WO2014203815A1 - ニッケルコバルトマンガン複合水酸化物及びその製造方法 - Google Patents

ニッケルコバルトマンガン複合水酸化物及びその製造方法 Download PDF

Info

Publication number
WO2014203815A1
WO2014203815A1 PCT/JP2014/065723 JP2014065723W WO2014203815A1 WO 2014203815 A1 WO2014203815 A1 WO 2014203815A1 JP 2014065723 W JP2014065723 W JP 2014065723W WO 2014203815 A1 WO2014203815 A1 WO 2014203815A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
cobalt
composite hydroxide
manganese composite
manganese
Prior art date
Application number
PCT/JP2014/065723
Other languages
English (en)
French (fr)
Inventor
康孝 鎌田
広将 戸屋
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP14813170.9A priority Critical patent/EP3012227B1/en
Priority to CN201480035057.3A priority patent/CN105307980B/zh
Priority to KR1020157035217A priority patent/KR102045041B1/ko
Priority to US14/898,924 priority patent/US9941515B2/en
Publication of WO2014203815A1 publication Critical patent/WO2014203815A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nickel-cobalt-manganese composite hydroxide which is a precursor of a positive electrode active material of a non-aqueous electrolyte secondary battery and a method for producing the same, and in particular, nickel cobalt which is a precursor of a positive electrode active material of a lithium ion secondary battery.
  • the present invention relates to a manganese composite hydroxide and a method for producing the same.
  • lithium ion secondary batteries are small in size, light in weight, large in discharge capacity, and excellent in cycle characteristics. It has been demanded.
  • output characteristics are important, and lithium ion secondary batteries having good output characteristics are required.
  • a lithium ion secondary battery using a lithium-containing composite oxide, in particular, a lithium cobalt composite oxide (LiCoO 2 ) that is relatively easy to synthesize, as a positive electrode active material can achieve a high voltage of 4V, so high energy density Practical use is progressing as a battery to have.
  • a lithium cobalt composite oxide LiCoO 2
  • many developments have been carried out to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained. ing.
  • the lithium cobalt composite oxide uses an expensive cobalt compound as a raw material, it causes an increase in cost of the active material and the battery, and improvement of the active material is desired. Since the unit cost per capacity of the battery using this lithium cobalt composite oxide is much higher than that of the nickel hydrogen battery, the application to be applied is considerably limited. Therefore, the cost of the active material is reduced not only for small secondary batteries for portable devices currently in widespread use, but also for large secondary batteries for power storage, electric vehicles, etc., and the cheaper secondary lithium ion secondary battery There is great hope for making batteries possible, and it can be said that the realization is of great industrial significance.
  • the atomic ratio of 4V class positive electrode active material cheaper than lithium cobalt composite oxide, that is, nickel, cobalt and manganese is substantially 1: 1
  • a lithium nickel cobalt manganese composite oxide having a composition of Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 which is 1: 1 has attracted attention.
  • Lithium-nickel-cobalt-manganese composite oxides are not only inexpensive but also exhibit higher thermal stability than lithium-ion secondary batteries that use lithium-cobalt composite oxides or lithium-nickel composite oxides as positive electrode active materials. Is actively conducted.
  • the lithium-nickel-cobalt-manganese composite oxide which is a positive electrode active material, has a suitable particle size and a specific surface area and a high density. Since the properties of such a positive electrode active material strongly reflect the properties of the nickel-cobalt-manganese composite hydroxide which is the precursor, the same properties are required also for the nickel-cobalt-manganese composite hydroxide.
  • nickel cobalt manganese having excellent reactivity in which the reaction with the lithium compound easily proceeds even in the atmosphere of water vapor and carbon dioxide gas generated at the time of synthesis with the lithium compound.
  • Composite hydroxides are sought.
  • the reaction with the nickel-cobalt-manganese composite hydroxide becomes incomplete at the time of synthesis with the lithium compound, and unreacted lithium compound remains I will.
  • the lithium compound melts and causes aggregation before the reaction of the nickel-cobalt-manganese composite hydroxide and the lithium compound is completed.
  • nickel-cobalt-manganese composite hydroxide as a precursor of a positive electrode active material, various proposals as described below have been made. However, although densification has been studied in any of the proposals, surface properties and reactivity with lithium compounds are not sufficiently considered.
  • Patent Document 1 a nickel salt aqueous solution containing a cobalt salt and a manganese salt, a complexing agent, and an alkali metal hydroxide are continuously supplied into a reaction tank in an inert gas atmosphere or in the presence of a reducing agent.
  • High density cobalt manganese having a tap density of 1.5 g / cm 3 or more, an average particle diameter of 5 to 20 ⁇ m, and a specific surface area of 8 to 30 m 2 / g by continuous crystal growth and continuous removal It has been proposed to obtain coprecipitated nickel hydroxide.
  • the obtained coprecipitated nickel hydroxide can be used as a raw material of a lithium-nickel-cobalt-manganese composite oxide.
  • this co-submerged nickel oxide although the tap density 1.71 ⁇ 1.91g / cm 3, to be sufficiently dense because it is less than 2.0 g / cm 3 Absent.
  • no specific numerical value is described for the specific surface area, the optimization of the specific surface area is unknown, and the reactivity with the lithium compound is not studied. Therefore, even if this coprecipitated nickel hydroxide is used as a precursor, a lithium nickel cobalt manganese composite oxide having good battery characteristics can not be obtained.
  • Patent Document 2 discloses a nickel salt, a cobalt salt and a manganese salt in which the atomic ratio of nickel to cobalt to manganese is substantially 1: 1: 1 in the presence of a complexing agent in an aqueous solution of pH 9 to 13.
  • a nickel-cobalt-manganese composite hydroxide and / or a nickel-cobalt-manganese composite hydroxide and / or an atomic ratio of nickel: cobalt: manganese are substantially 1: 1: reacted with an alkaline solution under an inert gas atmosphere and coprecipitated Step 1 of obtaining a nickel-cobalt-manganese composite oxide, and the hydroxide and / or oxide such that the atomic ratio of the total of nickel, cobalt and manganese and the atomic ratio of lithium is substantially 1: 1.
  • a method for producing a lithium-nickel-cobalt-manganese composite oxide comprising Step 2 of firing a mixture with a lithium compound at 700 ° C.
  • the tap density of the nickel-cobalt-manganese composite hydroxide obtained is less than 2.0 g / cm 3 at 1.95 g / cm 3, specific surface area and the very large and 13.5 m 2 / g It has become. Furthermore, no consideration has been given to the reactivity with lithium compounds.
  • the present invention is a nickel-cobalt-manganese composite hydroxide capable of obtaining a positive electrode active material for a non-aqueous electrolyte secondary battery which is excellent in reactivity with a lithium compound and is excellent in thermal stability while being excellent in thermal stability. It aims at providing a thing and its manufacturing method.
  • the inventor of the present invention has intensively studied the influence of the nickel-cobalt-manganese composite hydroxide on the reactivity with a lithium compound, and the specific surface area measured by the nitrogen adsorption BET method and the X-ray diffraction measurement. Obtained the finding that the ratio I (101) / I (100) of the peak intensity I (101) of the (101) plane to the peak intensity I (100) of the (100) plane greatly affects the invention. It reached.
  • Nickel-cobalt-manganese composite hydroxide for achieving the above object, the general formula: Ni 1-x-y- z Co x Mn y M z (OH) 2 (0 ⁇ x ⁇ 1 / 3,0 ⁇ y ⁇ 1/3, 0 ⁇ z ⁇ 0.1, M is represented by one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Zr, Nb, Mo and W)
  • the ratio I (101) / I (100) of the peak intensity I (101) of the (101) plane to the peak intensity I (100) of the (100) plane by X-ray diffraction measurement is less than 0.300 It features.
  • the method for producing a nickel-cobalt-manganese composite hydroxide according to the present invention achieves the above-mentioned object, which is a method for producing the above-mentioned nickel-cobalt-manganese composite hydroxide, which is a mixed aqueous solution containing at least a nickel salt, a cobalt salt and a manganese salt. And an aqueous solution containing an ammonium ion supplier are mixed in the reaction vessel, and a caustic alkali aqueous solution is supplied to make the reaction solution so that the pH at a liquid temperature of 25 ° C.
  • An oxidizing agent is supplied to a slurry of nickel-cobalt-manganese composite hydroxide particles formed in the crystallization step and a slurry of the nickel-cobalt-manganese composite hydroxide particles formed in the crystallization step, and nickel-cobalt-manganese composite water
  • the oxide particles are oxidized to (101) with respect to the peak intensity I (100) of (100) plane by X-ray diffraction measurement.
  • the present invention is a nickel-cobalt-manganese composite hydroxide serving as a precursor of a positive electrode active material of a non-aqueous electrolyte secondary battery, which is excellent in reactivity with a lithium compound, and can be obtained as a precursor
  • the lithium-nickel-cobalt-manganese composite oxide is used as a positive electrode active material of a non-aqueous electrolyte secondary battery, it is possible to obtain a non-aqueous electrolyte secondary battery excellent in thermal stability and battery characteristics.
  • a nickel-cobalt-manganese composite hydroxide can be easily produced on an industrial scale, and the industrial value is very high.
  • FIG. 1 is a SEM photograph of a sample obtained after the mixture of the nickel-cobalt-manganese composite hydroxide and the lithium compound obtained in Example 1 is heated in a carbon dioxide gas atmosphere.
  • FIG. 2 is a SEM photograph of a sample of the mixture of the nickel-cobalt-manganese composite hydroxide and the lithium compound obtained in Comparative Example 1 obtained after the temperature rise under a carbon dioxide gas atmosphere.
  • Nickel-cobalt-manganese composite hydroxide Method for producing nickel-cobalt-manganese composite hydroxide 2-1. Crystallization process 2-2. Oxidation process 2-3. Solid-liquid separation process 2-4. Drying process
  • the nickel-cobalt-manganese composite hydroxide according to the present embodiment is a precursor of a positive electrode active material of a non-aqueous electrolyte secondary battery, and in particular, is a precursor of a positive electrode active material of a lithium ion secondary battery .
  • Nickel-cobalt-manganese composite hydroxide is represented by the general formula: Ni 1-x-y- z Co x Mn y M z (OH) 2 (0 ⁇ x ⁇ 1 / 3,0 ⁇ y ⁇ 1 / 3,0 ⁇ z ⁇ 0.1
  • M is represented by Mg, Al, Ca, Ti, V, one or more elements selected from Cr, Zr, Nb, Mo, W), and the ratio measured by the nitrogen adsorption BET method
  • the surface area is 3.0 to 11.0 m 2 / g, and the ratio of the peak intensity I (101) of the (101) plane to the peak intensity I (100) of the (100) plane measured by X-ray diffraction [I (101) ) / I (100)] (hereinafter simply referred to as peak intensity ratio) is less than 0.300.
  • the specific surface area of the finally obtained positive electrode active material becomes too large, and sufficient safety can not be obtained.
  • the specific surface area is less than 3.0 m 2 / g, the reactivity with the lithium compound is deteriorated at the time of synthesis with the lithium compound, the reaction does not proceed sufficiently, and the lithium compound melts in the temperature rising process. Cause clumping. Therefore, in order to enhance the safety of the positive electrode active material and to prevent the aggregation, the specific surface area of the nickel-cobalt-manganese composite hydroxide is preferably in the range of 3.0 to 11.0 m 2 / g.
  • the crystals are refined by oxidizing the nickel-cobalt-manganese composite hydroxide, and the peak intensity ratio by X-ray diffraction measurement is weakened.
  • the peak intensity means the peak height in the X-ray diffraction pattern.
  • the peak intensity ratio By setting the peak intensity ratio to less than 0.300, fine cracks can be generated in the particles of the nickel-cobalt-manganese composite hydroxide, and the crystal can be in a sufficiently miniaturized state, and mixed with the lithium compound.
  • the molten lithium compound sufficiently penetrates into the secondary particles, and the reactivity with the lithium compound is greatly improved by the reaction promoting effect by the refinement.
  • the peak intensity ratio is 0.300 or more, the crystals of the nickel-cobalt-manganese composite hydroxide are not sufficiently refined, the reactivity with the lithium compound is deteriorated, and the reaction does not proceed sufficiently at the time of firing. During the warm process, the lithium compound melts and causes aggregation.
  • the peak intensity ratio is preferably set to 0.070 or more.
  • the peak intensity ratio is less than 0.070, refinement of crystals of the nickel-cobalt-manganese composite hydroxide may progress too much, and the specific surface area may exceed 11.0 m 2 / g.
  • the nickel-cobalt-manganese composite hydroxide preferably has a mesopore volume of 0.010 to 0.035 ml / g as measured by a nitrogen adsorption method, and 0.010 to 0 More preferably, it is .030 ml / g. If the mesopore volume is less than 0.010 ml / g, penetration of molten lithium carbonate into particles during synthesis may not be sufficient, and reactivity with the lithium compound may be reduced. On the other hand, when the mesopore volume exceeds 0.035 ml / g, the specific surface area may be too large, and sufficient safety may not be obtained.
  • the average particle diameter of the nickel-cobalt-manganese composite hydroxide is preferably 5 to 15 ⁇ m, and the tap density is preferably 2.0 g / cm 3 or more. Thereby, the battery performance can be further improved.
  • the additive element represented by M in the general formula is added to improve battery characteristics such as cycle characteristics and output characteristics.
  • the atomic ratio z of the additive element M exceeds 0.1, the metal element contributing to the Redox reaction decreases, and the battery capacity is unfavorably reduced. Therefore, the additive element M is adjusted to have an atomic ratio z of 0.1 or less.
  • the nickel-cobalt-manganese composite hydroxide as described above is suitable as a precursor of a positive electrode active material of a non-aqueous electrolyte secondary battery, and may be used as a positive electrode active material of a non-aqueous electrolyte secondary battery by a conventional manufacturing method. it can.
  • the nickel-cobalt-manganese composite hydroxide is heat-treated as it is or at a temperature of 800 ° C. or less.
  • the lithium compound is mixed with lithium preferably at an atomic ratio of 0.95 to 1.5 with respect to the metal element of the nickel-cobalt-manganese composite hydroxide, and fired at 800 to 1000.degree. Thereby, a nickel-cobalt-manganese composite oxide can be obtained.
  • the above-mentioned nickel-cobalt-manganese composite hydroxide has a specific surface area of 3.0 to 11.0 m 2 / g as measured by a nitrogen adsorption BET method, and a peak intensity ratio of less than 0.300 as measured by X-ray diffraction measurement.
  • the reactivity with the lithium compound is excellent, the reaction with the lithium compound easily progresses, and the reaction with the lithium compound precedes the melting of the lithium compound, thereby preventing the occurrence of aggregation.
  • thermogravimetry and differential thermal analysis in an inert atmosphere can be used.
  • TG-DTA thermogravimetry and differential thermal analysis
  • the reactivity of the nickel-cobalt-manganese composite hydroxide is poor by performing TG-DTA measurement in a carbon dioxide gas atmosphere after mixing the nickel-cobalt-manganese composite hydroxide and lithium carbonate, unreacted lithium carbonate is An endothermic peak derived from the melting of lithium carbonate is observed in the DTA curve around 680 to 720 ° C., which remains even after the temperature rise.
  • the presence or absence of aggregation can be confirmed by performing SEM observation of the sample after TG-DTA measurement.
  • the nickel-cobalt-manganese composite hydroxide as described above has a specific surface area of 3.0 to 11.0 m 2 / g as measured by a nitrogen adsorption BET method, and a peak intensity ratio of 0.300 as measured by X-ray diffraction. By being less than, it is excellent in the reactivity with a lithium compound, and aggregation is suppressed.
  • the nickel-cobalt-manganese composite hydroxide is used as a precursor of the positive electrode active material of a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery having excellent battery characteristics while having excellent thermal stability. You can get
  • a mixed aqueous solution containing at least a nickel salt, a cobalt salt and a manganese salt, and an aqueous solution containing an ammonium ion donor are mixed in a reaction tank and The aqueous solution of caustic alkali is supplied to form a reaction solution so that the pH of the reaction mixture is maintained in the range of 11 to 13, and nickel-cobalt-manganese composite hydroxide particles are crystallized in the reaction solution.
  • nickel-cobalt-manganese composite hydroxide particles were oxidized by supplying an oxidizing agent to the obtained slurry of nickel-cobalt-manganese composite hydroxide particles, and solid-liquid separation of nickel-cobalt-manganese composite hydroxide particles was performed. After drying, nickel-cobalt-manganese composite hydroxide particles are obtained.
  • the peak intensity ratio in the X-ray diffraction measurement of the nickel-cobalt-manganese composite hydroxide particles is reduced by oxidizing the nickel-cobalt-manganese composite hydroxide particles, and the specific surface area Will increase.
  • Such a nickel-cobalt-manganese composite hydroxide is excellent in reactivity with a lithium compound, and becomes a precursor of a positive electrode active material excellent in thermal stability and battery characteristics.
  • (2-1) Crystallization Step In the crystallization step, a mixed aqueous solution containing at least a nickel salt, a cobalt salt and a manganese salt and an aqueous solution containing an ammonium ion donor are mixed, and the pH at a liquid temperature of 25 ° C. is 11 An aqueous caustic solution is supplied to maintain a range of ⁇ 13 to form a reaction solution, and nickel cobalt manganese composite hydroxide particles are crystallized in the reaction solution.
  • the temperature of the reaction solution is preferably maintained at 20 to 70.degree. Thereby, crystals of the nickel-cobalt-manganese composite hydroxide grow.
  • the temperature of the reaction solution is less than 20 ° C., the solubility of the salt in the reaction solution is low and the salt concentration is low, so crystals of the nickel-cobalt-manganese composite hydroxide do not grow sufficiently.
  • the temperature of the reaction solution exceeds 70 ° C., the generation of crystal nuclei is large and the number of fine particles is large, so the nickel-cobalt-manganese composite hydroxide particles do not have a high density.
  • the pH at a liquid temperature of 25 ° C. is controlled in the range of 11 to 13, preferably 11 to 12.
  • the pH is less than 11, the particles of the nickel-cobalt-manganese composite hydroxide become coarse, and after the reaction, nickel remains in the solution, resulting in the loss of nickel.
  • the pH exceeds 13, the crystallization rate of the nickel-cobalt-manganese composite hydroxide is increased, and the number of fine particles is increased. When there are too many fine particles, there arises a problem that they sinter to form agglomerated powder.
  • the pH of the reaction solution can be controlled by feeding an aqueous caustic solution.
  • the aqueous caustic solution is not particularly limited, and, for example, an aqueous solution of an alkali metal hydroxide such as sodium hydroxide and potassium hydroxide can be used.
  • the alkali metal hydroxide can be added directly to the reaction solution, but is preferably added as an aqueous solution because of the ease of pH control.
  • the addition method of the caustic aqueous solution is also not particularly limited, and it is a pump whose flow rate can be controlled, such as a metering pump, with sufficient stirring of the reaction solution, and the pH at a liquid temperature of 25 ° C. It should just add so that it may become.
  • nickel-cobalt-manganese composite hydroxide particles by co-precipitation in a non-oxidizing atmosphere or in the presence of a reducing agent. If it is generated in the presence of an oxidizing atmosphere or a reducing agent, cobalt and manganese are oxidized, new nuclei are easily generated, primary particles become fine, and the specific surface area may become too large. Furthermore, the average particle size may be too small because spherical secondary particles can not grow large. In addition, when the specific surface area of the nickel-cobalt-manganese composite hydroxide particles becomes too large in the crystallization step, it may be difficult to control the specific surface area and the peak intensity ratio in the oxidation step of the subsequent step.
  • the crystallization step it is preferable to set a non-oxidizing atmosphere by maintaining the oxygen concentration of the atmosphere in the reaction tank in contact with the open surface of the reaction solution at 0.2% by volume or less.
  • the oxygen concentration of the atmosphere in the reaction tank in contact with the open surface of the reaction solution at 0.2% by volume or less.
  • the oxygen concentration exceeds 0.2% by volume, the primary particles become fine and the crystal interface increases, so the specific surface area of the obtained nickel-cobalt-manganese composite hydroxide may exceed 11.0 m 2 / g is there. Also, the average particle size may be too small.
  • the lower limit of the oxygen concentration is not particularly limited, and the specific surface area decreases as the oxygen concentration decreases, and the average particle size increases, and the carbon content also decreases.
  • the oxygen concentration can be controlled to the desired specific surface area and average particle size within the industrially possible range.
  • the carbon content is preferably 0.1% by mass or less in the nickel-cobalt-manganese composite hydroxide. The carbon content can be measured by a high frequency-infrared combustion method.
  • the oxygen concentration in the reaction tank 0.2% by volume or less, for example, it is easy to control by supplying the inert gas into the reaction tank, it is preferable to use an inert gas.
  • the supply of the inert gas into the reaction vessel is performed by supplying or supplying a sufficient amount of inert atmosphere gas during crystallization so that the oxygen concentration is maintained at 0.2% by volume or less. It is necessary to continue. Therefore, for example, the oxygen concentration can be easily adjusted by adjusting the amount of inert gas supplied to the reaction vessel using a lidded reaction vessel.
  • an inert gas nitrogen gas is advantageous in cost and is preferable.
  • the oxygen concentration is not limited to the above-described control method as long as the oxygen concentration is maintained at 0.2% by volume or less.
  • the crystallization step if oxidation of the metal element is suppressed by adding a reducing agent to the reaction solution even if the oxygen concentration is not maintained at 0.2% by volume or less, the primary particles are developed and the secondary particles are developed.
  • the specific surface area and the average particle size can be controlled.
  • the reducing agent may be added to such an extent that the oxidation of the metal element is suppressed, and it may be any agent capable of suppressing the oxidation of the metal element such as hydrazine.
  • the nickel-cobalt-manganese composite hydroxide obtained in the crystallization step has a general formula: Ni 1 -xy z Co x Mn y M z (OH) 2 (0 ⁇ x ⁇ 1/3, 0 ⁇ y ⁇ 1 / 3, 0 ⁇ z ⁇ 0.1, M is one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Zr, Nb, Mo, and W) , Substantially the same as the atomic ratio in the raw materials supplied. Therefore, by adjusting the atomic ratio in the raw material to the atomic ratio of the general formula, the atomic ratio of nickel, cobalt, manganese and the additional element M can be made within the range of the general formula.
  • the total salt concentration of the mixed aqueous solution of nickel salt, cobalt salt and manganese salt is preferably 1 mol / L to 2.6 mol / L. If it is less than 1 mol / L, the salt concentration is low, and the crystals of the nickel-cobalt-manganese composite hydroxide do not grow sufficiently. On the other hand, if it exceeds 2.6 mol / L, the saturation concentration at normal temperature will be exceeded, so there is a risk that crystals will reprecipitate and clog the piping, etc. There are many generation of crystal nuclei and many fine particles I will.
  • the nickel salt, cobalt salt and manganese salt which can be used herein are not particularly limited, but are preferably at least one of sulfate, nitrate or chloride.
  • the ammonium ion supplier used in the crystallization step is not particularly limited, but is preferably at least one of ammonia, ammonium sulfate or ammonium chloride.
  • the addition amount of the ammonium ion supply is preferably in the range of 5 to 20 g / L as the ammonium ion concentration in the reaction solution. If the ammonium ion concentration is less than 5 g / L, the solubility of nickel, cobalt and manganese in the reaction solution is low, and the crystal growth is not sufficient, so a high density nickel cobalt manganese composite hydroxide can not be obtained. When the concentration of ammonium ions exceeds 20 g / L, the crystallization rate is lowered to deteriorate the productivity, and the amount of metal ions such as nickel remaining in the solution is increased to increase the cost.
  • the additive element M is one or more elements selected from Mg, Al, Ca, Ti, V, Cr, Zr, Nb, Mo and W, and may be added to the mixed aqueous solution in the crystallization step or separately By adding to the reaction solution, the nickel-cobalt-manganese composite hydroxide can be made to have the composition of the general formula.
  • the additive element M is preferably added as a water-soluble compound, for example, titanium sulfate, ammonium peroxotitanate, potassium titanium oxalate, vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, zirconium nitrate Niobium oxalate, ammonium molybdate, sodium tungstate, ammonium tungstate and the like can be used.
  • titanium sulfate, ammonium peroxotitanate, potassium titanium oxalate, vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, zirconium nitrate Niobium oxalate, ammonium molybdate, sodium tungstate, ammonium tungstate and the like can be used.
  • an additive containing the additive element may be added to the mixed aqueous solution, the inside of the nickel-cobalt-manganese composite hydroxide particles Coprecipitation in the state where the additive element M is uniformly dispersed.
  • the surface of the nickel-cobalt-manganese composite hydroxide particles may be coated with the additional element M.
  • the nickel-cobalt-manganese composite hydroxide particles are slurried with an aqueous solution containing an additive element M, and an aqueous solution containing one or more additive elements M is added while controlling so as to have a predetermined pH. Then, when the additive element is precipitated on the surface of the nickel-cobalt-manganese composite hydroxide particles by a crystallization reaction, the surface can be uniformly coated with the additive element.
  • an alkoxide solution of the additional element M may be used instead of the aqueous solution containing the additional element M.
  • an alkoxide solution of the additional element M may be used instead of the aqueous solution containing the additional element M.
  • the surface of the nickel-cobalt-manganese composite hydroxide particles is coated with the additional-element M also by spraying and drying an aqueous solution or slurry containing the additional element M to the nickel-cobalt-manganese composite hydroxide particles.
  • a slurry in which a salt containing nickel-cobalt-manganese composite hydroxide particles and one or more additional elements M is suspended is spray-dried, or a salt containing nickel-cobalt-manganese composite hydroxide and one or more additional elements M Can be coated by a method such as mixing in a solid phase method.
  • the surface of the nickel-cobalt-manganese composite hydroxide particles with the additional element M it can be obtained by reducing the atomic ratio of the additional element ions present in the mixed aqueous solution by the covering amount.
  • the atomic ratio of metal ions in the nickel-cobalt-manganese composite hydroxide particles can be matched.
  • the reaction system in the crystallization step is not particularly limited, and a batch system or a continuous system can be used.
  • a mixed aqueous solution, an aqueous solution containing an ammonium ion supplier and an aqueous caustic alkali solution are continuously supplied to continuously overflow the reaction solution containing the nickel-cobalt-manganese composite hydroxide particles from the reaction vessel to thereby carry out nickel It is a system for recovering cobalt-manganese composite hydroxide particles, which is preferable in terms of productivity and stability.
  • any of the reaction methods it is preferable to sufficiently stir in order to maintain a uniform reaction during crystallization.
  • water used in the crystallization step it is preferable to use water such as pure water having a content of impurities as low as possible, in order to prevent mixing of the impurities.
  • the nickel-cobalt-manganese composite hydroxide particles obtained in the crystallization step are oxidized.
  • the nickel-cobalt-manganese composite hydroxide particles are oxidized by supplying an oxidizing agent to the slurry of the nickel-cobalt-manganese composite hydroxide particles, preferably while being uniformly oxidized.
  • the nickel-cobalt-manganese composite hydroxide is oxidized such that the peak intensity ratio [I (101) / I (100)] is less than 0.300.
  • the oxidation step by oxidizing the nickel-cobalt-manganese composite hydroxide particles, fine cracks are generated to make the crystals finer, thereby decreasing the peak intensity ratio and increasing the specific surface area. Thereby, the reactivity of nickel cobalt manganese compound hydroxide particles and a lithium compound improves.
  • the peak of the (101) plane appears clearly. Therefore, when the crystallinity is high, the peak intensity ratio is high, and as the crystallinity is lowered, the peak of the (101) plane is weakened and the peak intensity ratio is lowered. From this, in the nickel-cobalt-manganese composite hydroxide after oxidation, the crystallinity is reduced and the peak intensity ratio is reduced due to the refinement of the crystal due to the generation of the fine cracks.
  • oxidizing agent it is also possible to use an oxidizing agent such as sodium hypochlorite or persulfate, but using an expensive oxidizing agent is disadvantageous in terms of cost in consideration of industrial productivity and oxygen It is advantageous from the viewpoint of suppressing the mixing of impurities also in terms of cost, by using an oxidizing agent such as sodium hypochlorite or persulfate, but using an expensive oxidizing agent is disadvantageous in terms of cost in consideration of industrial productivity and oxygen It is advantageous from the viewpoint of suppressing the mixing of impurities also in terms of cost, by using
  • the pH of the slurry of the nickel-cobalt-manganese composite hydroxide particles is set to 12.5 or more on a 25 ° C. basis, and oxygen is supplied to the slurry to obtain nickel-cobalt-manganese composite hydroxide particles. Is preferably oxidized. In addition, if sufficient oxygen can be supplied, air may be supplied to the slurry.
  • the oxidation time by oxygen supply is preferably 1.5 to 10 hours, and more preferably 2 to 7 hours. If the oxygen supply time is less than 1.5 hours, the reaction may not proceed until sufficient oxidation of the nickel-cobalt-manganese composite hydroxide particles is achieved regardless of the oxygen supply amount per hour. On the other hand, when the oxygen supply time exceeds 10 hours, not only the oxygen is wasted, but the oxidation reaction proceeds too much and the specific surface area becomes too large. Therefore, by setting the oxygen supply time to 1.5 to 10 hours, the nickel-cobalt-manganese composite hydroxide particles can be efficiently and sufficiently oxidized.
  • the presence of OH ions contained in the slurry of the nickel-cobalt-manganese composite hydroxide accelerates the oxidation reaction and enables oxidation of nickel hydroxide without using an expensive oxidizing agent. Therefore, the oxidation reaction is promoted by maintaining the OH ion concentration contained in the slurry, specifically the pH of the slurry, at 12.5 or higher on the basis of 25 ° C. during the oxidation step, to supply oxygen in the slurry. Can promote oxidation.
  • the pH of the slurry is preferably maintained at 12.5 or more and 13.5 or less on the 25 ° C.
  • a caustic aqueous solution for adjusting the pH of the slurry, and it is more preferable to use a sodium hydroxide aqueous solution containing few impurities.
  • the reaction solution in which the nickel-cobalt-manganese composite hydroxide particles after the crystallization step are formed may be used as it is, or after the nickel-cobalt-manganese composite hydroxide particles are separated into solid and liquid, they are dispersed again in water.
  • a slurry can also be used.
  • the supply amount of the oxidizing agent and the oxidation time are stable if the production conditions are constant, and may be appropriately determined together with the crystallization conditions and the like by a preliminary test.
  • the apparatus used for an oxidation process has preferable what can supply an oxidizing agent or a pH adjuster and oxygen, stirring a slurry, for example, the reaction tank with a stirring apparatus is used.
  • Nit-Cobalt-manganese composite hydroxide particles are separated from the slurry containing the nickel-cobalt-manganese composite hydroxide particles oxidized in the oxidation step.
  • the slurry is filtered, then washed with water and filtered.
  • the filtration may be performed by a commonly used method, for example, using a centrifuge or a suction filter.
  • the washing with water may be carried out by a method which is usually carried out, as long as excess base, non-reducing complexing agent and the like contained in the nickel-cobalt-manganese composite hydroxide particles can be removed.
  • Drying of the nickel-cobalt-manganese composite hydroxide particles is carried out in a non-oxidizing atmosphere, preferably at a drying temperature of 100 to 230.degree.
  • an inert gas atmosphere such as a vacuum atmosphere or a nitrogen atmosphere having an oxygen concentration of 0.2% by volume or less is preferable.
  • the drying temperature is preferably 100 to 230 ° C.
  • the drying temperature is the material temperature, ie the maximum temperature of the nickel-cobalt-manganese composite hydroxide particles to be dried. If the drying temperature is less than 100 ° C., evaporation of water is insufficient, while if the drying temperature exceeds 230 ° C., decomposition of the nickel-cobalt-manganese composite hydroxide proceeds and the oxide It will be a mixture. When an oxide is present, the metal content per unit mass such as nickel fluctuates depending on the mixed amount of the oxide, which makes it difficult to accurately mix it with a lithium compound in the production process of the positive electrode active material. It becomes difficult to make the battery characteristics of the positive electrode active material to be sufficient.
  • a mixed aqueous solution containing at least a nickel salt, a cobalt salt and a manganese salt and an aqueous solution containing an ammonium ion donor are mixed in a reaction tank and An aqueous solution of caustic alkali is supplied to form a reaction solution so that the pH on the basis of C is maintained in the range of 11 to 13, and nickel cobalt manganese composite hydroxide particles are crystallized in the reaction solution, nickel cobalt manganese composite water
  • An oxidizing agent is supplied to the slurry of the oxide particles to oxidize the nickel-cobalt-manganese composite hydroxide particles, and the peak intensity ratio [I (101) / I (100)] by X-ray diffraction measurement is less than 0.300.
  • nickel-cobalt-manganese composite hydroxide particles are solid-liquid separated, washed with water and then dried. It is possible to obtain an oxide
  • the resulting nickel-cobalt-manganese composite hydroxide has a suitably refined crystal, a low peak intensity ratio, and an increased specific surface area, and thus has high reactivity with the lithium compound and is thermally stable. And it becomes a precursor of the positive electrode active material which can obtain the non-aqueous electrolyte secondary battery excellent in battery characteristics.
  • a non-aqueous electrolyte secondary battery using a positive electrode active material produced by the obtained nickel-cobalt-manganese composite hydroxide, particularly a thylium ion secondary battery high capacity and good cycle characteristics, battery characteristics and safety Be excellent.
  • Example 1 In Example 1, 200 mL of 4 L of pure water and 25 mass% ammonia water were added to a 5 L overflow type crystallization reaction tank equipped with four baffles, and the temperature was raised to 60 ° C. with a thermostat and heating jacket. After heating, a 25% by mass sodium hydroxide solution was added to adjust the pH of the reaction solution in the thermostat to 12.0 at a liquid temperature of 25 ° C.
  • a mixed aqueous solution of 1 / L of manganese sulfate (hereinafter referred to as mixed aqueous solution) is continuously supplied at 10 ml / min and 25% by mass ammonia water continuously at 1.5 ml / min, and 25% by mass caustic soda The solution was added to control a pH of 12.0 and an ammonium ion concentration of 5 to 15 g / L based on a liquid temperature of 25 ° C. to carry out a crystallization reaction.
  • Stirring during crystallization was performed by rotating horizontally at a rotational speed of 800 rpm using a 6-blade turbine blade with a diameter of 8 cm. Further, as a method of supplying the mixed aqueous solution into the reaction system, an injection nozzle serving as a supply port was inserted into the reaction solution so that the mixed aqueous solution was directly supplied into the reaction solution.
  • the nickel-cobalt-manganese composite hydroxide particles produced by the crystallization reaction were continuously removed at the overflow.
  • Sodium hydroxide is added while stirring the slurry containing nickel-cobalt-manganese composite hydroxide particles taken out for 48 to 72 hours from the start of the reaction when the reaction is stabilized, and the pH at a liquid temperature of 25 ° C. rises to 12.8.
  • the slurry was used in the oxidation step.
  • the slurry was subjected to solid-liquid separation using a Buchner funnel and a suction bottle, and then washed with water to obtain a filtrate.
  • the filtrate was dried by keeping it in a vacuum dryer at a drying temperature of 120 ° C. for 12 hours to obtain a nickel-cobalt-manganese composite hydroxide.
  • the obtained nickel-cobalt-manganese composite hydroxide has a nickel grade of 21.5 wt%, a cobalt grade of 21.5 wt%, a manganese grade of 19.8 wt%, and an element ratio of 33.6: 33.4: 33.
  • the composition ratio of the raw material aqueous solution was almost equal, and the average particle size was 10.5 ⁇ m.
  • the specific surface area was 7.7 m 2 / g, and the peak intensity ratio by X-ray diffraction measurement was 0.120.
  • the obtained nickel-cobalt-manganese composite hydroxide was mixed with lithium carbonate, and the mixture was subjected to TG-DTA measurement up to 980 ° C. at a heating rate of 5 ° C./min in a carbon dioxide gas atmosphere of 100 ml / min. No endothermic peak was observed between 680 and 720 ° C. Further, when the sample after TG-DTA measurement was observed with a scanning electron microscope, no aggregation was confirmed as shown in FIG. The evaluation results are shown in Table 1. Furthermore, the results of measuring the mesopore volume of the nickel-cobalt-manganese composite hydroxide by a nitrogen adsorption method are shown in Table 1.
  • Example 2 a nickel-cobalt-manganese composite hydroxide is obtained in the same manner as in Example 1, except that air is blown at a flow rate of 3 L / min for 5 hours to oxidize the nickel-cobalt-manganese composite hydroxide particles. I made an evaluation.
  • the specific surface area of the obtained nickel-cobalt-manganese composite hydroxide was 8.6 m 2 / g, and the peak intensity ratio as measured by X-ray diffraction was 0.082.
  • the obtained nickel-cobalt-manganese composite hydroxide was mixed with lithium carbonate, and the mixture was subjected to TG-DTA measurement up to 980 ° C. at a heating rate of 5 ° C./min in a carbon dioxide gas atmosphere of 100 ml / min.
  • No endothermic peak was observed between 680 and 720 ° C.
  • no aggregation was observed in the sample after TG-DTA measurement.
  • the presence or absence of an endothermic peak between 680 and 720 ° C. and the presence or absence of aggregation observed by SEM are shown in Table 1.
  • the results of measuring the mesopore volume of the nickel-cobalt-manganese composite hydroxide by a nitrogen adsorption method are shown in Table 1.
  • Example 3 Example 3 was carried out except that sodium hydroxide was added while stirring the slurry to oxidize the pH at a liquid temperature of 25 ° C. to 12.5 before oxidizing the nickel-cobalt-manganese composite hydroxide particles.
  • a nickel-cobalt-manganese composite hydroxide was obtained and each evaluation was performed.
  • the specific surface area of the obtained nickel-cobalt-manganese composite hydroxide was 7.0 m 2 / g, and the peak intensity ratio by X-ray diffraction measurement was 0.184.
  • the obtained nickel-cobalt-manganese composite hydroxide was mixed with lithium carbonate, and the mixture was subjected to TG-DTA measurement up to 980 ° C. at a heating rate of 5 ° C./min in a carbon dioxide gas atmosphere of 100 ml / min.
  • No endothermic peak was observed between 680 and 720 ° C.
  • no aggregation was observed in the sample after TG-DTA measurement.
  • the presence or absence of an endothermic peak between 680 and 720 ° C. and the presence or absence of aggregation observed by SEM are shown in Table 1.
  • the results of measuring the mesopore volume of the nickel-cobalt-manganese composite hydroxide by a nitrogen adsorption method are shown in Table 1.
  • Comparative Example 1 In Comparative Example 1, a nickel-cobalt-manganese composite hydroxide was obtained and each evaluation was performed in the same manner as in Example 1 except that oxidation of the nickel-cobalt-manganese composite hydroxide particles was not performed after crystallization.
  • the specific surface area of the obtained nickel-cobalt-manganese composite hydroxide was 2.7 m 2 / g, and the peak intensity ratio as measured by X-ray diffraction was 0.452.
  • the obtained nickel-cobalt-manganese composite hydroxide was mixed with lithium carbonate, and the mixture was subjected to TG-DTA measurement up to 980 ° C. at a heating rate of 5 ° C./min in a carbon dioxide gas atmosphere of 100 ml / min.
  • An endothermic peak was observed between 680 and 720 ° C.
  • the aggregate was confirmed in the sample after TG-DTA measurement.
  • the SEM photograph of the sample after TG-DTA measurement is shown in FIG.
  • the presence or absence of an endothermic peak between 680 and 720 ° C. and the presence or absence of aggregation observed by SEM are shown in Table 1.
  • the results of measuring the mesopore volume of the nickel-cobalt-manganese composite hydroxide by a nitrogen adsorption method are shown in Table 1.
  • Comparative Example 2 In Comparative Example 2, without adding sodium hydroxide to the slurry after crystallization, air was blown at a flow rate of 3 L / min for 3 hours while maintaining the pH at 12.0 at a liquid temperature of 25 ° C. A nickel-cobalt-manganese composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the product particles were oxidized. The specific surface area of the obtained nickel-cobalt-manganese composite hydroxide was 4.5 m 2 / g, and the peak intensity ratio by X-ray diffraction measurement was 0.431.
  • the obtained nickel-cobalt-manganese composite hydroxide was mixed with lithium carbonate, and the mixture was subjected to TG-DTA measurement up to 980 ° C. at a heating rate of 5 ° C./min in a carbon dioxide gas atmosphere of 100 ml / min.
  • An endothermic peak was observed between 680 and 720 ° C.
  • the aggregate was confirmed in the sample after TG-DTA measurement.
  • the presence or absence of an endothermic peak between 680 and 720 ° C. and the presence or absence of aggregation observed by SEM are shown in Table 1.
  • the results of measuring the mesopore volume of the nickel-cobalt-manganese composite hydroxide by a nitrogen adsorption method are shown in Table 1.
  • Comparative Example 3 In Comparative Example 3, a nickel-cobalt-manganese composite hydroxide is obtained in the same manner as in Example 1 except that air is blown at a flow rate of 3 L / min for 1 hour to oxidize the nickel-cobalt-manganese composite hydroxide particles. I made an evaluation. The specific surface area of this nickel-cobalt-manganese composite hydroxide was 5.9 m 2 / g, and the peak intensity ratio by X-ray diffraction measurement was 0.304.
  • the obtained nickel-cobalt-manganese composite hydroxide was mixed with lithium carbonate, and the mixture was subjected to TG-DTA measurement up to 980 ° C. at a heating rate of 5 ° C./min in a carbon dioxide gas atmosphere of 100 ml / min.
  • An endothermic peak was observed between 680 and 720 ° C.
  • the aggregate was confirmed in the sample after TG-DTA measurement.
  • the presence or absence of an endothermic peak between 680 and 720 ° C. and the presence or absence of aggregation observed by SEM are shown in Table 1.
  • the results of measuring the mesopore volume of the nickel-cobalt-manganese composite hydroxide by a nitrogen adsorption method are shown in Table 1.
  • the pH of the slurry of the nickel-cobalt-manganese composite hydroxide particles is set to 12.5 or more, and the air blowing time is 1.5 to 10 hours
  • the specific surface area of the nickel-cobalt-manganese composite hydroxide obtained as below was 3.0 to 11.0 m 2 / g, and the peak intensity ratio was less than 0.300.
  • the nickel-cobalt-manganese composite hydroxide having the specific surface area and the peak intensity ratio within the desired range has no endothermic peak between 680 and 720 ° C., and the reaction with the lithium compound is likely to proceed, and the carbon dioxide gas atmosphere It can be seen that the reaction of the nickel-cobalt-manganese composite hydroxide and lithium carbonate proceeds earlier than the melting of lithium carbonate in the inside, and there is no residual unreacted lithium carbonate.
  • the nickel-cobalt-manganese composite hydroxides of Examples 1 to 3 have high reactivity with the lithium compound.
  • Comparative Example 1 in which the nickel-cobalt-manganese composite hydroxide is not oxidized, the peak intensity ratio is greater than 0.300, the specific surface area does not increase, and an endothermic peak between 680 and 720 ° C. It was observed.
  • Comparative Example 1 unreacted lithium carbonate remained in a carbon dioxide gas atmosphere, and as shown in FIG. 2, aggregation due to the remaining lithium carbonate was confirmed. Therefore, it is understood that Comparative Example 1 has low reactivity with the lithium compound.
  • the peak intensity ratio is greater than 0.300 also in Comparative Example 2 in which the pH of the slurry of the nickel-cobalt-manganese composite hydroxide particles is smaller than 12.5 and Comparative Example 3 in which the blowing time of air is short. An endothermic peak between 680 and 720 ° C. was observed.
  • Comparative Example 2 and Comparative Example 3 unreacted lithium carbonate remained in a carbon dioxide gas atmosphere, and aggregation due to the remaining lithium carbonate was confirmed. Therefore, it is understood that the reactivity with the lithium compound is low also in Comparative Example 2 and Comparative Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 リチウム化合物との反応性に優れ、熱安定性及び電池特性に優れたニッケルコバルトマンガン複合水酸化物を得る。非水系電解質二次電池の正極活物質の前駆体となるものであり、一般式:Ni1-x-y-zCoMn(OH)(0<x≦1/3、0<y≦1/3、0≦z≦0.1、Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素)で表され、窒素吸着BET法により測定される比表面積が3.0~11.0m/gであり、かつX線回折測定による(100)面のピーク強度I(100)に対する(101)面のピーク強度I(101)の比I(101)/I(100)が0.300未満であるニッケルコバルトマンガン複合水酸化物とする。

Description

ニッケルコバルトマンガン複合水酸化物及びその製造方法
 本発明は、非水系電解質二次電池の正極活物質の前駆体となるニッケルコバルトマンガン複合水酸化物及びその製造方法に関し、特に、リチウムイオン二次電池の正極活物質の前駆体となるニッケルコバルトマンガン複合水酸化物及びその製造方法に関する。本出願は、日本国において2013年6月19日に出願された日本特許出願番号特願2013-128887を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 従来、携帯電話やノート型パーソナルコンピュータなどの携帯機器の普及に伴い、高いエネルギー密度を有する小型、軽量な二次電池が必要とされている。このような用途に好適な電池として、リチウムイオン二次電池があり、研究開発が盛んに行なわれている。
 また、自動車の分野でも、資源、環境問題から電気自動車に対する要望が高まり、電気自動車用やハイブリット自動車用の電源として、小型、軽量で放電容量が大きく、サイクル特性が良好なリチウムイオン二次電池が求められている。特に、自動車用の電源においては、出力特性が重要であり、出力特性が良好なリチウムイオン二次電池が求められている。
 リチウム含有複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を正極活物質に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。そして、この種のリチウムコバルト複合酸化物を用いたリチウムイオン二次電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行なわれてきており、すでにさまざまな成果が得られている。
 しかしながら、リチウムコバルト複合酸化物は、原料に高価なコバルト化合物を用いるため、活物質さらには電池のコストアップの原因となり、活物質の改良が望まれている。このリチウムコバルト複合酸化物を用いる電池の容量あたりの単価は、ニッケル水素電池より大幅に高いため、適用される用途がかなり限定されている。したがって、現在普及している携帯機器用の小型二次電池についてだけではなく、電力貯蔵用や電気自動車用などの大型二次電池についても、活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることに対する期待は大きく、その実現は、工業的に大きな意義があるといえる。
 ここで、リチウムイオン二次電池用正極活物質の新たなる材料として、リチウムコバルト複合酸化物よりも安価な4V級正極活物質、すなわち、ニッケル、コバルト及びマンガンの原子比が実質的に1:1:1であるLi[Ni1/3Co1/3Mn1/3]Oなる組成を有するリチウムニッケルコバルトマンガン複合酸化物が、注目されている。リチウムニッケルコバルトマンガン複合酸化物は、安価であるばかりか、リチウムコバルト複合酸化物やリチウムニッケル複合酸化物を正極活物質に用いたリチウムイオン二次電池よりも高い熱安定性を示すことから、開発が盛んに行なわれている。
 リチウムイオン二次電池が良好な電池特性を発揮するためには、正極活物質であるリチウムニッケルコバルトマンガン複合酸化物が適度な粒径と比表面積を有するとともに高密度であることが必要である。このような正極活物質の性状は、前駆体であるニッケルコバルトマンガン複合水酸化物の性状を強く反映するため、ニッケルコバルトマンガン複合水酸化物においても同様な性状が求められる。
 更に、良好な電池特性を発揮する正極活物質を得るには、リチウム化合物との合成時に発生する水蒸気や炭酸ガス雰囲気中においてもリチウム化合物との反応が進行しやすい、反応性に優れるニッケルコバルトマンガン複合水酸化物が求められる。リチウム化合物との反応性が悪いニッケルコバルトマンガン複合水酸化物は、リチウム化合物との合成時に、ニッケルコバルトマンガン複合水酸化物との反応が不完全となって、未反応のリチウム化合物が残留してしまう。また、ニッケルコバルトマンガン複合水酸化物とリチウム化合物との反応が完了する前にリチウム化合物が溶融し、凝集を引き起こす問題がある。
 正極活物質の前駆体となるニッケルコバルトマンガン複合水酸化物に関しては、以下に述べるような種々の提案がなされている。しかしながら、いずれの提案においても高密度化の検討はされているが、表面性状やリチウム化合物との反応性に関しては十分に考慮されていない。
 例えば、特許文献1には、反応槽内に、不活性ガス雰囲気中又は還元剤存在下、コバルト塩及びマンガン塩を含むニッケル塩水溶液、錯化剤、並びにアルカリ金属水酸化物を連続供給し、連続結晶成長させ、連続的に取り出すことにより、タップ密度が1.5g/cm以上であり、平均粒径が5~20μm、比表面積が8~30m/gの球状である高密度コバルトマンガン共沈水酸化ニッケルを得ることが提案されている。
 得られる共沈水酸化ニッケルは、リチウムニッケルコバルトマンガン複合酸化物の原料として用いることが可能である。しかしながら、この共沈水酸化ニッケルは、実施例によれば、タップ密度が1.71~1.91g/cmと、2.0g/cm未満であることから十分に高密度であるとはいえない。一方、比表面積については、具体的な数値は記載されておらず、比表面積の適正化については不明であり、リチウム化合物との反応性に関しては検討されていない。よって、この共沈水酸化ニッケルを前駆体として用いても、良好な電池特性を有するリチウムニッケルコバルトマンガン複合酸化物が得られない。
 また、特許文献2には、pH9~13の水溶液中で錯化剤の存在下、ニッケルとコバルトとマンガンとの原子比が実質的に1:1:1であるニッケル塩とコバルト塩とマンガン塩との混合水溶液を不活性ガス雰囲気下でアルカリ溶液と反応、共沈殿させてニッケルとコバルトとマンガンとの原子比が実質的に1:1:1であるニッケルコバルトマンガン複合水酸化物および/またはニッケルコバルトマンガン複合酸化物を得る工程1と、ニッケルとコバルトとマンガンとの合計の原子比とリチウムの原子比が実質的に1:1となるように、前記水酸化物および/または酸化物とリチウム化合物との混合物を700℃以上で焼成する工程2とからなるリチウムニッケルコバルトマンガン複合酸化物の製造方法が提案されている。この提案においても、得られるニッケルコバルトマンガン複合水酸化物のタップ密度は1.95g/cmで2.0g/cm未満であり、比表面積は13.5m/gと非常に大きいものとなっている。さらに、リチウム化合物との反応性に関しても検討されていない。
 したがって、リチウム化合物との反応性が良く、良好な電池特性が得られるようなニッケルコバルトマンガン複合酸化物を製造可能なニッケルコバルトマンガン複合水酸化物が求められている。
特開2008-195608号公報 特開2003-59490号公報
 そこで、本発明は、リチウム化合物との反応性に優れ、熱安定性に優れながら、電池特性にも優れる非水系電解質二次電池用の正極活物質を得ることが可能なニッケルコバルトマンガン複合水酸化物及びその製造方法を提供することを目的とする。
 本発明者は、上記課題を解決するため、ニッケルコバルトマンガン複合水酸化物のリチウム化合物との反応性に対する影響について鋭意研究したところ、窒素吸着BET法により測定される比表面積及びX線回折測定による(100)面のピーク強度I(100)に対する(101)面のピーク強度I(101)の比I(101)/I(100)が大きく影響するとの知見を得て、本発明を完成させるに至った。
 上述した目的を達成する本発明に係るニッケルコバルトマンガン複合水酸化物は、一般式:Ni1-x-y-zCoMn(OH)(0≦x≦1/3、0≦y≦1/3、0≦z≦0.1、Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素)で表され、非水系電解質二次電池の正極活物質の前駆体となるニッケルコバルトマンガン複合水酸化物であって、窒素吸着BET法により測定される比表面積が3.0~11.0m/gであり、かつX線回折測定による(100)面のピーク強度I(100)に対する(101)面のピーク強度I(101)の比I(101)/I(100)が0.300未満であることを特徴とする。
 上述した目的を達成する本発明に係るニッケルコバルトマンガン複合水酸化物の製造方法では、上記ニッケルコバルトマンガン複合水酸化物の製造方法であって、少なくともニッケル塩、コバルト塩及びマンガン塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液を反応槽内で混合するとともに、液温25℃基準でのpHが11~13の範囲に保持されるように苛性アルカリ水溶液を供給して反応溶液とし、反応溶液中でニッケルコバルトマンガン複合水酸化物粒子を晶析する晶析工程と、晶析工程で形成されたニッケルコバルトマンガン複合水酸化物粒子のスラリーに酸化剤を供給して、ニッケルコバルトマンガン複合水酸化物粒子を酸化して、X線回折測定による(100)面のピーク強度I(100)に対する(101)面のピーク強度I(101)の比I(101)/I(100)が0.300未満となるようにする酸化工程と、酸化したニッケルコバルトマンガン複合水酸化物粒子を固液分離し、水洗する固液分離工程と、固液分離したニッケルコバルトマンガン複合水酸化物粒子を乾燥する乾燥工程を有することを特徴とする。
 本発明は、非水系電解質二次電池の正極活物質の前駆体となるニッケルコバルトマンガン複合水酸化物であって、リチウム化合物との反応性に優れたものであり、それを前駆体として得られたリチウムニッケルコバルトマンガン複合酸化物を非水系電解質二次電池の正極活物質として用いた場合には熱安定性に優れるとともに電池特性に優れた非水電解質二次電池とすることができる。また、本発明では、容易に工業的規模でニッケルコバルトマンガン複合水酸化物を生産することができ、工業的価値が非常に高いものである。
図1は、実施例1において得られたニッケルコバルトマンガン複合水酸化物とリチウム化合物との混合物を炭酸ガス雰囲気下で昇温後得られた試料のSEM写真である。 図2は、比較例1において得られたニッケルコバルトマンガン複合水酸化物とリチウム化合物との混合物の炭酸ガス雰囲気下で昇温後得られた試料のSEM写真である。
 以下に、本発明を適用したニッケルコバルトマンガン複合水酸化物及びその製造方法について詳細に説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。本発明に係る実施の形態の説明は、以下の順序で行う。
1.ニッケルコバルトマンガン複合水酸化物
2.ニッケルコバルトマンガン複合水酸化物の製造方法
 2-1.晶析工程
 2-2.酸化工程
 2-3.固液分離工程
 2-4.乾燥工程
 <1.ニッケルコバルトマンガン複合水酸化物>
 本実施の形態に係るニッケルコバルトマンガン複合水酸化物は、非水系電解質二次電池の正極活物質の前駆体であって、特にリチウムイオン二次電池の正極活物質の前駆体となるものである。ニッケルコバルトマンガン複合水酸化物は、一般式:Ni1-x-y-zCoMn(OH)(0<x≦1/3、0<y≦1/3、0≦z≦0.1、Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素)で表され、窒素吸着BET法により測定される比表面積が3.0~11.0m/gであり、かつX線回折測定による(100)面のピーク強度I(100)に対する(101)面のピーク強度I(101)の比[I(101)/I(100)](以下、単にピーク強度比という)が0.300未満である。
 比表面積が11.0m/gを超える場合には、最終的に得られる正極活物質の比表面積が大きくなり過ぎ、十分な安全性が得られない。また、比表面積が3.0m/g未満である場合には、リチウム化合物との合成時にリチウム化合物との反応性が悪くなり、十分に反応が進行せず、昇温過程でリチウム化合物が溶融し凝集を引き起こしてしまう。したがって、正極活物質の安全性を高め、凝集を防止するためには、ニッケルコバルトマンガン複合水酸化物の比表面積を3.0~11.0m/gの範囲とすることが好ましい。
 更に、後述するように、ニッケルコバルトマンガン複合水酸化物の製造方法では、ニッケルコバルトマンガン複合水酸化物を酸化することで結晶を微細化し、X線回折測定によるピーク強度比を弱くする。ニッケルコバルトマンガン複合水酸化物の結晶が微細化することにより、特に、2θ=38°付近に出現する(101)面のピーク強度I(101)が弱くなる。一方、2θ=19°付近に出現する(100)面のピーク強度I(100)は、I(101)より弱くなる度合いが小さい。したがって、ピーク強度比[I(101)/I(100)]を結晶微細化の指標とすることができる。即ち、ピーク強度比が小さい場合には、ニッケルコバルトマンガン複合水酸化物の結晶の微細化が進行していることがわかる。ここで、ピーク強度とは、X線回折図形におけるピーク高さを意味する。
 ピーク強度比を0.300未満とすることにより、微細なクラックがニッケルコバルトマンガン複合水酸化物の粒子内に生成され、結晶が十分に微細化された状態とすることができ、リチウム化合物と混合して焼成する際に、二次粒子内へ溶融したリチウム化合物が十分に浸透するとともに、微細化による反応促進効果により、リチウム化合物との反応性が大きく向上する。
 ピーク強度比が0.300以上では、ニッケルコバルトマンガン複合水酸化物の結晶が十分に微細化されておらず、リチウム化合物との反応性が悪くなり、焼成時に十分に反応が進行せず、昇温過程でリチウム化合物が溶融し凝集を引き起こしてしまう。
 一方、ピーク強度比は、0.070以上とすることが好ましい。ピーク強度比が0.070未満になると、ニッケルコバルトマンガン複合水酸化物の結晶の微細化が進みすぎ、比表面積が11.0m/gを超えることがある。
 更に、ニッケルコバルトマンガン複合水酸化物は、反応性をより高めるため、窒素吸着法により測定されるメソ細孔容積が0.010~0.035ml/gであることが好ましく、0.010~0.030ml/gであることがより好ましい。メソ細孔容積が0.010ml/g未満では、合成時に粒子内へ溶融した炭酸リチウムの浸透が十分でなく、リチウム化合物との反応性が低下することがある。一方、メソ細孔容積が0.035ml/gを超えると、比表面積が大きくなりすぎ、十分な安全性が得られないことがある。
 また、ニッケルコバルトマンガン複合水酸化物の平均粒径は、5~15μmであることが好ましく、タップ密度が2.0g/cm以上であることが好ましい。これにより、より電池性能を向上させることができる。
 一般式中にMで表した添加元素は、サイクル特性や出力特性などの電池特性を向上させるために添加するものである。添加元素Mの原子比zが0.1を超える場合には、Redox反応に貢献する金属元素が減少して電池容量が低下するため好ましくない。したがって、添加元素Mは、原子比zで0.1以下となるように調整する。
 以上のようなニッケルコバルトマンガン複合水酸化物は、非水系電解質二次電池の正極活物質の前駆体として好適であり、通常の製造方法により非水系電解質二次電池の正極活物質とすることができる。
 例えば、リチウムイオン二次電池の正極活物質となるニッケルコバルトマンガン複合酸化物の製造方法は、先ず、ニッケルコバルトマンガン複合水酸化物をそのままの状態か、800℃以下の温度で熱処理する。次に、リチウム化合物を好ましくはニッケルコバルトマンガン複合水酸化物の金属元素に対してリチウムを原子比で0.95~1.5となるように混合して800~1000℃で焼成する。これにより、ニッケルコバルトマンガン複合酸化物を得ることができる。
 上述したニッケルコバルトマンガン複合水酸化物は、窒素吸着BET法により測定される比表面積が3.0~11.0m/gであり、かつX線回折測定によるピーク強度比が0.300未満であることによって、リチウム化合物との反応性に優れ、リチウム化合物との反応が進行しやすく、リチウム化合物の溶融よりもリチウム化合物との反応が先行し、凝集が発生することを防止できる。
 ニッケルコバルトマンガン複合水酸化物のリチウム化合物との反応性及び凝集のしやすさを評価する方法としては、不活性雰囲気での熱重量測定及び示差熱分析(TG-DTA)を利用できる。例えば、ニッケルコバルトマンガン複合水酸化物と炭酸リチウムを混合後、炭酸ガス雰囲気中でTG-DTA測定を行うことにより、ニッケルコバルトマンガン複合水酸化物の反応性が悪ければ、未反応の炭酸リチウムが昇温後も残り、680~720℃付近に炭酸リチウムの溶融に由来する吸熱ピークがDTA曲線に観察される。また、TG-DTA測定後の試料のSEM観察を行うことで凝集の有無を確認できる。
 以上のようなニッケルコバルトマンガン複合水酸化物は、窒素吸着BET法により測定される比表面積が3.0~11.0m/gであり、かつX線回折測定によるピーク強度比が0.300未満であることによって、リチウム化合物との反応性に優れ、凝集が抑えられている。このようにニッケルコバルトマンガン複合水酸化物を非水系電解質二次電池の正極活物質の前駆体に用いた場合には、熱安定性に優れながら、優れた電池特性を有する非水系電解質二次電池を得ることができる。
 <2.ニッケルコバルトマンガン複合水酸化物の製造方法>
 次に、上述したニッケルコバルトマンガン複合水酸化物の製造方法について説明する。
 ニッケルコバルトマンガン複合水酸化物の製造方法は、先ず、少なくともニッケル塩、コバルト塩及びマンガン塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液を反応槽内で混合するとともに、液温25℃基準でのpHが11~13の範囲に保持されるように苛性アルカリ水溶液を供給して反応溶液とし、反応溶液中でニッケルコバルトマンガン複合水酸化物粒子を晶析する。次に、得られたニッケルコバルトマンガン複合水酸化物粒子のスラリーに酸化剤を供給することによりニッケルコバルトマンガン複合水酸化物粒子を酸化し、そしてニッケルコバルトマンガン複合水酸化物粒子を固液分離した後、乾燥してニッケルコバルトマンガン複合水酸化物粒子を得る。
 ニッケルコバルトマンガン複合水酸化物の製造方法では、ニッケルコバルトマンガン複合水酸化物粒子を酸化することにより、ニッケルコバルトマンガン複合水酸化物粒子のX線回折測定におけるピーク強度比が低下するとともに、比表面積が増加する。このようなニッケルコバルトマンガン複合水酸化物は、リチウム化合物との反応性に優れ、熱安定性及び電池特性に優れた正極活物質の前駆体となる。
 以下に、ニッケルコバルトマンガン複合水酸化物の製造方法について工程毎を詳細に説明する。
 (2-1)晶析工程
 晶析工程は、少なくともニッケル塩、コバルト塩及びマンガン塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液を混合するとともに、液温25℃基準でのpHが11~13の範囲に維持されるように苛性アルカリ水溶液を供給して反応溶液とし、該反応溶液中でニッケルコバルトマンガン複合水酸化物粒子を晶析する。
 晶析工程では、反応溶液の温度を20~70℃に維持することが好ましい。これにより、ニッケルコバルトマンガン複合水酸化物の結晶が成長する。反応溶液の温度が20℃未満では、反応溶液における塩の溶解度が低く塩濃度が低くなるため、ニッケルコバルトマンガン複合水酸化物の結晶が十分に成長しない。また、反応溶液の温度が70℃を超えると、結晶核の発生が多く微細な粒子が多くなるため、ニッケルコバルトマンガン複合水酸化物粒子が高密度とならない。
 また、晶析工程では、液温25℃基準でのpHを11~13、好ましくは11~12の範囲に制御する。pHが11未満では、ニッケルコバルトマンガン複合水酸化物の粒子が粗大になる上に、反応後、液中にニッケルが残留し、ニッケルのロスが発生してしまう。また、pHが13を超えると、ニッケルコバルトマンガン複合水酸化物の晶析速度が速くなり、微細な粒子が多くなってしまう。微細な粒子が多過ぎると、これらが焼結して凝集粉を生ずるという問題が生じる。
 反応溶液のpHは、苛性アルカリ水溶液を供給することにより制御することができる。苛性アルカリ水溶液は、特に限定されるものではなく、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物水溶液を用いることができる。アルカリ金属水酸化物を、直接、反応溶液に添加することもできるが、pH制御の容易さから、水溶液として添加することが好ましい。苛性アルカリ水溶液の添加方法も特に限定されるものではなく、反応溶液を十分に攪拌しながら、定量ポンプなどの流量制御が可能なポンプで、液温25℃基準でのpHが11~13の範囲となるように添加すればよい。
 更に、晶析工程では、共沈殿によるニッケルコバルトマンガン複合水酸化物粒子を非酸化雰囲気又は還元剤の存在下で生成することが好ましい。酸化雰囲気又は還元剤が存在しない状態で生成させると、コバルト及びマンガンが酸化し、新たな核が生成しやすく一次粒子が微細となって、比表面積が大きくなり過ぎることがある。さらには、球状の二次粒子が大きく成長できないため、平均粒径が小さくなり過ぎることがある。また、晶析工程でニッケルコバルトマンガン複合水酸化物粒子の比表面積が大きくなり過ぎると、後工程の酸化工程で比表面積とピーク強度比の制御が困難になることがある。
 晶析工程では、反応溶液の開放面と接触する反応槽内の雰囲気の酸素濃度を0.2容量%以下に維持することにより、非酸化性雰囲気とすることが好ましい。酸素濃度を0.2容量%以下に維持することにより、反応溶液中での金属元素、特にマンガンの酸化が抑制され、一次粒子が発達して高結晶性の球状の二次粒子が得られ、比表面積の増加と平均粒径の低下を抑制することができる。
 酸素濃度が0.2容量%を超える場合には、一次粒子が微細となり、結晶界面が増加するため、得られるニッケルコバルトマンガン複合水酸化物の比表面積が11.0m/gを超えることがある。また、平均粒径が小さくなり過ぎることがある。酸素濃度の下限は、特に限定されるものではなく、酸素濃度の低下とともに比表面積が低くなり、平均粒径が増加し、また炭素含有量も低くなるので、0.2容量%以下で、かつ工業的に可能な範囲で、所望の比表面積と平均粒径に制御できる酸素濃度とすればよい。炭素含有量は、ニッケルコバルトマンガン複合水酸化物中において0.1質量%以下であることが好ましい。炭素含有量は、高周波-赤外燃焼法により測定することができる。
 反応槽内の酸素濃度を0.2容量%以下にするには、例えば、反応槽内に不活性ガスを供給することにより制御することが容易であるため、不活性ガスを用いることが好ましい。ここで、反応槽内への不活性ガスの供給は、酸素濃度が0.2容量%以下に維持されるように晶析中は十分な量の不活性雰囲気ガスを供給すること、又は供給し続けることが必要である。そこで、例えば、蓋付反応槽を用い、この反応槽に供給する不活性ガス量を調整することで酸素濃度の調整を容易に行うことができる。不活性ガスとしては、窒素ガスがコスト的に有利であり、好ましい。
 なお、酸素濃度は、0.2容量%以下に保持されていれば良いため、上述した制御方法に限定されるものではない。
 晶析工程では、酸素濃度が0.2容量%以下に維持されずとも、反応溶液に還元剤を添加することにより、金属元素の酸化が抑制されれば、一次粒子が発達するとともに二次粒子も大きくなり、比表面積や平均粒径の制御が可能である。還元剤は、金属元素の酸化が抑制される程度に添加すればよく、ヒドラジンなど、金属元素の酸化が抑制可能なものであればよい。
 晶析工程において得られるニッケルコバルトマンガン複合水酸化物は、一般式:Ni1-x-y-zCoMn(OH)(0<x≦1/3、0<y≦1/3、0≦z≦0.1、Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素)で表されるものであり、供給する原料中の原子比とほぼ一致する。したがって、原料中の原子比を一般式の原子比に調整することで、ニッケル、コバルト、マンガン及び添加元素Mの原子比を、一般式の範囲とすることができる。
 ニッケル塩とコバルト塩とマンガン塩との混合水溶液の塩濃度は、各塩の合計で1mol/L~2.6mol/Lとすることが好ましい。1mol/L未満であると、塩濃度が低く、ニッケルコバルトマンガン複合水酸化物の結晶が十分に成長しない。一方、2.6mol/Lを超えると、常温での飽和濃度を超えるため、結晶が再析出して配管を詰まらせるなどの危険がある上、結晶核の発生が多く微細な粒子が多くなってしまう。
 ここで使用可能なニッケル塩、コバルト塩及びマンガン塩は、特に限定されるものではないが、硫酸塩、硝酸塩又は塩化物の少なくとも1種であることが好ましい。
 晶析工程において用いるアンモニウムイオン供給体は、特に限定されるものではないが、アンモニア、硫酸アンモニウム又は塩化アンモニウムの少なくとも1種であることが好ましい。
 アンモニウムイオン供給の添加量は、反応溶液中のアンモニウムイオン濃度で5~20g/Lの範囲とすることが好ましい。アンモニウムイオン濃度で5g/L未満では、反応溶液中のニッケル、コバルト及びマンガンの溶解度が低く、結晶成長が十分でないため、高密度のニッケルコバルトマンガン複合水酸化物が得られない。また、アンモニウムイオン濃度で20g/Lを超えると、晶析速度が低下して生産性が悪化するとともに、液中に残留するニッケルなどの金属イオンが多くなり、コストが増加する。
 添加元素Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素であり、晶析工程中の混合水溶液に添加するか、個別に反応溶液に添加することで、ニッケルコバルトマンガン複合水酸化物を一般式の組成とすることができる。添加元素Mは、水溶性の化合物として添加することが好ましく、例えば、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、硝酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどを用いることができる。
 添加元素Mをニッケルコバルトマンガン複合水酸化物粒子の内部に均一に分散させる場合には、混合水溶液に、添加元素を含有する添加物を添加すればよく、ニッケルコバルトマンガン複合水酸化物粒子の内部に添加元素Mを均一に分散させた状態で共沈させることでできる。
 また、添加元素Mを添加する方法としては、ニッケルコバルトマンガン複合水酸化物粒子の表面を添加元素Mで被覆してもよい。その場合には、例えば、添加元素Mを含んだ水溶液でニッケルコバルトマンガン複合水酸化物粒子をスラリー化し、所定のpHとなるように制御しつつ、1種以上の添加元素Mを含む水溶液を添加して、晶析反応により添加元素をニッケルコバルトマンガン複合水酸化物粒子表面に析出させれば、その表面を添加元素で均一に被覆することができる。この場合、添加元素Mを含んだ水溶液に替えて、添加元素Mのアルコキシド溶液を用いてもよい。更に、ニッケルコバルトマンガン複合水酸化物粒子に対して、添加元素Mを含んだ水溶液又はスラリーを吹き付けて乾燥させることによっても、ニッケルコバルトマンガン複合水酸化物粒子の表面を添加元素Mで被覆することができる。また、ニッケルコバルトマンガン複合水酸化物粒子と1種以上の添加元素Mを含む塩が懸濁したスラリーを噴霧乾燥させる、又はニッケルコバルトマンガン複合水酸化物と1種以上の添加元素Mを含む塩を固相法で混合するなどの方法により被覆することができる。
 なお、ニッケルコバルトマンガン複合水酸化物粒子の表面を添加元素Mで被覆する場合には、混合水溶液中に存在する添加元素イオンの原子数比を被覆する量だけ少なくしておくことで、得られるニッケルコバルトマンガン複合水酸化物粒子の金属イオンの原子数比と一致させることができる。
 晶析工程における反応方式は、特に限定されるものではなく、バッチ方式や連続方式を使用することができる。連続方式は、混合水溶液、アンモニウムイオン供給体を含む水溶液及び苛性アルカリ水溶液をそれぞれ連続的に供給して、反応槽からニッケルコバルトマンガン複合水酸化物粒子を含む反応溶液を連続的にオーバーフローさせてニッケルコバルトマンガン複合水酸化物粒子を回収する方式であり、生産性、安定性の面から好ましい。
 連続方式の場合には、温度を一定に保持しながら、混合水溶液とアンモニウムイオン供給体を反応槽に一定量供給するとともに、苛性アルカリ水溶液を添加してpHを制御し、反応槽内が定常状態になった後、オーバーフローパイプより生成粒子を連続的に採取することが好ましい。なお、混合水溶液と苛性アルカリ水溶液を予め混合してから反応槽に供給することも可能であるが、苛性アルカリ水溶液との混合時に、混合水溶液中にニッケルコバルトマンガン複合水酸化物が生成することを防止するため、混合水溶液と苛性アルカリ水溶液は、個別に反応槽に供給することが好ましい。
 いずれの反応方式を用いる場合においても、晶析中は均一な反応を維持するために、十分に攪拌することが好ましい。また、晶析工程に用いる水は、不純物の混入を防止するため、純水などの可能な限り不純物の含有量が少ない水を用いることが好ましい。
 (2-2)酸化工程
 酸化工程では、晶析工程で得られたニッケルコバルトマンガン複合水酸化物粒子を酸化する。酸化工程では、ニッケルコバルトマンガン複合水酸化物粒子のスラリーに、好ましくは均一に酸化されるように撹拌しながら、酸化剤を供給することにより、ニッケルコバルトマンガン複合水酸化物粒子を酸化する。酸化工程では、ニッケルコバルトマンガン複合水酸化物のピーク強度比[I(101)/I(100)]が0.300未満となるように酸化する。
 酸化工程では、ニッケルコバルトマンガン複合水酸化物粒子を酸化することにより、微細なクラックが発生して結晶が微細化し、ピーク強度比が低下するとともに比表面積が増加する。これにより、ニッケルコバルトマンガン複合水酸化物粒子とリチウム化合物との反応性が向上する。
 ニッケルコバルトマンガン複合水酸化物の結晶性が高い場合には、(101)面のピークが明確に出現する。したがって、結晶性が高い場合には、ピーク強度比は高くなり、結晶性が低くなるとともに(101)面のピークが弱くなってピーク強度比が低下する。このことから、酸化後のニッケルコバルトマンガン複合水酸化物は、微細なクラックの発生による結晶の微細化により、結晶性が低下してピーク強度比が低下する。
 酸化剤には、次亜塩素酸ソーダや過硫酸塩などの酸化剤を用いることも可能であるが、高価な酸化剤を使用することは工業生産性を考慮するとコスト的に不利であり、酸素を用いて酸化させることが、コスト的にも不純物の混入を抑制する観点から有利である。
 酸化剤として酸素を用いる場合には、ニッケルコバルトマンガン複合水酸化物粒子のスラリーのpHを25℃基準で12.5以上とし、スラリーへ酸素を供給することにより、ニッケルコバルトマンガン複合水酸化物粒子を酸化させることが好ましい。また、十分な酸素を供給することができれば、スラリーに空気を供給してもよい。
 また、酸素供給による酸化時間は、1.5~10時間とすることが好ましく、2~7時間とすることがより好ましい。酸素の供給時間が1.5時間未満では、時間当たりの酸素供給量にかかわらず、ニッケルコバルトマンガン複合水酸化物粒子の十分な酸化が達成されるまで反応が進まない場合がある。一方、酸素供給時間が10時間を超える場合には、酸素が無駄になるだけではなく、酸化反応が進み過ぎて比表面積が大きくなり過ぎてしまう。したがって、酸素の供給時間を1.5~10時間とすることで、ニッケルコバルトマンガン複合水酸化物粒子を効率よく、かつ、十分に酸化することができる。
 ニッケルコバルトマンガン複合水酸化物のスラリー中に含まれるOHイオンの存在は、酸化反応を促進し、高価な酸化剤を用いることなく水酸化ニッケルの酸化が可能となる。そのため、スラリー中に含まれるOHイオン濃度、具体的にはスラリーのpHを酸化工程の間、25℃基準で12.5以上に維持することで、酸化反応を促進させ、スラリー中への酸素供給により、酸化を促進させることができる。
 pHが12.5未満では酸化反応の促進が十分ではなく、長時間の酸化反応が必要となり工業生産性を低下させ、短時間で酸化反応を終了させた場合には酸化が不十分となり、結晶が微細化せず、リチウム化合物との反応性が悪化してしまう。一方、pHが13.5を越えても、13.5以下の場合に比しての酸化促進効果の向上が認められず、アルカリコストの上昇を招くのみである。したがって、酸化工程において酸素の添加により酸化する場合、スラリーのpHは、25℃基準で12.5以上、13.5以下に維持することが好ましく、12.5以上、13.0以下に保持することがより好ましい。スラリーのpH調整には、苛性アルカリ水溶液を用いることが好ましく、不純物の混入が少ない水酸化ナトリウム水溶液を用いることがより好ましい。
 スラリーとしては、晶析工程後のニッケルコバルトマンガン複合水酸化物粒子が生成した反応溶液をそのまま用いてもよく、ニッケルコバルトマンガン複合水酸化物粒子を固液分離した後、水に再度分散させてスラリー化したものも用いることができる。
 酸化剤の供給量及び酸化の時間は、製造条件を一定とすれば安定するので、予備試験により、晶析条件などとともに適宜決定すればよい。また、酸化工程に用いられる装置は、スラリーを撹拌しながら、酸化剤、あるいは、pH調整剤と酸素を供給できるものが好ましく、例えば、撹拌装置付の反応槽が用いられる。
 (2-3)固液分離工程
 固液分離工程では、酸化工程で酸化されたニッケルコバルトマンガン複合水酸化物粒子を含むスラリーからニッケルコバルトマンガン複合水酸化物粒子を分離する。固液分離工程では、スラリーを濾過した後、水洗し、濾過する。濾過は、通常用いられる方法でよく、例えば、遠心機、吸引濾過機が用いられる。また、水洗は、通常行なわれる方法でよく、ニッケルコバルトマンガン複合水酸化物粒子に含まれる余剰の塩基、非還元性錯化剤等を除去できればよい。水洗で用いる水は、不純物の混入を防止するため、可能な限り不純物の含有量が少ない水を用いることが好ましく、純水を用いることがより好ましい。
 (2-4)乾燥工程
 乾燥工程では、固液分離後のニッケルコバルトマンガン複合水酸化物粒子を乾燥する。この乾燥工程を終えると、ニッケルコバルトマンガン複合水酸化物が得られる。
 ニッケルコバルトマンガン複合水酸化物粒子の乾燥は、非酸化雰囲気中で、好ましくは乾燥温度を100~230℃で行う。
 酸化性雰囲気中で乾燥した場合には、酸化の制御が困難であり、乾燥中にニッケルコバルトマンガン複合水酸化物粒子の酸化がさらに進行して、比表面積が大きくなり過ぎてしまい、ピーク強度比が低下し過ぎる等の問題が生じることがある。このため、ニッケルコバルトマンガン複合水酸化物粒子の酸化を制御できる雰囲気中で乾燥することが好ましい。乾燥雰囲気としては、真空雰囲気や、酸素濃度が0.2容量%以下の窒素雰囲気などの不活性ガス雰囲気が好ましい。
 また、乾燥温度は、100~230℃とすることが好ましい。乾燥温度は、物温、即ち乾燥されるニッケルコバルトマンガン複合水酸化物粒子の最高温度である。乾燥温度が100℃未満である場合には、水分の蒸発が不十分であり、一方、乾燥温度が230℃を超える場合には、ニッケルコバルトマンガン複合水酸化物の分解が進み、酸化物との混合物となってしまう。酸化物が存在する場合には、酸化物の混在量により質量あたりのニッケルなどの金属含有量が変動するため、正極活物質の製造工程においてリチウム化合物と正確に配合することが困難になり、得られる正極活物質の電池特性を十分なものとすることが困難となる。
 以上のように、ニッケルコバルト複合水酸化物の製造方法では、少なくともニッケル塩、コバルト塩及びマンガン塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液を反応槽内で混合するとともに、液温25℃基準でのpHが11~13の範囲に維持されるように苛性アルカリ水溶液を供給して反応溶液とし、反応溶液中でニッケルコバルトマンガン複合水酸化物粒子を晶析させ、ニッケルコバルトマンガン複合水酸化物粒子のスラリーに酸化剤を供給して、ニッケルコバルトマンガン複合水酸化物粒子を酸化し、X線回折測定によるピーク強度比[I(101)/I(100)]を0.300未満とし、そしてニッケルコバルトマンガン複合水酸化物粒子を固液分離し、水洗した後乾燥して、ニッケルコバルトマンガン複合水酸化物を得ることができる。
 得られたニッケルコバルトマンガン複合水酸化物は、結晶が適度に微細化されており、ピーク強度比が低く、比表面積が増加しているため、リチウム化合物との反応性が高く、熱的安定性及び電池特性に優れた非水系電解質二次電池を得ることができる正極活物質の前駆体となる。
 したがって、得られたニッケルコバルトマンガン複合水酸化物により製造された正極活物質を用いた非水系電解質二次電池、特にチリウムイオン二次電池では、高容量でサイクル特性がよく、電池特性及び安全性に優れたものとなる。
 以下、本発明を適用した具体的な実施例について説明するが、本発明は、これらの実施例に限定されるものではない。なお、実施例及び比較例で用いたニッケルコバルトマンガン複合水酸化物及び非水系電解質二次電池用正極活物質の評価方法は、以下の通りである。
 (1)金属成分の分析:
 ICP発光分析装置(Inductively Coupled Plasma)(VARIAN社製、725ES)を用いて、ICP発光分析法により分析した。
 (2)アンモニウムイオン濃度の分析:
 JIS標準による蒸留法によって測定した。
 (3)BET比表面積の測定:
 比表面積測定装置(ユアサアイオニクス社製、マルチソープ16)を用いて、窒素吸着によるBET1点法により測定した。
 (4)平均粒径の測定及び粒度分布幅の評価:
 レーザー回折式粒度分布計(日機装株式会社製、マイクロトラックHRA)を用いて、体積基準による平均粒径の測定及び粒度分布幅の評価を行った。
 (5)ピーク強度比の測定:
 X線回折装置(パナリティカル社製、X‘Pert PRO)を用いて、Cu-Kα線による粉末X線回折測定を行った。得られたX線回折図形において、各結晶面のピークからバックグラウンドを除き、その最大ピーク高さから(100)面及び(101)面のピーク高さを求め、ピーク強度比を算出した。
 (6)反応性の評価:
 ニッケルコバルトマンガン複合水酸化物を炭酸リチウムと混合した後、その混合物を100ml/分の炭酸ガス雰囲気中で、差動型示差熱天秤(ブルカーAXS社製、TG-DTA2020SR)を用いて、昇温速度5℃/分で980℃まで熱重量測定及び示差熱分析(TG-DTA)を行った。示差熱分析における680~720℃の間の吸熱ピークの有無により評価した。
 (7)形態の観察評価:
 走査型電子顕微鏡(日本電子株式会社製、JSM-6360LA、以下、SEMと記載)を用いて、反応性の評価後の試料を乳鉢で粉砕した後、形状と外観の観察及び凝集の有無の評価を行った。
 [実施例1]
 実施例1では、邪魔板を4枚取り付けた槽容積5Lのオーバーフロー式晶析反応槽に、純水4L、25質量%アンモニア水を200mL投入して、恒温槽及び加温ジャケットにて60℃に加温し、25質量%苛性ソーダ溶液を添加して、恒温槽内の反応溶液のpHを液温25℃基準で12.0に調整した。
 次に、60℃に保持した反応溶液を攪拌しつつ、定量ポンプを用いて、ニッケル濃度0.667mol/Lの硫酸ニッケルと、コバルト濃度0.667mol/Lの硫酸コバルトと、マンガン濃度0.667mol/Lの硫酸マンガンとの混合水溶液(以下、混合水溶液と記載する。)を10ml/minで、併せて25質量%アンモニア水を1.5ml/minで連続的に供給するとともに、25質量%苛性ソーダ溶液を添加して、液温25℃基準でのpHが12.0、アンモニウムイオン濃度を5~15g/Lとなるように制御して、晶析反応を行った。
 晶析の際の攪拌は、直径8cmの6枚羽根タービン翼を用いて、800rpmの回転速度で水平に回転させることにより行った。また、混合水溶液の反応系内への供給方法としては、反応溶液中に供給口となる注入ノズルを差込み、混合水溶液が反応溶液中に直接供給されるようにして行った。
 晶析反応によって生成したニッケルコバルトマンガン複合水酸化物粒子を、オーバーフローにて連続的に取り出した。反応が安定した反応開始から48~72時間にかけて取り出されたニッケルコバルトマンガン複合水酸化物粒子を含むスラリーを攪拌しながら水酸化ナトリウムを加えて液温25℃基準でのpHを12.8に上昇させ、酸化工程に用いるスラリーとした。
 次に、スラリーに空気を3L/分の流量で3時間吹き込み、ニッケルコバルトマンガン水酸化物粒子を酸化させた。
 次に、ブフナー漏斗及び吸引瓶を用いてスラリーを固液分離した後、水洗し濾過物を得た。この濾過物を真空乾燥機で乾燥温度120℃、12時間保持することにより乾燥してニッケルコバルトマンガン複合水酸化物を得た。
 得られたニッケルコバルトマンガン複合水酸化物のニッケル品位は21.5wt%、コバルト品位は21.5wt%、マンガン品位は19.8wt%で、各元素比は33.6:33.4:33.0でほぼ原料水溶液の組成比に等しく、平均粒径は10.5μmであった。また、比表面積は7.7m/gであり、X線回折測定によるピーク強度比は0.120であった。これらの値を表1に示す。
 得られたニッケルコバルトマンガン複合水酸化物を炭酸リチウムと混合した後、その混合物を100ml/minの炭酸ガス雰囲気中で、昇温速度5℃/minで980℃までTG-DTA測定を行ったところ、680~720℃の間に吸熱ピークは観察されなかった。また、TG-DTA測定後の試料を走査型電子顕微鏡で観察したところ、図1に示すように凝集は確認されなかった。評価結果を表1に示す。更に、ニッケルコバルトマンガン複合水酸化物について窒素吸着法によりメソ細孔容積を測定した結果を表1に示す。
 [実施例2]
 実施例2では、空気を3L/分の流量で5時間吹き込み、ニッケルコバルトマンガン複合水酸化物粒子を酸化させたこと以外は実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに各評価を行った。得られたニッケルコバルトマンガン複合水酸化物の比表面積は8.6m/gであり、X線回折測定によるピーク強度比は0.082であった。
 得られたニッケルコバルトマンガン複合水酸化物を炭酸リチウムと混合した後、その混合物を100ml/minの炭酸ガス雰囲気中で、昇温速度5℃/minで980℃までTG-DTA測定を行ったところ、680~720℃の間に吸熱ピークは観察されなかった。また、TG-DTA測定後の試料に凝集は確認されなかった。680~720℃の間の吸熱ピークの有無及びSEMにて観察した凝集の有無を表1に示す。更に、ニッケルコバルトマンガン複合水酸化物について窒素吸着法によりメソ細孔容積を測定した結果を表1に示す。
 [実施例3]
 実施例3では、ニッケルコバルトマンガン複合水酸化物粒子を酸化する前に、スラリーを攪拌しながら水酸化ナトリウムを加えて液温25℃基準でのpHを12.5に上昇させたこと以外は実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに各評価を行った。得られたニッケルコバルトマンガン複合水酸化物の比表面積は7.0m/gであり、X線回折測定によるピーク強度比は0.184であった。
 得られたニッケルコバルトマンガン複合水酸化物を炭酸リチウムと混合した後、その混合物を100ml/minの炭酸ガス雰囲気中で、昇温速度5℃/minで980℃までTG-DTA測定を行ったところ、680~720℃の間に吸熱ピークは観察されなかった。また、TG-DTA測定後の試料に凝集は確認されなかった。680~720℃の間の吸熱ピークの有無及びSEMにて観察した凝集の有無を表1に示す。更に、ニッケルコバルトマンガン複合水酸化物について窒素吸着法によりメソ細孔容積を測定した結果を表1に示す。
 [比較例1]
 比較例1では、晶析後にニッケルコバルトマンガン複合水酸化物粒子の酸化を行わなかった以外は実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに各評価を行った。得られたニッケルコバルトマンガン複合水酸化物の比表面積は2.7m/gであり、X線回折測定によるピーク強度比は0.452であった。
 得られたニッケルコバルトマンガン複合水酸化物を炭酸リチウムと混合した後、その混合物を100ml/minの炭酸ガス雰囲気中で、昇温速度5℃/minで980℃までTG-DTA測定を行ったところ、680~720℃の間に吸熱ピークが観察された。また、TG-DTA測定後の試料に凝集体が確認された。TG-DTA測定後の試料のSEM写真を図2に示す。680~720℃の間の吸熱ピークの有無及びSEMにて観察した凝集の有無を表1に示す。更に、ニッケルコバルトマンガン複合水酸化物について窒素吸着法によりメソ細孔容積を測定した結果を表1に示す。
 [比較例2]
 比較例2では、晶析後のスラリーに水酸化ナトリウムを加えず、液温25℃基準でのpHが12.0のまま空気を3L/分の流量で3時間吹き込み、ニッケルコバルトマンガン複合水酸化物粒子を酸化させたこと以外は実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに各評価を行った。得られたニッケルコバルトマンガン複合水酸化物の比表面積は4.5m/gであり、X線回折測定によるピーク強度比は0.431であった。
 得られたニッケルコバルトマンガン複合水酸化物を炭酸リチウムと混合した後、その混合物を100ml/minの炭酸ガス雰囲気中で、昇温速度5℃/minで980℃までTG-DTA測定を行ったところ、680~720℃の間に吸熱ピークが観察された。また、TG-DTA測定後の試料に凝集体が確認された。680~720℃の間の吸熱ピークの有無及びSEMにて観察した凝集の有無を表1に示す。更に、ニッケルコバルトマンガン複合水酸化物について窒素吸着法によりメソ細孔容積を測定した結果を表1に示す。
 [比較例3]
 比較例3では、空気を3L/分の流量で1時間吹き込み、ニッケルコバルトマンガン複合水酸化物粒子を酸化させたこと以外は実施例1と同様にしてニッケルコバルトマンガン複合水酸化物を得るとともに各評価を行った。このニッケルコバルトマンガン複合水酸化物の比表面積は5.9m/gであり、X線回折測定によるピーク強度比は0.304であった。
 得られたニッケルコバルトマンガン複合水酸化物を炭酸リチウムと混合した後、その混合物を100ml/minの炭酸ガス雰囲気中で、昇温速度5℃/minで980℃までTG-DTA測定を行ったところ、680~720℃の間に吸熱ピークが観察された。また、TG-DTA測定後の試料に凝集体が確認された。680~720℃の間の吸熱ピークの有無及びSEMにて観察した凝集の有無を表1に示す。更に、ニッケルコバルトマンガン複合水酸化物について窒素吸着法によりメソ細孔容積を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、実施例1~3のように、酸化工程において、ニッケルコバルトマンガン複合水酸化物粒子のスラリーのpHを12.5以上とし、空気の吹き込み時間を1.5~10時間以内として得られたニッケルコバルトマンガン複合水酸化物の比表面積は3.0~11.0m/gであり、ピーク強度比が0.300未満となった。
 このように比表面積及びピーク強度比が所望の範囲内であるニッケルコバルトマンガン複合水酸化物は、680~720℃の間に吸熱ピークはなく、リチウム化合物との反応が進行しやすく、炭酸ガス雰囲気中において炭酸リチウムの融解よりもニッケルコバルトマンガン複合水酸化物と炭酸リチウムとの反応が先に進行し、未反応の炭酸リチウムの残留がないことがわかる。
 また、実施例1~3では、図1に示すように残留した炭酸リチウムによる凝集は起きなかった。
 以上より、実施例1~3のニッケルコバルトマンガン複合水酸化物は、リチウム化合物との反応性が高いことがわかる。
 一方、ニッケルコバルトマンガン複合水酸化物に対して酸化処理を行っていない比較例1では、ピーク強度比が0.300より大きく、比表面積が増加せず、680~720℃の間の吸熱ピークが観察された。比較例1では、炭酸ガス雰囲気中において未反応の炭酸リチウムが残留し、図2に示すよう残留した炭酸リチウムによる凝集が確認された。したがって、比較例1は、リチウム化合物との反応性が低いことがわかる。
 酸化工程において、ニッケルコバルトマンガン複合水酸化物粒子のスラリーのpHが12.5よりも小さい比較例2や空気の吹き込み時間が短い比較例3においても、ピーク強度比が0.300より大きくなり、680~720℃の間の吸熱ピークが観察された。比較例2や比較例3では、炭酸ガス雰囲気中において未反応の炭酸リチウムが残留し、残留した炭酸リチウムによる凝集が確認された。したがって、比較例2や比較例3についても、リチウム化合物との反応性が低いことがわかる。

Claims (10)

  1.  一般式:Ni1-x-y-zCoMn(OH)(0<x≦1/3、0<y≦1/3、0≦z≦0.1、Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素)で表され、非水系電解質二次電池の正極活物質の前駆体となるニッケルコバルトマンガン複合水酸化物であって、
     窒素吸着BET法により測定される比表面積が3.0~11.0m/gであり、かつX線回折測定による(100)面のピーク強度I(100)に対する(101)面のピーク強度I(101)の比I(101)/I(100)が0.300未満であることを特徴とするニッケルコバルトマンガン複合水酸化物。
  2.  レーザー回折散乱法による体積基準の平均粒径が5~15μmであることを特徴とする請求項1に記載のニッケルコバルトマンガン複合水酸化物。
  3.  一般式:Ni1-x-y-zCoMn(OH)(0<x≦1/3、0<y≦1/3、0≦z≦0.1、Mは、Mg、Al、Ca、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の元素)で表され、非水系電解質二次電池の正極活物質の前駆体となるニッケルコバルトマンガン複合水酸化物の製造方法であって、
     少なくともニッケル塩、コバルト塩及びマンガン塩を含む混合水溶液と、アンモニウムイオン供給体を含む水溶液を反応槽内で混合するとともに、液温25℃基準でのpHが11~13の範囲に維持されるように苛性アルカリ水溶液を供給して反応溶液とし、該反応溶液中でニッケルコバルトマンガン複合水酸化物粒子を晶析する晶析工程と、
     上記晶析工程で形成されたニッケルコバルトマンガン複合水酸化物粒子のスラリーに酸化剤を供給して、該ニッケルコバルトマンガン複合水酸化物粒子を酸化し、X線回折測定による(100)面のピーク強度I(100)に対する(101)面のピーク強度I(101)の比I(101)/I(100)を0.300未満とする酸化工程と、
     酸化した上記ニッケルコバルトマンガン複合水酸化物粒子を固液分離し、水洗する固液分離工程と、
     固液分離した上記ニッケルコバルトマンガン複合水酸化物粒子を乾燥する乾燥工程とを有することを特徴とするニッケルコバルトマンガン複合水酸化物の製造方法。
  4.  上記酸化工程では、上記スラリーのpHを25℃基準で12.5以上とし、該スラリーへ上記酸化剤として酸素を供給することにより、上記ニッケルコバルトマンガン複合水酸化物粒子を酸化させることを特徴とする請求項3に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  5.  上記晶析工程では、上記反応槽内に不活性ガスを供給することにより、上記反応溶液の解放面と接触する雰囲気の酸素濃度を0.2容量%以下に維持することを特徴とする請求項3に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  6.  上記晶析工程では、上記反応溶液の温度を20~70℃、アンモニウムイオン濃度を5~20g/Lの範囲に維持することを特徴とする請求項3に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  7.  上記混合水溶液、上記アンモニウムイオン供給体を含む水溶液及び上記苛性アルカリ水溶液をそれぞれ連続的に供給して、上記反応槽から上記ニッケルコバルトマンガン複合水酸化物粒子を含む反応溶液を連続的にオーバーフローさせて、上記ニッケルコバルトマンガン複合水酸化物粒子を回収することを特徴とする請求項3に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  8.  上記ニッケルコバルトマンガン複合水酸化物粒子の表面を添加元素Mの水酸化物で被覆することを特徴とする請求項3に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  9.  上記ニッケル塩、上記コバルト塩及び上記マンガン塩は、硫酸塩、硝酸塩又は塩化物の少なくとも1種であることを特徴とする請求項3に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
  10.  上記アンモニウムイオン供給体は、アンモニア、硫酸アンモニウム又は塩化アンモニウムの少なくとも1種であることを特徴とする請求項3に記載のニッケルコバルトマンガン複合水酸化物の製造方法。
PCT/JP2014/065723 2013-06-19 2014-06-13 ニッケルコバルトマンガン複合水酸化物及びその製造方法 WO2014203815A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14813170.9A EP3012227B1 (en) 2013-06-19 2014-06-13 Nickel-cobalt-manganese composite hydroxide and method for producing same
CN201480035057.3A CN105307980B (zh) 2013-06-19 2014-06-13 镍钴锰复合氢氧化物和其制造方法
KR1020157035217A KR102045041B1 (ko) 2013-06-19 2014-06-13 니켈 코발트 망간 복합 수산화물 및 그 제조 방법
US14/898,924 US9941515B2 (en) 2013-06-19 2014-06-13 Nickel-cobalt-manganese composite hydroxide and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-128887 2013-06-19
JP2013128887A JP6044463B2 (ja) 2013-06-19 2013-06-19 ニッケルコバルトマンガン複合水酸化物及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014203815A1 true WO2014203815A1 (ja) 2014-12-24

Family

ID=52104550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065723 WO2014203815A1 (ja) 2013-06-19 2014-06-13 ニッケルコバルトマンガン複合水酸化物及びその製造方法

Country Status (6)

Country Link
US (1) US9941515B2 (ja)
EP (1) EP3012227B1 (ja)
JP (1) JP6044463B2 (ja)
KR (1) KR102045041B1 (ja)
CN (1) CN105307980B (ja)
WO (1) WO2014203815A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103057A (ja) * 2015-11-30 2017-06-08 旭硝子株式会社 正極活物質の製造方法
CN109311699A (zh) * 2016-06-14 2019-02-05 住友金属矿山株式会社 含镍氢氧化物的制造方法
JP2020119905A (ja) * 2020-04-14 2020-08-06 住友化学株式会社 正極活物質の製造方法
CN113329975A (zh) * 2019-12-30 2021-08-31 荆门市格林美新材料有限公司 一种通过晶种加入量调控晶面择优生长的高镍三元前驱体的制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3281915T3 (pl) 2016-08-10 2019-09-30 Umicore Prekursory materiałów katody zawierających tlenek metalu przejściowego litu do baterii wielokrotnego ładowania
KR101908082B1 (ko) 2017-02-27 2018-10-15 주식회사 이엔드디 니켈―코발트―망간 복합전구체의 이종원소 코팅 방법
JP6924657B2 (ja) * 2017-09-11 2021-08-25 株式会社田中化学研究所 電池用正極活物質に用いられる遷移金属複合水酸化物粒子の製造方法
CN109574090B (zh) * 2017-09-28 2020-09-15 比亚迪股份有限公司 氢氧化镍钴锰和正极材料及其制备方法和锂离子电池
CN107732212A (zh) * 2017-10-25 2018-02-23 广东邦普循环科技有限公司 一种多孔镍钴锰复合氢氧化物及其制备方法和在锂离子正极材料中的应用
JP6958629B2 (ja) * 2017-10-26 2021-11-02 住友金属鉱山株式会社 ニッケル複合酸化物、リチウムニッケル複合酸化物の製造方法
EP3719889A4 (en) * 2017-11-28 2021-01-27 Sumitomo Metal Mining Co., Ltd. PRECURSOR OF A POSITIVE ELECTRODE ACTIVE MATERIAL FOR A SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE AND METHOD FOR MANUFACTURING A POSITIVE ELECTRODE ACTIVE MATERIAL FOR A SECONDARY BATTERY WITH WATER SUPPLY
JP6966959B2 (ja) * 2018-03-01 2021-11-17 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、正極及びリチウム二次電池
GB201915117D0 (en) 2019-10-18 2019-12-04 Johnson Matthey Plc Composition for preparation of electrode material
CN114728812B (zh) * 2020-03-20 2024-08-09 株式会社Lg化学 制备锂二次电池用正极活性材料前体的方法、正极活性材料前体以及通过使用所述前体制备的正极活性材料、正极和锂二次电池
CN112151790B (zh) * 2020-08-26 2022-03-08 万华化学集团股份有限公司 高镍三元正极材料前驱体及其晶面可控生长的方法、三元正极材料及锂离子电池
CN114525578B (zh) * 2020-11-21 2023-07-07 华友新能源科技(衢州)有限公司 一种提高前驱体一次晶须一致性的方法
JP6935601B1 (ja) 2021-01-08 2021-09-15 株式会社田中化学研究所 ニッケル含有水酸化物、ニッケル含有水酸化物を前駆体とした正極活物質の製造方法及びニッケル含有水酸化物の製造方法
CN115893519B (zh) * 2022-11-15 2024-07-19 泾河新城陕煤技术研究院新能源材料有限公司 宽粒度分布和高峰强比的镍钴锰氢氧化物制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081522A (ja) * 1996-09-04 1998-03-31 Sakai Chem Ind Co Ltd 粒子状組成物及びその製造方法
JP2001351630A (ja) * 2000-06-07 2001-12-21 Japan Storage Battery Co Ltd 非水電解質電池および非水電解質電池用正極物質の製造方法
JP2003059490A (ja) 2001-08-17 2003-02-28 Tanaka Chemical Corp 非水電解質二次電池用正極活物質及びその製造方法
WO2004092073A1 (ja) * 2003-04-17 2004-10-28 Seimi Chemical Co. Ltd. リチウム-ニッケル-コバルト-マンガン含有複合酸化物およびリチウム二次電池用正極活物質用原料とそれらの製造方法
JP2008195608A (ja) 2000-11-06 2008-08-28 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2009515799A (ja) * 2005-08-12 2009-04-16 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 無機化合物
WO2012169274A1 (ja) * 2011-06-07 2012-12-13 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127398A (zh) * 2007-06-28 2008-02-20 河南师范大学 一种球形羟基氧化镍钴锰及其制备方法
JP2011057518A (ja) * 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk 高密度ニッケル・コバルト・マンガン共沈水酸化物及びその製造方法
JP5638232B2 (ja) * 2009-12-02 2014-12-10 住友金属鉱山株式会社 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP5175826B2 (ja) * 2009-12-02 2013-04-03 トヨタ自動車株式会社 活物質粒子およびその利用
WO2011071094A1 (ja) * 2009-12-07 2011-06-16 住友化学株式会社 リチウム複合金属酸化物の製造方法、リチウム複合金属酸化物および非水電解質二次電池
CN103026537B (zh) * 2010-03-29 2016-03-16 住友金属矿山株式会社 非水类电解质二次电池用正极活性物质及其制造方法、该正极活性物质的前驱体、以及使用了该正极活性物质的非水类电解质二次电池
WO2012164752A1 (ja) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 非水系二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池
JP5741932B2 (ja) * 2011-06-01 2015-07-01 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物とその製造方法、及び非水系電解質二次電池用正極活物質の製造方法
JP5365711B2 (ja) * 2012-02-21 2013-12-11 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物及びその製造方法
JP5880426B2 (ja) * 2012-12-28 2016-03-09 住友金属鉱山株式会社 ニッケル複合水酸化物及びその製造方法、並びに正極活物質の製造方法
JP6186919B2 (ja) * 2013-06-17 2017-08-30 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物及びその製造方法
US10522830B2 (en) * 2013-11-22 2019-12-31 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081522A (ja) * 1996-09-04 1998-03-31 Sakai Chem Ind Co Ltd 粒子状組成物及びその製造方法
JP2001351630A (ja) * 2000-06-07 2001-12-21 Japan Storage Battery Co Ltd 非水電解質電池および非水電解質電池用正極物質の製造方法
JP2008195608A (ja) 2000-11-06 2008-08-28 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2003059490A (ja) 2001-08-17 2003-02-28 Tanaka Chemical Corp 非水電解質二次電池用正極活物質及びその製造方法
WO2004092073A1 (ja) * 2003-04-17 2004-10-28 Seimi Chemical Co. Ltd. リチウム-ニッケル-コバルト-マンガン含有複合酸化物およびリチウム二次電池用正極活物質用原料とそれらの製造方法
JP2009515799A (ja) * 2005-08-12 2009-04-16 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 無機化合物
WO2012169274A1 (ja) * 2011-06-07 2012-12-13 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103057A (ja) * 2015-11-30 2017-06-08 旭硝子株式会社 正極活物質の製造方法
CN109311699A (zh) * 2016-06-14 2019-02-05 住友金属矿山株式会社 含镍氢氧化物的制造方法
US11063258B2 (en) * 2016-06-14 2021-07-13 Sumitomo Metal Mining Co., Ltd. Method for producing nickel-containing hydroxide
CN113329975A (zh) * 2019-12-30 2021-08-31 荆门市格林美新材料有限公司 一种通过晶种加入量调控晶面择优生长的高镍三元前驱体的制备方法
CN113329975B (zh) * 2019-12-30 2023-06-06 荆门市格林美新材料有限公司 一种通过晶种加入量调控晶面择优生长的高镍三元前驱体的制备方法
JP2020119905A (ja) * 2020-04-14 2020-08-06 住友化学株式会社 正極活物質の製造方法

Also Published As

Publication number Publication date
EP3012227A1 (en) 2016-04-27
US9941515B2 (en) 2018-04-10
EP3012227A4 (en) 2017-02-15
CN105307980B (zh) 2018-06-08
EP3012227B1 (en) 2019-02-27
JP2015003838A (ja) 2015-01-08
KR102045041B1 (ko) 2019-11-14
CN105307980A (zh) 2016-02-03
KR20160021113A (ko) 2016-02-24
JP6044463B2 (ja) 2016-12-14
US20160293950A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
WO2014203815A1 (ja) ニッケルコバルトマンガン複合水酸化物及びその製造方法
JP6186919B2 (ja) ニッケルコバルトマンガン複合水酸化物及びその製造方法
JP5365711B2 (ja) ニッケルコバルトマンガン複合水酸化物及びその製造方法
JP6583359B2 (ja) ニッケルコバルトマンガン複合水酸化物
JP6428105B2 (ja) ニッケルコバルトマンガン化合物及びその製造方法
TWI412170B (zh) Composite oxide containing lithium and a method for producing the same
JP5464348B2 (ja) 非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物およびその製造方法、ならびに該ニッケル−コバルト複合水酸化物を用いた非水系電解質二次電池正極活物質の製造方法
JP6201895B2 (ja) ニッケルコバルトマンガン複合水酸化物の製造方法
JP5754416B2 (ja) ニッケルコバルト複合水酸化物の製造方法
WO2017119451A1 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP6245081B2 (ja) ニッケルコバルトマンガン複合水酸化物とその製造方法
JP5799849B2 (ja) ニッケルコバルト複合水酸化物及びその製造方法
JP5967264B2 (ja) 非水系電解質二次電池の正極活物質の製造方法
JP7371354B2 (ja) ニッケル複合水酸化物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035057.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157035217

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14898924

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014813170

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE