WO2015001863A1 - 炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
WO2015001863A1
WO2015001863A1 PCT/JP2014/063653 JP2014063653W WO2015001863A1 WO 2015001863 A1 WO2015001863 A1 WO 2015001863A1 JP 2014063653 W JP2014063653 W JP 2014063653W WO 2015001863 A1 WO2015001863 A1 WO 2015001863A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact region
silicon carbide
substrate
semiconductor device
carbide semiconductor
Prior art date
Application number
PCT/JP2014/063653
Other languages
English (en)
French (fr)
Inventor
山田 俊介
服部 哲也
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/902,185 priority Critical patent/US9704743B2/en
Publication of WO2015001863A1 publication Critical patent/WO2015001863A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76889Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances by forming silicides of refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76805Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics the opening being a via or contact hole penetrating the underlying conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76814Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/34Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Definitions

  • the present invention relates to a method for manufacturing a silicon carbide semiconductor device, and more particularly to a method for manufacturing a silicon carbide semiconductor device using a silicidation reaction.
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-105966
  • a silicidation reaction is used when forming a source electrode in a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) manufacturing method using a silicon carbide substrate.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the interlayer insulating film and the gate insulating film are removed in the region where the source electrode is to be formed.
  • a Ni film is formed in this region.
  • heat treatment is performed, whereby at least a part of the Ni film is silicided.
  • a source electrode as an ohmic electrode is formed.
  • the contact resistance between the substrate and the electrode be small. If it is allowed to increase the contact area between the substrate and the electrode without limitation, it is easy to reduce the contact resistance. However, due to the size limitation of the semiconductor device, the contact area is also limited. It is normal.
  • a main object of the present invention is to provide a method for manufacturing a silicon carbide semiconductor device capable of reducing a contact resistance while suppressing a contact area between a substrate and an electrode layer.
  • the manufacturing method of the silicon carbide semiconductor device of this invention has the following processes.
  • An insulating layer is formed on a substrate having a main surface and made of silicon carbide.
  • a mask layer having an opening is formed on the insulating layer.
  • a contact hole that exposes a contact region that is a part of the main surface of the substrate is formed in the insulating layer.
  • the step of forming the contact hole includes a step of setting the surface roughness Ra of the contact region to 0.5 nm or more.
  • An electrode layer in contact with the contact region of the substrate is formed. By heating the electrode layer and the substrate, a silicidation reaction is caused between the electrode layer and the contact region of the substrate.
  • the contact resistance can be reduced more reliably.
  • FIG. 1 is a partial cross sectional view schematically showing a configuration of a silicon carbide semiconductor device in a first embodiment of the present invention.
  • FIG. 7 is a partial cross sectional view schematically showing a first step of the method for manufacturing the silicon carbide semiconductor device in Embodiment 1 of the present invention.
  • FIG. 6 is a partial cross sectional view schematically showing a second step of the method for manufacturing the silicon carbide semiconductor device in Embodiment 1 of the present invention.
  • FIG. 11 is a partial cross sectional view schematically showing a third step of the method for manufacturing the silicon carbide semiconductor device in Embodiment 1 of the present invention.
  • FIG. 7 is a partial cross sectional view schematically showing a configuration of a silicon carbide semiconductor device in a first embodiment of the present invention.
  • FIG. 7 is a partial cross sectional view schematically showing a first step of the method for manufacturing the silicon carbide semiconductor device in Embodiment 1 of the present invention.
  • FIG. 6 is a partial cross sectional view schematic
  • FIG. 8 is a partial cross sectional view schematically showing a fourth step of the method for manufacturing the silicon carbide semiconductor device in Embodiment 1 of the present invention.
  • FIG. 8 is a partial cross sectional view schematically showing a fifth step of the method for manufacturing the silicon carbide semiconductor device in Embodiment 1 of the present invention.
  • FIG. 11 is a partial cross sectional view schematically showing a sixth step of the method for manufacturing the silicon carbide semiconductor device in Embodiment 1 of the present invention.
  • FIG. 11 is a partial cross sectional view schematically showing a seventh step of the method for manufacturing the silicon carbide semiconductor device in Embodiment 1 of the present invention.
  • FIG. 12 is a partial cross sectional view schematically showing an eighth step of the method for manufacturing the silicon carbide semiconductor device in Embodiment 1 of the present invention.
  • FIG. 11 is a partial cross sectional view schematically showing a ninth step of the method for manufacturing the silicon carbide semiconductor device in Embodiment 1 of the present invention.
  • FIG. 11 is a partial cross sectional view schematically showing a tenth step of the method for manufacturing the silicon carbide semiconductor device in Embodiment 1 of the present invention. It is a fragmentary sectional view which shows schematically the 11th process of the manufacturing method of the silicon carbide semiconductor device in Embodiment 1 of this invention.
  • It is a flowchart which shows schematically the process of forming the insulating layer in Embodiment 1 of this invention.
  • the method for manufacturing silicon carbide semiconductor device 100 includes the following steps. Insulating layer 20 is formed on substrate 10 having main surface 10A and made of silicon carbide. A mask layer 80 having an opening OP is formed on the insulating layer 20. By etching the insulating layer 20 using the mask layer 80, a contact hole CH that exposes the contact region CR that is a part of the main surface 10A of the substrate 10 is formed in the insulating layer 20.
  • the step of forming the contact hole CH includes a step of setting the surface roughness Ra of the contact region CR to 0.5 nm or more.
  • An electrode layer 52 in contact with the contact region CR of the substrate 10 is formed. By heating the electrode layer 52 and the substrate 10, a silicidation reaction is caused between the electrode layer 52 and the contact region CR of the substrate 10.
  • the contact region CR where the electrode layer 52 is to be formed is roughened so that the surface roughness Ra is 0.5 nm or more.
  • the contact region CR has various plane orientations microscopically regardless of the macroscopic crystallographic plane orientation of the main surface 10A of the substrate 10. Therefore, when the silicidation reaction is caused between the electrode layer 52 and the contact region CR, the influence of the plane orientation dependency of the silicidation speed can be suppressed. As a result, sufficient silicidation can occur more reliably, thereby reducing the contact resistance more reliably.
  • the substrate 10 may have a hexagonal crystal structure.
  • the silicidation rate has a plane orientation dependence in the hexagonal system, and the influence of this plane orientation dependence can be suppressed.
  • the main surface 10A of the substrate 10 may have an off angle of 10 ° or less with respect to the ⁇ 0001 ⁇ plane.
  • the silicidation speed is particularly low.
  • the surface roughness Ra of the contact region CR is increased, the surface orientation dependence of the silicidation rate is suppressed as described above, so that a decrease in the silicidation rate can be prevented. Therefore, the contact resistance can be reduced.
  • the step of forming the electrode layer 52 may include a step of depositing a material having at least one of Ni atoms and Ti atoms. Thereby, the material of the electrode layer 52 can be made suitable for causing a silicidation reaction.
  • the step of forming the insulating layer 20 may include a step of setting the surface roughness Ra of the insulating layer 20 to 0.5 nm or more. Thereby, the large surface roughness Ra of the insulating layer 20 is transferred to the contact region CR, so that the surface roughness Ra of the contact region CR can be increased.
  • the step of setting the surface roughness Ra of the contact region CR to 0.5 nm or more may include a step of roughening the contact region CR. Thereby, even if the surface roughness Ra of the contact region CR immediately after the exposure is less than 0.5 nm, the surface roughness Ra of the contact region CR is set to 0.5 nm or more before the electrode layer 52 is formed. Can do.
  • the step of roughening the contact region CR includes a step of exposing the contact region CR to oxygen plasma, and a step of etching the contact region CR after the step of exposing the contact region CR to oxygen plasma. But you can.
  • the step of etching contact region CR may be performed under the condition that the etching rate for silicon carbide is higher than the etching rate for silicon oxide.
  • the surface roughness Ra can be increased by subsequent etching.
  • the process of roughening the contact region CR may be repeated a plurality of times. Thereby, the surface roughness Ra of the contact region CR can be more reliably set to 0.5 nm or more.
  • the step of etching the contact region CR may include a step of performing dry etching using a gas containing sulfur hexafluoride.
  • the etching rate with respect to silicon carbide can be made larger than the etching rate with respect to silicon oxide.
  • MOSFET 100 silicon carbide semiconductor device
  • MOSFET 100 is a power semiconductor device and has a so-called vertical structure with respect to a current path.
  • the MOSFET 100 includes an epitaxial substrate 10 (substrate), an insulating layer 20, a gate electrode 30, a buffer film 51, a source electrode 52 (electrode layer), a source wiring layer 60, and a drain electrode 70.
  • the MOSFET 100 includes an epitaxial substrate 10 (substrate), an insulating layer 20, a gate electrode 30, a buffer film 51, a source electrode 52 (electrode layer), a source wiring layer 60, and a drain electrode 70.
  • the epitaxial substrate 10 is made of silicon carbide having n-type (first conductivity type).
  • Epitaxial substrate 10 has upper surface 10A (main surface) and back surface 11B opposite to upper surface 10A.
  • the epitaxial substrate 10 includes a base substrate 11 that forms the back surface 11B and an epitaxial layer 12 that forms the top surface 10A.
  • the base substrate 11 and the epitaxial layer 12 are laminated via the interface 11A.
  • the substrate 10 preferably has a hexagonal crystal structure.
  • the off angle of the upper surface 10A with respect to the ⁇ 0001 ⁇ plane is preferably 10 ° or less, and more preferably 5 ° or less.
  • the off angle is preferably 2 ° or more, and more preferably 3 ° or more.
  • Epitaxial layer 12 has an n ⁇ drift portion 13, a p body portion 14, an n source portion 15, and a p + contact portion 16.
  • the n ⁇ drift portion 13 is provided on the interface 11A.
  • the n ⁇ drift portion 13 has an n type and has an impurity concentration lower than that of the base substrate 11.
  • p body 14, n - is provided on the drift portion 13 - n to be separated from the surface 11A by the drift region 13.
  • the p body portion 14 partially constitutes the upper surface 10A.
  • the p body portion 14 has p type (second conductivity type).
  • the n source part 15 partially constitutes the upper surface 10A.
  • N source portion 15 is separated from n ⁇ drift portion 13 by p body portion 14.
  • N source portion 15 is of an n type and has an impurity concentration higher than that of n ⁇ drift portion 13.
  • the p + contact portion 16 partially constitutes the upper surface 10 ⁇ / b > A and is connected to the p body portion 14.
  • the p + contact portion 16 has a p-type and has an impurity concentration higher than that of the p body portion 14.
  • the gate insulating film 21 is provided directly on a part of the upper surface 10 ⁇ / b> A of the substrate 10. More specifically, the gate insulating film 21 is directly provided on the p body portion 14 so as to connect the n source portion 15 and the n ⁇ drift portion 13.
  • the portion of the upper surface 10A covered with the gate insulating film 21, particularly the portion of the upper surface 10A constituted by the p body portion 14 preferably has a surface roughness Ra of less than 0.5 nm, and is 0.2 nm. It is more preferable to have an Ra of less than.
  • the gate insulating film 21 is preferably made of SiO 2 (silicon dioxide).
  • the interlayer insulating film 22 is provided on the gate insulating film 21.
  • the interlayer insulating film 22 is preferably made of SiO 2 (silicon dioxide).
  • the gate insulating film 21 and the interlayer insulating film 22 sandwich the gate electrode 30 therebetween.
  • the gate electrode 30 is embedded in the insulating layer 20 having the gate insulating film 21 and the interlayer insulating film 22.
  • a contact hole CH is provided in the insulating layer 20.
  • the contact hole CH penetrates the interlayer insulating film 22 and the gate insulating film 21.
  • the contact hole CH exposes a contact region CR that is a part of the upper surface 10A of the substrate 10. Contact region CR exposes each of n source portion 15 and p + contact portion 16.
  • the gate electrode 30 is provided on the gate insulating film 21, and has a portion disposed on the p body portion 14 through the gate insulating film 21.
  • the gate electrode 30 is made of, for example, doped polysilicon.
  • the buffer film 51 covers the side wall surface of the contact hole CH, that is, the side surface of the insulating layer 20. Specifically, the buffer film 51 covers the side surfaces of the gate insulating film 21 and the interlayer insulating film 22 in the contact hole CH.
  • the buffer film 51 preferably does not contain Al atoms and Si atoms, and is made of, for example, titanium nitride (TiN), tungsten nitride (TiW), or tantalum nitride (TaN).
  • the thickness of the buffer film 51 is, for example, not less than 0.025 ⁇ m and not more than 0.15 ⁇ m.
  • the source electrode 52 is in contact with the contact region CR exposed by the contact hole CH.
  • the source electrode 52 is separated from the gate insulating film 21 by the buffer film 51.
  • the source electrode 52 preferably includes at least one of Ni atoms and Ti atoms, and is made of, for example, a TiAlSi alloy.
  • the drain electrode 70 is provided on the back surface 11B of the epitaxial substrate 10.
  • the same material as that of the source electrode 52 can be used.
  • the source wiring layer 60 is formed so as to cover the source electrode 52 and the interlayer insulating film 22.
  • Source wiring layer 60 preferably contains Al atoms, and is, for example, an aluminum layer or an aluminum alloy layer.
  • n ⁇ drift portion 13 is first formed by epitaxial growth on base substrate 11.
  • Epitaxial growth can be performed by chemical vapor deposition (CVD).
  • p body portion 14, n source portion 15, and p + contact portion 16 are formed on n ⁇ drift portion 13. These formations can be performed by ion implantation.
  • activation annealing is performed by heating the substrate 10. In this way, the substrate 10 is prepared.
  • the surface roughness Ra of the upper surface 10A is preferably less than 0.5 nm, and more preferably less than 0.2 nm.
  • a gate insulating film 21 is formed on the upper surface 10A of the substrate 10 (FIG. 13: Step S11).
  • the formation of the gate insulating film 21 is preferably performed by thermal oxidation of the upper surface 10 ⁇ / b> A of the substrate 10.
  • a gate electrode 30 is formed on the gate insulating film 21.
  • the gate electrode 30 is formed by, for example, forming a doped polysilicon film using a CVD method and patterning using a photolithography method.
  • an interlayer insulating film 22 covering the gate electrode 30 is formed (FIG. 13: Step S12).
  • the insulating layer 20 having the gate insulating film 21 and the interlayer insulating film 22 is formed on the upper surface 10A of the substrate 10 (FIG. 13: step S10).
  • the interlayer insulating film 22 can be formed by, for example, depositing SiO 2 by plasma CVD.
  • the surface roughness Ra of the surface of the insulating layer 20 is 0.5 nm or more. To be done.
  • a large surface roughness Ra can be obtained, for example, by forming the interlayer insulating film 22 at a high growth rate.
  • the surface roughness Ra is preferably 50 nm or less, more preferably 10 nm or less, and even more preferably 5 nm or less.
  • a mask layer 80 having an opening OP is formed on the interlayer insulating film 22 of the insulating layer 20.
  • the mask layer 80 is a resist pattern formed by, for example, a photolithography method.
  • the insulating layer 20 is etched using the mask layer 80. Etching can be performed by reactive ion etching (RIE).
  • the reactive gas of RIE is preferably a fluorine-based gas, for example, a mixed gas of CF 4 and CHF 3 .
  • the reactive gas may be mixed with the carrier gas.
  • the carrier gas is preferably Ar gas.
  • a contact hole CH exposing the contact region CR which is a part of the upper surface 10A of the substrate 10 is formed in the insulating layer 20.
  • the contact region CR fine irregularities on the upper surface of the insulating layer 20 existing on the contact region CR are transferred.
  • the surface roughness Ra of the contact region CR is also set to 0.5 nm or more. That is, when the contact hole CH is formed, the contact region CR is roughened so that the surface roughness Ra of the contact region CR becomes 0.5 nm or more.
  • the surface roughness Ra is preferably 50 nm or less, more preferably 10 nm or less, and even more preferably 5 nm or less.
  • the mask layer 80 is removed (FIG. 9).
  • the buffer film 51 is formed.
  • the buffer film 51 can be formed by film formation using a sputtering method and patterning using a photolithography method.
  • the source electrode 52 in contact with the contact region CR of the substrate 10 is formed.
  • a material having at least one of Ni atoms and Ti atoms is preferably deposited.
  • a laminated film of a Ti layer, an Al layer, and an Si layer is formed by sputtering.
  • the laminated film is patterned using a photolithography method.
  • the source electrode 52 is alloyed by this heating.
  • the heating temperature is preferably 950 ° C. or higher and 1050 ° C. or lower, for example, about 1000 ° C.
  • the drain electrode 70 is formed.
  • the drain electrode 70 can be formed by the same method as the source electrode 52.
  • the source electrode 52 and the drain electrode 70 may be heated all at once.
  • source wiring layer 60 is formed. Thereby, MOSFET 100 is obtained.
  • the contact region CR where the source electrode 52 is to be formed is roughened so that the surface roughness Ra is 0.5 nm or more.
  • the contact region CR has various plane orientations microscopically regardless of the macroscopic crystallographic plane orientation of the main surface 10A of the substrate 10. Therefore, when the silicidation reaction is caused between the source electrode 52 and the contact region CR, the influence of the surface orientation dependency of the silicidation speed can be suppressed. As a result, sufficient silicidation can occur more reliably, thereby reducing the contact resistance more reliably.
  • the surface roughness Ra of the insulating layer 20 is set to 0.5 nm or more. Thereby, the large surface roughness Ra of the insulating layer 20 is transferred to the contact region CR, so that the surface roughness Ra of the contact region CR can be increased.
  • the surface roughness Ra of the contact region CR is not excessively increased, a fine recess formed in the contact region CR penetrates the n source portion 15 or the p + contact portion 16 and reaches the p body portion 14. It is prevented.
  • the surface roughness Ra of the contact region CR is preferably 50 nm or less, more preferably 10 nm or less, and further preferably 5 nm or less.
  • the surface roughness Ra of the insulating layer 20 is preferably 50 nm or less, more preferably 10 nm or less, and even more preferably 5 nm or less.
  • the substrate 10 may have a hexagonal crystal structure.
  • the silicidation rate has a plane orientation dependence in the hexagonal system, and the influence of this plane orientation dependence can be suppressed.
  • the upper surface 10A of the substrate 10 has an off angle of 10 ° or less with respect to the ⁇ 0001 ⁇ plane, if the surface roughness Ra of the contact region CR is small, the silicidation rate is particularly low.
  • the surface roughness Ra of the contact region CR is increased, the surface orientation dependence of the silicidation rate is suppressed as described above, so that a decrease in the silicidation rate can be prevented. Therefore, the contact resistance can be reduced.
  • the step of forming the source electrode 52 may include a step of depositing a material having at least one of Ni atoms and Ti atoms. Thereby, the material of the source electrode 52 can be made suitable for causing a silicidation reaction.
  • the surface roughness Ra of the insulating layer 20 may not necessarily be 0.5 nm or more. In this case, the surface roughness Ra of the contact region CR immediately after being exposed can be less than 0.5 nm. For this reason, after the contact region CR is exposed, the step of roughening the contact region CR (FIG. 14: Step S20) is performed in order to ensure that the surface roughness Ra of the contact region CR (FIG. 9) is 0.5 nm or more. Done.
  • the surface roughness Ra is preferably 50 nm or less, more preferably 10 nm or less, and even more preferably 5 nm or less.
  • the step of roughening the contact region CR (FIG. 14: Step S20), the step of exposing the contact region CR to oxygen plasma (FIG. 14: Step S21) and the step of etching the contact region CR (FIG. 14: Step S22). ) And is performed.
  • the process of etching contact region CR is performed under the condition that the etching rate for silicon carbide is higher than the etching rate for silicon oxide. Etching having such conditions can be performed by dry etching using a process gas containing sulfur hexafluoride (SF 6 ) as a reactive gas. Thereafter, steps similar to those in FIGS. 10 to 12 in the first embodiment are performed.
  • SF 6 sulfur hexafluoride
  • the contact region CR is roughened after the contact region CR is exposed. Thereby, even if the surface roughness Ra of the contact region CR immediately after being exposed is less than 0.5 nm, the surface roughness Ra of the contact region CR is set to 0.5 nm or more before the source electrode 52 is formed. Can do.
  • contact region CR is exposed to oxygen plasma, Si atoms of SiC are more oxidized than C atoms of SiC. This causes microscopic unevenness in the oxidation reaction. Thereafter, contact region CR is etched under the condition that the etching rate for silicon carbide (SiC) is higher than the etching rate for silicon oxide. By this etching, the surface roughness Ra can be increased.
  • SiC silicon carbide
  • steps S20a and S20b for roughening the contact region CR may be performed instead of performing step S20 for roughening the contact region CR once as described above. That is, step S20V (FIG. 15) in which the process of roughening the contact region CR is repeated a plurality of times may be performed. Each of steps S20a and S20b can be performed in the same manner as step S20 (FIG. 14). Thereby, the surface roughness Ra of the contact region CR can be more reliably set to 0.5 nm or more.
  • the insulating layer in which the contact hole is formed has an interlayer insulating film and a gate insulating film, but a configuration in which the insulating layer in which the contact hole is formed does not include the gate insulating film can also be used. Such a configuration can be obtained, for example, by previously removing the gate insulating film from the vicinity of the contact hole before the contact hole is formed.
  • the silicon carbide semiconductor device may be a MISFEET other than the MOSFET.
  • the silicon carbide semiconductor device may be a transistor other than MISFEET, and may be, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • an emitter electrode is formed as an electrode layer instead of the source electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 炭化珪素から作られた基板(10)上に絶縁層(20)が形成される。絶縁層(20)上に形成されたマスク層(80)を用いたエッチングにより、絶縁層(20)に、基板(10)の主面(10A)の一部であるコンタクト領域(CR)を露出するコンタクトホール(CH)が形成される。コンタクトホール(CH)を形成する工程は、コンタクト領域(CR)の表面粗さRaを0.5nm以上とする工程を含む。コンタクト領域(CR)に接する電極層が形成される。電極層および基板(10)を加熱することによって、電極層とコンタクト領域(CR)との間でシリサイド化反応が生じさせられる。

Description

炭化珪素半導体装置の製造方法
 本発明は、炭化珪素半導体装置の製造方法に関し、特に、シリサイド化反応を用いた炭化珪素半導体装置の製造方法に関する。
 特開2013-105966号公報(特許文献1)によれば、炭化珪素基板を用いたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)の製造方法においてソース電極を形成する際にシリサイド化反応を用いることが開示されている。まず、ソース電極が形成されるべき領域において、層間絶縁膜およびゲート絶縁膜が除去される。この領域にNi膜が形成される。その後、加熱処理が施されることで、Ni膜の少なくとも一部がシリサイド化される。これによりオーミック電極としてのソース電極が形成される。
特開2013-105966号公報
 炭化珪素半導体装置のオン抵抗を低くするために、基板と電極とのコンタクト抵抗は小さいことが望ましい。もし基板と電極との接触面積を制限なく大きくすることが許されるのであればコンタクト抵抗を小さくすることは容易であるが、半導体装置の大きさの制限上、接触面積にも制限があるのが通常である。
 本発明は上記のような課題を解決するためになされたのものである。本発明の主たる目的は、基板と電極層との接触面積を抑えつつコンタクト抵抗を小さくすることができる炭化珪素半導体装置の製造方法を提供することにある。
 本発明の炭化珪素半導体装置の製造方法は、以下の工程を有する。
 主面を有し炭化珪素から作られた基板上に絶縁層が形成される。絶縁層上に、開口部を有するマスク層が形成される。マスク層を用いて絶縁層をエッチングすることにより、絶縁層に、基板の主面の一部であるコンタクト領域を露出するコンタクトホールが形成される。コンタクトホールを形成する工程は、コンタクト領域の表面粗さRaを0.5nm以上とする工程を含む。基板のコンタクト領域に接する電極層が形成される。電極層および基板を加熱することによって、電極層と基板のコンタクト領域との間でシリサイド化反応が生じさせられる。
 本発明によればコンタクト抵抗をより確実に小さくすることができる。
本発明の実施の形態1における炭化珪素半導体装置の構成を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第1工程を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第2工程を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第3工程を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第4工程を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第5工程を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第6工程を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第7工程を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第8工程を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第9工程を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第10工程を概略的に示す部分断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第11工程を概略的に示す部分断面図である。 本発明の実施の形態1における絶縁層を形成する工程を概略的に示すフロー図である。 本発明の実施の形態2におけるコンタクト領域を荒らす工程を概略的に示すフロー図である。 図14の変形例を示すフロー図である。
 以下、本発明の実施の形態について図に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、”-”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付している。
 はじめに概要について、以下の(i)~(ix)において説明する。
 (i) 炭化珪素半導体装置100の製造方法は、次の工程を有する。主面10Aを有し炭化珪素から作られた基板10上に絶縁層20が形成される。絶縁層20上に、開口部OPを有するマスク層80が形成される。マスク層80を用いて絶縁層20をエッチングすることにより、絶縁層20に、基板10の主面10Aの一部であるコンタクト領域CRを露出するコンタクトホールCHが形成される。コンタクトホールCHを形成する工程は、コンタクト領域CRの表面粗さRaを0.5nm以上とする工程を含む。基板10のコンタクト領域CRに接する電極層52が形成される。電極層52および基板10を加熱することによって、電極層52と基板10のコンタクト領域CRとの間でシリサイド化反応が生じさせられる。
 この製造方法によれば、電極層52が形成されることになるコンタクト領域CRが、表面粗さRaが0.5nm以上となるように荒らされる。これによりコンタクト領域CRに微視的な凹凸が形成される。この結果、基板10の主面10Aの巨視的な結晶学的面方位に関わらず、コンタクト領域CRは微視的には様々な面方位を有する。よって、電極層52とコンタクト領域CRとの間でシリサイド化反応を生じさせる際に、シリサイド化速度の面方位依存性の影響を抑えることができる。これにより、十分なシリサイド化をより確実に生じさせることで、コンタクト抵抗をより確実に小さくすることができる。
 (ii) 上記(i)において、基板10は六方晶系の結晶構造を有してもよい。この場合、シリサイド化速度に六方晶系での面方位依存性が存在するところ、この面方位依存性の影響を抑えることができる。
 (iii) 上記(ii)において、基板10の主面10Aは{0001}面に対して10°以下のオフ角を有してもよい。この場合、仮にコンタクト領域CRの表面粗さRaが小さいと、シリサイド化速度が特に低くなってしまう。コンタクト領域CRの表面粗さRaが大きくされると、上述したようにシリサイド化速度の面方位依存性が抑えるので、シリサイド化速度の低下を防止することができる。よってコンタクト抵抗を小さくすることができる。
 (iv) 上記(i)~(iii)において、電極層52を形成する工程は、Ni原子およびTi原子の少なくともいずれかを有する材料を堆積する工程を含んでもよい。これにより、電極層52の材料を、シリサイド化反応を生じさせるのに適したものとすることができる。
 (v) 上記(i)~(iv)において、絶縁層20を形成する工程は、絶縁層20の表面粗さRaを0.5nm以上とする工程を含んでもよい。これにより、絶縁層20の大きな表面粗さRaがコンタクト領域CRに転写されることで、コンタクト領域CRの表面粗さRaを大きくすることができる。
 (vi) 上記(i)~(v)において、コンタクト領域CRの表面粗さRaを0.5nm以上とする工程は、コンタクト領域CRを荒らす工程を含んでもよい。これにより、露出された直後のコンタクト領域CRの表面粗さRaが0.5nm未満であっても、電極層52の形成の前にコンタクト領域CRの表面粗さRaを0.5nm以上とすることができる。
 (vii) 上記(vi)において、コンタクト領域CRを荒らす工程は、コンタクト領域CRを酸素プラズマにさらす工程と、コンタクト領域CRを酸素プラズマにさらす工程の後に、コンタクト領域CRをエッチングする工程とを含んでもよい。コンタクト領域CRをエッチングする工程は、炭化珪素に対するエッチング速度が酸化珪素に対するエッチング速度よりも大きくなる条件で行なわれてもよい。
 この場合、酸素プラズマにより、SiCのC原子に比してSiCのSi原子がより酸化されるので、酸化反応に微視的なむらが生じる。よってその後のエッチングにより表面粗さRaを大きくすることができる。
 (viii) 上記(vii)において、コンタクト領域CRを荒らす工程が複数回繰り返されてもよい。これにより、より確実にコンタクト領域CRの表面粗さRaを0.5nm以上とすることができる。
 (ix) 上記(vii)または(viii)において、コンタクト領域CRをエッチングする工程は、六フッ化硫黄を含むガスを用いたドライエッチングを行う工程を含んでもよい。これにより、炭化珪素に対するエッチング速度を酸化珪素に対するエッチング速度よりも大きくすることができる。
 次に詳細について、以下の実施の形態1および2において説明する。
 (実施の形態1)
 本実施の形態のMOSFET100(炭化珪素半導体装置)は、電力用半導体装置であり、電流経路に関していわゆる縦型構造を有している。具体的にはMOSFET100は、エピタキシャル基板10(基板)と、絶縁層20と、ゲート電極30と、バッファ膜51と、ソース電極52(電極層)と、ソース配線層60と、ドレイン電極70とを有する。
 エピタキシャル基板10は、n型(第1導電型)を有する炭化珪素から作られている。エピタキシャル基板10は、上面10A(主面)と、上面10Aと反対の裏面11Bとを有する。エピタキシャル基板10は、裏面11Bをなすベース基板11と、上面10Aをなすエピタキシャル層12とを有する。ベース基板11およびエピタキシャル層12は界面11Aを介して積層されている。基板10は、六方晶系の結晶構造を有することが好ましい。この場合、{0001}面に対する上面10Aのオフ角は10°以下が好ましく、5°以下がより好ましい。またこのオフ角は、2°以上が好ましく、3°以上がより好ましい。
 エピタキシャル層12は、n-ドリフト部13と、pボディ部14と、nソース部15と、p+コンタクト部16とを有する。n-ドリフト部13は界面11A上に設けられれている。n-ドリフト部13は、n型を有し、ベース基板11の不純物濃度よりも低い不純物濃度を有する。pボディ部14は、n-ドリフト部13によって界面11Aから隔てられるようにn-ドリフト部13上に設けられている。pボディ部14は上面10Aを部分的に構成している。pボディ部14はp型(第2導電型)を有する。nソース部15は、上面10Aを部分的に構成している。nソース部15は、pボディ部14によってn-ドリフト部13から隔てられている。nソース部15は、n型を有し、n-ドリフト部13の不純物濃度よりも高い不純物濃度を有する。p+コンタクト部16は、上面10Aを部分的に構成しており、pボディ部14につながっている。p+コンタクト部16は、p型を有し、pボディ部14の不純物濃度よりも高い不純物濃度を有する。
 ゲート絶縁膜21は、基板10の上面10Aの一部の上に直接設けられている。より具体的には、ゲート絶縁膜21は、nソース部15とn-ドリフト部13とをつなぐようにpボディ部14上に直接設けられている。上面10Aのうちゲート絶縁膜21に覆われている部分、特に上面10Aのうちpボディ部14から構成されている部分は、0.5nm未満の表面粗さRaを有することが好ましく、0.2nm未満のRaを有することがより好ましい。ゲート絶縁膜21はSiO2(二酸化珪素)から作られていることが好ましい。層間絶縁膜22はゲート絶縁膜21上に設けられている。層間絶縁膜22はSiO2(二酸化珪素)から作られていることが好ましい。
 ゲート絶縁膜21および層間絶縁膜22は両者の間にゲート電極30を挟み込んでいる。言い換えれば、ゲート絶縁膜21および層間絶縁膜22を有する絶縁層20内に、ゲート電極30が埋め込まれている。絶縁層20にはコンタクトホールCHが設けられている。コンタクトホールCHは層間絶縁膜22およびゲート絶縁膜21を貫通している。コンタクトホールCHは、基板10の上面10Aの一部であるコンタクト領域CRを露出させている。コンタクト領域CRはnソース部15およびp+コンタクト部16の各々を露出している。
 ゲート電極30は、ゲート絶縁膜21上に設けられており、ゲート絶縁膜21を介してpボディ部14上に配置された部分を有する。ゲート電極30は、たとえばドープトポリシリコンから作られている。
 バッファ膜51はコンタクトホールCHの側壁面、すなわち絶縁層20の側面を覆っている。具体的には、バッファ膜51はコンタクトホールCH内においてゲート絶縁膜21および層間絶縁膜22の各々の側面を覆っている。バッファ膜51はAl原子およびSi原子を含まないことが好ましく、たとえば、窒化チタン(TiN)、窒化タングステン(TiW)または窒化タンタル(TaN)から作られている。バッファ膜51の厚さは、たとえば0.025μm以上0.15μm以下である。
 ソース電極52は、コンタクトホールCHによって露出されたコンタクト領域CRに接触している。ソース電極52はバッファ膜51によってゲート絶縁膜21から隔てられている。ソース電極52は、Ni原子およびTi原子の少なくともいずれかを含むことが好ましく、たとえば、TiAlSi合金から作られている。
 ドレイン電極70はエピタキシャル基板10の裏面11B上に設けられている。ドレイン電極70の材料としてはソース電極52の材料と同様のものを用い得る。
 ソース配線層60は、ソース電極52および層間絶縁膜22を覆うように形成されている。ソース配線層60は、Al原子を含むことが好ましく、たとえばアルミニウム層またはアルミニウム合金層である。
 次にMOSFET100の製造方法について説明する。
 図2に示すように、まずベース基板11上におけるエピタキシャル成長によってn-ドリフト部13が形成される。エピタキシャル成長は化学気相成長(CVD)法によって行い得る。
 図3に示すように、n-ドリフト部13上にpボディ部14とnソース部15とp+コンタクト部16とが形成される。これらの形成はイオン注入法によって行い得る。次に基板10を加熱することにより活性化アニールが行われる。このようにして基板10が準備される。この時点では上面10Aの表面粗さRaは、0.5nm未満であることが好ましく、0.2nm未満であることがより好ましい。
 図4に示すように、基板10の上面10A上にゲート絶縁膜21が形成される(図13:ステップS11)。ゲート絶縁膜21の形成は、基板10の上面10Aの熱酸化により行われることが好ましい。
 図5に示すように、ゲート絶縁膜21上にゲート電極30が形成される。ゲート電極30の形成は、たとえば、CVD法を用いたドープトポリシリコンの成膜と、フォトリソグラフィ法を用いたパターニングとにより行われる。
 図6に示すように、ゲート電極30を覆う層間絶縁膜22が形成される(図13:ステップS12)。これにより基板10の上面10A上に、ゲート絶縁膜21および層間絶縁膜22を有する絶縁層20が形成される(図13:ステップS10)。層間絶縁膜22の形成は、たとえば、プラズマCVD法によるSiO2の堆積によって行い得る。本実施の形態においては、絶縁層20に含まれる層間絶縁膜22を形成する工程は、絶縁層20の表面(図6における絶縁層20の上面)の表面粗さRaが0.5nm以上となるように行われる。大きな表面粗さRaは、たとえば、層間絶縁膜22を高い成長レートで形成することにより得られる。ただしこの表面粗さRaは、50nm以下であることが好ましく、10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。
 図7に示すように、絶縁層20の層間絶縁膜22上に、開口部OPを有するマスク層80が形成される。マスク層80は、たとえば、フォトリソグラフィ法によって形成されたレジストパターンである。
 図8に示すように、マスク層80を用いて絶縁層20がエッチングされる。エッチングは反応性イオンエッチング(RIE)により行い得る。RIEの反応性ガスは、フッ素系ガスが好ましく、たとえばCF4およびCHF3の混合ガスである。反応性ガスはキャリアガスに混ぜられてもよい。キャリアガスはArガスが好ましい。
 このエッチングにより絶縁層20に、基板10の上面10Aの一部であるコンタクト領域CRを露出するコンタクトホールCHが形成される。コンタクト領域CRには、コンタクト領域CR上に存在していた絶縁層20の上面の微細な凹凸が転写される。本実施の形態においては絶縁層20の上面は0.5nm以上の表面粗さRaを有するので、コンタクト領域CRの表面粗さRaも0.5nm以上とされる。すなわち、コンタクトホールCHが形成される際に、コンタクト領域CRの表面粗さRaが0.5nm以上となるようにコンタクト領域CRが荒らされる。ただしこの表面粗さRaは、50nm以下であることが好ましく、10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。次にマスク層80が除去される(図9)。
 図10に示すように、バッファ膜51が形成される。バッファ膜51の形成は、スパッタ法を用いた成膜と、フォトリソグラフィ法を用いたパターニングとによって行われ得る。
 図11に示すように、基板10のコンタクト領域CRに接するソース電極52が形成される。この際、Ni原子およびTi原子の少なくともいずれかを有する材料が堆積されることが好ましい。たとえば、まずTi層とAl層とSi層との積層膜がスパッタ法により形成される。そしてこの積層膜がフォトリソグラフィ法を用いてパターニングされる。
 次に、ソース電極52および基板10を加熱することによって、ソース電極52と基板10のコンタクト領域CRとの間でシリサイド化反応が生じさせられる。これによりソース電極52とコンタクト領域CRとの間の電気的接触がよりオーミックなものとされる。またこの加熱によってソース電極52が合金化される。加熱の温度は、950℃以上1050℃以下が好ましく、たとえば1000℃程度である。
 図12に示すように、ドレイン電極70が形成される。ドレイン電極70はソース電極52と同様の方法によって形成され得る。なおソース電極52およびドレイン電極70の加熱は一括して行われてもよい。再び図1を参照して、ソース配線層60が形成される。これによりMOSFET100が得られる。
 本実施の形態によれば、ソース電極52が形成されることになるコンタクト領域CRが、表面粗さRaが0.5nm以上となるように荒らされる。これによりコンタクト領域CRに微視的な凹凸が形成される。この結果、基板10の主面10Aの巨視的な結晶学的面方位に関わらず、コンタクト領域CRは微視的には様々な面方位を有する。よって、ソース電極52とコンタクト領域CRとの間でシリサイド化反応を生じさせる際に、シリサイド化速度の面方位依存性の影響を抑えることができる。これにより、十分なシリサイド化をより確実に生じさせることで、コンタクト抵抗をより確実に小さくすることができる。
 また絶縁層20が形成される際に、絶縁層20の表面粗さRaが0.5nm以上とされる。これにより、絶縁層20の大きな表面粗さRaがコンタクト領域CRに転写されることで、コンタクト領域CRの表面粗さRaを大きくすることができる。
 またコンタクト領域CRの表面粗さRaが過度に大きくされないことによって、コンタクト領域CRに形成される微細な凹部がnソース部15またはp+コンタクト部16を貫通してpボディ部14に達してしまうことが防止される。この観点で、コンタクト領域CRの表面粗さRaは、50nm以下であることが好ましく、10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。このためには、絶縁層20の表面粗さRaは、50nm以下であることが好ましく、10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。
 また基板10は六方晶系の結晶構造を有してもよい。この場合、シリサイド化速度に六方晶系での面方位依存性が存在するところ、この面方位依存性の影響を抑えることができる。特に、基板10の上面10Aが{0001}面に対して10°以下のオフ角を有する場合、仮にコンタクト領域CRの表面粗さRaが小さいと、シリサイド化速度が特に低くなってしまう。コンタクト領域CRの表面粗さRaが大きくされると、上述したようにシリサイド化速度の面方位依存性が抑えるので、シリサイド化速度の低下を防止することができる。よってコンタクト抵抗を小さくすることができる。
 またソース電極52を形成する工程は、Ni原子およびTi原子の少なくともいずれかを有する材料を堆積する工程を含んでもよい。これにより、ソース電極52の材料を、シリサイド化反応を生じさせるのに適したものとすることができる。
 (実施の形態2)
 本実施の形態においては、まず実施の形態1の図2~図9までとほぼ同様の工程が行われる。ただし本実施の形態においては、実施の形態1と異なり、絶縁層20が形成される際に、絶縁層20の表面粗さRaが必ずしも0.5nm以上とされなくてもよい。この場合、露出された直後のコンタクト領域CRの表面粗さRaが0.5nm未満となり得る。このため、コンタクト領域CRが露出された後に、コンタクト領域CR(図9)の表面粗さRaを確実に0.5nm以上とするために、コンタクト領域CRを荒らす工程(図14:ステップS20)が行われる。ただしこの表面粗さRaは、50nm以下であることが好ましく、10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。
 コンタクト領域CRを荒らす工程(図14:ステップS20)として具体的には、コンタクト領域CRを酸素プラズマにさらす工程(図14:ステップS21)と、コンタクト領域CRをエッチングする工程(図14:ステップS22)とが行われる。コンタクト領域CRをエッチングする工程は、炭化珪素に対するエッチング速度が酸化珪素に対するエッチング速度よりも大きくなる条件で行なわれる。このような条件を有するエッチングは、反応性ガスとしての六フッ化硫黄(SF6)を含むプロセスガスを用いたドライエッチングによって行われ得る。この後、実施の形態1の図10~図12と同様の工程が行われる。
 本実施の形態によれば、コンタクト領域CRが露出された後にコンタクト領域CRが荒らされる。これにより、露出された直後のコンタクト領域CRの表面粗さRaが0.5nm未満であっても、ソース電極52の形成の前にコンタクト領域CRの表面粗さRaを0.5nm以上とすることができる。
 具体的には、まず、コンタクト領域CRが酸素プラズマにさらされることで、SiCのC原子に比してSiCのSi原子がより酸化される。これにより酸化反応に微視的なむらが生じる。この後に、炭化珪素(SiC)に対するエッチング速度が酸化珪素に対するエッチング速度よりも大きくなる条件でコンタクト領域CRがエッチングされる。このエッチングにより表面粗さRaを大きくすることができる。
 なおコンタクト領域CRを荒らすステップS20が上述したように1回行われる代わりに、コンタクト領域CRを荒らすステップS20aおよびS20bが行われてもよい。すなわちコンタクト領域CRを荒らす工程が複数回繰り返されるステップS20V(図15)が行われてもよい。ステップS20aおよびS20bの各々は、ステップS20(図14)と同様に行われ得る。これにより、より確実にコンタクト領域CRの表面粗さRaを0.5nm以上とすることができる。
 以上のように本発明の実施の形態について説明を行なったが、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。たとえば、上記各実施の形態においてはコンタクトホールが形成される絶縁層は層間絶縁膜およびゲート絶縁膜を有するが、コンタクトホールが形成される絶縁層がゲート絶縁膜を含まない構成も用い得る。このような構成は、たとえば、コンタクトホールが形成される前にコンタクトホールの近傍からゲート絶縁膜を予め除去しておくことによって得られる。また炭化珪素半導体装置はMOSFET以外のMISFEETであってもよい。また炭化珪素半導体装置はMISFEET以外のトランジスタであってもよく、たとえばIGBT(Insulated Gate Bipolar Transistor)であってもよい。この場合、電極層としてソース電極に代わってエミッタ電極が形成される。
10 エピタキシャル基板(基板)、10A 上面(主面)、11 ベース基板、11A 界面、11B 裏面、12 エピタキシャル層、13 n-ドリフト部、14 pボディ部、15 nソース部、16 p+コンタクト部、20 絶縁層、21 ゲート絶縁膜、22 層間絶縁膜、30 ゲート電極、51 バッファ膜、52 ソース電極(電極層)、60 ソース配線層、70 ドレイン電極、80 マスク層、100 MOSFET(炭化珪素半導体装置)、CH コンタクトホール、CR コンタクト領域、OP 開口部。

Claims (9)

  1.  主面を有し炭化珪素から作られた基板上に絶縁層を形成する工程と、
     前記絶縁層上に、開口部を有するマスク層を形成する工程と、
     前記マスク層を用いて前記絶縁層をエッチングすることにより、前記絶縁層に、前記基板の前記主面の一部であるコンタクト領域を露出するコンタクトホールを形成する工程とを備え、前記コンタクトホールを形成する工程は、前記コンタクト領域の表面粗さRaを0.5nm以上とする工程を含み、さらに
     前記基板の前記コンタクト領域に接する電極層を形成する工程と、
     前記電極層および前記基板を加熱することによって、前記電極層と前記基板の前記コンタクト領域との間でシリサイド化反応を生じさせる工程とを備える、炭化珪素半導体装置の製造方法。
  2.  前記基板は六方晶系の結晶構造を有する、請求項1に記載の炭化珪素半導体装置の製造方法。
  3.  前記基板の前記主面は{0001}面に対して10°以下のオフ角を有する、請求項2に記載の炭化珪素半導体装置の製造方法。
  4.  前記電極層を形成する工程は、Ni原子およびTi原子の少なくともいずれかを有する材料を堆積する工程を含む、請求項1~3のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  5.  前記絶縁層を形成する工程は、前記絶縁層の表面粗さRaを0.5nm以上とする工程を含む、請求項1~4のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  6.  前記コンタクト領域の表面粗さRaを0.5nm以上とする工程は、前記コンタクト領域を荒らす工程を含む、請求項1~5のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  7.  前記コンタクト領域を荒らす工程は、前記コンタクト領域を酸素プラズマにさらす工程と、前記コンタクト領域を酸素プラズマにさらす工程の後に、前記コンタクト領域をエッチングする工程とを含み、前記コンタクト領域をエッチングする工程は、炭化珪素に対するエッチング速度が酸化珪素に対するエッチング速度よりも大きくなる条件で行なわれる、請求項6に記載の炭化珪素半導体装置の製造方法。
  8.  前記コンタクト領域を荒らす工程が複数回繰り返される、請求項7に記載の炭化珪素半導体装置の製造方法。
  9.  前記コンタクト領域をエッチングする工程は、六フッ化硫黄を含むガスを用いたドライエッチングを行う工程を含む、請求項7または8に記載の炭化珪素半導体装置の製造方法。
PCT/JP2014/063653 2013-07-04 2014-05-23 炭化珪素半導体装置の製造方法 WO2015001863A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/902,185 US9704743B2 (en) 2013-07-04 2014-05-23 Method for manufacturing silicon carbide semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-140752 2013-07-04
JP2013140752A JP2015015352A (ja) 2013-07-04 2013-07-04 炭化珪素半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2015001863A1 true WO2015001863A1 (ja) 2015-01-08

Family

ID=52143456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063653 WO2015001863A1 (ja) 2013-07-04 2014-05-23 炭化珪素半導体装置の製造方法

Country Status (3)

Country Link
US (1) US9704743B2 (ja)
JP (1) JP2015015352A (ja)
WO (1) WO2015001863A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158643A (zh) * 2015-04-08 2016-11-23 中芯国际集成电路制造(上海)有限公司 晶体管的形成方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168681A (ja) * 2016-03-16 2017-09-21 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6662695B2 (ja) * 2016-04-19 2020-03-11 株式会社日立製作所 炭化ケイ素半導体装置の製造方法
US10541172B2 (en) 2016-08-24 2020-01-21 International Business Machines Corporation Semiconductor device with reduced contact resistance
JP7294097B2 (ja) * 2019-12-04 2023-06-20 株式会社デンソー 半導体装置の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041248A (ja) * 2004-07-28 2006-02-09 Shindengen Electric Mfg Co Ltd 半導体装置および半導体装置の製造方法
JP2007096263A (ja) * 2005-08-31 2007-04-12 Denso Corp 炭化珪素半導体装置およびその製造方法。
JP2008053343A (ja) * 2006-08-23 2008-03-06 Hitachi Metals Ltd 炭化珪素半導体エピタキシャル基板の製造方法
JP2008135611A (ja) * 2006-11-29 2008-06-12 Denso Corp 半導体装置の製造方法
JP2012146838A (ja) * 2011-01-13 2012-08-02 Sumitomo Electric Ind Ltd 炭化珪素半導体装置の製造方法
JP2013004636A (ja) * 2011-06-15 2013-01-07 Sumitomo Electric Ind Ltd 炭化珪素半導体装置およびその製造方法
JP2013026248A (ja) * 2011-07-15 2013-02-04 Sumitomo Electric Ind Ltd 半導体装置の製造方法
WO2013140764A1 (ja) * 2012-03-22 2013-09-26 アイシン精機株式会社 半導体装置及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834801B2 (ja) 2011-11-16 2015-12-24 住友電気工業株式会社 半導体装置の製造方法および半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041248A (ja) * 2004-07-28 2006-02-09 Shindengen Electric Mfg Co Ltd 半導体装置および半導体装置の製造方法
JP2007096263A (ja) * 2005-08-31 2007-04-12 Denso Corp 炭化珪素半導体装置およびその製造方法。
JP2008053343A (ja) * 2006-08-23 2008-03-06 Hitachi Metals Ltd 炭化珪素半導体エピタキシャル基板の製造方法
JP2008135611A (ja) * 2006-11-29 2008-06-12 Denso Corp 半導体装置の製造方法
JP2012146838A (ja) * 2011-01-13 2012-08-02 Sumitomo Electric Ind Ltd 炭化珪素半導体装置の製造方法
JP2013004636A (ja) * 2011-06-15 2013-01-07 Sumitomo Electric Ind Ltd 炭化珪素半導体装置およびその製造方法
JP2013026248A (ja) * 2011-07-15 2013-02-04 Sumitomo Electric Ind Ltd 半導体装置の製造方法
WO2013140764A1 (ja) * 2012-03-22 2013-09-26 アイシン精機株式会社 半導体装置及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158643A (zh) * 2015-04-08 2016-11-23 中芯国际集成电路制造(上海)有限公司 晶体管的形成方法
CN106158643B (zh) * 2015-04-08 2019-05-28 中芯国际集成电路制造(上海)有限公司 晶体管的形成方法

Also Published As

Publication number Publication date
JP2015015352A (ja) 2015-01-22
US20160372370A1 (en) 2016-12-22
US9704743B2 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
US7829416B2 (en) Silicon carbide semiconductor device and method for producing the same
JP5370480B2 (ja) 半導体装置及びその製造方法
JP5525940B2 (ja) 半導体装置および半導体装置の製造方法
US20150287598A1 (en) Semiconductor device and method for manufacturing same
JP5955246B2 (ja) 半導体装置の製造方法
US8846531B2 (en) Method of manufacturing an ohmic electrode containing titanium, aluminum and silicon on a silicon carbide surface
TW201044576A (en) Enhancement mode GaN HEMT device and method for fabricating the same
JP5745974B2 (ja) 半導体装置およびその製造方法
JP2009194127A (ja) 半導体装置およびその製造方法
WO2015001863A1 (ja) 炭化珪素半導体装置の製造方法
WO2012172965A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2006024880A (ja) 半導体装置及びその製造方法
JP5889171B2 (ja) 炭化珪素半導体装置及びその製造方法
WO2010143376A1 (ja) 半導体装置およびその製造方法
JP5171363B2 (ja) 半導体装置の製造方法
JP2014187128A (ja) 炭化珪素半導体装置
JP6296970B2 (ja) 半導体装置及びその製造方法
JP3759145B2 (ja) 炭化珪素半導体装置およびその製造方法
JP5914865B2 (ja) 半導体装置
JP2004288890A (ja) 炭化珪素半導体素子
JP2014127660A (ja) 炭化珪素ダイオード、炭化珪素トランジスタおよび炭化珪素半導体装置の製造方法
US20150091021A1 (en) Method of Manufacturing Semiconductor Device and the Semiconductor Device
JP7113985B2 (ja) 半導体素子及び半導体素子の製造方法
WO2021010405A1 (ja) 炭化珪素半導体装置の製造方法及び炭化珪素半導体装置
WO2019198167A1 (ja) 半導体装置の製造方法及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819784

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14902185

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819784

Country of ref document: EP

Kind code of ref document: A1