WO2014203498A1 - ホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置 - Google Patents

ホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置 Download PDF

Info

Publication number
WO2014203498A1
WO2014203498A1 PCT/JP2014/003112 JP2014003112W WO2014203498A1 WO 2014203498 A1 WO2014203498 A1 WO 2014203498A1 JP 2014003112 W JP2014003112 W JP 2014003112W WO 2014203498 A1 WO2014203498 A1 WO 2014203498A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste liquid
silica sand
boric acid
containing waste
cement
Prior art date
Application number
PCT/JP2014/003112
Other languages
English (en)
French (fr)
Inventor
寛史 岡部
裕一 東海林
春口 佳子
佐藤 龍明
遼 山本
恵二朗 安村
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP14814441.3A priority Critical patent/EP3012839B1/en
Publication of WO2014203498A1 publication Critical patent/WO2014203498A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/162Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
    • G21F9/165Cement or cement-like matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • G21F9/36Disposal of solid waste by packaging; by baling

Definitions

  • the present invention relates to a cement solidification treatment method and a cement solidification treatment apparatus for a boric acid-containing waste liquid.
  • boric acid-containing waste liquid used for adjusting the output of the reactor is generated.
  • boric acid water that is urgently injected into a nuclear reactor is stored, and boric acid-containing waste liquid may be generated.
  • Boric acid-containing waste liquid is neutralized with sodium hydroxide, lithium hydroxide or the like, and then solidified with cement or asphalt.
  • boric acid interferes with the setting reaction of cement, resulting in a significant delay in setting and a decrease in strength of the solidified body.
  • various proposals have been made such as adding calcium hydroxide or the like as a pretreatment agent and solidifying it from the viewpoint of solidifying the boric acid-containing waste liquid while increasing volume reduction.
  • the boric acid-containing waste liquid is made into dry powder, mixed with an alkali silicate binder aqueous solution, and further composed of an acid curing agent, a curing retarder, silica sand, etc.
  • a method of mixing and solidifying an agent has been proposed (see, for example, Patent Document 2).
  • the main component of the solidifying material is water glass and does not solidify with cement as the main component.
  • the conventional method for solidifying cement with boric acid-containing waste liquid has problems such as a request for further high volume reduction.
  • the present invention has been made in order to solve the above-described problems, and provides a cement solidification treatment method and a cement solidification treatment of a boric acid-containing waste liquid that can make the boric acid-containing waste liquid a highly-reduced and stable cement solidified body.
  • An object is to provide an apparatus.
  • One aspect of the method for solidifying a boric acid-containing waste liquid according to the present invention is a method for solidifying a radioactive boric acid-containing waste liquid by cement, and adding sodium hydroxide to the boric acid-containing waste liquid to reduce the volume.
  • Volume reduction step of preparing a solidified product a first kneading step of preparing a first kneaded product by kneading the solidified material, kneaded water and hydraulic solidified material, silica sand and the first kneaded material
  • a second kneading step of preparing a second kneaded product by kneading the product, and a weight ratio of the silica sand to the hydraulic solidified material (weight of the silica sand / weight of the hydraulic solidified material) ) Is 1.5 to 3.0.
  • An aspect of the cement solidification treatment apparatus for boric acid-containing waste liquid according to the present invention is an apparatus for cement solidifying a radioactive boric acid-containing waste liquid, and a kneader and sodium hydroxide is added to the boric acid-containing waste liquid to reduce the waste.
  • the solidified material supplying device for supplying the solidified material to a kneading machine, a kneading water supplying device for supplying kneading water to the kneading machine, and a hydraulic solidifying material for the kneading machine
  • a weight ratio of the silica sand to the hydraulic solidification material in the supply device is 1.5 to 3.0.
  • the boric acid-containing waste liquid can be made into a highly solid and stable cement solidified body.
  • FIG. 1 is a flowchart showing the steps of a cement solidification treatment method for boric acid-containing waste liquid according to an embodiment of the present invention
  • FIG. 2 is a cement solidification treatment apparatus for boric acid-containing waste liquid according to an embodiment of the present invention. It is a schematic block diagram which shows. The embodiment of the present invention will be described below with reference to FIGS.
  • the cement solidification treatment method shown in FIG. 1 includes a step of adding sodium hydroxide 2 to the boric acid-containing waste liquid 1 (S101), and drying the boric acid-containing waste liquid 1 to which sodium hydroxide 2 has been added to dry powder 3
  • a first volume reduction step (S102) for preparing the first kneaded product by kneading the dry powder 3, the kneaded water 4 and the hydraulic solidifying material 5
  • a second kneading step (S104) for preparing a second kneaded product by kneading the kneaded product and silica sand 6 together.
  • the cement solidification processing apparatus 10 includes a kneader 11 including a hydraulic solidification material supply device 14 that supplies the hydraulic solidification material 5 and a silica sand supply device 15 that supplies the silica sand 6.
  • the to-be-solidified material supply apparatus 12 is provided with the volume reduction apparatus (not shown) for reducing the boric-acid containing waste liquid 1 into a to-be-solidified substance.
  • the solidified product is a dry powder 3 obtained by drying the boric acid-containing waste liquid 1 or a concentrated waste liquid obtained by concentrating the boric acid-containing waste liquid 1.
  • the volume reduction device uses, for example, heat drying the boric acid-containing waste liquid 1 to obtain a dry powder 3 or reduce the volume to obtain a concentrated waste liquid.
  • the silica sand supply device 15 is provided with a silica sand supply amount adjusting device 16 for adjusting the silica sand supply amount of the silica sand supply device 15 to a predetermined amount.
  • Reference numeral 17 denotes a solidification container in which the second kneaded material kneaded by the kneader 11 is housed and solidified.
  • the object of cement solidification in this embodiment is a radioactive waste liquid containing boric acid (boric acid-containing waste liquid 1).
  • the first step of the present embodiment is a step of adding sodium hydroxide 2 to the boric acid-containing waste liquid 1.
  • sodium hydroxide 2 reacts with boron in the boric acid-containing waste liquid 1 to produce a sodium borate salt.
  • the amount of sodium hydroxide 2 is preferably a sodium / boron molar ratio (Na / B molar ratio) of 0.2 or more, more preferably 0.2 to 0.5, particularly preferably 0.2 to 0.3. To an appropriate volume. Thereby, the solubility with respect to the water of a sodium borate salt can be improved, and detergency, such as piping and a dryer, can be improved.
  • the second step of this embodiment is a step of reducing the volume of the boric acid-containing waste liquid 1 in order to solidify the boric acid-containing waste liquid 1 in a large volume with a high volume reduction.
  • the boric acid-containing waste liquid 1 is supplied to a dryer, where a drying process is performed to obtain a dry powder 3.
  • the temperature of the boric acid-containing waste liquid 1 after the addition of sodium hydroxide 2 is set to a temperature equal to or higher than the precipitation temperature of the sodium borate salt, preferably 60 ° C.
  • the boric acid-containing waste liquid 1 is supplied to the dryer by adjusting the temperature to about ° C or higher.
  • the boric acid-containing waste liquid 1 is preferably heated to about 80 ° C. or more, more preferably about 120 to 180 ° C., and particularly preferably about 160 ° C. for drying treatment.
  • the dryer is not particularly limited, but it is preferable to use a centrifugal thin film dryer.
  • Centrifugal thin film dryers have features such as high thermal efficiency, compact equipment, small amount of powder transfer to the gas phase during drying, and stable particle size of the resulting sodium borate powder It is for having.
  • a concentration process or a sedimentation process may be performed instead of performing the above-described drying process.
  • a concentrated waste liquid can be obtained.
  • the boric acid-containing waste liquid 1 is heated and concentrated, and the water content in the boric acid-containing waste liquid is adjusted to about 30% or less by weight.
  • sodium borate is precipitated by adding an additive to the boric acid-containing waste liquid 1.
  • the precipitated sodium borate salt is separated to obtain a concentrated waste liquid.
  • the dried powder 3 and the concentrated waste liquid after volume reduction may be cooled to about room temperature (room temperature: 25 ° C.), or the next third step may be performed as it is without cooling.
  • the third step of the present embodiment is a step of preparing the first kneaded product by kneading the dry powder 3, the kneaded water 4 and the hydraulic solidifying material 5 using a kneader.
  • the sodium borate salt contained in the dry powder 3 has the property of absorbing water and becoming a hydrated salt. Therefore, when the dry powder 3 is kneaded with a mixture of cement and kneaded water as in a normal cement kneading procedure, the viscosity of the cement kneaded material is extremely increased by the water-containing salt, resulting in kneading failure and false setting. There is a fear. Therefore, in the third step, the dry powder 3 and the kneaded water 4 are first mixed and stirred, and a hydrated salt is generated in advance during this time. Thereafter, it is preferable to knead the water-curable solidifying material 5 such as cement. Specifically, it is preferable to knead the dry powder 3 and the kneaded water 4 for, for example, 10 minutes or longer in consideration of the generation time of the hydrated salt.
  • the hydraulic solidifying material 5 is not particularly limited, but it is preferable to use Portland cement.
  • Portland cement When the boric acid-containing waste liquid 1 is cemented, the calcium in the cement tends to decrease due to the binding of calcium in the cement with boric acid. Therefore, Portland cement having a large amount of calcium in the hydraulic solidifying material 5 can be suitably used.
  • the fourth step of the present embodiment is a step of preparing the second kneaded material by kneading the first kneaded material obtained in the third step and the silica sand 6.
  • Boric acid contained in the boric acid-containing waste liquid 1 has the effect of significantly delaying the hardening of the cement and the strength of the cement solidified body 8.
  • calcium hydroxide is added to prevent these, there is a problem that calcium borate salt is deposited in the piping or dryer.
  • the kneaded silica 6 is kneaded into the first kneaded product in the fourth step, thereby suppressing the delay in hardening of the cement without using calcium, and finally the cement solidified body 8 to be finally obtained. Strength can be improved.
  • an amount of silica sand 6 in which the weight ratio indicated by the silica sand 6 / hydraulic solidifying material 5 (hereinafter referred to as S / C) is in the range of 1.5 to 3.0 is kneaded.
  • S / C is preferably 1.7 to 2.6, and particularly preferably about 2.3.
  • the silica sand 6 preferably has a median diameter of about 0.026 to 1.18 mm.
  • the silica sand 6 when the silica sand 6 is kneaded in the fourth step, it is preferable to substitute a part of the total weight of the added silica sand 6 for the zeolite 7.
  • Zeolite 7 is a solid acid and has high radionuclide adsorption performance. Therefore, the addition of zeolite 7 at a predetermined ratio dramatically improves the radioactivity confinement (radionuclide distribution coefficient) of cement solidified body 8. Can be improved. Furthermore, since the zeolite 7 adsorbs boron ions and boron compounds that inhibit the progress of cement solidification, the strength of the cement solidified body 8 can be improved.
  • the amount of zeolite 7 mixed is adjusted so that the weight ratio of zeolite 7 to the sum of zeolite 7 and silica sand 6 (weight of zeolite 7 / total weight of zeolite 7 and silica sand 6) is 0.05 to 0.40. It is preferable to adjust to 0.05 to 0.25, and it is particularly preferable to adjust to 0.10 to 0.20.
  • the strength of the cement solidified body 8 and the radioactivity confinement property can be improved.
  • the value of S is the value of the total weight of the silica sand 6 and the zeolite 7.
  • the particle size of zeolite 7 is preferably about 770 ⁇ m in median size.
  • the ion exchange capacity of zeolite 7 is preferably about 10 to 200 (meq) / 100 (g).
  • the method for mixing the silica sand 6 and the zeolite 7 is not particularly limited, and the silica sand 6 and the zeolite 7 may be mixed in advance, and this mixture may be mixed with the first kneaded material. You may mix with a 1st kneaded material.
  • the silica sand 6 and the zeolite 7 are mixed separately, either the silica sand 6 and the zeolite 7 may be mixed first or at the same time.
  • the second kneaded product thus obtained has good viscosity characteristics. Therefore, the second kneaded product can be accommodated in the solidification container 17 such as a drum can from the kneader by the outdrum mixing method to obtain the cement solidified body 8 having good solidification characteristics.
  • the solidification container 17 such as a drum can from the kneader by the outdrum mixing method to obtain the cement solidified body 8 having good solidification characteristics.
  • the cement solidification processing method of the present embodiment may be performed by an in-drum mixing method. That is, the dry powder 3, the kneaded water 4, the hydraulic solidifying material 5, the silica sand 6 and the zeolite 7 are all kneaded in the radioactive waste solidified container, and the obtained second kneaded product is used as the radioactive waste solidified container. It may be solidified as it is. In this case, equipment cost and operation cost can be further reduced.
  • the cement solidification treatment method of the present embodiment is excellent in workability because the second kneaded material has good viscosity characteristics. Furthermore, since calcium is not used, there is no problem of adhesion of the waste liquid component to the piping. Moreover, according to the cement solidification processing method of this embodiment, the cement solidified body 8 with improved solidification characteristics with improved strength can be obtained by mixing the silica sand 6 at a predetermined ratio.
  • Example 1 Hereinafter, based on the process shown in FIG. 1, the result of having carried out the cement solidification test of the boric acid-containing waste liquid will be described.
  • sodium hydroxide was added to a 12% by weight aqueous solution of boric acid heated to about 60 ° C., and the Na / B molar ratio was adjusted to 0.25 to obtain an aqueous solution of sodium borate (see FIG. 1). S101).
  • This sodium borate aqueous solution was used as a simulated waste liquid and quantitatively supplied to a centrifugal thin film dryer set at a heating temperature of about 160 ° C. to obtain a sodium borate dry powder (S102 shown in FIG. 1).
  • the properties of the second kneaded product were a good flow property with a viscosity of 9 dPa ⁇ s and a packing density of 1.99.
  • the cement solidified body had a breathing rate (floating water from the cement solidified body) of 0 vol%, a uniaxial compressive strength of ages 7 days of 8.9 MPa, and good solidification characteristics were also obtained. .
  • the properties of the second kneaded product were good flow properties with a viscosity of 10 dPa ⁇ s and a packing density of 2.02.
  • the cement solidified body had a breathing rate of 0 vol% after 24 hours and a uniaxial compressive strength of 9.6 MPa at a material age of 7 days, and good solidification characteristics were also obtained.
  • the characteristics of the second kneaded product were good flow characteristics with a viscosity of 12 dPa ⁇ s and a packing density of 2.04.
  • the cement solidified body had a breathing rate of 0 vol% after 24 hours, a uniaxial compressive strength of 7 days of age of 12.2 MPa, and good solidification characteristics were also obtained.
  • the properties of the second kneaded product were good flow properties, with a viscosity of 100 dPa ⁇ s and a packing density of 2.07.
  • the cement solidified body had a breathing rate of 0 vol% after 24 hours, a uniaxial compressive strength of 7 days of age of 11.9 MPa, and good solidification characteristics were also obtained.
  • the properties of the second kneaded product were good flow properties with a viscosity of 100 dPa ⁇ s and a packing density of 2.09.
  • the cement solidified body had a breathing rate of 0 vol% after 24 hours and a uniaxial compressive strength of 8.7 MPa at a material age of 7 days, and good solidification characteristics were also obtained.
  • the properties of the second kneaded product were good flow properties, with a viscosity of 70 dPa ⁇ s and a packing density of 2.0.
  • the cement solidified body has a breathing rate of 0 vol% after 24 hours, has a uniaxial compressive strength of 9.6 MPa at a material age of 7 days and a uniaxial compressive strength of a material at 28 days of age of 12 MPa, and also has good solidification characteristics. It was.
  • the cement solidified body had a uniaxial compressive strength of 8.9 MPa at an age of 28 days, and was able to obtain good solidification characteristics.
  • Example 1 a kneaded material was produced without mixing silica sand. That is, a kneaded product was obtained in the same manner as in Example 1 by adjusting to 392 g of kneaded water, 750 g of ordinary Portland cement, and 315 g of dried sodium borate powder. After measuring the physical properties of the kneaded product, cement solidified bodies were produced in the same manner as in Example 1 and the physical properties were evaluated.
  • the properties of the kneaded product were a viscosity of 150 dPa ⁇ s and a packing density of 1.95.
  • the cement solidified body had a breathing rate of 0 vol% after 24 hours, but the uniaxial compressive strength of the material 7 days old was about 2.9 MPa, and it was found that the strength was insufficient.
  • Table 1 shows the conditions and measurement results of Examples 1 to 7 and Comparative Example 1 described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 放射性のホウ酸含有廃液1に水酸化ナトリウム2を添加し、減容して被固化物を調製する減容工程と、前記被固化物と混練水4と水硬性固化材5とを混練して第1の混練物を調製する第1の混練工程と、ケイ砂6と前記第1の混練物とを混練して第2の混練物を調製する第2の混練工程とを具備し、水硬性固化材5に対する前記ケイ砂6の重量比(ケイ砂の重量/水硬性固化材の重量)は1.5~3.0であることを特徴とするセメント固化処理方法及び混練機11と被固化物供給装置12と混練水供給装置13と水硬性固化材供給装置14とケイ砂供給装置15とを具備するセメント固化処理装置10。

Description

ホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置
 本発明は、ホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置に関する。
 加圧水型原子力発電所では、原子炉の出力調整等に使用したホウ酸含有廃液が多く発生する。また、沸騰水型原子力発電所では、原子炉に緊急に注入するホウ酸水が貯蔵されており、ホウ酸含有廃液が発生することがある。
 ホウ酸含有廃液は水酸化ナトリウムや水酸化リチウム等により中和処理され、その後、セメントやアスファルトで固化されている。セメント固化ではホウ酸がセメントの凝結反応を妨害するために、大幅な硬化遅延や固化体の強度低下が生じる。そのため、減容性を高めながらホウ酸含有廃液をセメント固化する観点から、水酸化カルシウム等を前処理剤として添加して固化する等、種々の提案がなされている。
 ホウ酸塩による硬化遅延やホウ酸ナトリウムの水和物化を回避するために、放射性のホウ酸含有廃液に水酸化カルシウムを添加して乾燥粉体化した後、圧縮固化、樹脂による固化、セメント固化等を行う方法が提案されている(例えば、特許文献1参照。)。この方法では、ホウ酸塩を安定化してから処理するため有用であるが、難溶化した廃液成分が配管内や乾燥機等の内部に付着する可能性があり、さらにこれら付着した廃液成分が洗浄し難い等の不都合がある。
 放射性のホウ酸含有廃液を固化する方法として、ホウ酸含有廃液を乾燥粉体化した後、ケイ酸アルカリ結着剤水溶液を混合し、さらに酸性硬化剤、硬化遅延剤、ケイ砂等からなる助剤を混合して固化する方法が提案されている(例えば、特許文献2参照。)。この方法は、固化材の主成分が水ガラスであり、セメントを主成分として固化するものではない。
特開平2-208600号公報 特公平4-018640号公報
 このように、従来のホウ酸含有廃液のセメント固化処理方法においては、さらなる高減容の要望等の課題があった。
 本発明は、上述した課題を解決するためになされたものであり、ホウ酸含有廃液を高減容で安定したセメント固化体とすることのできるホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置を提供することを目的とする。
 本発明によるホウ酸含有廃液のセメント固化処理方法の一態様は、放射性のホウ酸含有廃液をセメント固化する方法であって、前記ホウ酸含有廃液に水酸化ナトリウムを添加し、減容して被固化物を調製する減容工程と、前記被固化物と混練水と水硬性固化材とを混練して第1の混練物を調製する第1の混練工程と、ケイ砂と前記第1の混練物とを混練して第2の混練物を調製する第2の混練工程とを具備し、前記水硬性固化材に対する前記ケイ砂の重量比(前記ケイ砂の重量/前記水硬性固化材の重量)は1.5~3.0であることを特徴とする。
 本発明によるホウ酸含有廃液のセメント固化処理装置の一態様は、放射性のホウ酸含有廃液をセメント固化する装置であって、混練機と、前記ホウ酸含有廃液に水酸化ナトリウムを添加し、減容して被固化物を調製し、前記被固化物を混練機に供給する被固化物供給装置と、前記混練機に混練水を供給する混練水供給装置と、前記混練機に水硬性固化材を供給して第1の混練物を調製する水硬性固化材供給装置と、前記混練機にケイ砂を供給して第2の混練物を調製するケイ砂供給装置とを具備し、前記ケイ砂供給装置における前記水硬性固化材に対する前記ケイ砂の重量比(前記ケイ砂の重量/前記水硬性固化材の重量)は1.5~3.0であることを特徴とする。
 本発明によれば、ホウ酸含有廃液を高減容で安定したセメント固化体とすることができる。
本発明の一実施形態に係るホウ酸含有廃液のセメント固化処理方法の工程を示すフロー図である。 本発明の一実施形態に係るホウ酸含有廃液のセメント固化処理装置の概略構成図である。 実施例におけるS/Cの値とセメント固化体の強度との関係を示すグラフである。
 図1は、本発明の一実施形態に係るホウ酸含有廃液のセメント固化処理方法の工程を示すフロー図であり、図2は本発明の一実施形態に係るホウ酸含有廃液のセメント固化処理装置を示す概略構成図である。以下、図1及び図2を参照して本発明の実施の形態について説明する。
 図1に示すセメント固化処理方法は、ホウ酸含有廃液1に水酸化ナトリウム2を添加する工程(S101)と、水酸化ナトリウム2の添加されたホウ酸含有廃液1を乾燥して乾燥粉体3を調製する減容工程(S102)と、乾燥粉体3と混練水4と水硬性固化材5とを混練して第1の混練物を調製する第1の混練工程(S103)と、第1の混練物とケイ砂6とを混練して第2の混練物を調製する第2の混練工程(S104)とを有している。
 また、図2に示すセメント固化処理装置10は、混練機11と、混練機11に、被固化物を供給する被固化物供給装置12と、混練水4を供給する混練水供給装置13とを備えている。また、セメント固化処理装置10は、混練機11に、水硬性固化材5を供給する水硬性固化材供給装置14と、ケイ砂6を供給するケイ砂供給装置15とを備えている。また、被固化物供給装置12は、ホウ酸含有廃液1を減容して被固化物とするための減容装置(図示せず)を備えている。被固化物は、ホウ酸含有廃液1を乾燥した乾燥粉体3、又はホウ酸含有廃液1を濃縮した濃縮廃液である。当該減容装置がホウ酸含有廃液1を例えば加熱乾燥して乾燥粉体3とする、又は減容して濃縮廃液とする。ケイ砂供給装置15には、ケイ砂供給装置15のケイ砂供給量を所定の量に調節するケイ砂供給量調節装置16が付設されている。符号17は、混練機11で混練された第2の混練物を内部に収容して固化する固化容器である。
(第1工程(図1に示すS101))
 本実施形態におけるセメント固化の対象物は、ホウ酸を含有する放射性の廃液(ホウ酸含有廃液1)である。本実施形態の第1工程は、ホウ酸含有廃液1に水酸化ナトリウム2を添加する工程である。これにより、水酸化ナトリウム2がホウ酸含有廃液1中のホウ素と反応して、ホウ酸ナトリウム塩が生成する。
 水酸化ナトリウム2の量は、ナトリウム/ホウ素モル比(Na/Bモル比)が好ましくは0.2以上、より好ましくは0.2~0.5、特に好ましくは0.2~0.3となる量に調製する。これにより、ホウ酸ナトリウム塩の水に対する溶解度を高め、配管や乾燥機等の洗浄性を向上させることができる。
(第2工程(図1に示すS102))
 本実施形態の第2工程は、ホウ酸含有廃液1を高減容で多量に固化するために、ホウ酸含有廃液1を減容する工程である。本実施形態の第2工程では、ホウ酸含有廃液1を乾燥機へ供給し、ここで乾燥処理を施して乾燥粉体3を得る。
 配管等への付着物低減の観点から、水酸化ナトリウム2の添加後のホウ酸含有廃液1の温度を、ホウ酸ナトリウム塩の析出温度以上、好ましくは60℃以上、より好ましくは80℃~90℃程度以上に調節してホウ酸含有廃液1を乾燥機に供給する。乾燥機内では、ホウ酸含有廃液1を好ましくは80℃以上程度、より好ましくは120~180℃程度、特に好ましくは160℃程度に加熱して乾燥処理する。
 乾燥機としては特に限定されるものではないが、遠心薄膜乾燥機を用いることが好ましい。遠心薄膜乾燥機は、熱効率が高いことから装置をコンパクト化できる、乾燥処理時の気相部への粉体移行量が少ない、得られるホウ酸ナトリウム塩粉末の粒径が安定する等の特徴を有するためである。
 なお、ホウ酸含有廃液1の減容に際しては、上記した乾燥処理を施す代わりに、濃縮処理や沈降処理を行ってもよい。これにより、濃縮廃液を得ることができる。濃縮処理では、例えば、ホウ酸含有廃液1を加熱濃縮し、ホウ酸含有廃液中の水分含有量を重量比で30%以下程度に調製する。沈降処理では、ホウ酸含有廃液1に添加剤を添加することでホウ酸ナトリウム塩を沈降させる。この沈降したホウ酸ナトリウム塩を分離して濃縮廃液を得る。本実施形態では、いずれの処理を行っても同様の効果を得ることができる。なお、減容後の乾燥粉体3及び濃縮廃液は、室温(常温:25℃)程度まで冷却してもよく、また、冷却せずにそのまま次の第3工程を行ってもよい。
(第3工程(図1に示すS103))
 本実施形態の第3工程は、乾燥粉体3と混練水4と水硬性固化材5とを混練機を用いて混練して第1の混練物を調製する工程である。
 乾燥粉体3に含まれるホウ酸ナトリウム塩は、水を吸収して含水塩となる性質を持つ。したがって、通常のセメント練り混ぜ手順のように、セメントと混練水とを混練したものに乾燥粉体3を混練すると、含水塩によってセメント混練物の粘性が極端に高まって混練不良や偽凝結を生じるおそれがある。そのため、第3工程では、乾燥粉体3と混練水4とを先に混合撹拌し、この間にあらかじめ含水塩を生成させておく。その後、セメントなどの水硬化性固化材5を混練することが好ましい。具体的には、含水塩の生成時間を考慮して、乾燥粉体3と混練水4を例えば10分以上混練することが好ましい。
 水硬性固化材5としては、特に限定されるものではないが、ポルトランドセメントを用いることが好ましい。ホウ酸含有廃液1をセメント固化する際には、セメント中のカルシウムがホウ酸と結合することでセメント固化に寄与するカルシウムが少なくなる傾向にある。そのため、水硬性固化材5中のカルシウム量が多いポルトランドセメントを好適に用いることができる。また、水硬性固化材5としては、ポルトランドセメントと高炉スラグの混合物、ポルトランドセメントとフライアッシュの混合物等を用いてもよい。
(第4工程(図1に示すS104))
 本実施形態の第4工程は、第3工程で得られた第1の混練物とケイ砂6とを混練して第2の混練物を調製する工程である。
 ホウ酸含有廃液1に含まれるホウ酸は、セメントの硬化を大幅に遅延させる作用やセメント固化体8の強度を低下させる作用を有する。これらを防止するために水酸化カルシウムを添加すると、ホウ酸カルシウム塩が配管や乾燥機内に析出して付着するという問題がある。本実施形態では、第4工程で第1の混練物にケイ砂6を混練することで、カルシウムを用いることなく、セメントの硬化遅延を抑制し、さらには最終的に得られるセメント固化体8の強度を向上させることができる。
 第4工程では、ケイ砂6/水硬性固化材5で示される重量比(以下、S/Cと称する。)が、1.5~3.0の範囲となる量のケイ砂6を混練する。S/Cは1.7~2.6であることが好ましく、2.3程度であることが特に好ましい。S/Cを1.5~3.0となる量のケイ砂6を混練することで、セメント固化体8の強度を向上させ、固化特性の良好なセメント固化体8を得ることができる。
 ケイ砂6の粒径は、メジアン径で0.026~1.18mm程度であることが好ましい。
 本実施形態では、第4工程においてケイ砂6を混練するに際し、添加されるケイ砂6の全重量のうちの一部をゼオライト7に代替することが好ましい。ゼオライト7は固体酸であり、また放射性核種の吸着性能が高いため、ゼオライト7を所定の割合で添加することで、セメント固化体8の放射能の閉じ込め性(放射性核種の分配係数)を飛躍的に向上させることができる。さらに、ゼオライト7がセメント固化の進行を阻害するホウ素イオンやホウ素化合物を吸着するため、セメント固化体8の強度を向上させることができる。ホウ素イオンやホウ素化合物は、アルカリ条件下になるほど溶出し易くなるが、所定量のゼオライト7を添加することで、添加されたホウ素がアルカリを吸着して第2の混練物やセメント固化体8のpHの上昇を抑制する。そのため、ホウ素イオンの溶出を抑えることができるので、固化特性の良好なセメント固化体8を得ることができる。
 ゼオライト7の混合量は、ゼオライト7及びケイ砂6の合計に対するゼオライト7の重量比(ゼオライト7の重量/ゼオライト7及びケイ砂6の合計重量)が0.05~0.40となる量に調製することが好ましく、0.05~0.25に調製することがより好ましく、0.10~0.20に調製することが特に好ましい。ゼオライト7を上記した量で混合することで、セメント固化体8の強度及び放射能の閉じ込め性を向上させることができる。なお、この場合、上記S/Cにおいて、Sの値はケイ砂6とゼオライト7の合計重量の値である。
 また、ゼオライト7の粒径はメジアン径で770μm程度であることが好ましい。ゼオライト7のイオン交換容量は、10~200(meq)/100(g)程度であることが好ましい。
 ケイ砂6とゼオライト7の混合方法は特に限定されず、あらかじめケイ砂6とゼオライト7を混合して、この混合物を第1の混練物に混合してもよく、ケイ砂6及びゼオライト7を別々に第1の混練物に混合してもよい。ケイ砂6及びゼオライト7を別々に混合する場合には、ケイ砂6及びゼオライト7の混合順序は、いずれが先であってもよく、また同時であってもよい。
 このようにして得られる第2の混練物は、良好な粘度特性を持つ。そのため、アウトドラムミキシング法によって、第2の混練物を混練機からドラム缶等の固化容器17に収容して固化特性の良好なセメント固化体8とすることができる。
 本実施形態のセメント固化処理方法は、インドラムミキシング法で行ってもよい。すなわち乾燥粉体3、混練水4、水硬性固化材5、ケイ砂6及びゼオライト7の混練を全て放射性廃棄物固化容器の中で行い、得られる第2の混練物をこの放射性廃棄物固化容器内でそのまま固化させてもよい。この場合には、さらに設備コスト、運転コストを低減することができる。
 本実施形態のセメント固化処理方法は、第2の混練物が良好な粘度特性を持つため、作業性に優れる。さらに、カルシウムを用いないため、廃液成分の配管等への付着の問題がない。また、本実施形態のセメント固化処理方法によれば、ケイ砂6を所定の割合で混合することで強度をより向上させた固化特性の良好なセメント固化体8を得ることができる。
(実施例1)
 以下、図1に示した工程に基づき、ホウ酸含有廃液のセメント固化試験を実施した結果について説明する。
 先ず、60℃程度に加温したホウ酸12重量%の水溶液に水酸化ナトリウムを投入して、Na/Bモル比を0.25に調整し、ホウ酸ナトリウムの水溶液を得た(図1に示すS101)。このホウ酸ナトリウム水溶液を模擬廃液として、加熱温度160℃程度に設定した遠心薄膜乾燥機に定量供給して、ホウ酸ナトリウム乾燥粉体を得た(図1に示すS102)。
 次に、1Lポリカップに、混練水392g、上記で作製したホウ酸ナトリウム乾燥粉体315gを投入して卓上攪拌機で60分程度攪拌して混練し、スラリーを得た。
 得られたスラリーに普通ポルトランドセメント375gを混合し、10分程度攪拌して混練し第1の混練物を得た(図1に示すS103)。次いで、ケイ砂650gを混合し(S/C=1.73)、60分程度混練して第2の混練物を得た(図1に示すS104)。この第2の混練物について物性を測定し、その後、内径50mmφ×高さ100mmHの型枠に注ぎ、セメント固化体を作製した。
 第2の混練物の特性は、粘度が9dPa・s、充填密度が1.99であり、良好な流動特性であった。セメント固化体は、24時間後には、ブリージング率(セメント固化体からの浮き水)は0vol%、材齢7日の一軸圧縮強度が8.9MPaであり、良好な固化特性も併せて得られた。
(実施例2)
 実施例1における各成分の混合量を、混練水392g、普通ポルトランドセメント375g、ホウ酸ナトリウム乾燥粉体315g、ケイ砂750g(S/C=2.00)に調整して実施例1と同様に第2の混練物を得た。その後、実施例1と同様にセメント固化体を作製した。また、実施例1と同様に第2の混練物及びセメント固化体の物性を評価した。
 第2の混練物の特性は、粘度が10dPa・s、充填密度が2.02であり、良好な流動特性であった。セメント固化体は、24時間後にはブリージング率0vol%、材齢7日の一軸圧縮強度が9.6MPaであり、良好な固化特性も併せて得られた。
(実施例3)
 実施例1における各成分の混合量を、混練水392g、普通ポルトランドセメント375g、ホウ酸ナトリウム乾燥粉体315g、ケイ砂850g(S/C=2.27)に調整して実施例1と同様に第2の混練物を得た。その後、実施例1と同様にセメント固化体を作製した。また、実施例1と同様に第2の混練物及びセメント固化体の物性を評価した。
 第2の混練物の特性は、粘度が12dPa・s、充填密度が2.04であり、良好な流動特性であった。セメント固化体は、24時間後にはブリージング率0vol%、材齢7日の一軸圧縮強度が12.2MPaであり、良好な固化特性も併せて得られた。
(実施例4)
 実施例1における各成分の混合量を、混練水392g、普通ポルトランドセメント375g、ホウ酸ナトリウム乾燥粉体315g、ケイ砂950g(S/C=2.53)に調製して実施例1と同様に第2の混練物を得た。その後、実施例1と同様にセメント固化体を作製した。また、実施例1と同様に第2の混練物及びセメント固化体の物性を評価した。
 第2の混練物の特性は、粘度が100dPa・s、充填密度が2.07であり、良好な流動特性であった。セメント固化体は、24時間後にはブリージング率0vol%、材齢7日の一軸圧縮強度が11.9MPaであり、良好な固化特性も併せて得られた。
(実施例5)
 実施例1における各成分の混合量を、混練水392g、普通ポルトランドセメント375g、ホウ酸ナトリウム乾燥粉体315g、ケイ砂1125g(S/C=3.00)に調整して実施例1と同様に第2の混練物を得た。その後、実施例1と同様にセメント固化体を作製した。また、実施例1と同様に第2の混練物及びセメント固化体の物性を評価した。
 第2の混練物の特性は、粘度が100dPa・s、充填密度が2.09であり、良好な流動特性であった。セメント固化体は、24時間後にはブリージング率0vol%、材齢7日の一軸圧縮強度が8.7MPaであり、良好な固化特性も併せて得られた。
 以上の実施例1~5における、S/Cの値と一軸圧縮強度の関係を図3のグラフに、S/Cの値を横軸、一軸圧縮強度を縦軸として示す。
 図3よりS/Cは1.5~3で良好な強度を得られており、2.27で最も強度が大きいことが判明した。そのため、以下の実施例6、7では、このS/C=2.27でセメント固化体の放射性閉じ込め性をより向上させるためにケイ砂の一部をゼオライトに代替し、このときのセメント固化体の物性を評価した。
(実施例6)
 実施例4における各成分の混合量を、混練水390g、普通ポルトランドセメント375g、ホウ酸ナトリウム乾燥粉体312g、ケイ砂680g、ゼオライト170g(S/C=2.27、ゼオライト/ケイ砂(重量比)=20/80)に調整して実施例1と同様に第2の混練物を得た。その後、実施例1と同様にセメント固化体を作製した。また、実施例1と同様に第2の混練物及びセメント固化体の物性を評価した。
 第2の混練物の特性は、粘度が70dPa・s、充填密度が2.0であり、良好な流動特性であった。セメント固化体は、24時間後にはブリージング率0vol%であり、材齢7日の一軸圧縮強度が9.6MPa、材齢28日の一軸圧縮強度が12MPaであり、良好な固化特性も併せて得られた。
(実施例7)
 実施例6におけるケイ砂とゼオライトの混合量を、ケイ砂765g、ゼオライト85g(S/C=2.27、ゼオライト/ケイ砂(重量比)=10/90)に調整して実施例1と同様に第2の混練物を調製し、実施例1と同様にセメント固化体を作製して、その物性を評価した。
 セメント固化体は、材齢28日の一軸圧縮強度は8.9MPaであり、良好な固化特性を得ることができた。
(比較例1)
 実施例1において、ケイ砂を混合せずに混練物を製作した。すなわち、混練水392g、普通ポルトランドセメント750g、ホウ酸ナトリウム乾燥粉体315gに調整して実施例1と同様に混練物を得た。この混練物について物性を測定した後、実施例1と同様にセメント固化体を作製して、その物性を評価した。
 混練物の特性は、粘度が150dPa・s、充填密度が1.95であった。セメント固化体は、24時間後のブリージング率は0vol%であったが、材齢7日の一軸圧縮強度は2.9MPa程度であり、強度が不十分であることが判明した。
 上記した実施例1~7、比較例1の条件及び測定結果等を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、ケイ砂を添加した実施例1~7では、ケイ砂を添加しない比較例1に比べて、セメント固化体の強度が向上したことが分かる。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。
 S101…第1工程、S102…第2工程、S103…第3工程、S104…第4工程、1…ホウ酸含有廃液、2…水酸化ナトリウム、3…乾燥粉体、4…混練水、5…水硬性固化材、6…ケイ砂、7…ゼオライト、8…セメント固化体、10…セメント固化処理装置、11…混練機、12…被固化物供給装置、13…混練水供給装置、14…水硬性固化材供給装置、15…ケイ砂供給装置、16…ケイ砂供給量調節装置、17…固化容器。

Claims (10)

  1.  放射性のホウ酸含有廃液をセメント固化する方法であって、
     前記ホウ酸含有廃液に水酸化ナトリウムを添加し、減容して被固化物を調製する減容工程と、
     前記被固化物と混練水と水硬性固化材とを混練して第1の混練物を調製する第1の混練工程と、
     ケイ砂と前記第1の混練物とを混練して第2の混練物を調製する第2の混練工程と
    を具備し、
     前記水硬性固化材に対する前記ケイ砂の重量比(前記ケイ砂の重量/前記水硬性固化材の重量)は1.5~3.0であることを特徴とするホウ酸含有廃液のセメント固化処理方法。
  2.  前記第2の混練工程においてさらにゼオライトを混合し、
     前記水硬性固化材に対する前記ゼオライト及び前記ケイ砂の合計の重量比(前記ゼオライト及びケイ砂の合計重量/前記水硬性固化材の重量)は1.5~3.0であることを特徴とする請求項1記載のホウ酸含有廃液のセメント固化処理方法。
  3.  前記ケイ砂の粒径は、メジアン径で0.026~1.18mmであることを特徴とする請求項1又は2記載のホウ酸含有廃液のセメント固化処理方法。
  4.  前記ゼオライトの粒径はメジアン径で770μm、かつ前記ゼオライトのイオン交換容量は10~200meq/100gであることを特徴とする請求項2又は3記載のホウ酸含有廃液のセメント固化処理方法。
  5.  前記ケイ砂及び前記ゼオライトの合計に対する前記ゼオライトの重量比(前記ゼオライトの重量/前記ケイ砂及びゼオライトの合計重量)は0.05~0.40であることを特徴とする請求項2乃至4のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。
  6.  前記第2の混練工程における前記ケイ砂及び前記ゼオライトと前記第1の混練物との混合方法は、第1の混練物にあらかじめ混合した前記ケイ砂及び前記ゼオライトを混合する、又は第1の混練物に前記ケイ砂及び前記ゼオライトを別々に混合することを特徴とする請求項2乃至5のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。
  7.  前記第1の混練工程及び前記第2の混練工程は、インドラムミキシング方式又はアウトドラムミキシング方式で行うことを特徴とする請求項1乃至6のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。
  8.  前記被固化物は、前記ホウ酸含有廃液を乾燥した乾燥粉体、又は前記ホウ酸含有廃液を濃縮した若しくは前記ホウ酸ナトリウム塩を沈降させた濃縮廃液であることを特徴とする請求項1乃至7のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。
  9.  前記減容工程で得られる前記被固化物の温度は常温~100℃であることを特徴とする請求項1乃至8のいずれか1項記載のホウ酸含有廃液のセメント固化処理方法。
  10.  放射性のホウ酸含有廃液をセメント固化する装置であって、
     混練機と、
     前記ホウ酸含有廃液に水酸化ナトリウムを添加し、減容して被固化物を調製し、前記被固化物を混練機に供給する被固化物供給装置と、
     前記混練機に混練水を供給する混練水供給装置と、
     前記混練機に水硬性固化材を供給して第1の混練物を調製する水硬性固化材供給装置と、
     前記混練機にケイ砂を供給して第2の混練物を調製するケイ砂供給装置と
    を具備し、
     前記ケイ砂供給装置における前記水硬性固化材に対する前記ケイ砂の重量比(前記ケイ砂の重量/前記水硬性固化材の重量)は1.5~3.0であることを特徴とするホウ酸含有廃液のセメント固化処理装置。
PCT/JP2014/003112 2013-06-18 2014-06-11 ホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置 WO2014203498A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14814441.3A EP3012839B1 (en) 2013-06-18 2014-06-11 Cementation method and cementation device for boric-acid-containing liquid waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-127110 2013-06-18
JP2013127110A JP6139288B2 (ja) 2013-06-18 2013-06-18 ホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置

Publications (1)

Publication Number Publication Date
WO2014203498A1 true WO2014203498A1 (ja) 2014-12-24

Family

ID=52104250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003112 WO2014203498A1 (ja) 2013-06-18 2014-06-11 ホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置

Country Status (3)

Country Link
EP (1) EP3012839B1 (ja)
JP (1) JP6139288B2 (ja)
WO (1) WO2014203498A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473185A (zh) * 2018-11-13 2019-03-15 中国核动力研究设计院 一种自动化学停堆系统的测试装置及其测试方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109903876B (zh) * 2017-03-10 2020-07-31 清华大学 放射性废树脂水泥固化浆料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179698A (ja) * 1984-02-27 1985-09-13 株式会社日立製作所 粉体廃棄物の固化方法
JPH02208600A (ja) 1989-01-27 1990-08-20 Kankoku Energ Kenkyusho 放射性廃液の高度濃縮及び乾燥固化方法
JPH0418640B2 (ja) 1983-11-29 1992-03-27 Mizusawa Industrial Chem
JP2010151487A (ja) * 2008-12-24 2010-07-08 Toshiba Corp ホウ酸廃液の固化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197690A (ja) * 1997-01-14 1998-07-31 Nippon Kayaku Co Ltd 放射性廃棄物の固化処理方法
FR2901270B1 (fr) * 2006-05-18 2008-08-22 Commissariat Energie Atomique Composition a base de ciment pour l'enrobage d'une solution aqueuse contenant du bore, procede d'enrobage et composition de coulis cimentaire
WO2013075322A1 (zh) * 2011-11-25 2013-05-30 中国广东核电集团有限公司 用于核电站高含硼放射性废树脂的水泥固化配方及固化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418640B2 (ja) 1983-11-29 1992-03-27 Mizusawa Industrial Chem
JPS60179698A (ja) * 1984-02-27 1985-09-13 株式会社日立製作所 粉体廃棄物の固化方法
JPH02208600A (ja) 1989-01-27 1990-08-20 Kankoku Energ Kenkyusho 放射性廃液の高度濃縮及び乾燥固化方法
JP2010151487A (ja) * 2008-12-24 2010-07-08 Toshiba Corp ホウ酸廃液の固化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473185A (zh) * 2018-11-13 2019-03-15 中国核动力研究设计院 一种自动化学停堆系统的测试装置及其测试方法

Also Published As

Publication number Publication date
EP3012839B1 (en) 2020-01-15
EP3012839A1 (en) 2016-04-27
JP2015001485A (ja) 2015-01-05
JP6139288B2 (ja) 2017-05-31
EP3012839A4 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
CN105741899B (zh) 一种放射性含硼废液的固化处理添加剂、固化配方及工艺
JP6672014B2 (ja) 放射性廃液の処理方法
WO2016045490A1 (zh) 一种固化放射性蒸残液的新型地质水泥材料及其固化方法
JP5913616B2 (ja) 原子力発電所の高濃度ホウ素含有放射性廃樹脂に用いられるセメント固化処方及び固化方法
JP2012167927A (ja) 放射性廃棄物の固化方法
CN108298881A (zh) 一种用于固化放射性化学泥浆的地质水泥及其应用
JP5807785B2 (ja) 放射性廃棄物の固化体製造方法
WO2016045491A1 (zh) 一种用于固化放射性废树脂的化学键合胶凝材料及其固化方法
WO2014203498A1 (ja) ホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置
Kim et al. Effect of Si/Al molar ratio and curing temperatures on the immobilization of radioactive borate waste in metakaolin-based geopolymer waste form
JP6801938B2 (ja) 放射性廃棄物の固化処理方法
JP5231975B2 (ja) ホウ酸廃液の固化方法
WO2016045492A1 (zh) 一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法
CN105130305B (zh) 一种核电站含硼废树脂的碱矿渣水泥固化方法
JP6271341B2 (ja) ホウ酸含有廃液のセメント固化処理方法
JP2015105859A (ja) ホウ酸廃液のセメント固化処理方法及びセメント固化処理装置
JP2017207297A (ja) 放射性廃液の処理方法
JP6811256B2 (ja) アルミナセメントを含む放射性廃棄物固化用固化剤組成物およびこれを用いた放射性廃棄物の固化方法
JP2009281964A (ja) 放射性廃棄物の固化処理方法
JP5726412B2 (ja) ホウ酸含有の硫酸ナトリウム濃縮廃液の固化方法
JPS6186692A (ja) 使用済放射性イオン交換樹脂の固化方法
JP6006650B2 (ja) 製鋼スラグ水和固化体の製造方法
JPH02162298A (ja) 廃棄物の固化方法
JP2016057195A (ja) ホウ酸含有廃液の固化処理方法及び固化処理装置
JP2012177644A (ja) 放射性アンモニア含有廃液の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014814441

Country of ref document: EP