WO2013075322A1 - 用于核电站高含硼放射性废树脂的水泥固化配方及固化方法 - Google Patents

用于核电站高含硼放射性废树脂的水泥固化配方及固化方法 Download PDF

Info

Publication number
WO2013075322A1
WO2013075322A1 PCT/CN2011/082907 CN2011082907W WO2013075322A1 WO 2013075322 A1 WO2013075322 A1 WO 2013075322A1 CN 2011082907 W CN2011082907 W CN 2011082907W WO 2013075322 A1 WO2013075322 A1 WO 2013075322A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing
cement
boron
waste resin
water
Prior art date
Application number
PCT/CN2011/082907
Other languages
English (en)
French (fr)
Inventor
赵滢
黄来喜
叶裕才
高歌
叶永东
邓才远
张志刚
袁建春
Original Assignee
中国广东核电集团有限公司
大亚湾核电运营管理有限责任公司
广东核电合营有限公司
岭澳核电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国广东核电集团有限公司, 大亚湾核电运营管理有限责任公司, 广东核电合营有限公司, 岭澳核电有限公司 filed Critical 中国广东核电集团有限公司
Priority to PCT/CN2011/082907 priority Critical patent/WO2013075322A1/zh
Priority to EP11876147.7A priority patent/EP2784039B1/en
Priority to CN201180033467.0A priority patent/CN103237772B/zh
Priority to JP2014542661A priority patent/JP5913616B2/ja
Priority to KR1020147017179A priority patent/KR101720397B1/ko
Priority to US14/360,549 priority patent/US9443628B2/en
Publication of WO2013075322A1 publication Critical patent/WO2013075322A1/zh
Priority to ZA2014/03738A priority patent/ZA201403738B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • B09B3/25Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/34Hydraulic lime cements; Roman cements ; natural cements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/162Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
    • G21F9/165Cement or cement-like matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/304Cement or cement-like matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00767Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the technical field of high-level radioactive waste treatment and disposal of nuclear power plants, and relates to a cement curing formula for nuclear power waste resin and a curing method thereof, in particular to a cement curing formula and curing method for high boron-containing radioactive waste resin of nuclear power plant .
  • waste resin A large amount of high boron-containing radioactive waste ion exchange resin (hereinafter referred to as waste resin) generated during operation and decommissioning of pressurized water reactor nuclear power plant equipment.
  • waste resin The appearance of waste resin in dry state is granular pellet or powder, if there is no storage container They are easily dispersed, soaked in water, and the radionuclides exchanged and entrained on the waste resin will be resolved, polluting the environment and causing secondary pollution.
  • specific gravity of the waste resin is 1.05-1.30, which is slightly larger than water, the water content is different, the resin type is different, and the adsorbed ions are different, the specific gravity is different.
  • the bulk density in water is 0.65-0.85 g/ml.
  • cement has excellent physical, chemical and mechanical properties and is a good matrix material for curing radioactive waste.
  • the solidification treatment of low- and medium-level radioactive waste is generally cured by cement. This is a relatively mature treatment technology and one of the earliest radioactive waste treatment technologies. It is a radioactive waste liquid or radioactive solid waste with cement, water and additives. The treatment technology of hardening into a solidified body at room temperature by mixing in a certain ratio.
  • the cement solidified body retains the nuclide ions in the cement solidified body by mechanical seal, matrix adsorption and solid solution.
  • the performance of the cement solidified body depends on the chemical composition and physical structure of the cement solidified body. And the external environment in which it is located. After the cement is added with water, the paddle body with plasticity and fluidity gradually changes to a solid with a certain strength.
  • the hardened cement body is a heterogeneous multiphase system consisting of a solid phase composed of various hydration products and residual clinker, and liquid and air present in the pores. Since the ion exchange resin has considerable chemical stability without changing its morphology, the matrix itself is incompatible with cement, and the cement only acts as a wrap.
  • the object of the present invention is: high boron-containing waste resin, the existing cement curing agent, the phenomenon that the cement pad does not condense, because the borate is a commonly used cement retarder.
  • the resin is wrapped in the cavity of the solidified body, that is, the entire solidified body is a cage structure.
  • the cement composition, the molding water-cement ratio and the molding conditions determine the microporous structure of the cement solidified body, and the microporous structure determines almost all physical and chemical properties of the cement cured body, such as density, strength, thermal properties, durability, and the like.
  • the radionuclide ions can diffuse into the external medium through the communicating micropores in the cement solidified body.
  • the cement solidified body has a relatively large capacity, and will be cracked or even broken when the water expands, and the leaching rate of the radionuclide is high, which does not meet the performance index of the cement solidified body specified by the national standard.
  • the storage rate of waste resin containing about 50% of water is generally below 40%, and the result of lower inclusion rate is to increase waste production and disposal cost, wherein the inclusion rate refers to inclusion in the tolerant. The percentage of the total volume of the object.
  • zeolite is a more effective control method, which is also a common method for controlling hydration heat in traditional concrete preparation, but Since the curing of the radioactive high boron-containing waste resin is different from the preparation of general concrete, it is also different from the curing of the general radioactive waste resin. The reason is that the waste liquid containing radioactive high boron-containing waste resin contains a large amount of borate ions and other anions and cations adsorbed in the ion exchange resin. When the cement is solidified, the borate ions and the anions and cations precipitated from the ion exchange resin change the cement.
  • the chemical properties of the solidified body such that when the zeolite is used as an additive to a certain amount, the performance of the cement solidified body is lowered, and even when the cement solidified body is exposed to water, the solidified body is pulverized.
  • the large amount of boric acid ions due to the large amount of boric acid ions, during the cement solidification process, the large amount of boric acid ions causes a long setting time, which has a great influence on the performance of the cement solidified body, and there is a possibility that the cement paddle does not condense.
  • the problem of the strength of the cement solidified body and the floating layer of the resin is also the reason why many of the existing cement curing formulations have the same component, but cannot be directly used for curing the high boron-containing waste resin cement. Summary of the invention
  • One technical problem to be solved by the present invention is to provide a curing package with high capacity for the prior art cement curing formulation curing package having a small capacity, a high solidification center temperature, a poor cement paste setting, and a low curing strength.
  • the solidified body has low center temperature, high leaching rate and high curing strength, and all the indexes can meet the national standard requirements and high safety cement curing formula for high-boron radioactive waste resin of nuclear power plant.
  • Another technical problem to be solved by the present invention is to provide a simple operation and a curing effect.
  • a cement curing formulation for a high-boron radioactive waste resin of a nuclear power plant which comprises 100 parts by weight of a high-boron waste resin, including the following parts by weight : Cement 170-260, lime 5-20, water 20-60, curing aid 0.25-10 and additives 2-20.
  • cement curing formulation based on curing 100 parts by weight of the high boron-containing waste resin, the following parts by weight of the raw materials are included: cement 170-200, lime 10-20, water 20-40, curing agent 0.25-10 and additives 4-15.
  • the additive in the cement curing formulation is a mixture of at least two of sodium hydroxide, lithium carbonate and sodium silicate.
  • the curing assistant comprises a polycarboxylate type water reducing agent in a part by weight of 0.25-5.
  • the polycarboxylate type water reducing agent is sodium polyacrylate, potassium polyacrylate, sodium polybutoxide, potassium polybutate, Basf glenium 51 (a kind of water reducing)
  • Basf glenium 51 a kind of water reducing
  • Sika ViscoCrete a brand name of a water reducing agent
  • the curing assistant in the cement curing formulation further comprises sodium metaaluminate in a weight fraction of 1-5.
  • the cement curing formulation comprises, in terms of curing 100 parts by weight of the high boron-containing waste resin, the following parts by weight of the raw materials: cement 198, lime 11, water 30, curing aid 0.25, additive 3.70;
  • the curing aid is sodium polyacrylate, and the additive is a mixture of sodium hydroxide and lithium carbonate.
  • the cement curing formulation is based on curing 100 parts by weight of the high boron-containing waste resin, including the following parts by weight.
  • Raw materials cement 184, lime 10, water 19, curing aid 2, additive 2;
  • the curing aid is sodium polybutacrylate, and the additive is a mixture of sodium hydroxide and sodium silicate.
  • the cement curing formulation comprises, in terms of curing 100 parts by weight of the high boron-containing waste resin, the following parts by weight of the raw materials: cement 170, lime 9, water 29, curing assistant 1, additive 2.3;
  • the curing aid is SikaViscoCrete 20HE, the additive is a mixture of lithium carbonate and sodium silicate.
  • Various curing agent raw materials and high boron-containing waste resin are prepared by weighing or metering, and curing the formulation to cure 100 parts by weight of high boron-containing waste resin, including the following parts by weight: cement 170-260, lime 5- 20, water 20-60, curing aid 0.25-10 and additives 2-20;
  • the curing formulation is based on curing 100 parts by weight of the high boron-containing waste resin, including the following parts by weight: cement 170-200, lime 10-20, water 20-40, curing aid Agent 0.25-10 and additives 4-15.
  • the additive of the curing formulation is a mixture of at least two of sodium hydroxide, lithium carbonate and sodium silicate.
  • the curing assistant comprises a polycarboxylate type water reducing agent in a part by weight of 0.25-5.
  • the polycarboxylate type water reducing agent in the curing formula is sodium polyacrylate, potassium polyacrylate, sodium polybutoxide, potassium polybutylate, Basf glenium 51, Sika ViscoCrete.
  • the polycarboxylate type water reducing agent in the curing formula is sodium polyacrylate, potassium polyacrylate, sodium polybutoxide, potassium polybutylate, Basf glenium 51, Sika ViscoCrete.
  • the curing assistant further comprises sodium metaaluminate in a part by weight of 1-5.
  • step 1) of the curing method it is preferred to determine the weight ratio of free water contained in the high boron-containing waste resin to calculate the weight of the high-boron waste resin and the weight of the water, and the various curings
  • the raw materials of the agent are weighed, and the curing assistant and the additive are dissolved in water to prepare a solution.
  • step 3 of the curing method it is preferable to put a high boron-containing waste resin with free water into the curing container through a measuring tank, start stirring the stirring paddle, and then add a curing aid and an additive, wherein the stirring speed is in the early stage. 15-25 rpm; late 40-60 rpm, the total mixing time is 100-120 min, using vertical axis mixing.
  • step 4) of the curing method preferably, the mixer is started, the stirring speed is 15-25 rpm, and the cement is slowly added into the container through the cement hopper while stirring; the cement is added at a speed of 800-1200 kg/h, and the water is gradually added during the stirring process.
  • the mixer is started, the stirring speed is 15-25 rpm, and the cement is slowly added into the container through the cement hopper while stirring; the cement is added at a speed of 800-1200 kg/h, and the water is gradually added during the stirring process.
  • the weight fraction of water that meets the requirements of the curing agent continue to stir for 0.5 h, and stir the paddle and the lowering paddle until the mixing is uniform.
  • step 5 of the curing method it is preferred to stop the stirring and then send the curing container to the curing room, and the surface covering the covering is allowed to stand for 28 days.
  • the cement curing formulation of the invention is a cement curing formulation for a high boron-containing radioactive waste resin
  • the solidified substrate component is cement, lime, water, curing assistant and additive
  • the cured substrate is mixed with the high boron-containing waste resin to form a high.
  • a cement block of hardness which is dispersed in a high-boron waste resin and wrapped in a high-hardness cement block.
  • the cement curing formulation of the invention has a good advantage over the existing cement curing formula: the high boron-containing waste resin is uniformly dispersed in the cement solidified body, that is, the particles of the high boron-containing waste resin are dispersed and wrapped, and the solidified body is broken and cracked, When the cracks form a lot of solidified body fragments, the high boron-containing waste resin can still be wrapped, reducing the risk of radioactive leakage and having higher safety.
  • the waste resin can be dispersed and wrapped, the invention can realize that the solidified body has high curing package capacity, high curing strength, and reduced leaching rate, and the package capacity can generally reach 40% (V/V) or more, and the best can be achieved.
  • the formulation of the cement curing agent of the present invention solves the problems of long setting time and low strength by the high boron-containing resin in the existing cement curing. Further, zeolite is not used as a water reducing agent to prevent the problem of a decrease in curing performance and pulverization caused by the addition of a certain amount.
  • the additive selects a mixture of at least two of sodium hydroxide, lithium carbonate and sodium silicate
  • the curing assistant selects a polycarboxylate type water reducing agent, such as sodium polyacrylate, polycarboxylate superplasticizer
  • a polycarboxylate type water reducing agent such as sodium polyacrylate, polycarboxylate superplasticizer
  • the manufacturer's brand name is Basf gleni U m51 water-reducing agent, polycarboxylate superplasticizer, such as the water-reducing agent of Sika ViscoCrete.
  • These additives and curing auxiliaries are specially formulated for high-boron waste resin.
  • the additives and curing auxiliaries can synergistically solve the problems of non-condensation of cement paddles, reduction of strength of cement solidified bodies and delamination of resin. Mainly increased the inclusion rate of cement solidified body.
  • the curing process conditions of the invention are low in requirements, easy to implement, simple in operation, good in curing effect, and can meet the requirements of on-site curing.
  • Fig. 2 is a semi-logarithmic curve of the annual leaching rate of nuclide in a waste resin cement solidified block according to an embodiment of the present invention.
  • a cement curing formulation for a high-boron radioactive waste resin of a nuclear power plant which comprises 100 parts by weight of a high-boron waste resin, including the following parts by weight: cement 170-260, lime 5-20, water 20- 60, curing agent 0.25-10 and additives 2-20.
  • cement curing formulation based on curing 100 parts by weight of the high boron-containing waste resin, it preferably comprises the following parts by weight: cement 170-200, lime 10-20, water 20-40, curing aid 0.25-10 And additives 4-15.
  • the additive is preferably a mixture of at least two of sodium hydroxide, lithium carbonate and sodium silicate.
  • the curing assistant comprises a polycarboxylate type water reducing agent, and the weight fraction thereof is 0.25-5.
  • the polycarboxylate type water reducing agent is sodium polyacrylate, potassium polyacrylate, sodium polybutoxide, potassium polybutate, Basf glenium 51 (a brand name of a water reducing agent) ), one of Sika ViscoCrete (a brand name for water reducing agents).
  • the curing assistant further comprises sodium metaaluminate in a weight fraction of 1-5.
  • the cement curing formulation comprises, in terms of curing 100 parts by weight of the high boron-containing waste resin, the following parts by weight of the raw materials: cement 198, lime 11, water 30, curing aid 0.25, additive 3.70;
  • the curing aid is sodium polyacrylate, and the additive is a mixture of sodium hydroxide and lithium carbonate.
  • the cement curing formulation comprises, in terms of curing 100 parts by weight of the high boron-containing waste resin, the following parts by weight of the raw materials: cement 184, lime 10, water 19, curing assistant 2, additive 2;
  • the curing aid is sodium polybutacrylate, and the additive is a mixture of sodium hydroxide and sodium silicate.
  • the cement curing formulation comprises, in terms of curing 100 parts by weight of the high boron-containing waste resin, the following parts by weight of the raw materials: cement 170, lime 9, water 29, curing assistant 1, additive 2.3;
  • the curing aid is SikaViscoCrete 20HE, the additive is a mixture of lithium carbonate and sodium silicate.
  • the various curing agent raw materials and the high boron-containing waste resin are prepared by weighing or metering, and the cement curing formula is based on curing 100 parts by weight of the high boron-containing waste resin, including the following parts by weight: cement 170-260, lime 5-20, water 20-60, curing assistant 0.25-10 and additives 2-20;
  • the cement curing formulation is based on curing 100 parts by weight of the high boron-containing waste resin, including the following parts by weight: cement 170-200, lime 10-20, water 20-40, Curing aid 0.25-10 and additives 4-15.
  • the additive in the cement curing formulation is a mixture of at least two of sodium hydroxide, lithium carbonate and sodium silicate.
  • the curing assistant comprises a polycarboxylate type water reducing agent in a part by weight of 0.25-5.
  • the polycarboxylate type water reducing agent in the curing formula is a sodium polyacrylate, a potassium polyacrylate, a sodium polybutate, a potassium polybutate, a Basf glenium 51, and a Sika ViscoCrete. kind.
  • the curing assistant further comprises sodium metaaluminate in a part by weight of 1-5.
  • step 3 of the curing method it is preferable to put a high boron-containing waste resin with free water into the curing container through a measuring tank, start stirring the stirring paddle, and then add a curing aid and an additive, wherein the stirring speed is in the early stage. 15-25 rpm; late 40-60 rpm, the total mixing time is 100-120 min, using vertical axis mixing.
  • step 4) of the curing method preferably, the mixer is started, the stirring speed is 15-25 rpm, and the cement is slowly added into the container through the cement hopper while stirring; the cement is added at a speed of 800-1200 kg/h, and the water is gradually added during the stirring process. Continue to agitation for 0.5 h of water that meets the requirements of the curing agent, and stir the paddle and lowering paddle until it is evenly stirred.
  • step 5 of the curing method it is preferred to stop the stirring and then send the curing container to the curing room, and the surface covering the covering is allowed to stand for 28 days.
  • Embodiment 1 A cement curing formulation for a high boron-containing radioactive waste resin for a nuclear power plant, which comprises a high-boron waste resin of 100 kg, including the following raw materials: 198 kg of ordinary Portland cement No. 42.5, lime l lkg 30 kg of water, 0.25 kg of sodium polyacrylate, additive (mixture of sodium hydroxide and lithium carbonate) 3.70 kg. The inclusion ratio of the high boron-containing radioactive waste resin of this embodiment was 46%.
  • Example 2 A cement curing formulation for a high-boron radioactive waste resin for a nuclear power plant, based on curing 100 kg of high boron-containing waste resin, including the following raw materials: 184 kg of ordinary Portland cement No. 42.5, lime 10 kg 19 kg of water, 2 kg of sodium polybutate, additive (mixture of sodium hydroxide and sodium silicate) 2 kg. The inclusion ratio of the high boron-containing radioactive waste resin of this embodiment was 50%.
  • Embodiment 3 A cement curing formulation for a high-boron radioactive waste resin for a nuclear power plant, which comprises a high-boron waste resin of 100 kg, including the following raw materials: 170 kg of ordinary Portland cement No. 42.5, lime 9 kg 29 kg of water, polycarboxylate superplasticizer SikaViscoCrete 20HE (commercial brand number) 1 kg, additive (mixture of sodium silicate and lithium carbonate) 2.3 kg, the inclusion rate of high boron-containing radioactive waste resin is 59%.
  • Embodiment 4 A cement curing formulation for a high-boron radioactive waste resin for a nuclear power plant, which comprises a high-boron waste resin of 100 kg, comprising the following raw materials: 260 kg of ordinary Portland cement, 15 kg of lime, water 40 kg, potassium polypotassium 5 kg, sodium metaaluminate 5 kg, additive (mixture of sodium hydroxide and lithium carbonate) 6 kg.
  • the inclusion ratio of the high boron-containing radioactive waste resin of this example was 41%.
  • Embodiment 5 A cement curing formulation for a high-boron radioactive waste resin of a nuclear power plant, which comprises a high-boron waste resin of 100 kg, comprising the following raw materials: 200 g of ordinary Portland cement, 15 kg of lime, water 40 kg, polycarboxylate superplasticizer Basf glenium 51 (commercial brand number) 10 kg, additive (mixture of sodium hydroxide and lithium carbonate) 8 kg.
  • the inclusion ratio of the high boron-containing radioactive waste resin of this example was 49%.
  • the high boron-containing waste resin produced by the nuclear power plant is selected, and the curing formulations of Examples 1-5 of the present invention are respectively used, and cured by the curing method of the present invention.
  • Embodiment 6 A method for curing a nuclear high-boron radioactive waste resin, comprising the steps of:
  • the curing container is sent to the curing room, and the surface covering the covering is left to be cured for 28 days to obtain the cement cured body sample 1-1, which is repeatedly prepared by the same raw materials and the same method, and is also obtained as the number 1-2 ⁇ 1. 5 samples of -6.
  • Embodiment 7 A method for curing a nuclear high-boron radioactive waste resin, comprising the following steps: 1) weighing and preparing various curing agent raw materials according to the ratio of the cement curing formula of the above embodiment 2; The weight ratio of free water contained in the boron waste resin is used to calculate the amount of the high-boron waste resin to be added and the amount of water to be added, and the various raw materials in the above-mentioned curing formula are weighed, and the curing aid and the additive are added. Adding water to dissolve into a solution;
  • the curing container is sent to the curing room, and the surface covering the covering is left to be maintained for 28 days.
  • the cement cured body sample 2-1 is obtained, and the same raw materials and the same method are used for repeated preparation, and the number is obtained.
  • Embodiment 8 A curing method for nuclear high-boron radioactive waste resin, comprising the following steps: 1) weighing or measuring various curing agent raw materials according to the ratio of the curing formula of the above embodiment 3; The weight ratio of free water contained in the boron-containing waste resin is used to calculate the amount of the high-boron waste resin and water to be added, and the various raw materials of the above-mentioned curing formula are weighed, and the curing aid and the additive are dissolved in water. Into a solution;
  • the curing container is sent to the curing room, and the surface covering the covering is left to be maintained for 28 days to obtain the cement solidified sample 3-1, which is repeatedly prepared by the same raw materials and the same method, and is also numbered as
  • Embodiment 9 A method for curing a nuclear high-boron radioactive waste resin, comprising the steps of:
  • the various curing agent raw materials are weighed or metered; the weight ratio of free water contained in the high boron-containing waste resin is measured to calculate the high boron-containing waste resin and water.
  • the amount of each of the above-mentioned curing formulations should be weighed, and the curing assistant and the additive are dissolved in water to form a solution;
  • the curing container is sent to the curing room, and the surface covering the covering is left to be cured for 28 days to obtain the cement cured body sample 4-1, which is repeatedly prepared by the same raw materials and the same method, and is also given the number 4-2 ⁇ 4. 5 samples of -6.
  • Embodiment 10 A curing method for nuclear high-boron radioactive waste resin, comprising the following steps:
  • the various curing agent raw materials are weighed or metered; the weight ratio of free water contained in the high boron-containing waste resin is measured to calculate the high boron-containing waste resin and water.
  • the amount of the above-mentioned curing agent may be weighed, and the curing assistant and the additive may be dissolved in water to form a solution;
  • the curing container is sent to the curing room, and the surface covering the covering is left to be cured for 28 days to obtain the cement cured body sample 5-1, which is repeatedly prepared by the same raw materials and the same method, and is also given the number 5-2 ⁇ 5. 5 samples of -6.
  • Example 11 On-site thermal test of boron-containing waste resin cement solidification engineering at the nuclear power plant. 1) A high boron-containing waste resin and a cement curing agent are added in accordance with the following weight, wherein free water contained in the high boron-containing waste resin is detected and the amount of the high-boron waste resin and water to be added is calculated.
  • the temperature rise of the cement paddle is detected by using the RS285-661 PTE plate temperature patch, and the external RS363-0238 temperature transmitter is used to input the 1-5V signal into the two-channel Yokogawa recorder for continuous measurement.
  • the two PTE board temperature patches are placed in the center and center of the curing barrel at half the concrete wall, and the insertion depth is half the height of the cement paddle.
  • the measurement results show that the hydration exothermic reaction occurs only after one day.
  • the maximum temperature of the cement solidified body is lower than 80 °C, which meets the requirements of domestic and foreign experts for the temperature of the cement solidified body below 80 °C.
  • cement cured body sample 7-1 was obtained, and the same materials and the same method were repeated to obtain five samples numbered 7-2 to 7-6.
  • Curing agent raw material formula Cement solid encapsulation rate Mudstone Ash Water Curing aid (kg) Additive (kg) Chemical sample (0/
  • Example 170 15 30 Sodium polybutoxide 1 Sodium hydroxide and carbon 12-1 57
  • EXAMPLE 180 11 20 Sodium polyacrylate 1. Lithium carbonate and silicic acid 14-1 51 14 Sodium metaaluminate 1 Sodium mixture 2
  • Example 190 13 35 Mixture of potassium polyacrylate potassium carbonate and silicic acid 16-1 48 16 0.5, sodium metaaluminate 2 sodium 4
  • Example 195 6 32 Potassium polybutoxide 5 Sodium hydroxide and silicon 17-1 47.5
  • Example 230 20 45 Potassium polybutate 1.3 Lithium carbonate and silicic acid 21-1 43.2
  • Example 240 16 60 Sika ViscoCrete Sodium Hydroxide and Silicon 22-1 43.5
  • Example 250 5 55 Potassium polybutate 7.
  • Examples 12 to 15 were obtained by the curing method of Example 6 to obtain cement cured body samples 12-1 to 15-1
  • Examples 16 to 18 were obtained by the curing method of Example 7 to obtain cement cured body samples.
  • 16-1 ⁇ 18-1, Examples 19-20 were obtained by the curing method of Example 8 to obtain cement cured body samples 19-1 to 20-1, and Examples 21-22 were cured by the curing method of Example 9.
  • Body samples 21-1 to 22-1, Examples 23 to 24 Cement solidified samples 23-1 to 24-1 were obtained by the curing method of Example 10.
  • Cement solidified body performance test results The performance test results of the cement cured body samples prepared in Examples 6 to 24 of the present invention are as follows: 1. Compressive strength
  • the compressive strength of the cement cured body samples of the radioactive boron-containing waste resin prepared according to Examples 6 to 24 of the present invention was measured in accordance with the method specified in GB 14569.1-1993. The measurement method is carried out according to GB14569.1-2011: The test results of the compressive strength test of the radioactive waste resin cement solidified sample are shown in Table 1 to Table 7, respectively. Table 1 Measurement results of compressive strength of radioactive boron-containing waste resin cement cured samples of Example 6
  • GB 14569.1-1993 stipulates that "the compressive strength of cement solidified samples should not be less than 7 MPa". It can be seen from Tables 1 to 7 that all of the waste resin cement solidified samples have a compressive strength greater than 7 MPa, which satisfies the requirements.
  • GB14569.1-2011 stipulates that "the sample of cement solidified body falling vertically from the height of 9m to the concrete floor should not be obviously broken".
  • the sample made by the invention only has small angular fragments and cracks. It can be seen from the table that only one of the 12 samples in Examples 6 to 11 is split into two halves after the fall test, indicating that the two waste resin cement cured bodies prepared according to the present invention have better impact resistance and satisfy GB14569.1-2011 requirements.
  • Table 9 lists the total activity A of the radionuclide in the cured sample. value.
  • Table 10 lists the results of the leaching rate on the 42nd day of the arbitrarily selected three resin-cement solidified samples.
  • Figure 1 shows the results of the leaching test for the first 42 days of the above cement solidified sample.
  • Figure 2 shows the results of a one-year leaching test of a cement cured body sample.
  • Table 11 shows the compressive strength of the samples after long-term leaching test.
  • the results show that the compressive strength of the cured samples after long-term leaching still meets the national standard of 7 MPa, and is much larger than the compressive strength before the leaching test.
  • ordinary solid paddle cements without aggregates usually show small cracks for a long time, and all three samples are soaked in water for one year. From the analysis data, the radioactive leaching rate did not increase, but the compressive strength increased significantly.
  • test results were 18.4 MPa to 27.2 MPa, both of which were greatly improved compared with the original average of 15.6 MPa, indicating that these microcracks did not affect the performance of the solidified body. index. Compressive strength of waste resin cement cured body after leaching for one year
  • Test results of anti-soak test of waste resin cement solidified sample Average pressure resistance before immersion after pressure immersion, sample number change, % strength, MPa strength, MPa strength, MPa
  • the prepared resin-cement solidified sample was subjected to freeze-thaw resistance test.
  • the freeze-thaw resistance test results showed that the compressive strength of the six samples after the freeze-thaw resistance test was greater than 7 MPa, and the compressive strength before the freeze-thaw resistance test. In comparison, the average compressive strength loss after freeze-thaw test is only 6.2%, meeting GB 14569.1-2011
  • the cobalt source irradiation chamber cannot irradiate the cement cured body sample of the real radioactive resin, it can only be irradiated with the cement solidified body of the non-release simulated waste resin.
  • GB14569.1-1993 stipulates that "the non-radioactive simulated waste shall be prepared according to the prescribed formula, and the cement slurry shall be directly poured into the test mold" to prepare the sample.
  • the irradiation test was carried out in the source cell of 6Q Co, and a total of six samples were irradiated.
  • the irradiation dose rate of the test sample was 1.565 ⁇ 10 3 Gy/h, the total exposure time was 652 h, and the cumulative exposure dose was lx 10 6 Gy.
  • the sample is subjected to compressive strength test, and the test results are shown in Table 15.
  • GB14569.1-2011 also stipulates: "After the ⁇ -irradiation test of cement solidified samples, the compressive strength loss does not exceed 25%.” It can be seen from Table 15 that the compressive strength of the cured body before and after ⁇ -irradiation is greater than 7 MPa. After irradiation, the compressive strength of the solidified body is not lost, meeting the requirements of GB 14569.1-2011.
  • the invention compares the acceptance dose of the waste resin to the operator's received dose, see Table 16: Table 16 Comparative analysis of the dose of the present invention compared with the prior art
  • the present invention does not seem to have a significant difference in impact on the staff compared to the prior art.
  • the number of barrels of cement solidified waste produced by processing the same amount of waste resin is small, and the operation time is Short, the dose of radioactive radiation received by the staff will be reduced accordingly.
  • the amount of waste resin solidified in the waste barrel increases, the radiation dose on the outer surface of the waste barrel increases, and the waste resin can be matched with high and low dose levels; the monitoring instrument is added in the measuring tank; the relationship between the metering tank dose and the barrel surface dose is established. Effective control measures to ensure the radiation protection of the cement curing formulation of the present invention when treating waste resin.
  • the surface dose rate of the barrel is slightly larger than 2 mSv/h, it can be transported by temporary decay to be decayed to less than the transport standard. 7.
  • the cement curing formula and the curing method thereof have the production process feasible, and the performance indexes of the radioactive waste resin cement solidified body can meet the requirements of GB 14569.1-2011, and the containment rate of the radioactive high boron-containing waste resin is based on the prior art. Greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Civil Engineering (AREA)

Abstract

一种用于核电站高含硼放射性废树脂的水泥固化配方及固化方法。固化配方包括以下原料:水泥、石灰、水、固化助剂和添加剂。固化方法包括:(1)将原料及高含硼放射性废树脂称重,先将石灰加入固化容器中;(2)再加入高含硼放射性废树脂;(3)搅拌放入其余原料;(4)加水泥并视水泥浆干湿状态补加水,搅拌至均匀;(5)搅拌均匀后静置养护。该固化配方的固化包容率高、固化体强度高、耐水性好、抗冻融性强、放射性浸出率低。固化方法的工艺要求较低、操作简单、容易实现、能满足现场固化要求。

Description

用于核电站高含硼放射性废树脂的水泥固化配方及固化方法 技术领域
本发明属于核电站高放射性废物处理和处置技术领域, 涉及一种用于核 电废树脂的水泥固化配方及其固化方法, 尤其涉及一种用于核电站高含硼放 射性废树脂的水泥固化配方及固化方法。
背景技术
在压水堆核电站设备的运行和退役过程中会产生的大量高含硼放射性废 离子交换树脂(以下简称废树脂), 干燥状态下的废树脂外观为粒状小球或粉 末状, 如果没有存放容器, 它们极易分散, 遇水浸泡, 废树脂上交换和夹带 的放射性核素会解析出来,污染环境,造成二次污染。废树脂比重为 1.05-1.30, 比水略大, 含水率不同或树脂种类不同以及吸附的离子不同时, 其比重有所 差异。 水中堆积密度为 0.65-0.85g/ml。 未达到吸水饱和的废树脂在遇水后, 会吸收水分而产生体积膨胀, 在干燥脱水时, 体积减小, 体积变化较大。 这 些树脂因再生困难, 会产生大量放射性废水, 所以必须对其进行妥善处置以 减少其对环境的潜在危害。 水泥具有优良的物理、 化学及力学性能, 是固化 放射性废物的良好基体材料。 低、 中水平放射性废物的固化处理一般采用水 泥固化, 这是一项较为成熟的处理技术, 也是应用最早的放射性废物处理技 术之一, 是将放射性废液或放射性固体废物与水泥、 水、 添加剂等按一定比 例混合, 在常温下硬化成废物固化体的处理技术。 水泥固化体依靠机械密封、 基体吸附以及固溶等作用将核素离子滞留在 水泥固化体中, 水泥固化体的性能取决于水泥固化体的化学组成、 物理结构 以及所处的外部环境。 水泥加水后由具有可塑性和流动性的桨体逐渐变为具 有一定强度的固体。 硬化水泥桨体是一非均质的多相体系, 由各种水化产物 和残余熟料所构成的固相以及存在于孔隙中的液体和空气所组成。 由于离子 交换树脂在形态不发生改变的情况下, 具有相当的化学稳定性, 基体本身与 水泥不相容, 水泥仅起包裹作用。 但因为废树脂吸附的常量化学物质会不断 解吸出来, 有的物质对水泥的水化反应会产生很大的影响, 引起水泥桨速凝 或缓凝, 严重缓凝会导致完全不凝。 例如本发明处理对象: 高含硼废树脂, 采用现有的水泥固化剂, 就会出现水泥桨不凝结的现象, 原因是因为硼酸盐 就是常用的水泥缓凝剂。
废树脂水泥固化后, 树脂被包裹在固化体的空腔内, 即整个固化体是一 个笼状结构。 水泥成分、 成型水灰比和成型条件决定了水泥固化体的微孔结 构, 而微孔结构又决定了水泥固化体的几乎所有物理化学性能, 如密度、 强 度、 热性能、 耐久性等。 放射性核素离子可以通过水泥固化体中的连通微孔 扩散到外部介质中。 大量的研究表明, 在进行水泥固化时, 水泥品种和用量、 树脂的性能和用量、 添加剂成分、 水灰比、 固化操作工艺等对固化体的性能 有很大的影响。 当配方不合理时, 水泥固化体增容比较大, 会遇水膨胀产生 裂紋, 甚至破碎, 放射性核素的浸出率就高, 达不到国标规定的水泥固化体 性能指标。另外,现有技术中对含水约 50%左右的废树脂的包容率一般在 40% 以下, 包容率较低带来的结果是增加废物产量和处置成本, 其中包容率是指 被包容物占包容物总体积的百分比。
现有废树脂水泥固化的技术中, 很多还采用沸石作为添加剂, 用来降低 水泥的耗用量, 由于固化废树脂过程中, 不使用其它骨料如砂子时, 水泥的 用量比例较高, 将出现高水化热现象, 在大体积混凝土中, 较高水化热将导 致废树脂固化体中心温度过高, 使固化体膨胀而造成废固化体性能的下降。 对采用如硫铝酸盐水泥这种水化热比较高, 并且释放时间比较集中的固化工 艺, 添加沸石是比较有效的控制办法, 这也是传统混凝土制备中常用的控制 水化热的方法, 但由于放射性高含硼废树脂的固化不同于一般混凝土的制备, 也不同于一般放射性废树脂的固化。 原因是由于放射性高含硼废树脂的废液 中含有大量的硼酸根离子及离子交换树脂中吸附的其它阴阳离子, 在水泥固 化时, 硼酸根离子和从离子交换树脂中析出的阴阳离子改变水泥固化体的化 学特性, 这样将沸石作为添加剂达到一定量后, 将降低水泥固化体的性能, 甚至在水泥固化体遇水后出现固化体粉化现象。 另外, 高含硼树脂中由于含硼酸根离子量大, 在水泥固化过程中, 含硼 酸根离子量大造成凝结时间长, 这对水泥固化体性能的影响较大, 有可能出 现水泥桨不凝结、 水泥固化体强度降低和树脂上浮分层等问题, 这也是现有 的很多水泥固化配方中虽然组分部分相同, 但都不能直接用于高含硼废树脂 水泥固化的原因。 发明内容
本发明所要解决的一个技术问题在于, 针对现有技术的水泥固化配方固 化包容量较小、 固化体中心温度高、 水泥桨凝结不好、 固化强度低的缺陷, 提供一种固化包容量高、 固化体中心温度低、 浸出率和固化强度高, 各项指 标都能满足国家标准要求、 安全性高的用于核电站高含硼放射性废树脂的水 泥固化配方。
本发明所要解决的另一个技术问题在于, 提供一种操作简单、 固化效果 好的采用上述水泥固化配方的核电站高含硼放射性废树脂的固化方法。
本发明解决其一个技术问题所采用的技术方案是: 一种用于核电站高含 硼放射性废树脂的水泥固化配方, 以固化 100重量份的高含硼废树脂计, 包 括以下重量份数的原料:水泥 170-260、石灰 5-20、水 20-60、固化助剂 0.25-10 和添加剂 2-20。
优选的是, 所述水泥固化配方中, 以固化 100重量份的高含硼废树脂计, 包括以下重量份数的原料: 水泥 170-200、 石灰 10-20、 水 20-40、 固化助剂 0.25-10和添加剂 4-15。
优选的是, 所述水泥固化配方中, 所述水泥固化配方中的添加剂为氢氧 化钠、 碳酸锂和硅酸钠中至少两种的混合物。
优选的是, 所述水泥固化配方中, 所述固化助剂包括聚羧酸盐类减水剂, 其重量份数为 0.25-5。
优选的是, 所述水泥固化配方中, 所述的聚羧酸盐类减水剂为聚丙烯酸 钠、 聚丙烯酸钾、 聚丁烯酸钠、 聚丁烯酸钾、 Basf glenium51 (—种减水剂的 商品牌号)、 Sika ViscoCrete (一种减水剂的商品牌号) 中的一种。
优选的是, 所述水泥固化配方中, 所述水泥固化配方中的固化助剂还包 括偏铝酸钠, 其重量份数为 1-5。
再优选的是, 所述水泥固化配方, 以固化 100重量份的高含硼废树脂计, 包括以下重量份数的原料: 水泥 198、 石灰 11、 水 30、 固化助剂 0.25、 添加 剂 3.70; 所述固化助剂为聚丙烯酸钠, 所述添加剂为氢氧化钠和碳酸锂的混 再优选的是, 所述水泥固化配方, 以固化 100重量份的高含硼废树脂计, 包括以下重量份数的原料: 水泥 184、石灰 10、水 19、 固化助剂 2、添加剂 2; 所述固化助剂为聚丁烯酸钠, 所述添加剂为氢氧化钠和硅酸钠的混合物。 再优选的是, 所述水泥固化配方, 以固化 100重量份的高含硼废树脂计, 包括以下重量份数的原料:水泥 170、石灰 9、水 29、固化助剂 1、添加剂 2.3 ; 所述固化助剂为 SikaViscoCrete 20HE, 所述添加剂为碳酸锂和硅酸钠的混合 本发明解决其另一个技术问题所采用的技术方案是: 一种用于核电高含 硼放射性废树脂的固化方法, 包括以下步骤:
将各种固化剂原料以及高含硼废树脂进行称重或计量准备, 固化配方以 固化 100重量份的高含硼废树脂计,包括以下重量份数的原料:水泥 170-260、 石灰 5-20、 水 20-60、 固化助剂 0.25-10和添加剂 2-20;
2)将原料中的石灰加入到固化容器内;
3)边搅拌边放入高含硼废树脂和除水外的其余固化助剂原料;
4)边搅拌边加入水泥, 搅拌过程中加水, 搅拌至均匀;
5)搅拌均匀后静置养护。
所述步骤 1)中, 优选所述固化配方以固化 100重量份的高含硼废树脂计, 包括以下重量份数的原料: 水泥 170-200、 石灰 10-20、 水 20-40、 固化助剂 0.25-10和添加剂 4-15。
所述步骤 1)中, 优选所述固化配方的添加剂为氢氧化钠、 碳酸锂和硅酸 钠中至少两种的混合物。
所述步骤 1)中, 优选所述固化助剂包括聚羧酸盐类减水剂, 其重量份数 为 0.25-5。
所述步骤 1)中, 优选所述固化配方中的聚羧酸盐类减水剂为聚丙烯酸钠、 聚丙烯酸钾、 聚丁烯酸钠、 聚丁烯酸钾、 Basf glenium51、 Sika ViscoCrete的 一种。
所述步骤 1)中, 所述固化助剂还包括偏铝酸钠, 其重量份数为 1-5。
所述固化方法的步骤 1)中, 优选检测高含硼废树脂中所含游离水的重量 比来折算出高含硼废树脂的应称重量和水的应称重量, 对所述各种固化剂原 料进行称重, 并将固化助剂和添加剂加水溶解制成溶液。
所述固化方法的步骤 3)中, 优选通过计量罐向固化容器内放入带有游离 水的高含硼废树脂, 开动搅拌桨进行搅拌, 然后加入固化助剂和添加剂, 其 中搅拌速度前期为 15-25rpm;后期为 40-60rpm,搅拌时间总和为 100-120min, 采用垂直轴式搅拌方式。
所述固化方法的步骤 4)中, 优选开动搅拌机, 搅拌速度为 15-25rpm, 边 搅拌边通过水泥料斗向容器内慢慢加入水泥; 水泥加入速度为 800-1200kg/h, 搅拌过程中逐步加水至满足固化剂要求的水的重量份数, 继续搅拌 0.5h, 并 且提桨、 降桨上下搅拌, 直至搅拌均匀。
所述固化方法的步骤 5)中, 优选停止搅拌后将固化容器送至养护间, 表 面覆盖遮蔽物静置养护 28天。
本发明的水泥固化配方与现有技术对比的有益效果是:
本发明的水泥固化配方是针对高含硼放射性废树脂的水泥固化配方, 其 固化基材成分是水泥、 石灰、 水、 固化助剂和添加剂, 固化基材与高含硼废 树脂混合后形成高硬度的水泥块, 将高含硼废树脂分散并被包裹在高硬度的 水泥块中。 本发明的水泥固化配方相对于现有水泥固化配方具有良好的优势: 高含硼废树脂在水泥固化体中分散均匀, 即高含硼废树脂的颗粒分散被包裹, 在固化体被破坏开裂, 或碎裂形成很多固化体碎块时, 高含硼废树脂还能处 于被包裹的状态, 减少放射性泄漏的危险, 具有更高的安全性。 另外, 正是 由于废树脂能分散被包裹, 也使得本发明能实现固化体具有高固化包容量、 高固化强度, 且降低浸出率, 包容量一般能达到 40 % (V/V) 以上, 最好的 能达到 59 % (V/V) , 而且水泥固化体的其它各项性能指标均满足国家标准 GB14569.1-2011 的要求。 这样, 在满足国家标准要求的前提下, 尽可能多包 容废树脂, 减少固体放射性废物的数量, 从而降低了放射性废物的处置成本。
更重要的是本发明水泥固化剂的配方解决了现有水泥固化中高含硼树脂 带来的凝结时间长、 强度低的问题。 并且不使用沸石作为减水剂, 防止其添 加到一定量后带来的固化性能降低、 遇水粉化的问题。
所述添加剂选择氢氧化钠、 碳酸锂和硅酸钠中至少两种的混合物, 所述 固化助剂选择聚羧酸盐类减水剂, 例如聚丙烯酸钠、 聚羧酸盐类高效减水剂 例如商品牌号为 Basf gleniUm51的减水剂、聚羧酸盐类高效减水剂例如商品牌 号为 Sika ViscoCrete的减水剂等。 这些添加剂和固化助剂是专门针对高含硼 的废树脂进行组配的, 添加剂和固化助剂能协同作用, 有效解决水泥桨不凝 结、 水泥固化体强度降低和树脂上浮分层等问题并且最主要增加了水泥固化 体的包容率。
本发明的固化方法与现有技术对比的有益效果是:
在原料添加完毕后, 搅拌过程中就会出现假凝现象, 通过搅拌在混合体 中均匀分散的高含硼放射性废树脂的位置首先被固定, 在随后的静置固化过 程中被固化的固化体分散包裹起来, 实现高包容率、 高强度、 低浸出率。 本 发明固化工艺条件要求较低、 容易实现、 操作简单、 固化效果好, 能满足现 场固化要求。
附图说明
图 1是本发明具体实施方式的废树脂水泥固化块中核素前 42天浸出率的 半对数曲线;
图 2是本发明具体实施方式的废树脂水泥固化块中核素一年浸出率的半 对数曲线。
具体实施方式
下面将对照附图及结合具体实施方式对本发明作进一步说明。
一种用于核电站高含硼放射性废树脂的水泥固化配方, 以固化 100重量 份的高含硼废树脂计, 包括以下重量份数的原料: 水泥 170-260、 石灰 5-20、 水 20-60、 固化助剂 0.25-10和添加剂 2-20。
所述水泥固化配方中, 以固化 100重量份的高含硼废树脂计, 优选包括 以下重量份数的原料: 水泥 170-200、石灰 10-20、水 20-40、 固化助剂 0.25-10 和添加剂 4-15。
所述水泥固化配方中, 添加剂优选为氢氧化钠、 碳酸锂和硅酸钠中至少 两种的混合物。
所述水泥固化配方中, 所述固化助剂包括聚羧酸盐类减水剂, 其重量份 数为 0.25-5
所述水泥固化配方中, 所述的聚羧酸盐类减水剂为聚丙烯酸钠、 聚丙烯 酸钾、 聚丁烯酸钠、 聚丁烯酸钾、 Basf glenium51 (—种减水剂的商品牌号)、 Sika ViscoCrete (一种减水剂的商品牌号) 中的一种。
所述水泥固化配方中, 固化助剂还包括偏铝酸钠, 其重量份数为 1-5。 再优选的是, 所述水泥固化配方, 以固化 100重量份的高含硼废树脂计, 包括以下重量份数的原料: 水泥 198、 石灰 11、 水 30、 固化助剂 0.25、 添加 剂 3.70; 所述固化助剂为聚丙烯酸钠, 所述添加剂为氢氧化钠和碳酸锂的混 再优选的是, 所述水泥固化配方, 以固化 100重量份的高含硼废树脂计, 包括以下重量份数的原料: 水泥 184、石灰 10、水 19、 固化助剂 2、添加剂 2; 所述固化助剂为聚丁烯酸钠, 所述添加剂为氢氧化钠和硅酸钠的混合物。
再优选的是, 所述水泥固化配方, 以固化 100重量份的高含硼废树脂计, 包括以下重量份数的原料:水泥 170、石灰 9、水 29、固化助剂 1、添加剂 2.3 ; 所述固化助剂为 SikaViscoCrete 20HE, 所述添加剂为碳酸锂和硅酸钠的混合 本发明解决其另一个技术问题所采用的技术方案是: 一种用于核电高含 硼放射性废树脂的固化方法, 包括以下步骤:
将各种固化剂原料以及高含硼废树脂进行称重或计量准备, 水泥固化配 方是以固化 100重量份的高含硼废树脂计, 包括以下重量份数的原料: 水泥 170-260、 石灰 5-20、 水 20-60、 固化助剂 0.25-10和添加剂 2-20;
2)将原料中的石灰加入到固化容器内;
3)边搅拌边放入高含硼废树脂和除水外的其余固化剂原料;
4)边搅拌边加入水泥, 搅拌过程中加水, 搅拌至均匀;
5)搅拌均匀后静置养护。
所述步骤 1)中, 优选所述水泥固化配方中以固化 100重量份的高含硼废 树脂计, 包括以下重量份数的原料: 水泥 170-200、 石灰 10-20、 水 20-40、 固 化助剂 0.25-10和添加剂 4-15。
所述步骤 1)中, 优选所述水泥固化配方中的添加剂为氢氧化钠、 碳酸锂 和硅酸钠中至少两种的混合物。
所述步骤 1)中, 优选所述固化助剂包括聚羧酸盐类减水剂, 其重量份数 为 0.25-5。 所述步骤 1)中, 优选所述固化配方中的聚羧酸盐类减水剂为聚丙烯酸钠、 聚丙烯酸钾、 聚丁烯酸钠、 聚丁烯酸钾、 Basf glenium51、 Sika ViscoCrete的 一种。
所述步骤 1)中, 优选所述固化助剂还包括偏铝酸钠, 其重量份数为 1-5。 所述固化方法的步骤 1)中, 优选检测高含硼废树脂中所含游离水的重量 比来折算出高含硼废树脂的应加入量, 对所述各种固化助剂和添加剂加水溶 解制成溶液。
所述固化方法的步骤 3)中, 优选通过计量罐向固化容器内放入带有游离 水的高含硼废树脂, 开动搅拌桨进行搅拌, 然后加入固化助剂和添加剂, 其 中搅拌速度前期为 15-25rpm;后期为 40-60rpm,搅拌时间总和为 100-120min, 采用垂直轴式搅拌方式。
所述固化方法的步骤 4)中, 优选开动搅拌机, 搅拌速度为 15-25rpm, 边 搅拌边通过水泥料斗向容器内慢慢加入水泥; 水泥加入速度为 800-1200kg/h, 搅拌过程中逐步加水至满足固化剂要求的水的重量份数, 继续搅拌 0.5 h, 并 且提桨、 降桨上下搅拌, 直至搅拌均匀。
所述固化方法的步骤 5)中, 优选停止搅拌后将固化容器送至养护间, 表 面覆盖遮蔽物静置养护 28天。
以下通过多个实施例对上述技术方案进行说明。
一、 首先对水泥固化配方进行详细说明:
实施例 1、一种用于核电站高含硼放射性废树脂的水泥固化配方, 以固化 100 公斤的高含硼废树脂计, 包括以下重量的原料: 42.5 号普通硅酸盐水泥 198kg, 石灰 l lkg、 水 30 kg、 聚丙烯酸钠 0.25 kg、 添加剂 (氢氧化钠和碳酸 锂的混合物) 3.70kg。 本实施例高含硼放射性废树脂的包容率为 46%。 实施例 2、一种用于核电站高含硼放射性废树脂的水泥固化配方, 以固化 100 公斤的高含硼废树脂计, 包括以下重量的原料: 42.5 号普通硅酸盐水泥 184kg, 石灰 10 kg、 水 19 kg、 聚丁烯酸钠 2 kg、 添加剂 (氢氧化钠和硅酸钠 的混合物) 2kg。 本实施例高含硼放射性废树脂的包容率为 50 %。
实施例 3、一种用于核电站高含硼放射性废树脂的水泥固化配方, 以固化 100 公斤的高含硼废树脂计, 包括以下重量的原料: 42.5 号普通硅酸盐水泥 170kg,石灰 9 kg、水 29 kg、聚羧酸盐类高效减水剂 SikaViscoCrete 20HE (商 品牌号) 1 kg、 添加剂 (硅酸钠和碳酸锂的混合物) 2.3kg, 高含硼放射性废 树脂的包容率为 59 %。
实施例 4、一种用于核电站高含硼放射性废树脂的水泥固化配方, 以固化 100公斤的高含硼废树脂计, 包括以下重量的原料: 普通硅酸盐水泥 260kg、 石灰 15 kg、 水 40 kg、 聚丁烯酸钾 5 kg、 偏铝酸钠 5 kg、 添加剂 (氢氧化钠 和碳酸锂的混合物) 6kg。 本实施例高含硼放射性废树脂的包容率为 41%。
实施例 5、一种用于核电站高含硼放射性废树脂的水泥固化配方, 以固化 100公斤的高含硼废树脂计, 包括以下重量的原料: 普通硅酸盐水泥 200kg、 石灰 15 kg、 水 40 kg、 聚羧酸盐类高效减水剂 Basf glenium51 (商品牌号) 10kg, 添加剂(氢氧化钠和碳酸锂的混合物) 8 kg。 本实施例高含硼放射性废 树脂的包容率为 49 %。
二、 以下选取核电站所产生的高含硼废树脂, 分别采用本发明实施例 1-5 的固化配方, 并通过本发明固化方法进行固化。
实施例 6、一种用于核电高含硼放射性废树脂的固化方法,包括以下步骤:
1)按照上述实施例 1固化剂的配比对各种固化剂原料进行称重;其中检测 高含硼废树脂中所含游离水的重量比来折算出高含硼废树脂的应称重量和水 的应称重量并称重或计量, 先将固化助剂和添加剂加水溶解制成溶液;
2)将固化剂原料中的石灰加入到固化容器内;
3)通过计量罐向固化容器内放入带有游离水的高含硼废树脂, 开动搅拌桨 进行搅拌, 然后加入除水外的固化助剂和添加剂溶液, 其中搅拌速度前期为 15 (revolutions per minute,转 /分钟);后期为 60rpm,搅拌时间总和为 lOOmin, 采用垂直轴式搅拌方式;
4)开动搅拌机, 搅拌速度为 25rpm, 边搅拌边通过水泥料斗向容器内慢慢 加入水泥; 水泥加入速度为 800kg/h, 搅拌过程中逐步加水至满足固化剂要求 的水的重量份数, 继续搅拌 0.5 h, 并且提桨、 降桨上下搅拌, 直至搅拌均匀;
5)、 停止搅拌后将固化容器送至养护间, 表面覆盖遮蔽物静置养护 28天 得到水泥固化体样品 1-1, 采用同样原料和同样方法重复制备, 又得到编号为 1-2~1-6的 5个样品。
实施例 7、一种用于核电高含硼放射性废树脂的固化方法,包括以下步骤: 1)按照上述实施例 2 水泥固化配方的配比对各种固化剂原料进行称重准 备; 检测高含硼废树脂中所含游离水的重量比来折算出高含硼废树脂的应加 入量和水的应加入量, 对上述固化配方中的各种原料进行称重, 并将固化助 剂和添加剂加水溶解制成溶液;
2)先将原料中的石灰加入到固化容器内;
3)通过计量罐向固化容器内放入带有游离水的高含硼废树脂, 开动搅拌桨 进行搅拌, 然后加入除水外的固化助剂和添加剂溶液, 其中搅拌速度前期为 25rpm (revolutions per minute, 转 /分钟); 后期为 40rpm, 搅拌时间总和为 l lOmin, 采用垂直轴式搅拌方式;
4)开动搅拌机, 搅拌速度为 15rpm, 边搅拌边通过水泥料斗向容器内慢慢 加入水泥; 水泥加入速度为 1200kg/h, 搅拌过程中逐步加水至满足固化配方 要求的水的重量份数, 继续搅拌 0.5h, 并且提桨、 降桨上下搅拌, 直至搅拌 均匀;
5)、 停止搅拌后将固化容器送至养护间, 表面覆盖遮蔽物静置养护 28天 得到水泥固化体样品 2-1, 采用同样原料和同样方法重复制备, 又得到编号为
2- 2-2-20的 19个样品。
实施例 8、一种用于核电高含硼放射性废树脂的固化方法,包括以下步骤: 1)按照上述实施例 3 固化配方的配比对各种固化剂原料进行称重或计量 准备; 检测高含硼废树脂中所含游离水的重量比来折算出高含硼废树脂和水 的应加入量, 对上述的固化配方的各种原料进行称重, 并将固化助剂和添加 剂加水溶解制成溶液;
2)将原料中的石灰加入到固化容器内;
3)通过计量罐向固化容器内放入带有游离水的高含硼废树脂, 开动搅拌桨 进行搅拌, 然后加入除水外的固化助剂和添加剂溶液, 其中搅拌速度前期为 20rpm (revolutions per minute, 转 /分钟); 后期为 50rpm, 搅拌时间总和为 llOmin, 采用垂直轴式搅拌方式;
4)开动搅拌机, 搅拌速度为 20rpm, 边搅拌边通过水泥料斗向容器内慢慢 加入水泥; 水泥加入速度为 1100kg/h, 搅拌过程中逐步加水至满足固化剂要 求的水的重量份数, 继续搅拌 0.5h, 并且提桨、 降桨上下搅拌, 直至搅拌均 匀;
5)、 停止搅拌后将固化容器送至养护间, 表面覆盖遮蔽物静置养护 28天 得到水泥固化体样品 3-1, 采用同样原料和同样方法重复制备, 又得到编号为
3- 2~3-6的 5个样品。 实施例 9、一种用于核电高含硼放射性废树脂的固化方法,包括以下步骤:
1)按照上述实施例 4 固化配方的配比对各种固化剂原料进行称重或计量 准备; 检测高含硼废树脂中所含游离水的重量比来折算出高含硼废树脂和水 的应加入量, 对上述的固化配方的各种原料进行称重, 并将固化助剂和添加 剂加水溶解制成溶液;
2)将原料中的石灰加入到固化容器内;
3)通过计量罐向固化容器内放入带有游离水的高含硼废树脂,开动搅拌桨 进行搅拌, 然后加入除水外的固化助剂和添加剂溶液, 其中搅拌速度前期为 22rpm (revolutions per minute, 转 /分钟); 后期为 55rpm, 搅拌时间总和为 lOOmin, 采用垂直轴式搅拌方式;
4)开动搅拌机, 搅拌速度为 16rpm, 边搅拌边通过水泥料斗向容器内慢慢 加入水泥; 水泥加入速度为 900kg/h, 搅拌过程中逐步加水至满足固化剂要求 的水的重量份数, 继续搅拌 0.5h, 并且提桨、 降桨上下搅拌, 直至搅拌均匀;
5)、 停止搅拌后将固化容器送至养护间, 表面覆盖遮蔽物静置养护 28天 得到水泥固化体样品 4-1, 采用同样原料和同样方法重复制备, 又得到编号为 4-2~4-6的 5个样品。
实施例 10、 一种用于核电高含硼放射性废树脂的固化方法, 包括以下步骤:
1)按照上述实施例 5 固化配方的配比对各种固化剂原料进行称重或计量 准备; 检测高含硼废树脂中所含游离水的重量比来折算出高含硼废树脂和水 的应加入量, 对上述的固化剂的各种原料进行称重, 并将固化助剂和添加剂 加水溶解制成溶液;
2)将原料中的石灰加入到固化容器内;
3)通过计量罐向固化容器内放入带有游离水的高含硼废树脂,开动搅拌桨 进行搅拌, 然后加入除水外的固化助剂和添加剂溶液, 其中搅拌速度前期为
18rpm (revolutions per minute, 转 /分钟); 后期为 45rpm, 搅拌时间总和为 llOmin, 采用垂直轴式搅拌方式;
4)开动搅拌机, 搅拌速度为 19rpm, 边搅拌边通过水泥料斗向容器内慢慢 加入水泥; 水泥加入速度为 1150kg/h, 搅拌过程中逐步加水至满足固化配方 要求的水的重量份数, 继续搅拌 0.5h, 并且提桨、 降桨上下搅拌, 直至搅拌 均匀;
5)、 停止搅拌后将固化容器送至养护间, 表面覆盖遮蔽物静置养护 28天 得到水泥固化体样品 5-1, 采用同样原料和同样方法重复制备, 又得到编号为 5-2~5-6的 5个样品。
实施例 11、 核电站现场进行含硼废树脂水泥固化工程规模热试实验。 1)按照以下重量加入高含硼废树脂、水泥固化剂,其中将高含硼废树脂中 所含的游离水进行检测并计算出高含硼废树脂和水的应加入量。 高含硼废树 脂(含水): 430 Kg;水泥: 737.7Kg;石灰 40.57kg,固化助剂和添加剂: 55.3Kg; 除去废树脂内含水量所需外补的水: 80Lo将固化助剂和添加剂溶解制成溶液;
2)将石灰放入到一立方米固化桶 (体积为 lm3 ) 中;
3)通过计量罐向一立方米固化桶中放废树脂, 搅拌桨不断搅拌; 加入 55.3Kg固化助剂: 聚羧酸盐类高效减水剂 Basf glenium51 (商品牌号)和 添加剂氢氧化钠和碳酸锂的混合物。
4)废树脂放料完毕, 加水冲洗计量罐, 将水放入桶内; 加入水泥, 继续搅 拌; 后停止加入水泥, 发现水泥干面堆在上面, 难于搅下去。 再放水 30L (外 加水共 80L), 继续搅拌和下水泥; 水泥放料完毕, 将一立方米固化桶开出来, 用吊车吊下, 发现表层已假初凝, 插入测温探头, 观察温度情况发现温度由 19°C慢慢升到 32°C。 水泥桨水化引起温度升高检测采用 RS285-661型 PTE板温度贴片, 外接 RS363-0238型温度变送器,将 1-5V信号输入二通道横河记录仪进行连续测量 的方法。 两个 PTE板温度贴片分别放置在固化桶正中央和中心到混凝土桶壁 一半处, 插入深度为到水泥桨一半高度处。 测量结果可以看出: 水泥桨一天 后才发生水化放热反应。 水泥固化体中心最高温度低于 80°C, 满足国内外专 家提出的水泥固化体中心温度低于 80°C的要求。
最后得到水泥固化体样品 7-1, 采用同样原料和同样方法重复试验, 得到 编号为 7-2~7-6的 5个样品。
除了上述实施例外, 以下还列举更多的实施例, 以处理 100kg高含硼废 树脂计:
固化剂原料配方 水泥固 包容率 水 泥 石 灰 水 固化助剂 (kg) 添加剂 (kg) 化体样 ( 0/
\ /0 J (kg) (kg) (kg) 品编号 实施例 170 15 30 聚丁烯酸钠 1 氢氧化钠和碳 12-1 57
12 酸锂的混合物
2.3
实施例 172 9 29 聚丙烯酸钠 1 氢氧化钠和硅 13-1 53.2 13 酸钠 2.3
实施例 180 11 20 聚丙烯酸钠 1、 碳酸锂和硅酸 14-1 51 14 偏铝酸钠 1 钠的混合物 2
实施例 185 10 31 聚 丙 烯 酸钾 氢氧化钠和碳 15-1 50 15 0.25 酸锂的混合物
3.5
实施例 190 13 35 聚 丙 烯 酸钾 碳酸锂和硅酸 16-1 48 16 0.5、偏铝酸钠 2 钠的混合物 4 实施例 195 6 32 聚丁烯酸钾 5 氢氧化钠和硅 17-1 47.5
17 酸钠的混合物
10
实施例 210 15 40 Basf glenium51 氢氧化钠和硅 18-1 46.4
18 10 酸钠的混合物
12
实施例 220 18 43 Basf glenium51 碳酸锂和硅酸 19-1 45.1
19 2 钠的混合物 18
偏铝酸钠 3
实施例 225 7 34 聚丁烯酸钠 0.8 氢氧化钠和碳 20-1 44.8
20 酸锂的混合物
20
实施例 230 20 45 聚丁烯酸钾 1.3 碳酸锂和硅酸 21-1 43.2
21 钠的混合物 16
实施例 240 16 60 Sika ViscoCrete 氢氧化钠和硅 22-1 43.5
22 3 酸钠的混合物 9
实施例 250 5 55 聚丁烯酸钾 7、 氢氧化钠、 碳酸 23-1 43.3
23 偏铝酸钠 1 锂和硅酸钠的
混合物 17
实施例 260 12 48 Sika ViscoCrete 碳酸锂和硅酸 24-1 42.1
24 8 钠的混合物 4 实施例 12~15采用实施例 6的固化方法制得水泥固化体样品 12-1~15-1, 实施例 16~18采用实施例 7的固化方法制得水泥固化体样品 16-1~18-1, 实施 例 19~20采用实施例 8 的固化方法制得水泥固化体样品 19-1~20-1, 实施例 21-22采用实施例 9的固化方法制得水泥固化体样品 21-1~22-1,实施例 23~24 采用实施例 10的固化方法制得水泥固化体样品 23-1~24-1。 水泥固化体性能测试结果 本发明实施例 6〜24制成水泥固化体样品的各项性能测试结果分别如下: 1、 抗压强度
按 GB 14569.1-1993规定的方法, 对按本发明实施例 6~24制备的放射性 含硼废树脂的水泥固化体样品进行抗压强度测定。 测定方法参照 GB14569.1-2011 执行: 放射性废树脂水泥固化体样品抗压强度检测试验结果 分别见表 1〜表 7。 表 1 实施例 6的放射性含硼废树脂水泥固化样品的抗压强度测量结果 抗压强
样品编号 均值, MPa 偏差, MPa 相对偏差,%
度, MPa
1-1 17.6 2.0 12.8
1-2 17.4 1.8 11.5
1-3 14.0 -1.6 -10.3
15.6
1-4 12.7 -2.9 -18.6
1-5 15.9 0.3 1.9
1-6 16.0 0.4 2.6 表 2实施例 7放射性含硼废树脂水泥固化样品的抗压强度测量结果 抗压强
样品编号 均值, MPa 偏差, MPa 相对偏差,%
度, MPa
2-1 11.5 -2.2 -16.1
2-2 12.9 -0.8 -5.8
2-3 15.4 1.7 12.4
13.7
2-4 12.0 -1.7 -12.4
2-5 12.9 -0.8 -5.8
2-6 17.6 3.9 28.5 表 3实施例 8放射性含硼废树脂水泥固化样品的抗压强度测量结果 抗压强
样品编号 均值, MPa 偏差, MPa 相对偏差,%
度, MPa
3-1 11. 3 12. 5 -1. 2 -9. 6 3-2 13. 2 0. 7 5. 6
3-3 10. 3 -2. 2 -17. 6
3-4 12. 7 0. 2 1. 6
3-5 14. 8 2. 3 18. 4
3-6 12. 5 0 0 表 4实施例 9放射性含硼废树脂水泥固化样品的抗压强度测量结果 抗压强
样品编号 均值, MPa 偏差, MPa 相对偏差,% 度, MPa
4-1 10.8 -1 -8. 4
4-2 8.8 -3.1 -26. 05
4-3 16.1 4.2 35. 29
11.9
4-4 12.5 0.6 5. 04
4-5 7.9 -4 -33. 61
4-6 15.4 3.5 29. 41 表 5实施例 10放射性含硼废树脂水泥固化样品的抗压强度测量结果
Figure imgf000021_0001
表 7实施例 12~24水泥固化样品的抗压强度测量结果 样品编号 抗压强度, MPa
12-1 10.6
13-1 11.3
14-1 12.0
15-1 12.7
16-1 13.9
17-1 14.0
18-1 15.1
19-1 15.8
20-1 16.1
21-1 16.4
22-1 16.7
23-1 17.4
24-1 17.5
GB 14569.1-1993规定"水泥固化体样品的抗压强度不应小于 7 MPa", 从 表 1〜7中可以看出:所有的废树脂水泥固化体样品的抗压强度都大于 7MPa, 满足要求。
从实施例 1~24中看出: 包容量不断增大的基础上, 虽然废树脂水泥固化 体样品强度有所降低, 但都能满足 GB 14569.1-1993 要求, 而且也满足 GB14569.1-2011 的要求。 这些实施例中废树脂的包容量为 40~59 %, 在现有 技术的基础上提高了 15%以上。
2、 抗冲击试验
按照 GB 14569.1-1993《低、 中水平放射性废物固化体性能要求一水泥固 化体》 规定的方法, 对本发明制成的废树脂水泥固化体样品的抗冲击性能进 行了测定。 样品的基本参数和抗冲击性能测试结果见表 8。
表 8 抗冲击试验水泥固化体基本参数和试验结果 样品编号 质量, g 尺寸(pxh, mm 结果
1-1 213.8 51.9x53.2 棱角小碎块 2-1 199.1 50.9x51.3 \陵角小碎块
3-3 207.9 51.6x51.8 \陵角小碎块
4-5 203.0 51.6x51.5 棱角小碎块
5-1 207.2 51.9x52.3 破碎为两半
7-6 206.6 51.4x51.4 棱角小碎块
1-5 176.3 49.9x5.27 \陵角小碎块
2-3 180.7 49.8x51.8 \陵角小碎块
3-5 180.8 49.8x52.3 \陵角小碎块
4-1 182.3 49.9x52.3 \陵角小碎块
5-3 184.3 50.1 x52.4 \陵角小碎块
7-4 186.0 49.6x52.9 \陵角小碎块
GB14569.1-2011也规定 "从 9m高处竖直自由下落到混凝土地面上的水泥 固化体样品不应有明显的破碎", 本发明制成的样品只出现棱角小碎块和裂 紋, 从上表可以看出: 实施例 6~11中的 12个样品中只有 1个在坠落试验后 裂成两半, 说明两次按照本发明制成的废树脂水泥固化体的抗冲击性较好, 满足 GB14569.1-2011要求。
3、 抗水性试验
3.1抗浸出性
表 9列出固化的样品内放射性核素总活度 A。值。
表 9水泥固化体中各单个放射性核素的 A。值
Figure imgf000023_0001
表 10列出了任意选取的三块树脂 -水泥固化体样品第 42天浸出率结果, 图 1展示了上述水泥固化体样品前 42天的浸出试验结果。 图 2展示了水泥固 化体样品一年期的浸出试验结果。
表 10水泥固化体样品中各放射性核素第 42天浸出率
Figure imgf000024_0001
由表 10中的数据可以看出,放射性含硼废树脂水泥固化体样品中, 90Sr 、 60Co 和 137Cs 三种放射性核素第 42 天的浸出率 (Rn) 均低于国家标准 GB 14569.1-2011中规定的限值, 满足了要求。
由于核电站废物源项中不含 Pu-239 , 试验中不对该核素进行分析。
经过一年的长期浸出试验后, 废树脂固化体的表观质量发生了变化, 三 个样品中有两个样品 (1-6和 3-6 ) 的表面出现了裂紋。 表 11测定了经长期浸 出试验后样品的抗压强度, 结果表明长期浸出后固化样品的抗压强度仍满足 国标 7MPa的限值要求, 且比浸出试验前的抗压强度大很多。实际上, 不加集 料的普通净桨水泥固化体时间久了一般也会出现小裂紋, 何况 3个样品都是 在水中浸泡了一年。 从分析数据看, 放射性浸出率没有增加, 抗压强度却有 明显升高, 测试结果为 18.4MPa-27.2MPa, 都比原来的均值 15.6MPa大大提 高, 说明这些微裂紋不会影响固化体的性能指标。 废树脂水泥固化体浸出一年后的抗压强度
样品编号 直径, 压力, k 抗压强度, 抗压强度均 mm MPa 值, MPa
1-6 51.3 56.1 27.2
2-2 51.5 43.6 20.9 22.2
3-6 51.0 37.5 18.4
3.2抗浸泡性 抗浸泡性试验用废树脂水泥固化体样品是采用实施例 1〜5中固化剂通过 实施例 6~11的固化方法来制备, 水泥固化体样品的基本参数见表 12。抗浸泡 性试验结果见表 13。 从表中可以看出, 5个废树脂水泥固化体样品在抗浸泡性试验后的抗压强 度仍都大于 7MPa, 与抗浸泡性试验前的抗压强度相比, 浸泡后的抗压强度损 失为 10.2%, 能满足 GB 14569.1-2011规定的要求。 表 12 废树脂水泥固化体样品抗浸泡试验基本参数
Figure imgf000025_0001
废树脂水泥固化体样品抗浸泡性试验结果 浸泡后抗压 浸泡后平均抗压 浸泡前抗压 样品编号 变化, % 强度, MPa 强度, MPa 强度, MPa
1-4 13.3
2-4 11.5
3-1 13.9 14.0 15.6 -10.2
4-2 16.5
5-4 14.7 4、 抗冻融性
将制备的树脂-水泥固化体样品进行抗冻融试验, 抗冻融测试结果为 6个 样品在抗冻融性试验后的抗压强度都大于 7MPa,与抗冻融性试验前的抗压强 度相比, 冻融试验后的平均抗压强度损失仅为 6.2%, 满足 GB 14569.1-2011
废树脂水泥固化体样品抗冻融试验结果
Figure imgf000026_0001
5、 耐 γ辐照性
因钴源辐照室不能辐照真实放射性树脂的水泥固化体样品, 只能用非放 的模拟废树脂的水泥固化体进行辐照。 GB14569.1-1993规定"用非放射性的模 拟废物按照规定的配方制备水泥桨, 水泥桨直接倒入试模"制样。
辐照试验在 6QCo源房进行, 辐照样品共六块。 试验样品的辐照剂量率为 1.565x l03Gy/h, 总受照时间为 652h, 累积受照剂量为 l x l06Gy。辐照完成后, 对样品进行抗压强度测试, 测试结果详见表 15。
GB14569.1-2011同样规定: "水泥固化体样品进行 γ辐照试验后, 其抗压 强度损失不超过 25 %"。 从表 15中可以看出, 耐 γ辐照前、 后固化体的抗压强度都大于 7MPa, 经辐照后, 固化体的抗压强度没有损失, 满足 GB 14569.1-2011的要求。
表 15废树脂水泥固化体耐 γ辐照试验结果
Figure imgf000027_0001
6、 辐射防护最优化分析
本发明和现有技术相比, 废树脂固化对操作人员的接受剂量进行了对比 分析, 见表 16: 表 16 本发明与现有技术相比人员所受剂量对比分析
Figure imgf000027_0002
从表 16中可以看出: 本发明与现有技术相比, 对工作人员影响差异似乎 不大。 但处理相同数量的废树脂产生的水泥固化体废物桶数要少, 操作时间 短, 工作人员接受的放射性辐射剂量就会相应减少。 至于废物桶内固化的废 树脂量增大从而造成废物桶外表面辐射剂量升高, 可以通过搭配高低剂量水 平的废树脂; 在计量罐增加监测仪表; 建立计量罐剂量与桶表面剂量变化关 系等有效控制措施, 以确保本发明水泥固化配方处理废树脂时的辐射防护安 全。 由于废树脂中吸附的放射性核素约大部分是短寿命的, 如桶表面剂量率 略大于 2mSv/h,可以通过暂存衰变的办法,待衰变到小于转运标准后再转运。 7、 结论
通过试生产的实际操作和固化体性能的测试结果来看, 可以得到如下结 论:
本发明的水泥固化配方及其固化方法, 生产工艺可行, 放射性废树脂水 泥固化体各项性能指标均能满足 GB 14569.1-2011的要求,且放射性高含硼废 树脂的包容率在现有技术基础上大大提高。

Claims

权 利 要 求
1、 一种用于核电站高含硼放射性废树脂的水泥固化配方, 其特征在于, 以固化 100 重量份的高含硼废树脂计, 包括以下重量份数的原料: 水泥 170-260、 石灰 5-20、 水 20-60、 固化助剂 0.25-10和添加剂 2-20。
2、根据权利要求 1所述的用于核电站高含硼放射性废树脂的水泥固化配 方, 其特征在于, 以固化 100重量份的高含硼废树脂计, 包括以下重量份数 的原料:水泥 170-200、石灰 10-20、水 20-40、固化助剂 0.25-10和添加剂 4-15。
3、根据权利要求 1或 2所述的用于核电站高含硼放射性废树脂的水泥固 化配方, 其特征在于, 所述添加剂为氢氧化钠、 碳酸锂和硅酸钠中至少两种 的混合物。
4、根据权利要求 1或 2所述的用于核电站高含硼放射性废树脂的水泥固 化配方, 其特征在于, 所述固化助剂包括聚羧酸盐类减水剂, 其重量份数为 0.25-5。
5、根据权利要求 4所述的用于核电站高含硼放射性废树脂的水泥固化配 方, 其特征在于, 所述的聚羧酸盐类减水剂为聚丙烯酸钠、 聚丙烯酸钾、 聚 丁烯酸钠、 聚丁烯酸钾、 Basf glenium51、 Sika ViscoCrete中的一种。
6、根据权利要求 4所述的用于核电站高含硼放射性废树脂的水泥固化配 方, 其特征在于, 所述固化助剂还包括偏铝酸钠, 其重量份数为 1-5。
7、根据权利要求 1或 2所述的用于核电站高含硼放射性废树脂的水泥固 化配方, 其特征在于, 以固化 100重量份的高含硼废树脂计, 包括以下重量 份数的原料: 水泥 198、 石灰 11、 水 30、 固化助剂 0.25、 添加剂 3.70; 所述 固化助剂为聚丙烯酸钠, 所述添加剂为氢氧化钠和碳酸锂的混合物。
8、根据权利要求 1或 2所述的用于核电站高含硼放射性废树脂的水泥固 化配方, 其特征在于, 以固化 100重量份的高含硼废树脂计, 包括以下重量 份数的原料: 水泥 184、 石灰 10、 水 19、 固化助剂 2、 添加剂 2; 所述固化助 剂为聚丁烯酸钠, 所述添加剂为氢氧化钠和硅酸钠的混合物。
9、根据权利要求 1或 2所述的用于核电站高含硼放射性废树脂的水泥固 化配方, 其特征在于, 以固化 100重量份的高含硼废树脂计, 包括以下重量 份数的原料: 水泥 170、 石灰 9、 水 29、 固化助剂 1、 添加剂 2.3 ; 所述固化 助剂为 SikaViscoCrete 20HE, 所述添加剂为碳酸锂和硅酸钠的混合物。
10、 一种用于核电高含硼放射性废树脂的固化方法, 其特征在于, 包括以 下步骤:
将各种固化剂原料以及高含硼废树脂进行称重或计量准备, 固化配方以 固化 100重量份的高含硼废树脂计,包括以下重量份数的原料:水泥 170-260、 石灰 5-20、 水 20-60、 固化助剂 0.25-10和添加剂 2-20;
2)将原料中的石灰加入到固化容器内;
3)放入计量好的高含硼废树脂和除水外的其余固化助剂原料;
4)边搅拌边加入水泥, 搅拌过程中视物料情况加水, 搅拌至均匀;
5)搅拌均匀后静置养护。
11、 根据权利要求 10所述的用于核电高含硼放射性废树脂的固化方法, 其特征在于, 所述步骤 1)的固化配方以固化 100重量份的高含硼废树脂计, 包括以下重量份数的原料: 水泥 170-200、 石灰 10-20、 水 20-40、 固化助剂 0.25-10和添加剂 4-15。
12、 根据权利要求 10或 11所述的用于核电高含硼放射性废树脂的固化 方法, 其特征在于, 所述步骤 1)的固化配方中的添加剂为氢氧化钠、 碳酸锂 和硅酸钠中至少两种的混合物。
13、 根据权利要求 10或 11所述的用于核电高含硼放射性废树脂的固化 方法, 其特征在于, 所述步骤 1)的固化配方中的固化助剂包括聚羧酸盐类减 水剂, 其重量份数为 0.25-5。
14、 根据权利要求 10或 11所述的用于核电高含硼放射性废树脂的固化 方法, 其特征在于, 所述固化配方中的聚羧酸盐类减水剂为聚丙烯酸钠、 聚 丙烯酸钾、 聚丁烯酸钠、 聚丁烯酸钾、 Basf glenium51、 Sika ViscoCrete的一 种。
15、 根据权利要求 10或 11所述的用于核电站高含硼放射性废树脂的水 泥固化配方, 其特征在于, 所述步骤 1)中, 所述固化助剂还包括偏铝酸钠, 其重量份数为 1-5。
16、 根据权利要求 10或 11所述的用于核电高含硼放射性废树脂的固化 方法, 其特征在于, 所述步骤 1)中检测高含硼废树脂中所含游离水的重量比 来折算出高含硼废树脂的应称重量和水的应称重量, 对所述各种固化剂原料 进行称重, 并将固化助剂和添加剂加水溶解制成溶液。
17、 根据权利要求 10或 11所述的用于核电高含硼放射性废树脂的固化 方法, 其特征在于, 所述步骤 3)中通过计量罐向固化容器内放入带有游离水 的高含硼废树脂, 开动搅拌桨进行搅拌, 然后加入固化助剂和添加剂, 其中 搅拌速度前期为 15-25rpm; 后期为 40-60rpm, 搅拌时间总和为 100-120min, 采用垂直轴式搅拌方式。
18、 根据权利要求 10或 11所述的用于核电高含硼放射性废树脂的固化 方法, 其特征在于, 所述步骤 4)中开动搅拌机, 搅拌速度为 15-25rpm, 边搅 拌边通过水泥料斗向容器内慢慢加入水泥;水泥加入速度为 800-1200kg/h,搅 拌过程中逐步加水至满足固化配方要求的水的重量份数, 继续搅拌 0.5h, 并 且提桨、 降桨上下搅拌, 直至搅拌均匀。
19、 根据权利要求 10或 11所述的用于核电高含硼放射性废树脂的固化 方法, 其特征在于, 所述步骤 5)中停止搅拌后将固化容器送至养护间, 表面 覆盖遮蔽物静置养护 28天。
PCT/CN2011/082907 2011-11-25 2011-11-25 用于核电站高含硼放射性废树脂的水泥固化配方及固化方法 WO2013075322A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2011/082907 WO2013075322A1 (zh) 2011-11-25 2011-11-25 用于核电站高含硼放射性废树脂的水泥固化配方及固化方法
EP11876147.7A EP2784039B1 (en) 2011-11-25 2011-11-25 Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor
CN201180033467.0A CN103237772B (zh) 2011-11-25 2011-11-25 用于核电站高含硼放射性废树脂的水泥固化配方及固化方法
JP2014542661A JP5913616B2 (ja) 2011-11-25 2011-11-25 原子力発電所の高濃度ホウ素含有放射性廃樹脂に用いられるセメント固化処方及び固化方法
KR1020147017179A KR101720397B1 (ko) 2011-11-25 2011-11-25 원자력 발전소의 붕소 함량이 높은 방사성 폐수지에 사용하는 시멘트 고화 레시피 및 고화 방법
US14/360,549 US9443628B2 (en) 2011-11-25 2011-11-25 Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor
ZA2014/03738A ZA201403738B (en) 2011-11-25 2014-05-22 Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082907 WO2013075322A1 (zh) 2011-11-25 2011-11-25 用于核电站高含硼放射性废树脂的水泥固化配方及固化方法

Publications (1)

Publication Number Publication Date
WO2013075322A1 true WO2013075322A1 (zh) 2013-05-30

Family

ID=48469020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082907 WO2013075322A1 (zh) 2011-11-25 2011-11-25 用于核电站高含硼放射性废树脂的水泥固化配方及固化方法

Country Status (7)

Country Link
US (1) US9443628B2 (zh)
EP (1) EP2784039B1 (zh)
JP (1) JP5913616B2 (zh)
KR (1) KR101720397B1 (zh)
CN (1) CN103237772B (zh)
WO (1) WO2013075322A1 (zh)
ZA (1) ZA201403738B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012839A4 (en) * 2013-06-18 2017-04-12 Kabushiki Kaisha Toshiba Cementation method and cementation device for boric-acid-containing liquid waste
CN110232981A (zh) * 2019-06-20 2019-09-13 中国辐射防护研究院 放射性废物的水泥固化处理方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6975967B2 (ja) * 2017-10-25 2021-12-01 株式会社オートセット 汚染土壌または汚染水処理方法、汚染土壌または汚染水処理装置、および汚染土壌処理システム
CN106960692B (zh) * 2017-03-10 2019-02-26 清华大学 放射性废树脂水泥固化配方及固化方法
CN107619237A (zh) * 2017-10-19 2018-01-23 沈阳建筑大学 一种利用硼泥制备砂浆试块的方法
CN110189846A (zh) * 2019-05-17 2019-08-30 岭东核电有限公司 水泥固化工艺及其系统
CN110648777B (zh) * 2019-06-20 2022-07-29 中国辐射防护研究院 一种低pH值放射性废液的高效水泥固化处理方法
CN110797132B (zh) * 2019-10-23 2022-03-08 江苏中海华核环保有限公司 一种稳定放射性核素的废树脂处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128699A (ja) * 1990-09-20 1992-04-30 Tohoku Electric Power Co Inc 放射性廃液の固化処理法
JPH07120594A (ja) * 1993-10-21 1995-05-12 Hitachi Ltd 放射性廃棄物の固化方法及び装置
CN1262513A (zh) * 1999-01-29 2000-08-09 株式会社东芝 含硼废弃物的处理方法和处理装置
CN101456715A (zh) * 2008-12-25 2009-06-17 清华大学 一种含硼放射性废树脂水泥固化的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2603116C2 (de) * 1976-01-28 1983-01-27 Nukem Gmbh, 6450 Hanau Verfahren zur Verfestigung von radioaktiven borathaltigen wäßrigen Lösungen und Suspensionen
DE3215508C2 (de) * 1982-04-26 1986-11-06 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur Verbesserung der Radionuklid-Rückhalteeigenschaften von Verfestigungen radioaktiver Abfälle
CH655198A5 (en) * 1982-04-26 1986-03-27 Nationale Genossenschaft Fuer Process for enhancing the radionuclide retention properties of solidified radioactive wastes
JP2513690B2 (ja) * 1987-05-22 1996-07-03 電気化学工業株式会社 放射性廃棄物の固化剤
US5441622A (en) * 1992-10-06 1995-08-15 Kew Import/Export, Inc. Sharps destruction apparatus
TW321774B (zh) * 1994-10-27 1997-12-01 Jgc Corp
US5732363A (en) * 1994-10-27 1998-03-24 Jgc Corporation Solidifying material for radioactive wastes, process for solidifying radioactive wastes and solidified product
JP3795102B2 (ja) * 1995-06-22 2006-07-12 株式会社日本触媒 汚泥固化材および汚泥固化方法
JPH10197690A (ja) * 1997-01-14 1998-07-31 Nippon Kayaku Co Ltd 放射性廃棄物の固化処理方法
JP3095748B1 (ja) * 1999-09-30 2000-10-10 三菱重工業株式会社 ほう酸用セメント固化材、ほう酸のセメント固化方法及びセメント固化体
GB0130593D0 (en) * 2001-12-21 2002-02-06 British Nuclear Fuels Plc Treatment of waste products
US7449131B2 (en) * 2004-10-06 2008-11-11 Terry Industries, Inc. Techniques and compositions for shielding radioactive energy
US7737320B1 (en) * 2005-09-28 2010-06-15 Uchicago Argonne, Llc Composition suitable for decontaminating a porous surface contaminated with cesium
CN102010161A (zh) * 2010-10-29 2011-04-13 清华大学 一种放射性废树脂水泥固化中防止树脂上浮的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128699A (ja) * 1990-09-20 1992-04-30 Tohoku Electric Power Co Inc 放射性廃液の固化処理法
JPH07120594A (ja) * 1993-10-21 1995-05-12 Hitachi Ltd 放射性廃棄物の固化方法及び装置
CN1262513A (zh) * 1999-01-29 2000-08-09 株式会社东芝 含硼废弃物的处理方法和处理装置
CN101456715A (zh) * 2008-12-25 2009-06-17 清华大学 一种含硼放射性废树脂水泥固化的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"(GB14569.1-2011) Performance requirements for low and intermediate level radioactive waste form-Cemented waste form", NATIONAL STANDARD, 18 February 2011 (2011-02-18)
LI, HONGHUI ET AL.: "Cementation Treatment for Radioactive Waste at NPPs", RADIATION PROTECTION BULLETIN, vol. 30, no. 3, June 2010 (2010-06-01), pages 34 - 38, XP008171886 *
SBTS: "GB 14569.1-1993 Characteristic Requirements for Solidified Waste Form of Low and Intermediate Level Radioactive Waste - Cement Solidified Waste Form (English)", 6 August 1993 (1993-08-06)
See also references of EP2784039A4
SUN, QINA ET AL.: "Research Progress in Cementation of Radioactive Wastes", ATOMIC ENERGY SCIENCE AND TECHNOLOGY, vol. 44, no. 12, December 2010 (2010-12-01), pages 1427 - 1435, XP008171794 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012839A4 (en) * 2013-06-18 2017-04-12 Kabushiki Kaisha Toshiba Cementation method and cementation device for boric-acid-containing liquid waste
CN110232981A (zh) * 2019-06-20 2019-09-13 中国辐射防护研究院 放射性废物的水泥固化处理方法

Also Published As

Publication number Publication date
JP5913616B2 (ja) 2016-04-27
CN103237772B (zh) 2015-12-02
US9443628B2 (en) 2016-09-13
KR20140107308A (ko) 2014-09-04
JP2015503094A (ja) 2015-01-29
EP2784039A1 (en) 2014-10-01
EP2784039B1 (en) 2016-10-12
ZA201403738B (en) 2016-05-25
EP2784039A4 (en) 2014-12-17
CN103237772A (zh) 2013-08-07
KR101720397B1 (ko) 2017-03-27
US20140336437A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
WO2013075322A1 (zh) 用于核电站高含硼放射性废树脂的水泥固化配方及固化方法
CN101549965B (zh) 一种处理中、低放射性焚烧灰的水泥基固化材料及处理中、低放射性焚烧灰的方法
Sun et al. Cementation of radioactive borate liquid waste produced in pressurized water reactors
WO2016045490A1 (zh) 一种固化放射性蒸残液的新型地质水泥材料及其固化方法
CN112479664A (zh) 一种含硼废树脂水泥固化配方及其固化方法
CN108298881A (zh) 一种用于固化放射性化学泥浆的地质水泥及其应用
CN104291762B (zh) 放射性废树脂固化用化学键合胶凝材料及其固化方法
JPH0634097B2 (ja) 放射性廃棄物の固化剤
CN102262911A (zh) 一种使用萘系减水剂水泥固化放射性废树脂的方法
CN110330297A (zh) 固化含有高浓度硼酸中低放废液的硫铝酸盐水泥基固化材料及其固化方法
WO2016045492A1 (zh) 一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法
CN111056789B (zh) 一种放射性废渣的固化方法
CN111524632A (zh) 一种处理中低放射性核废料的镁基水泥固化基材及方法
CN102276231A (zh) 一种使用NaAlO2促凝剂水泥固化放射性废树脂的方法
CN108585722B (zh) 一种固化含有高浓度硼酸核废液的水泥基固化材料及其固化方法
CN105679390B (zh) 核电站失效干燥剂混合减容固化处理方法
US11673833B2 (en) Strontium ferrite-based sacrificial mortar and its preparation method
CN102222532B (zh) 用硅酸盐和硫铝酸盐水泥混合物固化放射性废树脂的方法
WO2014203498A1 (ja) ホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置
CN115159917B (zh) 一种水泥固化处理放射性废树脂的配方及方法
CN113620638B (zh) 一种放射性废物固化处理添加剂、制备方法、固化剂
CN108658563A (zh) 一种矿渣基地聚合物防辐射混凝土及其制备方法
CN115321902B (zh) 用于防止中子辐射的抗开裂防辐射混凝土及其制备方法
Park et al. Evaluation of the Solidification Characteristics of Dispersible Radioactive Waste Using Organic-Inorganic Hybrid Solidifying Binders
CN113061006A (zh) 一种含硼浓缩废液水泥固化配方及其固化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014542661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011876147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011876147

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147017179

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14360549

Country of ref document: US