WO2021226839A1 - Ⅲ族氮化物结构及其制作方法 - Google Patents

Ⅲ族氮化物结构及其制作方法 Download PDF

Info

Publication number
WO2021226839A1
WO2021226839A1 PCT/CN2020/089836 CN2020089836W WO2021226839A1 WO 2021226839 A1 WO2021226839 A1 WO 2021226839A1 CN 2020089836 W CN2020089836 W CN 2020089836W WO 2021226839 A1 WO2021226839 A1 WO 2021226839A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
iii nitride
epitaxial layer
nitride epitaxial
layer
Prior art date
Application number
PCT/CN2020/089836
Other languages
English (en)
French (fr)
Inventor
程凯
刘慰华
Original Assignee
苏州晶湛半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶湛半导体有限公司 filed Critical 苏州晶湛半导体有限公司
Priority to PCT/CN2020/089836 priority Critical patent/WO2021226839A1/zh
Priority to US17/434,543 priority patent/US20230053953A1/en
Priority to CN202080097533.XA priority patent/CN115461841A/zh
Publication of WO2021226839A1 publication Critical patent/WO2021226839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous

Definitions

  • This application relates to the field of semiconductor technology, in particular to a group III nitride structure and a manufacturing method thereof.
  • Group III nitrides are the third-generation new semiconductor materials following the first and second-generation semiconductor materials such as Si and GaAs.
  • GaN has many advantages as a wide-gap semiconductor material, such as high saturation drift speed, high breakdown voltage, It has excellent carrier transport performance and can form AlGaN, InGaN ternary alloys and AlInGaN quaternary alloys, and it is easy to fabricate GaN-based PN junctions.
  • GaN-based materials and semiconductor devices have received extensive and in-depth research in recent years.
  • MOCVD Metal-organic Chemical Vapor Deposition
  • the demand for dislocation density of GaN-based materials in terminal products has further increased, and the mainstream MOCVD epitaxy equipment is used in the traditional mode to use mainstream GaN-based epitaxial substrates.
  • the area density of dislocations of GaN-based materials epitaxially grown on aluminum oxide (Al 2 O 3) substrates is about 1 to 3E8/cm ⁇ 3.
  • the dislocation density of GaN-based materials must be further reduced.
  • the purpose of the present invention is to provide a III-nitride structure and a manufacturing method thereof, which can reduce the dislocation density of III-nitride materials and improve the performance of III-nitride semiconductor devices.
  • the first aspect of the present invention provides a method for manufacturing a group III nitride structure, including:
  • At least a second mask layer is formed on the bottom wall of the groove; using the second mask layer as a mask, the first group III nitride epitaxial layer is epitaxially grown for the first time, and formed by lateral growth A second group III nitride epitaxial layer, the second group III nitride epitaxial layer filling the groove;
  • the lateral direction in the present invention refers to the thickness direction perpendicular to the first group III nitride epitaxial layer.
  • the first group III nitride epitaxial layer is located on a substrate, the bottom wall of the groove exposes the substrate, and the substrate serves as the second mask layer.
  • the second mask layer is further formed on the patterned first mask layer, and the third group III nitride epitaxial layer is grown and formed on the second mask layer.
  • the material of the first mask layer includes: at least one of silicon dioxide and silicon nitride; and/or the material of the second mask layer includes: silicon dioxide and silicon nitride. At least one of.
  • the first group III nitride epitaxial layer, the second group III nitride epitaxial layer and the third group III nitride epitaxial layer are made of the same material, including: GaN, AlN, AlGaN, InGaN, and At least one of AlInGaN.
  • the epitaxial growth process of the second group III nitride epitaxial layer and/or the third group III nitride epitaxial layer includes: atomic layer deposition, chemical vapor deposition, molecular beam epitaxial growth, plasma At least one of volume-enhanced chemical vapor deposition, low-pressure chemical vapor deposition, and metal-organic compound chemical vapor deposition.
  • the epitaxial growth processes of the second group III nitride epitaxial layer and the third group III nitride epitaxial layer are both metal organic compound chemical vapor deposition; forming the second mask layer, and growing The second group III nitride epitaxial layer and the third group III nitride epitaxial layer are performed in the same metal organic compound chemical vapor deposition equipment.
  • etching the groove, forming the second mask layer, and growing the second group III nitride epitaxial layer and the third group III nitride epitaxial layer in the same metal organic compound chemical vapor phase In the deposition equipment.
  • the patterned first mask layer is still in contact with the third group III nitride epitaxial layer.
  • the fourth group III nitride epitaxial layer is grown on the nitride epitaxial layer.
  • the method further includes: growing an LED structure on the fourth group III nitride epitaxial layer.
  • the method further includes: growing an LED structure on the third group III nitride epitaxial layer.
  • the method for forming the first group III nitride epitaxial layer includes: epitaxially growing the first group III nitride epitaxial layer on a substrate.
  • the substrate includes: at least one of sapphire, silicon carbide, and silicon.
  • the second aspect of the present invention provides a group III nitride structure, including:
  • the second group III nitride epitaxial layer extending from the opening of the patterned first mask layer into the first group III nitride epitaxial layer, and the bottom wall of the second group III nitride epitaxial layer and A second mask layer is provided between the first group III nitride epitaxial layer, and the sidewall of the second group III nitride epitaxial layer is connected to the first group III nitride epitaxial layer;
  • a third group III nitride epitaxial layer located on the second group III nitride epitaxial layer and the patterned first mask layer, the first group III nitride epitaxial layer, the second group III nitride epitaxial layer The [0001] crystal orientation of the nitride epitaxial layer and the third group III nitride epitaxial layer is parallel to the thickness direction.
  • the first group III nitride epitaxial layer, the second group III nitride epitaxial layer and the third group III nitride epitaxial layer are made of the same material, including: GaN, AlN, AlGaN, InGaN, and At least one of AlInGaN.
  • it further includes a substrate, and the first group III nitride epitaxial layer is located on the substrate.
  • the substrate serves as the second mask layer.
  • the substrate includes: at least one of sapphire, silicon carbide, and silicon.
  • the patterned first mask layer further has the second mask layer, and the third group III nitride epitaxial layer is located on the second mask layer.
  • the material of the first mask layer includes: at least one of silicon dioxide and silicon nitride; and/or the material of the second mask layer includes: silicon dioxide and silicon nitride. At least one of.
  • the second group III nitride epitaxial layer is an in-situ second group III nitride epitaxial layer; and/or the second mask layer is an in-situ second mask layer.
  • the third group III nitride epitaxial layer located on the patterned first mask layer is not healed, and the patterned first mask layer and the third group III nitride epitaxial layer There is a fourth group III nitride epitaxial layer on the layer.
  • it further includes: an LED structure on the fourth group III nitride epitaxial layer.
  • it further includes: an LED structure on the third group III nitride epitaxial layer.
  • the present invention has the following beneficial effects:
  • the group III nitride structure of the present invention first use the patterned first mask layer as a mask to etch the first group III nitride epitaxial layer to form grooves; and then at least in the grooves A second mask layer is formed on the bottom wall.
  • the first group III nitride epitaxial layer is epitaxially grown for the first time to form a second group III nitride filling the groove by lateral growth Epitaxial layer; after that, the second group III nitride epitaxial layer is epitaxially grown to form a third group III nitride epitaxial layer on the second group III nitride epitaxial layer and the patterned first mask layer .
  • the growth direction is the second of the lateral growth.
  • One epitaxial growth can block the dislocations from continuing to extend upward, which can significantly reduce the dislocation density of the second group III nitride epitaxial layer and the third group III nitride epitaxial layer.
  • the first group III nitride epitaxial layer is located on the substrate, a) a part of the thickness of the first group III nitride epitaxial layer is etched to form a groove; or b) the first group III nitride is etched The entire thickness of the epitaxial layer forms a groove.
  • the manufacturing process of the second mask layer can be omitted, and the substrate serves as the second mask layer.
  • the second mask layer is further formed on the patterned first mask layer, and the third group III nitride epitaxial layer is grown and formed on the second mask layer.
  • this solution has the advantage that the patterning process of the second mask layer can be omitted, and the process is simplified. This is because: using the patterned first mask layer as a mask to etch the first group III nitride epitaxial layer to form grooves, the etching not only removes part of the material in the thickness direction, but also removes it in the lateral direction.
  • the patterned first mask layer has a floating section at the opening of the groove; when the second mask layer is deposited, the floating section will cut off the second mask layer so that only the area outside the groove Deposit on the patterned first mask layer and on the bottom wall of the groove to avoid forming a second mask layer on the sidewall of the groove.
  • the first group III nitride epitaxial layer, the second group III nitride epitaxial layer and the third group III nitride epitaxial layer are made of the same material, or b) the first group III nitride epitaxial layer
  • the material of at least two of the second group III nitride epitaxial layer and the third group III nitride epitaxial layer are different.
  • the material of the first group III nitride epitaxial layer, and/or the second group III nitride epitaxial layer, and/or the third group III nitride epitaxial layer may include: at least one of GaN, AlN, AlGaN, InGaN, and AlInGaN kind.
  • the specific materials of the first group III nitride epitaxial layer, the second group III nitride epitaxial layer and the third group III nitride epitaxial layer can be determined according to their functions, and the specific functions can include: the substrate, buffer layer, potential in the device Barrier layer or channel layer, etc.
  • the epitaxial growth process of the second group III nitride epitaxial layer and the third group III nitride epitaxial layer are both metal organic compound chemical vapor deposition; forming a second mask layer, and growing a second III
  • the group nitride epitaxial layer and the third group III nitride epitaxial layer are performed in the same metal organic compound chemical vapor deposition equipment (MOCVD equipment).
  • MOCVD equipment metal organic compound chemical vapor deposition equipment
  • in-situ processing is that it can reduce the complexity of the process, reduce the transfer process of multiple processes between different devices, and avoid the participation of pollution sources in the process to interfere with the quality of the second group III nitride epitaxial layer and the third group III nitride epitaxial layer.
  • etching the groove, forming the second mask layer, and growing the second group III nitride epitaxial layer and the third group III nitride epitaxial layer are performed in the same MOCVD equipment.
  • the second mask layer is the in-situ second mask layer.
  • the reactive gas in the MOCVD equipment may include Cl 2 and BCl 3 .
  • the above-mentioned mixed gas can chemically react with the first group III nitride epitaxial layer to form a groove.
  • the LED structure is also grown on the third group III nitride epitaxial layer/fourth group III nitride epitaxial layer.
  • the LED structure may include an N-type semiconductor layer, a P-type semiconductor layer, and a quantum well layer located between the N-type semiconductor layer and the P-type semiconductor layer.
  • the first group III nitride epitaxial layer, the second group III nitride epitaxial layer, and the third group III nitride epitaxial layer are used as the substrate of the LED structure, or the first group III nitride epitaxial layer, the second group III nitride epitaxial layer
  • the compound epitaxial layer, the third group III nitride epitaxial layer and the fourth group III nitride epitaxial layer are used as the substrate of the LED structure, which can be used to produce green LED, yellow LED, red LED, and even infrared LED.
  • FIG. 1 is a flowchart of a method for manufacturing a group III nitride structure according to a first embodiment of the present invention
  • FIG. 2 to 4 are schematic diagrams of intermediate structures corresponding to the process in FIG. 1;
  • FIG. 5 is a schematic cross-sectional structure diagram of the group III nitride structure of the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an intermediate structure corresponding to the method for manufacturing a group III nitride structure of the second embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional structure diagram of the group III nitride structure of the second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a cross-sectional structure of a group III nitride structure according to a third embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an intermediate structure corresponding to the method for manufacturing a group III nitride structure of the fourth embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional structure diagram of a group III nitride structure of the fourth embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a cross-sectional structure of a group III nitride structure according to a fifth embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a cross-sectional structure of a group III nitride structure according to a sixth embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional structure diagram of a group III nitride structure according to a seventh embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for fabricating a group III nitride structure according to a first embodiment of the present invention.
  • 2 to 4 are schematic diagrams of intermediate structures corresponding to the process in FIG. 1.
  • 5 is a schematic cross-sectional structure diagram of the group III nitride structure of the first embodiment of the present invention.
  • a first group III nitride epitaxial layer 11 is provided; a patterned first mask layer 12 is formed on the first group III nitride epitaxial layer 11; The formed first mask layer 12 is a mask, and the first group III nitride epitaxial layer 11 is etched to form a groove 11a.
  • the first group III nitride epitaxial layer 11 may be formed on the substrate 10.
  • the substrate 10 may be at least one of sapphire, silicon carbide, and silicon, which is not limited in this embodiment.
  • the group III nitride material of the first group III nitride epitaxial layer 11 may be AlN, or at least one of GaN, AlGaN, InGaN, and AlInGaN, which is not limited in this embodiment. AlN can be used as a nucleation layer.
  • the first group III nitride epitaxial layer 11 has dislocations, and the dislocations are mainly line dislocations in the [0001] crystal orientation, that is, dislocations extending in the thickness direction of the first group III nitride epitaxial layer 11.
  • the first group III nitride epitaxial layer 11 formed on the substrate 10 may have an existing structure, or step S1 may include: epitaxially growing the first group III nitride epitaxial layer 11 on the substrate 10.
  • the formation process of the first group III nitride epitaxial layer 11 may include: atomic layer deposition (ALD, Atomic Layer Deposition), or chemical vapor deposition (CVD, Chemical Vapor Deposition), or molecular beam epitaxial growth (MBE, Molecular Deposition). Beam Epitaxy, or Plasma Enhanced Chemical Vapor Deposition (PECVD), or Low Pressure Chemical Vapor Deposition (LPCVD), or metal organic compound chemical vapor deposition, or a combination thereof Way.
  • ALD Atomic Layer Deposition
  • CVD chemical vapor deposition
  • MBE molecular beam epitaxial growth
  • the first group III nitride epitaxial layer 11 after the substrate 10 is peeled off may be the first group III nitride epitaxial layer 11 in step S1.
  • the material of the first mask layer 12 may include at least one of silicon dioxide and silicon nitride.
  • the etching of the first group III nitride epitaxial layer 11 may be dry etching or wet etching.
  • the dry etching may be inductively coupled plasma etching (ICP).
  • the etching gas may include Cl 2 and BCl 3 .
  • the plasma of the etching gas not only chemically reacts with the group III nitride material to be etched in the thickness direction, but also with the group III nitride material to be etched in the vertical thickness direction, that is, in the lateral direction.
  • the compound material undergoes a chemical reaction. Therefore, after the etching is completed, the patterned first mask layer 12 will form a floating section at the opening of the groove 11a.
  • the etching solution for wet etching can be H 3 PO 4 solution or KOH solution, which is corrosive on the N surface.
  • the GaN crystal has a brazine structure, in which the Ga and N atomic layers are stacked in ABABAB hexagonal layers, and each Ga(N) atom forms a bond with the surrounding 4 N(Ga) atoms in a diamond-like tetrahedral structure. Taking the Ga-N bond parallel to the C axis ([0001] crystal orientation) as a reference, if the Ga atoms in each Ga-N bond are farther away from the lower surface, the upper surface is the Ga plane; if each Ga-N bond The N atoms in the lower surface are farther away, and the upper surface is the N surface.
  • the upper surface of the first group III nitride epitaxial layer 11 can be controlled to be an N surface.
  • the etching solution not only chemically reacts with the III-nitride material to be etched in the thickness direction, but also chemically reacts with the III-nitride material to be etched in the lateral direction. Therefore, the etching After the etching is completed, the patterned first mask layer 12 also forms a floating section at the opening of the groove 11a.
  • the groove 11 a is formed by etching a part of the thickness of the first group III nitride epitaxial layer 11.
  • a second mask layer 13 is formed on the bottom wall of the groove 11a;
  • a group III nitride epitaxial layer 11 undergoes a first epitaxial growth to form a second group III nitride epitaxial layer 14 by lateral growth, and the second group III nitride epitaxial layer 14 fills the groove 11a.
  • the material of the second mask layer 13 may include at least one of silicon dioxide and silicon nitride, and the formation method may include a physical vapor deposition method or a chemical vapor deposition method. Since the patterned first mask layer 12 has a suspended section at the opening of the groove 11a, when the second mask layer 13 is deposited, the suspended section will cut off the second mask layer 13, so that only in the groove 11a The second mask layer 13 is deposited on the outer patterned first mask layer 12 and on the bottom wall of the groove 11a to avoid deposition on the sidewall of the groove 11a.
  • the second mask layer 13 on the bottom wall of the groove 11a remains.
  • the second mask layer 13 outside the groove 11a can be removed by dry etching.
  • a photoresist is arranged on the second mask layer 13, and the patterned photoresist after exposure and development exposes the second mask layer 13 outside the groove 11a.
  • the first group III nitride epitaxial layer 11 is epitaxially grown for the first time When it does not grow in the thickness direction, it only grows in the lateral direction.
  • the dislocations of the first group III nitride epitaxial layer 11 are mainly dislocations extending in the thickness direction. Therefore, lateral growth can block the thickness direction dislocations from continuing to extend upward, thereby significantly reducing the second group III nitride epitaxial layer 14 The dislocation density.
  • the material of the second group III nitride epitaxial layer 14 may be the same as or different from the material of the first group III nitride epitaxial layer 11.
  • the material of the second group III nitride epitaxial layer 14 may be at least one of GaN, AlN, AlGaN, InGaN, and AlInGaN, which is not limited in this embodiment.
  • the formation process of the second group III nitride epitaxial layer 14 can refer to the formation process of the first group III nitride epitaxial layer 11.
  • the second group III nitride epitaxial layer 14 is epitaxially grown for a second time, so that the second group III nitride epitaxial layer 14 and the patterned second group are epitaxially grown.
  • a third group III nitride epitaxial layer 15 is grown on a mask layer 12.
  • the second epitaxial growth includes growth in the lateral and thickness directions.
  • the material of the third group III nitride epitaxial layer 15 may be the same as or different from the material of the second group III nitride epitaxial layer 14.
  • the material of the third group III nitride epitaxial layer 15 may be at least one of GaN, AlGaN, InGaN, and AlInGaN, which is not limited in this embodiment.
  • the function of the third group III nitride epitaxial layer 15 may be the same as or different from the function of the second group III nitride epitaxial layer 14/first group III nitride epitaxial layer 11.
  • the first group III nitride epitaxial layer 11 and the second group III nitride epitaxial layer 14 may be the substrate in the device
  • the third group III nitride epitaxial layer 15 may be the buffer layer, barrier layer or trench in the device. Road layers and so on.
  • the buffer layer can reduce the screw dislocation (TD) density in the upper semiconductor layer and the TD bending due to the lateral growth mechanism.
  • the first group III nitride epitaxial layer 11 and the second group III nitride epitaxial layer 14 may be buffer layers in the device, and the third group III nitride epitaxial layer 15 may be a barrier layer or a channel layer in the device. Etc.; or the first group III nitride epitaxial layer 11, the second group III nitride epitaxial layer 14 and the third group III nitride epitaxial layer 15 are the substrate, buffer layer, barrier layer or channel layer in the device Wait.
  • FIG. 5 is a schematic cross-sectional structure diagram of the group III nitride structure of the first embodiment of the present invention.
  • the group III nitride structure 1 of this embodiment includes:
  • the first group III nitride epitaxial layer 11 has a patterned first mask layer 12 on the first group III nitride epitaxial layer 11;
  • the second group III nitride epitaxial layer 14 extending from the opening of the patterned first mask layer 12 into the first group III nitride epitaxial layer 11, the bottom wall of the second group III nitride epitaxial layer 14 and the first There is a second mask layer 13 between the group III nitride epitaxial layer 11, and the sidewall of the second group III nitride epitaxial layer 14 is connected to the first group III nitride epitaxial layer 11;
  • the third group III nitride epitaxial layer 15 located on the second group III nitride epitaxial layer 14 and the patterned first mask layer 12, the first group III nitride epitaxial layer 11, the second group III nitride epitaxial layer 14 and the [0001] crystal orientation of the third group III nitride epitaxial layer 15 is parallel to the thickness direction.
  • the second mask layer 13 shields the first group III nitride epitaxial layer 11 on the bottom wall of the groove 11a, when the first group III nitride epitaxial layer 11 is epitaxially grown for the first time, It cannot grow in the thickness direction, only grows in the lateral direction.
  • the dislocations of the first group III nitride epitaxial layer 11 are mainly dislocations extending in the thickness direction. Therefore, lateral growth can block the thickness direction dislocations from continuing to extend upward, thereby significantly reducing the second group III nitride epitaxial layer 14 And the dislocation density of the third group III nitride epitaxial layer 15.
  • the materials of the first group III nitride epitaxial layer 11, the second group III nitride epitaxial layer 14 and the third group III nitride epitaxial layer 15 may be the same or different.
  • the material of the first group III nitride epitaxial layer 11, and/or the second group III nitride epitaxial layer 14, and/or the third group III nitride epitaxial layer 15 may be GaN, AlN, AlGaN, InGaN, AlInGaN At least one, this embodiment does not limit this.
  • the functions of the first group III nitride epitaxial layer 11, and/or the second group III nitride epitaxial layer 14, and/or the third group III nitride epitaxial layer 15 may be the same or different.
  • the first group III nitride epitaxial layer 11, and/or the second group III nitride epitaxial layer 14, and/or the third group III nitride epitaxial layer 15 may be a substrate, a buffer layer, a barrier layer or the like in the device. Channel layer and so on.
  • the material of the second mask layer 13 can be selected from a material that can inhibit the growth of the first group III nitride epitaxial layer 11, for example, it can include at least one of silicon dioxide and silicon nitride.
  • the material of the first mask layer 12 can be selected from the material that the second group III nitride epitaxial layer 14 can be attached to. For example, it can include at least one of silicon dioxide and silicon nitride.
  • the first group III nitride epitaxial layer 11 may be located on the substrate 10.
  • the substrate 10 may be at least one of sapphire, silicon carbide, and silicon, which is not limited in this embodiment.
  • the first group III nitride epitaxial layer 11 may be the first group III nitride epitaxial layer 11 after the substrate 10 is peeled off.
  • FIG. 6 is a schematic diagram of an intermediate structure corresponding to the manufacturing method of the group III nitride structure according to the second embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional structure diagram of a group III nitride structure according to a second embodiment of the present invention. 6 and 7, the group III nitride structure 2 and its manufacturing method of this embodiment are roughly the same as the group III nitride structure 1 and its manufacturing method of the embodiment shown in FIGS. 1 to 5, except that:
  • the second mask layer 13 is also formed on the patterned first mask layer 12, and the third group III nitride epitaxial layer 15 is grown and formed on the second mask layer 13.
  • the advantage of this embodiment is that the patterning process of the second mask layer 13 can be omitted, and the process can be simplified.
  • FIG. 8 is a schematic cross-sectional structure diagram of a group III nitride structure according to a third embodiment of the present invention.
  • the group III nitride structure 3 of this embodiment, and the group III nitride structures 1 and 2 of the embodiment of FIG. 7 are substantially the same, except that the second mask layer 13 is in-situ The second mask layer 13', the second group III nitride epitaxial layer is an in-situ second group III nitride epitaxial layer 14', and the third group III nitride epitaxial layer 15 is an in-situ third group III nitride epitaxial layer 15 '.
  • the manufacturing method of the group III nitride structure 3 of this embodiment is substantially the same as the manufacturing method of the group III nitride structure 1 and 2 of the embodiment of FIGS. 1 to 5, and the embodiment of FIG. 6 and FIG. :
  • step S1 the recess 11a is etched, the second mask layer 13 is formed in step S2, and the second group III nitride epitaxial layer 14 is grown in step S3, and the third group III nitride epitaxial layer 15 is grown in the same MOCVD equipment in step S3. In progress.
  • the reactive gas in the MOCVD equipment may include Cl 2 and BCl 3 .
  • the above-mentioned mixed gas can chemically react with the first group III nitride epitaxial layer 11 to form the groove 11a.
  • the advantage of doing it in the same MOCVD equipment, that is, doing it in situ, is that it can reduce the complexity of the process, reduce the transfer process of multiple processes between different equipment, and avoid the participation of pollution sources in the process to interfere with the second group III nitride epitaxial layer 14 and the third group.
  • the etching of the groove 11a may also adopt the dry etching or wet etching of the foregoing embodiments.
  • the groove 11a is transferred to the MOCVD equipment to sequentially form the second mask layer 13 and grow the second group III nitride epitaxial layer 14 and the third group III nitride epitaxial layer 15.
  • FIG. 9 is a schematic diagram of an intermediate structure corresponding to the manufacturing method of the group III nitride structure according to the fourth embodiment of the present invention.
  • 10 is a schematic cross-sectional structure diagram of a group III nitride structure according to a fourth embodiment of the present invention.
  • the group III nitride structure 4 and its manufacturing method of this embodiment are roughly the same as the group III nitride structure 1 and its manufacturing method of the embodiment shown in FIGS. 1 to 5, except that:
  • step S1 the entire thickness of the first group III nitride epitaxial layer 11 is etched to form a groove 11a.
  • the manufacturing process of the second mask layer 13 can be omitted, and the substrate 10 serves as the second mask layer 13.
  • the solution of this embodiment can also be combined with the solution of the embodiment in FIG. 8, that is, the second group III nitride epitaxial layer is the in-situ second group III nitride epitaxial layer 14', and the third group III nitride epitaxial layer 15 is the original Position the third group III nitride epitaxial layer 15'.
  • FIG. 11 is a schematic cross-sectional structure diagram of a group III nitride structure according to a fifth embodiment of the present invention.
  • the group III nitride structure 5 and its manufacturing method of this embodiment are substantially the same as the group III nitride structure 1, 2, 3, 4 and its manufacturing method of the embodiment of FIGS. 1 to 10, with the difference
  • the only point is that the LED structure 17 is also grown on the third group III nitride epitaxial layer 15.
  • the LED structure 17 may include: an N-type semiconductor layer, a P-type semiconductor layer, and a quantum well layer located between the N-type semiconductor layer and the P-type semiconductor layer.
  • the N-type semiconductor layer is used to provide electrons
  • the P-type semiconductor layer is used to provide holes, so that the electrons and holes recombine and emit light in the quantum well layer.
  • the N-type semiconductor layer and/or the P-type semiconductor layer may include a group III nitride material.
  • the group III nitride material may be at least one of GaN, AlGaN, InGaN, and AlInGaN.
  • the N-type ions in the N-type semiconductor layer may be at least one of Si ions, Ge ions, Sn ions, Se ions, or Te ions.
  • the P-type doping ions in the P-type semiconductor layer may be at least one of Mg ions, Zn ions, Ca ions, Sr ions, or Ba ions. .
  • the N-type semiconductor layer may be close to the third group III nitride epitaxial layer 15 and the P-type semiconductor layer may be far away from the third group III nitride epitaxial layer 15.
  • the P-type semiconductor layer may be close to the third group III nitride epitaxial layer 15 and the N-type semiconductor layer may be far away from the third group III nitride epitaxial layer 15.
  • the quantum well layer may be a single quantum well layer or a multiple quantum well layer.
  • the formation process of the LED structure 17 can refer to the formation process of the third group III nitride epitaxial layer 15.
  • FIG. 12 is a schematic cross-sectional structure diagram of a group III nitride structure according to a sixth embodiment of the present invention.
  • the group III nitride structure 6 and its manufacturing method of this embodiment are substantially the same as the group III nitride structure 1, 2, 3, 4 and its manufacturing method of the embodiment of FIGS. 1 to 10, with the difference
  • the only point is that when the third group III nitride epitaxial layer 15 is not healed, the fourth group III nitride epitaxial layer 16 is also grown on the patterned first mask layer 12 and the third group III nitride epitaxial layer 15.
  • the material of the fourth group III nitride epitaxial layer 16 is different from the material of the third group III nitride epitaxial layer 15.
  • the material of the fourth group III nitride epitaxial layer 16 may contain more element types than the material of the third group III nitride epitaxial layer 15.
  • the fourth group III nitride epitaxial layer 16 further includes at least one of Al and In.
  • the fourth group III nitride epitaxial layer 16 further includes at least one of Ga and In.
  • the material of the fourth group III nitride epitaxial layer 16 may be at least one of AlGaN, InGaN, and AlInGaN.
  • the solution of this embodiment can effectively release the stress in the fourth group III nitride epitaxial layer 16 and reduce dislocations and V-shaped pits in the fourth group III nitride epitaxial layer 16. If the fourth group III nitride epitaxial layer 16 is directly grown on the patterned first mask layer 12 and the second group III nitride epitaxial layer 14, V will be formed on the patterned first mask layer 12 Type pit.
  • FIG. 13 is a schematic cross-sectional structure diagram of a group III nitride structure according to a seventh embodiment of the present invention.
  • the III-nitride structure 7 and its manufacturing method of this embodiment are substantially the same as the III-nitride structure 6 and its manufacturing method of the embodiment of FIG.
  • the LED structure 17 is grown on the nitride epitaxial layer 16.
  • the specific structure and forming method of the LED structure 17 can refer to the specific structure and forming method of the LED structure 17 in the embodiment of FIG. 11.

Abstract

本申请提供了一种Ⅲ族氮化物结构及其制作方法,制作方法中,先以图形化的第一掩膜层为掩膜,对第一Ⅲ族氮化物外延层刻蚀形成凹槽;再至少在凹槽的底壁形成第二掩膜层,以第二掩膜层为掩膜,对第一Ⅲ族氮化物外延层进行第一次外延生长,以横向生长形成填满凹槽的第二Ⅲ族氮化物外延层;之后对第二Ⅲ族氮化物外延层进行第二次外延生长,以在第二Ⅲ族氮化物外延层以及图形化的第一掩膜层上生长形成第三Ⅲ族氮化物外延层。由于第一Ⅲ族氮化物外延层的位错主要为在厚度方向延伸的位错,因而生长方向为横向生长的第一次外延生长可以阻断位错继续向上延伸,从而可以显著降低第二Ⅲ族氮化物外延层以及第三Ⅲ族氮化物外延层的位错密度。

Description

Ⅲ族氮化物结构及其制作方法 技术领域
本申请涉及半导体技术领域,尤其涉及一种Ⅲ族氮化物结构及其制作方法。
背景技术
III族氮化物是继Si、GaAs等第一、第二代半导体材料之后的第三代新型半导体材料,其中GaN作为宽禁带半导体材料有许多优点,诸如饱和漂移速度高、击穿电压大、载流子输运性能优异以及能够形成AlGaN、InGaN三元合金和AlInGaN四元合金等,容易制作GaN基的PN结。鉴于此,近几年来GaN基材料和半导体器件得到了广泛和深入的研究,MOCVD(Metal-organic Chemical Vapor Deposition,金属有机物化学气相沉积)技术生长GaN基材料日趋成熟;在半导体器件研究方面,GaN基LED、LDs等光电子器件以及GaN基HEMT等微电子器件方面的研究都取得了显著的成绩和长足的发展。
随着GaN基材料在功率器件/显示器件上的应用的逐步深入,终端产品对GaN基材料的位错密度的需求进一步提高,而按照传统模式使用主流MOCVD外延设备在主流的GaN基外延基板三氧化二铝(Al 2O 3)衬底外延生长的GaN基材料的位错面密度约为1~3E8/cm^3。为了制造耐更高压的GaN基功率器件和更长波段的GaN基LED,必须进一步降低GaN基材料的位错密度。
有鉴于此,实有必要提供一种新的Ⅲ族氮化物结构及其制作方法,以满足上述需求。
发明内容
本发明的发明目的是提供一种Ⅲ族氮化物结构及其制作方法,降低Ⅲ族氮化物材料的位错密度,提高Ⅲ族氮化物半导体器件的性能。
为实现上述目的,本发明的第一方面提供一种Ⅲ族氮化物结构的制作方法,包括:
提供第一Ⅲ族氮化物外延层;在所述第一Ⅲ族氮化物外延层上形成图形化的第一掩膜层;以所述图形化的第一掩膜层为掩膜,刻蚀所述第一Ⅲ族氮化物外延层形成凹槽;
至少在所述凹槽的底壁形成第二掩膜层;以所述第二掩膜层为掩膜,对所述第一Ⅲ族氮化物外延层进行第一次外延生长,以横向生长形成第二Ⅲ族氮化物外延层,所述第二Ⅲ族氮化物外延层填满所述凹槽;
对所述第二Ⅲ族氮化物外延层进行第二次外延生长,以在所述第二Ⅲ族氮化物外延层以及所述图形化的第一掩膜层上生长形成第三Ⅲ族氮化物外延层。
需要说明的时,本发明中的横向指的是:垂直第一Ⅲ族氮化物外延层的厚度方向。
可选地,所述第一Ⅲ族氮化物外延层位于衬底上,所述凹槽的底壁暴露所述衬底,所述衬底充当所述第二掩膜层。
可选地,所述第二掩膜层还形成在所述图形化的第一掩膜层上,所述第三Ⅲ族氮化物外延层生长形成在所述第二掩膜层上。
可选地,所述第一掩膜层的材料包括:二氧化硅与氮化硅中的至少一种;和/或所述第二掩膜层的材料包括:二氧化硅与氮化硅中的至少一种。
可选地,所述第一Ⅲ族氮化物外延层、所述第二Ⅲ族氮化物外延层与 所述第三Ⅲ族氮化物外延层的材料相同,包括:GaN、AlN、AlGaN、InGaN与AlInGaN中的至少一种。
可选地,所述第二Ⅲ族氮化物外延层和/或所述第三Ⅲ族氮化物外延层的外延生长工艺包括:原子层沉积法、化学气相沉积法、分子束外延生长法、等离子体增强化学气相沉积法、低压化学蒸发沉积法以及金属有机化合物化学气相沉积法中的至少一种。
可选地,所述第二Ⅲ族氮化物外延层与所述第三Ⅲ族氮化物外延层的外延生长工艺都为金属有机化合物化学气相沉积法;形成所述第二掩膜层、以及生长所述第二Ⅲ族氮化物外延层与所述第三Ⅲ族氮化物外延层在同一金属有机化合物化学气相沉积设备中进行。
可选地,刻蚀所述凹槽、形成所述第二掩膜层、以及生长所述第二Ⅲ族氮化物外延层与所述第三Ⅲ族氮化物外延层在同一金属有机化合物化学气相沉积设备中进行。
可选地,位于所述图形化的第一掩膜层上的所述第三Ⅲ族氮化物外延层未愈合时,还在所述图形化的第一掩膜层与所述第三Ⅲ族氮化物外延层上生长形成第四Ⅲ族氮化物外延层。
可选地,还包括:在所述第四Ⅲ族氮化物外延层上生长形成LED结构。
可选地,还包括:在所述第三Ⅲ族氮化物外延层上生长形成LED结构。
可选地,所述第一Ⅲ族氮化物外延层的形成方法包括:在衬底上外延生长所述第一Ⅲ族氮化物外延层。
可选地,所述衬底包括:蓝宝石、碳化硅和硅中的至少一种。
本发明的第二方面提供一种Ⅲ族氮化物结构,包括:
第一Ⅲ族氮化物外延层,所述第一Ⅲ族氮化物外延层上具有图形化的第一掩膜层;
自所述图形化的第一掩膜层的开口伸入所述第一Ⅲ族氮化物外延层内的第二Ⅲ族氮化物外延层,所述第二Ⅲ族氮化物外延层的底壁与所述第一Ⅲ族氮化物外延层之间具有第二掩膜层,所述第二Ⅲ族氮化物外延层的侧壁与所述第一Ⅲ族氮化物外延层连接;
位于所述第二Ⅲ族氮化物外延层以及所述图形化的第一掩膜层上的第三Ⅲ族氮化物外延层,所述第一Ⅲ族氮化物外延层、所述第二Ⅲ族氮化物外延层以及所述第三Ⅲ族氮化物外延层的[0001]晶向平行于厚度方向。
可选地,所述第一Ⅲ族氮化物外延层、所述第二Ⅲ族氮化物外延层与所述第三Ⅲ族氮化物外延层的材料相同,包括:GaN、AlN、AlGaN、InGaN与AlInGaN中的至少一种。
可选地,还包括:衬底,所述第一Ⅲ族氮化物外延层位于所述衬底上。
可选地,所述衬底充当所述第二掩膜层。
可选地,所述衬底包括:蓝宝石、碳化硅和硅中的至少一种。
可选地,所述图形化的第一掩膜层上还具有所述第二掩膜层,所述第三Ⅲ族氮化物外延层位于所述第二掩膜层上。
可选地,所述第一掩膜层的材料包括:二氧化硅与氮化硅中的至少一种;和/或所述第二掩膜层的材料包括:二氧化硅与氮化硅中的至少一种。
可选地,所述第二Ⅲ族氮化物外延层为原位第二Ⅲ族氮化物外延层;和/或所述第二掩膜层为原位第二掩膜层。
可选地,位于所述图形化的第一掩膜层上的所述第三Ⅲ族氮化物外延层未愈合,所述图形化的第一掩膜层与所述第三Ⅲ族氮化物外延层上具有第四Ⅲ族氮化物外延层。
可选地,还包括:位于所述第四Ⅲ族氮化物外延层上的LED结构。
可选地,还包括:位于所述第三Ⅲ族氮化物外延层上的LED结构。
与现有技术相比,本发明的有益效果在于:
1)本发明的Ⅲ族氮化物结构的制作方法中,先以图形化的第一掩膜层为掩膜,对第一Ⅲ族氮化物外延层刻蚀形成凹槽;再至少在凹槽的底壁形成第二掩膜层,以第二掩膜层为掩膜,对第一Ⅲ族氮化物外延层进行第一次外延生长,以横向生长形成填满凹槽的第二Ⅲ族氮化物外延层;之后对第二Ⅲ族氮化物外延层进行第二次外延生长,以在第二Ⅲ族氮化物外延层以及图形化的第一掩膜层上生长形成第三Ⅲ族氮化物外延层。由于第一Ⅲ族氮化物外延层的位错主要为[0001]晶向的线位错,即在第一Ⅲ族氮化物外延层的厚度方向延伸的位错,因而生长方向为横向生长的第一次外延生长可以阻断位错继续向上延伸,从而可以显著降低第二Ⅲ族氮化物外延层以及第三Ⅲ族氮化物外延层的位错密度。
2)可选方案中,第一Ⅲ族氮化物外延层位于衬底上,a)刻蚀第一Ⅲ族氮化物外延层的部分厚度形成凹槽;或b)刻蚀第一Ⅲ族氮化物外延层的整个厚度形成凹槽。b)方案中,由于凹槽的底壁暴露衬底,因而可以省略第二掩膜层的制作工序,由衬底充当第二掩膜层。
3)可选方案中,第二掩膜层还形成在图形化的第一掩膜层上,第三Ⅲ族氮化物外延层生长形成在第二掩膜层上。本方案相对于仅在凹槽的底壁形成第二掩膜层的方案的好处在于:可以省略第二掩膜层的图形化工序,简化工艺。这是因为:以图形化的第一掩膜层为掩膜,对第一Ⅲ族氮化物外延层刻蚀形成凹槽工序中,刻蚀不但在厚度方向上去除了部分材料,还在横向上去除了部分材料,换言之,图形化的第一掩膜层在凹槽开口处具有悬空区段;沉积第二掩膜层时,该悬空区段会隔断第二掩膜层,使得仅在凹槽外的图形化的第一掩膜层上以及凹槽的底壁上沉积,避免在凹槽的侧壁形成第二掩膜层。
4)可选方案中,a)第一Ⅲ族氮化物外延层、第二Ⅲ族氮化物外延层与第三Ⅲ族氮化物外延层的材料相同,或b)第一Ⅲ族氮化物外延层、第二Ⅲ族 氮化物外延层与第三Ⅲ族氮化物外延层中的至少两层的材料不同。第一Ⅲ族氮化物外延层、和/或第二Ⅲ族氮化物外延层、和/或第三Ⅲ族氮化物外延层的材料可以包括:GaN、AlN、AlGaN、InGaN与AlInGaN中的至少一种。第一Ⅲ族氮化物外延层、第二Ⅲ族氮化物外延层与第三Ⅲ族氮化物外延层的具体材料可以根据功能而定,具体功能可以包括:器件中的衬底、缓冲层、势垒层或沟道层等。
5)可选方案中,第二Ⅲ族氮化物外延层与第三Ⅲ族氮化物外延层的外延生长工艺都为金属有机化合物化学气相沉积法;形成第二掩膜层、以及生长第二Ⅲ族氮化物外延层与第三Ⅲ族氮化物外延层在同一金属有机化合物化学气相沉积设备(MOCVD设备)中进行。换言之,第二Ⅲ族氮化物外延层为原位第二Ⅲ族氮化物外延层,第三Ⅲ族氮化物外延层为原位第三Ⅲ族氮化物外延层。原位进行的好处是可以减少工艺复杂性,减少多个制程在不同设备间的转移过程,避免污染源参与过程干扰第二Ⅲ族氮化物外延层与第三Ⅲ族氮化物外延层的质量。
进一步地,刻蚀凹槽、形成第二掩膜层、以及生长第二Ⅲ族氮化物外延层与第三Ⅲ族氮化物外延层在同一MOCVD设备中进行。换言之,第二掩膜层为原位第二掩膜层。凹槽刻蚀工序中,MOCVD设备中的反应气体可以包括Cl 2与BCl 3。上述混合气体可与第一Ⅲ族氮化物外延层发生化学反应,以形成凹槽。
6)可选方案中,位于图形化的第一掩膜层上的第三Ⅲ族氮化物外延层未愈合时,还在图形化的第一掩膜层与第三Ⅲ族氮化物外延层上生长形成第四Ⅲ族氮化物外延层。第四Ⅲ族氮化物外延层的材料与第三Ⅲ族氮化物外延层的材料不同时,本方案可以有效地释放第四Ⅲ族氮化物外延层中的应力,降低第四Ⅲ族氮化物外延层中的位错和V型坑。
7)可选方案中,还在第三Ⅲ族氮化物外延层/第四Ⅲ族氮化物外延层上生长形成LED结构。LED结构可以包括N型半导体层,P型半导体层,以及 位于N型半导体层与P型半导体层之间的量子阱层。换言之,第一Ⅲ族氮化物外延层、第二Ⅲ族氮化物外延层以及第三Ⅲ族氮化物外延层作为LED结构的衬底,或第一Ⅲ族氮化物外延层、第二Ⅲ族氮化物外延层、第三Ⅲ族氮化物外延层以及第四Ⅲ族氮化物外延层作为LED结构的衬底,可制作绿光LED、黄光LED、红光LED,甚至红外LED。
附图说明
图1是本发明第一实施例的Ⅲ族氮化物结构的制作方法的流程图;
图2至图4是图1中的流程对应的中间结构示意图;
图5是本发明第一实施例的Ⅲ族氮化物结构的截面结构示意图;
图6是本发明第二实施例的Ⅲ族氮化物结构的制作方法对应的中间结构示意图;
图7是本发明第二实施例的Ⅲ族氮化物结构的截面结构示意图;
图8是本发明第三实施例的Ⅲ族氮化物结构的截面结构示意图;
图9是本发明第四实施例的Ⅲ族氮化物结构的制作方法对应的中间结构示意图;
图10是本发明第四实施例的Ⅲ族氮化物结构的截面结构示意图;
图11是本发明第五实施例的Ⅲ族氮化物结构的截面结构示意图;
图12是本发明第六实施例的Ⅲ族氮化物结构的截面结构示意图;
图13是本发明第七实施例的Ⅲ族氮化物结构的截面结构示意图。
为方便理解本发明,以下列出本发明中出现的所有附图标记:
Figure PCTCN2020089836-appb-000001
Figure PCTCN2020089836-appb-000002
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明第一实施例的Ⅲ族氮化物结构的制作方法的流程图。图2至图4是图1中的流程对应的中间结构示意图。图5是本发明第一实施例的Ⅲ族氮化物结构的截面结构示意图。
首先,参照图1中的步骤S1与图2所示,提供第一Ⅲ族氮化物外延层11;在第一Ⅲ族氮化物外延层11上形成图形化的第一掩膜层12;以图形化的第一掩膜层12为掩膜,刻蚀第一Ⅲ族氮化物外延层11形成凹槽11a。
参照图2所示,本实施例中,第一Ⅲ族氮化物外延层11可以形成在衬底10上。衬底10可以为蓝宝石、碳化硅和硅中的至少一种,本实施例对此不加以限制。
第一Ⅲ族氮化物外延层11的Ⅲ族氮化物材料可以为AlN,也可以为GaN、AlGaN、InGaN、AlInGaN中的至少一种,本实施例对此不加以限制。AlN可以作为成核层。第一Ⅲ族氮化物外延层11中具有位错,位错主要为[0001]晶向的线位错,即在第一Ⅲ族氮化物外延层11的厚度方向延伸的位错。
步骤S1中,形成在衬底10上的第一Ⅲ族氮化物外延层11可以为现有结构,也可以步骤S1包括:在衬底10上外延生长第一Ⅲ族氮化物外延层11。
第一Ⅲ族氮化物外延层11的形成工艺可以包括:原子层沉积法(ALD,Atomic layer deposition)、或化学气相沉积法(CVD,Chemical Vapor Deposition)、或分子束外延生长法(MBE,Molecular Beam Epitaxy)、或等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)、或低压化学蒸发沉积法(LPCVD,Low Pressure Chemical Vapor Deposition),或金属有机化合物化学气相沉积法、或其组合方式。
一些实施例中,剥离衬底10后的第一Ⅲ族氮化物外延层11可以为步骤S1中的第一Ⅲ族氮化物外延层11。
第一掩膜层12的材料可以包括:二氧化硅与氮化硅中的至少一种。
本实施例中,刻蚀第一Ⅲ族氮化物外延层11可以采用干法刻蚀,也可以采用湿法刻蚀。
干法刻蚀可以为感应耦合等离子体刻蚀(ICP)。刻蚀气体可以包括:Cl 2与BCl 3。干法刻蚀中,由于刻蚀气体的等离子体不但与厚度方向上的待刻蚀的Ⅲ族氮化物材料发生化学反应,也与垂直厚度方向上,即横向上的待刻蚀的Ⅲ族氮化物材料发生化学反应,因而,刻蚀完毕后,图形化的第一掩膜层12在凹槽11a开口处会形成悬空区段。
湿法刻蚀的刻蚀液可以为H 3PO 4溶液或KOH溶液,它在N面上是腐蚀性的。GaN晶体为钎锌矿结构,其中Ga、N原子层呈ABABAB六方层堆垛,每个Ga(N)原子都与周围的4个N(Ga)原子呈类金刚石四面体结构成键。以平行于C轴([0001]晶向)的Ga-N键作为参照,若每一个Ga-N键中的Ga原子更远离下表面,则上表面为Ga面;若每一个Ga-N键中的N原子更远离下表面,则上表面为N面。本实施例中,可以控制第一Ⅲ族氮化物外延层11的上表面为N面。
湿法刻蚀中,由于刻蚀液不但与厚度方向上的待刻蚀的Ⅲ族氮化物材料发生化学反应,也与横向上的待刻蚀的Ⅲ族氮化物材料发生化学反应,因而,刻蚀完毕后,图形化的第一掩膜层12在凹槽11a开口处也形成了悬空区段。
本实施例中,如图2所示,凹槽11a为刻蚀第一Ⅲ族氮化物外延层11的部分厚度形成的。
接着,仍参照图1中的步骤S2与图3所示,在凹槽11a的底壁形成第二掩膜层13;参照图4所示,以第二掩膜层13为掩膜,对第一Ⅲ族氮化物外延层11进行第一次外延生长,以横向生长形成第二Ⅲ族氮化物外延层14,第二Ⅲ族氮化物外延层14填满凹槽11a。
第二掩膜层13的材料可以包括:二氧化硅与氮化硅中的至少一种,形成方法可以包括物理气相沉积法或化学气相沉积法。由于图形化的第一掩膜层12在凹槽11a开口处具有悬空区段,因而沉积第二掩膜层13时,该悬空区段会隔断第二掩膜层13,使得仅在凹槽11a外的图形化的第一掩膜层12上以及凹槽11a的底壁上沉积第二掩膜层13,避免在凹槽11a的侧壁沉积。
参照图3所示,本实施例中,仅保留了凹槽11a底壁的第二掩膜层13。凹槽11a外的第二掩膜层13可以采用干法刻蚀去除。例如在第二掩膜层13上布置光刻胶,曝光显影后的图形化光刻胶暴露凹槽11a外的第二掩膜层13。
参照图4所示,由于第二掩膜层13对凹槽11a底壁的第一Ⅲ族氮化物外延层11进行了遮挡,因而对第一Ⅲ族氮化物外延层11进行第一次外延生长时,无法在厚度方向上生长,仅在横向生长。第一Ⅲ族氮化物外延层11的位错主要为在厚度方向延伸的位错,因而横向生长可以阻断厚度方向的位错继续向上延伸,从而可以显著降低第二Ⅲ族氮化物外延层14的位错密度。
第二Ⅲ族氮化物外延层14的材料可以与第一Ⅲ族氮化物外延层11的材料相同,也可以不同。第二Ⅲ族氮化物外延层14的材料可以为GaN、AlN、 AlGaN、InGaN、AlInGaN中的至少一种,本实施例对此不加以限制。
第二Ⅲ族氮化物外延层14的形成工艺可以参照第一Ⅲ族氮化物外延层11的形成工艺。
再接着,仍参照图1中的步骤S3与图5所示,对第二Ⅲ族氮化物外延层14进行第二次外延生长,以在第二Ⅲ族氮化物外延层14以及图形化的第一掩膜层12上生长形成第三Ⅲ族氮化物外延层15。
第二次外延生长包括横向与厚度方向上的生长。
第三Ⅲ族氮化物外延层15的材料可以与第二Ⅲ族氮化物外延层14的材料相同,也可以不同。第三Ⅲ族氮化物外延层15的材料可以为GaN、AlGaN、InGaN、AlInGaN中的至少一种,本实施例对此不加以限制。
第三Ⅲ族氮化物外延层15的功能可以与第二Ⅲ族氮化物外延层14/第一Ⅲ族氮化物外延层11的功能相同,也可以不同。例如第一Ⅲ族氮化物外延层11与第二Ⅲ族氮化物外延层14可以为器件中的衬底,第三Ⅲ族氮化物外延层15可以为器件中的缓冲层、势垒层或沟道层等。缓冲层可以减小上方半导体层中的螺位错(TD)密度以及由于横向生长机制导致的TD弯曲。又例如第一Ⅲ族氮化物外延层11与第二Ⅲ族氮化物外延层14可以为器件中的缓冲层,第三Ⅲ族氮化物外延层15可以为器件中的势垒层或沟道层等;或第一Ⅲ族氮化物外延层11、第二Ⅲ族氮化物外延层14与第三Ⅲ族氮化物外延层15都为器件中的衬底、缓冲层、势垒层或沟道层等。
图5是本发明第一实施例的Ⅲ族氮化物结构的截面结构示意图。
参照图5所示,本实施例的Ⅲ族氮化物结构1包括:
第一Ⅲ族氮化物外延层11,第一Ⅲ族氮化物外延层11上具有图形化的第一掩膜层12;
自图形化的第一掩膜层12的开口伸入第一Ⅲ族氮化物外延层11内的第二Ⅲ族氮化物外延层14,第二Ⅲ族氮化物外延层14的底壁与第一Ⅲ族氮化 物外延层11之间具有第二掩膜层13,第二Ⅲ族氮化物外延层14的侧壁与第一Ⅲ族氮化物外延层11连接;
位于第二Ⅲ族氮化物外延层14以及图形化的第一掩膜层12上的第三Ⅲ族氮化物外延层15,第一Ⅲ族氮化物外延层11、第二Ⅲ族氮化物外延层14以及第三Ⅲ族氮化物外延层15的[0001]晶向平行于厚度方向。
可以看出,由于第二掩膜层13对凹槽11a底壁的第一Ⅲ族氮化物外延层11进行了遮挡,因而对第一Ⅲ族氮化物外延层11进行第一次外延生长时,无法在厚度方向上生长,仅在横向生长。第一Ⅲ族氮化物外延层11的位错主要为在厚度方向延伸的位错,因而横向生长可以阻断厚度方向的位错继续向上延伸,从而可以显著降低第二Ⅲ族氮化物外延层14与第三Ⅲ族氮化物外延层15的位错密度。
第一Ⅲ族氮化物外延层11、第二Ⅲ族氮化物外延层14与第三Ⅲ族氮化物外延层15的材料可以相同,也可以不同。第一Ⅲ族氮化物外延层11、和/或第二Ⅲ族氮化物外延层14、和/或第三Ⅲ族氮化物外延层15的材料可以为GaN、AlN、AlGaN、InGaN、AlInGaN中的至少一种,本实施例对此不加以限制。
第一Ⅲ族氮化物外延层11、和/或第二Ⅲ族氮化物外延层14、和/或第三Ⅲ族氮化物外延层15的功能可以相同,也可以不同。第一Ⅲ族氮化物外延层11、和/或第二Ⅲ族氮化物外延层14、和/或第三Ⅲ族氮化物外延层15可以为器件中的衬底、缓冲层、势垒层或沟道层等。
第二掩膜层13的材料可以选择能抑制第一Ⅲ族氮化物外延层11生长的材料,例如可以包括:二氧化硅与氮化硅中的至少一种。第一掩膜层12的材料可以选择第二Ⅲ族氮化物外延层14能在其上附着的材料,例如可以包括:二氧化硅与氮化硅中的至少一种。
此外,参照图5所示,本实施例中,第一Ⅲ族氮化物外延层11可以位 于衬底10上。衬底10可以为蓝宝石、碳化硅和硅中的至少一种,本实施例对此不加以限制。
一些实施例中,第一Ⅲ族氮化物外延层11可以为剥离衬底10后的第一Ⅲ族氮化物外延层11。
图6是本发明第二实施例的Ⅲ族氮化物结构的制作方法对应的中间结构示意图。图7是本发明第二实施例的Ⅲ族氮化物结构的截面结构示意图。参照图6与图7所示,本实施例的Ⅲ族氮化物结构2及其制作方法与图1至图5的实施例的Ⅲ族氮化物结构1及其制作方法大致相同,区别仅在于:第二掩膜层13还形成在图形化的第一掩膜层12上,第三Ⅲ族氮化物外延层15生长形成在第二掩膜层13上。
本实施例相对于仅在凹槽11a的底壁形成第二掩膜层13的方案的好处在于:可以省略第二掩膜层13的图形化工序,简化工艺。
图8是本发明第三实施例的Ⅲ族氮化物结构的截面结构示意图。参照图8所示,本实施例的Ⅲ族氮化物结构3、图1与图7实施例的Ⅲ族氮化物结构1、2大致相同,区别仅在于:第二掩膜层13为原位第二掩膜层13',第二Ⅲ族氮化物外延层为原位第二Ⅲ族氮化物外延层14',第三Ⅲ族氮化物外延层15为原位第三Ⅲ族氮化物外延层15'。
对应地,本实施例的Ⅲ族氮化物结构3的制作方法与图1至图5实施例、图6与图7实施例的Ⅲ族氮化物结构1、2的制作方法大致相同,区别仅在于:步骤S1中刻蚀凹槽11a、步骤S2中形成第二掩膜层13与生长第二Ⅲ族氮化物外延层14、以及步骤S3中生长第三Ⅲ族氮化物外延层15在同一MOCVD设备中进行。
凹槽11a刻蚀工序中,MOCVD设备中的反应气体可以包括Cl 2与BCl 3。上述混合气体可与第一Ⅲ族氮化物外延层11发生化学反应,以形成凹槽11a。
在同一MOCVD设备中进行,即原位进行的好处在于:可以减少工艺 复杂性,减少多个制程在不同设备间的转移过程,避免污染源参与过程干扰第二Ⅲ族氮化物外延层14与第三Ⅲ族氮化物外延层15的质量。
一些实施例中,凹槽11a的刻蚀也可以采用前述实施例的干法刻蚀或湿法刻蚀。凹槽11a形成后,再转移至MOCVD设备中依次形成第二掩膜层13、生长第二Ⅲ族氮化物外延层14与第三Ⅲ族氮化物外延层15。
图9是本发明第四实施例的Ⅲ族氮化物结构的制作方法对应的中间结构示意图。图10是本发明第四实施例的Ⅲ族氮化物结构的截面结构示意图。参照图9与图10所示,本实施例的Ⅲ族氮化物结构4及其制作方法与图1至图5的实施例的Ⅲ族氮化物结构1及其制作方法大致相同,区别仅在于:步骤S1中,刻蚀第一Ⅲ族氮化物外延层11的整个厚度形成凹槽11a。
本实施例中,由于凹槽11a的底壁暴露衬底10,因而可以省略第二掩膜层13的制作工序,由衬底10充当第二掩膜层13。
本实施例的方案也可以与图8实施例的方案结合,即第二Ⅲ族氮化物外延层为原位第二Ⅲ族氮化物外延层14',第三Ⅲ族氮化物外延层15为原位第三Ⅲ族氮化物外延层15'。
图11是本发明第五实施例的Ⅲ族氮化物结构的截面结构示意图。参照图11所示,本实施例的Ⅲ族氮化物结构5及其制作方法与图1至图10的实施例的Ⅲ族氮化物结构1、2、3、4及其制作方法大致相同,区别仅在于:还在第三Ⅲ族氮化物外延层15上生长形成LED结构17。
LED结构17可以包括:N型半导体层,P型半导体层,以及位于N型半导体层与P型半导体层之间的量子阱层。
N型半导体层用于提供电子,P型半导体层用于提供空穴,以使电子与空穴在量子阱层中复合发光。N型半导体层和/或P型半导体层可以包括Ⅲ族氮化物材料。Ⅲ族氮化物材料可以为GaN、AlGaN、InGaN、AlInGaN中的至少一种。N型半导体层中的N型离子可以为Si离子、Ge离子、Sn离子、 Se离子或Te离子中的至少一种。P型半导体层中的P型掺杂离子可以为Mg离子、Zn离子、Ca离子、Sr离子或Ba离子中的至少一种。。
一些实施例中,N型半导体层可以靠近第三Ⅲ族氮化物外延层15,P型半导体层远离第三Ⅲ族氮化物外延层15。其它实施例中,也可以P型半导体层靠近第三Ⅲ族氮化物外延层15,N型半导体层远离第三Ⅲ族氮化物外延层15。
量子阱层可以为单量子阱层,也可以为多量子阱层。
LED结构17的形成工艺可以参照第三Ⅲ族氮化物外延层15的形成工艺。
图12是本发明第六实施例的Ⅲ族氮化物结构的截面结构示意图。参照图12所示,本实施例的Ⅲ族氮化物结构6及其制作方法与图1至图10的实施例的Ⅲ族氮化物结构1、2、3、4及其制作方法大致相同,区别仅在于:第三Ⅲ族氮化物外延层15未愈合时,还在图形化的第一掩膜层12与第三Ⅲ族氮化物外延层15上生长形成第四Ⅲ族氮化物外延层16。
第四Ⅲ族氮化物外延层16的材料与第三Ⅲ族氮化物外延层15的材料不同。
具体地,第四Ⅲ族氮化物外延层16的材料包含的元素种类可以多于第三Ⅲ族氮化物外延层15的材料的元素种类。例如当第三Ⅲ族氮化物外延层15的材料为GaN时,第四Ⅲ族氮化物外延层16至少还包括:Al、In元素中的至少一种。当第三Ⅲ族氮化物外延层15的材料为AlN时,第四Ⅲ族氮化物外延层16至少还包括:Ga、In元素中的至少一种。
第四Ⅲ族氮化物外延层16的材料可以为AlGaN、InGaN、AlInGaN中的至少一种。
本实施例的方案可以有效地释放第四Ⅲ族氮化物外延层16中的应力,降低第四Ⅲ族氮化物外延层16中的位错和V型坑。若直接在图形化的第一掩 膜层12与第二Ⅲ族氮化物外延层14上生长形成第四Ⅲ族氮化物外延层16时,会在图形化的第一掩膜层12上形成V型坑。
图13是本发明第七实施例的Ⅲ族氮化物结构的截面结构示意图。参照图13所示,本实施例的Ⅲ族氮化物结构7及其制作方法与图12的实施例的Ⅲ族氮化物结构6及其制作方法大致相同,区别仅在于:还在第四Ⅲ族氮化物外延层16上生长形成LED结构17。
LED结构17的具体结构及形成方法可以参照图11实施例中的LED结构17的具体结构及形成方法。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (24)

  1. 一种Ⅲ族氮化物结构的制作方法,其特征在于,包括:
    提供第一Ⅲ族氮化物外延层(11);在所述第一Ⅲ族氮化物外延层(11)上形成图形化的第一掩膜层(12);以所述图形化的第一掩膜层(12)为掩膜,刻蚀所述第一Ⅲ族氮化物外延层(11)形成凹槽(11a);
    至少在所述凹槽(11a)的底壁形成第二掩膜层(13);以所述第二掩膜层(13)为掩膜,对所述第一Ⅲ族氮化物外延层(11)进行第一次外延生长,以横向生长形成第二Ⅲ族氮化物外延层(14),所述第二Ⅲ族氮化物外延层(14)填满所述凹槽(11a);
    对所述第二Ⅲ族氮化物外延层(14)进行第二次外延生长,以在所述第二Ⅲ族氮化物外延层(14)以及所述图形化的第一掩膜层(12)上生长形成第三Ⅲ族氮化物外延层(15)。
  2. 根据权利要求1所述的Ⅲ族氮化物结构的制作方法,其特征在于,所述第一Ⅲ族氮化物外延层(11)位于衬底(10)上,所述凹槽(11a)的底壁暴露所述衬底(10),所述衬底(10)充当所述第二掩膜层(13)。
  3. 根据权利要求1所述的Ⅲ族氮化物结构的制作方法,其特征在于,所述第二掩膜层(13)还形成在所述图形化的第一掩膜层(12)上,所述第三Ⅲ族氮化物外延层(15)生长形成在所述第二掩膜层(13)上。
  4. 根据权利要求1所述的Ⅲ族氮化物结构的制作方法,其特征在于,所述第一掩膜层(12)的材料包括:二氧化硅与氮化硅中的至少一种;和/或所述第二掩膜层(13)的材料包括:二氧化硅与氮化硅中的至少一种。
  5. 根据权利要求1所述的Ⅲ族氮化物结构的制作方法,其特征在于,所述第一Ⅲ族氮化物外延层(11)、所述第二Ⅲ族氮化物外延层(14)与所述第三Ⅲ族氮化物外延层(15)的材料相同,包括:GaN、AlN、AlGaN、InGaN与AlInGaN中的至少一种。
  6. 根据权利要求1所述的Ⅲ族氮化物结构的制作方法,其特征在于,所 述第二Ⅲ族氮化物外延层(14)和/或所述第三Ⅲ族氮化物外延层(15)的外延生长工艺包括:原子层沉积法、化学气相沉积法、分子束外延生长法、等离子体增强化学气相沉积法、低压化学蒸发沉积法以及金属有机化合物化学气相沉积法中的至少一种。
  7. 根据权利要求6所述的Ⅲ族氮化物结构的制作方法,其特征在于,所述第二Ⅲ族氮化物外延层(14)与所述第三Ⅲ族氮化物外延层(15)的外延生长工艺都为金属有机化合物化学气相沉积法;形成所述第二掩膜层(13)、以及生长所述第二Ⅲ族氮化物外延层(14)与所述第三Ⅲ族氮化物外延层(15)在同一金属有机化合物化学气相沉积设备中进行。
  8. 根据权利要求7所述的Ⅲ族氮化物结构的制作方法,其特征在于,刻蚀所述凹槽(11a)、形成所述第二掩膜层(13)、以及生长所述第二Ⅲ族氮化物外延层(14)与所述第三Ⅲ族氮化物外延层(15)在同一金属有机化合物化学气相沉积设备中进行。
  9. 根据权利要求1至8任一项所述的Ⅲ族氮化物结构的制作方法,其特征在于,位于所述图形化的第一掩膜层(12)上的所述第三Ⅲ族氮化物外延层(15)未愈合时,还在所述图形化的第一掩膜层(12)与所述第三Ⅲ族氮化物外延层(15)上生长形成第四Ⅲ族氮化物外延层(16)。
  10. 根据权利要求9所述的Ⅲ族氮化物结构的制作方法,其特征在于,还包括:在所述第四Ⅲ族氮化物外延层(16)上生长形成LED结构(17)。
  11. 根据权利要求1至8任一项所述的Ⅲ族氮化物结构的制作方法,其特征在于,还包括:在所述第三Ⅲ族氮化物外延层(15)上生长形成LED结构(17)。
  12. 根据权利要求1所述的Ⅲ族氮化物结构的制作方法,其特征在于,所述第一Ⅲ族氮化物外延层(11)的形成方法包括:在衬底(10)上外延生长所述第一Ⅲ族氮化物外延层(11)。
  13. 根据权利要求2或12所述的Ⅲ族氮化物结构的制作方法,其特征在于,所述衬底(10)包括:蓝宝石、碳化硅和硅中的至少一种。
  14. 一种Ⅲ族氮化物结构,其特征在于,包括:
    第一Ⅲ族氮化物外延层(11),所述第一Ⅲ族氮化物外延层(11)上具有图形化的第一掩膜层(12);
    自所述图形化的第一掩膜层(12)的开口伸入所述第一Ⅲ族氮化物外延层(11)内的第二Ⅲ族氮化物外延层(14),所述第二Ⅲ族氮化物外延层(14)的底壁与所述第一Ⅲ族氮化物外延层(11)之间具有第二掩膜层(13),所述第二Ⅲ族氮化物外延层(14)的侧壁与所述第一Ⅲ族氮化物外延层(11)连接;
    位于所述第二Ⅲ族氮化物外延层(14)以及所述图形化的第一掩膜层(12)上的第三Ⅲ族氮化物外延层(15),所述第一Ⅲ族氮化物外延层(11)、所述第二Ⅲ族氮化物外延层(14)以及所述第三Ⅲ族氮化物外延层(15)的[0001]晶向平行于厚度方向。
  15. 根据权利要求14所述的Ⅲ族氮化物结构,其特征在于,所述第一Ⅲ族氮化物外延层(11)、所述第二Ⅲ族氮化物外延层(14)与所述第三Ⅲ族氮化物外延层(15)的材料相同,包括:GaN、AlN、AlGaN、InGaN与AlInGaN中的至少一种。
  16. 根据权利要求14所述的Ⅲ族氮化物结构,其特征在于,还包括:衬底(10),所述第一Ⅲ族氮化物外延层(11)位于所述衬底(10)上。
  17. 根据权利要求16所述的Ⅲ族氮化物结构,其特征在于,所述衬底(10)充当所述第二掩膜层(13)。
  18. 根据权利要求16或17所述的Ⅲ族氮化物结构,其特征在于,所述衬底(10)包括:蓝宝石、碳化硅和硅中的至少一种。
  19. 根据权利要求14所述的Ⅲ族氮化物结构,其特征在于,所述图形化的第一掩膜层(12)上还具有所述第二掩膜层(13),所述第三Ⅲ族氮化物外延层(15)位于所述第二掩膜层(13)上。
  20. 根据权利要求14或19所述的Ⅲ族氮化物结构,其特征在于,所述第一掩膜层(12)的材料包括:二氧化硅与氮化硅中的至少一种;和/或所述第二掩膜层(13)的材料包括:二氧化硅与氮化硅中的至少一种。
  21. 根据权利要求14所述的Ⅲ族氮化物结构,其特征在于,所述第二Ⅲ族氮化物外延层(14)为原位第二Ⅲ族氮化物外延层(14');和/或所述第二掩膜层(13)为原位第二掩膜层(13')。
  22. 根据权利要求14所述的Ⅲ族氮化物结构,其特征在于,位于所述图形化的第一掩膜层(12)上的所述第三Ⅲ族氮化物外延层(15)未愈合,所述图形化的第一掩膜层(12)与所述第三Ⅲ族氮化物外延层(15)上具有第四Ⅲ族氮化物外延层(16)。
  23. 根据权利要求22所述的Ⅲ族氮化物结构,其特征在于,还包括:位于所述第四Ⅲ族氮化物外延层(16)上的LED结构(17)。
  24. 根据权利要求14所述的Ⅲ族氮化物结构,其特征在于,还包括:位于所述第三Ⅲ族氮化物外延层(15)上的LED结构(17)。
PCT/CN2020/089836 2020-05-12 2020-05-12 Ⅲ族氮化物结构及其制作方法 WO2021226839A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/089836 WO2021226839A1 (zh) 2020-05-12 2020-05-12 Ⅲ族氮化物结构及其制作方法
US17/434,543 US20230053953A1 (en) 2020-05-12 2020-05-12 Group iii nitride structures and manufacturing methods thereof
CN202080097533.XA CN115461841A (zh) 2020-05-12 2020-05-12 Ⅲ族氮化物结构及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089836 WO2021226839A1 (zh) 2020-05-12 2020-05-12 Ⅲ族氮化物结构及其制作方法

Publications (1)

Publication Number Publication Date
WO2021226839A1 true WO2021226839A1 (zh) 2021-11-18

Family

ID=78526132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089836 WO2021226839A1 (zh) 2020-05-12 2020-05-12 Ⅲ族氮化物结构及其制作方法

Country Status (3)

Country Link
US (1) US20230053953A1 (zh)
CN (1) CN115461841A (zh)
WO (1) WO2021226839A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046241A1 (zh) * 2022-08-31 2024-03-07 珠海庞纳微半导体科技有限公司 外延结构及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010039102A1 (en) * 1998-06-10 2001-11-08 Tsvetanka Zheleva Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
CN101378017A (zh) * 2008-09-19 2009-03-04 苏州纳维科技有限公司 一种硅基图形衬底上生长外延层的方法
CN102427100A (zh) * 2011-11-11 2012-04-25 郭磊 半导体结构及其形成方法
CN103247517A (zh) * 2012-02-08 2013-08-14 郭磊 一种半导体结构及其形成方法
CN103413776A (zh) * 2013-07-09 2013-11-27 中国科学院物理研究所 一种具有隔离层的复合衬底及其制造方法
CN109920727A (zh) * 2019-03-13 2019-06-21 中国科学院半导体研究所 在侧向外延薄膜上自对准形成图形及制备外延材料的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168028A (ja) * 1999-12-03 2001-06-22 Sony Corp 窒化物系iii−v族化合物の結晶製造方法、窒化物系iii−v族化合物結晶基板、窒化物系iii−v族化合物結晶膜およびデバイスの製造方法
TWI447783B (zh) * 2008-04-28 2014-08-01 Advanced Optoelectronic Tech 三族氮化合物半導體發光元件之製造方法及其結構
US8492185B1 (en) * 2011-07-14 2013-07-23 Soraa, Inc. Large area nonpolar or semipolar gallium and nitrogen containing substrate and resulting devices
US11466384B2 (en) * 2019-01-08 2022-10-11 Slt Technologies, Inc. Method of forming a high quality group-III metal nitride boule or wafer using a patterned substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010039102A1 (en) * 1998-06-10 2001-11-08 Tsvetanka Zheleva Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
CN101378017A (zh) * 2008-09-19 2009-03-04 苏州纳维科技有限公司 一种硅基图形衬底上生长外延层的方法
CN102427100A (zh) * 2011-11-11 2012-04-25 郭磊 半导体结构及其形成方法
CN103247517A (zh) * 2012-02-08 2013-08-14 郭磊 一种半导体结构及其形成方法
CN103413776A (zh) * 2013-07-09 2013-11-27 中国科学院物理研究所 一种具有隔离层的复合衬底及其制造方法
CN109920727A (zh) * 2019-03-13 2019-06-21 中国科学院半导体研究所 在侧向外延薄膜上自对准形成图形及制备外延材料的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046241A1 (zh) * 2022-08-31 2024-03-07 珠海庞纳微半导体科技有限公司 外延结构及其制备方法

Also Published As

Publication number Publication date
US20230053953A1 (en) 2023-02-23
CN115461841A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
US8686474B2 (en) III-V compound semiconductor epitaxy from a non-III-V substrate
US8835988B2 (en) Hybrid monolithic integration
US8803189B2 (en) III-V compound semiconductor epitaxy using lateral overgrowth
CN103094314B (zh) 在硅衬底上生长iii-氮化物的新方法
US7186620B2 (en) Method of making substrates for nitride semiconductor devices
EP2389693B1 (en) Light emitting diode device and method for manufacturing the same
US9935175B1 (en) Sidewall spacer for integration of group III nitride with patterned silicon substrate
KR102071034B1 (ko) 질화물 기판 제조 방법
US20060141753A1 (en) Epitaxial structure of gallium nitride series semiconductor device and process of manufacturing the same
TWI797814B (zh) 半導體結構及其製作方法
WO2021226839A1 (zh) Ⅲ族氮化物结构及其制作方法
EP2869331A1 (en) Episubstrates for selective area growth of group iii-v material and a method for fabricating a group iii-v material on a silicon substrate
KR102608902B1 (ko) 질화물 반도체 기판 제조방법
US8048786B2 (en) Method for fabricating single-crystalline substrate containing gallium nitride
WO2021237528A1 (zh) Ⅲ族氮化物结构及其制作方法
KR100454907B1 (ko) 질화물 반도체 기판 및 그의 제조 방법
WO2022217539A1 (zh) 半导体结构及其制作方法
TWI833198B (zh) 半導體結構及其製作方法
WO2022217542A1 (zh) 半导体结构及其制作方法
WO2022099519A1 (zh) LED结构及其GaN基衬底、GaN基衬底的制作方法
WO2022194199A1 (zh) 半导体器件的外延结构及其制备方法、半导体器件
US20210210656A1 (en) Method for micro-led epitaxial wafer manufacturing and micro-led epitaxial wafer
CN117672821A (zh) 一种半导体结构及其制作方法
WO2007078065A1 (en) Gallium nitride-based compound semiconductor
CN110620034A (zh) 半导体结构、器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935172

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20935172

Country of ref document: EP

Kind code of ref document: A1