WO2016045492A1 - 一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法 - Google Patents

一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法 Download PDF

Info

Publication number
WO2016045492A1
WO2016045492A1 PCT/CN2015/088912 CN2015088912W WO2016045492A1 WO 2016045492 A1 WO2016045492 A1 WO 2016045492A1 CN 2015088912 W CN2015088912 W CN 2015088912W WO 2016045492 A1 WO2016045492 A1 WO 2016045492A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing
geological cement
incineration ash
cement material
radioactive incineration
Prior art date
Application number
PCT/CN2015/088912
Other languages
English (en)
French (fr)
Inventor
曹海琳
翁履谦
李绍彬
郭悦
李国学
Original Assignee
深圳航天科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳航天科技创新研究院 filed Critical 深圳航天科技创新研究院
Publication of WO2016045492A1 publication Critical patent/WO2016045492A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/304Cement or cement-like matrix

Definitions

  • the invention belongs to the technical field of radioactive incineration ash solidification, and particularly relates to a novel geological cement material for curing radioactive incineration ash and a curing method thereof
  • combustible radioactive waste generated by the post-treatment plant. More than 40% of the solid radioactive waste is flammable, including fiber materials (such as paper, wood, cotton fabric, etc.), plastics, rubber materials, etc.; nuclear power plants 50% to 80 % of solid radioactive waste is combustible waste; for these combustible radioactive solid wastes, the usual treatment is incineration, the final product is homogeneous ash, and the resulting ash is solidified by cement, glass or other methods. Incineration is also an attractive process for treating organic waste liquids because organic waste liquids are easily burned and can achieve high derating factors.
  • incineration method has become the leading process for treating such wastes, and it is also in line with the policy of waste minimization strategy, which has the advantages of significant volume reduction effect and high stability of waste after transformation.
  • incineration ash which is the main secondary waste, is a diffuse substance and is enriched with most of the radioactivity. In order to prevent environmental hazards, it must be subjected to necessary treatment before being sent to a radioactive waste disposal site for final disposal. How to safely treat incineration ash has become a problem that researchers and engineers around the world are working on.
  • the cement curing method has the advantages of simple process, simple equipment, low equipment investment cost and low curing treatment cost; the mechanical stability, heat resistance and durability of the cement cured body are good.
  • a lot of researches have been done on the solidification technology of cement-based materials at home and abroad.
  • the cement solidified body has poor density, high leaching rate, inconspicuous volume reduction effect, high disposal cost, and when the incineration ash is mixed with lead, zinc, tin and other metals, the solidified substance generates hydrogen during the placement process, and This causes cracking of the cured product, Even the packaging barrel was damaged.
  • Geological cement materials have the advantages of compact structure, high mechanical strength, stable hydration products, low solubility and strong impermeability.
  • boron When used as a curing substrate, boron has a limited influence on the setting time, and can better contain foreign ions, and the hydration product can adsorb and solid-dissolve the nuclide ions more, preventing a large amount of leaching.
  • this method has the outstanding advantages of easy availability of raw materials, simple process, low cost, long-term stability and superiority of the solidified body, and is incomparable by other curing methods, so it has broad application prospects.
  • the object of the present invention is to provide a novel geological cement material for curing radioactive incineration ash and a curing method thereof.
  • geological cement material for curing radioactive incineration ash and a curing method thereof, wherein geological cement A material is prepared by uniformly mixing slag material and adsorbent, and geological cement material B is prepared by compound liquid activator, and then water is added with radioactive incineration ash in a stirring pot. Stir for 5min, move to the mold, maintain 1d, continue to maintain to 28d after demoulding, curing temperature is 25 ⁇ 5°C, relative humidity ⁇ 90%.
  • the slag comprises one or a combination of two of blast furnace slag and fly ash.
  • the composite liquid activator is one or two of 25% to 55% SiO 2 , 3-20% Na 2 O and K 2 O, and 40% to 70% of H 2 O. The sum of the components of the activator is 100%.
  • the adsorbent is a combination of one or more of 0% to 50% by weight of sodium bentonite, 20% to 60% of zeolite, and 20% to 60% of kaolin. The sum of the components of the adsorbent is 100%.
  • the ratio of the amount of the radioactive incineration ash, the geological cement A material, and the geological cement B material is 1000g: (850-1150) g: (1500-1800) g.
  • the invention has the beneficial effects that when the radioactive incineration ash is cured by the invention, the waste package capacity is obviously improved, the fluidity of the solidified body is 150-180 mm, the fluidity is good, the flow is adjustable, the final setting time is ⁇ 12 h, and the proper initial setting time is ensured. Curing operation. After 28d curing, the compressive strength of the solidified body reached 20MPa or more, and the freeze-thaw cycle test was more than 20 times. After 90d immersion test, there was no crack on the surface of the solidified body, and the compressive strength showed a trend of growth. The 42d leaching rate of 137 Cs element was 4.0 ⁇ 10 -4 cm/d, which was 10 times lower than the national standard.
  • the blast furnace slag is ground into a slag, and the specific surface area of the powder is 450 kg/m 3 .
  • the geological cement A is prepared by uniformly mixing 70% slag with 30% adsorbent, wherein the percentage of each component in the adsorbent is 50% of sodium bentonite and 50% of zeolite.
  • the composite liquid activator is used to prepare geological cement B, wherein the percentage of each component is: 25% SiO 2 , 15% Na 2 O, 60% H 2 O. Take 2000g of geological cement A and 3600g of geological cement B, and mix with 2000g of radioactive incineration ash and water in a stirring pot for 5min, and move to a mold of ⁇ 50 ⁇ 50mm to prepare a solidified body.
  • the test mold is placed in the curing box for curing, the curing temperature is 20 ⁇ 1°C, the relative humidity is ⁇ 90%, and the compressive strength of the cured body 28d is 23.0MPa; after 20 times of freezing and thawing cycle test, there is no obvious crack on the surface, and the pressure is resistant.
  • the strength is 20.0MPa; after immersion in 90d, the surface has no crack, the compressive strength is 28.8MPa, and the 42d leaching rate of 137 Cs element is 1.0 ⁇ 10 -4 cm/d.
  • the blast furnace slag is ground into a slag, and the specific surface area of the powder is 450 kg/m 3 .
  • the geological cement A is prepared by uniformly mixing 70% slag with 30% adsorbent, wherein the percentage of each component in the adsorbent is 40% of sodium bentonite and 60% of zeolite.
  • the composite liquid activator is used to prepare geological cement B, wherein the percentage of each component is: 25% SiO 2 , 15% Na 2 O, 60% H 2 O. 1950 g of geological cement A and 3580 g of geological cement B were taken, and 2000 g of radioactive incineration ash was added with water in a stirring pot for 5 min, and transferred to a mold of ⁇ 50 ⁇ 50 mm to prepare a solidified body.
  • the test mold is placed in the curing box for curing, the curing temperature is 20 ⁇ 1°C, the relative humidity is ⁇ 90%, and the compressive strength of the cured body 28d is 20.2MPa.
  • the surface After 20 times of freezing and thawing cycle test, the surface has no obvious crack and compressive pressure. The strength is 18.5MPa; after immersion in 90d, the surface has no crack, the compressive strength is 23.2MPa, and the leaching rate of 137 Cs element is 42 ⁇ 10 -4 cm/d.
  • 80% blast furnace slag and 20% fly ash powder are ground into slag, and the specific surface area of the powder is 450kg/m 3 .
  • 80% slag and 20% adsorbent are uniformly mixed to prepare geological cement A.
  • the percentage of each component in the adsorbent is 50% of sodium bentonite and 50% of zeolite.
  • the composite liquid activator is used to prepare geological cement B, wherein the percentage of each component is: 25% SiO 2 , 20% Na 2 O, 60% H 2 O.
  • the test mold is placed in the curing box for curing, the curing temperature is 20 ⁇ 1°C, the relative humidity is ⁇ 90%, and the compressive strength of the cured body 28d is 25.4MPa. After 20 times of freezing and thawing cycle test, the surface has no obvious crack and compressive pressure. The strength is 24.0MPa; after immersion in 90d, the surface has no crack, the compressive strength is 30.2MPa, and the leaching rate of 137 Cs element is 42 ⁇ 10 -4 cm/d.
  • 80% blast furnace slag and 20% fly ash powder are ground into slag, and the specific surface area of the powder is 450kg/m 3 .
  • 80% slag and 20% adsorbent are uniformly mixed to prepare geological cement A.
  • the percentage of each component in the adsorbent is: sodium bentonite 30%, zeolite 30%, and kaolin 40%.
  • the composite liquid activator is used to prepare geological cement B, wherein the percentage of each component is: 25% SiO 2 , 15% Na 2 O, 60% H 2 O.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法,该方法是将含铝硅酸盐成分的渣料、吸附剂混合均匀制备地质水泥A料,复合液态激发剂制备地质水泥B料;然后将地质水泥A、B料与放射性焚烧灰加水在搅拌锅内搅拌5min,移至模具内成型、养护;使用该固化放射性焚烧灰时,焚烧灰与地质水泥质量比1:1,废物包容量明显提高,固化体流动度150~180mm,流动性好,可调,终凝时间〈12h(小于),并且保证适当的初凝时间进行固化操作;经28d养护后,固化体抗压强度达20MPa以上,经20次冻融循环测试,试样抗压强度损失<10%(小于),经90d浸泡试验,固化体表面无裂纹,抗压强度呈增长趋势, 137Cs元素第42d浸出率为4.0×10 -4cm/d,低于国家标准10倍。

Description

一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法 技术领域
本发明属于放射性焚烧灰固化技术领域,具体涉及一种放射性焚烧灰固化用新型地质水泥材料及其固化方法
背景技术
后处理厂产生的可燃放射性废物种类很多,40%以上固体放射性废物是可燃的,其中包括纤维类物质(如纸、木材、棉织物等),塑料,橡胶类物质等;核电厂50%~80%的固体放射性废物为可燃废物;针对这些可燃放射性固体废物,通常处理方法是焚烧,最终产品为均质的灰烬,产生的灰烬用水泥、玻璃或其它方法固化。焚烧对于处理有机废液也是一种较有吸引力的工艺,因为有机废液很容易燃烧且可达到高的减容系数。所以焚烧法成为处理此类废物的主导工艺,也符合废物最小化战略的政策,有减容效果显著、转型后废物的稳定性高等优点。但作为主要二次废物的焚烧灰属于弥散性物质且富集了绝大部分放射性,为了防止对环境的危害,须经过必要的处理后,才能够送到放射性废物处置场进行最终处置。如何安全处理焚烧灰成为世界各国研究者和工程设计人员致力研究的问题。
水泥固化法优点是工艺简单、设备简单、设备投资费用低、固化处理成本低;水泥固化体的机械稳定性、耐热性、耐久性均较好。目前国内外对水泥基材料固化技术做了大量研究,优传统硅酸盐水泥、铝酸盐水泥及硅酸盐水泥-粘土矿物复合体系,但以水泥为固化基材固化焚烧灰依然存在以下缺点:水泥固化体致密度差、浸出率较高、减容效果不显著、处置费用大,且当焚烧灰中混有铅、锌、锡等金属时,固化物在放置过程中会产生氢气,并由此引起固化物的破裂, 甚至使包装桶破损。
地质水泥材料具有结构致密,机械强度高,水化产物稳定且溶解度低,抗渗能力强等优点。用作固化基材时,硼元素对于凝结时间影响有限,能够较好的包容外来离子,水化产物能够更多的吸附和固溶核素离子,防止其大量浸出。同时这种方法还具有原料易得、工艺简单、成本低廉,固化体长期稳定优越等突出优点,均是其他固化方法不可比拟的,因此具有广泛的应用前景。
发明内容
本发明的目的是提供一种放射性焚烧灰固化用新型地质水泥材料及其固化方法。
一种放射性焚烧灰固化用新型地质水泥材料及其固化方法,将渣料、吸附剂混合均匀制备地质水泥A料,复合液态激发剂制备地质水泥B料,然后与放射性焚烧灰加水在搅拌锅内搅拌5min,移至模具内,养护1d,拆模后继续养护至28d,养护温度为25±5℃、相对湿度≥90%。
所述渣料包括高炉矿渣、粉煤灰中的一种或两种的组合。
所述复合液态激发剂为25%~55%SiO2、3-20%Na2O和K2O中的一种或两种、40%~70%的H2O。激发剂各组分总和为100%。
所述吸附剂按重量比为0%~50%的钠基膨润土、20%~60%的沸石、20%~60%的高岭土的一种或几种的组合。吸附剂各组分总和为100%。
所述放射性焚烧灰、地质水泥A料、地质水泥B料用量比为1000g:(850~1150)g:(1500~1800)g。
本发明的有益效果:使用本发明固化放射性焚烧灰时,废物包容量明显提高,固化体流动度150~180mm,流动性好,可调,终凝时间〈12h,并且保证适当的初凝时间进行固化操作。经28d养护后,固化体抗压强度达20MPa以上,冻融循环测试大于20次,经90d浸泡试验,固化体表面无裂纹,抗压强度呈增 长趋势。137Cs元素第42d浸出率为4.0×10-4cm/d,低于国家标准10倍。
具体实施方式
下面以具体实施例对本发明做进一步说明。
实施例1
高炉矿渣粉磨成渣料,粉末比表面积450kg/m3。70%渣料与30%吸附剂均匀混合制备地质水泥A料,其中吸附剂中各组分的百分比为:钠基膨润土50%、沸石50%。复合液态激发剂制备地质水泥B料,其中各组分的百分比为:25%SiO2、15%Na2O、60%H2O。取2000g地质水泥A料和3600g地质水泥B料,与2000g放射性焚烧灰加水在搅拌锅内搅拌5min,移至φ50×50mm的模具内,制备固化体。将试模放入养护箱内养护,养护温度20±1℃,相对湿度≥90%,测得固化体28d抗压强度为23.0MPa;冻融循环测试20次后,表面无明显裂纹,抗压强度为20.0MPa;固化体经90d浸泡后,表面无裂纹,抗压强度28.8MPa,137Cs元素第42d浸出率为1.0×10-4cm/d。
实施例2
高炉矿渣粉磨成渣料,粉末比表面积450kg/m3。70%渣料与30%吸附剂均匀混合制备地质水泥A料,其中吸附剂中各组分的百分比为:钠基膨润土40%、沸石60%。复合液态激发剂制备地质水泥B料,其中各组分的百分比为:25%SiO2、15%Na2O、60%H2O。取1950g地质水泥A料和3580g地质水泥B料,与2000g放射性焚烧灰加水在搅拌锅内搅拌5min,移至φ50×50mm的模具内,制备固化体。将试模放入养护箱内养护,养护温度20±1℃,相对湿度≥90%,测得固化体28d抗压强度为20.2MPa;冻融循环测试20次后,表面无明显裂纹,抗压强度为18.5MPa;固化体经90d浸泡后,表面无裂纹,抗压强度23.2MPa,137Cs元素第42d浸出率为4.0×10-4cm/d。
实施例3
80%高炉矿渣和20%粉煤灰粉磨成渣料,粉末比表面积450kg/m3。80%渣料与20%吸附剂均匀混合制备地质水泥A料,其中吸附剂中各组分的百分比为:钠基膨润土50%、沸石50%。复合液态激发剂制备地质水泥B料,其中各组分的百分比为:25%SiO2、20%Na2O、60%H2O。取2000g地质水泥A料和3600g地质水泥B料,与2000g放射性焚烧灰加水在搅拌锅内搅拌5min,移至φ50×50mm的模具内,制备固化体。将试模放入养护箱内养护,养护温度20±1℃,相对湿度≥90%,测得固化体28d抗压强度为25.4MPa;冻融循环测试20次后,表面无明显裂纹,抗压强度为24.0MPa;固化体经90d浸泡后,表面无裂纹,抗压强度30.2MPa,137Cs元素第42d浸出率为1.2×10-4cm/d。
实施例4
80%高炉矿渣和20%粉煤灰粉磨成渣料,粉末比表面积450kg/m3。80%渣料与20%吸附剂均匀混合制备地质水泥A料,其中吸附剂中各组分的百分比为:钠基膨润土30%、沸石30%、高岭土40%。复合液态激发剂制备地质水泥B料,其中各组分的百分比为:25%SiO2、15%Na2O、60%H2O。取2000g地质水泥A料和3600g地质水泥B料,与2000g放射性焚烧灰加水在搅拌锅内搅拌5min,移至φ50×50mm的模具内,制备固化体。将试模放入养护箱内养护,养护温度20±1℃,相对湿度≥90%,测得固化体28d抗压强度为23.7MPa;冻融循环测试20次后,表面无明显裂纹,抗压强度为21.0MPa;固化体经90d浸泡后,表面无裂纹,抗压强度25.8MPa,137Cs元素第42d浸出率为1.8×10-4cm/d。

Claims (5)

  1. 一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法,其特征在于,将渣料、吸附剂混合均匀制备地质水泥A料,复合液态激发剂制备地质水泥B料、,与放射性焚烧灰加水在搅拌锅内搅拌5min,移至模具内成型,养护1d后拆模,继续养护至28d,养护温度为25±5℃、相对湿度≥90%。
  2. 根据权利1要求所述,一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法,其特征在于,68%~85%铝硅酸盐分的渣料、15%~32%沸石结构的吸附剂,混合搅拌均匀制备地质水泥A料,复合液态激发剂制备地质水泥B料。所述渣料包括高炉矿渣、粉煤灰中的一种或两种的组合,进行粉磨磨制,勃氏比表面积不小于400kg/m3
  3. 根据权利1要求所述,一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法,其特征在于,所述复合液态激发剂为25%~55%SiO2、3-20%Na2O和K2O中的一种或两种、40%~70%的H2O,激发剂各组分总和为100%。
  4. 根据权利1要求所述,一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法,所述吸附剂按重量比为0%~50%的钠基膨润土、20%~40%的沸石、20%~40%的高岭土的一种或几种的组合。吸附剂各组分总和为100%。
  5. 根据权利1要求所述,一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法,其特征在于,所述放射性焚烧灰、地质水泥A料、地质水泥B料用量比为1000g:(850~1150)g:(1500~1800)g。
PCT/CN2015/088912 2014-09-24 2015-09-02 一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法 WO2016045492A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410494146.6 2014-09-24
CN201410494146.6A CN104299668B (zh) 2014-09-24 2014-09-24 放射性焚烧灰固化用的地质水泥及其固化方法

Publications (1)

Publication Number Publication Date
WO2016045492A1 true WO2016045492A1 (zh) 2016-03-31

Family

ID=52319361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088912 WO2016045492A1 (zh) 2014-09-24 2015-09-02 一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法

Country Status (2)

Country Link
CN (1) CN104299668B (zh)
WO (1) WO2016045492A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710524A (zh) * 2021-01-06 2021-04-27 中建材(合肥)粉体科技装备有限公司 一种快速筛选适用于矿物掺合料的改性剂的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282353B (zh) * 2014-09-24 2017-03-29 深圳市航天新材科技有限公司 放射性蒸残液固化用的地质水泥及其固化方法
CN104299668B (zh) * 2014-09-24 2017-12-05 深圳市航天新材科技有限公司 放射性焚烧灰固化用的地质水泥及其固化方法
CN106847360B (zh) * 2016-12-26 2018-10-23 西南科技大学 一种利用花岗岩固化放射性废物的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541908A (zh) * 2003-04-30 2004-11-03 ǿ�����й������޹�˾ 可调节侧向粉末流的分配器
KR20090025683A (ko) * 2007-09-07 2009-03-11 이호국 파우더형 방수재
CN101549965A (zh) * 2009-04-30 2009-10-07 中国建筑材料科学研究总院 一种处理中、低放射性焚烧灰的水泥基固化材料及处理中、低放射性焚烧灰的方法
WO2009154405A2 (ko) * 2008-06-19 2009-12-23 강릉원주대학교산학협력단 비소성 황토벽돌의 제조방법 및 이로부터 제조된 황토벽돌
CN101948286A (zh) * 2010-10-13 2011-01-19 广东绿由环保科技股份有限公司 一种用陶瓷废料生产的加气混凝土砌块及其制造方法
CN103360007A (zh) * 2012-08-28 2013-10-23 江苏南瓷绝缘子有限公司 一种新型耐久性硅酸盐水泥胶合剂及其制备方法
CN104299668A (zh) * 2014-09-24 2015-01-21 深圳航天科技创新研究院 放射性焚烧灰固化用的地质水泥及其固化方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2839759A1 (de) * 1978-09-13 1980-03-27 Strahlen Umweltforsch Gmbh Verschluss von lagerbohrungen zur endlagerung radioaktiver abfaelle und verfahren zum anbringen des verschlusses
JPS5828698A (ja) * 1981-08-14 1983-02-19 株式会社東芝 燃料プ−ル水および圧力抑制プ−ル水の冷却浄化装置
JP2005195497A (ja) * 2004-01-08 2005-07-21 Toshiba Corp 放射性廃棄物の固化処理方法および固化処理装置
JP4488976B2 (ja) * 2005-08-10 2010-06-23 株式会社東芝 放射性廃棄物の固化処理方法及びその装置
CN101628791B (zh) * 2009-06-25 2012-11-28 深圳航天科技创新研究院 一种抢修、抢建用地质聚合物凝胶材料
CN102169737B (zh) * 2010-12-28 2013-04-10 西南科技大学 高盐高碱中低水平放射性废液水泥固化体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541908A (zh) * 2003-04-30 2004-11-03 ǿ�����й������޹�˾ 可调节侧向粉末流的分配器
KR20090025683A (ko) * 2007-09-07 2009-03-11 이호국 파우더형 방수재
WO2009154405A2 (ko) * 2008-06-19 2009-12-23 강릉원주대학교산학협력단 비소성 황토벽돌의 제조방법 및 이로부터 제조된 황토벽돌
CN101549965A (zh) * 2009-04-30 2009-10-07 中国建筑材料科学研究总院 一种处理中、低放射性焚烧灰的水泥基固化材料及处理中、低放射性焚烧灰的方法
CN101948286A (zh) * 2010-10-13 2011-01-19 广东绿由环保科技股份有限公司 一种用陶瓷废料生产的加气混凝土砌块及其制造方法
CN103360007A (zh) * 2012-08-28 2013-10-23 江苏南瓷绝缘子有限公司 一种新型耐久性硅酸盐水泥胶合剂及其制备方法
CN104299668A (zh) * 2014-09-24 2015-01-21 深圳航天科技创新研究院 放射性焚烧灰固化用的地质水泥及其固化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710524A (zh) * 2021-01-06 2021-04-27 中建材(合肥)粉体科技装备有限公司 一种快速筛选适用于矿物掺合料的改性剂的方法

Also Published As

Publication number Publication date
CN104299668B (zh) 2017-12-05
CN104299668A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2016045490A1 (zh) 一种固化放射性蒸残液的新型地质水泥材料及其固化方法
WO2016045492A1 (zh) 一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法
CN106588117B (zh) 一种利用含Cr、Zn电镀污泥制备的防辐射功能集料
EP2784039B1 (en) Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor
CN106082731B (zh) 一种粉煤灰免烧高强陶粒及其制备方法
CN102617097A (zh) 以石煤提钒尾矿为主要原料的免烧陶粒及其制备方法
WO2016045491A1 (zh) 一种用于固化放射性废树脂的化学键合胶凝材料及其固化方法
WO2015106486A1 (zh) 一种重金属废石膏减量化无害化资源处置方法
CN103449765A (zh) 一种防腐蚀加气砖的制备方法
CN103360010A (zh) 一种透水砖的制备方法
CN107500580A (zh) 一种通过制备地质聚合物实现污泥焚烧残渣中重金属高效固定的方法
Zhenyu et al. Immobilization of solidified ceramic forms with magnesium phosphate cement
CN111056789B (zh) 一种放射性废渣的固化方法
CN102262910B (zh) 一种硫铝酸盐水泥复掺混合材固化放射性废树脂的方法
CN113880473A (zh) 一种钨尾矿基地聚物的制备方法
CN104163607A (zh) 一种蒸压砂加气混凝土砌块
CN110776282B (zh) 一种水泥基定形相变材料的制备方法
RU2360313C1 (ru) Композиция для цементирования жидких радиоактивных отходов
JP2019081308A (ja) ジオポリマー成型体製造方法およびジオポリマー成型体製造システム
CN108585722B (zh) 一种固化含有高浓度硼酸核废液的水泥基固化材料及其固化方法
TW201731797A (zh) 環保水泥及其製法
TW459250B (en) Co-solidification of low level radioactive wet wastes of BWR nuclear power plants
CN105130305A (zh) 一种核电站含硼废树脂的碱矿渣水泥固化方法
JP6139288B2 (ja) ホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置
CN109987905B (zh) 固化含活泼金属的放射性废物的复合胶凝材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/09/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15843696

Country of ref document: EP

Kind code of ref document: A1