WO2016045491A1 - 一种用于固化放射性废树脂的化学键合胶凝材料及其固化方法 - Google Patents

一种用于固化放射性废树脂的化学键合胶凝材料及其固化方法 Download PDF

Info

Publication number
WO2016045491A1
WO2016045491A1 PCT/CN2015/088911 CN2015088911W WO2016045491A1 WO 2016045491 A1 WO2016045491 A1 WO 2016045491A1 CN 2015088911 W CN2015088911 W CN 2015088911W WO 2016045491 A1 WO2016045491 A1 WO 2016045491A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing
waste resin
radioactive waste
chemical bonding
chemically bonded
Prior art date
Application number
PCT/CN2015/088911
Other languages
English (en)
French (fr)
Inventor
翁履谦
曹海琳
郭悦
李绍彬
李国学
Original Assignee
深圳航天科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳航天科技创新研究院 filed Critical 深圳航天科技创新研究院
Publication of WO2016045491A1 publication Critical patent/WO2016045491A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/20Waste materials; Refuse organic from macromolecular compounds
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the technical field of radioactive waste resin curing, and particularly relates to a chemical bonding gelling material for curing radioactive waste resin and curing method thereof
  • Ion exchange resins are commonly used in chemical separation, purification, preparation, etc., and are widely used in nuclear industry, mine, isotope preparation, and radiochemistry research, especially in nuclear power plants. It is the primary means of nuclear reactor primary and secondary circuit auxiliary systems and purification process wastewater. . When the radioactive level of the loaded nuclide is too high or the exchange capacity is saturated, the resin in the equipment needs to be replaced regularly, and a large amount of radioactive waste resin is generated, and the unloaded waste resin needs to be cured before being disposed.
  • the cement curing method is currently the most commonly used medium and low waste solidification method.
  • the current cement curing formula has the disadvantages of low packing capacity, high nuclides leaching rate, large volume expansion ratio of the solidified body, and easy cracking.
  • the boron-containing waste resin produced by the pressurized PWR nuclear power plant is cured, the condensation time of the solidified body is prolonged or even condensed due to the presence of boron, and the curing efficiency is lowered.
  • the volumetric capacity of the waste resin is only 35%, the solidification ratio of the solidified body is large, and the final disposal cost is expensive.
  • the chemical bonding gelling material has the advantages of compact structure, high mechanical strength, stable hydration product, low solubility and strong impermeability.
  • boron When used as a curing substrate, boron has a limited influence on the setting time, and can better contain foreign ions, and the hydration product can adsorb and solid-dissolve the nuclide ions more, preventing a large amount of leaching.
  • this method has the outstanding advantages of easy availability of raw materials, simple process, low cost, long-term stability and superiority of the solidified body, and is incomparable by other curing methods, so it has broad application prospects.
  • An object of the present invention is to provide a chemical bonding gelling material for curing a radioactive waste resin and a curing method thereof.
  • a chemical bonding gelling material for curing a radioactive waste resin and a curing method thereof, the slag material, the composite mineral activator and the adsorbent are uniformly mixed to prepare a chemical bonding gelling material, and the radioactive waste resin is stirred in a stirring pot for 7 minutes, and moved to In the mold, curing 1 ⁇ 28d, curing temperature is 25 ⁇ 5 ° C, relative humidity ⁇ 90%.
  • the slag comprises one or a combination of blast furnace slag, fly ash, and steel slag.
  • the composite mineral activator is one or two of 30% to 60% SiO 2 , 5% to 30% Na 2 O and K 2 O, 0% to 50% CaO, and 0% to 5% Na 2 . SO 4 , 0% to 30% Na 2 CO 3 , the sum of the components of the activator is 100%.
  • the adsorbent is one or a combination of sodium bentonite, zeolite, kaolin.
  • the saturated waste resin, the chemically bonded cementitious material, and the water consumption ratio are 1 L: (1350 to 1550) g: (250 to 350) g.
  • the beneficial effects of the invention when the radioactive waste resin is cured by the invention, the saturated waste resin package capacity in the solidified body is 55%-65%, the waste package capacity is obviously improved, the fluidity of the solidified body is 140-210 mm, the fluidity is good, and the liquid waste is adjustable.
  • the final setting time is ⁇ 12h, and the proper initial setting time is ensured for the curing operation.
  • the compressive strength of the solidified body is above 10MPa, and the freeze-thaw cycle test is more than 10 times. After 90d immersion test, there is no crack on the surface of the solidified body, and the compressive strength loss is less than 10%.
  • the solid waste resin is a radioactive waste resin of a nuclear power plant, and the moisture content of the waste resin is 42% to 50%.
  • the slag powder is pulverized by blast furnace slag, and the specific surface area of the powder is 420 kg/m 3 .
  • the percentage of each component in the composite mineral activator is: 56% SiO 2 , 28% Na 2 O, 8% CaO, 5% Na 2 SO 4 , 3% Na 2 CO 3 .
  • the percentage of each component in the adsorbent is: sodium bentonite 50%, and zeolite 50%. 70 parts by weight of the slag powder and 15 parts by weight of the composite mineral activator were mixed, and 15 parts by weight of the adsorbent were uniformly mixed to prepare a chemically bonded gelled material.
  • the blast furnace slag is 100%, and the slag powder is prepared by grinding, and the specific surface area of the powder is 420 kg/m 3 .
  • the percentage of each component in the composite mineral activator is: 56% SiO 2 , 28% Na 2 O, 8% CaO, 5% Na 2 SO 4 , 3% Na 2 CO 3 .
  • the percentage of each component in the adsorbent is 40% for sodium bentonite and 60% for kaolin. 66 parts by weight of the slag powder and 18 parts by weight of the composite mineral activator were mixed, and 16 parts by weight of the adsorbent were uniformly mixed to prepare a chemically bonded gelled material.
  • the blast furnace slag is 85%, the fly ash is 15%, and the slag powder is prepared by grinding together, and the specific surface area of the powder is 450 kg/m 3 .
  • the percentage of each component in the composite mineral activator is: 35% SiO 2 , 19% Na 2 O, 46% CaO.
  • the percentage of each component in the adsorbent is: sodium bentonite 50%, and zeolite 50%. 70 parts by weight of the slag powder and 15 parts by weight of the composite mineral activator were mixed, and 15 parts by weight of the adsorbent were uniformly mixed to prepare a chemically bonded gelled material.
  • the blast furnace slag is 85%, the fly ash is 15%, and the slag powder is prepared by grinding together, and the specific surface area of the powder is 400 kg/m 3 .
  • the percentage of each component in the composite mineral activator is: 50% SiO 2 , 32% Na 2 O, 14% CaO, 4% Na 2 SO 4 .
  • the percentage of each component in the adsorbent is 40% for sodium bentonite and 60% for kaolin. 70 parts by weight of the slag powder and 18 parts by weight of the composite mineral activator were mixed, and 12 parts by weight of the adsorbent were uniformly mixed to prepare a chemically bonded gelled material.
  • the percentage of each component in the composite mineral activator is: 53% SiO 2 , 28% Na 2 O, 6% CaO, 2% SO 3 , 11% CO 3 .
  • the percentage of each component in the adsorbent is: sodium bentonite 50%, and zeolite 50%. 70 parts by weight of the slag powder and 20 parts by weight of the composite mineral activator were mixed, and 10 parts by weight of the adsorbent were uniformly mixed to prepare a chemically bonded gelled material.
  • the percentage of each component in the composite mineral activator is: 58% SiO 2 , 26% Na 2 O, 16% CaO.
  • the percentage of each component in the adsorbent is 40% for sodium bentonite and 60% for kaolin. 72 parts by weight of the slag powder and 18 parts by weight of the composite mineral activator were mixed, and 10 parts by weight of the adsorbent were uniformly mixed to prepare a chemically bonded gelled material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种放射性废树脂固化用化学键合胶凝材料固化方法。该方法包括将含铝硅酸盐成分的渣料、复合矿物激发剂、吸附剂混合均匀制备化学键合胶凝材料,然后将化学键合胶凝材料与放射性废树脂加水在搅拌锅内搅拌7min,移至模具内养护。该方法在固化放射性废树脂时,饱和废树脂含水率在42%~50%之间,固化体中饱和废树脂包容量达到60%,固化体流动度140~210mm,终凝时间〈12h,并且保证适当的初凝时间进行固化操作。经28d养护后,固化体抗压强度达10MPa以上,冻融循环测试大于10次,经90d浸泡试验,固化体表面无裂纹,抗压强度损失小于10%。

Description

一种用于固化放射性废树脂的化学键合胶凝材料及其固化方法 技术领域
本发明属于放射性废树脂固化技术领域,具体涉及一种放射性废树脂固化用化学键合胶凝材料及其固化方法
背景技术
离子交换树脂常用于化学分离、纯化、制备等,在核工业厂矿、同位素制备、放射化学研究中被广泛应用,尤其在核电站,它是核反应堆一、二回路辅助系统及净化处理工艺废水的主要手段。当负载的核素放射性水平过高或交换容量饱和时,设备中的树脂需定时更换,会产生大量的放射性废树脂,而卸载后的废树脂需经过固化后才能进行处置。
水泥固化法是目前最常用的中低废物固化方法,但目前水泥固化配方存在包容量低、核素浸出率高、固化体体积增容比大、容易产生裂纹等缺点。在固化压水堆核电站产生的含硼废树脂时,由于硼元素的存在,导致固化体凝结时间延长甚至无法凝结,降低固化效率。目前核电站使用的废树脂固化配方中,废树脂体积包容量仅为35%,固化体增容比大,最终处置费用昂贵。
化学键合胶凝材料具有结构致密,机械强度高,水化产物稳定且溶解度低,抗渗能力强等优点。用作固化基材时,硼元素对于凝结时间影响有限,能够较好的包容外来离子,水化产物能够更多的吸附和固溶核素离子,防止其大量浸出。同时这种方法还具有原料易得、工艺简单、成本低廉,固化体长期稳定优越等突出优点,均是其他固化方法不可比拟的,因此具有广泛的应用前景。
发明内容
本发明的目的是提供一种放射性废树脂固化用化学键合胶凝材料及其固化方法。
一种放射性废树脂固化用化学键合胶凝材料及其固化方法,将渣料、复合矿物激发剂、吸附剂混合均匀制备化学键合胶凝材料,与放射性废树脂在搅拌锅内搅拌7min,移至模具内,养护1~28d,养护温度为25±5℃、相对湿度≥90%。
所述渣料包括高炉矿渣、粉煤灰、钢渣中的一种或几种的组合。
所述复合矿物激发剂为30%~60%SiO2、5%~30%Na2O和K2O中的一种或两种、0%~50%CaO、0%~5%的Na2SO4、0%~30%Na2CO3,激发剂各组分总和为100%。
所述吸附剂为钠基膨润土、沸石、高岭土的一种或几种的组合。
所述饱和废树脂、化学键合胶凝材料、水用量比为1L:(1350~1550)g:(250~350)g。
本发明的有益效果:使用本发明固化放射性废树脂时,固化体中饱和废树脂包容量55%~65%,废物包容量明显提高,固化体流动度140~210mm,流动性好,可调,终凝时间〈12h,并且保证适当的初凝时间进行固化操作。经28d养护后,固化体抗压强度达10MPa以上,冻融循环测试大于10次,经90d浸泡试验,固化体表面无裂纹,抗压强度损失小于10%
具体实施方式
下面以具体实施例对本发明做进一步说明。
固化的废树脂为核电站放射性废树脂,废树脂含水率42%~50%。
实施例1
高炉矿渣粉磨制备渣料粉末,粉末比表面积420kg/m3。复合矿物激发剂中各组分的百分比为:56%SiO2、28%Na2O、8%CaO、5%Na2SO4、3%Na2CO3。吸附剂中各组分的百分比为:钠基膨润土50%、沸石50%。取70重量份渣料粉末和15重量份复合矿物激发剂,15重量份吸附剂混合均匀,制备化学键合胶凝材料。然后将1480g化学键合胶凝材料与1L模拟放射性废树脂加水285g在搅拌锅内搅拌7min,移至φ50×50mm的模具内,制备固化体。将试模放入养护箱内养护,养护温度20±1℃,相对湿度≥90%,测得固化体28d抗压强度为16.0MPa;冻融循环测试10次后,表面无明显裂纹,抗压强度为14.6MPa;固化体经90d浸泡后,表面无裂纹,抗压强度22.5MPa,137Cs元素第42d浸出率为1.0×10-4cm/d。[0014]实施例2
高炉矿渣100%,粉磨制备渣料粉末,粉末比表面积420kg/m3。复合矿物激发剂中各组分的百分比为:56%SiO2、28%Na2O、8%CaO、5%Na2SO4、3%Na2CO3。吸附剂中各组分的百分比为:钠基膨润土40%、高岭土60%。取66重量份渣料粉末和18重量份复合矿物激发剂,16重量份吸附剂混合均匀,制备化学键合胶凝材料。然后将1480g化学键合胶凝材料与1L模拟放射性废树脂加水320g在搅拌锅内搅拌7min,移至φ50×50mm的模具内,制备固化体,固化体废物包容量为61%。将试模放入养护箱内养护,养护温度20±1℃,相对湿度≥90%,测得固化体28d抗压强度为20.0MPa;冻融循环测试10次后,表面无明显裂纹,抗压强度为17.5MPa;固化体经90d浸泡后,表面无裂纹,抗压强度22.5MPa,137Cs元素第42d浸出率为1.4×10-4cm/d。
实施例3
高炉矿渣85%,粉煤灰15%,一起粉磨制备渣料粉末,粉末比表面积 450kg/m3。复合矿物激发剂中各组分的百分比为:35%SiO2、19%Na2O、46%CaO。吸附剂中各组分的百分比为:钠基膨润土50%、沸石50%。取70重量份渣料粉末和15重量份复合矿物激发剂,15重量份吸附剂混合均匀,制备化学键合胶凝材料。然后将1350g化学键合胶凝材料与1L模拟放射性废树脂加水280g在搅拌锅内搅拌7min,移至φ50×50mm的模具内,制备固化体,固化体废物包容量为65%。将试模放入养护箱内养护,养护温度20±1℃,相对湿度≥90%,测得固化体28d抗压强度为15.0MPa,冻融循环测试10次后,表面无明显裂纹,抗压强度为16.0MPa;固化体经90d浸泡后,表面无裂纹,抗压强度18.5MPa,137Cs元素第42d浸出率为4.0×10-4cm/d。
实施例4
高炉矿渣85%,粉煤灰15%,一起粉磨制备渣料粉末,粉末比表面积400kg/m3。复合矿物激发剂中各组分的百分比为:50%SiO2、32%Na2O、14%CaO、4%的Na2SO4。吸附剂中各组分的百分比为:钠基膨润土40%、高岭土60%。取70重量份渣料粉末和18重量份复合矿物激发剂,12重量份吸附剂混合均匀,制备化学键合胶凝材料。然后将1350g化学键合胶凝材料与1L模拟放射性废树脂在搅拌锅内搅拌7min,移至φ50×50mm的模具内,制备固化体,固化体废物包容量为61.3%。将试模放入养护箱内养护,养护温度20±1℃,相对湿度≥90%,测得固化体28d抗压强度为12.0MPa,冻融循环测试10次后,表面无明显裂纹,抗压强度为11.5.0MPa;固化体经90d浸泡后,表面无裂纹,抗压强度15.5MPa,137Cs元素第42d浸出率为5.2×10-4cm/d。
实施例5
高炉矿渣75%,粉煤灰15%,钢渣10%,一起粉磨制备渣料粉末,粉末 比表面积450kg/m3。复合矿物激发剂中各组分的百分比为:53%SiO2、28%Na2O、6%CaO、2%的SO3、11%CO3。吸附剂中各组分的百分比为:钠基膨润土50%、沸石50%。取70重量份渣料粉末和20重量份复合矿物激发剂,10重量份吸附剂混合均匀,制备化学键合胶凝材料。然后将1400g化学键合胶凝材料与1L模拟放射性废树脂加水320g在搅拌锅内搅拌7min,移至φ50×50mm的模具内,制备固化体,固化体废物包容量为65%。将试模放入养护箱内养护,养护温度20±1℃,相对湿度≥90%,测得固化体28d抗压强度为14.0MPa,冻融循环测试10次后,表面无明显裂纹,抗压强度为11.5MPa;固化体经90d浸泡后,表面无裂纹,抗压强度15.0MPa,137Cs元素第42d浸出率为6.5×10-4cm/d。
实施例6
高炉矿渣75%,粉煤灰15%,钢渣10%,一起粉磨制备渣料粉末,粉末比表面积400kg/m3。复合矿物激发剂中各组分的百分比为:58%SiO2、26%Na2O、16%CaO。吸附剂中各组分的百分比为:钠基膨润土40%、高岭土60%。取72重量份渣料粉末和18重量份复合矿物激发剂,10重量份吸附剂混合均匀,制备化学键合胶凝材料。然后将1400g化学键合胶凝材料与1L模拟放射性废树脂加水320g在搅拌锅内搅拌7min,移至φ50×50mm的模具内,制备固化体,固化体废物包容量为59.0%。将试模放入养护箱内养护,养护温度20±1℃,相对湿度≥90%,测得固化体28d抗压强度为11.0MPa,冻融循环测试10次后,表面无明显裂纹,抗压强度为11.8MPa;固化体经90d浸泡后,表面无裂纹,抗压强度13.5MPa,137Cs元素第42d浸出率为6.6×10-4cm/d。

Claims (4)

  1. 一种放射性废树脂固化用化学键合胶凝材料及其固化方法,其特征在于,将渣料、复合矿物激发剂、吸附剂混合均匀制备化学键合胶凝材料,与放射性废树脂和水在搅拌锅内搅拌7min,移至模具内,养护1~28d,养护温度为25±5℃、相对湿度≥90%。
  2. 根据权利1要求所述,一种放射性废树脂固化用化学键合胶凝材料及其固化方法,其特征在于,采用12%~20%的激发剂和68%%~85%铝硅酸盐成分的渣料、8%~17%沸石结构的吸附剂,混合搅拌均匀制备化学键合胶凝材料。
  3. 根据权利1要求所述,一种放射性废树脂固化用化学键合胶凝材料及其固化方法,其特征在于,所述渣料包括高炉矿渣、粉煤灰、钢渣中的一种或几种的组合,进行粉磨磨制,勃氏比表面积不小于400kg/m3;所述复合矿物激发剂为30%~60%SiO2、5~30%Na2O和K2O中的一种或两种、0%~50%CaO、0%~5%的Na2SO4、0%~30%Na2CO3,激发剂各组分总和为100%;所述吸附剂为钠基膨润土、沸石、蒙脱土、高岭土、改性凹凸棒的一种或几种的组合。
  4. 根据权利1要求所述,一种含硼放射性废树脂化学键合胶凝材料固化的方法,其特征在于,所述放射性废树脂、化学键合胶凝材料、水用量比为1L:(1050~1550)g:(200~300)g。
PCT/CN2015/088911 2014-09-24 2015-09-02 一种用于固化放射性废树脂的化学键合胶凝材料及其固化方法 WO2016045491A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410494084.9 2014-09-24
CN201410494084.9A CN104291762B (zh) 2014-09-24 2014-09-24 放射性废树脂固化用化学键合胶凝材料及其固化方法

Publications (1)

Publication Number Publication Date
WO2016045491A1 true WO2016045491A1 (zh) 2016-03-31

Family

ID=52311755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088911 WO2016045491A1 (zh) 2014-09-24 2015-09-02 一种用于固化放射性废树脂的化学键合胶凝材料及其固化方法

Country Status (2)

Country Link
CN (1) CN104291762B (zh)
WO (1) WO2016045491A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508566A (zh) * 2020-04-08 2020-08-07 北京科技大学 复合激发多固废制备低成本充填胶凝材料的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282353B (zh) * 2014-09-24 2017-03-29 深圳市航天新材科技有限公司 放射性蒸残液固化用的地质水泥及其固化方法
CN104291762B (zh) * 2014-09-24 2017-04-26 深圳市航天新材科技有限公司 放射性废树脂固化用化学键合胶凝材料及其固化方法
CN105130305B (zh) * 2015-08-25 2018-01-12 武汉理工大学 一种核电站含硼废树脂的碱矿渣水泥固化方法
CN115159882A (zh) * 2022-08-01 2022-10-11 江西理工大学 一种稀土废渣地质聚合物制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261887A (zh) * 2008-04-22 2008-09-10 南京瑞迪高新技术公司 用碱矿渣水泥固化高放废液的方法
CN101549965A (zh) * 2009-04-30 2009-10-07 中国建筑材料科学研究总院 一种处理中、低放射性焚烧灰的水泥基固化材料及处理中、低放射性焚烧灰的方法
CN102169737A (zh) * 2010-12-28 2011-08-31 西南科技大学 高盐高碱中低水平放射性废液水泥固化体及其制备方法
CN102276231A (zh) * 2011-05-27 2011-12-14 清华大学 一种使用NaAlO2促凝剂水泥固化放射性废树脂的方法
CN104291762A (zh) * 2014-09-24 2015-01-21 深圳航天科技创新研究院 放射性废树脂固化用化学键合胶凝材料及其固化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2912393B2 (ja) * 1989-09-20 1999-06-28 株式会社日立製作所 放射性廃棄物の処理方法
JP4152562B2 (ja) * 2000-03-22 2008-09-17 電気化学工業株式会社 高濃度ホウ酸水溶液の固化材及び中性子吸収体
CN102262910B (zh) * 2011-05-13 2013-10-16 清华大学 一种硫铝酸盐水泥复掺混合材固化放射性废树脂的方法
CN102633519A (zh) * 2012-05-08 2012-08-15 信阳师范学院 一种以膨胀珍珠岩和天然沸石为主要原料的轻质无机矿物聚合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261887A (zh) * 2008-04-22 2008-09-10 南京瑞迪高新技术公司 用碱矿渣水泥固化高放废液的方法
CN101549965A (zh) * 2009-04-30 2009-10-07 中国建筑材料科学研究总院 一种处理中、低放射性焚烧灰的水泥基固化材料及处理中、低放射性焚烧灰的方法
CN102169737A (zh) * 2010-12-28 2011-08-31 西南科技大学 高盐高碱中低水平放射性废液水泥固化体及其制备方法
CN102276231A (zh) * 2011-05-27 2011-12-14 清华大学 一种使用NaAlO2促凝剂水泥固化放射性废树脂的方法
CN104291762A (zh) * 2014-09-24 2015-01-21 深圳航天科技创新研究院 放射性废树脂固化用化学键合胶凝材料及其固化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508566A (zh) * 2020-04-08 2020-08-07 北京科技大学 复合激发多固废制备低成本充填胶凝材料的制备方法
CN111508566B (zh) * 2020-04-08 2023-12-26 北京科技大学 复合激发多固废制备低成本充填胶凝材料的制备方法

Also Published As

Publication number Publication date
CN104291762B (zh) 2017-04-26
CN104291762A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2016045490A1 (zh) 一种固化放射性蒸残液的新型地质水泥材料及其固化方法
WO2016045491A1 (zh) 一种用于固化放射性废树脂的化学键合胶凝材料及其固化方法
CN106588117B (zh) 一种利用含Cr、Zn电镀污泥制备的防辐射功能集料
EP2784039B1 (en) Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor
CN109485296B (zh) 一种溶胀阻迁型微胶囊氯离子固化剂及其制备方法和应用
CN103360010B (zh) 一种透水砖的制备方法
CN107188533A (zh) 一种地聚合物陶瓷固化高放废液的方法
CN102262910B (zh) 一种硫铝酸盐水泥复掺混合材固化放射性废树脂的方法
CN101935200A (zh) 一种固化含硼酸盐的放射性废物的固化剂及其方法
WO2016045492A1 (zh) 一种用于固化放射性焚烧灰的新型地质水泥材料及其固化方法
CN108395126B (zh) 一种防渗堵漏材料及在水利工程中的应用
CN111635168B (zh) 用于核素固化的高稳定性复合型地质水泥及其应用方法
CN113666685A (zh) 一种低水化热高热导的防辐射混凝土及其制备方法
CN111056789B (zh) 一种放射性废渣的固化方法
TW459250B (en) Co-solidification of low level radioactive wet wastes of BWR nuclear power plants
CN109748567A (zh) 一种中低放射性废树脂磷铝酸盐水泥基固化基材
RU2361299C1 (ru) Способ иммобилизации изотопов трансурановых элементов радиоактивных отходов (варианты)
WO2014203498A1 (ja) ホウ酸含有廃液のセメント固化処理方法及びセメント固化処理装置
CN103396078B (zh) 一种磷石膏基地聚合物及其制备方法
CN109987905B (zh) 固化含活泼金属的放射性废物的复合胶凝材料
CN105985129A (zh) 一种轻集料的制备方法
RU2529496C2 (ru) Состав для отверждения жидких радиоактивных отходов
Jaroslava et al. Mechanical and setting/hardening conditions of cement pastes for evaporator concentrates incorporating admixtures
CN115572146B (zh) 一种碱激发花岗岩石粉胶结料及其制备方法
CN113061006A (zh) 一种含硼浓缩废液水泥固化配方及其固化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.09.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15843281

Country of ref document: EP

Kind code of ref document: A1