WO2014208111A1 - 光ビーム計測装置、レーザ装置及び光ビーム分離装置 - Google Patents

光ビーム計測装置、レーザ装置及び光ビーム分離装置 Download PDF

Info

Publication number
WO2014208111A1
WO2014208111A1 PCT/JP2014/051295 JP2014051295W WO2014208111A1 WO 2014208111 A1 WO2014208111 A1 WO 2014208111A1 JP 2014051295 W JP2014051295 W JP 2014051295W WO 2014208111 A1 WO2014208111 A1 WO 2014208111A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
beam splitter
measuring
measurement
Prior art date
Application number
PCT/JP2014/051295
Other languages
English (en)
French (fr)
Inventor
正人 守屋
若林 理
義信 渡部
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to PCT/JP2014/067270 priority Critical patent/WO2014208754A1/ja
Priority to JP2015524146A priority patent/JPWO2014208754A1/ja
Publication of WO2014208111A1 publication Critical patent/WO2014208111A1/ja
Priority to US14/947,335 priority patent/US9835495B2/en
Priority to US15/800,329 priority patent/US10151640B2/en
Priority to JP2020042493A priority patent/JP7065138B2/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/134Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation in gas lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0414Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using plane or convex mirrors, parallel phase plates, or plane beam-splitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0429Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using polarisation elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0477Prisms, wedges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/148Beam splitting or combining systems operating by reflection only including stacked surfaces having at least one double-pass partially reflecting surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3066Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state involving the reflection of light at a particular angle of incidence, e.g. Brewster's angle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • G01J2001/4261Scan through beam in order to obtain a cross-sectional profile of the beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2366Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media comprising a gas as the active medium

Definitions

  • the present disclosure relates to a light beam measurement device, a laser device, and a light beam separation device.
  • exposure apparatuses As semiconductor integrated circuits are miniaturized and highly integrated, in semiconductor exposure apparatuses (hereinafter referred to as “exposure apparatuses”), improvement in resolution is required. For this reason, the wavelength of light emitted from the exposure light source is being shortened.
  • a gas laser device As a light source for exposure, a gas laser device is used instead of a conventional mercury lamp.
  • a gas laser apparatus for exposure a KrF excimer laser apparatus that emits ultraviolet light with a wavelength of 248 nm and an ArF excimer laser apparatus that emits ultraviolet light with a wavelength of 193 nm are used.
  • immersion exposure in which the apparent wavelength of the exposure light source is shortened by filling the space between the exposure lens on the exposure apparatus side and the wafer with a liquid and changing the refractive index, has been studied. Yes.
  • immersion exposure is performed using an ArF excimer laser device as an exposure light source, the wafer is irradiated with ultraviolet light corresponding to a wavelength of 134 nm in water. This technique is called ArF immersion exposure (or ArF immersion lithography).
  • a narrow band module Line Narrow Module
  • a narrow band element etalon, grating, etc.
  • JP 2010-50299 A Japanese Patent Laid-Open No. 1999-201869 Japanese Patent No. 2724993 Japanese Patent No. 3864287 International Publication No. 2009/125745 Pamphlet
  • Jinphil.Choi et.al. “Enhancing Lithography Process Control Through Advanced, On-board Beam Parameter Metrology for Wafer Level Monitoring of Light Source Parameters”, Proc. Of SPIE Vol.8326, 83626O (2012).
  • the light beam measurement apparatus includes a first measurement unit beam splitter installed on the optical path of the laser beam, and measures a polarization state of the laser beam partially reflected by the first measurement unit beam splitter. And a beam profile measuring instrument for measuring a beam profile of the laser beam partially reflected by the second measuring unit beam splitter, and a second measuring unit beam splitter installed on the optical path of the laser beam, A stability measuring instrument for measuring the stability of the laser beam in the direction of travel of the laser beam, and the first measuring unit beam splitter and the second measuring unit beam splitter include CaF 2 . It may be formed of a material.
  • the optical beam measuring device also includes a polarization measuring instrument that measures the polarization state of the laser beam, a beam profile measuring instrument that measures the beam profile of the laser beam, and a laser beam progression that measures the stability of the laser beam in the direction of laser beam travel.
  • a directional stability measuring instrument, and a plurality of measuring unit beam splitters formed of a material containing CaF 2 and installed on the optical path of the laser beam, the polarization measuring instrument, the beam profile measuring instrument, and the Each of the stability measuring instruments in the laser beam traveling direction may measure the laser beams branched by the plurality of measurement unit beam splitters.
  • the light beam separation device is formed of a wedge substrate and is provided with a first separation substrate disposed on the optical path of the laser light, and a second separation substrate formed of the wedge substrate and disposed on the optical path of the laser light.
  • the first separation substrate is configured such that a part of the laser light is separated by partially reflecting the laser light incident from one surface on the one surface, Of the laser light incident on one surface of the first separation substrate, the second separation substrate emits laser light that has passed through the first separation substrate from the other surface of the first separation substrate. Then, the light is incident on one surface of the second separation substrate and is emitted from the other surface of the second separation substrate, and the one surface of the first separation substrate and the second surface
  • the other surface of the separation substrate is substantially parallel to the first substrate.
  • the other surface of the separation substrate and the one surface of the second separation substrate are substantially parallel, and the thickness of the first separation substrate and the thickness of the second separation substrate in the optical path of the laser light are approximately. May be equal.
  • FIG. 1 is a schematic configuration diagram of an exemplary laser apparatus according to an aspect of the present disclosure.
  • FIG. 2 is a configuration diagram of a light beam separation unit in an exemplary laser apparatus according to an aspect of the present disclosure.
  • FIG. 3 is an explanatory diagram of a light beam separation unit in an exemplary laser apparatus according to an aspect of the present disclosure.
  • FIG. 4 is a correlation diagram between the incident angle and the reflectance.
  • FIG. 5A is an explanatory diagram of a light beam separation portion formed of CaF 2 crystal.
  • FIG. 5B is an explanatory diagram of a light beam separating portion formed of CaF 2 crystal.
  • FIG. 5A is an explanatory diagram of a light beam separation portion formed of CaF 2 crystal.
  • FIG. 6A is an explanatory diagram of a light beam separating portion formed of CaF 2 crystal.
  • FIG. 6B is an explanatory diagram of a light beam separating portion formed of CaF 2 crystal.
  • FIG. 7A is a structural diagram of the light beam measurement apparatus according to the first embodiment.
  • FIG. 7B is a structural diagram of the light beam measurement apparatus according to the first embodiment.
  • FIG. 8 is an explanatory diagram of polarization measurement.
  • FIG. 9 is an explanatory diagram of beam profile measurement.
  • FIG. 10 is an explanatory diagram of stability measurement in the laser beam traveling direction.
  • FIG. 11 is an explanatory diagram of the light beam measurement apparatus according to the second embodiment.
  • FIG. 12A is a structural diagram of the light beam measurement apparatus according to the second embodiment.
  • FIG. 12B is a structural diagram of the light beam measurement apparatus according to the second embodiment.
  • FIG. 13 is a flowchart of a measurement method by the light beam measurement apparatus according to the first embodiment.
  • FIG. 14 is a flowchart of a subroutine for calculating beam profile parameters.
  • FIG. 15 is a flowchart of a subroutine for calculating the stability parameter in the laser beam traveling direction.
  • FIG. 16 is a flowchart of a subroutine for calculating a polarization parameter.
  • FIG. 17 is a flowchart of a measurement method by the light beam measurement apparatus according to the second embodiment.
  • FIG. 18 is a flowchart of a subroutine for calculating the degree of polarization.
  • FIG. 13 is a flowchart of a measurement method by the light beam measurement apparatus according to the first embodiment.
  • FIG. 14 is a flowchart of a subroutine for calculating beam profile parameters.
  • FIG. 15 is a flowchart of a subroutine
  • FIG. 19 is an explanatory diagram of a subroutine for calculating the degree of polarization.
  • FIG. 20 is an explanatory diagram of a laser apparatus according to the third embodiment.
  • FIG. 21 is an explanatory diagram of the control unit.
  • FIG. 22 is a diagram illustrating a configuration of the light beam separation unit.
  • FIG. 23 is an exploded perspective view illustrating a holder used in the light beam separation unit.
  • FIG. 24 is a three-side view illustrating a holder used in the light beam separation unit.
  • FIG. 25 is a partial view illustrating a holder used in the light beam separation unit.
  • An “optical path” is a path through which laser light passes.
  • the “optical path length” is a product of the distance through which light actually passes and the refractive index of the medium through which the light has passed.
  • the “amplification wavelength region” is a wavelength band that can be amplified when laser light passes through the amplification region.
  • Upstream means the side close to the light source along the optical path of the laser beam. Further, “downstream” refers to the side close to the exposure surface along the optical path of the laser beam.
  • the optical path may be an axis passing through the approximate center of the beam cross section of the laser light along the traveling direction of the laser light.
  • the traveling direction of the laser light is defined as the Z direction.
  • One direction perpendicular to the Z direction is defined as the X direction
  • the direction perpendicular to the X direction and the Z direction is defined as the Y direction.
  • the traveling direction of the laser light is the Z direction
  • the X direction and the Y direction may vary depending on the position of the laser light referred to. For example, when the traveling direction (Z direction) of the laser light changes in the XZ plane, the X direction after the traveling direction change changes direction according to the traveling direction change, but the Y direction does not change.
  • the traveling direction (Z direction) of the laser light changes in the YZ plane
  • the Y direction after the traveling direction change changes direction according to the change in the traveling direction, but the X direction does not change.
  • the X direction may be described as the H direction and the Y direction may be described as the V direction.
  • S-polarized light when a surface including both the optical axis of laser light incident on the optical element and the optical axis of laser light reflected by the optical element is defined as an incident surface, “S-polarized light” It is assumed that the polarization state is in a direction perpendicular to.
  • P-polarized light is a polarization state in a direction perpendicular to the optical path and parallel to the incident surface.
  • an excimer laser apparatus such as KrF or ArF
  • a light beam measuring apparatus for measuring the beam profile of the emitted pulse laser light, the stability of the laser beam traveling direction, the degree of polarization, and the like. It may be provided.
  • Such a light beam measuring device is preferably small because it is installed inside the excimer laser device.
  • the durability is high enough to endure even when a strong pulse laser beam is irradiated for a long time.
  • the optical axis of the emitted laser light does not change even if the light beam measuring device is installed in the excimer laser device.
  • FIG. 1 illustrates an excimer laser device that is one embodiment of the present disclosure.
  • the “excimer laser device” may be simply referred to as “laser device”.
  • the laser device of the present disclosure may be a double chamber type laser device.
  • the laser device of the present disclosure includes an MO (Master Oscillator) 100, a PO (Power Oscillator) 200, a light beam measurement device 300, a first high reflection mirror 411, a second high reflection mirror 412, and laser control.
  • the MO100 may be a laser oscillator system.
  • the MO 100 may include an MO laser chamber 110, an MO charger 112, an MO-PPM (Pulse Power Module) 113, a laser resonator, an MO energy measuring device 117, and the like.
  • MO-PPM Pulse Power Module
  • the MO laser chamber 110 may include a pair of electrodes 111a and 111b and two windows 110a and 110b that transmit pulsed laser light.
  • a laser gas serving as a laser gain medium supplied from a laser gas supply unit (not shown) or the like may be placed.
  • one of the pair of electrodes 111a and 111b may be referred to as a first electrode 111a and the other as a second electrode 111b.
  • the laser resonator may include a line narrowing module (LNM) 114 and an output coupling mirror (OC) 115.
  • the MO laser chamber 110 may be disposed on the optical path of the laser resonator.
  • the band narrowing module 114 may include a prism 114a, a prism 114b, a grating 114c, and a rotating stage 114d that rotates the prism 114b.
  • the prism 114a and the prism 114b may expand the beam width.
  • the grating 114c is arranged in a Littrow arrangement, and the laser device may oscillate at the target wavelength.
  • the rotating stage 114d is connected to the wavelength adjusting unit 120, and the wavelength may be adjusted by rotating the prism 114b by the rotating stage 114d.
  • the output coupling mirror 115 may be a partial reflection mirror that reflects a part of the pulse laser beam and transmits the other part.
  • the MO energy measuring device 117 may measure the energy of the pulse laser beam.
  • the pulse laser beam that has passed through the output coupling mirror 115 is branched by being partially reflected by the beam splitter 118 disposed on the optical path of the pulse laser beam, and the branched pulse laser beam is branched into the MO energy measuring device 117. May be incident.
  • the pulse energy of the pulse laser beam incident on the MO energy measuring device 117 may be measured by the MO energy measuring device 117, and the measured pulse energy value may be transmitted to the energy control unit 421.
  • the MO-PPM 113 may include a capacitor (not shown), and may be connected to the pair of electrodes 111a and 111b.
  • the MO-PPM 113 may include a switch 113a, and a discharge signal may be generated between the pair of electrodes 111a and 111b when a trigger signal is input from the energy control unit 421 to the switch 113a.
  • the MO charger 112 may be connected to a capacitor or the like (not shown) provided in the MO-PPM 113.
  • the laser gas contained in the MO laser chamber 110 may include a rare gas such as Ar or Kr, a halogen gas such as F 2 , a buffer gas that is Ne, He, or a mixed gas thereof.
  • the PO 200 may include a PO laser chamber 210, a PO charger 212, a PO-PPM 213, a partial reflection mirror 215, an output coupling mirror 216, a PO laser light measurement unit 220, and the like.
  • the PO laser chamber 210 may include a pair of electrodes 211a and 211b and two windows 210a and 210b that transmit pulsed laser light. Further, a laser gas serving as a laser gain medium supplied from a laser gas supply unit (not shown) or the like may be placed in the PO laser chamber 210. In the present application, one of the pair of electrodes 211a and 211b may be referred to as a first electrode 211a and the other as a second electrode 211b.
  • the PO laser chamber 210 may be disposed on the optical path of the pulsed laser light between the partial reflection mirror 215 and the output coupling mirror 216.
  • the partial reflection mirror 215 may be a partial reflection mirror that reflects part of the pulsed laser light and transmits the other part.
  • the output coupling mirror 216 may be a partial reflection mirror that reflects part of the pulsed laser light and transmits the other part.
  • the PO laser light measurement unit 220 may include a PO energy measurement device 221, a spectrum measurement device 222, beam splitters 223 and 224, and the like.
  • the beam splitter 224 is disposed on the optical path of the pulse laser beam that has passed through the output coupling mirror 216, and a part of the pulse laser beam that has passed through the output coupling mirror 216 is provided by the PO energy measuring device 221 and the spectrum measuring device 222. It may be reflected and branched to the side where it is.
  • the pulse laser beam reflected and branched by the beam splitter 224 may be further split by the beam splitter 223 into a pulse laser beam that passes through the beam splitter 223 and a pulse laser beam that reflects.
  • the pulse laser beam transmitted through the beam splitter 223 may be incident on the spectrum measuring instrument 222.
  • the pulsed laser light reflected by the beam splitter 223 may be incident on the PO energy measuring device 221.
  • Information on the spectrum of the pulsed laser light measured by the spectrum measuring instrument 222 may be transmitted to the wavelength control unit 422.
  • the value of the pulse energy measured by the PO energy measuring device 221 may be transmitted to the energy control unit 421.
  • the PO-PPM 213 includes a capacitor (not shown) and may be connected to the pair of electrodes 211a and 211b.
  • the PO-PPM 213 may include a switch 213a, and a discharge signal may be generated between the pair of electrodes 211a and 211b when a trigger signal is input from the energy control unit 421 to the switch 213a.
  • the PO charger 212 may be connected to a capacitor or the like (not shown) provided in the PO-PPM 213.
  • the laser gas contained in the PO laser chamber 210 may include a rare gas such as Ar or Kr, a halogen gas such as F 2 , a buffer gas that is Ne, He, or a mixed gas thereof.
  • the first high reflection mirror 411 and the second high reflection mirror 412 may reflect the pulsed laser light emitted from the MO 100 and enter the PO 200.
  • the light beam measuring apparatus 300 may include a polarization measuring device 310, a beam profile measuring device 320, a stability measuring device 330 in the laser beam traveling direction, a light beam separating unit 340, a control unit 350, a beam measurement control unit 360, and the like. Good.
  • the light beam measuring apparatus 300 may be installed on the optical path of the pulse laser beam emitted from the PO 200.
  • the light beam separation unit may be described as a light beam separation device.
  • the laser controller 420 may receive a target pulse energy Et, a target wavelength ⁇ t, a light emission trigger signal, and the like from the exposure apparatus controller 510 in the exposure apparatus 500.
  • the laser control unit 420 may transmit the received target pulse energy Et, the light emission trigger signal, and the like to the energy control unit 421, and may transmit the received target wavelength ⁇ t to the wavelength control unit 422.
  • the energy control unit 421 may set the charging voltage Vhvmo in the MO charger 112 and set the charging voltage Vhvpo in the PO charger 212 so that the received target pulse energy Et is obtained.
  • the laser control unit 420 may transmit the light emission trigger signal to the energy control unit 421 as it is. Further, the laser control unit 420 may transmit the time when the light emission trigger signal is input and the interval between the light emission trigger signals to the data collection processing system 430.
  • the energy control unit 421 may transmit a trigger signal to the switch 113a in the MO-PPM 113 and the switch 213a in the PO-PPM 213 in synchronization with the received light emission trigger signal. Specifically, when the pulse laser beam emitted from the MO 100 enters the discharge region of the PO laser chamber 210, a trigger signal is sent to the switch 113a and the switch 213a so that a discharge occurs between the pair of electrodes 211a and 211b. May be sent.
  • This discharge excites laser gas in the MO laser chamber 110 and causes laser oscillation between the output coupling mirror 115 and the band narrowing module 114, and pulse laser light having a narrow spectral line width is emitted from the output coupling mirror 115. May be.
  • the pulse energy Emo of this pulse laser beam may be detected by the MO energy measuring device 117, and the detected value of the pulse energy Emo may be transmitted to the energy control unit 421.
  • the narrow-band laser (seed) light emitted from the MO 100 may be reflected by the first high reflection mirror 411 and the second high reflection mirror 412 and incident on the partial reflection mirror 215 in the PO 200.
  • the seed light incident on the partial reflection mirror 215 may pass through the partial reflection mirror 215, enter the PO laser chamber 210, and pass through the discharge region in the PO laser chamber 210.
  • the laser gas may be excited by discharging between the pair of electrodes 210a and 210b in the PO laser chamber 210.
  • the seed light may be amplified and oscillated by the laser resonator formed by the partial reflection mirror 215 and the output coupling mirror 216.
  • the pulse laser beam emitted from the output coupling mirror 216 may be incident on the PO laser beam measurement unit 220, reflected by the beam splitter 224 and the beam splitter 223, and incident on the PO energy measuring device 221.
  • the PO energy measuring device 221 may detect the pulse energy Epo of the incident pulse laser beam and transmit the detected value of the pulse energy Epo to the energy control unit 421.
  • the pulse laser beam incident on the PO laser beam measurement unit 220 may be reflected by the beam splitter 224, then pass through the beam splitter 223, and enter the spectrum measuring instrument 222.
  • the spectrum measuring instrument 222 may measure the spectrum of the incident pulsed laser light and transmit information on the measured light spectrum to the wavelength control unit 422.
  • the beam splitters 223 and 224 may be parallel plane substrates, and may be installed so that pulsed laser light is incident at 45 °.
  • the material of the beam splitters 223 and 224 may be formed of CaF 2 crystal, and a dielectric multilayer film or the like for partially reflecting the pulse laser beam may not be formed.
  • the charging voltage Vhvmo in the MO 100 is controlled by feedback control based on the value of the pulse energy Emo detected by the MO energy measuring device 117 so that the predetermined pulse energy Emot (pulse energy that can be amplified and oscillated by the PO 200) is obtained. Also good.
  • the control of the charging voltage Vhvpo of the PO 200 is performed by feedback control based on the value of the pulse energy Epo detected by the PO energy measuring device 221 so that the target pulse energy Et from the exposure apparatus controller 510 of the exposure apparatus 500 is obtained. May be.
  • the energy control unit 421 may transmit related data to the laser control unit 420 to control energy such as the measured pulse energy (Emo, Epo) and charging voltage (Vmo, Vpo). Good. These data may be transmitted to the data collection processing system 430 after being received by the laser control unit 420.
  • the wavelength controller 422 may receive the target wavelength ⁇ t transmitted from the laser controller 420.
  • the wavelength control unit 422 may perform feedback control via the wavelength adjustment unit 120 based on the target wavelength ⁇ t received from the laser control unit 420 and the difference ⁇ between the wavelengths ⁇ measured by the spectrum measuring instrument 222.
  • the wavelength control unit 422 may transmit data related to wavelength control such as each measured wavelength ( ⁇ ) and spectral line width ( ⁇ ) to the laser control unit 420. These data may be transmitted to the data collection processing system 430 after being received by the laser control unit 420.
  • the beam measurement control unit 360 measures the pulse laser beam emitted from the PO 200 in synchronization with the burst (oscillation trigger), and the beam profile, beam divergence, stability of the laser beam traveling direction, the degree of polarization, and the like.
  • the characteristic data may be transmitted to the laser controller 420. These data received by the laser controller 420 may be further transmitted to the data collection processing system 430.
  • the above-described operation may be performed each time a light emission trigger is input to the laser controller 420. Further, the measurement parameter for receiving the light emission trigger signal may be stored in the data collection processing system 430.
  • the data may be replaced, the data may be processed, and the data may be transmitted to the FDC system 440.
  • the light beam measuring apparatus 300 may measure the beam profile of the pulse laser beam emitted from the PO 200, the beam divergence, the stability of the laser beam traveling direction, the degree of polarization, and the like. Thereby, the beam characteristic data of the pulse laser beam emitted from the PO 200 and incident on the exposure apparatus 500 may be collected.
  • the light beam separation unit 340 may include a separation unit beam splitter 341 and a separation unit cancellation window 342.
  • the separation unit beam splitter 341 may be referred to as a first separation substrate
  • the separation unit cancellation window 342 may be referred to as a second separation substrate.
  • the separation unit beam splitter 341 and the separation unit cancellation window 342 may be formed of the same material, and are wedge substrates having the same shape, and the inclination angle of the other surface with respect to one surface, that is, the wedge angle is 5.57. It may be °. Further, a dielectric multilayer film or the like for partially reflecting the pulse laser beam may not be formed on both surfaces of the separation unit beam splitter 341 and the separation unit cancellation window 342.
  • the separation unit beam splitter 341 and the separation unit cancellation window 342 may be formed so that the thicknesses in the vicinity of the optical path of the pulsed laser light are substantially equal to about 3.2 mm.
  • One surface 341a and the other surface 341b of the separation unit beam splitter 341, and one surface 342a and the other surface 342b of the separation unit cancellation window 342 may be installed to be perpendicular to the ZH plane.
  • the separation unit beam splitter 341 and the separation unit cancellation window 342 may be formed of CaF 2 crystals.
  • the one surface 341a of the separation unit beam splitter 341 and the other surface 342b of the separation unit cancellation window 342 may be installed in parallel. Further, the other surface 341b of the separation unit beam splitter 341 and the one surface 342a of the separation unit cancellation window 342 may be installed in parallel.
  • the distance between the other surface 341b of the separation unit beam splitter 341 and the one surface 342a of the separation unit cancellation window 342 may be set to be about 18.43 mm.
  • the pulsed laser light reflected on one surface 341a of the separation unit beam splitter 341 may be incident on the polarization measuring device 310, the beam profile measuring device 320, the stability measuring device 330 in the laser beam traveling direction, and the like.
  • the pulse laser beam transmitted through the beam splitter 224 in the PO laser beam measurement unit 220 may be incident on one surface 341a of the separation unit beam splitter 341 at an incident angle of 45 ° and partially reflected.
  • the pulsed laser light incident on one surface 341a of the separation unit beam splitter 341 may be reflected at a ratio of P-polarized light and S-polarized light as shown in FIG. 4 by Fresnel reflection.
  • the light may be emitted from the surface 342b at an emission angle of 45 °.
  • the optical axis of the pulsed laser beam shifted by the separation unit beam splitter 341 is corrected by the separation unit cancellation window 342, and the optical axis is shifted depending on the presence or absence of the light beam separation unit 340. May be suppressed.
  • the reflection of the pulse laser light may be only Fresnel reflection. Thereby, compared with the case where the dielectric multilayer film etc. for partial reflection are formed, durability is high and the change of a reflectance may be suppressed.
  • the wedge processing in the separation unit beam splitter 341 and the separation unit cancellation window 342 may be performed by, for example, batch-processing a plurality of sheets and then pairing them with desired characteristics.
  • the adjustment of the processing error in the wedge processing of the separation unit beam splitter 341 and the separation unit cancellation window 342 may be performed by adjusting the position of the separation unit cancellation window 342 and the like.
  • one surface 341a of the CaF 2 crystal crystal orientations CaF 2 is formed by crystallization separation unit beam splitter 341 may be polished so as to be substantially vertically ⁇ 111> axis.
  • the other surface 34b of the separation portion cancellation window 342 formed of CaF 2 crystal may be polished so that the ⁇ 111> axis is substantially vertical.
  • the separating portion beam splitter 341 has an optical path axis ⁇
  • the angle ⁇ formed by the 001> axis may be set to be about 60 °.
  • the optical path of the incident pulse laser beam may be installed so as to be substantially parallel to a plane including the ⁇ 111> axis and the ⁇ 010> axis.
  • the separation part cancel window 342 is installed so that the angle ⁇ formed between the optical path axis of the emitted pulse laser beam and the ⁇ 001> axis is about 60 ° when viewed from the normal line ⁇ 111> axis of the other surface 342b. It may be. That is, the optical path of the pulse laser beam may be installed so as to be substantially parallel to a plane including the ⁇ 111> axis and the ⁇ 010> axis.
  • FIG. 5A is a plan view of a surface parallel to the HZ plane in the light beam separation unit 340
  • FIG. 5B is a plan view of a plane parallel to the VZ plane in the light beam separation unit 340
  • 6A is a plan view of a plane parallel to the HZ plane in the separation unit beam splitter 341
  • FIG. 6B is a plan view of one surface 341a of the separation unit beam splitter 341.
  • the beam splitter 224 in the PO laser beam measurement unit 220 is formed of CaF 2 crystal, one surface and the other surface of the beam splitter 224 are polished so that the ⁇ 111> axis is substantially vertical. May be.
  • the beam splitter 224 is installed so that the angle ⁇ formed between the optical path axis of the incident pulse laser beam and the ⁇ 001> axis is about 60 ° when viewed from the normal ⁇ 111> axis of one surface and the other surface. May be.
  • the optical path of the pulse laser beam may be installed so as to be parallel to a plane including the ⁇ 111> axis and the ⁇ 010> axis.
  • FIGS. 7A and 7B are plan views of a plane parallel to the HZ plane in the light beam measurement apparatus 300
  • FIG. 7B is a plan view of a plane parallel to the HV plane in the light beam measurement apparatus 300.
  • the coordinate axes in FIGS. 7A and 7B indicate the coordinate axes of the pulsed laser light traveling to the exposure apparatus.
  • the polarization measuring instrument 310 may include a first measurement unit beam splitter 311, an aperture 312, a light reduction plate 313, a lotion prism 314, an image sensor 315, and the like.
  • the beam profile measuring instrument 320 may include a second measuring unit beam splitter 321, a transfer optical system 322, an image sensor 323, and the like.
  • the stability measuring instrument 330 in the laser beam traveling direction may include a measurement unit cancel window 331, a third measurement unit beam splitter 332, a condensing optical system 333, an image sensor 334, and the like.
  • the first measurement unit beam splitter 311 is disposed on the optical path of the reflected light of the separation unit beam splitter 341, and the incident surface of the separation unit beam splitter 341 and the incidence surface of the first measurement unit beam splitter 311 are orthogonal to each other. It may be. Moreover, you may install so that the incident angle of the pulsed laser beam in the 1st measurement part beam splitter 311 may be 45 degrees.
  • the aperture 312, the dimming plate 313, the lotion prism 314, and the image sensor 315 may be arranged in this order on the optical path of the reflected light of the first measurement unit beam splitter 311.
  • the second measurement unit beam splitter 321 may be installed on the optical path of the transmitted light of the first measurement unit beam splitter 311.
  • the transfer optical system 322 and the image sensor 323 may be arranged in this order on the optical path of the reflected light of the second measuring unit beam splitter 321.
  • the second measurement unit beam splitter 321 may be a wedge substrate.
  • a measurement unit cancellation window 331 formed by a wedge substrate may be installed on the optical path of the transmitted light of the second measurement unit beam splitter 321. Further, a third measurement unit beam splitter 332 may be installed on the optical path of the transmitted light of the measurement unit cancellation window 331. In the stability measuring instrument 330 in the laser beam traveling direction, the condensing optical system 333 and the image sensor 334 may be installed on the optical path of the reflected light of the third measuring unit beam splitter 332.
  • the incident surface of the separation unit beam splitter 341 and the incident surface of the second measurement unit beam splitter 321 may be orthogonal to each other, and the incident angle of the pulse laser beam in the second measurement unit beam splitter 321 is 45 °. You may install as follows.
  • the incident surface of the separation unit beam splitter 341 and the incident surface of the third measurement unit beam splitter 332 may be orthogonal to each other, and the incident angle of the pulse laser beam in the third measurement unit beam splitter 332 becomes 45 °. You may install as follows.
  • the first measurement unit beam splitter 311, the second measurement unit beam splitter 321, the measurement unit cancellation window 331, and the third measurement unit beam splitter 332 may be formed of CaF 2 crystal.
  • the first measurement unit beam splitter 311, the second measurement unit beam splitter 321, the measurement unit cancellation window 331, and the third measurement unit beam splitter 332 have dielectrics for partially reflecting the pulse laser beam. A multilayer film or the like may not be formed.
  • the pulse laser beam reflected by the first measurement unit beam splitter 311 passes through the opening of the aperture 312 at the center of the reflected light, and the light amount is adjusted by the light reduction plate 313. After that, the light may enter the lotion prism 314.
  • the pulsed laser light incident on the lotion prism 314 may be separated into a polarization component in the V direction and a polarization component in the H direction by the lotion prism 314.
  • the pulse laser light separated into the polarization component in the V direction and the polarization component in the H direction may be detected by the image sensor 315.
  • the pulse laser beam reflected by the second measuring unit beam splitter 321 may be incident on the image sensor 323 via the transfer optical system 322 and detected.
  • the pulsed laser light reflected by the third measurement unit beam splitter 332 may enter the image sensor 334 via the condensing optical system 333 and be detected. .
  • the incident surface of the separating unit beam splitter 341 and the incident surface of the first measuring unit beam splitter 311 are orthogonal to each other, and the pulse laser beam may be incident at the same incident angle of 45 °. Therefore, from the relationship between the reflectance of the P-polarized light and the S-polarized light, the degree of polarization of the pulsed laser light incident on the separation unit beam splitter 341 and the degree of polarization of the reflected light of the first measurement unit beam splitter 311 are equal, and the polarization is May be maintained.
  • the measurement result of the degree of polarization in the polarimeter 310 may be made to coincide with the degree of polarization of the pulsed laser light incident on the separation unit beam splitter 341.
  • the polarization measuring instrument 310 is not limited to the above structure, and a lotion prism 314, a condensing optical system (not shown), and an image sensor 315 are installed on the optical path of the reflected light of the first measurement unit beam splitter 311. May be.
  • the image sensor 315 is an image sensor such as a CCD (Charge Coupled Device), and may be installed at a focal position of a condensing optical system (not shown).
  • FIG. 8 shows the state of the pulsed laser light separated into the polarization component in the V direction and the polarization component in the H direction detected by the image sensor 315 in the polarization measuring instrument 310.
  • the image sensor 315 can detect the peak intensity Pv of the polarization component in the V direction and the peak intensity Ph of the polarization component in the H direction. Based on these, the degree of polarization P can be calculated from the following equation (1).
  • the value obtained by integrating the light intensity in the polarization component in the V direction and the value obtained by integrating the light intensity in the polarization component in the H direction are replaced with Ph and Pv. P may be calculated.
  • FIG. 9 shows the beam profile of the pulsed laser beam detected by the image sensor 323 in the beam profile measuring device 320.
  • the center coordinate Bcv in the V direction of the light beam is the following (2) It can be calculated from the formula shown below.
  • the center coordinate Bch of the light beam in the H direction is as follows ( It can be calculated from the equation shown in 3).
  • the center position (Bch, Bcv) of the beam profile may be obtained by calculating the position of the center of gravity based on the image data detected by the image sensor 323 in the beam profile measuring instrument 320. Further, the beam widths (Bwh, Bwv) in the H direction and the V direction may be calculated as the width of a region where the light intensity is a certain ratio (for example, 5% to 10%) or more with respect to the peak value.
  • FIG. 10 is a stability measurement image in the laser beam traveling direction of the pulsed laser light detected by the image sensor 334 in the stability measuring instrument 330 in the laser beam traveling direction.
  • the stability (Bph, Bpv) of the laser beam traveling direction in the H direction and the V direction is calculated based on the image data detected by the image sensor 334 in the stability measuring instrument 330 in the laser beam traveling direction. You may ask for it. Further, the beam divergence (Bdh, Bdv) in the H direction and the V direction is the width of the region where the light intensity is a certain ratio (for example, 1 / e 2 or 5% to 10%) with respect to the peak value. May be calculated as
  • FIG. 11 is a schematic diagram of a light beam measuring apparatus according to the second embodiment, and some components are omitted.
  • 12A is a plan view of a plane parallel to the HZ plane in the light beam measurement apparatus according to the present embodiment
  • FIG. 12B is a plane parallel to the HV plane in the light beam measurement apparatus according to the present embodiment.
  • coordinate axes in FIGS. 11, 12A, and 12B indicate coordinate axes of pulsed laser light that travels to the exposure apparatus. It should be noted that the light beam measurement apparatus in the present embodiment can be used in place of the light beam measurement apparatus 300 in the first embodiment described in FIG.
  • the light beam measurement apparatus includes a first polarization measurement device 610, a beam profile measurement device 620, a stability measurement device 630 in the laser beam traveling direction, a second polarization measurement device 640, a light beam separation unit 340, A control unit 350, a beam measurement control unit 360, and the like may be included.
  • the first polarization measuring device 610 may be installed on the optical path of the reflected light of the separation unit beam splitter 341 in the light beam separation unit 340.
  • the first polarization measuring instrument 610 may include a first measurement unit beam splitter 311, a first energy sensor 612, and the like. All of the light reflected by the first measurement unit beam splitter 311 may be incident on the first energy sensor 612.
  • the beam profile measuring device 620 may be installed on the optical path of the transmitted light of the first measuring unit beam splitter 311.
  • the beam profile measuring device 620 may include a cancel window 624, a second measurement unit beam splitter 321, a transfer optical system 322, an image sensor 323, a fluorescent plate 625, a transfer optical system 626, and the like.
  • the pulse laser beam transmitted through the first measurement unit beam splitter 311 may be transmitted through the cancel window 624 and reflected by the second measurement unit beam splitter 321.
  • the light reflected by the second measurement unit beam splitter 321 may enter the image sensor 323 via the transfer optical system 322, the fluorescent plate 625, and the transfer optical system 626.
  • the stability measuring device 630 in the laser beam traveling direction may be installed on the optical path of the transmitted light of the second measuring unit beam splitter 321.
  • the laser beam traveling direction stability measuring device 630 includes a third measuring unit beam splitter 332, a condensing optical system 333, an image sensor 334, a light reducing plate 635, a fluorescent plate 636, a transfer optical system 637, a cancel window 638, and the like. May be.
  • the pulse laser beam transmitted through the second measurement unit beam splitter 321 may be reflected by the third measurement unit beam splitter 332.
  • the light reflected by the third measurement unit beam splitter 332 may be incident on the image sensor 334 via the condensing optical system 333, the dimming plate 635, the fluorescent plate 636, and the transfer optical system 637.
  • the pulsed laser light that has passed through the third measurement unit beam splitter 332 may be incident on the cancel window 638.
  • the second polarization measuring instrument 640 may be installed on the optical path of the transmitted light of the third measuring unit beam splitter 332.
  • the second polarization measuring instrument 640 may include a mirror 641, a second energy sensor 642, a polarizer 643, and the like.
  • the polarizer 643 may be one that reflects the polarization component in the H direction and highly transmits the polarization component in the V direction.
  • the separation unit beam splitter 341 and the polarizer 643 may be installed so that the incident surfaces of the pulsed laser light substantially coincide.
  • the polarizer 643 may be installed so that the incident angle ⁇ of the pulsed laser light becomes the Brewster angle.
  • the mirror 641 is a synthetic quartz substrate or the like, and may be formed with a highly reflective film that highly reflects pulsed laser light. All of the pulsed laser light reflected by the mirror 641 may be incident on the second energy sensor 642.
  • the first energy sensor 612 and the second energy sensor 642 may include a ground glass for diffusing pulsed laser light, a photodiode, and the like. The light diffused by the ground glass may be detected by a photodiode. Further, the first energy sensor 612 and the second energy sensor 642 may be energy sensors including pyroelectric elements.
  • the first energy sensor 612 may measure the intensity of the entire pulse energy that combines the polarization component in the H direction and the polarization component in the V direction of the pulse laser beam.
  • the second energy sensor 642 may measure a value proportional to the intensity of the pulse energy of the polarization component in the H direction of the pulse laser beam.
  • the intensity of the pulse energy detected by the first energy sensor 612 and the intensity of the pulse energy detected by the second energy sensor 642 may be transmitted to the beam measurement control unit 360.
  • Measurement Method in Light Beam Measurement Device 6.1 Light Beam Measurement Method by Light Beam Measurement Device in First Embodiment Next, measurement of a light beam by the light beam measurement device in the first embodiment based on FIG. A method will be described.
  • the burst number S may be set to 0 in step 102 (S102).
  • the burst number S means the order of a group of pulsed laser beams that are continuous on the time axis when irradiating the pulsed laser beam.
  • the initial value 0 may be set before the start of the burst.
  • step S104 it may be determined whether or not the shutter signal has changed from off to on.
  • the process may proceed to step 106. If the shutter signal has not changed from off to on, step 104 may be repeated.
  • step 106 the burst start time may be read.
  • step 108 it may be determined whether or not the shutter signal has changed from on to off.
  • the process may proceed to step 110. If the shutter signal has not changed from on to off, step 108 may be repeated.
  • step 110 image data is acquired from the image sensor 315 in the polarization measuring instrument 310, the image sensor 323 in the beam profile measuring instrument 320, and the image sensor 334 in the stability measuring instrument 330 in the laser beam traveling direction. Also good.
  • step 112 the image data acquired by the image sensor 315, the image sensor 323, and the image sensor 334 may be stored in a storage unit (not shown) in the beam measurement control unit 360 or the like.
  • the burst start time read in step 106 may also be stored.
  • a new burst number S may be set by adding 1 to the current burst number S.
  • step 116 beam profile parameters may be calculated. Specifically, a subroutine for calculating a beam profile parameter, which will be described later, may be performed.
  • a stability parameter in the laser beam traveling direction may be calculated. Specifically, a subroutine for calculating a stability parameter in the laser beam traveling direction, which will be described later, may be performed.
  • the polarization parameter may be calculated. Specifically, a subroutine for calculating a polarization parameter, which will be described later, may be performed.
  • step 122 various data, that is, burst start time, burst number S, calculated beam profile parameter, stability parameter of laser beam traveling direction, polarization parameter, and the like are transmitted to the laser control unit 420. May be.
  • step 124 it may be determined whether or not to stop the measurement of the light beam. If the measurement of the light beam is not stopped, the process may proceed to step 104. When the measurement of the light beam is stopped, the measurement may be terminated.
  • the light beam can be measured by the light beam measuring apparatus according to the first embodiment.
  • step 212 image data detected by the image sensor 323 of the beam profile measuring instrument 320 stored in a storage unit (not shown) in the beam measurement control unit 360 or the like is read into a calculation unit (not shown). But you can.
  • a beam profile parameter may be calculated by a calculation unit (not shown) such as the beam measurement control unit 360. Specifically, from the image data detected by the image sensor 323 in the beam profile measuring device 320, the beam width Bwh in the H direction, the beam width Bwv in the V direction, the center position Bch in the H direction, and the center position in the V direction. Bcv may be calculated. Thereafter, the process may return to the main routine in FIG.
  • step 222 image data detected by the image sensor 334 in the stability measuring instrument 330 in the laser beam traveling direction stored in a storage unit (not shown) in the beam measurement control unit 360 or the like is not shown. It may be read into the arithmetic unit.
  • the width and position of the light beam for calculating the stability parameter in the laser beam traveling direction may be calculated by a calculation unit (not shown) such as the beam measurement control unit 360. Specifically, from the image data detected by the image sensor 334 in the stability measuring instrument 330 in the laser beam traveling direction, the width Wh in the H direction, the width Wv in the V direction, the position Pph in the H direction, and the center in the V direction. The position Ppv may be calculated.
  • a stability parameter in the laser beam traveling direction may be calculated by a calculation unit (not shown) such as the beam measurement control unit 360.
  • stability Bph f ⁇ Pph in the laser beam traveling direction in the H direction
  • step 232 (S232), even if image data detected by the image sensor 315 in the polarization measuring instrument 310 stored in a storage unit (not shown) in the beam measurement control unit 360 or the like is read into a calculation unit (not shown). Good.
  • step 234 the calculation unit (not shown) such as the beam measurement control unit 360 calculates the peak intensity Pv of the S polarization component and the peak intensity Ph of the P polarization component for calculating the degree of polarization. Also good. Specifically, the peak intensity Pv of the S-polarized component and the peak intensity Ph of the P-polarized component may be calculated from image data detected by the image sensor 315 in the polarization measuring instrument 310.
  • the degree of polarization P may be calculated by a calculation unit (not shown) such as the beam measurement control unit 360. Specifically, the degree of polarization P may be calculated from the peak intensity Pv of the S-polarized component calculated in step 234 and the peak intensity Ph of the P-polarized component using the formula shown in (1) above. Thereafter, the process may return to the main routine shown in FIG.
  • the burst number S may be set to 0 in step 302 (S302).
  • the burst number S means a group of pulse laser beams on the time axis when irradiating pulse laser beams, and is a number starting from 1.
  • the initial value 0 may be set before the start of the burst.
  • the light intensity integrated values Pbsum and Pesum may be set to zero.
  • the light intensity integrated value Pbsum is an integrated value of the light intensity Pb detected by the first energy sensor 612
  • the light intensity integrated value Pesum is an integrated value of the light intensity Pe detected by the second energy sensor 642. Value.
  • step 306 it may be determined whether or not the shutter signal has changed from OFF to ON. If the shutter signal changes from off to on, the process may proceed to step 308. If the shutter signal has not changed from off to on, step 306 may be repeated.
  • step 308 the burst start time may be read.
  • step 310 it may be determined whether or not a light emission trigger is input. If it is determined that a light emission trigger has been input, the process may proceed to step 312. If it is determined that the light emission trigger is not input, step 310 may be repeated.
  • step 312 the beam measurement control unit 360 sends the pulse energy intensity Pb detected by the first energy sensor 612 and the pulse energy intensity Pe detected by the second energy sensor 642. May be read.
  • step 314 in the calculation unit (not shown) of the beam measurement control unit 360, the pulse energy intensity Pb read in step 312 is added to the current light intensity integrated value Pbsum to obtain a new light intensity integrated value.
  • Pbsum may also be used.
  • the pulse light intensity Pe read in step 312 may be added to the current light intensity integrated value Pesum to obtain a new light intensity integrated value Pesum.
  • step 316 it may be determined whether or not the shutter signal has changed from on to off. If the shutter signal changes from on to off, the process may proceed to step 318. If the shutter signal has not changed from on to off, the process may proceed to step 310.
  • image data may be acquired from the image sensor 323 in the beam profile measuring device 620 and the image sensor 334 in the stability measuring device 630 in the laser beam traveling direction.
  • step 320 the light intensity integrated values Pbsum and Pesum, the image sensor 323, and the image data acquired by the image sensor 334 may be stored in a storage unit (not shown) in the beam measurement control unit 360 or the like. .
  • the burst start time read in step 308 may also be stored.
  • a new burst number S may be set by adding 1 to the current burst number S.
  • step 324 beam profile parameters may be calculated. Specifically, a subroutine for calculating the beam profile parameters shown in FIG. 14 may be performed.
  • a stability parameter in the laser beam traveling direction may be calculated. Specifically, a subroutine for calculating the stability parameter in the laser beam traveling direction shown in FIG. 15 may be performed.
  • step 328 the polarization degree P may be calculated. Specifically, a subroutine for calculating the degree of polarization P, which will be described later, may be performed.
  • step 330 various data, that is, burst start time, burst number S, calculated beam profile parameter, stability parameter of laser beam traveling direction, polarization parameter, and the like are transmitted to the laser control unit 420. May be.
  • step 332 it may be determined whether or not to stop the measurement of the light beam. If the measurement of the light beam is not stopped, the process may move to step 304. When the measurement of the light beam is stopped, the measurement may be terminated.
  • the light beam measurement method by the light beam measurement apparatus according to the second embodiment can be performed.
  • step 402 the light intensity integrated value Pbsum in the first energy sensor 612 and the light intensity integrated value Pesum in the second energy sensor 642 stored in a storage unit (not shown) are calculated (not shown). It may be read into the part.
  • a storage unit (not shown) and a calculation unit (not shown) may be provided in the beam measurement control unit 360 or the like.
  • the first polarization measuring instrument is provided in the front stage of the light beam separating unit 340 outside the light beam measuring apparatus in the second embodiment.
  • the coordinate axes in FIG. 20 indicate the coordinate axes of the pulsed laser light traveling to the exposure apparatus.
  • the light beam measurement device may include a beam profile measurement device 620, a stability measurement device 630 in the laser beam traveling direction, a second polarization measurement device 640, and the like.
  • the first polarization measuring device 650 may be provided in front of the light beam separating unit 340 in the light beam measuring device on the optical path of the pulse laser beam.
  • the first polarization measuring device 650 may include a beam splitter 651, a mirror 652, and a first energy sensor 612.
  • the pulsed laser light reflected on the beam splitter 651 may be reflected on the mirror 652 and incident on the first energy sensor 612.
  • the incident pulse energy is measured, and the measured pulse energy value is transmitted to the energy control unit 660, and further transmitted to the beam measurement control unit 360 via the laser control unit 420. May be.
  • the pulsed laser light transmitted through the beam splitter 651 may be reflected by the separation unit beam splitter 341 in the light beam separation unit 340. Even if the pulse laser beam is measured by the beam profile measuring device 620, the laser beam traveling direction stability measuring device 630, and the second polarization measuring device 640 by the pulse laser beam reflected by the separation unit beam splitter 341. Good.
  • each control unit such as the laser control unit 420 in the laser apparatus of the present disclosure will be described with reference to FIG.
  • Each control unit such as the laser control unit 420 may be configured by a general-purpose control device such as a computer or a programmable controller. For example, it may be configured as follows.
  • the control unit includes a processing unit 700, a storage memory 705 connected to the processing unit 700, a user interface 710, a parallel I / O controller 720, a serial I / O controller 730, an A / D, and a D / A converter 740. Also good.
  • the processing unit 700 may include a CPU 701, a memory 702 connected to the CPU 701, a timer 703, and a GPU 704.
  • the processing unit 700 may read a program stored in the storage memory 705.
  • the processing unit 700 may execute the read program, read data from the storage memory 705 according to the execution of the program, or store the data in the storage memory 705.
  • the parallel I / O controller 720 may be connected to a communicable device via a parallel I / O port.
  • the parallel I / O controller 720 may control communication using a digital signal via a parallel I / O port that is performed in a process in which the processing unit 700 executes a program.
  • the serial I / O controller 730 may be connected to a device capable of communication via a serial I / O port.
  • the serial I / O controller 730 may control communication using a digital signal via a serial I / O port that is performed in the process in which the processing unit 700 executes a program.
  • the A / D and D / A converter 740 may be connected to a device capable of communication via an analog port.
  • the A / D and D / A converter 740 may control communication using an analog signal through an analog port that is performed in the process in which the processing unit 700 executes a program.
  • the user interface 710 may be configured such that an operator displays a program execution process by the processing unit 700, and causes the processing unit 700 to stop program execution or interrupt processing by the operator.
  • the CPU 701 of the processing unit 700 may perform program calculation processing.
  • the memory 702 may perform temporary storage of a program or temporary storage of data during a calculation process while the CPU 701 executes the program.
  • the timer 703 may measure time and elapsed time, and output the time and elapsed time to the CPU 701 according to execution of the program.
  • the GPU 704 may process the image data according to execution of the program and output the result to the CPU 701.
  • the devices that can communicate via the parallel I / O port connected to the parallel I / O controller 720 may be various devices, other control units, or the like.
  • the devices that can communicate via the serial I / O port connected to the serial I / O controller 730 may be various devices, other control units, or the like.
  • the devices connected to the A / D and D / A converter 740 and capable of communicating via an analog port may be various sensors.
  • FIG. 22 is a diagram illustrating the configuration of the light beam separating unit.
  • the light beam separation unit 340 illustrated in FIG. 22 may include a separation unit beam splitter 341, a separation unit cancellation window 342, a first holder 801, a second holder 802, and a housing 803.
  • Each of the separation unit beam splitter 341 and the separation unit cancellation window 342 may be an uncoated wedge substrate.
  • Each of the separation unit beam splitter 341 and the separation unit cancellation window 342 may be made of, for example, a crystal of CaF 2 (linear expansion coefficient: about 1.84 ⁇ 10 ⁇ 7 ).
  • the separation unit beam splitter 341 and the separation unit cancellation window 342 may have the same dimensions.
  • the separation unit beam splitter 341 may be held in the first holder 801.
  • the separation part cancel window 342 may be held in the second holder 802.
  • the first holder 801 and the second holder 802 may be provided in the housing 803.
  • the laser beam from the PO 200 side may be incident on the separation unit beam splitter 341.
  • the laser beam incident on the separation unit beam splitter 341 and reflected by the separation unit beam splitter 341 may be incident on the measuring instrument.
  • the measurement device may be a measurement device such as a polarization measurement device 310, a beam profile measurement device 320, or a stability measurement device 330 in the laser beam traveling direction.
  • the laser beam incident on the separation unit beam splitter 341 and transmitted through the separation unit beam splitter 341 may be refracted by the separation unit beam splitter 341 and incident on the separation unit cancellation window 342.
  • the laser light incident on the separation part cancellation window 342 may be refracted to the opposite side by the separation part cancellation window 342 and transmitted through the separation part cancellation window 342.
  • the laser beam that has passed through the separation unit cancellation window 342 may be output toward the exposure apparatus 500 side.
  • the separation unit beam splitter 341 and the separation unit cancellation window 342 are provided such that the axis of the laser beam output toward the exposure apparatus 500 side coincides with the axis of the laser beam incident on the separation unit beam splitter 341. Also good.
  • FIG. 23 is an exploded perspective view illustrating a holder used in the light beam separation unit.
  • FIG. 24 is a three-side view illustrating a holder used in the light beam separation unit.
  • FIG. 25 is a partial view illustrating a holder used in the light beam separation unit.
  • the first holder 801 and the second holder 802 may hold a separation unit beam splitter 341 and a separation unit cancellation window 342, respectively.
  • the first holder 801 or the second holder 802 may be made of super invar.
  • Super Invar may be referred to as super invariant iron, super invariant steel, or super amber.
  • the super invar may be an alloy composed of iron, nickel, and cobalt.
  • the super invar may be a ternary alloy composed of 63.5% iron, 31.5% nickel, and 5% cobalt.
  • the coefficient of linear expansion of Super Invar may be about 4 ⁇ 10 ⁇ 7 .
  • the first holder 801 for holding the separation unit beam splitter 341 may be provided with a flange 804, a separation unit beam splitter 341, a spacer 805, an annular leaf spring 807, and a pressing ring 809.
  • the second holder 802 for holding the separation part cancellation window 342 may be provided with a flange 804, a separation part cancellation window 342, a spacer 805, an annular leaf spring 807, and a pressing ring 809.
  • the flange 804 may be attached and fixed to the first holder 801 or the second holder 802.
  • the flange 804 may be made of super invar. If the flange 804 is made of super invar, thermal deformation of the flange 804 can be improved. Thereby, the deviation of the axis of the laser beam output toward the exposure apparatus 500 side with respect to the axis of the laser beam incident on the separation unit beam splitter 341 can be reduced.
  • the separation unit beam splitter 341 or the separation unit cancellation window 342 may be attached to the flange 804.
  • the spacer 805 may be provided so as to press the separation unit beam splitter 341 or the separation unit cancellation window 342 against the flange 804.
  • the spacer 805 may have three protrusions 806.
  • the spacer 805 may be configured to press the separation unit beam splitter 341 or the separation unit cancellation window 342 by the three protrusions 806.
  • the spacer 805 may be made of super invar. If the spacer 805 is made of super invar, the thermal deformation of the spacer 805 can be improved. Thereby, the deviation of the axis of the laser beam output toward the exposure apparatus 500 side with respect to the axis of the laser beam incident on the separation unit beam splitter 341 can be reduced.
  • the annular leaf spring 807 may be provided so as to press the spacer 805 against the flange 804 and the separation unit beam splitter 341 or the separation unit cancellation window 342.
  • the annular leaf spring 807 may have three wedge portions 808.
  • the annular leaf spring 807 may be configured to press the spacer 805, the separation portion beam splitter 341, or the separation portion cancellation window 342 by the three wedge portions 808.
  • the annular leaf spring 807 may be disposed such that the positions of the three wedge portions 808 of the annular leaf spring 807 correspond to the positions of the three protrusions 806 of the spacer 805.
  • the annular leaf spring 807 may be made of stainless steel (SUS: Steel Use Stainless).
  • SUS304 linear expansion coefficient: 1.73 ⁇ 10 ⁇ 5
  • SUS304 linear expansion coefficient: 1.73 ⁇ 10 ⁇ 5
  • the annular leaf spring 807 the positional deviation of the separation unit beam splitter 341 or the separation unit cancellation window 342 due to vibration can be reduced. Thereby, the deviation of the axis of the laser beam output toward the exposure apparatus 500 side with respect to the axis of the laser beam incident on the separation unit beam splitter 341 can be reduced.
  • the holding ring 809 may be provided so as to press the annular leaf spring 807 against the flange 804, the separation portion beam splitter 341 or the separation portion cancellation window 342, and the spacer 805.
  • the holding ring 809 may be made of stainless steel (SUS: Steel Use Stainless).
  • SUS steel Use Stainless
  • SUS304 linear expansion coefficient: 1.73 ⁇ 10 ⁇ 5 ) may be used.
  • the bolt 810 may be made of Super Invar. If the bolt 810 is made of Super Invar, the thermal deformation of the bolt 810 can be improved. Thereby, the deviation of the axis of the laser beam output toward the exposure apparatus 500 side with respect to the axis of the laser beam incident on the separation unit beam splitter 341 can be reduced.
  • the flange 804 may be provided with a hole for receiving the bolt 810.
  • a hole for inserting the bolt 810 may be provided in the annular leaf spring 807 and the holding ring 809.
  • the bolt 810 may be inserted into the flange 804 through the holding ring 809 and the annular leaf spring 807. Accordingly, the separation portion beam splitter 341 or the separation portion cancellation window 342, the spacer 805, and the annular leaf spring 807 may be fixed between the flange 804 and the holding ring 809.
  • the flange 804 may be provided with one or more O-rings 811.
  • One or more O-rings 811 may be made of rubber.
  • the rotation of the separation unit beam splitter 341 or the separation unit cancellation window 342 inside the flange 804 can be reduced. Thereby, the deviation of the axis of the laser beam output toward the exposure apparatus 500 side with respect to the axis of the laser beam incident on the separation unit beam splitter 341 can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 光ビーム計測装置は、レーザ光の光路上に設置された第1の計測部ビームスプリッタを含み、前記第1の計測部ビームスプリッタにおいて一部反射されたレーザ光の偏光状態を計測する偏光計測器と、前記レーザ光の光路上に設置された第2の計測部ビームスプリッタを含み、前記第2の計測部ビームスプリッタにおいて一部反射されたレーザ光のビームプロファイルを計測するビームプロファイル計測器と、レーザ光のレーザビーム進行方向の安定性を計測するレーザビーム進行方向の安定性計測器と、を備え、前記第1の計測部ビームスプリッタ及び前記第2の計測部ビームスプリッタは、CaFを含む材料により形成されていてもよい。

Description

光ビーム計測装置、レーザ装置及び光ビーム分離装置
 本開示は、光ビーム計測装置、レーザ装置及び光ビーム分離装置に関する。
 半導体集積回路の微細化、高集積化につれて、半導体露光装置(以下、「露光装置」という)においては解像力の向上が要請されている。このため露光用光源から放出される光の短波長化が進められている。露光用光源には、従来の水銀ランプに代わってガスレーザ装置が用いられている。現在、露光用のガスレーザ装置としては、波長248nmの紫外線を放出するKrFエキシマレーザ装置ならびに、波長193nmの紫外線を放出するArFエキシマレーザ装置が用いられている。
 次世代の露光技術としては、露光装置側の露光用レンズとウェハ間を液体で満たして、屈折率を変えることによって、露光用光源の見かけの波長を短波長化する液浸露光が研究されている。ArFエキシマレーザ装置を露光用光源として液侵露光が行われた場合は、ウェハには水中における波長134nmに相当する紫外光が照射される。この技術をArF液浸露光(又はArF液浸リソグラフィー)という。
 KrF、ArFエキシマレーザ装置の自然発振幅は、約350~400pmと広いため、これらの投影レンズが使用されると色収差が発生して解像力が低下する。そこで色収差が無視できる程度となるまでガスレーザ装置から放出されるレーザビームのスペクトル線幅(スペクトル幅)を狭帯域化する必要がある。このためガスレーザ装置のレーザ共振器内には狭帯域化素子(エタロンやグレーティング等)を有する狭帯域化モジュール(Line Narrow Module)が設けられ、スペクトル幅の狭帯域化が実現されている。このようにスペクトル幅が狭帯域化されるレーザ装置を狭帯域化レーザ装置という。
特開2010-50299号公報 特開1999-201869号公報 特許第2724993号公報 特許第3864287号公報 国際公開第2009/125745号パンフレット
概要
 光ビーム計測装置は、レーザ光の光路上に設置された第1の計測部ビームスプリッタを含み、前記第1の計測部ビームスプリッタにおいて一部反射されたレーザ光の偏光状態を計測する偏光計測器と、前記レーザ光の光路上に設置された第2の計測部ビームスプリッタを含み、前記第2の計測部ビームスプリッタにおいて一部反射されたレーザ光のビームプロファイルを計測するビームプロファイル計測器と、レーザ光のレーザビーム進行方向の安定性を計測するレーザビーム進行方向の安定性計測器と、を備え、前記第1の計測部ビームスプリッタ及び前記第2の計測部ビームスプリッタは、CaFを含む材料により形成されていてもよい。
 また、光ビーム計測装置はレーザ光の偏光状態を計測する偏光計測器と、レーザ光のビームプロファイルを計測するビームプロファイル計測器と、レーザ光のレーザビーム進行方向の安定性を計測するレーザビーム進行方向の安定性計測器と、CaFを含む材料により形成され、前記レーザ光の光路上に設置された複数の計測部ビームスプリッタと、を備え、前記偏光計測器、前記ビームプロファイル計測器及び前記レーザビーム進行方向の安定性計測器の各々は、複数の前記計測部ビームスプリッタにより各々分岐されたレーザ光を計測してもよい。
 また、光ビーム分離装置はウエッジ基板により形成され、レーザ光の光路上に設置された第1の分離基板と、ウエッジ基板により形成され、前記レーザ光の光路上に設置された第2の分離基板と、を備え、前記第1の分離基板は、一方の面より入射したレーザ光が前記一方の面において一部反射されることにより、前記レーザ光の一部が分離されるように構成され、前記第2の分離基板は、前記第1の分離基板の一方の面に入射したレーザ光のうち、前記第1の分離基板を透過したレーザ光が前記第1の分離基板の他方の面より出射して、前記第2の分離基板の一方の面に入射し、前記第2の分離基板の他方の面より出射するように構成され、前記第1の分離基板の一方の面と前記第2の分離基板の他方の面とは略平行であり、前記第1の分離基板の他方の面と前記第2の分離基板の一方の面とは略平行であり、前記レーザ光の光路における前記第1の分離基板の厚さと前記第2の分離基板の厚さは略等しくともよい。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、本開示の一態様における例示的なレーザ装置の概略構成図である。 図2は、本開示の一態様における例示的なレーザ装置における光ビーム分離部の構成図である。 図3は、本開示の一態様における例示的なレーザ装置における光ビーム分離部の説明図である。 図4は、入射角と反射率との相関図である。 図5Aは、CaF結晶により形成されている光ビーム分離部の説明図である。 図5Bは、CaF結晶により形成されている光ビーム分離部の説明図である。 図6Aは、CaF結晶により形成されている光ビーム分離部の説明図である。 図6Bは、CaF結晶により形成されている光ビーム分離部の説明図である。 図7Aは、第1の実施の形態における光ビーム計測装置の構造図である。 図7Bは、第1の実施の形態における光ビーム計測装置の構造図である。 図8は、偏光計測の説明図である。 図9は、ビームプロファイル計測の説明図である。 図10は、レーザビーム進行方向の安定性計測の説明図である。 図11は、第2の実施の形態における光ビーム計測装置の説明図である。 図12Aは、第2の実施の形態における光ビーム計測装置の構造図である。 図12Bは、第2の実施の形態における光ビーム計測装置の構造図である。 図13は、第1の実施の形態における光ビーム計測装置による計測方法のフローチャートである。 図14は、ビームプロファイルパラメータを算出するサブルーチンのフローチャートである。 図15は、レーザビーム進行方向の安定性パラメータを算出するサブルーチンのフローチャートである。 図16は、偏光パラメータを算出するサブルーチンのフローチャートである。 図17は、第2の実施の形態における光ビーム計測装置による計測方法のフローチャートである。 図18は、偏光度を算出するサブルーチンのフローチャートである。 図19は、偏光度を算出するサブルーチンの説明図である。 図20は、第3の実施の形態におけるレーザ装置の説明図である。 図21は、制御部の説明図である。 図22は、光ビーム分離部の構成を例示する図である。 図23は、光ビーム分離部に使用されるホルダを例示する分解斜視図である。 図24は、光ビーム分離部に使用されるホルダを例示する三面図である。 図25は、光ビーム分離部に使用されるホルダを例示する部分図である。
実施形態
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示の一例を示し、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。尚、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
 目次
 1.用語の説明
 2.レーザ装置
  2.1 課題
  2.2 構成
  2.3 動作
  2.4 作用
 3.光ビーム分離部(光ビーム分離装置)
  3.1 構成
  3.2 動作
  3.3 作用
  3.4 CaF結晶の結晶方位
 4.第1の実施の形態(光ビーム計測装置)
  4.1 構成
  4.2 動作
  4.3 作用
  4.4 偏光計測
  4.5 ビームプロファイル計測
  4.6 レーザビーム進行方向の安定性計測
 5.第2の実施の形態(光ビーム計測装置)
 6.光ビーム計測装置における計測方法
  6.1 第1の実施の形態における光ビーム計測装置による光ビームの計測方法
  6.2 第2の実施の形態における光ビーム計測装置による光ビームの計測方法
 7.第3の実施の形態(レーザ装置)
 8.制御部
 9.光ビーム分離部の具体的な構成
 1.用語の説明
 本開示において使用される用語を、以下のように定義する。「光路」とは、レーザ光が通過する経路である。「光路長」とは、実際に光が通過する距離と、光が通過した媒質の屈折率の積である。「増幅波長領域」とは、増幅領域をレーザ光が通過したときに増幅可能な波長帯域である。
 「上流」とは、レーザ光の光路に沿って光源に近い側をいう。また、「下流」とは、レーザ光の光路に沿って露光面に近い側をいう。光路は、レーザ光の進行方向に沿ってレーザ光のビーム断面の略中心を通る軸であってもよい。
 本開示では、レーザ光の進行方向がZ方向と定義される。また、このZ方向と垂直な一方向がX方向と定義され、X方向およびZ方向と垂直な方向がY方向と定義される。レーザ光の進行方向がZ方向であるが、説明において、X方向とY方向は言及するレーザ光の位置によって変化する場合がある。例えば、レーザ光の進行方向(Z方向)がX-Z平面内で変化した場合、進行方向変化後のX方向は進行方向の変化に応じて向きを変えるが、Y方向は変化しない。一方、レーザ光の進行方向(Z方向)がY-Z平面内で変化した場合、進行方向変化後のY方向は進行方向の変化に応じて向きを変えるが、X方向は変化しない。尚、本願においては、X方向をH方向と、Y方向をV方向と記載する場合がある。
 反射型の光学素子に関し、光学素子に入射するレーザ光の光軸と該光学素子によって反射したレーザ光の光軸との双方を含む面を入射面とすると、「S偏光」とは、入射面に対して垂直な方向の偏光状態であるとする。一方、「P偏光」とは、光路に直交し、且つ入射面に対して平行な方向の偏光状態であるとする。
 2.レーザ装置
  2.1 課題
 ところで、KrF、ArF等のエキシマレーザ装置においては、出射されるパルスレーザ光のビームプロファイル、レーザビーム進行方向の安定性、偏光度等を計測するための光ビーム計測装置が設けられている場合がある。このような、光ビーム計測装置は、エキシマレーザ装置の内部に設置されるため、小型であることが好ましい。また、長時間、強いパルスレーザ光が照射されても耐えうる耐久性が高いものであることが好ましい。また、エキシマレーザ装置内に、光ビーム計測装置を設置しても、出射されるレーザ光の光軸が変化しないものであることが好ましい。
  2.2 構成
 図1に、本開示の一態様であるエキシマレーザ装置を示す。尚、本願においては、「エキシマレーザ装置」を単に「レーザ装置」と記載する場合がある。本開示のレーザ装置は、ダブルチャンバ方式のレーザ装置であってもよい。具体的には、本開示のレーザ装置は、MO(Master Oscillator)100、PO(Power Oscillator)200、光ビーム計測装置300、第1の高反射ミラー411、第2の高反射ミラー412、レーザ制御部420、エネルギ制御部421、波長制御部422、データ収集処理システム430等を含んでいてもよい。
 MO100は、レーザ発振器システムであってもよい。MO100は、MOレーザチャンバ110、MO充電器112、MO-PPM(パルスパワーモジュール:Pulse Power Module)113、レーザ共振器、MOエネルギ計測器117等を含んでいてもよい。
 MOレーザチャンバ110は、一対の電極111a及び111b、パルスレーザ光を透過する2つのウインド110a及び110bを含んでいてもよい。また、MOレーザチャンバ110内には、不図示のレーザガス供給部等より供給されたレーザゲイン媒体となるレーザガスが入れられていてもよい。尚、本願においては、一対の電極111a及び111bのうちの一方を第1の電極111a、他方を第2の電極111bと記載する場合がある。
 レーザ共振器は、狭帯域化モジュール(LNM:Line Narrowing Module)114、出力結合ミラー(OC:Output Coupler)115を含んでいてもよい。MOレーザチャンバ110は、レーザ共振器の光路上に配置されてもよい。
 狭帯域化モジュール114は、プリズム114a、プリズム114b、グレーティング114c及びプリズム114bを回転させる回転ステージ114dを含んでいてもよい。プリズム114a及びプリズム114bはビームの幅を拡大してもよい。狭帯域化モジュール114では、グレーティング114cはリトロー配置されており、レーザ装置が目標波長で発振してもよい。回転ステージ114dは波長調節部120に接続されており、回転ステージ114dによりプリズム114bを回転させることにより波長を調節してもよい。
 出力結合ミラー115は、パルスレーザ光の一部を反射し、他の一部を透過させる部分反射ミラーであってもよい。
 MOエネルギ計測器117は、パルスレーザ光のエネルギを計測するものであってもよい。出力結合ミラー115を透過したパルスレーザ光は、パルスレーザ光の光路上に配置されているビームスプリッタ118において一部反射されることにより分岐され、分岐されたパルスレーザ光が、MOエネルギ計測器117に入射するものであってもよい。MOエネルギ計測器117に入射したパルスレーザ光は、MOエネルギ計測器117においてパルスエネルギが計測され、計測されたパルスエネルギの値は、エネルギ制御部421に送信されてもよい。
 MO-PPM113は、不図示のコンデンサを含むものであってもよく、一対の電極111a及び111bに接続されていてもよい。また、MO-PPM113は、スイッチ113aを含んでいてもよく、エネルギ制御部421からスイッチ113aにトリガ信号が入力されることにより、一対の電極111a及び111b間において放電を発生させてもよい。MO充電器112は、MO-PPM113に設けられている不図示のコンデンサ等に接続されていてもよい。
 MOレーザチャンバ110内に入れられているレーザガスは、ArまたはKr等の希ガス、F等のハロゲンガス、Ne、Heまたはこれらの混合ガスであるバッファガスを含んでいてもよい。
 PO200は、POレーザチャンバ210、PO充電器212、PO-PPM213、部分反射ミラー215、出力結合ミラー216、POレーザ光計測部220等を含むものであってもよい。
 POレーザチャンバ210は、一対の電極211a及び211b、パルスレーザ光を透過する2つのウインド210a及び210bを含んでいてもよい。また、POレーザチャンバ210内には、不図示のレーザガス供給部等より供給されたレーザゲイン媒体となるレーザガスが入れられていてもよい。尚、本願においては、一対の電極211a及び211bのうちの一方を第1の電極211a、他方を第2の電極211bと記載する場合がある。
 POレーザチャンバ210は、部分反射ミラー215と出力結合ミラー216との間におけるパルスレーザ光の光路上に配置されてもよい。
 部分反射ミラー215は、パルスレーザ光の一部を反射し、他の一部を透過させる部分反射ミラーであってもよい。出力結合ミラー216は、パルスレーザ光の一部を反射し、他の一部を透過させる部分反射ミラーであってもよい。
 POレーザ光計測部220は、POエネルギ計測器221、スペクトル計測器222、ビームスプリッタ223及び224等を含んでいてもよい。ビームスプリッタ224は、出力結合ミラー216を透過したパルスレーザ光の光路上に配置されており、出力結合ミラー216を透過したパルスレーザ光の一部をPOエネルギ計測器221及びスペクトル計測器222が設けられている側に反射し分岐してもよい。ビームスプリッタ224により反射されて分岐されたパルスレーザ光は、更にビームスプリッタ223により、ビームスプリッタ223を透過するパルスレーザ光と反射するパルスレーザ光とに分岐してもよい。ビームスプリッタ223を透過したパルスレーザ光は、スペクトル計測器222に入射してもよい。ビームスプリッタ223により反射されたパルスレーザ光は、POエネルギ計測器221に入射してもよい。スペクトル計測器222において計測されたパルスレーザ光のスペクトルの情報は、波長制御部422に送信されてもよい。POエネルギ計測器221において計測されたパルスエネルギの値は、エネルギ制御部421に送信されてもよい。
 PO-PPM213は、不図示のコンデンサを含み、一対の電極211a及び211bに接続されていてもよい。また、PO-PPM213は、スイッチ213aを含んでいてもよく、エネルギ制御部421からスイッチ213aにトリガ信号が入力されることにより、一対の電極211a及び211b間において放電を発生させてもよい。PO充電器212は、PO-PPM213に設けられている不図示のコンデンサ等に接続されていてもよい。
 POレーザチャンバ210内に入れられているレーザガスは、ArまたはKr等の希ガス、F等のハロゲンガス、Ne、Heまたはこれらの混合ガスであるバッファガスを含んでいてもよい。
 第1の高反射ミラー411及び第2の高反射ミラー412は、MO100より出射されたパルスレーザ光を反射し、PO200に入射させてもよい。
 光ビーム計測装置300は、偏光計測器310、ビームプロファイル計測器320、レーザビーム進行方向の安定性計測器330、光ビーム分離部340、制御部350、ビーム計測制御部360等を含んでいてもよい。光ビーム計測装置300は、PO200から出射されたパルスレーザ光の光路上に設置されてもよい。本願においては、光ビーム分離部を光ビーム分離装置と記載する場合がある。
  2.3 動作
 レーザ制御部420は、露光装置500における露光装置制御部510から目標のパルスエネルギEtと目標波長λt、発光トリガ信号等を受信してもよい。レーザ制御部420は、受信した目標のパルスエネルギEtと発光トリガ信号等をエネルギ制御部421に送信してもよく、受信した目標の波長λtを波長制御部422に送信してもよい。
 エネルギ制御部421は、受信した目標パルスエネルギEtとなるように、MO充電器112に充電電圧Vhvmoを設定し、PO充電器212に充電電圧Vhvpoを設定してもよい。
 レーザ制御部420は、露光装置制御部510から発光トリガを受信すると、発光トリガ信号をそのままエネルギ制御部421に送信してもよい。さらにレーザ制御部420は、発光トリガ信号が入力された時刻と発光トリガ信号の間隔をデータ収集処理システム430に送信してもよい。
 エネルギ制御部421は、受信した発光トリガ信号に同期して、MO-PPM113におけるスイッチ113aと、PO-PPM213におけるスイッチ213aにトリガ信号を送信してもよい。具体的には、MO100から出射されたパルスレーザ光が、POレーザチャンバ210の放電領域に入射する際に、一対の電極211a、211b間において放電が生じるように、スイッチ113a及びスイッチ213aにトリガ信号を送信してもよい。
 MO100は、エネルギ制御部421からMO-PPM113におけるスイッチ113aにトリガ信号が入力されると、入力されたトリガ信号に同期して、MOレーザチャンバ110内における一対の電極111a、111bにおいて放電が生じてもよい。
 この放電により、MOレーザチャンバ110内におけるレーザガスが励起されて、出力結合ミラー115と狭帯域化モジュール114との間でレーザ発振し、出力結合ミラー115からスペクトル線幅が狭いパルスレーザ光が出射されてもよい。このパルスレーザ光のパルスエネルギEmoは、MOエネルギ計測器117において検出され、検出されたパルスエネルギEmoの値は、エネルギ制御部421に送信されてもよい。
 MO100より出射される狭帯域化されたレーザ(シード)光は、第1の高反射ミラー411及び第2の高反射ミラー412において反射されて、PO200における部分反射ミラー215に入射してもよい。
 部分反射ミラー215に入射したシード光は、部分反射ミラー215を透過し、POレーザチャンバ210に入射しPOレーザチャンバ210における放電領域を通過してもよい。このタイミングで、POレーザチャンバ210内における一対の電極210a及び210b間で放電し、レーザガスを励起してもよい。これにより、シード光は、部分反射ミラー215と出力結合ミラー216とにより形成されるレーザ共振器によって増幅されて発振してもよい。
 出力結合ミラー216より出射されたパルスレーザ光は、POレーザ光計測部220に入射し、ビームスプリッタ224及びビームスプリッタ223において反射され、POエネルギ計測器221に入射してもよい。POエネルギ計測器221は、入射したパルスレーザ光のパルスエネルギEpoを検出し、検出されたパルスエネルギEpoの値をエネルギ制御部421に送信してもよい。また、POレーザ光計測部220に入射したパルスレーザ光は、ビームスプリッタ224において反射された後、ビームスプリッタ223を透過し、スペクトル計測器222に入射してもよい。スペクトル計測器222は、入射したパルスレーザ光のスペクトルを計測し、計測した光スペクトルの情報を波長制御部422に送信してもよい。
 ビームスプリッタ223及び224は、平行平面基板であって、パルスレーザ光が45°で入射するように設置されていてもよい。ビームスプリッタ223及び224の材質は、CaF結晶により形成されていてもよく、パルスレーザ光を部分的に反射するための誘電体多層膜等が成膜されていなくともよい。
 MO100における充電電圧Vhvmoの制御は、所定のパルスエネルギEmot(PO200で増幅発振可能なパルスエネルギ)となるように、MOエネルギ計測器117において検出されたパルスエネルギEmoの値に基づいてフィードバック制御してもよい。
 PO200の充電電圧Vhvpoの制御は、露光装置500の露光装置制御部510からの目標パルスエネルギEtとなるように、POエネルギ計測器221において検出されたパルスエネルギEpoの値に基づいて、フィードバック制御してもよい。
 ここで、エネルギ制御部421は、計測されたそれぞれのパルスエネルギ(Emo、Epo)、充電電圧(Vmo、Vpo)等のエネルギを制御するために関連するデータをレーザ制御部420に送信してもよい。これらのデータは、レーザ制御部420において受信された後、データ収集処理システム430に送信されてもよい。
 波長制御部422は、レーザ制御部420より送信された目標波長λtを受信してもよい。波長制御部422は、レーザ制御部420より受信した目標波長λtと、スペクトル計測器222により計測された波長λの差δλに基づいて、波長調節部120を介して、フィードバック制御してもよい。
 ここで、波長制御部422は、計測されたそれぞれの波長(λ)、スペクトル線幅(Δλ)等の波長制御に関連するデータをレーザ制御部420に送信してもよい。これらのデータは、レーザ制御部420において受信された後、データ収集処理システム430に送信されてもよい。
 また、ビーム計測制御部360は、バースト(発振トリガ)に同期して、PO200から出射されたパルスレーザ光を計測し、ビームプロファイル、ビームダイバージェンス、レーザビーム進行方向の安定性、偏光度等のビーム特性のデータをレーザ制御部420に送信してもよい。レーザ制御部420において受信されたこれらのデータは、更に、データ収集処理システム430に送信されてもよい。
 レーザ制御部420に、発光トリガ入力される度に、上述した動作を行ってもよい。また、発光トリガ信号を受信する計測パラメータをデータ収集処理システム430に記憶させてもよい。
 発光トリガ信号の時間間隔に基づいて、ウェハ毎、スキャン毎に認識して、データを置換えて、データを処理して、FDCシステム440にデータを送信してもよい。
  2.4 作用
 光ビーム計測装置300は、PO200より出射されたパルスレーザ光のビームプロファイルと、ビームダイバージェンス、レーザビーム進行方向の安定性、偏光度等を計測してもよい。これにより、PO200から出射され、露光装置500に入射するパルスレーザ光のビーム特性のデータを収集してもよい。
 3.光ビーム分離部(光ビーム分離装置)
  3.1 構成
 図2及び図3に示されるように、光ビーム分離部340は、分離部ビームスプリッタ341、分離部キャンセルウインド342を含んでいてもよい。尚、本願においては、分離部ビームスプリッタ341を第1の分離基板、分離部キャンセルウインド342を第2の分離基板と記載する場合がある。
 分離部ビームスプリッタ341及び分離部キャンセルウインド342は同じ材料により形成されていてもよく、同じ形状のウエッジ基板であって、一方の面に対する他方の面の傾斜角、即ち、ウエッジ角度が5.57°であってもよい。また、分離部ビームスプリッタ341及び分離部キャンセルウインド342の両面には、パルスレーザ光を部分的に反射するための誘電体多層膜等が成膜されていなくともよい。
 分離部ビームスプリッタ341及び分離部キャンセルウインド342は、パルスレーザ光の光路の近傍における厚さは略等しく、約3.2mmとなるように形成されていてもよい。分離部ビームスプリッタ341の一方の面341a及び他方の面341b、分離部キャンセルウインド342の一方の面342a及び他方の面342bは、ZH面に対し、垂直となるように設置されていてもよい。
 分離部ビームスプリッタ341及び分離部キャンセルウインド342は、CaF結晶により形成されていてもよい。
 分離部ビームスプリッタ341の一方の面341aと分離部キャンセルウインド342の他方の面342bとは平行となるように設置されていてもよい。また、分離部ビームスプリッタ341の他方の面341bと分離部キャンセルウインド342の一方の面342aとは平行となるように設置されていてもよい。
 分離部ビームスプリッタ341は、一方の面341aにおけるパルスレーザ光の入射角が45°となり、他方の面341bにおけるパルスレーザ光の出射角がブリュースタ角(=56.34°)となるようにホルダ343により固定されていてもよい。
 分離部キャンセルウインド342は、一方の面342aにおけるパルスレーザ光の入射角がブリュースタ角(=56.34°)となり、他方の面342bにおけるパルスレーザ光の出射角が45°となるようにホルダ344により固定されていてもよい。
 パルスレーザ光の光路近傍において、分離部ビームスプリッタ341の他方の面341bと分離部キャンセルウインド342の一方の面342aとの間の距離は、約18.43mmとなるように設置してもよい。
 分離部ビームスプリッタ341における一方の面341aにおいて反射されたパルスレーザ光は、偏光計測器310、ビームプロファイル計測器320及びレーザビーム進行方向の安定性計測器330等に入射してもよい。
  3.2 動作
 POレーザ光計測部220おけるビームスプリッタ224を透過したパルスレーザ光は、分離部ビームスプリッタ341の一方の面341aに入射角45°で入射し、一部反射されてもよい。分離部ビームスプリッタ341の一方の面341aに入射したパルスレーザ光は、フレネル反射によって、図4に示されるようなP偏光とS偏光との比率で反射されてもよい。
 このように、分離部ビームスプリッタ341の一方の面341aにおいて反射されたパルスレーザ光は、光ビーム計測装置300において、ビームプロファイル、ビームダイバージェンス、レーザビーム進行方向の安定性、偏光度等の計測のために用いてもよい。分離部ビームスプリッタ341の他方の面341bより出射されるパルスレーザ光は、ブリュースタ角(=56.34°)で出射されるため、P偏光の光の反射は抑制されてもよい。分離部ビームスプリッタ341の他方の面341bより出射されたパルスレーザ光は、分離部キャンセルウインド342の一方の面342aに、入射角がブリュースタ角(=56.34°)で入射し、他方の面342bより45°の出射角で出射してもよい。
  3.3 作用
 光ビーム分離部340では、分離部ビームスプリッタ341によりずれたパルスレーザ光の光軸を分離部キャンセルウインド342により補正し、光ビーム分離部340の有無により光軸のズレが生じることを抑制してもよい。分離部ビームスプリッタ341における他方の面341bと分離部キャンセルウインド342における一方の面342aは、ブリュースタ角(=56.34°)で、各々パルスレーザ光が出射及び入射するため、H方向の偏光成分の光の反射を抑制してもよい。
 分離部ビームスプリッタ341及び分離部キャンセルウインド342は部分反射させるための誘電体多層膜等が成膜されていない場合には、パルスレーザ光の反射がフレネル反射のみとなってもよい。これにより、部分反射させるための誘電体多層膜等が成膜されている場合と比べて、耐久性が高く、反射率の変化が抑制されてもよい。
 分離部ビームスプリッタ341及び分離部キャンセルウインド342におけるウエッジ加工は、例えば、複数枚をバッチ加工した後、所望の特性となるもの同士をペアリングしてもよい。分離部ビームスプリッタ341及び分離部キャンセルウインド342のウエッジ加工における加工誤差の調整等は、分離部キャンセルウインド342の位置等を調節することで行なってもよい。
  3.4 CaF結晶の結晶方位
 CaF結晶により形成されている分離部ビームスプリッタ341の一方の面341aは、<111>軸が略垂直となるように研磨されていてもよい。CaF結晶により形成されている分離部キャンセルウインド342の他方の面34bは、<111>軸が略垂直となるように研磨されていてもよい。
 図5A、図5B、図6A、及び図6Bに示されるように、分離部ビームスプリッタ341は、一方の面341aの法線<111>軸から見て、入射するパルスレーザ光の光路軸と<001>軸とのなす角度αが約60°となるように設置されていてもよい。即ち、入射するパルスレーザ光の光路が、<111>軸と<010>軸とを含む面と略平行となるように設置されていてもよい。
 分離部キャンセルウインド342は、他方の面342bの法線<111>軸から見て、出射するパルスレーザ光の光路軸と<001>軸とのなす角度αが約60°となるように設置されていてもよい。即ち、パルスレーザ光の光路が、<111>軸と<010>軸とを含む面と略平行となるように設置されていてもよい。
 尚、図5Aは、光ビーム分離部340において、HZ面に平行な面における平面図であり、図5Bは、光ビーム分離部340において、VZ面に平行な面における平面図である。また、図6Aは、分離部ビームスプリッタ341において、HZ面に平行な面における平面図であり、図6Bは、分離部ビームスプリッタ341における一方の面341aにおける平面図である。
 上記のように、分離部ビームスプリッタ341及び分離部キャンセルウインド342を設置することにより、パルスレーザ光を吸収して熱応力が発生しても出射されるパルスレーザ光の偏光の変化を抑制することができる。
 尚、POレーザ光計測部220におけるビームスプリッタ224をCaF結晶により形成した場合には、ビームスプリッタ224の一方の面及び他方の面は、<111>軸が略垂直となるように研磨されていてもよい。ビームスプリッタ224は、一方の面及び他方の面の法線<111>軸から見て、入射するパルスレーザ光の光路軸と<001>軸とのなす角度αが約60°となるように設置されていてもよい。言い換えるならば、パルスレーザ光の光路が、<111>軸と<010>軸とを含む面と平行となるように設置されていてもよい。
 4.第1の実施の形態(光ビーム計測装置)
  4.1 構成
 次に、図7A及び図7Bに基づき第1の実施の形態における光ビーム計測装置300について説明する。尚、図7Aは、光ビーム計測装置300において、HZ面に平行な面における平面図であり、図7Bは、光ビーム計測装置300において、HV面に平行な面における平面図である。図7A及び図7Bにおける座標軸は、露光装置に進行するパルスレーザ光の座標軸を示している。
 偏光計測器310は、第1の計測部ビームスプリッタ311、アパーチャ312、減光板313、ローションプリズム314、イメージセンサ315等を含んでいてもよい。
 ビームプロファイル計測器320は、第2の計測部ビームスプリッタ321、転写光学系322、イメージセンサ323等を含んでいてもよい。
 レーザビーム進行方向の安定性計測器330は、計測部キャンセルウインド331、第3の計測部ビームスプリッタ332、集光光学系333、イメージセンサ334等を含んでいてもよい。
 分離部ビームスプリッタ341の反射光の光路上に、第1の計測部ビームスプリッタ311を配置し、分離部ビームスプリッタ341の入射面と第1の計測部ビームスプリッタ311の入射面とは互いに直交していてもよい。また、第1の計測部ビームスプリッタ311におけるパルスレーザ光の入射角が45°となるように設置してもよい。
 偏光計測器310においては、第1の計測部ビームスプリッタ311の反射光の光路上に、アパーチャ312、減光板313、ローションプリズム314、イメージセンサ315の順となるように設置されていてもよい。
 第1の計測部ビームスプリッタ311の透過光の光路上に、第2の計測部ビームスプリッタ321を設置してもよい。ビームプロファイル計測器320においては、第2の計測部ビームスプリッタ321の反射光の光路上に、転写光学系322、イメージセンサ323の順となるように設置されていてもよい。第2の計測部ビームスプリッタ321はウエッジ基板であってもよい。
 第2の計測部ビームスプリッタ321の透過光の光路上には、ウエッジ基板により形成された計測部キャンセルウインド331を設置してもよい。また、計測部キャンセルウインド331の透過光の光路上には、第3の計測部ビームスプリッタ332を設置してもよい。レーザビーム進行方向の安定性計測器330においては、第3の計測部ビームスプリッタ332の反射光の光路上に、集光光学系333、イメージセンサ334を設置してもよい。
 分離部ビームスプリッタ341の入射面と第2の計測部ビームスプリッタ321の入射面とは互いに直交していてもよく、第2の計測部ビームスプリッタ321におけるパルスレーザ光の入射角が45°となるように設置してもよい。
 分離部ビームスプリッタ341の入射面と第3の計測部ビームスプリッタ332の入射面とは互いに直交していてもよく、第3の計測部ビームスプリッタ332におけるパルスレーザ光の入射角が45°となるように設置してもよい。
 第1の計測部ビームスプリッタ311、第2の計測部ビームスプリッタ321、計測部キャンセルウインド331、第3の計測部ビームスプリッタ332は、CaF結晶により形成されていてもよい。また、第1の計測部ビームスプリッタ311、第2の計測部ビームスプリッタ321、計測部キャンセルウインド331、第3の計測部ビームスプリッタ332には、パルスレーザ光を部分的に反射するための誘電体多層膜等が成膜されていなくともよい。
  4.2 動作
 偏光計測器310においては、第1の計測部ビームスプリッタ311において反射されたパルスレーザ光は、反射光の中央部がアパーチャ312の開口部を通過し、減光板313において光量調節された後、ローションプリズム314に入射してもよい。ローションプリズム314に入射したパルスレーザ光は、ローションプリズム314において、V方向の偏光成分とH方向の偏光成分に分離されてもよい。ローションプリズム314において、V方向の偏光成分とH方向の偏光成分に分離されたパルスレーザ光は、イメージセンサ315により検出されてもよい。
 ビームプロファイル計測器320においては、第2の計測部ビームスプリッタ321において反射されたパルスレーザ光は、転写光学系322を介し、イメージセンサ323に入射し、検出されてもよい。
 レーザビーム進行方向の安定性計測器330においては、第3の計測部ビームスプリッタ332において反射されたパルスレーザ光は、集光光学系333を介し、イメージセンサ334に入射し、検出されてもよい。
  4.3 作用
 分離部ビームスプリッタ341の入射面と第1の計測部ビームスプリッタ311の入射面とは直交しており、パルスレーザ光は同じ入射角45°で入射していてもよい。よって、P偏光とS偏光の反射率の関係から、分離部ビームスプリッタ341に入射するパルスレーザ光の偏光度と第1の計測部ビームスプリッタ311の反射光の偏光度とは同等となり、偏光が維持されてもよい。
 このようにして、偏光計測器310における偏光度の計測結果が、分離部ビームスプリッタ341に入射するパルスレーザ光の偏光度と一致するようにしてもよい。
 偏光計測器310は、上記の構造に限定されることなく、第1の計測部ビームスプリッタ311の反射光の光路上にローションプリズム314と、不図示の集光光学系と、イメージセンサ315を設置してもよい。イメージセンサ315は、CCD(Charge Coupled Device)等の撮像素子であって、不図示の集光光学系の焦点位置に設置されていてもよい。
  4.4 偏光計測
 次に、図8に基づき、光ビーム計測装置300における偏光計測器310において測定される偏光計測について説明する。図8は、偏光計測器310におけるイメージセンサ315において検出されるV方向の偏光成分とH方向の偏光成分に分離されたパルスレーザ光の様子を示すものである。図8に示すように、イメージセンサ315においては、V方向の偏光成分のピーク強度PvとH方向の偏光成分のピーク強度Phを検出することができる。これらに基づき、偏光度Pは、下記の(1)に示す式より算出することができる。
 
  P=(Ph-Pv)/(Ph+Pv)・・・(1)
 
 尚、ピーク強度Pv及びPhから算出する方法以外にも、V方向の偏光成分における光強度を積分した値及びH方向の偏光成分における光強度を積分した値をPh及びPvに置き換えて、偏光度Pを算出してもよい。
  4.5 ビームプロファイル計測
 次に、図9に基づき、光ビーム計測装置300におけるビームプロファイル計測器320において測定されるビームプロファイル計測について説明する。図9は、ビームプロファイル計測器320におけるイメージセンサ323において検出されたパルスレーザ光のビームプロファイルを示す。パルスレーザ光のピーク強度に対し、V方向において光強度が1/eとなる双方の端の座標をV1、V2とした場合、光ビームにおけるV方向の中心座標Bcvは、下記の(2)に示す式より算出することができる。
 
  Bcv=(V1+V2)/2・・・・・(2)
 
 また、パルスレーザ光のピーク強度に対し、H方向において光強度が1/eとなる双方の端の座標をH1、H2とした場合、光ビームにおけるH方向の中心座標Bchは、下記の(3)に示す式より算出することができる。
 
  Bch=(H1+H2)/2・・・・・(3)
 
 尚、ビームプロファイルの中心位置(Bch、Bcv)は、ビームプロファイル計測器320におけるイメージセンサ323において検出された画像データに基づいて、重心の位置を算出することにより得られるものであってもよい。また、H方向及びV方向におけるビーム幅(Bwh、Bwv)は、ピーク値に対して光強度が一定の割合(例えば、5%~10%)以上となる領域の幅として算出してもよい。
  4.6 レーザビーム進行方向の安定性計測
 次に、図10に基づき、光ビーム計測装置300におけるレーザビーム進行方向の安定性計測器330において測定されるレーザビーム進行方向の安定性計測について説明する。図10は、レーザビーム進行方向の安定性計測器330におけるイメージセンサ334において検出されたパルスレーザ光のレーザビーム進行方向の安定性計測画像である。
 H方向及びV方向におけるレーザビーム進行方向の安定性(Bph、Bpv)は、レーザビーム進行方向の安定性計測器330におけるイメージセンサ334において検出された画像データに基づいて、重心の位置を算出することにより求めてもよい。また、H方向及びV方向におけるビームダイバージェンス(Bdh、Bdv)は、ピーク値に対して光強度が一定の割合(例えば、1/e、または、5%~10%)以上となる領域の幅として算出してもよい。
 5.第2の実施の形態(光ビーム計測装置)
 次に、図11、図12A及び図12Bに基づき第2の実施の形態における光ビーム計測装置について説明する。尚、図11は第2の実施の形態における光ビーム計測装置の概要図であり、一部の構成要素が省略されている。また、図12Aは、本実施の形態における光ビーム計測装置において、HZ面に平行な面における平面図であり、図12Bは、本実施の形態における光ビーム計測装置において、HV面に平行な面における平面図である。また、図11、図12A及び図12Bにおける座標軸は、露光装置に進行するパルスレーザ光の座標軸を示している。尚、本実施の形態における光ビーム計測装置は、図1等に記載されている第1の実施の形態における光ビーム計測装置300と置き換えて用いることができる。
 本実施の形態における光ビーム計測装置は、第1の偏光計測器610、ビームプロファイル計測器620、レーザビーム進行方向の安定性計測器630、第2の偏光計測器640、光ビーム分離部340、制御部350、ビーム計測制御部360等を含んでいてもよい。
 第1の偏光計測器610は、光ビーム分離部340における分離部ビームスプリッタ341の反射光の光路上に設置されていてもよい。第1の偏光計測器610は、第1の計測部ビームスプリッタ311、第1のエネルギセンサ612等を含んでいてもよい。第1の計測部ビームスプリッタ311において反射された光の全部は、第1のエネルギセンサ612に入射してもよい。
 ビームプロファイル計測器620は、第1の計測部ビームスプリッタ311の透過光の光路上に設置されていてもよい。ビームプロファイル計測器620は、キャンセルウインド624、第2の計測部ビームスプリッタ321、転写光学系322、イメージセンサ323、蛍光板625、転写光学系626等を含んでいてもよい。第1の計測部ビームスプリッタ311を透過したパルスレーザ光は、キャンセルウインド624を透過し、第2の計測部ビームスプリッタ321において反射されてもよい。第2の計測部ビームスプリッタ321において反射された光は、転写光学系322、蛍光板625及び転写光学系626を介し、イメージセンサ323に入射してもよい。
 レーザビーム進行方向の安定性計測器630は、第2の計測部ビームスプリッタ321の透過光の光路上に設置されていてもよい。レーザビーム進行方向の安定性計測器630は、第3の計測部ビームスプリッタ332、集光光学系333、イメージセンサ334、減光板635、蛍光板636、転写光学系637、キャンセルウインド638等を含んでいてもよい。第2の計測部ビームスプリッタ321を透過したパルスレーザ光は、第3の計測部ビームスプリッタ332において反射されてもよい。第3の計測部ビームスプリッタ332において反射された光は、集光光学系333、減光板635、蛍光板636、転写光学系637を介し、イメージセンサ334に入射してもよい。第3の計測部ビームスプリッタ332を透過したパルスレーザ光は、キャンセルウインド638に入射してもよい。
 第2の偏光計測器640は、第3の計測部ビームスプリッタ332の透過光の光路上に設置されていてもよい。第2の偏光計測器640は、ミラー641、第2のエネルギセンサ642、偏光子643等を含んでいてもよい。偏光子643は、H方向の偏光成分を反射し、V方向の偏光成分を高透過するものであってもよい。
 分離部ビームスプリッタ341と偏光子643とは、パルスレーザ光の入射面が略一致するように設置してもよい。偏光子643は、パルスレーザ光の入射角θがブリュースタ角となるように設置してもよい。ミラー641は、合成石英基板等であって、パルスレーザ光を高反射する高反射膜が成膜されていてもよい。ミラー641において反射されたパルスレーザ光の全部は、第2のエネルギセンサ642に入射してもよい。
 第1のエネルギセンサ612及び第2のエネルギセンサ642は、パルスレーザ光を拡散するスリガラスとフォトダイオード等を含んでいてもよい。スリガラスで拡散した光はフォトダイオードにより検出されてもよい。また、第1のエネルギセンサ612及び第2のエネルギセンサ642は、焦電素子を含むエネルギセンサであってもよい。
 第1の偏光計測器610においては、第1のエネルギセンサ612により、パルスレーザ光のH方向の偏光成分とV方向の偏光成分を合わせた全体のパルスエネルギの強度を計測してもよい。
 第2の偏光計測器640においては、第2のエネルギセンサ642により、パルスレーザ光のH方向の偏光成分のパルスエネルギの強度に比例した値を計測してもよい。
 第1のエネルギセンサ612において検出されたパルスエネルギの強度と、第2のエネルギセンサ642において検出されたパルスエネルギの強度は、ビーム計測制御部360に送信されてもよい。
 6.光ビーム計測装置における計測方法
  6.1 第1の実施の形態における光ビーム計測装置による光ビームの計測方法
 次に、図13に基づき第1の実施の形態における光ビーム計測装置による光ビームの計測方法について説明する。
 最初に、ステップ102(S102)において、バースト番号Sを0に設定してもよい。バースト番号Sとは、パルスレーザ光を照射する際に、時間軸において連続するパルスレーザ光のかたまりの順番を意味するものであり、1より始まる番号である。ここでは、バースト開始前として初期値0に設定してもよい。
 次に、ステップS104において、シャッタ信号がオフからオンに変化したか否かを判断してもよい。シャッタ信号がオフからオンに変化した場合には、ステップ106に移行してもよい。シャッタ信号がオフからオンに変化していない場合には、ステップ104を繰り返してもよい。
 次に、ステップ106(S106)において、バースト開始時刻を読み込んでもよい。
 次に、ステップ108(S108)において、シャッタ信号がオンからオフに変化したか否かを判断してもよい。シャッタ信号がオンからオフに変化した場合には、ステップ110に移行してもよい。シャッタ信号がオンからオフに変化していない場合には、ステップ108を繰り返してもよい。
 次に、ステップ110(S110)において、偏光計測器310におけるイメージセンサ315、ビームプロファイル計測器320におけるイメージセンサ323、レーザビーム進行方向の安定性計測器330におけるイメージセンサ334より画像データを取得してもよい。
 次に、ステップ112(S112)において、イメージセンサ315、イメージセンサ323、イメージセンサ334において取得された画像データをビーム計測制御部360等における不図示の記憶部に記憶してもよい。この際、ステップ106により読み込まれたバースト開始時刻等も併せて記憶してもよい。
 次に、ステップ114(S114)において、現在のバースト番号Sに1を加えることにより新たなバースト番号Sを設定してもよい。
 次に、ステップ116(S116)において、ビームプロファイルパラメータを算出してもよい。具体的には、後述するビームプロファイルパラメータを算出するサブルーチンを行ってもよい。
 次に、ステップ118(S118)において、レーザビーム進行方向の安定性パラメータを算出してもよい。具体的には、後述するレーザビーム進行方向の安定性パラメータを算出するサブルーチンを行ってもよい。
 次に、ステップ120(S120)において、偏光パラメータを算出してもよい。具体的には、後述する偏光パラメータを算出するサブルーチンを行ってもよい。
 次に、ステップ122(S122)において、各種データ、即ち、バースト開始時刻、バースト番号S、算出されたビームプロファイルパラメータ、レーザビーム進行方向の安定性パラメータ、偏光パラメータ等をレーザ制御部420に送信してもよい。
 次に、ステップ124(S124)において、光ビームの計測を中止するか否かの判断をしてもよい。光ビームの計測を中止しない場合には、ステップ104に移行してもよい。光ビームの計測を中止する場合には、終了してもよい。
 以上により、第1の実施の形態における光ビーム計測装置による光ビームの計測を行うことができる。
 次に、図14に基づき、図13のステップ116におけるビームプロファイルパラメータを算出するサブルーチンについて説明する。
 最初に、ステップ212(S212)において、ビーム計測制御部360等における不図示の記憶部に記憶されているビームプロファイル計測器320のイメージセンサ323において検出された画像データを不図示の演算部に読み込んでもよい。
 次に、ステップ214(S214)において、ビーム計測制御部360等の不図示の演算部により、ビームプロファイルパラメータを算出してもよい。具体的には、ビームプロファイル計測器320におけるイメージセンサ323において検出された画像データより、H方向のビーム幅Bwh、V方向のビーム幅Bwv、H方向の中心の位置Bch、V方向の中心の位置Bcvを算出してもよい。この後、図13におけるメインルーチンに戻ってもよい。
 次に、図15に基づき、図13のステップ118におけるレーザビーム進行方向の安定性パラメータを算出するサブルーチンについて説明する。
 最初に、ステップ222(S222)において、ビーム計測制御部360等における不図示の記憶部に記憶されているレーザビーム進行方向の安定性計測器330におけるイメージセンサ334において検出された画像データを不図示の演算部に読み込んでもよい。
 次に、ステップ224(S224)において、ビーム計測制御部360等の不図示の演算部により、レーザビーム進行方向の安定性パラメータを算出するための光ビームの幅及び位置を算出してもよい。具体的には、レーザビーム進行方向の安定性計測器330におけるイメージセンサ334において検出された画像データより、H方向の幅Wh、V方向の幅Wv、H方向の位置Pph、V方向の中心の位置Ppvを算出してもよい。
 次に、ステップ226(S226)において、ビーム計測制御部360等の不図示の演算部により、レーザビーム進行方向の安定性パラメータを算出してもよい。具体的には、ステップ224において算出した幅Wh及び幅Wvに基づき、H方向のビームダイバージェンスBdh=f・Wh、V方向のビームダイバージェンスBdv=f・Wvを算出してもよい。また、位置Pph及び位置Ppvに基づき、H方向のレーザビーム進行方向の安定性Bph=f・Pph、V方向のレーザビーム進行方向の安定性Bpv=f・Ppvを算出してもよい。尚、fは焦点距離である。この後、図13に記載のメインルーチンに戻ってもよい。
 次に、図16に基づき、図13のステップ120における偏光パラメータを算出するサブルーチンについて説明する。
 最初に、ステップ232(S232)において、ビーム計測制御部360等における不図示の記憶部に記憶されている偏光計測器310におけるイメージセンサ315において検出された画像データを不図示の演算部に読み込んでもよい。
 次に、ステップ234(S234)において、ビーム計測制御部360等の不図示の演算部により、偏光度を算出するためのS偏光成分のピーク強度Pv及びP偏光成分のピーク強度Phを算出してもよい。具体的には、偏光計測器310におけるイメージセンサ315において検出された画像データより、S偏光成分のピーク強度Pv及びP偏光成分のピーク強度Phを算出してもよい。
 次に、ステップ236(S236)において、ビーム計測制御部360等の不図示の演算部により、偏光度Pを算出してもよい。具体的には、ステップ234において算出したS偏光成分のピーク強度Pv及びP偏光成分のピーク強度Phより、上述した(1)に示す式より、偏光度Pを算出してもよい。この後、図13に記載のメインルーチンに戻ってもよい。
  6.2 第2の実施の形態における光ビーム計測装置による光ビームの計測方法
 次に、図17に基づき第2の実施の形態における光ビーム計測装置による光ビームの計測方法について説明する。
 最初に、ステップ302(S302)において、バースト番号Sを0に設定してもよい。バースト番号Sとは、パルスレーザ光を照射する際の時間軸におけるパルスレーザ光のかたまりを意味するものであり、1より始まる番号である。ここでは、バースト開始前として初期値0に設定してもよい。
 次に、ステップ304(S304)において、光強度積算値Pbsum及びPesumを0に設定してもよい。尚、光強度積算値Pbsumは、第1のエネルギセンサ612において検出された光強度Pbの積算値であり、光強度積算値Pesumは、第2のエネルギセンサ642において検出された光強度Peの積算値である。
 次に、ステップ306(S306)において、シャッタ信号がオフからオンに変化したか否かを判断してもよい。シャッタ信号がオフからオンに変化した場合には、ステップ308に移行してもよい。シャッタ信号がオフからオンに変化していない場合には、ステップ306を繰り返してもよい。
 次に、ステップ308(S308)において、バースト開始時刻を読み込んでもよい。
 次に、ステップ310(S310)において、発光トリガが入力されたか否かを判断してもよい。発光トリガが入力されたと判断された場合には、ステップ312に移行してもよい。発光トリガが入力されていないと判断された場合には、ステップ310を繰り返してもよい。
 次に、ステップ312(S312)において、ビーム計測制御部360に、第1のエネルギセンサ612において検出されたパルスエネルギの強度Pbと、第2のエネルギセンサ642において検出されたパルスエネルギの強度Peとを読み込んでもよい。
 次に、ステップ314(S314)において、ビーム計測制御部360の不図示の演算部において、現在の光強度積算値Pbsumにステップ312において読み込んだパルスエネルギの強度Pbを加え、新たな光強度積算値Pbsumとしてもよい。同様に、現在の光強度積算値Pesumにステップ312において読み込んだパルスエネルギの強度Peを加え、新たな光強度積算値Pesumとしてもよい。
 次に、ステップ316(S316)において、シャッタ信号がオンからオフに変化したか否かを判断してもよい。シャッタ信号がオンからオフに変化した場合には、ステップ318に移行してもよい。シャッタ信号がオンからオフに変化していない場合には、ステップ310に移行してもよい。
 次に、ステップ318(S318)において、ビームプロファイル計測器620におけるイメージセンサ323、レーザビーム進行方向の安定性計測器630におけるイメージセンサ334より画像データを取得してもよい。
 次に、ステップ320(S320)において、光強度積算値Pbsum及びPesum、イメージセンサ323、イメージセンサ334において取得された画像データをビーム計測制御部360等における不図示の記憶部に記憶してもよい。この際、ステップ308により読み込まれたバースト開始時刻等も併せて記憶してもよい。
 次に、ステップ322(S322)において、現在のバースト番号Sに1を加えることにより、新たなバースト番号Sを設定してもよい。
 次に、ステップ324(S324)において、ビームプロファイルパラメータを算出してもよい。具体的には、図14に示されるビームプロファイルパラメータを算出するサブルーチンを行ってもよい。
 次に、ステップ326(S326)において、レーザビーム進行方向の安定性パラメータを算出してもよい。具体的には、図15に示されるレーザビーム進行方向の安定性パラメータを算出するサブルーチンを行ってもよい。
 次に、ステップ328(S328)において、偏光度Pを算出してもよい。具体的には、後述する偏光度Pを算出するサブルーチンを行ってもよい。
 次に、ステップ330(S330)において、各種データ、即ち、バースト開始時刻、バースト番号S、算出されたビームプロファイルパラメータ、レーザビーム進行方向の安定性パラメータ、偏光パラメータ等をレーザ制御部420に送信してもよい。
 次に、ステップ332(S332)において、光ビームの計測を中止するか否かを判断してもよい。光ビームの計測を中止しない場合には、ステップ304に移行してもよい。光ビームの計測を中止する場合には、終了してもよい。
 以上により、第2の実施の形態における光ビーム計測装置による光ビームの計測方法を行うことができる。
 次に、図18に基づき、図17のステップ328における偏光度を算出するサブルーチンについて説明する。
 最初に、ステップ402(S402)において、不図示の記憶部に記憶されている第1のエネルギセンサ612における光強度積算値Pbsum及び第2のエネルギセンサ642における光強度積算値Pesumを不図示の演算部に読み込んでもよい。不図示の記憶部及び不図示の演算部は、ビーム計測制御部360等に設けられていてもよい。
 次に、ステップ404(S404)において、ビーム計測制御部360等の不図示の演算部により、偏光度Pを算出するためのXの値を光強度積算値Pbsum及び光強度積算値Pesumより算出してもよい。具体的には、Xの値は、X=Pbsum/Pesumより算出してもよい。
 次に、ステップ406(S406)において、ビーム計測制御部360等の不図示の演算部により、ステップ404において算出されたXの値に基づき偏光度Pを算出してもよい。具体的には、P=(1-2K・X)に基づき算出してもよい。尚、Kは係数であり、図19に示されるように、Xの値と偏光度Pとの関係を測定することにより、予め算出しておいてもよい。この後、図17に記載のメインルーチンに戻ってもよい。
 7.第3の実施の形態(レーザ装置)
 次に、図20に基づき第3の実施の形態におけるレーザ装置について説明する。本実施の形態は、第2の実施の形態において、第1の偏光計測器を光ビーム計測装置の外の光ビーム分離部340の前段に設けた構造のものである。尚、図20における座標軸は、露光装置に進行するパルスレーザ光の座標軸を示している。
 具体的には、本実施の形態においては、光ビーム計測装置には、ビームプロファイル計測器620、レーザビーム進行方向の安定性計測器630、第2の偏光計測器640等を含んでいてもよい。また、第1の偏光計測器650は、パルスレーザ光の光路上において、光ビーム計測装置における光ビーム分離部340の前段に設けてもよい。
 第1の偏光計測器650は、ビームスプリッタ651、ミラー652、第1のエネルギセンサ612を含んでいてもよい。ビームスプリッタ651に入射したパルスレーザ光のうち、ビームスプリッタ651において反射されたパルスレーザ光は、ミラー652において反射され、第1のエネルギセンサ612に入射してもよい。第1のエネルギセンサ612では、入射したパルスエネルギが計測され、計測されたパルスエネルギの値は、エネルギ制御部660に送信され、更に、レーザ制御部420を介し、ビーム計測制御部360に送信されてもよい。また、ビームスプリッタ651を透過したパルスレーザ光は、光ビーム分離部340における分離部ビームスプリッタ341において反射されてもよい。分離部ビームスプリッタ341において反射されたパルスレーザ光により、ビームプロファイル計測器620、レーザビーム進行方向の安定性計測器630、第2の偏光計測器640において、パルスレーザ光の計測が行われてもよい。
 8. 制御部
 次に、図21に基づき本開示のレーザ装置におけるレーザ制御部420等の各制御部について説明する。
 レーザ制御部420等の各制御部は、コンピュータやプログラマブルコントローラ等汎用の制御機器によって構成されてもよい。例えば、以下のように構成されてもよい。
 制御部は、処理部700、処理部700に接続されるストレージメモリ705、ユーザインターフェイス710、パラレルI/Oコントローラ720、シリアルI/Oコントローラ730、A/D、D/Aコンバータ740を含んでいてもよい。処理部700は、CPU701、CPU701に接続されたメモリ702、タイマ703、GPU704を含んでいてもよい。
 処理部700は、ストレージメモリ705に記憶されたプログラムを読み出してもよい。また、処理部700は、読み出したプログラムを実行したり、プログラムの実行に従ってストレージメモリ705からデータを読み出したり、ストレージメモリ705にデータを記憶させたりしてもよい。
 パラレルI/Oコントローラ720は、パラレルI/Oポートを介して通信可能な機器に接続されてもよい。パラレルI/Oコントローラ720は、処理部700がプログラムを実行する過程で行うパラレルI/Oポートを介した、デジタル信号による通信を制御してもよい。
 シリアルI/Oコントローラ730は、シリアルI/Oポートを介して通信可能な機器に接続されてもよい。シリアルI/Oコントローラ730は、処理部700がプログラムを実行する過程で行うシリアルI/Oポートを介した、デジタル信号による通信を制御してもよい。
 A/D、D/Aコンバータ740は、アナログポートを介して通信可能な機器に接続されてもよい。A/D、D/Aコンバータ740は、処理部700がプログラムを実行する過程で行うアナログポートを介した、アナログ信号による通信を制御してもよい。
 ユーザインターフェイス710は、オペレータが処理部700によるプログラムの実行過程を表示したり、オペレータによるプログラム実行の中止や割り込み処理を処理部700に行わせるよう構成されてもよい。
 処理部700のCPU701はプログラムの演算処理を行ってもよい。メモリ702は、CPU701がプログラムを実行する過程で、プログラムの一時記憶や、演算過程でのデータの一時記憶を行ってもよい。タイマ703は、時刻や経過時間を計測し、プログラムの実行に従ってCPU701に時刻や経過時間を出力してもよい。GPU704は、処理部700に画像データが入力された際、プログラムの実行に従って画像データを処理し、その結果をCPU701に出力してもよい。
 パラレルI/Oコントローラ720に接続されるパラレルI/Oポートを介して通信可能な機器は、各種装置や、他の制御部等であってもよい。
 シリアルI/Oコントローラ730に接続されるシリアルI/Oポートを介して通信可能な機器は、各種装置や、他の制御部等であってもよい。
 A/D、D/Aコンバータ740接続される、アナログポートを介して通信可能な機器は、各種センサであってもよい。
 9.光ビーム分離部の具体的な構成
 図22は、光ビーム分離部の構成を例示する図である。図22に例示される光ビーム分離部340は、分離部ビームスプリッタ341、分離部キャンセルウインド342、第一のホルダ801、第二のホルダ802、及びハウジング803を含んでもよい。分離部ビームスプリッタ341及び分離部キャンセルウインド342の各々は、コート無しのウエッジ基板であってもよい。分離部ビームスプリッタ341及び分離部キャンセルウインド342の各々は、例えば、CaFの結晶(線膨張係数:約1.84×10-7)で作られてもよい。分離部ビームスプリッタ341及び分離部キャンセルウインド342は、同一の寸法を有してもよい。分離部ビームスプリッタ341は、第一のホルダ801内に保持されてもよい。分離部キャンセルウインド342は、第二のホルダ802内に保持されてもよい。第一のホルダ801及び第二のホルダ802は、ハウジング803内に設けられてもよい。
 PO200側からのレーザ光は、分離部ビームスプリッタ341に入射してもよい。分離部ビームスプリッタ341に入射して分離部ビームスプリッタ341によって反射されるレーザ光は、計測器へ入射してもよい。計測器は、偏光計測器310、ビームプロファイル計測器320、又はレーザビーム進行方向の安定性計測器330のような計測器であってもよい。分離部ビームスプリッタ341に入射して分離部ビームスプリッタ341を透過するレーザ光は、分離部ビームスプリッタ341によって屈折されて分離部キャンセルウインド342に入射してもよい。分離部キャンセルウインド342に入射するレーザ光は、分離部キャンセルウインド342によって反対側に屈折されて分離部キャンセルウインド342を透過してもよい。分離部キャンセルウインド342を透過したレーザ光は、露光装置500側に向かって出力されてもよい。分離部ビームスプリッタ341及び分離部キャンセルウインド342は、露光装置500側に向かって出力されるレーザ光の軸が、分離部ビームスプリッタ341に入射するレーザ光の軸と一致するように、設けられてもよい。
 図23は、光ビーム分離部に使用されるホルダを例示する分解斜視図である。図24は、光ビーム分離部に使用されるホルダを例示する三面図である。図25は、光ビーム分離部に使用されるホルダを例示する部分図である。
 図23、図24、及び図25に例示されるように、第一のホルダ801及び第二のホルダ802は、それぞれ、分離部ビームスプリッタ341及び分離部キャンセルウインド342を保持してもよい。
 第一のホルダ801又は第二のホルダ802は、スーパーインバー(super invar)で作られてもよい。スーパーインバーは、超不変鉄、超不変鋼、又はスーパーアンバーと呼ばれてもよい。スーパーインバーは、鉄、ニッケル、及びコバルトで構成された合金であってもよい。例えば、スーパーインバーは、63.5%の鉄、31.5%のニッケル、及び5%のコバルトで構成された三元合金であってもよい。スーパーインバーの線膨張係数は、約4×10-7であってもよい。第一のホルダ801又は第二のホルダ802が、スーパーインバーで作られる場合には、第一のホルダ801又は第二のホルダ802の熱変形が低減され得る。それによって、分離部ビームスプリッタ341に入射するレーザ光の軸に対する露光装置500側に向かって出力されるレーザ光の軸のずれが低減され得る。
 分離部ビームスプリッタ341を保持するための第一のホルダ801には、フランジ804、分離部ビームスプリッタ341、スペーサ805、円環板ばね807、及び押さえリング809が設けられてもよい。分離部キャンセルウインド342を保持するための第二のホルダ802には、フランジ804、分離部キャンセルウインド342、スペーサ805、円環板ばね807、及び押さえリング809が設けられてもよい。
 フランジ804は、第一のホルダ801又は第二のホルダ802に装着されると共に固定されてもよい。フランジ804は、スーパーインバーで作られてもよい。フランジ804が、スーパーインバーで作られる場合には、フランジ804の熱変形が改善され得る。それによって、分離部ビームスプリッタ341に入射するレーザ光の軸に対する露光装置500側に向かって出力されるレーザ光の軸のずれが低減され得る。分離部ビームスプリッタ341又は分離部キャンセルウインド342は、フランジ804に装着されてもよい。
 スペーサ805は、フランジ804に対して分離部ビームスプリッタ341又は分離部キャンセルウインド342を押圧するように設けられてもよい。スペーサ805は、三個の突起部806を有してもよい。スペーサ805は、三個の突起部806によって分離部ビームスプリッタ341又は分離部キャンセルウインド342を押圧するように、構成されてもよい。スペーサ805は、スーパーインバーで作られてもよい。スペーサ805が、スーパーインバーで作られる場合には、スペーサ805の熱変形が改善され得る。それによって、分離部ビームスプリッタ341に入射するレーザ光の軸に対する露光装置500側に向かって出力されるレーザ光の軸のずれが低減され得る。
 円環板ばね807は、フランジ804及び分離部ビームスプリッタ341又は分離部キャンセルウインド342に対してスペーサ805を押圧するように設けられてもよい。円環板ばね807は、三個のくさび部分808を有してもよい。円環板ばね807は、三個のくさび部分808によってスペーサ805、分離部ビームスプリッタ341又は分離部キャンセルウインド342を押圧するように、構成されてもよい。円環板ばね807は、円環板ばね807の三個のくさび部分808の位置が、スペーサ805の三個の突起部806の位置と対応するように、配置されてもよい。円環板ばね807は、ステンレス鋼(SUS:Steel Use Stainless)で作られてもよい。SUSとしては、例えば、SUS304(線膨張係数:1.73×10-5)であってもよい。円環板ばね807を使用する場合には、振動による分離部ビームスプリッタ341又は分離部キャンセルウインド342の位置ずれが低減さ得る。それによって、分離部ビームスプリッタ341に入射するレーザ光の軸に対する露光装置500側に向かって出力されるレーザ光の軸のずれが低減され得る。
 押さえリング809は、フランジ804、分離部ビームスプリッタ341又は分離部キャンセルウインド342、及びスペーサ805に対して円環板ばね807を押圧するように設けられてもよい。押さえリング809は、ステンレス鋼(SUS:Steel Use Stainless)で作られてもよい。SUSとしては、例えば、SUS304(線膨張係数:1.73×10-5)であってもよい。
 ボルト810は、スーパーインバーで作られてもよい。ボルト810が、スーパーインバーで作られる場合には、ボルト810の熱変形が改善され得る。それによって、分離部ビームスプリッタ341に入射するレーザ光の軸に対する露光装置500側に向かって出力されるレーザ光の軸のずれが低減され得る。
 フランジ804にはボルト810を受容する孔が設けられてもよい。円環板ばね807及び押さえリング809にはボルト810を挿入するための孔が設けられてもよい。押さえリング809及び円環板ばね807を通じてボルト810をフランジ804に挿入してもよい。それによって、フランジ804及び押さえリング809の間に分離部ビームスプリッタ341又は分離部キャンセルウインド342、スペーサ805、及び円環板ばね807を固定してもよい。
 フランジ804には、一個又は複数のOリング811が設けられてもよい。一個又は複数のOリング811は、ゴムで作られてもよい。フランジ804に一個又は複数のOリング811が設けられる場合には、フランジ804の内部における分離部ビームスプリッタ341又は分離部キャンセルウインド342の回転が低減され得る。それによって、分離部ビームスプリッタ341に入射するレーザ光の軸に対する露光装置500側に向かって出力されるレーザ光の軸のずれが低減され得る。
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
 本出願は、2013年6月27日に出願された日本国特許出願第2013-134707号に基づく優先権の利益を主張するものであり、その全体の内容は、ここに援用される。
100   MO
110   MOレーザチャンバ
110a  ウインド
110b  ウインド
111a  電極(第1の電極)
111b  電極(第2の電極)
112   MO充電器
113   MO-PPM
113a  スイッチ
114   狭帯域化モジュール
114a  プリズム
114b  プリズム
114c  グレーティング
114d  回転ステージ
115   出力結合ミラー
117   MOエネルギ計測器
120   波長調整部
200   PO
210   POレーザチャンバ
210a  ウインド
210b  ウインド
211a  電極(第1の電極)
211b  電極(第2の電極)
212   PO充電器
213   PO-PPM
213a  スイッチ
215   分反射ミラー
216   出力結合ミラー
220   POレーザ光計測部
221   POエネルギ計測器
222   スペクトル計測器
223   ビームスプリッタ
224   ビームスプリッタ
300   光ビーム計測装置
310   偏光計測器
311   第1の計測部ビームスプリッタ
312   アパーチャ
313   減光板
314   ローションプリズム
315   イメージセンサ
320   ビームプロファイル計測器
321   第2の計測部ビームスプリッタ
322   転写光学系
323   イメージセンサ
330   レーザビーム進行方向の安定性計測器
331   計測部キャンセルウインド
332   第3の計測部ビームスプリッタ
333   集光光学系
334   イメージセンサ
340   光ビーム分離部
341   分離部ビームスプリッタ
342   分離部キャンセルウインド
350   制御部
360   ビーム計測制御部
420   レーザ制御部
421   エネルギ制御部
422   波長制御部
430   データ収集処理システム
440   FDCシステム
500   露光装置
510   露光装置制御部
801   第一のホルダ
802   第二のホルダ
803   ハウジング
804   フランジ
805   スペーサ
806   突起部
807   円環板ばね
808   くさび部分
809   押さえリング
810   ボルト
811   Oリング

Claims (14)

  1.  レーザ光の光路上に設置された第1の計測部ビームスプリッタを含み、前記第1の計測部ビームスプリッタにおいて一部反射されたレーザ光の偏光状態を計測する偏光計測器と、
     前記レーザ光の光路上に設置された第2の計測部ビームスプリッタを含み、前記第2の計測部ビームスプリッタにおいて一部反射されたレーザ光のビームプロファイルを計測するビームプロファイル計測器と、
     レーザ光のレーザビーム進行方向の安定性を計測するレーザビーム進行方向の安定性計測器と、
     を備え、
     前記第1の計測部ビームスプリッタ及び前記第2の計測部ビームスプリッタは、CaFを含む材料により形成されている光ビーム計測装置。
  2.  前記第1の計測部ビームスプリッタを透過したレーザ光が、前記第2の計測部ビームスプリッタに入射するように構成された請求項1に記載の光ビーム計測装置。
  3.  前記レーザビーム進行方向の安定性計測器は、前記レーザ光の光路上に設置された第3の計測部ビームスプリッタを含んでおり、前記第3の計測部ビームスプリッタにおいて一部反射されたレーザ光のレーザビーム進行方向の安定性を計測するように構成され、
     前記第3の計測部ビームスプリッタは、CaFを含む材料により形成されている請求項1に記載の光ビーム計測装置。
  4.  前記第1の計測部ビームスプリッタを透過したレーザ光が、前記第2の計測部ビームスプリッタに入射し、
     前記第2の計測部ビームスプリッタを透過したレーザ光が、前記第3の計測部ビームスプリッタに入射するように構成された請求項3に記載の光ビーム計測装置。
  5.  レーザ光の一部を反射して前記第1の計測部ビームスプリッタに入射させるように構成された、レーザ光を分離する光ビーム分離部を備え、
     前記光ビーム分離部は、CaFを含む材料により形成されている請求項1に記載の光ビーム計測装置。
  6.  前記偏光計測器は第1の偏光計測器と第2の偏光計測器を含み、
     前記第1の偏光計測器及び前記第2の偏光計測器のうちの一方または双方は、レーザ光の偏光成分を検出するように構成された請求項1に記載の光ビーム計測装置。
  7.  前記偏光計測器は、前記レーザ光の偏光成分を検出するように構成された請求項1に記載の光ビーム計測装置。
  8.  レーザ光の偏光状態を計測する偏光計測器と、
     レーザ光のビームプロファイルを計測するビームプロファイル計測器と、
     レーザ光のレーザビーム進行方向の安定性を計測するレーザビーム進行方向の安定性計測器と、
     CaFを含む材料により形成され、前記レーザ光の光路上に設置された複数の計測部ビームスプリッタと、
     を備え、
     前記偏光計測器、前記ビームプロファイル計測器及び前記レーザビーム進行方向の安定性計測器の各々は、複数の前記計測部ビームスプリッタにより各々分岐されたレーザ光を計測する光ビーム計測装置。
  9.  レーザ光を出射するレーザチャンバと、
     出射されたレーザ光を計測する請求項1に記載の光ビーム計測装置と、
     を含むレーザ装置。
  10.  ウエッジ基板により形成され、レーザ光の光路上に設置された第1の分離基板と、
     ウエッジ基板により形成され、前記レーザ光の光路上に設置された第2の分離基板と、
     を備え、
     前記第1の分離基板は、一方の面より入射したレーザ光が前記一方の面において一部反射されることにより、前記レーザ光の一部が分離されるように構成され、
     前記第2の分離基板は、前記第1の分離基板の一方の面に入射したレーザ光のうち、前記第1の分離基板を透過したレーザ光が前記第1の分離基板の他方の面より出射して、前記第2の分離基板の一方の面に入射し、前記第2の分離基板の他方の面より出射するように構成され、
     前記第1の分離基板の一方の面と前記第2の分離基板の他方の面とは略平行であり、
     前記第1の分離基板の他方の面と前記第2の分離基板の一方の面とは略平行であり、
     前記レーザ光の光路における前記第1の分離基板の厚さと前記第2の分離基板の厚さは略等しい光ビーム分離装置。
  11.  前記第1の分離基板に入射するレーザ光の光軸と、前記第2の分離基板より出射されるレーザ光の光軸とは、略一致している請求項10に記載の光ビーム分離装置。
  12.  前記第1の分離基板及び前記第2の分離基板は、CaFを含む材料により形成されている請求項10に記載の光ビーム分離装置。
  13.  請求項10に記載の光ビーム分離装置と、
     前記第1の分離基板の一方の面において一部反射されたレーザ光の偏光状態を計測する偏光計測器と、
     前記第1の分離基板の一方の面において一部反射されたレーザ光のビームプロファイルを計測するビームプロファイル計測器と、
     前記第1の分離基板の一方の面において一部反射されたレーザ光のレーザビーム進行方向の安定性を計測するレーザビーム進行方向の安定性計測器と、
     を含む光ビーム計測装置。
  14.  レーザ光を出射するレーザチャンバと、
     出射されたレーザ光を計測する請求項13に記載の光ビーム計測装置と、
     を含むレーザ装置。
PCT/JP2014/051295 2013-06-27 2014-01-22 光ビーム計測装置、レーザ装置及び光ビーム分離装置 WO2014208111A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/067270 WO2014208754A1 (ja) 2013-06-27 2014-06-27 光ビーム計測装置、レーザ装置及び光ビーム分離装置
JP2015524146A JPWO2014208754A1 (ja) 2013-06-27 2014-06-27 光ビーム計測装置、レーザ装置及び光ビーム分離装置
US14/947,335 US9835495B2 (en) 2013-06-27 2015-11-20 Light beam measurement device, laser apparatus, and light beam separator
US15/800,329 US10151640B2 (en) 2013-06-27 2017-11-01 Light beam measurement device, laser apparatus, and light beam separator
JP2020042493A JP7065138B2 (ja) 2013-06-27 2020-03-11 光ビーム計測装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-134707 2013-06-27
JP2013134707 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014208111A1 true WO2014208111A1 (ja) 2014-12-31

Family

ID=52141470

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/051295 WO2014208111A1 (ja) 2013-06-27 2014-01-22 光ビーム計測装置、レーザ装置及び光ビーム分離装置
PCT/JP2014/067270 WO2014208754A1 (ja) 2013-06-27 2014-06-27 光ビーム計測装置、レーザ装置及び光ビーム分離装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067270 WO2014208754A1 (ja) 2013-06-27 2014-06-27 光ビーム計測装置、レーザ装置及び光ビーム分離装置

Country Status (3)

Country Link
US (2) US9835495B2 (ja)
JP (2) JPWO2014208754A1 (ja)
WO (2) WO2014208111A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021435A1 (ja) * 2017-07-27 2019-01-31 カナレ電気株式会社 レーザ光のビームプロファイル測定装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10345714B2 (en) * 2016-07-12 2019-07-09 Cymer, Llc Lithography optics adjustment and monitoring
JP7023293B2 (ja) * 2017-12-07 2022-02-21 ギガフォトン株式会社 レーザ照射システム、及び電子デバイスの製造方法
WO2019224601A2 (en) * 2018-05-24 2019-11-28 Panasonic intellectual property Management co., Ltd Exchangeable laser resonator modules with angular adjustment
JP7051099B2 (ja) * 2018-07-30 2022-04-11 株式会社ブイ・テクノロジー レーザエネルギ測定装置、およびレーザエネルギ測定方法
DE102018218064B4 (de) * 2018-10-22 2024-01-18 Carl Zeiss Smt Gmbh Optisches System, insbesondere für die Mikrolithographie

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081760A (en) * 1976-06-03 1978-03-28 Coherent, Inc. Etalon laser mode selector
JPH11201869A (ja) * 1998-01-08 1999-07-30 Komatsu Ltd エキシマレーザとその検査装置及びその検査方法
WO2001055684A2 (en) * 2000-01-25 2001-08-02 Lambda Physik Ag Energy monitor for molecular fluorine laser
JP2002048911A (ja) * 2000-08-02 2002-02-15 Ushio Sogo Gijutsu Kenkyusho:Kk ビームスプリッター及びそれを用いたレーザシステム
US20020118721A1 (en) * 2001-02-27 2002-08-29 Silicon Valley Group, Inc., Method and apparatus for optimizing the output beam characteristics of a laser
WO2005033625A1 (en) * 2003-09-30 2005-04-14 Cymer, Inc. Gas discharge mopa laser spectral analysis module
JP2006179600A (ja) * 2004-12-21 2006-07-06 Komatsu Ltd 多段増幅型レーザシステム
JP2007214189A (ja) * 2006-02-07 2007-08-23 Komatsu Ltd レーザチャンバのウィンドウ劣化判定装置および方法
JP2008055436A (ja) * 2006-08-29 2008-03-13 Sharp Corp レーザ照射装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627688A (en) * 1983-07-01 1986-12-09 Sano Kiko Co., Ltd. Beam splitter
US4687301A (en) * 1985-07-12 1987-08-18 Hughes Aircraft Company Full-color projector system with a tricolor-separating prism
JP2756681B2 (ja) * 1988-10-31 1998-05-25 旭光学工業株式会社 光軸微調装置
US5128798A (en) * 1991-02-07 1992-07-07 International Business Machines Corporation Addressable wedge etalon filter
GB2256725B (en) * 1991-06-10 1995-01-18 Alps Electric Co Ltd Polarising light separation element and light receiving optical device using same
US5790306A (en) * 1995-06-16 1998-08-04 Global Surgical Corporation Microscope beamsplitter
JP2724993B2 (ja) 1995-08-31 1998-03-09 株式会社小松製作所 レーザ加工装置およびレーザ装置
JP3864287B2 (ja) 1996-03-14 2006-12-27 株式会社小松製作所 レーザ装置
WO1997011810A1 (fr) 1995-09-27 1997-04-03 Komatsu Ltd. Appareil laser
JP2972688B2 (ja) * 1998-01-20 1999-11-08 株式会社コミュータヘリコプタ先進技術研究所 航空機用発電機の定速駆動装置およびトラクション変速装置
JPH11258526A (ja) * 1998-03-16 1999-09-24 Hamamatsu Photonics Kk 光量調整方法及びその装置
JP2000088705A (ja) 1998-09-11 2000-03-31 Komatsu Ltd エキシマレーザの光モニタ装置
JP2000124534A (ja) 1998-10-12 2000-04-28 Komatsu Ltd ArFエキシマレーザ装置及びその狭帯域化モジュール
JP2001066138A (ja) * 1999-06-23 2001-03-16 Mitsubishi Precision Co Ltd 計測システムおよびこの計測システムに用いられるプリズム式光路制御装置
US6700690B1 (en) * 2000-10-02 2004-03-02 Ocean Optics, Inc. Tunable variable bandpass optical filter
JP2003172824A (ja) * 2001-09-25 2003-06-20 Sony Corp 偏光ビームスプリッタ及びこれを用いた偏光子
EP1655727A4 (en) * 2003-08-12 2008-07-16 Konica Minolta Opto Inc OPTICAL DETECTION DEVICE
JP4773968B2 (ja) * 2003-09-30 2011-09-14 サイマー インコーポレイテッド ガス放電mopaレーザのスペクトル解析モジュール
US7411196B2 (en) 2005-08-18 2008-08-12 Itt Manufacturing Enterprises, Inc. Multi-sensors and differential absorption LIDAR data fusion
JP4822285B2 (ja) * 2007-09-27 2011-11-24 ギガフォトン株式会社 ガスレーザ用光学素子及びそれを用いたガスレーザ装置
WO2009125745A1 (ja) 2008-04-07 2009-10-15 ギガフォトン株式会社 ガス放電チャンバ
JP5185727B2 (ja) 2008-08-22 2013-04-17 ギガフォトン株式会社 偏光純度制御装置及びそれを備えたガスレーザ装置
JP2010107611A (ja) * 2008-10-29 2010-05-13 Olympus Imaging Corp 結像光学系及びそれを用いた撮像装置
JP5368261B2 (ja) * 2008-11-06 2013-12-18 ギガフォトン株式会社 極端紫外光源装置、極端紫外光源装置の制御方法
KR101709820B1 (ko) * 2009-08-26 2017-03-08 칼 짜이스 레이저 옵틱스 게엠베하 레이저 시스템용 계측 모듈
US8441710B2 (en) * 2010-01-08 2013-05-14 Semrock, Inc. Tunable thin-film filter
US8599381B2 (en) * 2011-01-19 2013-12-03 Massachusetts Institute Of Technology Gas detector for atmospheric species detection
US20120236894A1 (en) * 2011-02-14 2012-09-20 Gigaphoton Inc. Wavelength conversion device, solid-state laser apparatus, and laser system
JP5762086B2 (ja) * 2011-03-31 2015-08-12 キヤノン株式会社 偏光分離素子および画像投射装置
JP5930600B2 (ja) * 2011-04-08 2016-06-08 キヤノン株式会社 偏光分離素子および画像投射装置
US20130016338A1 (en) * 2011-07-14 2013-01-17 Faro Technologies, Inc. Scanner with phase and pitch adjustment
DE102012211549B3 (de) * 2012-07-03 2013-07-04 Polytec Gmbh Vorrichtung und Verfahren zur interferometrischen Vermessung eines Objekts

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081760A (en) * 1976-06-03 1978-03-28 Coherent, Inc. Etalon laser mode selector
JPH11201869A (ja) * 1998-01-08 1999-07-30 Komatsu Ltd エキシマレーザとその検査装置及びその検査方法
WO2001055684A2 (en) * 2000-01-25 2001-08-02 Lambda Physik Ag Energy monitor for molecular fluorine laser
JP2002048911A (ja) * 2000-08-02 2002-02-15 Ushio Sogo Gijutsu Kenkyusho:Kk ビームスプリッター及びそれを用いたレーザシステム
US20020118721A1 (en) * 2001-02-27 2002-08-29 Silicon Valley Group, Inc., Method and apparatus for optimizing the output beam characteristics of a laser
WO2005033625A1 (en) * 2003-09-30 2005-04-14 Cymer, Inc. Gas discharge mopa laser spectral analysis module
JP2006179600A (ja) * 2004-12-21 2006-07-06 Komatsu Ltd 多段増幅型レーザシステム
JP2007214189A (ja) * 2006-02-07 2007-08-23 Komatsu Ltd レーザチャンバのウィンドウ劣化判定装置および方法
JP2008055436A (ja) * 2006-08-29 2008-03-13 Sharp Corp レーザ照射装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021435A1 (ja) * 2017-07-27 2019-01-31 カナレ電気株式会社 レーザ光のビームプロファイル測定装置
JP6490241B1 (ja) * 2017-07-27 2019-03-27 カナレ電気株式会社 レーザ光のビームプロファイル測定装置
US11067438B2 (en) 2017-07-27 2021-07-20 Canare Electric Co., Ltd. Laser beam profile measurement device

Also Published As

Publication number Publication date
US9835495B2 (en) 2017-12-05
US20160076944A1 (en) 2016-03-17
WO2014208754A1 (ja) 2014-12-31
US10151640B2 (en) 2018-12-11
JPWO2014208754A1 (ja) 2017-02-23
US20180052059A1 (en) 2018-02-22
JP2020109860A (ja) 2020-07-16
JP7065138B2 (ja) 2022-05-11

Similar Documents

Publication Publication Date Title
JP7065138B2 (ja) 光ビーム計測装置
US8989225B2 (en) Laser apparatus
US9882343B2 (en) Narrow band laser apparatus
US9841684B2 (en) Light source apparatus and data processing method
JP4763471B2 (ja) レーザチャンバのウィンドウ劣化判定装置および方法
WO2001020733A1 (fr) Source lumineuse et procede de commande de stabilisation de longueur d'onde, appareil et procede d'exposition, procede de production d'un appareil d'exposition et procede de fabrication d'un dispositif et dispositif associe
JP2013145863A (ja) 2光束干渉装置および2光束干渉露光システム
WO2015008731A1 (ja) 露光装置
US7965756B2 (en) Optical element for gas laser and gas laser apparatus using the same
US20180123312A1 (en) Line narrowed laser apparatus
JP3269231B2 (ja) 露光方法、光源装置、及び露光装置
JP2023071960A (ja) エキシマレーザ装置、及び電子デバイスの製造方法
WO2017006418A1 (ja) 増幅器、及びレーザシステム
US7161675B2 (en) Beam splitting apparatus, transmittance measurement apparatus, and exposure apparatus
JP3378271B2 (ja) 露光方法及び装置、並びに前記方法を使用するデバイス製造方法
US7910871B2 (en) Injection-locked laser, interferometer, exposure apparatus, and device manufacturing method
JP2007059788A (ja) レーザシステム及びレーザ露光システム
US10502623B2 (en) Line-narrowed KrF excimer laser apparatus
JP5141359B2 (ja) スペクトル幅計測器の校正方法、スペクトル幅計測器の校正装置、狭帯域化レーザ装置、露光装置及び電子デバイスの製造方法
US20010033383A1 (en) Resonator optics monitoring method
JP2003008122A (ja) レーザ装置及びそれを用いた露光装置
WO2018061210A1 (ja) レーザ装置
US20170149199A1 (en) Laser device
JP2008171961A (ja) レーザ装置、露光方法及び装置、並びにデバイス製造方法
JPH1187825A (ja) ガスレーザ発振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP