WO2015003609A1 - 一种具有隔离层的复合衬底及其制造方法 - Google Patents

一种具有隔离层的复合衬底及其制造方法 Download PDF

Info

Publication number
WO2015003609A1
WO2015003609A1 PCT/CN2014/081804 CN2014081804W WO2015003609A1 WO 2015003609 A1 WO2015003609 A1 WO 2015003609A1 CN 2014081804 W CN2014081804 W CN 2014081804W WO 2015003609 A1 WO2015003609 A1 WO 2015003609A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sub
seed
isolation layer
silicon
Prior art date
Application number
PCT/CN2014/081804
Other languages
English (en)
French (fr)
Inventor
陈弘
贾海强
江洋
戴隆贵
王文新
马紫光
王禄
李卫
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Publication of WO2015003609A1 publication Critical patent/WO2015003609A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/04Pattern deposit, e.g. by using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology

Definitions

  • the present invention relates to a substrate for fabricating a semiconductor device, and more particularly to a composite substrate having an isolation layer and a method of fabricating the same. Background technique
  • a silicon material is usually used as a substrate, and various semiconductor devices are fabricated on a silicon substrate by doping, photolithography, deposition, etc., but the semiconductor device and silicon directly fabricated on a silicon substrate are used.
  • the substrate is electrically coupled, resulting in large leakage currents, high power dissipation, and large parasitic capacitance.
  • SOI Silicon On Insulator
  • a new semiconductor device substrate SOI (Silicon On Insulator)
  • SOI Silicon On Insulator
  • the S0I utilizes a silicon oxide insulating layer to block electrical coupling between the top-level semiconductor device and the underlying substrate.
  • the integrated circuit based on SOI has a series of advantages such as small leakage current, low power consumption, small parasitic capacitance and fast response speed, and is the mainstream technology of the new generation integrated circuit chip.
  • the silicon SOI substrate generally comprises a silicon substrate, an insulating spacer layer and a silicon epitaxial layer, wherein the spacer layer is used to isolate the semiconductor epitaxial layer from the silicon substrate in electrical properties or the like.
  • the preparation method of the conventional silicon SOI substrate is complicated, the process is difficult, the cost is high, and the environmental protection is poor.
  • the main step is to form an oxide layer on the silicon substrate, and then pass through the bonding.
  • the bonding process is combined with another silicon wafer bond, and one of the silicon wafers is thinned by a thinning process to prepare a SOI substrate.
  • the invention provides a method for manufacturing a composite substrate having an isolation layer, comprising:
  • the method further comprises the step of: growing a silicon or silicon germanium semiconductor layer on the second sub-isolation layer by lateral growth using at least a portion of the seed region as a seed.
  • the seed layer is epitaxially grown on a silicon substrate at a plurality of openings, and joined at a position intermediate the two openings to form a bonding region, wherein the seed region The junction area is not included.
  • the first sub-isolation layer is composed of an insulating dielectric material.
  • the first sub-isolation layer is composed of a metal material.
  • the first sub-isolation layer is formed by a thermal silicon oxide substrate.
  • the material of the first sub-isolation layer is Si0 2 , Ti0 2 , A1 2 0 3 , Ti 3 0 5 , Zr0 2 , Ta 2 0 5 , SiN, A1N, molybdenum, niobium, A combination of one or more of 4 bar, ruthenium, platinum, titanium, tungsten, chromium.
  • step 3) further comprises etching away a portion of the thickness of the seed layer that is not covered by the mask.
  • the present invention also provides a composite substrate manufactured by the above method, comprising:
  • a second sub-isolation layer covering the opening of the first sub-isolation layer and at least a portion of the first sub-isolation layer, which is formed by oxidation of a silicon film, and having a portion of the silicon film not oxidized for use as a seed region, and the seed region is located at Above a region other than the opening of a sub-isolation layer.
  • a composite substrate according to the present invention further comprising a semiconductor layer covering the first sub-isolation layer and the second sub-isolation layer, the semiconductor layer being formed by lateral growth of at least a portion of the seed region.
  • the method provided by the invention can be formed by using multiple layers of continuous growth, and can also be confirmed
  • the semiconductor layer of the top layer has a good crystal quality, thereby improving the performance of the semiconductor device fabricated in the semiconductor layer.
  • the method provided by the present invention avoids the high-density dislocation defect region by the secondary lateral epitaxy, and uses the region with the lower dislocation defect as the seed layer for the second lateral epitaxy, so that the high-performance heteroepitaxial material can be grown.
  • the isolation layer can be dissolved by a simple substrate stripping technique, so that the semiconductor layer is peeled off and used, and the remaining substrate after peeling can be reused.
  • the manufacturing cost of the device is greatly reduced, and the greening of the semiconductor process is realized.
  • FIG. 1 through 7 are schematic views of a process flow in accordance with an embodiment of the present invention. detailed description
  • This embodiment provides a method for fabricating a silicon SOI substrate having an insulating isolation layer.
  • the process flow is as shown in FIG. 1-7, and includes:
  • a 300 nm thick SiO 2 film is formed as a first sub-isolation layer 2 on the surface of the silicon substrate 1 by thermal oxidation, and then formed in the first sub-isolation layer 2 by photolithography and etching processes.
  • a plurality of openings 21 exposing the surface of the silicon substrate 1, the plurality of openings 21 forming a grating pattern having a period of 4 micrometers and an opening 21 having a width of 1 micrometer;
  • a silicon film is prepared by using a CVD lateral epitaxial growth technique with the silicon substrate 1 exposed at the opening 21 as a seed layer 3, which is composed of a plurality of silicon substrates at the openings 21. 1 begins epitaxial growth, then laterally epitaxially and joined at a position intermediate the two openings 21, forming a bonding region 202, and finally completely covering the first sub-isolation layer 2, wherein the thickness of the laterally epitaxial portion of the seed layer 3 is 300 nm;
  • the surface of the seed layer 3 composed of the laterally grown silicon film is steamed. a process of photolithography, photolithography, lift-off, etching, etc., forming a patterned 300 nm thick molybdenum metal film mask 4, the mask 4 having a grating pattern with a period of 4 micrometers and a grating-like stripe width of 1 micron
  • the grating mask 4 covers only a portion of the seed layer 3 between the openings 21 and does not cover the land 202 of the seed layer 3;
  • the silicon seed layer 3 is etched with the molybdenum mask 4 as an etch barrier layer, leaving a seed layer 3 of 150 nm thick;
  • a thermal oxidation process is performed, and the silicon seed layer 3 not covered by the molybdenum mask 4 is thermally oxidized into a silicon dioxide layer in the oxidation process to serve as the second sub-isolation layer 201, leaving Part of the seed layer 3 blocked by the molybdenum mask 4 is not oxidized as the seed region 31. Since the 150 nm thick seed layer 3 is etched in the step 4), the time for thermally oxidizing the seed layer 3 can be shortened. Some of the unoxidized seed layer 3 may remain in the opening 21, and there may be no residue of the seed layer 3, which does not affect the subsequent process and the final performance of the obtained product, so the process margin is large;
  • the molybdenum mask 4 is removed to expose the seed region 31;
  • a silicon SOI substrate having a silicon oxide insulating spacer as shown in FIG. It comprises a silicon substrate 1, an isolation layer composed of the first sub-isolation layer 2 and the second sub-isolation layer 201, and a silicon semiconductor layer 301 on the isolation layer, wherein the first sub-isolation layer on the silicon substrate has an opening therein.
  • the second sub-isolation layer 201 covers the opening 21 of the first sub-isolation layer and at least a portion of the first sub-isolation layer 2, and the first sub-isolation layer 2 is oxidized by a silicon thin film, and the portion having no oxidation is used as a seed region. 31.
  • the seed region 31 is located above the opening 21 of the first sub-isolation layer, and the semiconductor layer covers the first sub-isolation layer 2 and the second sub-isolation layer 201, and the semiconductor layer is formed by lateral growth of the seed region 31.
  • the Si film is initially formed in the opening 21 in the first sub-spacer layer 2.
  • the defects of the Si epitaxial film are gradually reduced, and the crystal quality of the laterally grown Si is gradually increased. Therefore, in the lateral growth process, the lattice structure of Si gradually becomes complete, and the farther away from the opening 21, the less defects and the higher the crystal quality.
  • the epitaxial layer lattice structure of the land 202 may be poor due to the influence of the material system and growth conditions.
  • the seed layer in the bonding region 202 is etched away, and only the lateral epitaxial film other than the bonding region 202, that is, the portion having a higher crystal quality, is used as a seed and then subjected to secondary epitaxy, thereby being capable of being in an amorphous isolation layer.
  • a Si semiconductor layer 301 having a higher crystal quality is formed thereon. Therefore, the composite with the isolation layer prepared by the method provided by this embodiment In the substrate, the semiconductor layer has high crystal quality and few defects, so that the performance of the semiconductor device fabricated in the semiconductor layer can be improved.
  • the method of forming the first sub-isolation layer is not limited to the thermal oxidation method, and the first sub-isolation layer may be formed on the silicon substrate 1 by other methods such as a CVD method or the like.
  • the first sub-isolation layer material used in the present invention may include an insulating dielectric material (ie, an electrical isolation layer material), a highly reflective material such as a metal (ie, an optical isolation layer material, such as impervious to Light material).
  • the first sub-space layer material includes, but is not limited to, SiO 2 , Ti 0 2 , A 1 2 0 3 , Ti 3 0 5 , Zr0 2 , Ta 2 0 5 , SiN, A1N, molybdenum, niobium, palladium, iridium, platinum, titanium, Tungsten, chromium, and combinations of the above materials.
  • the spacer layer referred to in the present invention is not limited to electrical and optical isolation, and may be isolated from the semiconductor layer and the substrate layer on both sides in other physical or chemical parameters. More broadly, the barrier layer referred to in the present invention refers to a layer that spatially separates the semiconductor layer from the substrate.
  • the above step 4) may also be omitted, and the purpose of completely oxidizing the seed layer 3 is achieved by extending the thermal oxidation time in the step 5).
  • the material of the mask 4 is not limited to molybdenum, and may be other materials having a higher melting point than the temperature of the hot silicon oxide seed layer 3 in the step 5), such as a high melting point metal.
  • Thermal oxidation of silicon to silicon oxide typically requires 700. Above the temperature, the material of the mask 4 needs to have a melting point higher than 700°.
  • the plurality of openings 21 formed in the first sub-spacer layer 2 may also be other patterns, such as a matrix.
  • the film subjected to the secondary lateral epitaxial growth using the seed region 31 may also be a silicon germanium semiconductor layer. Since silicon germanium can be mutually dissolved in an arbitrary ratio, a silicon germanium semiconductor layer having a very high crystal quality can be laterally epitaxially grown by using the silicon seed region 31. Silicon process technology.
  • the secondary lateral epitaxy is used to avoid the high-density dislocation defect region, and the region with the lower dislocation defect is used as the seed layer for the second lateral epitaxy, and the growth can be high.
  • a silicon or germanium silicon epitaxial material is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)
  • Element Separation (AREA)

Abstract

一种具有隔离层的复合衬底的制造方法,包括:1)在硅基底上形成具有露出该硅基底的开口的第一子隔离层;2)利用横向生长法在第一子隔离层和所述硅基底上形成硅薄膜构成的种子层;3)在种子层上形成掩模,覆盖所述开口之间的部分种子层;4)将种子层热氧化为二氧化硅层以作为第二子隔离层,其中所述掩模的熔点高于热氧化种子层的温度;5)去除掩模,露出被所述掩模覆盖的部分种子层,以作为种子区。

Description

一种具有隔离层的复合衬底及其制造方法 技术领域
本发明涉及一种用于制造半导体器件的衬底, 尤其涉及一种具有隔离 层的复合衬底及其制造方法。 背景技术
在半导体工业中, 通常使用硅材料作为衬底, 通过掺杂、 光刻、 沉积 等手段在硅衬底上制作出各种半导体器件, 但是这种在硅衬底上直接制作 的半导体器件与硅衬底是电气耦合的, 会导致较大的漏电流、 高功耗和大 的寄生电容。
近年来发展出了一种新的半导体器件衬底一一绝缘体上硅晶片 (SOI, Silicon On Insulator ), 它由顶层的单晶硅、 中间层的绝缘体氧化硅和底层 的衬底单晶硅组成, 在顶层的单晶硅中形成半导体器件。 S0I利用氧化硅 绝缘层隔断了顶层的半导体器件与底层衬底之间的电气耦合。基于 SOI的 集成电路具有漏电流小、 功耗低、 寄生电容小、 响应速度快等一系列优点, 是新一代集成电路芯片的主流技术。
硅 SOI衬底一般包括硅基底、 绝缘隔离层和硅外延层, 其中的隔离层 用于在电学等性质上使半导体外延层与硅基底相隔离。
常规硅 SOI衬底的制备方法比较复杂、 工艺难度大、 高成本、 环保性 差, 例如申请号为 200510115630.4的专利中所描述的, 主要的步骤是在硅 衬底上形成氧化层, 之后通过邦定(bonding )工艺和另一硅片键和, 再通 过减薄工艺将其中一面硅片减薄, 制备成 S0I衬底。
之所以现有技术中通常釆用复杂的 "邦定 (bonding ) 工艺", 是因为 具有绝缘隔离层的 S0I衬底无法通过多层连续生长的方式在基底上先后生 长隔离层和半导体层而形成。 这是因为绝缘隔离层通常为非晶态, 因此后 续生长的硅半导体外延层难以形成完整的晶格结构。 发明内容
因此, 本发明的目的在于提供一种具有隔离层的复合衬底及其制造方 法。 本发明提供了一种具有隔离层的复合衬底的制造方法, 包括:
1 )在硅基底上形成具有露出该硅基底的开口的第一子隔离层;
2 ) 利用横向生长法在第一子隔离层和所述硅基底上形成硅薄膜构成 的种子层;
3 )在种子层上形成掩膜, 覆盖所述开口之间的部分种子层;
4 ) 将种子层热氧化为二氧化硅层以作为第二子隔离层, 其中所述掩 膜的熔点高于热氧化种子层的温度;
5 )去除掩膜, 露出被所述掩膜覆盖的部分种子层, 以作为种子区。 根据本发明提供的方法, 还包括步骤 6 ) 以所述种子区的至少一部分 作为种子, 利用横向生长法在第二子隔离层上生长硅或硅锗半导体层。
根据本发明提供的方法, 其中步骤 2 ) 中, 所述种子层由多个开口处 的硅基底上开始外延生长,并在两个开口中间的位置处接合,形成接合区, 其中所述种子区不包括所述接合区。
根据本发明提供的方法, 其中所述第一子隔离层由绝缘介质材料构 成。
根据本发明提供的方法 , 其中所述第一子隔离层由金属材料构成。 根据本发明提供的方法, 其中步骤 1 ) 中, 第一子隔离层通过热氧化 硅基底而形成。
根据本发明提供的方法 ,其中所述第一子隔离层的材料为 Si02、 Ti02、 A1203、 Ti305、 Zr02、 Ta205、 SiN、 A1N、 钼、 铑、 4巴、 钽、 铂、 钛、 钨、 铬中的一种或多种的组合。
根据本发明提供的方法 , 其中步骤 3 )还包括刻蚀掉一部分厚度的未 被掩膜覆盖的种子层。
本发明还提供一种由上述方法制造的复合衬底, 包括:
硅基底;
硅基底上的具有开口的第一子隔离层;
第二子隔离层, 覆盖第一子隔离层的开口以及至少部分第一子隔离 层, 由硅薄膜氧化而成,且其中具有未被氧化的部分硅薄膜以用作种子区, 种子区位于第一子隔离层的开口以外的区域上方。
根据本发明提供的复合衬底, 还包括覆盖第一子隔离层和第二子隔离 层的半导体层, 该半导体层由种子区的至少一部分通过横向生长而形成。
本发明提供的方法能够釆用多层连续生长的方式形成, 同时还能够确 保顶层的半导体层具有良好的晶体质量, 从而提高半导体层中所制作的半 导体器件的性能。
另外本发明提供的方法通过二次横向外延, 避免了高密度位错缺陷 区, 利用位错缺陷较低的区域作为种子层进行第二次横向外延, 可以生长 高性能的异质外延材料。
本发明提供的方法所制造的复合衬底中, 由于隔离层的存在, 可通过 简易的衬底剥离技术, 使隔离层溶解, 从而使半导体层剥离下来使用, 剥 离后剩余的基底可再次使用, 大幅降低了器件的制作成本, 实现了半导体 工艺的绿色环保化。 附图说明
以下参照附图对本发明实施例作进一步说明, 其中:
图 1-图 7为根据本发明的一个实施例的工艺流程的示意图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合具体 实施例, 对本发明进一步详细说明。 应当理解, 此处所描述的具体实施例 仅仅用以解释本发明, 并不用于限定本发明。 实施例 1
本实施例提供一种具有绝缘隔离层的硅 SOI衬底的制造方法,其工艺 流程如图 1-7所示, 包括:
1 )如图 1所示,利用热氧化法在硅基底 1的表面形成 300nm厚的 Si02 薄膜作为第一子隔离层 2, 然后利用光刻、 刻蚀工艺在第一子隔离层 2中 形成多个开口 21, 露出硅基底 1的表面, 多个开口 21构成光栅状图形, 其周期为 4微米, 开口 21宽为 1微米;
2 )如图 2所示, 利用 CVD侧向外延生长技术, 以开口 21处暴露出 的硅基底 1为种子制备硅薄膜以作为种子层 3, 该种子层 3由多个开口 21 处的硅基底 1开始外延生长, 然后横向外延并在两个开口 21 中间的位置 处接合, 形成接合区 202, 最终完全覆盖第一子隔离层 2, 其中种子层 3 横向外延的部分的厚度为 300nm;
3 )如图 3所示, 在横向生长的硅薄膜构成的种子层 3的表面通过蒸 发、 光刻、 剥离、 腐蚀等工艺, 形成图案化的 300nm厚的钼金属膜掩膜 4, 该掩膜 4呈光栅状图形, 该光栅状图形的周期为 4微米, 光栅状条纹宽 1 微米, 该光栅状掩膜 4仅覆盖开口 21之间的一部分种子层 3, 且不覆盖种 子层 3的接合区 202;
4 )如图 4所示,以钼掩膜 4为刻蚀阻挡层刻蚀硅种子层 3,留下 150nm 厚的种子层 3;
5 )如图 5所示, 进行热氧化工艺, 未被钼掩膜 4覆盖区域的硅种子 层 3在氧化工艺中被热氧化成为二氧化硅层以作为第二子隔离层 201, 留 下被钼掩膜 4遮挡的部分种子层 3未被氧化以作为种子区 31。由于步骤 4 ) 中刻蚀掉了 150nm厚的种子层 3, 因此可缩短热氧化种子层 3的时间。 开 口 21中可能会残留部分未被氧化种子层 3, 也可能没有种子层 3的残留, 这并不影响后续工艺以及所得产品的最终性能, 因此工艺裕度较大;
6 )如图 6所示, 去除钼掩膜 4, 露出种子区 31 ;
7 )如图 7所示, 釆用 CVD工艺, 利用种子区 31的硅材料作为种子, 进行硅的二次横向外延生长,直至第二子隔离层 201上的硅薄膜形成一体, 从而构成如图 7所示的具有氧化硅绝缘隔离层的硅 SOI衬底。其包括硅基 底 1、 由第一子隔离层 2和第二子隔离层 201—起组成的隔离层以及隔离 层上的硅半导体层 301, 其中硅基底上的第一子隔离层中具有开口, 第二 子隔离层 201覆盖第一子隔离层的开口 21以及至少部分第一子隔离层 2, 第一子隔离层 2由硅薄膜氧化而成, 且其中具有未被氧化的部分用作种子 区 31, 种子区 31位于第一子隔离层的开口 21以外的区域上方, 半导体层 覆盖第一子隔离层 2和第二子隔离层 201,该半导体层由种子区 31的横向 生长而形成。
在横向生长种子层 3的过程中, Si薄膜最初在第一子隔离层 2中的开 口 21 中形成。 随着横向外延生长的进行, Si外延薄膜的缺陷逐渐减少, 横向生长的 Si的晶体质量逐渐提高。 因此在横向生长过程中, Si的晶格 结构逐渐趋于完整, 离开口 21 越远缺陷越少, 晶体质量越高。 但是在两 个开口 21 的中间位置处, 由于材料体系和生长条件的影响, 接合区 202 的外延层晶格结构可能会较差。 因此接合区 202中的种子层被刻蚀掉, 仅 利用接合区 202以外的横向外延薄膜, 即晶体质量较高的这部分, 作为种 子再进行二次外延,从而能够在非晶态的隔离层上形成晶体质量更高的 Si 半导体层 301。 因此, 本实施例提供的方法所制备出的具有隔离层的复合 衬底中, 半导体层的晶体质量高、 缺陷少, 从而能够提高半导体层中所制 作的半导体器件的性能。
根据本发明的其他实施例, 也可以利用接合区 202中的种子层 3作为 种子再进行二次外延, 也同样可以实现本发明的目的, 但优选为利用接合 区 202以外的种子层 3作为种子进行二次外延。
根据本发明的其他实施例, 其中第一子隔离层的形成方法不限于热氧 化法, 也可以利用其他方法, 例如 CVD法等, 在硅基底 1上形成第一子 隔离层。
根据本发明的其他实施例, 其中本发明中所釆用的第一子隔离层材料 可包括绝缘介质材料(即电学隔离层材料)、 金属等高反射材料 (即光学 隔离层材料, 例如不透光的材料)。 第一子隔离层材料包括但不限于 Si02、 Ti02、 A1203、 Ti305、 Zr02、 Ta205、 SiN、 A1N、 钼、 铑、 钯、 钽、 铂、 钛、 钨、 铬、 以及上述材料构成的组合。 本发明中所说的隔离层不限于电学和 光学上的隔离, 也可以在其他物理或化学参数上使其两侧的半导体层和基 底层相隔离。 更广义地讲, 本发明中所指的隔离层是指将半导体层与基底 在空间上分离的层。
根据本发明的其他实施例, 其中上述步骤 4 )也可以被省略, 通过在 步骤 5 ) 中延长热氧化时间来达到完全氧化种子层 3的目的。
根据本发明的其他实施例, 其中掩膜 4的材料不限于钼, 也可以为其 他熔点高于步骤 5 ) 中热氧化硅种子层 3的温度的材料, 例如高熔点的金 属。 将硅热氧化成氧化硅通常需要 700。 以上的温度, 因此掩膜 4的材料 的熔点需要高于 700° 。
根据本发明的其他实施例,其中第一子隔离层 2中形成的多个开口 21 也可以为其他图形, 例如矩阵状。
根据本发明的其他实施例, 其中步骤 7 )中, 利用种子区 31进行二次 横向外延生长的薄膜还可以为硅锗半导体层。 由于硅锗能够以任意比例互 溶, 因此利用硅种子区 31 也可以横向外延生长出晶体质量非常高的硅锗 半导体层。 硅工艺技术。
本发明提供的方法中通过二次横向外延, 避免了高密度位错缺陷区, 利用位错缺陷较低的区域作为种子层进行第二次横向外延, 可以生长高性 能的硅或锗硅外延材料。
最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限 制。 尽管参照实施例对本发明进行了详细说明, 本领域的普通技术人员应当 理解, 对本发明的技术方案进行修改或者等同替换, 都不脱离本发明技术方 案的精神和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权 利 要 求
1. 一种具有隔离层的复合衬底的制造方法, 包括:
1 )在硅基底上形成具有露出该硅基底的开口的第一子隔离层;
2 ) 利用横向生长法在第一子隔离层和所述硅基底上形成硅薄膜构成 的种子层;
3 )在种子层上形成掩膜, 覆盖所述开口之间的部分种子层;
4 ) 将种子层热氧化为二氧化硅层以作为第二子隔离层, 其中所述掩 膜的熔点高于热氧化种子层的温度;
5 )去除掩膜, 露出被所述掩膜覆盖的部分种子层, 以作为种子区。
2. 根据权利要求 1所述的方法, 还包括步骤 6 ): 以所述种子区的至 少一部分作为种子, 利用横向生长法在第二子隔离层上生长硅或硅锗半导 体层。
3. 根据权利要求 1所述的方法, 其中步骤 2 ) 中, 所述种子层由多个 开口处的硅基底上开始外延生长, 并在两个开口中间的位置处接合, 形成 接合区, 其中所述种子区不包括所述接合区。
4. 根据权利要求 1所述的方法,其中所述第一子隔离层由绝缘介质材 料构成。
5. 根据权利要求 1所述的方法,其中所述第一子隔离层由金属材料构 成。
6. 根据权利要求 1所述的方法, 其中步骤 1 ) 中, 第一子隔离层通过 热氧化硅基底而形成。
7. 根据权利要求 1 所述的方法, 其中所述第一子隔离层的材料为 Si02、 Ti02、 A1203、 Ti305、 Zr02、 Ta205、 SiN、 A1N、 钼、 铑、 钯、 钽、 铂、 钛、 钨、 铬中的一种或多种的组合。
8. 根据权利要求 1所述的方法, 其中步骤 3 )还包括刻蚀掉一部分厚 度的未被掩膜覆盖的种子层。
9. 一种复合衬底, 包括:
硅基底;
硅基底上的具有开口的第一子隔离层;
第二子隔离层, 覆盖第一子隔离层的开口以及至少部分第一子隔离 层, 由硅薄膜氧化而成,且其中具有未被氧化的部分硅薄膜以用作种子区, 种子区位于第一子隔离层的开口以外的区域上方。
10. 根据权利要求 9所述的复合衬底, 还包括覆盖第一子隔离层和第 二子隔离层的半导体层, 该半导体层由种子区的至少一部分通过横向生长 而形成。
PCT/CN2014/081804 2013-07-09 2014-07-08 一种具有隔离层的复合衬底及其制造方法 WO2015003609A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310286462.X 2013-07-09
CN201310286462.XA CN103413776B (zh) 2013-07-09 2013-07-09 一种具有隔离层的复合衬底及其制造方法

Publications (1)

Publication Number Publication Date
WO2015003609A1 true WO2015003609A1 (zh) 2015-01-15

Family

ID=49606775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081804 WO2015003609A1 (zh) 2013-07-09 2014-07-08 一种具有隔离层的复合衬底及其制造方法

Country Status (2)

Country Link
CN (1) CN103413776B (zh)
WO (1) WO2015003609A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413776B (zh) * 2013-07-09 2015-07-22 中国科学院物理研究所 一种具有隔离层的复合衬底及其制造方法
CN108336084B (zh) * 2018-02-28 2020-11-24 电子科技大学 高压隔离层及其制备方法和应用
WO2021226839A1 (zh) * 2020-05-12 2021-11-18 苏州晶湛半导体有限公司 Ⅲ族氮化物结构及其制作方法
CN115142137B (zh) * 2021-12-14 2024-02-13 常州瞻驰光电科技股份有限公司 一种新型光学镀膜材料及其制备方法
CN114883425B (zh) * 2022-05-25 2023-11-21 中国科学院电工研究所 一种晶硅异质结太阳电池的迎光面结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891092A (en) * 1986-01-13 1990-01-02 General Electric Company Method for making a silicon-on-insulator substrate
FR2646860A1 (fr) * 1989-05-15 1990-11-16 Sanyo Electric Co Procede pour la formation d'une structure soi
US5402989A (en) * 1991-06-11 1995-04-04 Rohm Co., Ltd. Method for manufacturing semiconductor device having grown layer on insulating layer
CN1411033A (zh) * 2001-09-26 2003-04-16 株式会社东芝 半导体装置用衬底的制造方法及半导体装置用衬底
CN103413776A (zh) * 2013-07-09 2013-11-27 中国科学院物理研究所 一种具有隔离层的复合衬底及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137723A (ja) * 1990-09-28 1992-05-12 Nippon Steel Corp 半導体積層基板の製造方法
JP2004055943A (ja) * 2002-07-23 2004-02-19 Matsushita Electric Ind Co Ltd 半導体装置とその製造方法
US20060113596A1 (en) * 2004-12-01 2006-06-01 Samsung Electronics Co., Ltd. Single crystal substrate and method of fabricating the same
JP2007335801A (ja) * 2006-06-19 2007-12-27 Toshiba Corp 半導体装置およびその製造方法
CN101924021B (zh) * 2010-07-02 2012-07-04 北京北方微电子基地设备工艺研究中心有限责任公司 半导体装置及其制造方法和发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891092A (en) * 1986-01-13 1990-01-02 General Electric Company Method for making a silicon-on-insulator substrate
FR2646860A1 (fr) * 1989-05-15 1990-11-16 Sanyo Electric Co Procede pour la formation d'une structure soi
US5402989A (en) * 1991-06-11 1995-04-04 Rohm Co., Ltd. Method for manufacturing semiconductor device having grown layer on insulating layer
CN1411033A (zh) * 2001-09-26 2003-04-16 株式会社东芝 半导体装置用衬底的制造方法及半导体装置用衬底
CN103413776A (zh) * 2013-07-09 2013-11-27 中国科学院物理研究所 一种具有隔离层的复合衬底及其制造方法

Also Published As

Publication number Publication date
CN103413776A (zh) 2013-11-27
CN103413776B (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
US9029986B2 (en) Transistors with dual layer passivation
WO2015003609A1 (zh) 一种具有隔离层的复合衬底及其制造方法
WO2012155831A1 (zh) 锗和iii-v混合共平面的半导体结构及其制备方法
TW201344758A (zh) 半導體裝置及其製造方法
TW200917338A (en) Structures having lattice-mismatched single-crystalline semiconductor layers on the same lithographic level and methods of manufacturing the same
WO2012155830A1 (zh) 锗和iii-v混合共平面的绝缘体上硅(s0i)半导体结构及其制备方法
US20130187254A1 (en) Semiconductor Chip and Methods for Producing the Same
TWI258172B (en) Transistor device with strained Ge layer by selectively grown and fabricating method thereof
US9773670B2 (en) Method of preparation of III-V compound layer on large area Si insulating substrate
WO2014190890A1 (zh) 一种具有隔离层的复合衬底及其制造方法
TW201037769A (en) Thin film transistor and manufacturing method thereof
JPH06224404A (ja) 集積回路装置の製造方法
US9082716B2 (en) Method of manufacturing semiconductor device
TW201725173A (zh) 用於製造多層mems組件的方法及相應的多層mems組件
JPS5828731B2 (ja) ゼツエンキバンジヨウヘノ シリコンソウサクセイホウホウ
JP3189055B2 (ja) 化合物半導体装置用ウエハ及びその製造方法
JP2664458B2 (ja) 素子分離方法
JP2014150248A (ja) 素子形成用基板の作製方法
JPH0897461A (ja) 半導体受光素子,及びその製造方法
TW201210020A (en) Transistor with an etching stop layer and manufacture method thereof
JPH0396225A (ja) 半導体基板の製造方法
JPS61168240A (ja) 誘電体による半導体層の絶縁分離方法
JPS62124753A (ja) 絶縁層分離基板の製法
JPH0399421A (ja) Soi構造の形成方法
JPS6038830A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822258

Country of ref document: EP

Kind code of ref document: A1