WO2014208353A1 - 太陽光発電装置用基板の製造方法および太陽光発電装置用基板の製造装置 - Google Patents

太陽光発電装置用基板の製造方法および太陽光発電装置用基板の製造装置 Download PDF

Info

Publication number
WO2014208353A1
WO2014208353A1 PCT/JP2014/065648 JP2014065648W WO2014208353A1 WO 2014208353 A1 WO2014208353 A1 WO 2014208353A1 JP 2014065648 W JP2014065648 W JP 2014065648W WO 2014208353 A1 WO2014208353 A1 WO 2014208353A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cleaning
power generation
single crystal
silicon substrate
Prior art date
Application number
PCT/JP2014/065648
Other languages
English (en)
French (fr)
Inventor
元 告野
光裕 野々垣
小林 淳二
裕介 大城
隆裕 川崎
唐木田 昇市
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015523974A priority Critical patent/JPWO2014208353A1/ja
Priority to CN201480035248.XA priority patent/CN105324850B/zh
Priority to KR1020157035579A priority patent/KR20160009656A/ko
Priority to US14/890,309 priority patent/US9537026B2/en
Publication of WO2014208353A1 publication Critical patent/WO2014208353A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a substrate for a solar power generation device and an apparatus for manufacturing a substrate for a solar power generation device.
  • One of the methods for improving the power generation efficiency is a method of forming a concavo-convex structure on the surface of the silicon substrate of the solar power generation device in order to efficiently absorb more sunlight.
  • This concavo-convex structure called texture is a general term for micro concavo-convex formed on the surface of a silicon substrate.
  • a silicon substrate is immersed in a high-temperature chemical solution (wet etching solution) in which an organic substance such as IPA is added as an additive to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide, and the surface orientation of silicon
  • wet etching solution a high-temperature chemical solution
  • an organic substance such as IPA
  • alkaline aqueous solution such as sodium hydroxide or potassium hydroxide
  • chips and abrasives generated by cutting the wire adhere to the substrate. Such chips and abrasives are washed away after slicing. Further, the processing strain due to the slice called a damage layer is generated on the surface layer of the sliced substrate up to a depth of about 5 ⁇ m. If this damaged layer remains in the photovoltaic power generation device, recombination of electrons is promoted in the damaged layer, and the characteristics of the photovoltaic power generation device are deteriorated. For this reason, a damaged layer removing step is generally required.
  • a step of etching the substrate surface using an alkaline solution, a mixed solution of hydrofluoric acid and nitric acid, or the like and shaving the substrate surface is required.
  • organic impurities and metal impurities, which are contaminants remaining on the substrate surface are removed together with the peeling of the natural oxide film.
  • Patent Document 1 a chemical oxide film is formed on the active silicon substrate surface from which the damaged layer has been removed to protect the active silicon substrate surface, thereby suppressing adhesion of organic impurities and metal impurities as contaminants. It is supposed to be possible. Since the silicon substrate after removal of the damaged layer can be left in the atmosphere for a long time, it can be carried out without worrying about storage of texture formation in the next process.
  • a damage layer removing device and a texture forming device are required, and at least two processing devices are required.
  • a drying process or the like is necessary for processing of any apparatus, and the process becomes redundant.
  • Patent Document 1 organic impurities and metal impurities adhere from the atmosphere on the oxide film formed on the surface of the silicon substrate, but the problem is because the impurities are removed together with the oxide film in the next texture formation process. It is said that there is no.
  • the present invention has been made in view of the above, and a textured structure is uniformly and inexpensively formed on the surface of a semiconductor substrate to manufacture a high-quality substrate for a solar power generation device with low light reflectance on the surface at a low cost. It is an object of the present invention to obtain a method for manufacturing a substrate for a solar power generation device and a device for manufacturing a substrate for a solar power generation device.
  • a method for manufacturing a substrate for a photovoltaic power generation apparatus includes subjecting a surface of a semiconductor substrate to surface treatment after slicing a semiconductor ingot and cutting the semiconductor substrate.
  • a method for manufacturing a substrate for a photovoltaic power generation apparatus that forms a texture structure by performing a cleaning step of cleaning and removing organic impurities and metal impurities attached to the surface of the semiconductor substrate with a cleaning liquid containing an oxidizing agent, Performed continuously after the cleaning step, and anisotropically etching the surface of the semiconductor substrate with an alkaline aqueous solution to remove a damaged layer on the substrate surface caused by the slicing, and the texture structure on the surface of the semiconductor substrate And an etching process to be formed.
  • the present invention it is possible to form a texture structure uniformly and inexpensively on the surface of the semiconductor substrate, and to produce a high-quality solar power generation device substrate having low light reflectance on the surface at low cost.
  • FIG. 1 is principal part sectional drawing of the solar power generation device produced using the board
  • FIG. 2 is a top view of a solar power generation device manufactured using the solar power generation device substrate formed by the method for manufacturing a solar power generation device substrate according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing an electron micrograph of the etched surface when the texture is satisfactorily formed by cleaning the silicon substrate before texture formation.
  • FIG. 4 is a view showing an electron micrograph of the etched surface in the case where the silicon substrate is not cleaned before texture formation and a texture formation failure occurs.
  • FIG. 1 is principal part sectional drawing of the solar power generation device produced using the board
  • FIG. 2 is a top view of a solar power generation device manufactured using the solar power generation device substrate formed by the method for manufacturing a solar power generation device substrate according
  • FIG. 5 is a flowchart for explaining the flow of the method for manufacturing the substrate for the solar power generation device according to the embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a solar power generation apparatus substrate manufacturing apparatus for manufacturing a solar power generation apparatus substrate according to an embodiment of the present invention.
  • FIG. 7 is a characteristic diagram showing measurement results of light reflectance when texture formation is performed on a P-type single crystal silicon substrate cleaned with a cleaning liquid containing an oxidizing agent.
  • FIG. 8 is a characteristic diagram showing the defect occurrence rate (%) in the texture formation process when texture formation is performed on a P-type single crystal silicon substrate cleaned using a cleaning liquid containing an oxidizing agent.
  • FIG. 9 is a characteristic diagram showing the total amount of organic impurities remaining on the surface of the P-type single crystal silicon substrate after cleaning the substrate at the cleaning temperature with the cleaning liquid containing the oxidizing agent.
  • Embodiment is a method for cleaning organic impurities and metal impurities, which are contaminants that adhere to the surface of a silicon substrate containing single crystal silicon and inhibit texture formation on the surface of the silicon substrate, and silicon by wet etching.
  • the present invention relates to the formation of a texture on the surface of a substrate.
  • FIG. 1 and 2 are diagrams showing a solar power generation device manufactured using a solar power generation device substrate formed by the method for manufacturing a solar power generation device substrate according to the present embodiment. Is a cross-sectional view of the main part of the photovoltaic power generation apparatus, and FIG. 2 is a top view of the photovoltaic power generation apparatus.
  • 1 and 2 includes a single crystal silicon substrate 11 having an N-type impurity diffusion layer 11a on the surface layer of a P-type single crystal silicon substrate, and a light-receiving surface side surface of the single crystal silicon substrate 11 ( An antireflection film 12 formed on the surface), a light receiving surface side electrode 13 formed on the light receiving surface side surface (front surface) of the single crystal silicon substrate 11, and a surface opposite to the light receiving surface of the single crystal silicon substrate 11. A back electrode 14 formed on the back surface.
  • the light receiving surface side electrode 13 is formed so as to be surrounded by the antireflection film 12 in the surface direction of the single crystal silicon substrate 11.
  • the light receiving surface side electrode 13 includes a grid electrode 13a and a bus electrode 13b
  • FIG. 1 shows a cross-sectional view in a cross section perpendicular to the longitudinal direction of the grid electrode 13a.
  • the single crystal silicon substrate 11 uses a single crystal silicon substrate having a texture structure formed on the surface of the substrate using the method for manufacturing a substrate for a solar power generation device according to this embodiment. Is configured.
  • a P-type single crystal silicon substrate is cut out from a silicon ingot by slicing.
  • Organic impurities and metal impurities which are contaminants consisting of chips, abrasives, etc., generated by cutting the wire during slicing, adhere to the surface of the P-type single crystal silicon substrate cut out from the silicon ingot by slicing. Yes.
  • a cleaning process such as a water cleaning process is performed on the P-type single crystal silicon substrate cut out from the silicon ingot.
  • these contaminants remain on the surface of the cleaned P-type single crystal silicon substrate without being removed. Therefore, it is necessary to perform cleaning to remove these contaminants adhering to the surface of the P-type single crystal silicon substrate.
  • a processing strain due to the slice called a damage layer occurs to a depth of about 5 ⁇ m. If this damaged layer remains in the photovoltaic power generation device, recombination of electrons is promoted in the damaged layer, and the characteristics of the photovoltaic power generation device are deteriorated. For this reason, it is necessary to remove the damaged layer.
  • a high-temperature chemical solution in which an organic substance such as IPA is added as an additive to an alkaline aqueous solution so that the solar power generation apparatus can absorb more sunlight.
  • a texture structure composed of irregularities having quadrangular pyramid-shaped convex portions surrounded by the (111) plane of silicon is formed by anisotropic etching using.
  • cleaning for removing these contaminants adhering to the surface of the above-described P-type single crystal silicon substrate, removal of the damaged layer, and formation of the texture structure are performed. Will be described later.
  • a P-type single crystal silicon substrate with a texture formed on the surface is put into a thermal oxidation furnace and heated in the presence of phosphorus oxychloride (POCl 3 ) vapor to form phosphorus glass on the surface of the P-type single crystal silicon substrate.
  • POCl 3 phosphorus oxychloride
  • the N-type impurity diffusion layer 11a is formed on the surface layer of the P-type single crystal silicon substrate, and the single crystal silicon substrate 11 is formed.
  • a silicon nitride film (SiN film) is formed on the N-type impurity diffusion layer 11a as the antireflection film 12 by plasma CVD.
  • the film thickness and refractive index of the antireflection film 12 are set to values that most suppress light reflection. Note that two or more layers having different refractive indexes may be stacked.
  • the antireflection film 12 may be formed by a different film forming method such as a sputtering method.
  • the silver mixed paste is screen printed in a comb shape on the light receiving surface of the single crystal silicon substrate 11, and the aluminum mixed paste is screen printed on the entire back surface of the single crystal silicon substrate 11. Thereafter, the printed paste is baked to form the light receiving surface side electrode 13 and the back surface electrode 14.
  • the solar power generation device shown in FIGS. 1 and 2 is manufactured as the solar power generation device.
  • the surface of the P-type single crystal silicon substrate before the formation of the texture structure usually remains without being removed by washing after the slicing process, resulting in poor texture formation.
  • Organic impurities and metal impurities are attached as causative contaminants.
  • FIG. 3 the texture bottom surface surrounded by the (111) surface of silicon is formed.
  • a quadrangular pyramid having a side length of about 1 ⁇ m to 10 ⁇ m is uniformly and densely formed in all regions in the plane of the P-type single crystal silicon substrate.
  • FIG. 3 is a view showing an electron micrograph of the etched surface when the texture is satisfactorily formed by cleaning the silicon substrate before forming the texture.
  • 0.75 wt% of sodium hydroxide and 2.0 vol% of an organic substance called an additive such as IPA for controlling the etching rate according to the plane orientation of silicon are mixed and heated to 85 ° C.
  • the texture structure is formed by immersing the P-type single crystal silicon substrate in the alkaline aqueous solution for 20 minutes.
  • FIG. 4 is a view showing an electron micrograph of the etched surface in the case where the silicon substrate is not cleaned before texture formation and a texture formation failure occurs.
  • the texture is not formed normally, that is, uniformly and densely in the plane of the P-type single crystal silicon substrate, the characteristics of the photovoltaic power generation device are deteriorated and the appearance is deteriorated. Therefore, it is required to remove these contaminants.
  • the P-type single crystal silicon substrate cut out from the silicon ingot by slicing is used to remove contaminants attached to the surface, remove the damaged layer, and form a texture structure.
  • the processing shown in FIG. 5 is performed.
  • FIG. 5 is a flowchart for explaining the flow of the method for manufacturing the substrate for the solar power generation apparatus according to the present embodiment.
  • the damage layer removal process on the surface of the P-type single crystal silicon substrate is not performed, and even after the cleaning process after the slicing process.
  • Organic impurities and metal impurities that are contaminants adhering to the natural oxide film covering the surface of the P-type single crystal silicon substrate are washed away.
  • a cleaning process is performed in which the surface of a P-type single crystal silicon substrate cut out from a silicon ingot by a slicing process is cleaned (surface treatment) with a cleaning liquid containing an oxidizing agent (step S10).
  • This cleaning process is performed, for example, by immersing the P-type single crystal silicon substrate in a cleaning liquid containing an oxidizing agent.
  • organic impurities and metal impurities which are contaminants attached on the natural oxide film covering the surface of the P-type single crystal silicon substrate, are removed.
  • the cleaning liquid containing an oxidizing agent for example, hydrogen peroxide water, ozone water, or the like is used.
  • the P-type single crystal silicon substrate does not necessarily need to be immersed in a cleaning solution containing an oxidizing agent, and may be cleaned by supplying a cleaning solution containing an oxidizing agent to the surface of the P-type single crystal silicon substrate. The same applies to other processes.
  • a rinsing process for rinsing and removing the cleaning liquid containing the oxidizing agent adhering to the P-type single crystal silicon substrate in the cleaning process in step S10 is performed continuously after the execution of step S10 (step S20).
  • the cleaning liquid containing the oxidizing agent may be removed by washing with a neutralizing agent.
  • a neutralizing agent for example, an alkaline aqueous solution containing sodium hydroxide or potassium hydroxide is used.
  • a wet etching process for forming a texture on the surface of the P-type single crystal silicon substrate by immersing the P-type single crystal silicon substrate in an alkaline aqueous solution as an etchant is continuously performed after Step S20.
  • an alkaline aqueous solution as an etchant
  • the etching solution for example, a high-temperature chemical solution obtained by adding an organic substance such as IPA as an additive to an alkaline aqueous solution containing sodium hydroxide or potassium hydroxide is used.
  • a texture structure composed of irregularities having quadrangular pyramid-shaped convex portions surrounded by the (111) plane of silicon is obtained. It is formed on the surface of the type single crystal silicon substrate. In this step, a texture is formed on the surface of the P-type single crystal silicon substrate and a damaged layer on the surface of the P-type single crystal silicon substrate is also removed. As a result, a photovoltaic power generation device substrate having a texture structure uniformly and densely formed on the surface of the P-type single crystal silicon substrate is formed.
  • step S30 is continuously performed after step S10.
  • Step S20 in order to maintain the cleanliness of the etching solution and to form the texture normally, that is, uniformly and densely in the plane of the P-type single crystal silicon substrate, it is preferable to perform Step S20.
  • the damage layer on the surface of the P-type single crystal silicon substrate is not removed after the slicing process and before the etching process for forming the texture as described above.
  • the silicon active surface is not exposed on the surface.
  • the texture is continuously formed without exposing the surface of the P-type single crystal silicon substrate to the atmosphere for a long time.
  • the etching solution is used a plurality of times by adding the alkali and additives consumed in one etching process after the etching process.
  • the contaminants (organic impurities and metal impurities) that are contained in the atmosphere and cause the formation failure of the texture as described above are adsorbed on the surface of the P-type single crystal silicon substrate. Can be prevented. Therefore, it is possible to suppress the deterioration of the performance of the etching solution by suppressing the accumulation of contaminants (organic impurities and metal impurities) attached to the surface of the P-type single crystal silicon substrate in the etching solution. .
  • the exchange period of etching liquid can be lengthened and the cost of chemical
  • the damage layer on the surface of the P-type single crystal silicon substrate is simultaneously removed when the texture structure is formed on the surface of the P-type single crystal silicon substrate as described above.
  • a damaged layer removing step which is separately required can be omitted.
  • FIG. 6 is a schematic diagram illustrating a schematic configuration of a solar power generation apparatus substrate manufacturing apparatus for manufacturing a solar power generation apparatus substrate according to the present embodiment.
  • the solar power generation device substrate manufacturing apparatus shown in FIG. 6 does not expose the silicon surface from which contaminants (organic impurities and metal impurities) are removed by immersing a P-type single crystal silicon substrate in an oxidizing chemical solution to the atmosphere. It is an apparatus capable of forming a texture.
  • a cleaning tank 101, a water-washing tank 102, and a texture-forming tank 103 are arranged in a first processing chamber 111.
  • a water washing tank 104, a neutralization tank 105, a water washing tank 106, and a drying tank 107 are disposed in the second processing chamber 112.
  • a cleaning liquid containing an oxidizing agent for cleaning and removing organic impurities and metal impurities, which are contaminants adhering to the natural oxide film covering the surface of the P-type single crystal silicon substrate is stored.
  • a type single crystal silicon substrate is immersed.
  • the water washing tank 102 is disposed adjacent to the washing tank 101 and stores water or a neutralizing agent for washing away the washing liquid containing the oxidizing agent attached to the P-type single crystal silicon substrate pulled up from the washing tank 101. Then, the P-type single crystal silicon substrate is immersed.
  • the texture forming tank 103 is disposed adjacent to the washing tank 102 and stores an alkaline aqueous solution for forming a texture structure by performing anisotropic etching on the surface of the P-type single crystal silicon substrate pulled up from the washing tank 102. Then, the P-type single crystal silicon substrate is immersed.
  • an alkaline aqueous solution for example, a high-temperature chemical solution obtained by adding an organic substance such as IPA as an additive to an alkaline aqueous solution containing sodium hydroxide or potassium hydroxide is used.
  • the water washing tank 104 is disposed in the second processing chamber 112 at a position adjacent to the texture forming tank 103, and is a water for washing away the alkaline aqueous solution adhering to the P-type single crystal silicon substrate pulled up from the texture forming tank 103. Is stored and the P-type single crystal silicon substrate is immersed.
  • the neutralization tank 105 is disposed at a position adjacent to the washing tank 104 and stores a neutralizing agent for neutralizing the alkaline aqueous solution attached to the P-type single crystal silicon substrate pulled up from the washing tank 104. A P-type single crystal silicon substrate is immersed.
  • the water washing tank 106 is disposed at a position adjacent to the neutralization tank 105, and water for washing away the neutralizing agent adhering to the P-type single crystal silicon substrate pulled up from the neutralization tank 105 is stored in the water washing tank 106. A single crystal silicon substrate is immersed.
  • the drying tank 107 is disposed at a position adjacent to the washing tank 106, and dries the P-type single crystal silicon substrate that is pulled up from the washing tank 106 and is wet.
  • This solar power generation device substrate manufacturing apparatus may include one or more of the above-described tanks, and all the tanks may have a system for circulating the liquid.
  • water such as ion-exchanged water is used as the solvent used for the chemical solution stored in the washing tank 106 from the washing tank 101.
  • the substrate is transferred by a substrate transfer means (not shown).
  • the installation place of the photovoltaic power generation apparatus substrate manufacturing apparatus is a clean room environment.
  • the first treatment chamber 111 which is an area including at least the washing tank 101, the washing tank 102, and the texture forming tank 103, is composed of the washing tank 104, the neutralization tank 105, and the water washing. It is isolated from the second processing chamber 112, which is an area including the tank 106 and the drying tank 107.
  • the atmosphere in the first processing chamber 111 isolated from the second processing chamber 112 is a clean atmosphere equivalent to a clean room environment from which organic impurities and metal impurities as contaminants are removed.
  • the first processing chamber 111 has a structure in which a purified atmosphere (air) is supplied through a chemical filter (air filter) or the like that removes organic impurities and metal impurities as contaminants. That is, the first processing chamber 111 is supplied with the atmospheric gas from the in-apparatus atmospheric air supply port 121 having a contaminant removing function. In addition, the atmospheric gas in the first processing chamber 111 is exhausted from the in-apparatus atmosphere exhaust port 122. Further, the atmosphere supplied into the isolated first processing chamber 111 may be a clean inert gas equivalent to a clean room environment from which organic impurities and metal impurities as contaminants are removed.
  • the atmosphere in the first processing chamber 111 as described above is an organic impurity and a metal that are contaminants in the atmosphere as long as the content ratio of the organic impurities and metal impurities that are contaminants is lower than the atmosphere.
  • impurities can be prevented from adhering to the surface of the P-type single crystal silicon substrate after the substrate cleaning, in order to form a textured structure uniformly and densely in all regions in the plane of the P-type single crystal silicon substrate It is preferable to use the atmosphere as described above.
  • a P-type single crystal silicon substrate that has been sliced from an ingot and has not been subjected to surface damage layer removal after slicing is immersed in the cleaning bath 101.
  • the P-type single crystal silicon substrate is a contaminant that adheres to the natural oxide film that covers the surface of the P-type single crystal silicon substrate by being immersed in a cleaning tank 101 in which a cleaning liquid containing an oxidizing agent is stored. Organic impurities and metal impurities are removed and the surface is cleaned.
  • the P-type single crystal silicon substrate is pulled up from the cleaning tank 101 and subsequently immersed in the water cleaning tank 102.
  • the P-type single crystal silicon substrate is immersed in a water rinsing tank 102 in which water or a neutralizing agent for washing away the cleaning liquid containing the oxidizing agent is stored, so that the cleaning liquid containing the oxidizing agent adhering to the surface is removed. Washed away.
  • the P-type single crystal silicon substrate is pulled up from the water washing tank 102 and subsequently immersed in the texture forming tank 103.
  • the P-type single crystal silicon substrate is immersed in a texture forming tank 103 in which an alkaline aqueous solution for forming a texture structure is stored on the surface of the P-type single crystal silicon substrate. It is formed.
  • the P-type single crystal silicon substrate is pulled up from the texture forming tank 103, transported from the first processing chamber 111 to the second processing chamber 112, and immersed in the washing bath 104.
  • the P-type single crystal silicon substrate is immersed in a washing tank 104 in which water for washing the alkaline aqueous solution is stored, so that the alkaline aqueous solution attached to the surface is washed away.
  • the P-type single crystal silicon substrate is pulled up from the water washing tank 104 and immersed in the neutralization tank 105.
  • the P-type single crystal silicon substrate is immersed in a neutralization tank 105 in which a neutralizing agent for neutralizing the alkaline aqueous solution is stored, so that the alkaline aqueous solution attached to the surface is neutralized.
  • the P-type single crystal silicon substrate is pulled up from the neutralization tank 105 and immersed in the washing tank 106.
  • the P-type single crystal silicon substrate is immersed in a water washing tank 106 in which water for washing away the neutralizing agent is stored, so that the neutralizing agent attached to the surface is washed away.
  • the P-type single crystal silicon substrate is pulled up from the water washing tank 106 and dried in the drying tank 107.
  • the above processes are performed continuously in at least the washing tank 101, the water washing tank 102, and the texture forming tank 103. That is, the cleaning and texture formation of the P-type single crystal silicon substrate are continuously performed.
  • the atmosphere in the first processing chamber 111 is a clean atmosphere equivalent to a clean room environment from which organic impurities and metal impurities as contaminants are removed.
  • the texture formation is continuously performed without exposing the surface of the P-type single crystal silicon substrate to the atmosphere for a long time. It is possible to prevent the contaminants (organic impurities and metal impurities) that cause the formation failure of the silicon from being adsorbed on the surface of the P-type single crystal silicon substrate.
  • Example 1 a natural oxidation that covers the surface of a P-type single crystal silicon substrate is performed by immersing a P-type single crystal silicon substrate whose surface damage layer is not removed after slicing in a cleaning solution containing an oxidizing agent for 3 minutes.
  • the P-type single crystal silicon substrate was cleaned by removing organic impurities and metal impurities that are contaminants adhering to the film (step S10).
  • the cleaning liquid containing the oxidizing agent hydrogen peroxide water (overwater) having a liquid temperature of 55 ° C. and a concentration of 0.1 vol% was used.
  • step S30 by immersing the P-type single crystal silicon substrate in an alkaline aqueous solution for 20 minutes, a texture structure was formed on the surface of the P-type single crystal silicon substrate by anisotropic etching (step S30).
  • the texture was formed using a continuous batch processing method capable of processing a plurality of substrates at a time, and a plurality of batch processings were performed.
  • the quality of the texture was evaluated by measuring the light reflectance of the surface of the textured P-type single crystal silicon substrate. Note that the measurement result of the light reflectance is obtained by measuring the light reflectance with respect to light having a wavelength of 700 nm at five points in the plane of the P-type single crystal silicon substrate (average light reflectance).
  • FIG. 7 is a characteristic diagram showing measurement results of light reflectance when texture formation is performed on a P-type single crystal silicon substrate cleaned with a cleaning liquid containing an oxidizing agent.
  • the horizontal axis indicates the number of etching processes (number of batches) in which texture formation is performed on a P-type single crystal silicon substrate using the same etching solution
  • the vertical axis indicates the average light reflectance (%).
  • the reflectance of the P-type single crystal silicon substrate in the first batch is 10.3%.
  • the light reflectance gradually increased as the number of batches increased, but the light reflectance of the P-type single crystal silicon substrate in the sixth batch was 11.8%, which was a good result at a practical level.
  • the P-type single crystal silicon substrates of the first to sixth batches were used.
  • the light reflectance was about 10.0 to 13.0%, which was a good result at a practical level.
  • the treatment is preferably performed in the atmosphere through the chemical filter.
  • Example 2 In substrate cleaning of a P-type single crystal silicon substrate using hydrogen peroxide solution, the concentration of hydrogen peroxide solution, the cleaning temperature, the cleaning time, etc. affect the cleaning effect. For this reason, in order to investigate the influence of the washing temperature on the washing ability when the hydrogen peroxide concentration is first set to 0.1 vol%, the temperature under the five conditions of 20 ° C., 40 ° C., 55 ° C., 70 ° C., and 80 ° C. Using a hydrogen peroxide solution, a substrate of a P-type single crystal silicon substrate (substrate A) having a specific manufacturing history was washed, and then texture formation was performed to compare the quality of the texture.
  • substrate A substrate of a P-type single crystal silicon substrate having a specific manufacturing history was washed, and then texture formation was performed to compare the quality of the texture.
  • FIG. 8 is a characteristic diagram showing the defect occurrence rate (%) in the texture formation process when texture formation is performed on a P-type single crystal silicon substrate cleaned using a cleaning liquid containing an oxidizing agent.
  • the horizontal axis represents the cleaning temperature (temperature of hydrogen peroxide solution) (° C.) of the P-type single crystal silicon substrate, and the vertical axis represents the defect rate (%) in the texture forming process.
  • the defect rate in the texture forming process shown in FIG. 8 is the ratio of the P-type single crystal silicon substrate having a region where the texture is not normally formed as shown in FIG. 4 with respect to the number of substrates subjected to the texture forming process. Yes, it is an index that represents the quality of texture formation.
  • the cleaning temperature was 20 ° C.
  • the defective rate was 80%
  • the cleaning temperature was 40 ° C.
  • the defective rate decreased to 50%.
  • the texture is normally formed over the entire substrate surface.
  • FIG. 9 is a characteristic diagram showing the total amount of organic impurities remaining on the surface of the P-type single crystal silicon substrate after cleaning the substrate at the cleaning temperature with the cleaning liquid containing the oxidizing agent.
  • the horizontal axis represents the cleaning temperature (overwater cleaning temperature)
  • the vertical axis represents the total amount of organic impurities (arb.unit) that are impurities on the substrate surface.
  • the ratio of the total amount of organic impurities is shown.
  • FIG. 9 shows that the total amount of organic impurities decreases as the cleaning temperature increases. Further, according to the results shown in FIGS. 8 and 9, it can be seen that when the total amount of organic impurities is reduced to 60% before the substrate cleaning, the texture formation failure is eliminated.
  • the organic impurities and metal impurities adhering to the surface of the substrate provided by various substrate processing manufacturers are different for each substrate processing manufacturer. For this reason, it was necessary to raise the cleaning temperature to 55 ° C. for the specific substrate A evaluated by cleaning with hydrogen peroxide solution this time.
  • an experiment was conducted at a cleaning temperature of 20 ° C. in the same manner as described above for a P-type single crystal silicon substrate (substrate B) having another specific manufacturing history. The results are also shown in FIG. From this result, even in the case where the cleaning temperature is 20 ° C., the substrate B has an effect of cleaning that suppresses poor texture formation.
  • the cleaning temperature is preferably 20 ° C. or higher. Further, from the viewpoint of the volatilization rate of hydrogen peroxide, the upper limit of the cleaning temperature in the substrate cleaning of the P-type single crystal silicon substrate using the hydrogen peroxide solution is 100 ° C.
  • Example 3 Next, the influence of the concentration of the hydrogen peroxide solution on the substrate cleaning ability in the cleaning of the P-type single crystal silicon substrate using the hydrogen peroxide solution was examined.
  • concentration of hydrogen peroxide 0.001 vol%, 0.005 vol%, 0.01 vol%, 0.025 vol%, 0.05 vol%, 0.1 vol%, 0.2 vol%
  • a hydrogen peroxide solution with a concentration of 10 conditions of 0.5 vol%, 1.0 vol%, and 2.0 vol% a substrate cleaning of a p-type single crystal silicon substrate having a specific manufacturing history is performed, and then texture formation is performed. And compared the quality of the textures.
  • the experiment was performed in the same manner as in Example 1 except that the temperature of the hydrogen peroxide solution was changed.
  • the substrate cleaning temperature was 55 ° C., and the cleaning time was 3 minutes.
  • Table 1 The results are shown in Table 1.
  • the index of the quality evaluation of the texture shown in Table 1 is ⁇ when the texture is formed well over the entire surface of the substrate, ⁇ when there is a portion where the texture is not formed on a part of the substrate surface, and the entire surface of the substrate surface. In the case where no texture was formed, x was indicated.
  • the concentration of the hydrogen peroxide solution is 0.001 vol%, the effect of the substrate cleaning is hardly seen, and when the concentration of the hydrogen peroxide solution is 0.005 vol%, the effect of the substrate cleaning begins to appear. Except for a region where the texture was not formed on a part of the substrate surface, the texture was excellent. Further, when the concentration of the hydrogen peroxide solution was 0.01 vol% or more, the texture was satisfactorily formed in the entire region of the substrate surface. Further, even when the concentration of the hydrogen peroxide solution is higher than 0.1 vol%, the substrate cleaning effect is saturated and there is no further improvement, and it is considered that the hydrogen peroxide solution cleaning is the reaction rate-limiting.
  • the hydrogen peroxide solution concentration is preferably 0.01 vol% to 0.1 vol%.
  • the surface of the P-type single crystal silicon substrate is continuously exposed to the atmosphere for a long time. Since the texture is formed, it is possible to prevent the contaminants (organic impurities and metal impurities) that are contained in the atmosphere and cause the formation failure of the texture from being adsorbed on the surface of the P-type single crystal silicon substrate.
  • the damage layer on the surface of the P-type single crystal silicon substrate is not removed after the slicing and before the etching process for forming the texture. Therefore, contaminants (organic impurities and metal impurities) adhering to the oxide film on the surface of the P-type single crystal silicon substrate can be removed without exposing the silicon active surface to the surface of the P-type single crystal silicon substrate. Etching is not hindered by contaminants (organic impurities and metal impurities). This prevents the formation of texture due to contaminants (organic impurities and metal impurities) adhering to the surface of the P-type single crystal silicon substrate, and makes the texture uniform and dense within the surface of the P-type single crystal silicon substrate. Can be formed stably.
  • the atmosphere in which the P-type single crystal silicon substrate is transported after cleaning the substrate is changed to a clean atmosphere from which organic impurities and metal impurities are removed, so that the P-type single crystal silicon substrate is being transported.
  • the texture formation is continuously performed so that the substrate surface is not exposed to the atmosphere. For this reason, the cleanliness of the substrate surface at the start of texture formation can be kept good. This prevents the formation of texture due to contaminants (organic impurities and metal impurities) adhering to the surface of the P-type single crystal silicon substrate, and makes the texture uniform and dense within the surface of the P-type single crystal silicon substrate. In addition, it can be formed more stably.
  • a texture structure comprising a concavo-convex structure having a quadrangular pyramid-shaped convex portion surrounded by the (111) plane of silicon, which has a low light reflectance on the substrate surface and is uniform within the substrate surface.
  • substrate for solar power generation devices excellent in the light confinement effect can be obtained stably and cheaply.
  • the high quality solar power generation device excellent in the power generation characteristic can be obtained stably and cheaply.
  • the method for manufacturing a substrate for a solar power generation device according to the present invention is useful when a texture structure having low light reflectance is stably and inexpensively formed on the surface of a silicon substrate.
  • 11 single crystal silicon substrate 11a N-type impurity diffusion layer, 12 antireflection film, 13 light receiving surface side electrode, 13a grid electrode, 13b bus electrode, 14 back electrode, 101 washing tank, 102 water washing tank, 103 texture formation tank, 104 Flushing tank, 105 neutralization tank, 106 flushing tank, 107 drying tank, 111 first treatment chamber, 112 second treatment chamber, 121 in-device atmosphere air supply port, 122 in-device atmosphere exhaust port.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Weting (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

 半導体インゴットをスライスして半導体基板を切り出した後に前記半導体基板の表面に表面処理を施してテクスチャ構造を形成する太陽光発電装置用基板の製造方法であって、前記半導体基板の表面に付着した有機不純物と金属不純物とを酸化性薬剤を含む洗浄液により洗浄除去する洗浄工程と、前記洗浄工程後に連続して行われ、前記半導体基板の表面をアルカリ性水溶液により異方性エッチングすることにより、前記スライスにより生じた基板表面のダメージ層を除去するとともに前記半導体基板の表面に前記テクスチャ構造を形成するエッチング工程と、含む。

Description

太陽光発電装置用基板の製造方法および太陽光発電装置用基板の製造装置
 本発明は、太陽光発電装置用基板の製造方法および太陽光発電装置用基板の製造装置に関する。
 太陽光発電装置においては、製造コストの低減につながる発電効率の向上が望まれている。発電効率を向上させる手法の1つに、より多くの太陽光を効率良く吸収することを可能とするために太陽光発電装置のシリコン基板表面に凹凸構造を形成する手法がある。テクスチャと呼ばれるこの凹凸構造は、シリコン基板の表面に形成される微小凹凸の総称であり、たとえばシリコンの(111)面に囲まれた四角錐状の凸部を有する凹凸構造がある。このようなテクスチャによれば、テクスチャの表面で一度反射した太陽光が再度テクスチャ表面に到達するような反射が複数回繰り返されることを可能とし、より多くの太陽光を吸収すること(光閉じ込め効果)が可能となる。
 太陽光発電装置の製造においては、水酸化ナトリウム、水酸化カリウム等のアルカリ性水溶液に添加剤としてIPA等の有機物を加えた高温の薬液(ウェットエッチング液)にシリコン基板を浸漬し、シリコンの面方位によりエッチングレートが異なる性質を利用することにより、該シリコン基板の表面にテクスチャを形成するのが一般的である。
 太陽光発電装置の品質を向上するために、シリコンのインゴットをスライスして基板に加工する工程から該基板の表面にテクスチャ構造を形成する工程までに、種々の製造プロセスが提案されている。
 基板のスライス加工時には、ワイヤーが削れて生じる切り粉および研磨剤が基板に付着する。このような切り粉および研磨剤は、スライス加工後に洗浄除去される。また、スライスされた基板の表層には、ダメージ層と呼ばれるスライスによる加工ひずみが深さ5μm程度まで生じている。このダメージ層が太陽光発電装置に残っていると、該ダメージ層で電子の再結合を促進し、太陽光発電装置の特性の悪化を招く。このため、一般的にダメージ層の除去工程が必要とされる。
 ダメージ層を取り除くためには、たとえばアルカリ溶液、フッ酸と硝酸の混合液などを用いて基板表面のエッチングを行い、基板表面を削る工程が必要となる。このようなダメージ層除去工程を実施することにより、基板表面に残存する汚染物質である有機不純物と金属不純物とが自然酸化膜の剥離とともに除去される。
 しかし、このようなダメージ層の除去によりシリコンの活性面が表出すると、テクスチャの形成を阻害する有機不純物と金属不純物とが基板表面に付着しやすい状況となり、大気中に長時間放置しておくことができない。そこで、ダメージ層を除去した後に基板を空気中に長時間放置しても基板に不純物を付着させない方法として、たとえば特許文献1では、ダメージ層除去後の基板を酸化性薬液に浸漬することにより、基板表面に化学酸化膜を形成する方法が提案されている。
 特許文献1によると、ダメージ層が除去された活性なシリコン基板表面に化学酸化膜を形成して該活性なシリコン基板表面を保護することにより、汚染物質である有機不純物および金属不純物の付着を抑制できるとされている。そして、ダメージ層の除去後のシリコン基板を大気中に長時間放置できることから、次工程のテクスチャ形成のストレージを気にすることなく実施できるとされている。
 しかし、この場合には、ダメージ層除去用の装置と、テクスチャ形成用の装置とが必要となり、処理装置が最低でも2台必要となる。そして、乾燥プロセスなどがいずれの装置の処理においても必要となり、プロセスが冗長となる。
 また、特許文献1では、シリコン基板表面に形成された酸化膜上にも大気から有機不純物および金属不純物が付着するが、次工程のテクスチャ形成工程で酸化膜と一緒に除去されるため、問題はないとされている。
 しかしながら、シリコン基板表面に形成した酸化膜上に付着した有機不純物および金属不純物は、テクスチャ形成のためのアルカリ性水溶液(エッチング液)によるウェットエッチングで酸化膜とともにアルカリ性水溶液中に残存している。そして、エッチング液は、エッチング処理後に、一回のエッチング処理で消費されたアルカリおよび添加剤が追加されることにより、複数回使用される。したがって、シリコン基板から剥離した有機不純物および金属不純物はエッチング液中に蓄積されて、エッチング液の性能を劣化させる原因となる。このため、エッチング液の交換周期を早める必要があり、薬液コストが高くなる、という問題があった。
特許第4989042号公報
 本発明は、上記に鑑みてなされたものであって、半導体基板の表面にテクスチャ構造を均一且つ安価に形成して表面における光反射率が低い高品質の太陽光発電装置用基板を安価に製造可能な太陽光発電装置用基板の製造方法および太陽光発電装置用基板の製造装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる太陽光発電装置用基板の製造方法は、半導体インゴットをスライスして半導体基板を切り出した後に前記半導体基板の表面に表面処理を施してテクスチャ構造を形成する太陽光発電装置用基板の製造方法であって、前記半導体基板の表面に付着した有機不純物と金属不純物とを酸化性薬剤を含む洗浄液により洗浄除去する洗浄工程と、前記洗浄工程後に連続して行われ、前記半導体基板の表面をアルカリ性水溶液により異方性エッチングすることにより、前記スライスにより生じた基板表面のダメージ層を除去するとともに前記半導体基板の表面に前記テクスチャ構造を形成するエッチング工程と、を含むことを特徴とする。
 本発明によれば、半導体基板の表面にテクスチャ構造を均一且つ安価に形成でき、表面における光反射率が低い高品質の太陽光発電装置用基板を安価に製造できるという効果を奏する。
図1は、本発明の実施の形態にかかる太陽光発電装置用基板の製造方法により形成された太陽光発電装置用基板を用いて作製された太陽光発電装置の要部断面図である。 図2は、本発明の実施の形態にかかる太陽光発電装置用基板の製造方法により形成された太陽光発電装置用基板を用いて作製された太陽光発電装置の上面図である。 図3は、テクスチャ形成前にシリコン基板の洗浄を実施して、テクスチャが良好に形成された場合のエッチング処理面の電子顕微鏡写真を示す図である。 図4は、テクスチャ形成前にシリコン基板の洗浄を実施せず、テクスチャ形成不良が生じた場合のエッチング処理面の電子顕微鏡写真を示す図である。 図5は、本発明の実施の形態にかかる太陽光発電装置用基板の製造方法のフローを説明するフローチャートである。 図6は、本発明の実施の形態にかかる太陽光発電装置用基板の製造を実施する太陽光発電装置用基板の製造装置の概略構成を示す模式図である。 図7は、酸化性薬剤を含む洗浄液を用いて洗浄したP型単結晶シリコン基板にテクスチャ形成を実施したときの光反射率の測定結果を示す特性図である。 図8は、酸化性薬剤を含む洗浄液を用いて洗浄したP型単結晶シリコン基板にテクスチャ形成を実施したときのテクスチャ形成工程における不良発生率(%)を示す特性図である。 図9は、酸化性薬剤を含む洗浄液による洗浄温度による基板洗浄後のP型単結晶シリコン基板の表面に残留する有機不純物総量を示す特性図である。
 以下に、本発明にかかる太陽光発電装置用基板の製造方法および太陽光発電装置用基板の製造装置の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態
 本実施の形態は、単結晶シリコンを含むシリコン基板の表面に付着してシリコン基板の表面におけるテクスチャの形成を阻害する汚染物質である有機不純物および金属不純物の洗浄、およびウェットエッチングによるシリコン基板の表面へのテクスチャの形成に関するものである。
 まず、本実施の形態にかかる太陽光発電装置用基板の製造方法を用いて作製される太陽光発電装置について説明する。図1および図2は、本実施の形態にかかる太陽光発電装置用基板の製造方法により形成された太陽光発電装置用基板を用いて作製された太陽光発電装置を示す図であり、図1は太陽光発電装置の要部断面図、図2は太陽光発電装置の上面図である。図1および図2に示す太陽光発電装置は、P型単結晶シリコン基板の基板表層にN型不純物拡散層11aを有する単結晶シリコン基板11と、単結晶シリコン基板11の受光面側の面(表面)に形成された反射防止膜12と、単結晶シリコン基板11の受光面側の面(表面)に形成された受光面側電極13と、単結晶シリコン基板11の受光面と反対側の面(裏面)に形成された裏面電極14とを備える。受光面側電極13は、単結晶シリコン基板11の面方向において反射防止膜12に囲まれて形成されている。
 また、受光面側電極13としては、グリッド電極13aおよびバス電極13bを含み、図1においてはグリッド電極13aの長手方向に垂直な断面における断面図を示している。そして、単結晶シリコン基板11には、本実施の形態にかかる太陽光発電装置用基板の製造方法を用いて基板表面にテクスチャ構造が形成された単結晶シリコン基板を使用して、太陽光発電装置を構成している。
 つぎに、図1および図2に示す太陽光発電装置を製造するための工程を説明する。なお、ここで説明する工程は、シリコン基板を用いた一般的な太陽光発電装置の製造工程と同様であるため、特に図示しない。
 まず、P型単結晶シリコン基板がシリコンインゴットからスライス加工により切り出される。シリコンインゴットからスライス加工により切り出されたP型単結晶シリコン基板の表面には、スライス加工時にワイヤーが削れて生じる切り粉、研磨剤などからなる汚染物質である有機不純物と金属不純物とが付着している。このため、シリコンインゴットから切り出されたP型単結晶シリコン基板に対してたとえば水洗処理等の洗浄処理が施される。しかし、洗浄後のP型単結晶シリコン基板の表面には、これらの汚染物質が除去しきれずに残留する。したがって、P型単結晶シリコン基板の表面に付着しているこれらの汚染物質を除去する洗浄が必要である。
 また、スライスされた基板の表層には、ダメージ層と呼ばれるスライスによる加工ひずみが深さ5μm程度まで生じている。このダメージ層が太陽光発電装置に残っていると、該ダメージ層で電子の再結合を促進し、太陽光発電装置の特性の悪化を招く。このため、ダメージ層の除去が必要である。
 また、P型単結晶シリコン基板の表面には、太陽光発電装置がより多くの太陽光を吸収できるように、アルカリ性水溶液に添加剤としてIPA等の有機物を加えた高温の薬液(ウェットエッチング液)を用いた異方性エッチングによりたとえばシリコンの(111)面に囲まれた四角錐状の凸部を有する凹凸からなるテクスチャ構造が形成される。
 したがって、本実施の形態においても、上述したP型単結晶シリコン基板の表面に付着しているこれらの汚染物質を除去する洗浄、ダメージ層の除去、テクスチャ構造の形成が行われるが、これらの処理については、後述する。
 つぎに、表面にテクスチャが形成されたP型単結晶シリコン基板を熱酸化炉へ投入し、オキシ塩化リン(POCl)蒸気の存在下で加熱してP型単結晶シリコン基板の表面にリンガラスを形成することによりP型単結晶シリコン基板中にリンを拡散させる。これにより、P型単結晶シリコン基板の表層にN型不純物拡散層11aが形成され、単結晶シリコン基板11が形成される。
 つぎに、フッ酸溶液中で単結晶シリコン基板11の表面のリンガラス層を除去した後、反射防止膜12としてプラズマCVD法により窒化シリコン膜(SiN膜)をN型不純物拡散層11a上に形成する。反射防止膜12の膜厚および屈折率は、光反射を最も抑制する値に設定する。なお、屈折率の異なる2層以上の膜を積層してもよい。また、反射防止膜12は、スパッタリング法など、異なる成膜方法により形成してもよい。
 つぎに、銀の混入したペーストを単結晶シリコン基板11の受光面に櫛形にスクリーン印刷し、アルミニウムの混入したペーストを単結晶シリコン基板11の裏面の全面にスクリーン印刷する。その後、印刷されたペーストに焼成処理を実施して受光面側電極13と裏面電極14とが形成される。以上のようにして、太陽光発電装置として、図1および図2に示す太陽光発電装置が作製される。
 上記のように製造される太陽光発電装置では、通常、テクスチャ構造を形成する前のP型単結晶シリコン基板表面には、スライス加工後の洗浄で除去しきれずに残存してテクスチャの形成不良の原因となる汚染物質として有機不純物および金属不純物が付着している。このような汚染物質が完全に除去されたP型単結晶シリコン基板を用いてその表面にテクスチャを形成した場合には、図3に示すようにシリコンの(111)面に囲まれたテクスチャ底面の一辺の長さが1μm~10μm程度の四角錐がP型単結晶シリコン基板の面内のすべての領域に均一かつ密に形成される。
 図3は、テクスチャ形成前にシリコン基板の洗浄を実施して、テクスチャが良好に形成された場合のエッチング処理面の電子顕微鏡写真を示す図である。なお、図3に示す例では、水酸化ナトリウムを0.75wt%、シリコンの面方位によってエッチングレートを制御するためのIPA等の添加剤と呼ばれる有機物を2.0vol%混合して85℃に加熱したアルカリ性水溶液にP型単結晶シリコン基板を20分間浸漬することによりテクスチャ構造が形成されている。
 しかしながら、前述のようにテクスチャの形成不良の原因となる汚染物質(有機不純物および金属不純物)がP型単結晶シリコン基板の表面に残留している場合には、例えば図4に示すようにP型単結晶シリコン基板の面内においてシリコンの(111)面に囲まれた四角錐が形成されない領域が生じる。図4は、テクスチャ形成前にシリコン基板の洗浄を実施せず、テクスチャ形成不良が生じた場合のエッチング処理面の電子顕微鏡写真を示す図である。このようにP型単結晶シリコン基板の面内においてテクスチャが正常に、すなわち均一かつ密に形成されない場合は、太陽光発電装置の特性悪化および外観上の問題を招く。したがって、これらの汚染物質を除去することが求められる。
 そこで、本実施の形態では、シリコンインゴットからスライス加工により切り出されたP型単結晶シリコン基板に対して、表面に付着している汚染物質の除去、ダメージ層の除去、テクスチャ構造の形成を行って表面にテクスチャが形成された太陽光発電装置用基板を形成するために、図5に示す処理を実施する。図5は、本実施の形態にかかる太陽光発電装置用基板の製造方法のフローを説明するフローチャートである。
 本実施の形態では、スライス加工後であってテクスチャを形成するためのエッチング工程の前にP型単結晶シリコン基板の表面のダメージ層除去工程を実施せずに、スライス加工後の洗浄後においてもP型単結晶シリコン基板の表面を覆う自然酸化膜上に付着している汚染物質である有機不純物および金属不純物を洗浄除去する。
 具体的な工程としては、まずシリコンインゴットからスライス加工により切り出されたP型単結晶シリコン基板の表面を酸化性薬剤を含む洗浄液により洗浄処理(表面処理)する洗浄工程が実施される(ステップS10)。この洗浄処理は、たとえば酸化性薬剤を含む洗浄液にP型単結晶シリコン基板を浸漬することにより行われる。この洗浄工程において、P型単結晶シリコン基板の表面を覆う自然酸化膜上に付着している汚染物質である有機不純物および金属不純物が除去される。ここで、酸化性薬剤を含む洗浄液としては、たとえば過酸化水素水、オゾン水等が用いられる。なお、P型単結晶シリコン基板は必ずしも酸化性薬剤を含む洗浄液に浸漬される必要はなく、P型単結晶シリコン基板の表面に酸化性薬剤を含む洗浄液を供給して洗浄できればよい。他の処理においても同様である。
 つぎに、ステップS10の洗浄工程でP型単結晶シリコン基板に付着した酸化性薬剤を含む洗浄液を水で洗い流して除去する水洗工程がステップS10の実施後に連続して実施される(ステップS20)。なお、酸化性薬剤を含む洗浄液は中和剤で洗い流して除去してもよい。中和剤としては、たとえば水酸化ナトリウムまたは水酸化カリウム等を含むアルカリ性水溶液等が用いられる。
 つぎに、エッチング液としてのアルカリ性水溶液にP型単結晶シリコン基板を浸漬することにより、該P型単結晶シリコン基板の表面にテクスチャを形成するウェットエッチング工程(表面処理)をステップS20の実施後に連続して実施する(ステップS30)。エッチング液としては、たとえば水酸化ナトリウムまたは水酸化カリウムを含むアルカリ性水溶液に添加剤としてIPA等の有機物を加えた高温の薬液が用いられる。
 このようなエッチング液を用いてP型単結晶シリコン基板の表面を異方性エッチングすることにより、シリコンの(111)面に囲まれた四角錐状の凸部を有する凹凸からなるテクスチャ構造がP型単結晶シリコン基板の表面に形成される。また、この工程においては、P型単結晶シリコン基板の表面にテクスチャが形成されるとともに該P型単結晶シリコン基板の表面のダメージ層も除去される。これにより、P型単結晶シリコン基板の表面にテクスチャ構造が均一かつ密に形成された太陽光発電装置用基板が形成される。
 なお、ステップS20を省略する場合には、ステップS10後に連続してステップS30が実施される。ただし、エッチング液の清浄性を保ち、またP型単結晶シリコン基板の面内においてテクスチャを正常に、すなわち均一かつ密に形成するためには、ステップS20を実施することが好ましい。
 本実施の形態では、上記のようにスライス加工後であってテクスチャを形成するためのエッチング工程の前にP型単結晶シリコン基板の表面のダメージ層を除去しないため、P型単結晶シリコン基板の表面にシリコン活性面を表出させることがない。そして、酸化性薬剤を含む洗浄液によるP型単結晶シリコン基板の洗浄後に、該P型単結晶シリコン基板の表面を大気に長時間曝すことなく連続してテクスチャ形成を行うため、大気中に含まれてテクスチャの形成不良の原因となる汚染物質(有機不純物および金属不純物)がP型単結晶シリコン基板の表面に吸着することを防ぐことができる。
 すなわち、P型単結晶シリコン基板の表面にシリコン活性面を一度も表出させることなくP型単結晶シリコン基板の表面の酸化膜上に付着した汚染物質(有機不純物および金属不純物)を除去するため、汚染物質(有機不純物および金属不純物)によるエッチングの阻害が発生しない。これにより、P型単結晶シリコン基板の表面に付着した汚染物質(有機不純物および金属不純物)に起因したテクスチャの形成不良を防止して、P型単結晶シリコン基板の面内にテクスチャを均一かつ密に安定して形成することができる。
 また、エッチング液は、エッチング処理後に、一回のエッチング処理で消費されたアルカリおよび添加剤が追加されることにより、複数回使用される。ここで、本実施の形態では、上記のように大気中に含まれてテクスチャの形成不良の原因となる汚染物質(有機不純物および金属不純物)がP型単結晶シリコン基板の表面に吸着することを防ぐことができる。このため、P型単結晶シリコン基板の表面に付着した汚染物質(有機不純物および金属不純物)がエッチング液中に蓄積されることを抑制してエッチング液の性能の劣化を最小限に抑えることができる。これにより、エッチング液の交換周期を長くすることができ、薬液のコストを低減できるため、表面にテクスチャ構造が均一かつ密に形成された太陽光発電装置用基板を安価に形成することができる。
 また、本実施の形態では、上記のようにP型単結晶シリコン基板の表面にテクスチャ構造を形成する際にP型単結晶シリコン基板の表面のダメージ層を同時に除去する。これにより、テクスチャ構造の形成工程との他に別途必要であったダメージ層除去工程を省略することができる。
 上述した本実施の形態にかかる太陽光発電装置用基板の製造方法の洗浄工程(ステップS10)~ウェットエッチング工程(ステップS30)は、図6に示す太陽光発電装置用基板の製造装置を用いて実施することができる。図6は、本実施の形態にかかる太陽光発電装置用基板の製造を実施する太陽光発電装置用基板の製造装置の概略構成を示す模式図である。図6に示す太陽光発電装置用基板の製造装置は、P型単結晶シリコン基板を酸化性薬液に浸漬して汚染物質(有機不純物、金属不純物)を除去したシリコン表面を大気に暴露させることなくテクスチャ形成可能な装置である。
 図6に示す太陽光発電装置用基板の製造装置は、洗浄槽101と水洗槽102とテクスチャ形成槽103とが第1処理室111内に配置されている。また、水洗槽104と、中和槽105と、水洗槽106と、乾燥槽107とが第2処理室112内に配置されている。
 洗浄槽101は、P型単結晶シリコン基板の表面を覆う自然酸化膜上に付着している汚染物質である有機不純物および金属不純物を洗浄除去するための酸化性薬剤を含む洗浄液が貯留されてP型単結晶シリコン基板が浸漬される。水洗槽102は、洗浄槽101に隣接して配置され、洗浄槽101から引き上げられたP型単結晶シリコン基板に付着している酸化性薬剤を含む洗浄液を洗い流すための水または中和剤が貯留されてP型単結晶シリコン基板が浸漬される。
 テクスチャ形成槽103は、水洗槽102に隣接して配置され、水洗槽102から引き上げられたP型単結晶シリコン基板の表面に異方性エッチングを行ってテクスチャ構造を形成するためのアルカリ性水溶液が貯留されてP型単結晶シリコン基板が浸漬される。アルカリ性水溶液としては、たとえば水酸化ナトリウムまたは水酸化カリウムを含むアルカリ性水溶液に添加剤としてIPA等の有機物を加えた高温の薬液が用いられる。
 水洗槽104は、第2処理室112内においてテクスチャ形成槽103に隣接した位置に配置され、テクスチャ形成槽103から引き上げられたP型単結晶シリコン基板に付着しているアルカリ性水溶液を洗い流すための水が貯留されてP型単結晶シリコン基板が浸漬される。中和槽105は、水洗槽104に隣接した位置に配置され、水洗槽104から引き上げられたP型単結晶シリコン基板に付着しているアルカリ性水溶液を中和するための中和剤が貯留されてP型単結晶シリコン基板が浸漬される。
 水洗槽106は、中和槽105に隣接した位置に配置され、中和槽105から引き上げられたP型単結晶シリコン基板に付着している中和剤を洗い流すための水が貯留されてP型単結晶シリコン基板が浸漬される。乾燥槽107は、水洗槽106に隣接した位置に配置され、水洗槽106から引き上げられて濡れているP型単結晶シリコン基板を乾燥させる。
 この太陽光発電装置用基板の製造装置は、上記の各槽をそれぞれ1槽以上有し、すべての槽は液を循環させるシステムを有してもよい。洗浄槽101から水洗槽106に貯留される薬液に用いる溶媒は、たとえばイオン交換水などの水が使用される。また、この太陽光発電装置用基板の製造装置において、たとえば基板の搬送は図示しない基板搬送手段により行われる。
 この太陽光発電装置用基板の製造装置の設置場所は、クリーンルーム環境とされていることが好ましい。
 また、この太陽光発電装置用基板の製造装置の設置場所がクリーンルーム環境でない場合に上述した本実施の形態にかかるP型単結晶シリコン基板の洗浄工程およびエッチング工程の効果を得るためには、太陽光発電装置用基板の製造装置内において酸化性薬液を用いた基板洗浄工程からテクスチャ形成のためのエッチング工程が実施される領域の雰囲気のみ、クリーンルーム環境と同等の清浄度(たとえばクラス10000程度)を保てることが好ましい。このため、この太陽光発電装置用基板の製造装置では、少なくとも洗浄槽101、水洗槽102、テクスチャ形成槽103を含む領域である第1処理室111が、水洗槽104と中和槽105と水洗槽106と乾燥槽107とを含む領域である第2処理室112から隔離されている。
 そして、第2処理室112から隔離された第1処理室111内の雰囲気は、汚染物質である有機不純物および金属不純物が除去されたクリーンルーム環境と同等の清浄な雰囲気とされている。第1処理室111内へは、汚染物質である有機不純物および金属不純物を除去するケミカルフィルタ(エアフィルタ)などを通って清浄化された雰囲気(空気)が給気される構造とされている。すなわち、第1処理室111には、汚染物質除去機能を有する装置内雰囲気給気口121から雰囲気ガスが供給される。また、第1処理室111内の雰囲気ガスは、装置内雰囲気排気口122から排気される。また、隔離された第1処理室111内に給気される雰囲気は、汚染物質である有機不純物および金属不純物が除去されたクリーンルーム環境と同等の清浄な不活性ガスであってもよい。
 なお、上記のような第1処理室111内の雰囲気は、汚染物質である有機不純物と金属不純物との含有率が大気よりも低い雰囲気であれば、雰囲気中の汚染物質である有機不純物と金属不純物とが基板洗浄後のP型単結晶シリコン基板の表面に付着することを抑制できるが、テクスチャ構造をP型単結晶シリコン基板の面内のすべての領域に均一かつ密に形成するためには、上記のような雰囲気を用いることが好ましい。
 この太陽光発電装置用基板の製造装置では、まずインゴットからスライスされてスライス加工後において表面のダメージ層除去が実施されていないP型単結晶シリコン基板が洗浄槽101に浸漬される。P型単結晶シリコン基板は、酸化性薬剤を含む洗浄液が貯留された洗浄槽101に浸漬されることによりP型単結晶シリコン基板の表面を覆う自然酸化膜上に付着している汚染物質である有機不純物および金属不純物が除去され、表面が洗浄される。
 つぎに、所定の時間の経過後、P型単結晶シリコン基板は洗浄槽101から引き上げられて、引き続き水洗槽102に浸漬される。P型単結晶シリコン基板は、酸化性薬剤を含む洗浄液を洗い流すための水または中和剤が貯留された水洗槽102に浸漬されることにより、表面に付着している酸化性薬剤を含む洗浄液が洗い流される。
 つぎに、所定の時間の経過後、P型単結晶シリコン基板は水洗槽102から引き上げられて、引き続きテクスチャ形成槽103に浸漬される。P型単結晶シリコン基板は、P型単結晶シリコン基板表面にテクスチャ構造を形成するためのアルカリ性水溶液が貯留されたテクスチャ形成槽103に浸漬されることにより、異方性エッチングにより表面にテクスチャ構造が形成される。
 つぎに、所定の時間の経過後、P型単結晶シリコン基板はテクスチャ形成槽103から引き上げられて、第1処理室111から第2処理室112に搬送されて水洗槽104に浸漬される。P型単結晶シリコン基板は、アルカリ性水溶液を洗い流すための水が貯留された水洗槽104に浸漬されることにより、表面に付着しているアルカリ性水溶液が洗い流される。
 つぎに、所定の時間の経過後、P型単結晶シリコン基板は水洗槽104から引き上げられて、中和槽105に浸漬される。P型単結晶シリコン基板は、アルカリ性水溶液を中和するための中和剤が貯留された中和槽105に浸漬されることにより、表面に付着しているアルカリ性水溶液が中和される。
 つぎに、所定の時間の経過後、P型単結晶シリコン基板は中和槽105から引き上げられて、水洗槽106に浸漬される。P型単結晶シリコン基板は、中和剤を洗い流すための水が貯留された水洗槽106に浸漬されることにより、表面に付着している中和剤が洗い流される。
 つぎに、所定の時間の経過後、P型単結晶シリコン基板は水洗槽106から引き上げられて、乾燥槽107において乾燥される。
 以上の処理は、少なくとも洗浄槽101と水洗槽102とテクスチャ形成槽103とにおける処理は連続して行われる。すなわち、P型単結晶シリコン基板の洗浄とテクスチャ形成とが連続して実施される。そして、第1処理室111内の雰囲気は、汚染物質である有機不純物および金属不純物が除去されたクリーンルーム環境と同等の清浄な雰囲気とされている。これにより、洗浄槽101におけるP型単結晶シリコン基板の洗浄後に、該P型単結晶シリコン基板の表面を大気に長時間曝すことなく連続してテクスチャ形成が行われ、大気中に含まれてテクスチャの形成不良の原因となる汚染物質(有機不純物および金属不純物)がP型単結晶シリコン基板の表面に吸着することを防ぐことができる。
 つぎに、具体的な実施例に基づいて、本実施の形態にかかる太陽光発電装置用基板の製造方法について説明する。以下の実施例においては、図5に示した太陽光発電装置用基板の製造方法に従って行った。
(実施例1)
 まず、スライス加工後において表面のダメージ層除去が実施されていないP型単結晶シリコン基板を酸化性薬剤を含む洗浄液中に3分間浸漬させることにより、P型単結晶シリコン基板の表面を覆う自然酸化膜上に付着している汚染物質である有機不純物および金属不純物を除去してP型単結晶シリコン基板を洗浄した(ステップS10)。酸化性薬剤を含む洗浄液には、液温55℃、濃度0.1vol%の過酸化水素水(過水)を用いた。
 つぎに、P型単結晶シリコン基板を過酸化水素水中から引き上げて水洗することにより、P型単結晶シリコン基板の表面に付着している過酸化水素水を洗い流した(ステップS20)。
 つぎに、P型単結晶シリコン基板をアルカリ性水溶液中に20分間浸漬することにより、P型単結晶シリコン基板の表面に異方性エッチングによりテクスチャ構造を形成した(ステップS30)。テクスチャの形成は、一度に複数枚の基板を処理可能な連続バッチ処理方式を採用し、複数バッチ処理を行った。
 テクスチャの出来栄えは、テクスチャ形成を行ったP型単結晶シリコン基板の表面の光反射率を測定することにより評価した。なお、光反射率の測定結果は、波長700nmの光に対する光反射率をP型単結晶シリコン基板の面内5点で測定して平均したもの(平均光反射率)である。
 上記実験においては、過酸化水素水によりP型単結晶シリコン基板の表面を洗浄してからテクスチャを形成するまでの搬送の間に汚染物質である有機不純物および金属不純物をP型単結晶シリコン基板の表面に吸着させない工夫として、ケミカルフィルタを通して汚染物質である有機不純物および金属不純物を除去したクリーンルーム環境と同等の清浄な雰囲気中で行った。このときの光反射率の測定結果を図7に示す。図7は、酸化性薬剤を含む洗浄液を用いて洗浄したP型単結晶シリコン基板にテクスチャ形成を実施したときの光反射率の測定結果を示す特性図である。図7においては、同一のエッチング液を用いてP型単結晶シリコン基板にテクスチャ形成を行ったエッチング処理回数(バッチ数)を横軸に、平均光反射率(%)を縦軸に示している。
 図7において、1バッチ目のP型単結晶シリコン基板の反射率は10.3%である。そして、バッチ数が増えるにしたがって次第に光反射率は上昇するが、6バッチ目のP型単結晶シリコン基板の光反射率は11.8%であり、実用レベルの良好な結果であった。なお、処理雰囲気をケミカルフィルタを通さない通常の大気雰囲気としたこと以外は、上記と同様にして同様の実験を行った場合には、1バッチ目から6バッチ目のP型単結晶シリコン基板の光反射率は10.0~13.0%程度であり、実用レベルの良好な結果であった。ただし、ケミカルフィルタを通した雰囲気中で処理する方がより低い光反射率がえられるため、ケミカルフィルタを通した雰囲気中で処理することが好ましい。
(実施例2)
 過酸化水素水を用いたP型単結晶シリコン基板の基板洗浄では、過酸化水素水濃度と洗浄温度、洗浄時間等が洗浄効果に影響する。このため、まず過酸化水素水濃度を0.1vol%としたときに、洗浄温度が洗浄能力に与える影響を調べるため、20℃、40℃、55℃、70℃、80℃の5条件の温度の過酸化水素水を用いて、特定の製造履歴のP型単結晶シリコン基板(基板A)の基板洗浄を実施し、その後テクスチャ形成を行い、テクスチャの出来栄えを比較した。過酸化水素水の温度を変化させること以外は、実施例1と同様にして実験を行った。その結果を図8に示す。図8は、酸化性薬剤を含む洗浄液を用いて洗浄したP型単結晶シリコン基板にテクスチャ形成を実施したときのテクスチャ形成工程における不良発生率(%)を示す特性図である。図8においては、P型単結晶シリコン基板の洗浄処理温度(過酸化水素水の温度)(℃)を横軸に、テクスチャ形成工程における不良率(%)を縦軸に示している。
 図8に示すテクスチャ形成工程における不良率とは、テクスチャ形成処理を施した基板枚数に対して、図4に示すようなテクスチャが正常に形成されない領域が存在するP型単結晶シリコン基板の割合であり、テクスチャ形成の出来栄えを表す指標になる。本実験の結果、洗浄温度が20℃の場合には、不良率が80%であったのに対し、洗浄温度が40℃では不良率50%に低下した。さらに洗浄温度が55℃以上では、基板表面全域においてテクスチャが正常に形成されることがわかった。
 また、過酸化水素水を用いたP型単結晶シリコン基板の洗浄の実施前後で、基板表面に付着している有機不純物量の調査を行った。その結果を図9に示す。図9は、酸化性薬剤を含む洗浄液による洗浄温度による基板洗浄後のP型単結晶シリコン基板の表面に残留する有機不純物総量を示す特性図である。図9においては、洗浄温度(過水洗浄温度)を横軸に、基板表面の不純物である有機不純物量総量(arb.unit)を縦軸に示している。また、有機不純物総量は、基板洗浄実施前(洗浄無し)のP型単結晶シリコン基板の表面に残留している有機不純物総量を基準(=1)として規格化した場合の、基板洗浄実施後の有機不純物総量の割合を示している。
 図9から、洗浄温度が高温になるほど、有機不純物総量が減少することが分かる。さらに図8と図9に示した結果によると、有機不純物総量が基板洗浄前の6割まで減少したときに、テクスチャ形成不良がなくなることが分かる。
 なお、様々な基板加工メーカが提供している基板の表面に付着する有機不純物および金属不純物は、基板加工メーカ毎に異なっている。このため、今回過酸化水素水を用いた洗浄で評価した特定の基板Aでは洗浄温度を55℃まで高める必要があった。しかし、他の特定の製造履歴のP型単結晶シリコン基板(基板B)について、上記と同様にして洗浄温度を20℃として実験を行った。その結果を図8に併せて示す。この結果から、基板Bでは洗浄温度が20℃であってもテクスチャ形成不良を抑制する洗浄の効果が見られた。したがって過酸化水素水を用いたP型単結晶シリコン基板の基板洗浄では、洗浄温度は20℃以上であることが好ましい。また、過酸化水素の揮発速度の観点から、過酸化水素水を用いたP型単結晶シリコン基板の基板洗浄における洗浄温度の上限は100℃である。
(実施例3)
 つぎに過酸化水素水を用いたP型単結晶シリコン基板の洗浄の基板洗浄における、過酸化水素水の濃度が基板洗浄能力に与える影響について検討した。過酸化水素水の濃度が洗浄能力に与える影響を調べるため、0.001vol%、0.005vol%、0.01vol%、0.025vol%、0.05vol%、0.1vol%、0.2vol%、0.5vol%、1.0vol%、2.0vol%の10条件の濃度の過酸化水素水を用いて、特定の製造履歴のP型単結晶シリコン基板の基板洗浄を実施し、その後テクスチャ形成を行い、テクスチャの出来栄えを比較した。過酸化水素水の温度を変化させること以外は、実施例1と同様にして実験を行い、基板洗浄の温度は55℃、洗浄時間は3分とした。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すテクスチャの出来栄え評価の指標は、基板表面の全域にわたって良好にテクスチャが形成された場合に○、基板表面の一部分にテクスチャが形成されない箇所があった場合には△、基板表面の全域においてテクスチャが形成されなかった場合には×を記載した。
 実験の結果、過酸化水素水の濃度が0.001vol%の場合には基板洗浄の効果はほとんど見られず、過酸化水素水の濃度が0.005vol%の場合に基板洗浄の効果が見えはじめて基板表面の一部分でテクスチャが形成されない領域を除いては、良好なテクスチャの出来栄えであった。さらに、過酸化水素水の濃度が0.01vol%以上の場合には、基板表面の全領域においてテクスチャが良好に形成された。また、過酸化水素水の濃度を0.1vol%より高濃度にしても基板洗浄効果は飽和してさらなる向上はなく、過酸化水素水洗浄では反応律速になっていると考えられる。
 また、他の特定の製造履歴のP型単結晶シリコン基板についても同様の条件で実験を行ったところ、上記と同様の傾向の結果が得られた。
 したがって、酸化性薬剤を含む洗浄液として過酸化水素水を用いたP型単結晶シリコン基板の基板洗浄において、過酸化水素水濃度が0.01vol%~0.1vol%であることが好ましい。
 上述したように、本実施の形態においては、酸化性薬剤を含む洗浄液によるP型単結晶シリコン基板の基板洗浄後に、該P型単結晶シリコン基板の表面を大気に長時間曝すことなく連続してテクスチャ形成を行うため、大気中に含まれてテクスチャの形成不良の原因となる汚染物質(有機不純物および金属不純物)がP型単結晶シリコン基板の表面に吸着することを防ぐことができる。
 すなわち、本実施の形態においては、スライス加工後であってテクスチャを形成するためのエッチング工程の前にP型単結晶シリコン基板の表面のダメージ層を除去しない。このため、P型単結晶シリコン基板の表面にシリコン活性面を一度も表出させることなくP型単結晶シリコン基板の表面の酸化膜上に付着した汚染物質(有機不純物および金属不純物)を除去でき、汚染物質(有機不純物および金属不純物)によるエッチングの阻害が発生しない。これにより、P型単結晶シリコン基板の表面に付着した汚染物質(有機不純物および金属不純物)に起因したテクスチャの形成不良を防止して、P型単結晶シリコン基板の面内にテクスチャを均一かつ密に安定して形成することができる。
 また、本実施の形態においては、基板洗浄後にP型単結晶シリコン基板を搬送する雰囲気を有機不純物と金属不純物とが除去された清浄な雰囲気とすることにより、P型単結晶シリコン基板の搬送中に基板表面が大気に暴露されないようにしてテクスチャ形成を連続して実施する。このため、テクスチャ形成開始時の基板表面の清浄度を良好に保つことができる。これにより、P型単結晶シリコン基板の表面に付着した汚染物質(有機不純物および金属不純物)に起因したテクスチャの形成不良を防止して、P型単結晶シリコン基板の面内にテクスチャを均一かつ密に、より安定して形成することができる。
 また、本実施の形態では、上記のように大気中に含まれてテクスチャの形成不良の原因となる汚染物質(有機不純物および金属不純物)がP型単結晶シリコン基板の表面に吸着することを防ぐことができる。このため、P型単結晶シリコン基板の表面に付着した汚染物質(有機不純物および金属不純物)がエッチング液中に蓄積されることを抑制してエッチング液の性能の劣化を最小限に抑えることができる。これにより、エッチング液の交換周期を長くすることができ、薬液のコストを低減できるため、表面にテクスチャ構造が均一かつ密に形成された太陽光発電装置用基板を安価に形成することができる。
 したがって、本実施の形態によれば、基板表面での光反射率が低く基板面内において均一な、シリコンの(111)面に囲まれた四角錐状の凸部を有する凹凸構造からなるテクスチャ構造を均一かつ密に、安定して安価に形成することができる。これにより、本実施の形態によれば、光閉じ込め効果に優れた太陽光発電装置用基板を安定して安価に得ることができる。そして、この太陽光発電装置用基板を用いることにより、発電特性に優れた高品質な太陽光発電装置を安定して安価に得ることができる。
 以上のように、本発明にかかる太陽光発電装置用基板の製造方法は、光反射率が低いテクスチャ構造をシリコン基板表面に安定して安価に形成する場合に有用である。
 11 単結晶シリコン基板、11a N型不純物拡散層、12 反射防止膜、13 受光面側電極、13a グリッド電極、13b バス電極、14 裏面電極、101 洗浄槽、102 水洗槽、103 テクスチャ形成槽、104 水洗槽、105 中和槽、106 水洗槽、107 乾燥槽、111 第1処理室、112 第2処理室、121 装置内雰囲気給気口、122 装置内雰囲気排気口。

Claims (14)

  1.  半導体インゴットをスライスして半導体基板を切り出した後に前記半導体基板の表面に表面処理を施してテクスチャ構造を形成する太陽光発電装置用基板の製造方法であって、
     前記半導体基板の表面に付着した有機不純物と金属不純物とを酸化性薬剤を含む洗浄液により洗浄除去する洗浄工程と、
     前記洗浄工程後に連続して行われ、前記半導体基板の表面をアルカリ性水溶液により異方性エッチングすることにより、前記スライスにより生じた基板表面のダメージ層を除去するとともに前記半導体基板の表面に前記テクスチャ構造を形成するエッチング工程と、
     を含むことを特徴とする太陽光発電装置用基板の製造方法。
  2.  前記半導体基板が、結晶シリコン基板であること、
     を特徴とする請求項1に記載の太陽光発電装置用基板の製造方法。
  3.  前記洗浄工程と前記エッチング工程とが、前記有機不純物と前記金属不純物との含有率が大気よりも低い雰囲気において行われること、
     を特徴とする請求項1または2に記載の太陽光発電装置用基板の製造方法。
  4.  前記雰囲気は、エアフィルタを通して前記有機不純物と前記金属不純物とが除去された空気であること、
     を特徴とする請求項3に記載の太陽光発電装置用基板の製造方法。
  5.  前記雰囲気は、不活性雰囲気であること、
     を特徴とする請求項4に記載の太陽光発電装置用基板の製造方法。
  6.  前記半導体基板に付着している前記酸化性薬剤を含む洗浄液を洗い流す洗浄液除去工程を前記洗浄工程と前記エッチング工程との間に有し、
     前記洗浄工程と、前記洗浄液除去工程と、前記エッチング工程とを連続して行うこと、
     を特徴とする請求項1から5のいずれか1つに記載の太陽光発電装置用基板の製造方法。
  7.  前記アルカリ性水溶液が、水酸化ナトリウムまたは水酸化カリウムを含むこと、
     を特徴とする請求項1から6のいずれか1つに記載の太陽光発電装置用基板の製造方法。
  8.  前記酸化性薬剤を含む洗浄液は、20℃以上の過酸化水素水であること、
     を特徴とする請求項1から7のいずれか1つに記載の太陽光発電装置用基板の製造方法。
  9.  前記酸化性薬剤を含む洗浄液は、濃度0.01vol%以上0.1vol%以下の過酸化水素水であること、
     を特徴とする請求項8に記載の太陽光発電装置用基板の製造方法。
  10.  半導体インゴットをスライスして切り出した半導体基板の表面に酸化性薬剤を含む洗浄液を供給して前記半導体基板の表面に付着した有機不純物と金属不純物とを洗浄除去する洗浄処理を行う洗浄部と、
     前記洗浄部において前記有機不純物と金属不純物とが洗浄除去された前記半導体基板の表面にアルカリ性水溶液を供給して前記半導体基板の表面を異方性エッチング処理することにより、前記スライスにより生じた基板表面のダメージ層を除去するとともに前記半導体基板の表面にテクスチャ構造を形成するエッチング部と、
     を備え、
     前記洗浄部における処理に連続して前記エッチング部における処理が行われること、
     を特徴とする太陽光発電装置用基板の製造装置。
  11.  前記洗浄部における前記洗浄処理と前記エッチング部における前記異方性エッチング処理とが、前記有機不純物と前記金属不純物との含有率が大気よりも低い雰囲気において行われること、
     を特徴とする請求項10に記載の太陽光発電装置用基板の製造装置。
  12.  前記雰囲気は、エアフィルタを通して前記有機不純物と前記金属不純物とが除去された空気であること、
     を特徴とする請求項11に記載の太陽光発電装置用基板の製造装置。
  13.  前記雰囲気は、不活性雰囲気であること、
     を特徴とする請求項11に記載の太陽光発電装置用基板の製造装置。
  14.  前記洗浄部における前記洗浄処理において前記半導体基板に付着した前記酸化性薬剤を含む洗浄液を洗い流す洗浄液除去処理が、前記洗浄部における前記洗浄処理と前記エッチング部における異方性エッチング処理との間に行われ、
     前記洗浄処理と、前記洗浄液除去処理と、前記異方性エッチング処理とが連続して行われること、
     を特徴とする請求項10から13のいずれか1つに記載の太陽光発電装置用基板の製造装置。
PCT/JP2014/065648 2013-06-24 2014-06-12 太陽光発電装置用基板の製造方法および太陽光発電装置用基板の製造装置 WO2014208353A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015523974A JPWO2014208353A1 (ja) 2013-06-24 2014-06-12 太陽光発電装置用基板の製造方法および太陽光発電装置用基板の製造装置
CN201480035248.XA CN105324850B (zh) 2013-06-24 2014-06-12 太阳光发电装置用基板的制造方法及太阳光发电装置用基板的制造装置
KR1020157035579A KR20160009656A (ko) 2013-06-24 2014-06-12 태양광 발전 장치용 기판의 제조 방법 및 태양광 발전 장치용 기판의 제조 장치
US14/890,309 US9537026B2 (en) 2013-06-24 2014-06-12 Method for manufacturing solar-power-generator substrate and apparatus for manufacturing solar-power-generator substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013131584 2013-06-24
JP2013-131584 2013-06-24

Publications (1)

Publication Number Publication Date
WO2014208353A1 true WO2014208353A1 (ja) 2014-12-31

Family

ID=52141697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065648 WO2014208353A1 (ja) 2013-06-24 2014-06-12 太陽光発電装置用基板の製造方法および太陽光発電装置用基板の製造装置

Country Status (6)

Country Link
US (1) US9537026B2 (ja)
JP (1) JPWO2014208353A1 (ja)
KR (1) KR20160009656A (ja)
CN (1) CN105324850B (ja)
TW (1) TWI553897B (ja)
WO (1) WO2014208353A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181629A (ja) * 2015-03-24 2016-10-13 株式会社カネカ 太陽電池用シリコン基板の製造装置および製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840810A (zh) * 2019-05-17 2021-12-24 康宁股份有限公司 改良具有处于压应力下的区域的纹理化玻璃基板以增加玻璃基板强度的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009722A (ja) * 2010-06-28 2012-01-12 Sumco Corp 太陽電池基板用半導体ウェーハの洗浄方法
JP2013110327A (ja) * 2011-11-22 2013-06-06 Shinryo Corp 太陽電池用シリコン基板の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196925A (ja) * 1987-10-09 1989-04-14 Matsushita Electric Ind Co Ltd 連続式成膜装置
JPH05152274A (ja) 1991-11-28 1993-06-18 Nippon Steel Corp 半導体基板の洗浄方法
JP3171807B2 (ja) 1997-01-24 2001-06-04 東京エレクトロン株式会社 洗浄装置及び洗浄方法
JP4557316B2 (ja) 1997-07-24 2010-10-06 Okiセミコンダクタ株式会社 半導体素子の製造方法、および半導体素子製造用処理室
JP3503444B2 (ja) * 1997-10-24 2004-03-08 信越半導体株式会社 半導体ウエーハのエッチング工程を有する半導体ウエーハの製造方法
JP3259692B2 (ja) * 1998-09-18 2002-02-25 株式会社日立製作所 集光型太陽光発電モジュール及びその製造方法並びに集光型太陽光発電システム
US6489704B1 (en) * 1999-03-11 2002-12-03 Eneco, Inc. Hybrid thermionic energy converter and method
DE10139509A1 (de) * 2000-12-08 2002-06-27 Daimler Chrysler Ag Silizium Germanium Solarzelle mit hohem Wirkungsgrad
US7148417B1 (en) * 2003-03-31 2006-12-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration GaP/silicon tandem solar cell with extended temperature range
US7045072B2 (en) * 2003-07-24 2006-05-16 Tan Samantha S H Cleaning process and apparatus for silicate materials
JP2006319170A (ja) 2005-05-13 2006-11-24 Mitsubishi Electric Corp 太陽電池及びその製造方法
JP4989042B2 (ja) * 2005-06-09 2012-08-01 信越半導体株式会社 太陽電池用基板の製造方法
CN101888906B (zh) * 2007-12-17 2012-12-19 三洋化成工业株式会社 电子材料用清洗剂和清洗方法
RU2513649C2 (ru) * 2008-11-04 2014-04-20 Итон Корпорейшн Комбинированное производство тепла и электроэнергии для жилых и промышленных зданий с использованием солнечной энергии
KR20120016287A (ko) * 2009-05-22 2012-02-23 오로라 컨트롤 테크놀로지스 인크. 광발전 제품의 생산을 개선하는 방법
JP2011035262A (ja) * 2009-08-04 2011-02-17 Ulvac Japan Ltd 結晶系太陽電池の製造における処理方法及び処理装置
CN101818378B (zh) * 2010-04-26 2011-11-09 韩华新能源(启东)有限公司 单晶硅添加剂制绒液
JP2013004710A (ja) * 2011-06-16 2013-01-07 Panasonic Corp 半導体基板の表面エッチング装置、およびそれを用いて表面に凹凸形状が形成された半導体基板を製造する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009722A (ja) * 2010-06-28 2012-01-12 Sumco Corp 太陽電池基板用半導体ウェーハの洗浄方法
JP2013110327A (ja) * 2011-11-22 2013-06-06 Shinryo Corp 太陽電池用シリコン基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181629A (ja) * 2015-03-24 2016-10-13 株式会社カネカ 太陽電池用シリコン基板の製造装置および製造方法

Also Published As

Publication number Publication date
US9537026B2 (en) 2017-01-03
TW201513385A (zh) 2015-04-01
CN105324850B (zh) 2017-04-19
TWI553897B (zh) 2016-10-11
CN105324850A (zh) 2016-02-10
US20160118512A1 (en) 2016-04-28
KR20160009656A (ko) 2016-01-26
JPWO2014208353A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
US8119438B2 (en) Method of manufacturing solar cell
JP5019397B2 (ja) 太陽電池およびその製造方法
JP4989042B2 (ja) 太陽電池用基板の製造方法
WO2012150627A1 (ja) シリコン基板の洗浄方法および太陽電池の製造方法
JP6435340B2 (ja) 結晶シリコン系太陽電池の製造方法、及び太陽電池モジュールの製造方法
WO2016152228A1 (ja) 太陽電池用結晶シリコン基板の製造方法、結晶シリコン系太陽電池の製造方法および結晶シリコン系太陽電池モジュールの製造方法
JP5737204B2 (ja) 太陽電池及びその製造方法
JP2012049424A (ja) 太陽電池及びその製造方法
JPWO2009131111A1 (ja) 太陽電池の製造方法,太陽電池の製造装置,及び太陽電池
JP5509410B2 (ja) 太陽電池用シリコン基板の製造方法
WO2014148443A1 (ja) 光起電力素子及びその製造方法
KR101212896B1 (ko) 태양전지용 다결정실리콘 웨이퍼의 표면 처리용 텍스쳐링제 및 처리방법
JP2000183378A (ja) シリコン太陽電池の製造方法
JP6176975B2 (ja) 太陽電池用基板の製造方法
WO2014208353A1 (ja) 太陽光発電装置用基板の製造方法および太陽光発電装置用基板の製造装置
JP5874675B2 (ja) テクスチャ形成方法及び太陽電池の製造方法
JP3602323B2 (ja) 太陽電池の製造方法
JP6139466B2 (ja) 太陽電池の製造方法
JP2016032073A (ja) 太陽電池セルの製造方法および太陽電池セルの製造装置
JP2005217260A (ja) シリコン基板の製造方法および太陽電池セルの製造方法
WO2017187623A1 (ja) 太陽電池の製造方法および太陽電池
JP2006253726A (ja) 半導体基板の粗面化法
CN112993079A (zh) 光伏电池片的制备方法及光伏电池片
JP5920421B2 (ja) 太陽電池モジュールの製造方法
JP2014143272A (ja) 基板の粗面化方法、光起電力装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035248.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523974

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14890309

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157035579

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818465

Country of ref document: EP

Kind code of ref document: A1