 mmol / L each ⁇ MgSO 4 1 mmol / L ⁇ DNA polymerase 0.02 U / L (PCR conditions) 1. 94 °C 2 minutes 2. 98 °C 15 seconds 3. 60 °C 30 seconds 4. 68 °C 2 minutes 5. Repeat 2-4 (total 30 cycles) 6. 68 °C 5 minutes
- the AoFPOX recombinant protein-expressing E. coli strain obtained above was inoculated into 200 mL LB medium containing 50 mg / L ampicillin and cultured at 37 ° C. with shaking. After the turbidity reached 0.5 at OD600, 200 ⁇ L of 0.1 mol / L isopropyl- ⁇ -thiogalactoside (IPTG) aqueous solution was added, and further cultured with shaking at 37 ° C. for 5 hours. After culturing, the cells were obtained by centrifugation at 8,000 rpm for 10 minutes.
- IPTG isopropyl- ⁇ -thiogalactoside
- the cells were suspended in 10 mL of 50 mmol / L phosphate buffer (pH 7.4) containing 10 mmol / L imidazole and 0.4 mol / L potassium chloride, and sonicated.
- a sample obtained by filtering a supernatant obtained by centrifugation at 8,000 rpm for 10 minutes with a 0.8 ⁇ m filter was used as a crude enzyme solution.
- FPOX-19 and FPOX-20 obtained in Example 2 FPOX-32 and FPOX-42 obtained in Example 3, and AoFPOX are contained in FPOX according to the method described in Example 1. It was determined by measuring the specific absorption of FAD.
- the reaction absorbance ⁇ Abs (reaction) for the protein was obtained. From the obtained absorbance ⁇ Abs (reaction) , the specific activity (U / mg) of glycated hexapeptide oxidase activity in each protein was calculated according to the method described in Example 2.
- the glycated hexapeptide oxidase activity of AoFPOX is about 0.5% of the glycated hexapeptide oxidase activity of FPOX-20, and FPOX-19, FPOX-20, FPOX-32 and FPOX-42 of the present invention
- the glycated hexapeptide oxidase activity was significantly higher than glycated peptide oxidase AoFPOX described in WO 2008/108385 pamphlet.
- Example 5 Measurement of HbA1c using V8 protease and protein of the present invention Using blood cells as a sample, using the protein of the present invention, FPOX-19, FPOX-32 or FPOX-42, and V8 protease, HbA1c in the hemolyzed sample was measured by the following method.
- Solution E 8 g / L potassium iodate and 10% (v / v) amphital 20N in 100 mmol / L Tris-HCl (pH 8.0) solution
- Solution F 80 U / mL V8 protease in 20% glycerol
- G 10 mg / mL glycated hexapeptide oxidase in 10 mmol / L phosphate buffer (pH 7.0) solution
- hemoglobin B-Test Wako was used in the measurement of hemoglobin concentration by the hemoglobin-SLS method.
- reaction absorbance ⁇ Abs (reaction) for the hemolyzed sample derived from human blood cells was obtained. The same reaction was performed on each human blood cell-derived hemolyzed sample, and the reaction absorbance ⁇ Abs (reaction) for each human blood cell-derived hemolyzed sample was measured.
- Example 6 Measurement of glycated hemoglobin oxidase activity of the protein of the present invention FPOX-18A, FPOX-18B, FPOX-19 and FPOX-20 obtained in Example 2, FPOX-32 obtained in Example 3 and Using FPOX-42 and FPOX-15, glycated hemoglobin oxidase activity was measured by the following reagents and measurement procedure.
- Absorbance change ⁇ 'Abs (enzyme solution blank) , which is a blank derived from the enzyme solution, was measured in the same manner except that pH 7.0, 10 mmol / L phosphate buffer was used instead of solution F (enzyme solution). . Further, the absorbance change ⁇ ′Abs (hemolysis sample blank) , which is a blank derived from a human blood cell-derived hemolysis sample, was measured by the same method except that distilled water was used instead of the D solution (human blood cell-derived hemolysis sample).
- reaction absorbance change By subtracting the reaction absorbance change Deruta'Abs from (reaction) Deruta'Abs the (enzyme solution blank) and Deruta'Abs (hemolyzed sample blank) was measured reaction absorbance .DELTA.ABS (reaction) to the protein.
- Table 8 shows the reaction absorbance ⁇ Abs (reaction) for each protein of FPOX-15, FPOX-18A, FPOX-18B, FPOX-19, FPOX-20, FPOX-32 and FPOX-42.
- ⁇ Abs is below the detection limit for FPOX-15, whereas ⁇ Abs is 0.017 for FPOX-18A, FPOX-18B, FPOX-19, FPOX-20, FPOX-32 and FPOX-42, respectively.
- Example 7 Correlation between the method for measuring glycated hemoglobin using the protein of the present invention and the method for measuring glycated hemoglobin using the HPLC method and hemoglobin-SLS method FPOX-19 and FPOX obtained in Example 2 -20, and the HbA1c measurement method of the present invention using the FPOX-32 and FPOX-42 proteins obtained in Example 3, and the HbA1c measurement method using the HPLC method (KO500 method) and the hemoglobin-SLS method, was confirmed by the following reagents and measurement procedures.
- HbA1c concentrations hemoglobin concentrations of 10 mg / mL, HbA1c concentrations of 9.82 ⁇ mol / L and 24.2 ⁇ mol / L, respectively
- HbA1c A calibration curve showing the relationship between concentration and reaction absorbance ⁇ Abs (reaction) was created.
- the HbA1c concentration in each human blood cell-derived hemolyzed sample was determined by comparing the reaction absorbance ⁇ Abs (reaction) for each human blood cell-derived hemolyzed sample with the calibration curve.
- the determined HbA1c concentration was compared with the HbA1c concentration determined by the HbA1c measurement method using the HPLC method (KO500 method) and the hemoglobin-SLS method.
- the HbA1c concentration determined by the measurement method of the present invention and the HbA1c concentration determined by the HbA1c measurement method using the HPLC method (KO500 method) and the hemoglobin-SLS method are good. Correlation was observed. Therefore, it was found that HbA1c in a sample can be measured without using a protease by a measuring method using each protein of FPOX-19, FPOX-20, FPOX-32 and FPOX-42, which are proteins of the present invention.
- a novel protein useful for diagnosis of lifestyle-related diseases such as diabetes, DNA encoding the protein, a method for producing the protein, a method for measuring glycated hemoglobin using the protein, and the protein A reagent for measuring glycated hemoglobin is provided.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Urology & Nephrology (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Biophysics (AREA)
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
しかしながら、これまでに報告されている糖化ペプチドオキシダーゼは、
(1)α-糖化アミノ酸(例えば、α-糖化バリン、以下α-FVと記す)に比べて、HbA1c由来のα-糖化ジペプチドであるα-糖化バリルヒスチジン(以下、α-FVHと記す)に対する活性は、必ずしも高くないこと、
(2)上述のように、N末端のα-糖化ジペプチド以外にも、ε-FKにも作用し、HbA1c測定における実測値を増加させること、
(3)酵素を用いる測定法の場合、測定時や保存時において酵素が不安定となること、
等の欠点があった。
(1)配列番号1で表わされるアミノ酸配列からなる蛋白質の61番目のアルギニンが、グリシン、アラニン、バリン、ロイシン、セリン、スレオニン、プロリン、システイン、メチオニン、アスパラギン、グルタミン及びアスパラギン酸からなる群から選ばれるアミノ酸へ置換されたアミノ酸配列からなる、蛋白質。
(2)(1)に記載の蛋白質のアミノ酸配列において、61番目のアミノ酸以外の1以上のアミノ酸が欠失、置換または付加したアミノ酸配列からなり、かつ糖化ヘキサペプチドオキシダーゼ活性を有する、蛋白質。
(3)(1)に記載の蛋白質のアミノ酸配列と90%以上の相同性を有するアミノ酸配列からなり、かつ糖化ヘキサペプチドオキシダーゼ活性を有する、蛋白質。
(4)(1)に記載の蛋白質のアミノ酸残基が下記の[1]~[15]から選ばれる少なくとも1つの変異により改変された、蛋白質。
[1]63番目のアルギニンが、グリシン、プロリン及びアラニンからなる群から選ばれるアミノ酸へ置換された変異
[2]62番目のロイシンがグリシンへ置換された変異
[3]93番目のグルタミンがグルタミン酸へ置換された変異
[4]267番目のフェニルアラニンがチロシンへ置換された変異
[5]71番目のチロシンがセリン又はシステインに置換された変異
[6]115番目のアスパラギン酸が、アスパラギン及びアルギニンからなる群から選ばれるアミノ酸へ置換された変異
[7]108番目のメチオニンがリジン及びアルギニンからなる群から選ばれるアミノ酸へ置換された変異
[8]75番目のロイシンがアラニン及びフェニルアラニンからなる群から選ばれるアミノ酸へ置換された変異
[9]34番目のセリンがスレオニンへ置換された変異
[10]52番目のチロシンがヒスチジンへ置換された変異
[11]57番目のイソロイシンがバリンへ置換された変異
[12]66番目のプロリンがヒスチジンへ置換された変異
[13]95番目のアスパラギン酸がグルタミン酸へ置換された変異
[14]105番目のリジンがアルギニンへ置換された変異
[15]355番目のアラニンがセリンへ置換された変異
(5)(4)記載の蛋白質のアミノ酸配列において、34番目、52番目、57番目、61番目、62番目、63番目、66番目、71番目、75番目、93番目、95番目、105番目、108番目、115番目、267番目、355番目のアミノ酸以外の少なくとも一つのアミノ酸が欠失、置換または付加したアミノ酸配列からなり、かつ糖化ヘキサペプチドオキシダーゼ活性を有する、蛋白質。
(6)配列番号3~37のいずれかで表わされるアミノ酸配列からなる、蛋白質。
(7)配列番号3~37のいずれかで表わされるアミノ酸配列と90%以上の相同性を有するアミノ酸配列からなり、かつ糖化ヘキサペプチドオキシダーゼ活性を有する、蛋白質。
(8)配列番号6~37のいずれかで表わされるアミノ酸配列からなる、蛋白質。
(9)配列番号6~37のいずれかで表わされるアミノ酸配列と90%以上の相同性を有するアミノ酸配列からなり、かつ糖化ヘモグロビンを直接酸化する活性を有する、蛋白質。
(10)糖化ヘモグロビンがHbA1cである、(9)に記載の蛋白質。
(11)(1)~(10)のいずれかに記載の蛋白質をコードするDNA。
(12)配列番号41~75のいずれかで表わされる塩基配列からなる、DNA。
(13)(6)に記載の蛋白質をコードする塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ糖化ヘキサペプチドオキシダーゼ活性を有する蛋白質をコードする、DNA。
(14)配列番号41~75のいずれかで表わされる塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ糖化ヘキサペプチドオキシダーゼ活性を有する蛋白質をコードする、DNA。
(15)配列番号44~75のいずれかで表わされる塩基配列からなる、DNA。
(16)(8)に記載の蛋白質をコードする塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ糖化ヘモグロビンを直接酸化する活性を有する蛋白質をコードする、DNA。
(17)配列番号44~75のいずれかで表わされる塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ糖化ヘモグロビンを直接酸化する活性を有する蛋白質をコードする、DNA。
(18)糖化ヘモグロビンがHbA1cである、(16)又は(17)記載のDNA。
(19)(11)~(18)のいずれかに記載のDNAを含有する組換えDNA。
(20)(19)に記載の組換えDNAを有する形質転換体。
(21)(20)に記載の形質転換体を培養し、培養物中に(1)~(10)のいずれかに記載の蛋白質を生成、蓄積させ、該培養物より該蛋白質を採取する、(1)~(10)のいずれかに記載の蛋白質の製造方法。
(22)試料中の糖化ヘモグロビンをプロテアーゼと反応させて糖化ヘキサペプチドを生成させ、生成された糖化ヘキサペプチドに(1)~(10)のいずれかに記載の蛋白質を反応させ、該反応により生成された物質又は消費された物質を測定することを特徴とする、試料中の糖化ヘモグロビンの測定方法。
(23)試料中の糖化ヘモグロビンを(8)~(10)のいずれかに記載の蛋白質と反応させ、該反応により生成された物質又は消費された物質を測定することを特徴とする、試料中の糖化ヘモグロビンの測定方法。
(24)糖化ヘモグロビンがHbA1cである、(22)又は(23)に記載の測定方法。
(25)前記反応により生成された物質が過酸化水素である、(22)~(24)のいずれかに記載の測定方法。
(26)プロテアーゼ、及び、(1)~(10)のいずれかに記載の蛋白質を含む、糖化ヘモグロビン測定用試薬。
(27)(8)~(10)のいずれかに記載の蛋白質を含む、糖化ヘモグロビン測定用試薬。
(28)過酸化水素測定用試薬をさらに含む(26)又は(27)に記載の試薬。
(29)糖化ヘモグロビンがHbA1cである、(26)~(28)のいずれかに記載の試薬。
本発明の蛋白質としては、
[1]配列番号1で表わされるアミノ酸配列からなる蛋白質の61番目のアルギニンが、グリシン、アラニン、バリン、ロイシン、セリン、スレオニン、プロリン、システイン、メチオニン、アスパラギン、グルタミン及びアスパラギン酸からなる群から選ばれるアミノ酸へ置換されたアミノ酸配列からなる、蛋白質;
[2][1]の蛋白質のアミノ酸配列において、61番目のアミノ酸以外の1以上のアミノ酸が欠失、置換または付加したアミノ酸配列からなり、かつ糖化ヘキサペプチドオキシダーゼ活性を有する、蛋白質;
[3][1]の蛋白質のアミノ酸配列と90%以上の相同性を有するアミノ酸配列からなり、かつ糖化ヘキサペプチドオキシダーゼ活性を有する、蛋白質;
[4][1]の蛋白質のアミノ酸残基が下記の(1)~(15)から選ばれる少なくとも1つの変異により改変された蛋白質;
(1)63番目のアルギニンが、グリシン、プロリン及びアラニンからなる群から選ばれるアミノ酸へ置換された変異
(2)62番目のロイシンがグリシンへ置換された変異
(3)93番目のグルタミンがグルタミン酸へ置換された変異
(4)267番目のフェニルアラニンがチロシンへ置換された変異
(5)71番目のチロシンがセリン又はシステインに置換された変異
(6)115番目のアスパラギン酸が、アスパラギン及びアルギニンからなる群から選ばれるアミノ酸へ置換された変異
(7)108番目のメチオニンがリジン及びアルギニンからなる群から選ばれるアミノ酸へ置換された変異
(8)75番目のロイシンがアラニン及びフェニルアラニンからなる群から選ばれるアミノ酸へ置換された変異
(9)34番目のセリンがスレオニンへ置換された変異
(10)52番目のチロシンがヒスチジンへ置換された変異
(11)57番目のイソロイシンがバリンへ置換された変異
(12)66番目のプロリンがヒスチジンへ置換された変異
(13)95番目のアスパラギン酸がグルタミン酸へ置換された変異
(14)105番目のリジンがアルギニンへ置換された変異
(15)355番目のアラニンがセリンへ置換された変異
[5][4]記載の蛋白質のアミノ酸配列において、34番目、52番目、57番目、61番目、62番目、63番目、66番目、71番目、75番目、93番目、95番目、105番目、108番目、115番目、267番目、355番目のアミノ酸以外の少なくとも一つのアミノ酸が欠失、置換または付加したアミノ酸配列からなり、かつ糖化ヘキサペプチドオキシダーゼ活性を有する、蛋白質;
[6]配列番号3~37のいずれかで表わされるアミノ酸配列からなる、蛋白質;
[7]配列番号3~37のいずれかで表わされるアミノ酸配列と90%以上の相同性を有するアミノ酸配列からなり、かつ糖化ヘキサペプチドオキシダーゼ活性を有する、蛋白質;
[8]配列番号6~37のいずれかで表わされるアミノ酸配列からなる、蛋白質;
[9]配列番号6~37のいずれかで表わされるアミノ酸配列と90%以上の相同性を有するアミノ酸配列からなり、かつ糖化ヘモグロビンを直接酸化する活性を有する、蛋白質;
[10]糖化ヘモグロビンがヘモグロビンA1cである、[9]の蛋白質;
を挙げることができる。
A群:ロイシン、イソロイシン、ノルロイシン、バリン、ノルバリン、アラニン、2-アミノブタン酸、メチオニン、O-メチルセリン、t-ブチルグリシン、t-ブチルアラニン、シクロヘキシルアラニン
B群:アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジピン酸、2-アミノスベリン酸
C群:アスパラギン、グルタミン
D群:リジン、アルギニン、オルニチン、2,4-ジアミノブタン酸、2,3-ジアミノプロピオン酸
E群:プロリン、3-ヒドロキシプロリン、4-ヒドロキシプロリン
F群:セリン、スレオニン、ホモセリン
G群:フェニルアラニン、チロシン
作用適温の範囲については、特に制限はないが、20~50℃付近が好ましい。耐熱性は、高い方が好ましく、例えば、50℃、15分間の熱処理後の残存活性が、25%以上のものが好ましく用いられる。
糖化ヘキサペプチドオキシダーゼの活性の測定は、例えば下記の方法で行うことができる。ここで、α-F6Pが1分間に1μmolの過酸化水素を生成する酵素量を1単位(U)とする。
A液: 50 mmol/L リン酸緩衝液(pH7.0)
B液:発色剤
24 mmol/L 10-(カルボキシメチルアミノカルボニル)-3,7-ビス(ジメチルアミノ)フェノチアジン ナトリウム塩(DA-67)のジメチルホルムアミド(DMF)溶液
C液:パーオキシダーゼ溶液
1 kU/L パーオキシダーゼの10 mmol/Lリン酸緩衝液(pH7.0)溶液
D液:基質溶液
1 mmol/L α-F6P 水溶液
E液: 精製酵素液
0.1~10 mg/mL 糖化ヘキサペプチドオキシダーゼ水溶液
A液 10mLにB液 12.6μL、C液 35μLを添加し、得られた溶液を1試料当たり190μLずつ96穴マイクロプレートの各ウェルに分注する。D液20μL、E液10μLを加えて混合し、全自動マイクロプレートEIA分析装置で30℃または37℃、30~120分間の反応前後の、660 nm(主波長)/750 nm(副波長)における吸光度を測定し、吸光度変化を算出する。基質溶液(D液)の代わりに蒸留水を用いた測定により得られたブランク値を差し引くことにより、測定値を算出する。
そして前記の測定系に、種々の量の過酸化水素を添加して、660 nm(主波長)/750 nm(副波長)における吸光度を測定し、過酸水素の量と吸光度の関係を表わす検量曲線を作成し、各精製酵素試料によるシグナル変化から単位時間に生成された過酸化水素量を換算する。
本発明のDNAとしては、
[a]上記[1]~[10]のいずれかに記載の本発明の蛋白質をコードするDNA;
[b]配列番号41~75のいずれかで表わされる塩基配列からなる、DNA;
[c]上記[6]記載の蛋白質をコードする塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ糖化ヘキサペプチドオキシダーゼ活性を有する蛋白質をコードする、DNA;
[d]配列番号41~75のいずれかで表わされる塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ糖化ヘキサペプチドオキシダーゼ活性を有する蛋白質をコードする、DNA;
[e]配列番号44~75のいずれかで表わされる塩基配列からなる、DNA;
[f]上記[8]記載の蛋白質をコードする塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ糖化ヘモグロビンを直接酸化する活性を有する蛋白質をコードする、DNA;
[g]配列番号44~75のいずれかで表わされる塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ糖化ヘモグロビンを直接酸化する活性を有する蛋白質をコードする、DNA;
[h]糖化ヘモグロビンがHbA1cである、[f]又は[g]記載のDNA;
を挙げることができる。
本発明の形質転換体としては、上記2記載の本発明のDNAを含む組換えDNAを用い、宿主細胞を公知の方法で形質転換して得られる形質転換体を挙げることができ、宿主細胞としては、細菌、酵母、動物細胞、昆虫細胞および植物細胞、好ましくは細菌、より好ましくは原核細胞、より好ましくはエシェリヒア(Escherichia)属に属する微生物を挙げることができる。
本発明のDNAは、例えば、配列番号41~75のいずれかで表される塩基配列に基づき設計することができるプローブを用い、糸状菌等の微生物、好ましくはアスペルギルス(Aspergillus)属、エメリセラ(Emericella)属等に属する微生物、特に好ましくはEmericella nidulans等に属する微生物により取得することができる。
更に、決定されたDNAの塩基配列に基づいて、パーセプティブ・バイオシステムズ社製8905型DNA合成装置等を用いて化学合成することにより目的とするDNAを調製することもできる。
上記のようにして取得されるDNAとして、例えば、配列番号41~75のいずれかで表される塩基配列を有するDNAを挙げることができる。
本発明のDNAをもとにして、必要に応じて、本発明の蛋白質をコードするDNAを含む適当な長さのDNA断片を調製する。また、宿主の発現に最適なコドンとなるように、該蛋白質をコードするDNAの塩基配列を修飾し、当該塩基配列中の塩基を置換することにより、該蛋白質の生産率が向上した形質転換体を取得することができる。
宿主細胞としては、細菌、酵母、動物細胞、昆虫細胞、植物細胞等、目的とする遺伝子を発現できるものであればいずれも用いることができる。
発現ベクターとしては、上記宿主細胞において自律複製可能ないしは染色体中への組込が可能で、本発明のDNAを転写できる位置にプロモーターを含有しているものが用いられる。
本発明のDNAを発現ベクターに結合させた組換えDNAにおいては、転写終結配列は必ずしも必要ではないが、構造遺伝子の直下に転写終結配列を配置することが好ましい。
このような組換えDNAとしては、例えばpET21-plu1440を挙げることができる。
マウス・ミエローマ細胞としては、SP2/0、NSO等、ラット・ミエローマ細胞としてはYB2/0等、ヒト胎児腎臓細胞としてはHEK293(ATCC CRL-1573)、ヒト白血病細胞としてはBALL-1等、アフリカミドリザル腎臓細胞としてはCOS-1、COS-7等を挙げることができる。
即ち、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、蛋白質を生産させることができる。
バキュロウイルスとしては、例えば、夜盗蛾科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス(Autographa californica nuclear polyhedrosis virus) 等を用いることができる。
スポドプテラ・フルギペルダの卵巣細胞としてはSf9、Sf21(バキュロウイルス・イクスプレッション・ベクターズ ア・ラボラトリー・マニュアル)等、トリコプルシア・ニの卵巣細胞としてはHigh 5、BTI-TN-5B1-4(インビトロジェン社製)等、カイコ卵巣由来の培養細胞としてはボンビクス・モリ(Bombyx mori)N4等を挙げることができる。
プロモーターとしては、植物細胞中で機能するものであればいずれのものを用いてもよく、例えば、カリフラワーモザイクウイルス(CaMV)の35Sプロモーター、イネアクチン1プロモーター等を挙げることができる。
宿主細胞としては、タバコ、ジャガイモ、トマト、ニンジン、ダイズ、アブラナ、アルファルファ、イネ、コムギ、オオムギ等の植物細胞等を挙げることができる。
上記5の方法で得られる形質転換体を培地に培養し、培養物中に本発明の蛋白質を生成、蓄積させ、該培養物から採取することにより、該蛋白質を製造することができる。
本発明の蛋白質を製造するための上記形質転換体の宿主としては、細菌、酵母、動物細胞、昆虫細胞、植物細胞等いずれであってもよいが、好ましくは細菌、より好ましくはエシェリヒア属に属する微生物、さらに好ましくはエシェリヒア・コリに属する微生物を挙げることができる。
酵母、動物細胞、昆虫細胞または植物細胞により発現させた場合には、糖あるいは糖鎖が付加された蛋白質を得ることができる。
上記形質転換体を培地に培養する方法は、宿主の培養に用いられる通常の方法に従って行うことができる。
また、培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよい。
培養は、通常pH6~8、25~40℃、5%CO2存在下等の条件下で1~7日間行う。
また、培養中必要に応じて、カナマイシン、ペニシリン、ストレプトマイシン等の抗生物質を培地に添加してもよい。
培養は、通常pH6~7、25~30℃等の条件下で1~5日間行う。
また、培養中必要に応じて、ゲンタマイシン等の抗生物質を培地に添加してもよい。
培養は、通常pH5~9、20~40℃の条件下で3~60日間行う。
また、培養中必要に応じて、カナマイシン、ハイグロマイシン等の抗生物質を培地に添加してもよい。
すなわち、遺伝子組換えの手法を用いて、本発明の蛋白質の活性部位を含む蛋白質の手前にシグナルペプチドを付加した形で生産させることにより、該蛋白質を宿主細胞外に積極的に分泌させることができる。
動物個体の場合は、例えば、本発明のDNAまたは本発明の製造法に用いられるDNAを導入したトランスジェニック非ヒト動物を飼育し、本発明の蛋白質を該動物中に生成、蓄積させ、該動物中より該蛋白質を採取することにより、該蛋白質を製造することができる。該動物中の該蛋白質を生成、蓄積させる場所としては、例えば、該動物のミルク(特開昭63-309192)、卵等を挙げることができる。この際に用いられるプロモーターとしては、動物で機能するものであればいずれも用いることができるが、例えば、乳腺細胞特異的なプロモーターであるαカゼインプロモーター、βカゼインプロモーター、βラクトグロブリンプロモーター、ホエー酸性プロテインプロモーター等が好適に用いられる。
例えば、本発明の蛋白質が、細胞内に溶解状態で生産された場合には、培養終了後、細胞を遠心分離により回収し、水系緩衝液に懸濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノミル等により細胞を破砕し、無細胞抽出液を得る。
該可溶化液を、蛋白質変性剤を含まないあるいは蛋白質変性剤の濃度が蛋白質が変性しない程度に希薄な溶液に希釈、あるいは透析し、該蛋白質を正常な立体構造に構成させた後、上記と同様の単離精製法により精製標品を得ることができる。
即ち、該培養物を上記と同様の遠心分離等の手法により処理することにより可溶性画分を取得し、該可溶性画分から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。
このようにして取得される蛋白質として、例えば、配列番号3~37のいずれかで表されるアミノ酸配列からなる蛋白質を挙げることができる。
本発明の蛋白質は、糖化ヘモグロビンにプロテアーゼが作用して糖化ヘモグロビンより生成される糖化ヘキサペプチドに作用し、過酸化水素を生成させる性質を有することから、各種試料中の糖化蛋白質の測定に用いることができる。具体的には、試料をプロテアーゼと反応させて糖化ヘキサペプチドを生成させ、生成された糖化ヘキサペプチドと、本発明の蛋白質とを反応させ、当該糖化ヘキサペプチドと本発明の蛋白質との反応により生成される物質又は当該糖化ペプチドと本発明の蛋白質との反応において消費される物質を測定することにより、試料中の糖化ヘモグロビンを測定することができる。試料中の糖化ヘモグロビンの測定に係る反応は、後述の水性媒体中で行われてもよい。本発明における糖化ヘモグロビンとしては、例えばHbA1cが挙げられる。
以下、本発明の測定方法について説明する。
本発明の測定方法に用いられる試料としては、糖化ヘモグロビンを含む試料であれば特に制限はなく、例えば全血液、血漿、血清、血球、細胞試料、尿、髄液、汗、涙液、唾液、皮膚、粘膜、毛髪等の生体試料等が挙げられる。試料としては、全血液、血漿、血清、血球等が好ましく、全血液、血球等が特に好ましい。なお、全血液には、全血液由来の血球画分に血漿が混合している試料も含まれる。これらの試料は、溶血、分離、希釈、濃縮、精製等の前処理を施したものを用いてもよい。
即ち、精製ヘモグロビンを含む試料又は全血液を含む試料にプロテアーゼを作用させると、例えばα-F6P、α-FVH、α-FV、ε-FK、α-FVL等が生成され、α-F6P、α-FVH及びα-FVLは糖化ヘモグロビンに由来し、α-F6P、α-FVHはHbA1cに特異的に由来する。
従って、HbA1cを測定する場合は、α-F6Pまたはα-FVHを特異的に測定すればよい。本発明の蛋白質は、α-F6Pに対する反応性が高いことから、HbA1cを効果的に測定することができる。
本発明に使用しうるプロテアーゼは、試料中に含まれる測定すべき糖化ヘモグロビンに作用し、糖化ヘキサペプチドを生成させるものであればいかなるものを用いてもよく、例えば、エンドプロテイナーゼGlu-C、V8プロテアーゼ、プロテイナーゼK、プロテイナーゼP、プロナーゼ、サーモリシン、サチライシン、カルボキシペプチダーゼ、キモトリプシン、ディスパーゼ、パパイン、フィシン、ブロメライン、アミノペプチダーゼ等のプロテアーゼあるいはペプチダーゼ等が挙げられ、特に好ましくは、エンドプロテイナーゼGlu-C、V8プロテアーゼが挙げられる。
試料のプロテアーゼ処理条件は、用いるプロテアーゼが測定対象の糖化ヘモグロビンに作用し、α-F6Pを短時間に効率よく遊離する条件であれば、いかなる条件でもよい。使用するプロテアーゼの量は、試料中に含まれるHbA1cの含量、あるいは処理条件等により適宜選択され、例えば、一例として、エンドプロテイナーゼGlu-C(例えば、ロシュ・ダイアグノスティックス社製)を、終濃度が0.1~50 U/mL、好ましくは1~10 U/mLとなるように加える。さらに必要により適宜他のプロテアーゼを加えてもよい。プロテアーゼで処理する際のpHは、無調整でもよく、使用するプロテアーゼの作用に好適なpHとなるように、例えば、適当なpH調整剤、例えば、塩酸、酢酸、硫酸、水酸化ナトリウム、水酸化カリウム等により、pH2~9、好ましくはpH3~8に調整してもよい。処理温度は、例えば、20~50℃で行ってもよく、用いる酵素によっては、より高温域の45~70℃で行ってもよい。この際の処理時間は、HbA1cを分解するのに充分な時間であればよく、例えば、5秒間~180分間、好ましくは1~60分間で行うことができる。得られる処理液を、そのまま、あるいは必要により適宜、加熱、遠心分離、濃縮、希釈等を行ったのち、糖化ヘキサペプチドを含む試料として糖化ヘキサペプチドオキシダーゼの反応に供する。
本発明の試料中の測定すべき糖化ヘモグロビンの測定は、下記(i)~(iii)の工程を順次行うことによって行うことができる。
(i)試料中の糖化ヘモグロビンをプロテアーゼと反応させて糖化ヘキサペプチドを生成させる工程、
(ii)生成された糖化ヘキサペプチドを本発明の蛋白質と反応させる工程、及び、
(iii)(ii)の工程で生成された物質、又は、消費された物質を測定する工程。
各工程の反応の反応温度としては、例えば10~50℃で、好ましくは20~40℃であり、反応時間としては、1秒間~60分間、好ましくは1~10分間である。
過酸化水素測定試薬は、生成された過酸化水素を検出可能な物質へ変換するための試薬である。検出可能な物質としては、例えば色素、光等が挙げられるが、色素が好ましい。
測定すべき糖化蛋白質を含む試料は、必要に応じて生体試料から分離することができる。分離方法としては、遠心、濾過、血球分離膜を用いた方法等が挙げられる。例えば遠心による分離方法は、全血液を血球、血漿もしくは血清に分離することができる。必要に応じて、該血球を生理食塩水等の等張液で洗浄することで、血漿由来の成分を除去した洗浄血球を得ることもできる。
健常人及び糖尿病患者から血液を採取、転倒混和後、25℃で5分間、遠心分離(3,000 rpm)を行う。遠心分離後、上澄みの血漿は除去する。下層部分の血球層1容に対して、4容の生理食塩水を追加し、転倒混和後、25℃で5分間、遠心分離(3,000 rpm)を行う。遠心分離後、上澄みの生理食塩水を除去する。この洗浄操作を3回繰り返した後、洗浄された血球層1容に対して9容の蒸留水を添加し、洗浄血球を得ることができる。
本発明の糖化ヘモグロビン測定用試薬及び測定用キットは、本発明の糖化ヘモグロビンの測定方法に使用することができる。本発明の糖化ヘモグロビン測定用試薬は、保存、運搬、流通に適した形態として、キットの形態をとり得る。キットの形態としては、2試薬系、3試薬系等が挙げられる。
・キット1(2試薬系キット)
以下の2つの試薬を含むキット。
(1)プロテアーゼを含む試薬;
(2)本発明の蛋白質を含む試薬。
以下の2つの試薬を含むキット:
(1)プロテアーゼを含む試薬;
(2)本発明の蛋白質、及び、本発明の蛋白質と糖化ヘモグロビンから生成される糖化ヘキサペプチドとの反応により生成される生成物を測定するための試薬を含む試薬。
以下の2つの試薬を含むキット:
(1)プロテアーゼ、及び、本発明の蛋白質と糖化ヘモグロビンから生成される糖化ヘキサペプチドとの反応により生成される生成物を測定するための試薬を含む試薬;
(2)本発明の蛋白質を含む試薬。
以下の2つの試薬を含むキット:
(1)プロテアーゼ、及び、本発明の蛋白質と糖化ヘモグロビンから生成される糖化ヘキサペプチドとの反応により生成される生成物を測定するための試薬を含む試薬;
(2)本発明の蛋白質、及び、本発明の蛋白質と糖化ヘモグロビンから生成される糖化ヘキサペプチドとの反応により生成される生成物を測定するための試薬を含む試薬。
以下の3つの試薬を含むキット:
(1)プロテアーゼを含む試薬;
(2)本発明の蛋白質を含む試薬;及び、
(3)本発明の蛋白質と糖化ヘモグロビンから生成される糖化ヘキサペプチドとの反応により生成される生成物を測定するための試薬。
以下の3つの試薬を含むキット:
(1)プロテアーゼ、及び、本発明の蛋白質と糖化ヘモグロビンから生成される糖化ヘキサペプチドとの反応により生成される生成物を測定するための試薬を含む試薬;
(2)本発明の蛋白質を含む試薬;並びに、
(3)本発明の蛋白質と糖化ヘモグロビンから生成される糖化ヘキサペプチドとの反応により生成される生成物を測定するための試薬。
以下の3つの試薬を含むキット:
(1)プロテアーゼを含む試薬;
(2)本発明の蛋白質、及び、本発明の蛋白質と糖化ヘモグロビンから生成される糖化ヘキサペプチドとの反応により生成される生成物を測定するための試薬を含む試薬;並びに、
(3)本発明の蛋白質と糖化ヘモグロビンから生成される糖化ヘキサペプチドとの反応により生成される生成物を測定するための試薬。
以下の3つの試薬を含むキット:
(1)プロテアーゼ、及び、本発明の蛋白質と糖化ヘモグロビンから生成される糖化ヘキサペプチドとの反応により生成される生成物を測定するための試薬を含む試薬;
(2)本発明の蛋白質、及び、本発明の蛋白質と糖化ヘモグロビンから生成される糖化ヘキサペプチドとの反応により生成される生成物を測定するための試薬を含む試薬;並びに、
(3)本発明の蛋白質と糖化ヘモグロビンから生成される糖化ヘキサペプチドとの反応により生成される生成物を測定するための試薬。
本発明の測定用試薬及び測定用キットには、必要に応じて、それぞれ緩衝剤、安定化剤、防腐剤、影響物質除去剤、非特異反応抑制剤、界面活性剤等が含有されてもよい。緩衝剤としては、例えば前述の緩衝剤等が挙げられる。安定化剤としては、例えばエチレンジアミン四酢酸(EDTA)、シュークロース、塩化カルシウム、アミノ酸類、アルブミン、デキストラン、酢酸カルシウム等の塩類等が挙げられる。防腐剤としては、例えばアジ化ナトリウム、抗生物質等が挙げられる。影響物質除去剤としては、例えばアスコルビン酸の影響を消去するためのアスコルビン酸オキシダーゼ等が挙げられる。非特異反応抑制剤としては、デキストラン硫酸等の高分子化合物等が挙げられる。界面活性剤としては、例えば非イオン性界面活性剤、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤等が挙げられる。
本発明の測定キットにおける本発明の蛋白質の含量としては、水性媒体で溶解された状態での濃度が0.01~10,000 U/mLとなる含量が好ましく、0.1~1,000 U/mLとなる含量がより好ましい。
過酸化水素測定試薬としてパーオキシダーゼと酸化カップリング型色原体を含む試薬を使用する場合のキットにおけるパーオキシダーゼ及び該酸化カップリング型色原体の含量としては、それぞれ、水性媒体で溶解された状態での濃度が1~600 U/mL、0.5~40 g/Lとなる含量が好ましく、2~150 U/mL、1~20 g/Lとなる含量がより好ましい。
本発明の蛋白質には、糖化ヘモグロビンを直接酸化して、過酸化水素を生成させる活性(以下、糖化ヘモグロビンオキシダーゼ活性という)を有するものを包含する。該糖化ヘモグロビンオキシダーゼ活性を有する蛋白質(以下、糖化ヘモグロビンオキシダーゼという)を用いることにより、糖化ヘモグロビンにプロテアーゼを作用させることなく、直接、糖化ヘモグロビンに本発明の糖化ヘモグロビンオキシダーゼを作用させることにより、過酸化水素を生成させることができ、この過酸化水素を測定することにより、糖化ヘモグロビンを直接測定することができる。
[1]配列番号6~37のいずれかで表わされるアミノ酸配列を有する蛋白質、
[2]配列番号6~37で表わされるアミノ酸配列と90%以上、例えば94%以上、好ましくは95%以上、より好ましくは96%以上、さらに好ましくは97%以上、さらにより好ましくは98%以上、特に好ましくは99%以上の相同性を有するアミノ酸配列からなり、かつ糖化ヘモグロビンオキシダーゼ活性を有する蛋白質等が挙げられる。
糖化ヘモグロビンオキシダーゼ活性は、例えば以下の方法で測定することができる。
A液: 0.1 mol/L MOPS緩衝液(pH6.8)
B液: 24 mmol/L DA-67のDMF溶液
C液: 1 kU/ パーオキシダーゼの0.01 mol/Lリン酸緩衝液(pH7.0)溶液
D液: 10 g/L ヒト血球由来溶血試料
E液: 5 g/L ヨウ素酸カリウム及び50%(v/v) アンヒトール20N (両性界面活性剤)の水溶液
F液: 0.5~1.0 U/mL 糖化ヘモグロビンオキシダーゼの10 mmol/L リン酸緩衝液(pH7.0)溶液
(i) D液20 μLにE液2μLを混合し、37℃にて10~30分間インキュベーションする。
(ii) A液 10 mLにB液12.6 μL、C液 35 μLを添加し、得られた溶液を1試料当たり190μLずつ96穴マイクロプレートに分注した後、D液とE液の混合液 20 μL、F液20 μLを加えて混合した。全自動マイクロプレートEIA分析装置により、混合直後の溶液の吸光度を660 nm(主波長)/750 nm(副波長)で測定し、次いで、37℃、60~120分間加温して酵素反応を行い、得られた溶液の吸光度を660 nm(主波長)/750 nm(副波長)で測定し、酵素反応前後の吸光度変化を測定する。
本発明の糖化ヘモグロビン測定用試薬は、糖化ヘモグロビン直接測定用試薬を包含する。本発明の糖化ヘモグロビン直接測定用試薬は、本発明の糖化ヘモグロビンの測定方法に使用することができる。本発明の糖化ヘモグロビン直接測定用試薬を用いることにより、プロテアーゼを用いることなく、糖化ヘモグロビンを直接酸化して生成された物質又は消費された物質を測定することにより、糖化ヘモグロビンを測定することができる。本発明の糖化ヘモグロビン直接測定用試薬は、保存、運搬、流通に適した形態として、キットの形態を取り得る。キットの形態としては、2試薬系、3試薬系等が挙げられる。
以下の2つの試薬を含むキット:
(1)糖化ヘモグロビンオキシダーゼを含む試薬;
(2)糖化ヘモグロビンオキシダーゼと、糖化ヘモグロビンとの反応により生成される生成物を測定するための試薬。
リン酸二水素カリウム(和光純薬工業)、リン酸一水素カリウム(和光純薬工業)、DA-67(和光純薬工業社製)、パーオキシダーゼ(東洋紡社製)、α-糖化バリン(ペプチド研究所社製)、α-糖化ヘキサペプチド(ペプチド研究所社製)、MOPS(同仁化学研究所社製)、ジメチルホルムアミド(和光純薬工業社製)、ヨウ素酸カリウム(和光純薬工業社製)、4-アミノアンチピリン(4-AA)(和光純薬工業社製)、EMSE(ダイトーケミックス社製)、塩化マンガン四水和物(和光純薬工業社製)、イソプロピル-β-チオガラクトシド(IPTG)(ナカライテスク社製)、塩化カリウム(和光純薬工業社製)、イミダゾール(和光純薬工業社製)、トリスヒドロキシメチルアミノメタン塩酸塩(Tris・HCl)(和光純薬工業社製)、Luria-Bertani miller培地(LB培地)(ベクトンディキンソン社製)、アンピシリンナトリウム(和光純薬工業社製)、KOD-plus-(DNAポリメラーゼ;東洋紡社製)、Dpn I(制限酵素;ニューイングランドバイオラボ社製)、Bgl II(制限酵素;ロシュアプライドサイエンス社製)、Xho I(制限酵素;ロシュアプライドサイエンス社製)、Competent high DH5α(大腸菌コンピテントセル;東洋紡社製)。
(pTrc-FPOX-9発現プラスミドの取得)
寄託番号FERM BP-11026として寄託されている糖化ペプチドオキシダーゼFPOX-9発現大腸菌株XL1-Blue MRF'株を、50 mg/L アンピシリンを含有したLB培地 3 mLに植菌し、37℃で終夜振盪培養した。培養液を8,000 rpm、2分間の遠心分離することにより菌体を集めた。得られた菌体から、Promega社製「Wizard Plus SV Minipreps DNA Purification」を使用して大腸菌体内において、配列番号2で表わされるアミノ酸配列を有する糖化ペプチドオキシダーゼFPOX-9を発現する発現プラスミドpTrc-FPOX-9を抽出した。
pTrc-FPOX-15発現プラスミドをテンプレートDNAとし、変異の標的とするアミノ酸のコドンを、置換するアミノ酸に対応するコドンに入れ替えたプライマー対を用いて、以下の試薬組成及びPCR条件により、PCR産物(変異を含む発現プラスミド)を増幅した。PCRは、東洋紡社製のPCRキット、DNA polymerase「KOD-plus」のプロトコルに基づいて実施した。
(試薬組成)
・反応バッファー
・テンプレートDNA 1~2 ng/μL
・フォワードプライマー 0.3 μmol/L
・リバースプライマー 0.3 μmol/L
・dNTP 混合液 各 0.2 mmol/L
・MgSO4 1 mmol/L
・DNA ポリメラーゼ 0.02 U/μL
・滅菌水添加により、50 μLとした。
(PCR条件)
1. 94℃ 2分
2. 98℃ 15秒
3. 60℃ 30秒
4. 68℃ 6分
5. 2~4の繰り返し(全30サイクル)
6. 68℃ 10分
酵素改変過程において、有意な活性を認めた変異体については、国際公開第2010/041715号パンフレットに記載の糖化ペプチドオキシダーゼ、FPOX-15の発現、精製方法に従い精製試料を調製し、活性評価に供した。
市販の糖化ペプチドオキシダーゼFPOX-CE(キッコーマン社製)を、10 mmol/L リン酸緩衝液を用いて希釈し、0.7、1.4、2.8、5.6及び11.2 mg/mLの各濃度のFPOX-CE溶液を調製した。調製した各濃度のFPOX-CE溶液について、GEヘルスケア社製分光光度計「Ultrospec 2100 pro」を用いて452 nm(主波長)/600 nm(副波長)での吸光度を測定し、FPOX-CE濃度と吸光度との間の関係を示す検量線を作成した。試料として、FPOX-CE(キッコーマン社製)の希釈系列溶液の代わりに、精製蛋白質を用いる以外は同様の方法により、精製蛋白質に対する吸光度を測定した。測定した、精製蛋白質に対する吸光度を前記の検量線に照らし合わせることにより、精製蛋白質における蛋白質濃度を決定した。
(活性測定用試薬)
A液: 50 mmol/L リン酸緩衝液(pH7.0)
B液: 24 mmol/L DA-67のDMF溶液
C液: 1 kU/L パーオキシダーゼの10 mmol/L リン酸緩衝液 (pH7.0)
D液: 1 mmol/l α-F6P水溶液
E液: 0.1 mg/mL 本発明の糖化ヘキサペプチドオキシダーゼの10 mmol/L リン酸緩衝液(pH7.0) 溶液
A液 10mLにB液 12.6μL、C液 35μLを添加し、得られた溶液を1試料当たり190μLずつ96穴プレートに分注した。D液20μL、E液10μLを加えて混合し、30℃で30分間反応を行った。全自動マイクロプレートEIA分析装置(AP-96、協和メデックス社製)により、反応前の溶液の660 nm(主波長)/750 nm(副波長)における吸光度Abs(反応前)及び反応後の660 nm(主波長)/750 nm(副波長)における吸光度Abs(反応後)を測定した。吸光度Abs(反応後)から吸光度Abs(反応前)を差し引いて、反応吸光度変化Δ'Abs(反応)とした。E液(蛋白質溶液)の代わりに蒸留水を用いる以外は同様の方法により、ブランク吸光度変化Δ'Abs(ブランク)を測定した。反応吸光度変化Δ'Abs(蛋白質溶液)からブランク吸光度変化Δ'Abs(ブランク)を差し引くことにより、反応吸光度ΔAbs(反応)とした。
そして前記の測定系において、D液の代わりに、種々の濃度の過酸化水素を用いて同様の反応を行い、反応後と反応前の660 nm(主波長)/750 nm(副波長)での吸光度変化を測定し、過酸化水素の濃度と吸光度変化との間の関係を表わす検量線を作成した。D液(基質液)とE液(蛋白質溶液)とを用いて酵素反応を行い、酵素反応に伴う吸光度変化を前記の検量線に照らし合わせて、酵素反応で生成した過酸化水素濃度を決定した。α-F6Pを基質として行う酵素反応において、1分間に1μmolの過酸化水素を生成させる酵素活性を1Uと定義した。先に決定した精製蛋白質濃度と、前記の通り定義された酵素活性とから、用いた精製蛋白質の活性を、精製酵素1 mg当たりの持つ活性である比活性(U/mg)として表した。また、用いた精製酵素の活性を、前記の比活性(U/mg)に基づいて、精製蛋白質溶液1 mL当たりの総活性である比活性(U/mL)として表した。
pTrc-FPOX-15及びこれより誘導される発現プラスミドをテンプレートDNAとし、実施例1に記載の方法により部位特異的アミノ酸置換を導入した。部位特異的飽和変異は、実施例1に記載の部位特異的アミノ酸置換導入方法と同様の方法により実施し、配列番号90、91で表わされる塩基配列に例示されるように、標的とするアミノ酸位置をNNSに入れ替えたプライマーを用いた。NはA、T、G、Cのいずれかのヌクレオチドを、SはG、Cのいずれかのヌクレオチドをランダムに含むことを示す。
(活性評価用試薬)
・50 mmol/L リン酸緩衝液(pH7.0) 10 mL
・10 g/L 4-AA 水溶液 100 μL
・10 g/L EMSE 水溶液 100 μL
・1 kU/L パーオキシダーゼの10 mmol/L リン酸緩衝液(pH7.0)溶液 35 μL
・80 mmol/L α-FV 62.5 μL
(測定手順)
評価用の試薬を100 μLずつ96穴マイクロプレートの各ウェルに分注し、さらに試料10 μLを添加し、30℃、30分間インキュベートした。インキュベート前後の550 nm(主波長)/650 nm(副波長)を測定し、吸光度変化がより大きいクローンを選択した。
(活性評価用試薬)
・50 mmol/L リン酸緩衝液(pH7.0) 10 mL
・24 mmol/L DA-67のDMF溶液 12.6 μL
・1 kU/L パーオキシダーゼの10 mmol/L リン酸緩衝液(pH7.0)溶液 35 μL
・0.25 mmol/L α-F6P水溶液 720 μL
(測定手順)
活性評価用試薬を30 μLずつ384穴プレートに分注し、試料5 μLを添加し、30℃、1時間インキュベーションした。インキュベーション後に各ウェルを観察し、有意に発色が強いクローンを選択した。
まずFPOX-18をコードするDNAを含むプラスミドpTrc-FPOX-18を実施例1と同様の方法により取得し、当該プラスミドをテンプレートDNAとし、実施例1の部位特異的アミノ酸置換導入と同様の方法により、配列番号102及び103で表わされる塩基配列からなるDNAを有するプライマー対を用いて、FPOX-18遺伝子の168番目のアデニンをグアニンに置換することにより、アミノ酸置換を伴わずにBgl II制限酵素サイトを導入した。得られた改変プラスミドをpTrc-FPOX-18'と称する。
(試薬組成)
・反応バッファー
・テンプレートDNA 0.2 ng/μL
・フォワードプライマー 1 μmol/L
・リバースプライマー 1 μmol/L
・MgCl2 7 mmol/L
・MnCl2 0.5 mmol/L
・dATP 0.2 mmol/L
・dTTP 1 mmol/L
・dGTP 0.1 mmol/L
・dCTP 1 mmol/L
・DNA ポリメラーゼ 0.04 U/μL
(PCR条件)
1. 94℃ 3分
2. 94℃ 30秒
3. 50℃ 30秒
4. 72℃ 30秒
5. 2~4の繰り返し(全45サイクル)
6. 72℃ 1分
各組換え蛋白質発現大腸菌株を用い、国際公開第2010/041715号パンフレット記載の糖化ペプチドオキシダーゼFPOX-15の発現、精製方法に従って精製蛋白質を調製し、それぞれの蛋白質のα-F6Pに対する糖化ヘキサペプチドオキシダーゼ活性を評価した。
実施例2で作製したpTrc-FPOX-19をテンプレートDNAとして、配列番号113及び114で表わされる塩基配列からなるDNAを有するプライマー対を用いた部位特異的アミノ酸置換導入により、配列番号10で表わされるアミノ酸配列を有するFPOX-19のアミノ酸配列の75番目のロイシンがフェニルアラニンに置換された、配列番号12で表わされるアミノ酸配列を有するFPOX-21を発現するプラスミドpTrc-FPOX-21を得た。
Error Prone PCRによるランダム変異は、pTrc-FPOX-21に含まれる、蛋白質をコードする遺伝子の、1から119番目のアミノ酸に相当する領域を増幅するように設計した配列番号87及び104で表わされる塩基配列からなるDNAを有するプライマー対を用いて行った。当該ランダム変異により、ランダムに変異が導入されたDNAを増幅産物として得た。ランダムに変異が導入されたDNAからなる当該増幅産物を制限酵素Nco I及びXho Iで処理し、得られたフラグメントを、前記制限酵素で処理したpTrc-FPOX-18'上の相当する領域に置換する操作の他は、実施例2と同様の方法により、変異が導入されたDNAを含有するプラスミドを得た。得られたプラスミドに対して、当該プラスミドから発現される変異体群を、α-FV及びα-F6Pに対するオキシダーゼ活性を指標として評価した。その結果、FPOX-21と比較して、α-F6Pに対するオキシダーゼ活性が向上している蛋白質を発現するプラスミドとして、以下のプラスミドを得た。
・FPOX-21のアミノ酸配列の52番目のチロシンがヒスチジンに置換された、配列番号14で表わされるアミノ酸配列を有するFPOX-23を発現するプラスミドpTrc-FPOX-23;
・FPOX-21のアミノ酸配列の57番目のイソロイシンがバリンに置換された、配列番号15で表わされるアミノ酸配列を有するFPOX-24を発現するプラスミドpTrc-FPOX-24;
・FPOX-21のアミノ酸配列の66番目のプロリンがヒスチジンに置換された、配列番号16で表わされるアミノ酸配列を有するFPOX-25を発現するプラスミドpTrc-FPOX-25;
・FPOX-21のアミノ酸配列の95番目のアスパラギン酸がグルタミン酸に置換された、配列番号17で表わされるアミノ酸配列を有するFPOX-26を発現するプラスミドpTrc-FPOX-26;
・FPOX-21のアミノ酸配列の105番目のリジンがアルギニンに置換された、配列番号18で表わされるアミノ酸配列を有するFPOX-27を発現するプラスミドpTrc-FPOX-27;
・FPOX-21のアミノ酸配列の108番目のリジンがアルギニンに置換された、配列番号19で表わされるアミノ酸配列を有するFPOX-28を発現するプラスミドpTrc-FPOX-28;
・FPOX-21のアミノ酸配列の355番目のアラニンがセリンに置換された、配列番号20で表わされるアミノ酸配列を有するFPOX-29を発現するプラスミドpTrc-FPOX-29;
・FPOX-21のアミノ酸配列の66番目のプロリンがヒスチジンに、95番目のアスパラギン酸がグルタミン酸にそれぞれ置換された、配列番号21で表わされるアミノ酸配列を有するFPOX-30を発現するプラスミドpTrc-FPOX-30;
・FPOX-21のアミノ酸配列の66番目のプロリンがヒスチジンに、95番目のアスパラギン酸がグルタミン酸に、105番目のリジンがアルギニンにそれぞれ置換された、配列番号22で表わされるアミノ酸配列を有するFPOX-31を発現するプラスミドpTrc-FPOX-31;
・FPOX-21のアミノ酸配列の66番目のプロリンがヒスチジンに、95番目のアスパラギン酸がグルタミン酸に、105番目のリジンがアルギニンに、108番目のリジンがアルギニンにそれぞれ置換された、配列番号23で表わされるアミノ酸配列を有するFPOX-32を発現するプラスミドpTrc-FPOX-32;
・FPOX-21のアミノ酸配列の34番目のセリンがスレオニンに、66番目のプロリンがヒスチジンに、95番目のアスパラギン酸がグルタミン酸に、105番目のリジンがアルギニンに、108番目のリジンがアルギニンにそれぞれ置換された、配列番号24で表わされるアミノ酸配列を有するFPOX-33を発現するプラスミドpTrc-FPOX-33;
・FPOX-21のアミノ酸配列の52番目のチロシンがヒスチジンに、66番目のプロリンがヒスチジンに、95番目のアスパラギン酸がグルタミン酸に、105番目のリジンがアルギニンに、108番目のリジンがアルギニンにそれぞれ置換された、配列番号25で表わされるアミノ酸配列を有するFPOX-34を発現するプラスミドpTrc-FPOX-34;
・FPOX-21のアミノ酸配列の57番目のイソロイシンがバリンに、66番目のプロリンがヒスチジンに、95番目のアスパラギン酸がグルタミン酸に、105番目のリジンがアルギニンに、108番目のリジンがアルギニンにそれぞれ置換された、配列番号26で表わされるアミノ酸配列を有するFPOX-35を発現するプラスミドpTrc-FPOX-35;
・FPOX-21のアミノ酸配列の66番目のプロリンがヒスチジンに、108番目のリジンがアルギニンにそれぞれ置換された、配列番号27で表わされるアミノ酸配列を有するFPOX-36を発現するプラスミドpTrc-FPOX-36;
・FPOX-21のアミノ酸配列の66番目のプロリンがヒスチジンに、105番目のリジンがアルギニンに、108番目のリジンがアルギニンにそれぞれ置換された、配列番号28で表わされるアミノ酸配列を有するFPOX-37を発現するプラスミドpTrc-FPOX-37;
・FPOX-21のアミノ酸配列の66番目のプロリンがヒスチジンに、355番目のアラニンがセリンにそれぞれ置換された、配列番号29で表わされるアミノ酸配列を有するFPOX-38を発現するプラスミドpTrc-FPOX-38;
・FPOX-21のアミノ酸配列の66番目のプロリンがヒスチジンに、95番目のアスパラギン酸がグルタミン酸に、355番目のアラニンがセリンにそれぞれ置換された、配列番号30で表わされるアミノ酸配列を有するFPOX-39を発現するプラスミドpTrc-FPOX-39;
・FPOX-21のアミノ酸配列の66番目のプロリンがヒスチジンに、105番目のリジンがアルギニンに、355番目のアラニンがセリンにそれぞれ置換された、配列番号31で表わされるアミノ酸配列を有するFPOX-40を発現するプラスミドpTrc-FPOX-40;
・FPOX-21のアミノ酸配列の66番目のプロリンがヒスチジンに、108番目のリジンがアルギニンに、355番目のアラニンがセリンにそれぞれ置換された、配列番号32で表わされるアミノ酸配列を有するFPOX-41を発現するプラスミドpTrc-FPOX-41;
・FPOX-21のアミノ酸配列の66番目のプロリンがヒスチジンに、105番目のリジンがアルギニンに、108番目のリジンがアルギニンに、355番目のアラニンがセリンにそれぞれ置換された、配列番号33で表わされるアミノ酸配列を有するFPOX-42を発現するプラスミドpTrc-FPOX-42;
・FPOX-21のアミノ酸配列の34番目のセリンがスレオニンに、66番目のプロリンがヒスチジンに、105番目のリジンがアルギニンに、108番目のリジンがアルギニンに、355番目のアラニンがセリンにそれぞれ置換された、配列番号34で表わされるアミノ酸配列を有するFPOX-43を発現するプラスミドpTrc-FPOX-43;
・FPOX-21のアミノ酸配列の52番目のチロシンがヒスチジンに、66番目のプロリンがヒスチジンに、105番目のリジンがアルギニンに、108番目のリジンがアルギニンに、355番目のアラニンがセリンにそれぞれ置換された、配列番号35で表わされるアミノ酸配列を有するFPOX-44を発現するプラスミドpTrc-FPOX-44;
・FPOX-21のアミノ酸配列の57番目のイソロイシンがバリンに、66番目のプロリンがヒスチジンに、105番目のリジンがアルギニンに、108番目のリジンがアルギニンに、355番目のアラニンがセリンにそれぞれ置換された、配列番号36で表わされるアミノ酸配列を有するFPOX-45を発現するプラスミドpTrc-FPOX-45;及び、
・FPOX-21のアミノ酸配列の66番目のプロリンがヒスチジンに、95番目のアスパラギン酸がグルタミン酸に、105番目のリジンがアルギニンに、108番目のリジンがアルギニンに、355番目のアラニンがセリンにそれぞれ置換された、配列番号37で表わされるアミノ酸配列を有するFPOX-46を発現するプラスミドpTrc-FPOX-46。
国際公開第2008/108385号パンフレットにおいて、α-F6Pに対してオキシダーゼ活性を有すると記載されている、配列番号38で表わされるアミノ酸配列を有する、Aspergillus oryzae RIB40由来のFPOX (DOGAN-Datebase of genomes analyzed at NITE、http://www.bio.nite.go.jp/dogan/project/view/AOに登録されているAO090023000307、以下AoFPOXと称する)の糖化ヘキサペプチドオキシダーゼ活性と、本発明のFPOX-19、FPOX-20、FPOX-32及びFPOX-42の各蛋白質の糖化ヘキサペプチドオキシダーゼ活性とを比較した。
pUC-AoFPOXをテンプレートDNAとし、配列番号132で表わされる塩基配列からなるDNAを有する、AoFPOXのcDNA配列の5'末端に相当する配列にNco I制限酵素サイト及び4-ヒスチジンタグを付加したプライマー、及び、配列番号133に表わされる塩基配列からなるDNAを有する、3'末端に相当する配列にBam HI制限酵素サイトを付加したプライマーを使用し、東洋紡社製PCRキット、DNA polymerase「KOD-plus」を使用して以下のPCR条件の下でPCRを行い、「N末4-ヒスチジンタグ付加AoFPOX」DNA断片を得た。得られたDNA断片を制限酵素Nco I、及び、Bam HIで処理し消化産物を得た。同様に制限酵素Nco I、及び、Bam HIで処理した発現ベクターpTrc99aに、前記の消化産物を、タカラバイオ社製「DNA Ligation Kit Mighty Mix」を使用してライゲーションし、E. coli DH5α株を形質転換した。50mg/L アンピシリン含有LB寒天培地上で生育したコロニーからプラスミドを抽出し、配列解析によりAoFPOX遺伝子を含むクローンをAoFPOX組換え発現大腸菌株とした。
・反応バッファー
・テンプレートDNA 1~2 ng/μL
・フォワードプライマー 0.3 μmol/L
・リバースプライマー 0.3 μmol/L
・dNTP 混合液 各0.2 mmol/L
・ MgSO4 1 mmol/L
・DNA ポリメラーゼ 0.02 U/L
(PCR条件)
1. 94℃ 2分
2. 98℃ 15秒
3. 60℃ 30秒
4. 68℃ 2分
5. 2~4の繰り返し(全30サイクル)
6. 68℃ 5分
50 mg/Lアンピシリンを含有する200 mL LB培地に、上記で得られたAoFPOX組換え蛋白質発現大腸菌株を植菌し、37℃で振盪培養した。濁度がO.D.600で0.5に達した後、0.1 mol/L イソプロピル-β-チオガラクトシド(IPTG)水溶液を200 μL添加し、さらに37℃、5時間振盪培養した。培養後、8,000 rpm、10分間遠心分離することで菌体を得た。
菌体を10 mmol/Lイミダゾール、及び、0.4 mol/L 塩化カリウムを含有する50 mmol/Lリン酸緩衝液(pH7.4) 10 mLに懸濁し、超音波破砕した。8,000 rpm、10分間遠心分離して得られた上清を、0.8μmフィルターでろ過した試料を粗酵素液とした。
カラムにキアゲン社製「Ni-NTA Agarose」5 mLを充填し、上記緩衝液で平衡化した。粗酵素液をカラムに通塔させることでレジンにAoFPOX吸着させ、3倍量の同緩衝液で洗浄した後、0.5 mol/Lイミダゾール、0.4 mol/L 塩化カリウム含有50 mmol/Lリン酸緩衝液(pH7.4)で溶出した。AoFPOX画分を分取し、10 mmol/L リン酸緩衝液(pH7.0)に対して透析した。
(活性測定用試薬)
A液: 50 mmol/L リン酸緩衝液 (pH7.0)
B液: 24 mmol/L DA-67のDMF溶液
C液: 1 kU/L パーオキシダーゼの10 mmol/L リン酸緩衝液(pH7.0) 溶液
D液: 1 mmol/L α-F6P水溶液
E液: 0.1~10 mg/mL 糖化ヘキサペプチドオキシダーゼ (AoFPOX、FPOX-19、FPOX-20、FPOX-32又はFPOX-42)の10 mmol/L リン酸緩衝液 (pH7.0) 溶液
A液 10 mLにB液 12.6 μL、C液 35 μLを添加し、得られた溶液を1試料当たり190μLずつ96穴マイクロプレートの各ウェルに分注した。D液20 μL、E液10 μLを加えて混合し、30℃で30分間反応を行った。全自動マイクロプレートEIA分析装置(AP-96、協和メデックス社製)により、反応前の溶液の660 nm(主波長)/750 nm(副波長)における吸光度Abs(反応前)及び反応後の溶液の660 nm(主波長)/750 nm(副波長)における吸光度Abs(反応後)を測定した。吸光度Abs(反応後)から吸光度Abs(反応前)を差し引いて、反応吸光度変化Δ'Abs(反応)とした。E液(蛋白質溶液)の代わりに蒸留水を用いる以外は同様の方法により、ブランク吸光度変化Δ'Abs(ブランク)を測定した。反応吸光度変化Δ'Abs(反応)からブランク吸光度変化Δ'Abs(ブランク)を差し引くことにより、蛋白質に対する反応吸光度ΔAbs(反応)とした。得られた吸光度ΔAbs(反応)から、実施例2記載の方法に従い、各蛋白質における糖化ヘキサペプチドオキシダーゼ活性の比活性(U/mg)を算出した。
血球を試料とし、本発明の蛋白質、FPOX-19、FPOX-32又はFPOX-42と、V8プロテアーゼとを使用して、以下の方法により溶血試料中のHbA1cを測定した。
(活性測定用試薬)
A液: 0.1 mol/L MOPS緩衝液(pH6.8)
B液: 24 mmol/L DA-67のDMF溶液
C液: 1 kU/L パーオキシダーゼの10 mmol/L リン酸緩衝液(pH7.0) 溶液
D液: ヒト血球由来溶血試料[ヘモグロビン濃度が 10 mg/mLでHPLC法(KO500法)とヘモグロビン-SLS法とからHbA1c濃度が9.8、11.1、12.3、13.3、14.5、15.4、17.9、23.3 μmol/Lとそれぞれ値付けされているもの]。
E液: 8g/L ヨウ素酸カリウム及び10%(v/v)アンヒトール20Nの100 mmol/L Tris-HCl (pH8.0) 溶液
F液: 80 U/mL V8プロテアーゼの20%グリセロール溶液
G液:10 mg/mL糖化ヘキサペプチドオキシダーゼの10 mmol/L リン酸緩衝液(pH7.0) 溶液
なお、ヘモグロビン-SLS法によるヘモグロビン濃度測定においては、ヘモグロビンB-テストワコーを使用した。
(i) D液40μLにE液4μLを添加して混合し、次いで、F液4.4μLを添加し、37℃、15分間インキュベートした。
(ii) A液 10 mLにB液 12.6 μL、C液 35 μLを添加し、得られた溶液を1試料当たり190 μLずつ96穴マイクロプレートの各ウェルに分注した。上記(i)で調製した血球処理液20 μL、及び、G液10 μLを加えて混合し、37℃で15分間反応させた。
全自動マイクロプレートEIA分析装置(AP-96、協和メデックス社製)により、反応前の溶液の660 nm(主波長)/750 nm(副波長)における吸光度Abs(反応前)及び反応後の660 nm(主波長)/750 nm(副波長)における吸光度Abs(反応後)を測定した。吸光度Abs(反応後)から吸光度Abs(反応前)を差し引いて、反応吸光度変化Δ'Abs(反応)とした。D液(ヒト血球由来溶血試料)の代わりに蒸留水を用いる以外は同様の方法により、ブランク吸光度変化Δ'Abs(ブランク)を測定した。反応吸光度変化Δ'Abs(反応)からブランク吸光度変化Δ'Abs(ブランク)を差し引くことにより、ヒト血球由来溶血試料に対する反応吸光度ΔAbs(反応)とした。各ヒト血球由来溶血試料に対して同様の反応を行い、各ヒト血球由来溶血試料に対する反応吸光度ΔAbs(反応)を測定した。
この結果より、HbA1cからα-F6Pを切り出すV8プロテアーゼと本発明の蛋白質とを使用することにより、試料中のHbA1cを測定できることが分かった。
実施例2で得られたFPOX-18A、FPOX-18B、FPOX-19及びFPOX-20、実施例3で得られたFPOX-32及びFPOX-42、並びに、FPOX-15を用い、下記の試薬及び測定手順により糖化ヘモグロビンオキシダーゼ活性を測定した。
(活性測定用試薬)
A液: 0.1 mol/L MOPS緩衝液(pH6.8)
B液: 24 mmol/L DA-67のDMF溶液
C液: 1 kU/L パーオキシダーゼの10 mmol/L リン酸緩衝液(pH7.0)溶液
D液: ヒト血球由来溶血試料[ヘモグロビン濃度が10 mg/ mLで、 HPLC法(KO500法)とヘモグロビン-SLS法とからHbA1c濃度が84.2 μmol/Lと値付けされているもの]
E液: 5 g/L ヨウ素酸カリウム及び50%(v/v)アンヒトール20Nの水溶液
F液: 30 mg/mL糖化ヘモグロビンオキシダーゼ(FPOX-18A、FPOX-18B、FPOX-19、FPOX-20、FPOX-32、FPOX-42、FPOX-15)の10 mmol/L リン酸緩衝液(pH7.0) 溶液
(i) D液20 μLにE液2μLを混合し、37℃にて10分間インキュベーションした。
(ii) A液 10 mLにB液12.6 μL、C液 35 μLを添加した溶液を、1試料当たり190 μLずつ96穴マイクロプレートの各ウェルに分注した後、D液とE液の混合液 20 μL、F液10 μLを加えて混合し、37℃で60分間反応させた。
全自動マイクロプレートEIA分析装置(AP-96、協和メデックス社製)により、反応前の溶液の660 nm(主波長)/750 nm(副波長)における吸光度Abs(反応前)及び反応後の660 nm(主波長)/750 nm(副波長)における吸光度Abs(反応後)を測定した。吸光度Abs(反応後)から吸光度Abs(反応前)を差し引いて、反応吸光度変化Δ'Abs(反応)とした。F液(酵素液)の代わりにpH7.0、10 mmol/Lリン酸緩衝液を用いる以外は同様の方法により、酵素液由来のブランクである吸光度変化Δ'Abs(酵素液ブランク)を測定した。また、D液(ヒト血球由来溶血試料)の代わりに蒸留水を用いる以外は同様の方法により、ヒト血球由来溶血試料由来のブランクである吸光度変化Δ'Abs(溶血試料ブランク)を測定した。
反応吸光度変化Δ'Abs(反応)からΔ'Abs(酵素液ブランク)とΔ'Abs(溶血試料ブランク)を差し引くことにより、蛋白質に対する反応吸光度ΔAbs(反応)を測定した。表8にFPOX-15、FPOX-18A、FPOX-18B、FPOX-19、FPOX-20、FPOX-32及びFPOX-42の各蛋白質に対する反応吸光度ΔAbs(反応)を示す。
実施例2で得られたFPOX-19及びFPOX-20、並びに、実施例3で得られたFPOX-32及びFPOX-42の各蛋白質を用いる本発明のHbA1c測定方法と、HPLC法(KO500法)及びヘモグロビン-SLS法とを用いるHbA1c測定方法との間の相関性を、以下の試薬及び測定手順により確認した。
A液: 0.1 mol/L MOPS緩衝液(pH6.8)
B液: 24 mmol/L DA-67のDMF溶液
C液: 1 kU/L パーオキシダーゼの10 mmol/L リン酸緩衝液(pH7.0)
D液: ヒト血球由来溶血試料[ヘモグロビン濃度が10mg/mLで、HPLC法(KO500法)とヘモグロビン-SLS法とからHbA1c濃度が9.8、11.1、12.3、13.3、14.5、15.4、17.9、23.3 μmol/Lと値付けされているもの]
E液: 5 g/L ヨウ素酸カリウム及び50%(v/v)アンヒトール20Nの水溶液
F液: 30 mg/mL 糖化ヘモグロビンオキシダーゼ(FPOX-19、FPOX-20、FPOX-32又はFPOX-42)の10 mmol/L リン酸緩衝液(pH7.0) 溶液
(i) D液40μLにE液4μLを混合し、37℃にて10分間インキュベーションした。
(ii) A液 10 mLにB液12.6 μL、C液 35 μLを添加した溶液を、1試料当たり190 μLずつ96穴マイクロプレートの各ウェルに分注した後、D液とE液の混合液 20 μL、及び、F液10 μLを加えて混合し、37℃で60分間反応させた。
全自動マイクロプレートEIA分析装置(AP-96、協和メデックス社製)により、反応前の溶液の660 nm(主波長)/750 nm(副波長)における吸光度Abs(反応前)及び反応後の660 nm(主波長)/750 nm(副波長)における吸光度Abs(反応後)を測定した。吸光度Abs(反応後)から吸光度Abs(反応前)を差し引いて、反応吸光度変化Δ'Abs(反応)とした。
HbA1c濃度が既知である2つのヒト血球由来溶血試料(ヘモグロビン濃度が10 mg/mLで、HbA1c濃度がそれぞれ9.82μmol/L、24.2μmol/Lである試料)を用いて同様の測定を行い、HbA1c濃度と反応吸光度ΔAbs(反応)との間の関係を示す検量線を作成した。
各ヒト血球由来溶血試料に対する反応吸光度ΔAbs(反応)を前記の検量線に照らし合わせることにより、各ヒト血球由来溶血試料におけるHbA1c濃度を決定した。決定されたHbA1c濃度を、HPLC法(KO500法)及びヘモグロビン-SLS法を用いるHbA1c測定方法により決定されたHbA1c濃度と比較した。
配列番号2-人工配列の説明:FPOX-9のアミノ酸配列
配列番号3-人工配列の説明:FPOX-16のアミノ酸配列
配列番号4-人工配列の説明:FPOX-17のアミノ酸配列
配列番号5-人工配列の説明:FPOX-18のアミノ酸配列
配列番号6-人工配列の説明:FPOX-18Aのアミノ酸配列
配列番号7-人工配列の説明:FPOX-18Bのアミノ酸配列
配列番号8-人工配列の説明:FPOX-18Cのアミノ酸配列
配列番号9-人工配列の説明:FPOX-18Dのアミノ酸配列
配列番号10-人工配列の説明:FPOX-19のアミノ酸配列
配列番号11-人工配列の説明:FPOX-20のアミノ酸配列
配列番号12-人工配列の説明:FPOX-21のアミノ酸配列
配列番号13-人工配列の説明:FPOX-22のアミノ酸配列
配列番号14-人工配列の説明:FPOX-23のアミノ酸配列
配列番号15-人工配列の説明:FPOX-24のアミノ酸配列
配列番号16-人工配列の説明:FPOX-25のアミノ酸配列
配列番号17-人工配列の説明:FPOX-26のアミノ酸配列
配列番号18-人工配列の説明:FPOX-27のアミノ酸配列
配列番号19-人工配列の説明:FPOX-28のアミノ酸配列
配列番号20-人工配列の説明:FPOX-29のアミノ酸配列
配列番号21-人工配列の説明:FPOX-30のアミノ酸配列
配列番号22-人工配列の説明:FPOX-31のアミノ酸配列
配列番号23-人工配列の説明:FPOX-32のアミノ酸配列
配列番号24-人工配列の説明:FPOX-33のアミノ酸配列
配列番号25-人工配列の説明:FPOX-34のアミノ酸配列
配列番号26-人工配列の説明:FPOX-35のアミノ酸配列
配列番号27-人工配列の説明:FPOX-36のアミノ酸配列
配列番号28-人工配列の説明:FPOX-37のアミノ酸配列
配列番号29-人工配列の説明:FPOX-38のアミノ酸配列
配列番号30-人工配列の説明:FPOX-39のアミノ酸配列
配列番号31-人工配列の説明:FPOX-40のアミノ酸配列
配列番号32-人工配列の説明:FPOX-41のアミノ酸配列
配列番号33-人工配列の説明:FPOX-42のアミノ酸配列
配列番号34-人工配列の説明:FPOX-43のアミノ酸配列
配列番号35-人工配列の説明:FPOX-44のアミノ酸配列
配列番号36-人工配列の説明:FPOX-45のアミノ酸配列
配列番号37-人工配列の説明:FPOX-46のアミノ酸配列
配列番号38-人工配列の説明:AoFPOXのアミノ酸配列
配列番号39-人工配列の説明:FPOX-15のDNA
配列番号40-人工配列の説明:FPOX-9のDNA
配列番号41-人工配列の説明:FPOX-16のDNA
配列番号42-人工配列の説明:FPOX-17のDNA
配列番号43-人工配列の説明:FPOX-18のDNA
配列番号44-人工配列の説明:FPOX-18AのDNA
配列番号45-人工配列の説明:FPOX-18BのDNA
配列番号46-人工配列の説明:FPOX-18CのDNA
配列番号47-人工配列の説明:FPOX-18DのDNA
配列番号48-人工配列の説明:FPOX-19のDNA
配列番号49-人工配列の説明:FPOX-20のDNA
配列番号50-人工配列の説明:FPOX-21のDNA
配列番号51-人工配列の説明:FPOX-22のDNA
配列番号52-人工配列の説明:FPOX-23のDNA
配列番号53-人工配列の説明:FPOX-24のDNA
配列番号54-人工配列の説明:FPOX-25のDNA
配列番号55-人工配列の説明:FPOX-26のDNA
配列番号56-人工配列の説明:FPOX-27のDNA
配列番号57-人工配列の説明:FPOX-28のDNA
配列番号58-人工配列の説明:FPOX-29のDNA
配列番号59-人工配列の説明:FPOX-30のDNA
配列番号60-人工配列の説明:FPOX-31のDNA
配列番号61-人工配列の説明:FPOX-32のDNA
配列番号62-人工配列の説明:FPOX-33のDNA
配列番号63-人工配列の説明:FPOX-34のDNA
配列番号64-人工配列の説明:FPOX-35のDNA
配列番号65-人工配列の説明:FPOX-36のDNA
配列番号66-人工配列の説明:FPOX-37のDNA
配列番号67-人工配列の説明:FPOX-38のDNA
配列番号68-人工配列の説明:FPOX-39のDNA
配列番号69-人工配列の説明:FPOX-40のDNA
配列番号70-人工配列の説明:FPOX-41のDNA
配列番号71-人工配列の説明:FPOX-42のDNA
配列番号72-人工配列の説明:FPOX-43のDNA
配列番号73-人工配列の説明:FPOX-44のDNA
配列番号74-人工配列の説明:FPOX-45のDNA
配列番号75-人工配列の説明:FPOX-46のDNA
配列番号76-人工配列の説明:AoFPOXのDNA
配列番号77-人工配列の説明:M58F/S59G-Fプライマー
配列番号78-人工配列の説明:M58F/S59G-Rプライマー
配列番号79-人工配列の説明:G105K-Fプライマー
配列番号80-人工配列の説明:G105K-Rプライマー
配列番号81-人工配列の説明:G183E-Fプライマー
配列番号82-人工配列の説明:G183E-Rプライマー
配列番号83-人工配列の説明:N272D-Fプライマー
配列番号84-人工配列の説明:N272D-Rプライマー
配列番号85-人工配列の説明:P302L-Fプライマー
配列番号86-人工配列の説明:P302L-Rプライマー
配列番号87-人工配列の説明:pTrc-F1プライマー
配列番号88-人工配列の説明:pTrc-Rプライマー
配列番号89-人工配列の説明:pTrc-F2プライマー
配列番号90-人工配列の説明:R61飽和-Fプライマー
配列番号91-人工配列の説明:R61飽和-Rプライマー
配列番号92-人工配列の説明:R63飽和-Fプライマー
配列番号93-人工配列の説明:R63飽和-Rプライマー
配列番号94-人工配列の説明:R61S/R63A-Fプライマー
配列番号95-人工配列の説明:R61S/R63A-Rプライマー
配列番号96-人工配列の説明:L62飽和-Fプライマー
配列番号97-人工配列の説明:L62飽和-Rプライマー
配列番号98-人工配列の説明:Q93E-Fプライマー
配列番号99-人工配列の説明:Q93E-Rプライマー
配列番号100-人工配列の説明:F267Y-Fプライマー
配列番号101-人工配列の説明:F267Y-Rプライマー
配列番号102-人工配列の説明:BglII導入-Fプライマー
配列番号103-人工配列の説明:BglII導入-Rプライマー
配列番号104-人工配列の説明:EP-Rプライマー
配列番号105-人工配列の説明:Y71飽和-Fプライマー
配列番号106-人工配列の説明:Y71飽和-Rプライマー
配列番号107-人工配列の説明:D115飽和-Fプライマー
配列番号108-人工配列の説明:D115飽和-Rプライマー
配列番号109-人工配列の説明:M108飽和-Fプライマー
配列番号110-人工配列の説明:M108飽和-Rプライマー
配列番号111-人工配列の説明:L75A-Fプライマー
配列番号112-人工配列の説明:L75A-Rプライマー
配列番号113-人工配列の説明:L75F-Fプライマー
配列番号114-人工配列の説明:L75F-Rプライマー
配列番号115-人工配列の説明:S34T-Fプライマー
配列番号116-人工配列の説明:S34T-Rプライマー
配列番号117-人工配列の説明:Y52H-Fプライマー
配列番号118-人工配列の説明:Y52H-Rプライマー
配列番号119-人工配列の説明:I57V-Fプライマー
配列番号120-人工配列の説明:I57V-Rプライマー
配列番号121-人工配列の説明:P66H-Fプライマー
配列番号122-人工配列の説明:P66H-Rプライマー
配列番号123-人工配列の説明:D95E-Fプライマー
配列番号124-人工配列の説明:D95E-Rプライマー
配列番号125-人工配列の説明:K105R-Fプライマー
配列番号126-人工配列の説明:K105R-R1プライマー
配列番号127-人工配列の説明:K105R-R2プライマー
配列番号128-人工配列の説明:K108R-Fプライマー
配列番号129-人工配列の説明:K108R-Rプライマー
配列番号130-人工配列の説明:A355S-Fプライマー
配列番号131-人工配列の説明:A355S-Rプライマー
配列番号132-人工配列の説明:AoFPOX-Fプライマー
配列番号133-人工配列の説明:AoFPOX-Rプライマー
Claims (29)
- 配列番号1で表わされるアミノ酸配列からなる蛋白質の61番目のアルギニンが、グリシン、アラニン、バリン、ロイシン、セリン、スレオニン、プロリン、システイン、メチオニン、アスパラギン、グルタミン及びアスパラギン酸からなる群から選ばれるアミノ酸へ置換されたアミノ酸配列からなる、蛋白質。
- 請求項1に記載の蛋白質のアミノ酸配列において、61番目のアミノ酸以外の1以上のアミノ酸が欠失、置換または付加したアミノ酸配列からなり、かつ糖化ヘキサペプチドオキシダーゼ活性を有する、蛋白質。
- 請求項1に記載の蛋白質のアミノ酸配列と90%以上の相同性を有するアミノ酸配列からなり、かつ糖化ヘキサペプチドオキシダーゼ活性を有する、蛋白質。
- 請求項1に記載の蛋白質のアミノ酸残基が下記の(1)~(15)から選ばれる少なくとも1つの変異により改変された、蛋白質。
(1)63番目のアルギニンが、グリシン、プロリン及びアラニンからなる群から選ばれるアミノ酸へ置換された変異
(2)62番目のロイシンがグリシンへ置換された変異
(3)93番目のグルタミンがグルタミン酸へ置換された変異
(4)267番目のフェニルアラニンがチロシンへ置換された変異
(5)71番目のチロシンがセリン又はシステインに置換された変異
(6)115番目のアスパラギン酸が、アスパラギン及びアルギニンからなる群から選ばれるアミノ酸へ置換された変異
(7)108番目のメチオニンがリジン及びアルギニンからなる群から選ばれるアミノ酸へ置換された変異
(8)75番目のロイシンがアラニン及びフェニルアラニンからなる群から選ばれるアミノ酸へ置換された変異
(9)34番目のセリンがスレオニンへ置換された変異
(10)52番目のチロシンがヒスチジンへ置換された変異
(11)57番目のイソロイシンがバリンへ置換された変異
(12)66番目のプロリンがヒスチジンへ置換された変異
(13)95番目のアスパラギン酸がグルタミン酸へ置換された変異
(14)105番目のリジンがアルギニンへ置換された変異
(15)355番目のアラニンがセリンへ置換された変異 - 請求項4に記載の蛋白質のアミノ酸配列において、34番目、52番目、57番目、61番目、62番目、63番目、66番目、71番目、75番目、93番目、95番目、105番目、108番目、115番目、267番目、355番目のアミノ酸以外の少なくとも1つのアミノ酸が欠失、置換または付加したアミノ酸配列からなり、かつ糖化ヘキサペプチドオキシダーゼ活性を有する、蛋白質。
- 配列番号3~37のいずれかで表わされるアミノ酸配列からなる、蛋白質。
- 配列番号3~37のいずれかで表わされるアミノ酸配列と90%以上の相同性を有するアミノ酸配列からなり、かつ糖化ヘキサペプチドオキシダーゼ活性を有する、蛋白質。
- 配列番号6~37のいずれかで表わされるアミノ酸配列からなる、蛋白質。
- 配列番号6~37のいずれかで表わされるアミノ酸配列と90%以上の相同性を有するアミノ酸配列からなり、かつ糖化ヘモグロビンを直接酸化する活性を有する、蛋白質。
- 糖化ヘモグロビンがヘモグロビンA1cである、請求項9に記載の蛋白質。
- 請求項1~10のいずれかに記載の蛋白質をコードするDNA。
- 配列番号41~75のいずれかで表わされる塩基配列からなる、DNA。
- 請求項6に記載の蛋白質をコードする塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ糖化ヘキサペプチドオキシダーゼ活性を有する蛋白質をコードする、DNA。
- 配列番号41~75のいずれかで表わされる塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ糖化ヘキサペプチドオキシダーゼ活性を有する蛋白質をコードする、DNA。
- 配列番号44~75のいずれかで表わされる塩基配列からなる、DNA。
- 請求項8に記載の蛋白質をコードする塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ糖化ヘモグロビンを直接酸化する活性を有する蛋白質をコードする、DNA。
- 配列番号44~75のいずれかで表わされる塩基配列と相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、かつ糖化ヘモグロビンを直接酸化する活性を有する蛋白質をコードする、DNA。
- 糖化ヘモグロビンがヘモグロビンA1cである、請求項16又は17に記載のDNA。
- 請求項11~18のいずれかに記載のDNAを含有する組換えDNA。
- 請求項19に記載の組換えDNAを有する形質転換体。
- 請求項20に記載の形質転換体を培養し、培養物中に請求項1~10のいずれかに記載の蛋白質を生成、蓄積させ、該培養物より該蛋白質を採取する、請求項1~10のいずれかに記載の蛋白質の製造方法。
- 試料中の糖化ヘモグロビンをプロテアーゼと反応させて糖化ヘキサペプチドを生成させ、生成された糖化ヘキサペプチドに請求項1~10のいずれかに記載の蛋白質を反応させ、該反応により生成された物質又は消費された物質を測定することを特徴とする、試料中の糖化ヘモグロビンの測定方法。
- 試料中の糖化ヘモグロビンを請求項8~10のいずれかに記載の蛋白質と反応させ、該反応により生成された物質又は消費された物質を測定することを特徴とする、試料中の糖化ヘモグロビンの測定方法。
- 糖化ヘモグロビンがヘモグロビンA1cである、請求項22又は23に記載の測定方法。
- 前記反応により生成された物質が過酸化水素である、請求項22~24のいずれかに記載の測定方法。
- プロテアーゼ、及び、請求項1~10のいずれかに記載の蛋白質を含む、糖化ヘモグロビン測定用試薬。
- 請求項8~10のいずれかに記載の蛋白質を含む、糖化ヘモグロビン測定用試薬。
- 過酸化水素測定用試薬をさらに含む、請求項26又は27に記載の試薬。
- 糖化ヘモグロビンがヘモグロビンA1cである、請求項26~28のいずれかに記載の試薬。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480039285.8A CN105431533B (zh) | 2013-07-09 | 2014-07-07 | 糖化六肽氧化酶及其用途 |
EP14823525.2A EP3020810B1 (en) | 2013-07-09 | 2014-07-07 | Glycated hexapeptide oxidase and use thereof |
JP2015526318A JP6328115B2 (ja) | 2013-07-09 | 2014-07-07 | 糖化ヘキサペプチドオキシダーゼとその利用 |
US14/898,022 US9944970B2 (en) | 2013-07-09 | 2014-07-07 | Glycated hexapeptide oxidase and use thereof |
HK16108872.8A HK1220728A1 (zh) | 2013-07-09 | 2016-07-25 | 糖化六肽氧化酶及其用途 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013143277 | 2013-07-09 | ||
JP2013-143277 | 2013-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015005258A1 true WO2015005258A1 (ja) | 2015-01-15 |
Family
ID=52279940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/068011 WO2015005258A1 (ja) | 2013-07-09 | 2014-07-07 | 糖化ヘキサペプチドオキシダーゼとその利用 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9944970B2 (ja) |
EP (1) | EP3020810B1 (ja) |
JP (1) | JP6328115B2 (ja) |
CN (1) | CN105431533B (ja) |
HK (1) | HK1220728A1 (ja) |
WO (1) | WO2015005258A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016063984A1 (ja) * | 2014-10-24 | 2016-04-28 | キッコーマン株式会社 | デヒドロゲナーゼ活性の向上したアマドリアーゼ |
WO2016159384A1 (ja) * | 2015-04-03 | 2016-10-06 | キッコーマン株式会社 | 比活性が向上したアマドリアーゼ |
WO2018101389A1 (ja) | 2016-11-30 | 2018-06-07 | 東洋紡株式会社 | ヘモグロビンの糖化率測定方法 |
WO2018221446A1 (ja) | 2017-05-30 | 2018-12-06 | 協和メデックス株式会社 | 糖化ヘモグロビンの測定方法 |
WO2019045052A1 (ja) | 2017-08-31 | 2019-03-07 | キッコーマン株式会社 | 糖化ヘモグロビンオキシダーゼ改変体及び測定方法 |
US11111517B2 (en) | 2016-04-22 | 2021-09-07 | Kikkoman Corporation | HbA1c dehydrogenase |
US11168349B2 (en) | 2016-07-29 | 2021-11-09 | Hitachi Chemical Diagnostics Systems Co., Ltd. | Method for measuring glycated hemoglobin |
JP2022510731A (ja) * | 2019-02-15 | 2022-01-27 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド | 患者の液体試験サンプル中の糖化ヘモグロビンパーセントを決定するためのキャリブレーターおよびコントロール |
US11384381B2 (en) | 2016-07-13 | 2022-07-12 | Kikkoman Corporation | Reaction accelerating agent |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109726510B (zh) * | 2019-01-23 | 2022-12-23 | 山东大学 | 一种蛋白质糖化位点鉴定方法 |
CN112526141B (zh) * | 2020-11-23 | 2024-07-05 | 福建傲农生物科技集团股份有限公司 | 一种谷氨酰胺以及同时测定样品中谷氨酰胺和天冬酰胺的方法 |
CN116217515B (zh) * | 2022-12-20 | 2024-06-18 | 华南师范大学 | 一种亚甲基蓝型探针及其制备方法和在检测半胱氨酸中的应用 |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58110600A (ja) | 1981-12-25 | 1983-07-01 | Kyowa Hakko Kogyo Co Ltd | ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド |
JPS59140885A (ja) | 1983-01-13 | 1984-08-13 | マツクス・プランク・ゲゼルシヤフト・ツア・フエルデルング・デア・ヴイツセンシヤフテン・エ−・フアウ | 植物細胞ゲノムへの発現可能な遺伝子の導入法 |
JPS6070080A (ja) | 1983-02-24 | 1985-04-20 | レイクスニベルシテイト ライデン | 双子葉植物の染色体への外来性dνaの組込方法 |
JPS60251887A (ja) | 1984-05-11 | 1985-12-12 | ノバルティス アクチエンゲゼルシャフト | 植物のプロトプラストの形質転換法 |
JPS63299A (ja) | 1986-04-22 | 1988-01-05 | イミユネツクス・コ−ポレ−シヨン | ヒトg−csfタンパク質の発現 |
JPS63233798A (ja) | 1986-10-09 | 1988-09-29 | Kyowa Hakko Kogyo Co Ltd | 5′−グアニル酸の製造法 |
JPS63248394A (ja) | 1987-04-06 | 1988-10-14 | Kyowa Hakko Kogyo Co Ltd | 核酸関連物質の製造法 |
JPS63309192A (ja) | 1987-02-17 | 1988-12-16 | ファーミング ビーブイ | 効率的な分泌のための乳腺に出される蛋白におけるdna配列 |
JPH02227075A (ja) | 1988-09-29 | 1990-09-10 | Kyowa Hakko Kogyo Co Ltd | 新規ポリペプチド |
JPH0322979A (ja) | 1989-06-19 | 1991-01-31 | Kyowa Hakko Kogyo Co Ltd | 新規プラスミノーゲン活性化因子 |
JPH05336963A (ja) | 1991-12-17 | 1993-12-21 | Kyowa Hakko Kogyo Co Ltd | 新規α2→3シアリルトランスフェラーゼ |
WO1994000977A1 (en) | 1992-07-07 | 1994-01-20 | Japan Tobacco Inc. | Method of transforming monocotyledon |
WO1994023021A1 (en) | 1993-03-29 | 1994-10-13 | Kyowa Hakko Kogyo Co., Ltd. | α-1,3-FUCOSYLTRANSFERASE |
JP2517813B2 (ja) | 1990-05-29 | 1996-07-24 | イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー | 生きている細胞に生物学的物質を導入するための改良された方法および装置 |
JP2606856B2 (ja) | 1986-12-05 | 1997-05-07 | アグラシータス | 生細胞中に遺伝物質担持担体粒子を注入するための装置 |
WO1998012343A1 (fr) | 1996-09-17 | 1998-03-26 | Kyowa Hakko Kogyo Co., Ltd. | Procedes de production de nucleotides de sucre et de glucides complexes |
JP2000333696A (ja) | 1999-05-26 | 2000-12-05 | Arkray Inc | 糖化アミンの測定方法 |
JP2001095598A (ja) | 1999-10-01 | 2001-04-10 | Kikkoman Corp | 糖化蛋白質の測定方法 |
JP2003235585A (ja) | 2001-09-04 | 2003-08-26 | Kikkoman Corp | 新規なフルクトシルペプチドオキシダーゼ |
WO2004038033A1 (ja) | 2002-10-23 | 2004-05-06 | Daiichi Pure Chemicals Co., Ltd. | 脱フルクトシル化方法 |
WO2004104203A1 (ja) | 2003-05-21 | 2004-12-02 | Asahi Kasei Pharma Corporation | ヘモグロビンA1c測定法およびそれに用いる酵素とその製造法 |
WO2008108385A1 (ja) | 2007-03-05 | 2008-09-12 | Kikkoman Corporation | 糖化ヘキサペプチドの測定方法 |
WO2010041715A1 (ja) | 2008-10-09 | 2010-04-15 | 協和メデックス株式会社 | 新規フルクトシルペプチドオキシダーゼ |
JP2010115189A (ja) * | 2008-10-17 | 2010-05-27 | Toyobo Co Ltd | フルクトシルアミノ酸オキシダーゼ改変体およびその利用 |
JP2010233502A (ja) | 2009-03-31 | 2010-10-21 | Toyobo Co Ltd | フルクトシルリジンの影響が低減する糖化タンパク質測定用試薬組成物 |
WO2013162035A1 (ja) * | 2012-04-27 | 2013-10-31 | キッコーマン株式会社 | フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5243878B2 (ja) * | 2008-08-04 | 2013-07-24 | 東洋紡株式会社 | フルクトシルバリルヒスチジン測定用酵素、およびその利用法 |
US10697979B2 (en) | 2013-10-25 | 2020-06-30 | Kikkoman Corporation | Method for measurement of HbA1c using amadoriase that reacts with glycated peptide |
-
2014
- 2014-07-07 EP EP14823525.2A patent/EP3020810B1/en active Active
- 2014-07-07 WO PCT/JP2014/068011 patent/WO2015005258A1/ja active Application Filing
- 2014-07-07 JP JP2015526318A patent/JP6328115B2/ja active Active
- 2014-07-07 US US14/898,022 patent/US9944970B2/en active Active
- 2014-07-07 CN CN201480039285.8A patent/CN105431533B/zh active Active
-
2016
- 2016-07-25 HK HK16108872.8A patent/HK1220728A1/zh unknown
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58110600A (ja) | 1981-12-25 | 1983-07-01 | Kyowa Hakko Kogyo Co Ltd | ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド |
JPS59140885A (ja) | 1983-01-13 | 1984-08-13 | マツクス・プランク・ゲゼルシヤフト・ツア・フエルデルング・デア・ヴイツセンシヤフテン・エ−・フアウ | 植物細胞ゲノムへの発現可能な遺伝子の導入法 |
JPS6070080A (ja) | 1983-02-24 | 1985-04-20 | レイクスニベルシテイト ライデン | 双子葉植物の染色体への外来性dνaの組込方法 |
JPS60251887A (ja) | 1984-05-11 | 1985-12-12 | ノバルティス アクチエンゲゼルシャフト | 植物のプロトプラストの形質転換法 |
JPS63299A (ja) | 1986-04-22 | 1988-01-05 | イミユネツクス・コ−ポレ−シヨン | ヒトg−csfタンパク質の発現 |
JPS63233798A (ja) | 1986-10-09 | 1988-09-29 | Kyowa Hakko Kogyo Co Ltd | 5′−グアニル酸の製造法 |
JP2606856B2 (ja) | 1986-12-05 | 1997-05-07 | アグラシータス | 生細胞中に遺伝物質担持担体粒子を注入するための装置 |
JPS63309192A (ja) | 1987-02-17 | 1988-12-16 | ファーミング ビーブイ | 効率的な分泌のための乳腺に出される蛋白におけるdna配列 |
JPS63248394A (ja) | 1987-04-06 | 1988-10-14 | Kyowa Hakko Kogyo Co Ltd | 核酸関連物質の製造法 |
JPH02227075A (ja) | 1988-09-29 | 1990-09-10 | Kyowa Hakko Kogyo Co Ltd | 新規ポリペプチド |
JPH0322979A (ja) | 1989-06-19 | 1991-01-31 | Kyowa Hakko Kogyo Co Ltd | 新規プラスミノーゲン活性化因子 |
JP2517813B2 (ja) | 1990-05-29 | 1996-07-24 | イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー | 生きている細胞に生物学的物質を導入するための改良された方法および装置 |
JPH05336963A (ja) | 1991-12-17 | 1993-12-21 | Kyowa Hakko Kogyo Co Ltd | 新規α2→3シアリルトランスフェラーゼ |
WO1994000977A1 (en) | 1992-07-07 | 1994-01-20 | Japan Tobacco Inc. | Method of transforming monocotyledon |
WO1994023021A1 (en) | 1993-03-29 | 1994-10-13 | Kyowa Hakko Kogyo Co., Ltd. | α-1,3-FUCOSYLTRANSFERASE |
WO1998012343A1 (fr) | 1996-09-17 | 1998-03-26 | Kyowa Hakko Kogyo Co., Ltd. | Procedes de production de nucleotides de sucre et de glucides complexes |
JP2000333696A (ja) | 1999-05-26 | 2000-12-05 | Arkray Inc | 糖化アミンの測定方法 |
JP2001095598A (ja) | 1999-10-01 | 2001-04-10 | Kikkoman Corp | 糖化蛋白質の測定方法 |
JP2003235585A (ja) | 2001-09-04 | 2003-08-26 | Kikkoman Corp | 新規なフルクトシルペプチドオキシダーゼ |
WO2004038033A1 (ja) | 2002-10-23 | 2004-05-06 | Daiichi Pure Chemicals Co., Ltd. | 脱フルクトシル化方法 |
WO2004038034A1 (ja) | 2002-10-23 | 2004-05-06 | Daiichi Pure Chemicals Co., Ltd. | 新規なフルクトシルペプチドオキシダーゼとその利用 |
WO2004104203A1 (ja) | 2003-05-21 | 2004-12-02 | Asahi Kasei Pharma Corporation | ヘモグロビンA1c測定法およびそれに用いる酵素とその製造法 |
WO2008108385A1 (ja) | 2007-03-05 | 2008-09-12 | Kikkoman Corporation | 糖化ヘキサペプチドの測定方法 |
WO2010041715A1 (ja) | 2008-10-09 | 2010-04-15 | 協和メデックス株式会社 | 新規フルクトシルペプチドオキシダーゼ |
JP2010115189A (ja) * | 2008-10-17 | 2010-05-27 | Toyobo Co Ltd | フルクトシルアミノ酸オキシダーゼ改変体およびその利用 |
JP2010233502A (ja) | 2009-03-31 | 2010-10-21 | Toyobo Co Ltd | フルクトシルリジンの影響が低減する糖化タンパク質測定用試薬組成物 |
WO2013162035A1 (ja) * | 2012-04-27 | 2013-10-31 | キッコーマン株式会社 | フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ |
Non-Patent Citations (56)
Title |
---|
"Baculovirus Expression Vectors, A Laboratory Manual", 1992, W. H. FREEMAN AND COMPANY |
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS |
"Current Protocols in Molecular Biology; Molecular Biology, A Laboratory Manual; Bio/Technology", vol. 6, 1988, pages: 47 |
"Immunology methods manual", ACADEMIC PRESS |
"Methods for General and Molecular Bacteriology", 1994, ASM PRESS |
"Molecular Cloning", 2001 |
"Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS |
AGRIC. BIOL. CHEM., vol. 48, 1984, pages 669 |
AGRIC. BIOL. CHEM., vol. 53, 1989, pages 277 |
AM. J. CLIN. NUTR., vol. 63, 1996, pages 627S |
AM. J. CLIN. NUTR., vol. 63, 1996, pages 639S |
APPL MICROBIOL BIOTECHNOL, vol. 78, no. 5, 2008, pages 775 - 781 |
APPL. MICROBIOL. BIOTECHNOL., vol. 35, 1991, pages 594 - 599 |
APPL. MICROBIOL. BIOTECHNOL., vol. 53, 2000, pages 674 - 679 |
ATSUSHI ICHIYANAGI ET AL.: "Coniochaeta sp. NISL9330 Yurai Fructosyl peptide oxidase no Kishitsu Tokuisei no Kaihen", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, vol. 2012, March 2012 (2012-03-01), pages 4C09A04, XP008175387 * |
ATSUSHI ICHIYANAGI ET AL.: "Tonyobyo Shindan ni Tekishita Fructosyl peptide oxidase no Kaihatsu", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, vol. 2013, March 2013 (2013-03-01), pages 3C15A06, XP008175380 * |
BIO/TECHNOLOGY, vol. 9, 1991, pages 830 |
CLIN CHEM LAB MED, vol. 36, 1998, pages 299 - 308 |
CLIN CHEM LAB MED, vol. 40, 2002, pages 78 - 89 |
DIABETES, vol. 27, no. 2, 1978, pages 102 - 107 |
FERRI, S. ET AL.: "Engineering fructosyl peptide oxidase to improve activity toward the fructosyl hexapeptide standard for HbAlc Measurement", MOL. BIOTECHNOL., vol. 54, no. 3, July 2013 (2013-07-01), pages 939 - 943, XP055174656 * |
GENE, vol. 33, 1985, pages 103 |
GENE, vol. 34, 1985, pages 315 |
GENES DEVELOP., vol. 4, 1990, pages 1288 |
HIROKAWA, K. ET AL.: "Enhancement of thermostability of fungal deglycating enzymes by directed evolution", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 78, no. 5, 2008, pages 775 - 781, XP019586340 * |
J. AM. MED. ASSOC., vol. 199, 1967, pages 519 |
J. BACTERIOL., vol. 153, 1983, pages 163 |
J. BIOCHEM., vol. 101, 1987, pages 1307 |
J. MOL. BIOL., vol. 215, 1990, pages 403 |
KARLIN; ALTSHUL, PRO. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 |
KIM, S. ET AL.: "Construction of engineered fructosyl peptidyl oxidasefor enzyme sensor applications under normal atmospheric conditions", BIOTECHNOL. LETT., vol. 34, 2012, pages 491 - 497, XP035011922 * |
LOWE ET AL., PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 8227 |
METHODS ENZYMOL., vol. 183, 1990, pages 63 |
METHODS ENZYMOL., vol. 194, 1990, pages 182 |
MOL BIOTECHNOL, vol. 54, no. 3, 2013, pages 939 - 943 |
NATURE, vol. 195, 1962, pages 788 |
NATURE, vol. 329, 1987, pages 840 |
NIHON RINSHO KENSA; JIDOKA GAKKAI KAISHI, JOURNAL OF THE JAPAN SOCIETY FOR CLINICAL LABORATORY AUTOMATION, vol. 18, no. 4, 1993, pages 620 |
NUCLEIC ACIDS RES., vol. 16, 1988, pages 6127 |
NUCLEIC ACIDS RES., vol. 18, 1990, pages 6069 |
NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487 |
NUCLEIC ACIDS RESEARCH, vol. 13, 1985, pages 4431 |
PAULSON ET AL., J. BIOL. CHEM., vol. 264, 1989, pages 17619 |
PROC. NATL. ACAD. SCI. USA, 1989, pages 8227 |
PROC. NATL. ACAD. SCI. USA, vol. 69, 1972, pages 2110 |
PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409 |
PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 4889 |
PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 4306 |
PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488 |
PROC. NATL. ACAD. SCI. USA, vol. 84, 1987, pages 7413 |
PROC. NATL. ACAD. SCI., USA, vol. 74, 1977, pages 5463 |
PROC. SOC. BIOL. MED., vol. 73, no. 1, 1950 |
SCIENCE, vol. 122, 1952, pages 501 |
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 256, 1980, pages 3120 - 3127 |
VIROLOGY, vol. 52, 1973, pages 456 |
VIROLOGY, vol. 8, 1959, pages 396 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016063984A1 (ja) * | 2014-10-24 | 2016-04-28 | キッコーマン株式会社 | デヒドロゲナーゼ活性の向上したアマドリアーゼ |
US11499143B2 (en) | 2014-10-24 | 2022-11-15 | Kikkoman Corporation | Amadoriase having enhanced dehydrogenase activity |
EP3786291A1 (en) | 2014-10-24 | 2021-03-03 | Kikkoman Corporation | Amadoriase having enhanced dehydrogenase activity |
WO2016159384A1 (ja) * | 2015-04-03 | 2016-10-06 | キッコーマン株式会社 | 比活性が向上したアマドリアーゼ |
JPWO2016159384A1 (ja) * | 2015-04-03 | 2018-02-01 | キッコーマン株式会社 | 比活性が向上したアマドリアーゼ |
US10934530B2 (en) | 2015-04-03 | 2021-03-02 | Kikkoman Corporation | Amadoriase having improved specific activity |
US11111517B2 (en) | 2016-04-22 | 2021-09-07 | Kikkoman Corporation | HbA1c dehydrogenase |
US11384381B2 (en) | 2016-07-13 | 2022-07-12 | Kikkoman Corporation | Reaction accelerating agent |
US11168349B2 (en) | 2016-07-29 | 2021-11-09 | Hitachi Chemical Diagnostics Systems Co., Ltd. | Method for measuring glycated hemoglobin |
WO2018101389A1 (ja) | 2016-11-30 | 2018-06-07 | 東洋紡株式会社 | ヘモグロビンの糖化率測定方法 |
WO2018221446A1 (ja) | 2017-05-30 | 2018-12-06 | 協和メデックス株式会社 | 糖化ヘモグロビンの測定方法 |
JP7020484B2 (ja) | 2017-05-30 | 2022-02-16 | ミナリスメディカル株式会社 | 糖化ヘモグロビンの測定方法 |
JPWO2018221446A1 (ja) * | 2017-05-30 | 2020-04-02 | 日立化成ダイアグノスティックス・システムズ株式会社 | 糖化ヘモグロビンの測定方法 |
WO2019045052A1 (ja) | 2017-08-31 | 2019-03-07 | キッコーマン株式会社 | 糖化ヘモグロビンオキシダーゼ改変体及び測定方法 |
JP2022510731A (ja) * | 2019-02-15 | 2022-01-27 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド | 患者の液体試験サンプル中の糖化ヘモグロビンパーセントを決定するためのキャリブレーターおよびコントロール |
JP7182724B2 (ja) | 2019-02-15 | 2022-12-02 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド | 患者の液体試験サンプル中の糖化ヘモグロビンパーセントを決定するためのキャリブレーターおよびコントロール |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015005258A1 (ja) | 2017-03-02 |
EP3020810B1 (en) | 2019-04-10 |
HK1220728A1 (zh) | 2017-05-12 |
CN105431533A (zh) | 2016-03-23 |
JP6328115B2 (ja) | 2018-05-23 |
US9944970B2 (en) | 2018-04-17 |
EP3020810A4 (en) | 2017-02-22 |
US20160138073A1 (en) | 2016-05-19 |
CN105431533B (zh) | 2019-06-28 |
EP3020810A1 (en) | 2016-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5665081B2 (ja) | 新規フルクトシルペプチドオキシダーゼ | |
JP6328115B2 (ja) | 糖化ヘキサペプチドオキシダーゼとその利用 | |
JP6726243B2 (ja) | フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ | |
JP5927771B2 (ja) | ヘモグロビンA1cの測定方法 | |
JP2020141690A (ja) | 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法 | |
JP4881854B2 (ja) | ジペプチドの製造法 | |
JP5256039B2 (ja) | ジペプチドの製造法 | |
WO2013115180A1 (ja) | 新規l-アミノ酸オキシダーゼ、l-リジンの測定方法、キット及び酵素センサ | |
JP5121462B2 (ja) | ジペプチドの製造法 | |
JP2009171948A (ja) | ジペプチドの製造法 | |
JPWO2008056759A1 (ja) | ジペプチドの製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480039285.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14823525 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015526318 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14898022 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014823525 Country of ref document: EP |