WO2014201568A1 - Cellules électrochimiques lithium-soufre d'état tout solide et leurs méthodes de fabrication - Google Patents

Cellules électrochimiques lithium-soufre d'état tout solide et leurs méthodes de fabrication Download PDF

Info

Publication number
WO2014201568A1
WO2014201568A1 PCT/CA2014/050584 CA2014050584W WO2014201568A1 WO 2014201568 A1 WO2014201568 A1 WO 2014201568A1 CA 2014050584 W CA2014050584 W CA 2014050584W WO 2014201568 A1 WO2014201568 A1 WO 2014201568A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical cell
film
positive electrode
cell according
solid electrolyte
Prior art date
Application number
PCT/CA2014/050584
Other languages
English (en)
Inventor
Karim Zaghib
Chisu KIM
Abdelbast Guerfi
Francis Barray
Catherine Gagnon
Julie Trottier
Original Assignee
HYDRO-QUéBEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HYDRO-QUéBEC filed Critical HYDRO-QUéBEC
Priority to EP14814630.1A priority Critical patent/EP3011615B1/fr
Priority to CN201480034816.4A priority patent/CN105409032B/zh
Priority to JP2016520207A priority patent/JP6530385B2/ja
Priority to CA2911628A priority patent/CA2911628C/fr
Priority to ES14814630T priority patent/ES2802926T3/es
Priority to KR1020167001128A priority patent/KR102224361B1/ko
Priority to US14/899,788 priority patent/US10320029B2/en
Publication of WO2014201568A1 publication Critical patent/WO2014201568A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of lithium-sulfur (Li-S) electrochemical cells and to their manufacture. More specifically, the invention relates to electrochemical cells, prefabricated systems and elements all solid Li-S and their manufacturing processes.
  • Li-S lithium-sulfur
  • a Li-S battery generally comprises a metal lithium anode (Li (m)), a sulfur-containing cathode (S 8 ) mixed with carbon (the sulfur itself being a bad conductor), and a liquid electrolyte.
  • Li (m) metal lithium anode
  • S 8 sulfur-containing cathode
  • carbon the sulfur itself being a bad conductor
  • Li-polysulfide species The principle of charge-discharge reactions in a conventional liquid electrolyte is illustrated in Figure 1.
  • Li-S battery technology is often referred to as one of the most promising alternative Li-ion technologies.
  • several disadvantages have delayed its entry into the market, including poor cyclical endurance, low cyclic efficiency, and severe self-discharge issues and debatable security. This would be due to the lithium polysulfide species that are, at least in part, soluble in the electrolyte, and, more fundamentally, to the insulating nature of sulfur and lithium sulfide, limiting the use of this active material (see Zhang SS et al, 2013, J.
  • Li-S electrochemical cells having at least one of these advantages: improved cyclic endurance, improved cyclic efficiency, lower self-discharge, improved safety, and / or lower production costs when compared to other Li-S battery alternatives.
  • the invention provides an electrochemical cell comprising at least one multilayer component which comprises: a positive electrode film comprising sulfur as an electrochemically active material; a solid electrolyte film between the negative and positive electrodes, said solid electrolyte film comprising at least one layer (s) including at least one lithium salt and at least one polymer; and a negative electrode film comprising lithium as electrochemically active material.
  • the solid electrolyte film is an ion-conductive film and also comprises at least one inorganic compound in the polymeric layer or separately in an ion-conductive solid layer.
  • the polymer of the electrolyte consists of a block copolymer composed of at least one solvation segment of lithium ions and at least one crosslinkable segment.
  • the lithium ion solvation segment is selected from homo- or copolymers having repeating units of Formula (I):
  • R is selected from H, CC 10 alkyl, or - (CH 2 -O-R a R b );
  • R a is (CH 2 -CH 2 -O) y ;
  • R b is selected from H and a C1-C10 alkyl group
  • x is an integer selected in the range of 10 to 200,000.
  • the crosslinkable segment of the polymer is a polymer segment comprising at least one multidimensional crosslinkable functional group by irradiation or heat treatment.
  • the solid electrolyte may also include at least one lithium salt dissolved in the solid ion conductor is preferably the lithium salt is of formula Li + X ", where X" is an anion with delocalized charge, preferably an anion chosen from PF 6 " , BF 4 " , AsF 6 “ , ClO 4 " , CF 3 SO 3 " , (CF 3 S0 2 ) 2 N- (TFSI), and (C 2 F 5 SO 2 ) 2 N - (BETI).
  • the inorganic solid electrolyte compound is selected from SiO 2 , Al 2 O 3 , TiO 2 , and other lithium ion conductive solids, and combinations thereof, wherein the solid conducting solid is Lithium ions may be selected from ceramics or lithium ion conducting glasses, such as NASICON, LISICON, thi-LISICON, Garnet, of crystalline or amorphous form, and combinations thereof.
  • the ceramic or lithium ion conductive glass preferably has a lithium ion conductivity of at least 10 -4 S / cm at 25
  • the ion-conducting film has a thickness between 10 and 200 ⁇ , between 10 and
  • the invention relates to a positive electrode comprising a polymeric binder.
  • the polymeric binder is preferably a block copolymer composed of at least one ion solvation segment. lithium and at least one crosslinkable segment, wherein the lithium ion solvation segment is selected from homo- or copolymers having repeating units of Formula (I) as defined above.
  • the polymeric binder of the positive electrode is the same as the polymer of the electrolyte.
  • the polymeric binder of the positive electrode is different from the polymer of the electrolyte.
  • the positive electrode comprises a composite material including sulfur encapsulated in a coating material, optionally prepared by mechanofusion.
  • the coating material comprises an inorganic material chosen from: Li a M 1 b (X0 4 ), in which 0 a a 2 2, 0 b b 1 1; M 1 is selected from Fe, Mn, Co,
  • X is selected from P, Si and S, such as LiFePO, LiNiPO, LiMnPO, LiCoPO, or LiFe 1-x Ti x PO, where 0 ⁇ x ⁇ 1; or - Li c M 2 d Z e , in which 0 ⁇ c ⁇ 4.0 ⁇ d ⁇ 5.0 ⁇ e ⁇ 12; M 2 is selected from Mo, V, Ti, Al, and Si; and Z is selected from O, S, and Se, such as Ti0 2 , TiS 2 , V 2 0 5 , LiV 3 0 8 , Li 4 Ti 5 O 12, MoS 2 , MoO 2 , SiO 2 , or Al 2 O 3. .
  • the inorganic material is in the form of particles, possibly coated with carbon.
  • the positive electrode film also comprises a conductive carbon, such as, for example, a powder or carbon fibers selected from carbon black, activated carbon, graphite, graphene, and mixtures thereof.
  • the conductive carbon has a surface area of at least 5 m 2 / g, or at least 50 m 2 / g. In another embodiment, the conductive carbon has a surface area of at least 500 m 2 / g.
  • the negative electrode film of the electrochemical cell comprises a sheet of lithium metal, or a lithium metal alloy, said alloy comprising at least 90% lithium by weight.
  • the electrochemically active material surface of the negative electrode film includes a passivation layer formed in situ.
  • the negative electrode film further comprises a protective layer comprising, for example, a lubricant such as a synthetic oil, wherein the synthetic oil may be the esterification product of a fatty acid and polyethylene glycol.
  • the electrochemically active material of the negative electrode is a film having a thickness between about 5 ⁇ and about 200 ⁇ .
  • the electrochemical cell of the invention further comprises an insulating layer adjacent to the negative electrode.
  • the positive electrode of the electrochemical cell of the invention further comprises a current collector also acting as a support for the electrochemically active material of the positive electrode, said electrochemically active material being adjacent to the solid electrolyte.
  • the current collector is an aluminum foil, for example, having a thickness of between about 10 ⁇ and about 30 ⁇ , possibly including a layer of carbon.
  • a method of manufacturing an electrochemical cell according to the invention comprises the steps of: a) providing a positive electrode film, an electrolyte film, and a negative electrode film as described herein; and b) stacking and rolling together the positive electrode film, the electrolyte film, and the negative electrode film.
  • the step of procuring the negative electrode film comprises a step of rolling a sheet of lithium between at least two rolls and, optionally, coating the film surface with a layer of protection.
  • the step of procuring the positive electrode flim comprises steps of mixing the electrochemically active material of the positive electrode with a conductive carbon, polymer precursors, optionally a lithium salt, an inorganic compound. and / or a solvent, spreading the mixture obtained on a current collector, evaporation of the solvent (if necessary) and polymerization, such as by UV irradiation or heating, to form the positive electrode film.
  • the step of procuring the electrolyte film comprises the steps of mixing polymer precursors, lithium salt, inorganic compound (s), and optionally a solvent, so that to adjust the viscosity, to casting the mixture thus obtained on a substrate, evaporation of the solvent (if necessary) and polymerization, such as by UV irradiation or heating, to form the solid electrolyte film.
  • the step of procuring the electrolyte film comprises the steps of (a) mixing polymer precursors, lithium salt (s), inorganic compound (s), and optionally solvent (s), in order to adjust the viscosity, pouring the mixture thus obtained onto a substrate, evaporation of the solvent (if necessary) and polymerization, such as by UV irradiation or heating, to form a polymer-inorganic compound film; and (b) mixing polymer precursors, lithium salt (s), and optionally solvent (s), to adjust the viscosity, pouring the mixture thus obtained onto the polymer-inorganic compound film, evaporation of the solvent ( if necessary) and polymerization, such as by UV irradiation or heating, to form the solid electrolyte film.
  • the step of stacking and rolling the positive electrode, electrolyte, and negative electrode films further comprises steps of rolling the positive electrode film with the film. electrolyte and subsequent rolling of the negative electrode film thereon.
  • the electrochemical cell comprises a multilayer component that can be rolled or folded. In another embodiment, the electrochemical cell comprises two or more stacked multilayer components.
  • the invention also contemplates a prefabricated positive electrolyte-electrode element comprising a sulfur-containing positive electrode comprising a composite material according to one of the embodiments of the invention; and a solid electrolyte as defined herein, wherein the positive electrode and the electrolyte are stacked and laminated together.
  • the invention in another embodiment, relates to a method for preparing a prefabricated positive electrolyte-electrode element of the invention, comprising the steps of: a) mixing the electrochemically active material of the positive electrode with carbon conductive polymer precursors, optionally lithium salt (s), inorganic compound (s) and / or solvent (s); b) spreading the mixture obtained in step (a) on a current collector, evaporation of the solvent (if present) and polymerization to form the positive electrode film; c) mixing polymer precursors, lithium salt (s) and inorganic compound (s), optionally in a solvent (s) and spreading on a substrate to form an electrolyte film precursor; d) irradiating or heating the electrolyte film precursor of step (c) to form solid electrolyte film; and e) stacking and rolling the positive electrode film of step (b) with the solid electrolyte film of step (d).
  • the method may also include a step of removing the substrate before or after step (e
  • the method for preparing a prefabricated positive electrolyte electrode element of the invention comprises the steps of: a) mixing the electrochemically active material of the positive electrode with conductive carbon, precursors of polymer, optionally lithium salt (s), inorganic compound (s) and / or a solvent (s); b) spreading the mixture obtained in step (a) on a current collector, evaporation of the solvent (if present) and polymerization to form the positive electrode film; c) a mixture of polymer precursors, lithium salt (s) and inorganic compound (s), optionally in a solvent (s), and spreading on the surface opposite to the current collector of the film; positive electrode of step (b) to produce a coated positive electrode; d) irradiating or heating the coated positive electrode obtained in step (c) to form a positive electrolyte-electrode element; and e) optional rolling of the composition obtained in step (d).
  • the invention in yet another embodiment, relates to systems comprising an electrochemical cell, a positive electrode, or a prefabricated positive electrolyte-electrode element according to the invention, and the use of a prefabricated positive electrolyte-electrode element. or a positive electrode in the manufacture of an electrochemical cell according to the invention.
  • the invention also contemplates the use of the electrochemical cells of the invention as a replacement for lithium-ion batteries and in systems requiring rechargeable batteries of high energy, and more particularly in systems such as in electric vehicles and air-conditioning apparatus. ubiquitous computing.
  • Figure 1 illustrates the general principle of lithium-sulfur batteries in a conventional liquid electrolyte system.
  • Figure 2 illustrates examples of solid electrolyte configurations within the electrochemical cell of the invention.
  • Figure 3 schematically illustrates the sulfur composite material characterized by an internal sulfur particle encapsulated in an outer coating.
  • Figure 4 shows an SEM image of the sulfur-LiFePO 4 composite, where the sulfur particles are encapsulated in a LiFePO layer.
  • Figure 5 shows the first discharge and charge profiles tested at 0.1C (167 mA / g) comparing the results obtained with the electrochemical cell prepared in Example 2 and the electrochemical cell obtained in Example 1 (Comparative).
  • Figure 6 shows the third discharge and charge profiles of the cell illustrated in Example 3 compared to those of the cell of Example 1 (Comparative).
  • Figure 7 shows the cycling performance of the cells prepared in Examples 3 and 4 respectively.
  • Figure 8 shows the summary of the initial capacity and coulombic efficiency of the cells prepared in Examples 1 (Comparative), 2 to 4, 6, 7, 9 to 12, 14, 17 and 18 (Comparative).
  • the Li-S electrochemical cell of the invention does not contain liquid electrolyte, gel, or ceramic only.
  • the electrochemical cell comprises at least one multilayer component comprising a negative electrode film containing lithium, a positive electrode film containing sulfur on a current collector, the negative electrode and the positive electrode being separated. by a solid electrolyte film comprising at least one layer, said layer containing a polymer.
  • a multilayer component of the electrochemical cell has a total thickness of about 10 ⁇ to about 1000 ⁇ , preferably about 100 ⁇ to about 500 ⁇ .
  • An electrochemical cell comprises, for example, from 1 to 100 multilayer component (s), depending on the configuration of the battery.
  • an electrochemical cell may be composed of a multilayer component, which may be rolled or folded.
  • the electrochemical cell may be composed of 2 or more multilayer components, which may be stacked.
  • the polymer used in the electrolyte of this electrochemical cell Li-S includes an ion-conducting polymer to which additives are added before polymerization (for example, by heating or irradiation).
  • the use of crosslinked polymers further provides improved conduction properties.
  • Figure 2 illustrates examples of electrochemical cell having different solid electrolyte configurations according to the invention, wherein the negative electrode containing lithium also includes a passivation layer.
  • the cell Due to the limited solubility and thus the limited mobility of the polysulfide ions in the electrochemical system of the invention, the cell demonstrates a significantly improved coulombic efficiency, more than 90% without (or with very little) shuttle reaction of the polysulfides. as shown in Figure 5.
  • This positive electrode according to the invention contains elemental sulfur particles, an ion-conductive polymer binder and a conductive carbon additive.
  • the sulfur particles of the positive electrode may also be encapsulated in a conductive inorganic material prior to application of the binder.
  • Other additives, such as lithium salts and inorganic compounds such as glass and / or ceramic particles, may also be added to the positive electrode composition.
  • the invention also contemplates prefabricated positive electrolyte-electrode elements, as well as their preparation and use in the manufacture of electrochemical cells.
  • These prefabricated positive electrolyte-electrode units comprise an electrode film positive and a solid electrolyte film, each being as described herein.
  • the electrochemical cells of the invention are suitable for uses where lithium-ion batteries are generally used and in place of them, and in systems requiring high energy rechargeable batteries, and more particularly in systems such as electric vehicles and ubiquitous computing devices.
  • the solid electrolyte includes an ion-conducting film comprising at least one lithium salt and at least one ion-conducting polymer.
  • the solid electrolyte may further include an inorganic compound that may be present in the polymer film or in a film different from the electrolyte.
  • the polymer consists of a block copolymer composed of at least one lithium ion solvation segment A and at least one crosslinkable segment B.
  • the segment A is selected from homo- or copolymers having units repetitive Formula (I):
  • R is selected from H, CC 10 alkyl, or - (CH 2 -O-R a -R b );
  • R a is (CH 2 -CH 2 -O) y ;
  • R b chosen from H or a C 1 -C 10 alkyl group
  • x is an integer selected in the range of 10 to 200,000.
  • y is a number selected in the range of 0 to 10.
  • Segment B is a polymer segment comprising at least one functional group crosslinkable multidimensionally by irradiation or heat treatment.
  • the lithium salt is represented by Li + X ", wherein X" is an anion having a delocalized charge, for example, an anion selected from PF 6 ", BF 4", AsF 6 "CI0", CF 3 S0 3 “ , (CF 3 S0 2 ) 2 N “ (TFSI), and (C 2 F 5 S0 2 ) 2 N- (BE “ n).
  • the inorganic compounds in the solid electrolyte are, for example, selected from SiO 2 , Al 2 O 3 , TiO 2 , and other lithium ion conductive solids, such as lithium ion conducting ceramics or glasses such as for example, NASICON, LISICON, thi-LISICON, Garnet, and combinations thereof in crystalline and / or amorphous form.
  • the structure of the solid electrolyte of the invention may consist of a single layer or two or more layers.
  • the solid electrolyte may be selected from the three different configurations illustrated in Figure 2, and summarized as follows: a) the solid electrolyte comprises a film comprising a polymer layer containing inorganic compound particles; b) the solid electrolyte comprises two films, a first film as defined in (a), and a second polymer film without inorganic compounds; or c) the solid electrolyte comprises two films, a first film being a polymer film, the second film comprising inorganic compounds without polymer.
  • the polymer film may optionally also comprise an inorganic compound.
  • the solid electrolyte film is made by casting the aforementioned polymer solution onto a substrate or directly onto the positive electrode followed by crosslinking by UV irradiation or electron beam or by heat treatment.
  • the thickness of the dry film is preferably controlled between 10 ⁇ and 100 ⁇ , preferably between 20 ⁇ and 50 ⁇ .
  • the substrate is, for example, a plastic film that can be removed before laminating the solid electrolyte film to the other elements of the electrochemical cell.
  • the positive electrode of the electrochemical cell of the invention comprises at least one sulfur-containing material, preferably a sulfur composite material comprising particles of elemental sulfur, at least one carbon additive conductor, and at least one polymeric binder.
  • the material of the positive electrode optionally also comprises at least one lithium salt and / or inorganic compound.
  • a sulfur composite material may be characterized by sulfur particles having a particle size of between 10 nm and 100 ⁇ m, preferably between 0.1 ⁇ m and 50 ⁇ m.
  • the polymeric binder is added to the sulfur particles to form the positive electrode film.
  • the polymeric binder is preferably an ion-conducting polymer.
  • the polymeric binder is a block copolymer composed of at least one lithium ion solvation segment A and at least one crosslinkable segment B, preferably segment A is as defined by Formula I.
  • the polymeric binder may be the same or different from the polymer present in the solid electrolyte.
  • a conductive carbon additive may be added to the polymeric binder which increases its conductivity.
  • conductive carbon additives include powders or carbon fibers selected from carbon black, activated carbon, graphite, graphene, and mixtures thereof.
  • the specific surface area of the selected carbon is greater than 5 m 2 / g, optionally greater than 50 m 2 / g, or greater than 500 m 2 / g.
  • the sulfur particles in the polymeric binder are optionally encapsulated in an outer coating layer, the coating material comprising particles of an inorganic material, optionally coated with carbon, the inorganic material being chosen from:
  • Li c M 2 d Z e in which 0 ⁇ c ⁇ 4.0 ⁇ d ⁇ 5.0 ⁇ e ⁇ 12, M 2 is chosen from Mo, V, Ti, Al and Si, and Z is chosen from O, S, and Se, for example, the coating material is Ti0 2 , TiS 2 , V 2 0 5 , LiV 3 0 8 , Li 4 Ti 5 O 12 , MoS 2 , MoO 2 , SiO 2 , or Al 2 0 3 .
  • inorganic materials can also be found, for example in US Pat. No. 5,910,382 (Goodenough et al), the subject of which is incorporated herein by reference in its entirety for all uses.
  • lithium salt (s) is (are) optionally added to the composite of the positive electrode.
  • lithium salts include lithium salts of PF 6 ", BF 4", AsF 6 “CI0”, CF 3 SO 3 “, (CF 3 S0 2) 2 N” (TFSI) and (C 2 F 5 S0 2 2 N “ (BETI), and may be the same as or different from a salt present in the solid electrolyte.
  • Inorganic compounds are also added to the optional positive electrode composite.
  • inorganic compounds include SiO 2 , Al 2 O 3 , TiO 2 , and lithium ion conductive solids such as ceramics and lithium ion conducting glasses, for example, NASICON, LISICON, thio-LISICON, Garnet, and their combinations, in crystalline and / or amorphous form, and may be identical or different from an inorganic compound present in the solid electrolyte.
  • the current collector of the positive electrode consists of, for example, an aluminum foil, preferably having a thickness of about 10 ⁇ to 30 ⁇ .
  • the current collector may also include a carbon coating layer to promote bonding of the current collector to the conductive carbon present in the composite of the positive electrode.
  • Negative electrode The negative electrode of this invention comprises lithium, either in the form of lithium metal foil or lithium alloy containing at least 90% lithium by weight.
  • the negative electrode comprises a lithium metal sheet having a protective layer on its surface.
  • the lithium sheet has a thickness of 10 ⁇ at 500 ⁇ , preferably from 20 ⁇ to 200 ⁇ .
  • a process for preparing a lithium film can be found in US Patent No. 5,528,920 (Bouchard et al.), The contents of which are incorporated herein by reference in its entirety.
  • the protective layer is formed by coating a lubricant material on the fresh surface of a lithium sheet prior to the formation of native oxide.
  • the lubricant may be chosen from synthetic oils, preferably from esterification products of fatty acids and PEG (polyethylene glycol). Examples of lubricants and additives for use in the preparation of lithium films can be found in U.S. Patent No. 6,517,590 (Gauthier et al.), The contents of which are hereby incorporated by reference in their entirety.
  • a method of manufacturing the electrochemical cell of the invention comprises the following steps: (a) providing a positive electrode film, a solid electrolyte film, and a negative electrode film as described herein and (b) stack and laminate together the positive electrode film, the solid electrolyte film, and the negative electrode film.
  • the step of procuring the negative electrode film includes a step of rolling a lithium sheet and coating its surface with a protective layer.
  • the step of procuring the positive electrode film includes the steps of mixing the electrochemically active material of the positive electrode with a conductive carbon, polymer precursors, optionally lithium salt (s), composed (s) inorganic (s) and / or solvent (s), spreading of the mixture obtained on a current collector, evaporation of the solvent (if necessary) and polymerization, by UV irradiation or heating, to obtain the electrode film positive.
  • the step of procuring the solid electrolyte film includes the steps of mixing precursors of polymer (s), lithium salt (s), inorganic compound (s), and optionally solvent (s) ( s), in order to adjust the viscosity, pouring the mixture obtained on a substrate, evaporation of the solvent (if necessary) and polymerization, by UV irradiation or heating, to obtain the solid electrolyte film.
  • the step of procuring the solid electrolyte film includes the steps of (a) mixing precursors of polymer (s), lithium salt (s), inorganic compound (s), and optionally solvent (s) ( s), in order to adjust the viscosity, pouring the mixture obtained on a substrate, evaporation of the solvent (if necessary) and polymerization, by UV irradiation or heating, to obtain a polymer-inorganic compound film; and (b) mixing precursors of polymer (s), lithium salt (s), and optionally solvent (s), in order to adjust the viscosity, pouring the mixture obtained on the polymer-inorganic compound film, evaporation of the solvent (if necessary) and polymerization, by UV irradiation or heating, to form the solid electrolyte film.
  • the step of stacking and rolling the positive electrode, solid electrolyte, and negative electrode films includes the steps of rolling the positive electrode film with the solid electrolyte film and subsequently laminating the film. negative electrode on the
  • a method of manufacturing an electrochemical cell as illustrated in FIG. 2 (a) comprises, for example, the following steps: a) rolling of a lithium sheet and optional coating of the surface with a protective layer such as as described above; b) mixing the electrochemically active material of the positive electrode with conductive carbon, polymer precursors, and optionally lithium salt (s), inorganic compound (s) and / or solvent (s); c) spreading the mixture obtained in step (b) on a current collector, evaporation of the solvent (if necessary) and UV irradiation polymerization or heating to form a positive electrode film; d) a mixture of polymer precursors, lithium salt (s), inorganic compound (s), and optionally solvent (s) for adjusting the viscosity; e) pouring the mixture obtained in step (d) onto a substrate, evaporation of the solvent (if necessary) and polymerization, by UV irradiation or heating, to form a solid electrolyte film; f) stacking and rolling the positive electrode film
  • the method of manufacturing the electrochemical cell of the invention comprises the following steps: a) rolling of a lithium sheet and optional coating of the surface with a protective layer as described above; b) mixing the electrochemically active material of the positive electrode with conductive carbon, polymer precursors, and optionally lithium salt (s), inorganic compound (s) and / or solvent (s); c) spreading the mixture obtained in step (b) on a current collector and evaporation of the solvent (if necessary) to forming a positive electrode film precursor; d) a mixture of polymer precursors, lithium salt (s), inorganic compound (s), and optionally solvent (s) for adjusting the viscosity; e) pouring the mixture obtained in step (d) onto the positive electrode film precursor of step (c), evaporation of the solvent (if necessary) and polymerization, by UV irradiation or heating, to form a film positive electrode / solid electrolyte; f) stacking and rolling the positive electrode / solid electrolyte film obtained in
  • a method of manufacturing an electrochemical cell as illustrated in Figure 2 comprises the following steps: a) rolling of a lithium sheet and optional coating of the surface with a protective layer as described above high; b) mixing the electrochemically active material of the positive electrode with conductive carbon, polymer precursors, and optionally lithium salt (s), inorganic compound (s) and / or solvent (s); c) spreading the mixture obtained in step (b) on a current collector, evaporation of the solvent (if necessary) and UV irradiation polymerization or heating to form a positive electrode film; d) a mixture of polymer precursors, lithium salt (s), and optionally solvent (s) for adjusting the viscosity; e) pouring the mixture obtained in step (d) onto a substrate, evaporation of the solvent (if necessary) and polymerization, by UV irradiation or heating, to form a first solid electrolyte film; f) a mixture of polymer precursors, lithium salt (s), inorganic compound (s),
  • the method of manufacturing the electrochemical cell of the invention comprises the following steps: a) rolling a sheet of lithium and optional coating of the surface with a protective layer as described above; b) mixing the electrochemically active material of the positive electrode with conductive carbon, polymer precursors, and optionally lithium salt (s), inorganic compound (s) and / or solvent (s); c) spreading the mixture obtained in step (b) over a current collector and evaporating the solvent (if necessary) to form a positive electrode film precursor; d) a mixture of polymer precursors, lithium salt (s), and optionally solvent (s) for adjusting the viscosity; e) casting the mixture obtained in step (d) on the positive electrode film precursor obtained in (c), evaporation of the solvent (if necessary) and polymerization, by UV irradiation or heating, to form a film "electrode positive / first solid electrolyte film "; f) a mixture of polymer precursors, lithium salt (s), inorganic compound (s
  • the method of manufacturing the electrochemical cell of the invention comprises the following steps: a) rolling of a lithium sheet and optional coating of the surface with a protective layer as described above; b) mixing the electrochemically active material of the positive electrode with conductive carbon, polymer precursors, and optionally lithium salt (s), inorganic compound (s) and / or solvent (s); c) spreading the mixture obtained in step (b) over a current collector and evaporating the solvent (if necessary) to form a positive electrode film precursor; d) a mixture of polymer precursors, lithium salt (s), and optionally solvent (s) for adjusting the viscosity; e) pouring the mixture obtained in step (d) onto the positive electrode film precursor of step (c), evaporating the solvent (if necessary); f) mixture of precursors of polymer, lithium salt, inorganic compounds and optionally a solvent for adjusting the viscosity; g) pouring the mixture obtained in step (f) onto the "electrolyte" surface of the film
  • a method of manufacturing an electrochemical cell as illustrated in Figure 2 (c) is performed similarly to the above, further comprising a step of preparing and adding an inorganic layer between the film solid electrolyte and the negative electrode film.
  • the inorganic layer is prepared by pressing inorganic powders to form a pellet or sheet and heating at a temperature of 500 ⁇ -1000 ⁇ .
  • the pellet or film of inorganic powder preferably has a thickness of about 10 ⁇ to about 1000 ⁇ , preferably between 50 - 500 ⁇ .
  • the inorganic layer may also be deposited by sputtering.
  • Example 1 (Comparative): a) Preparation of the positive electrode film A homopolymer poly (ethylene oxide) (PEO) (molecular weight: 5,000,000) was dissolved in a mixture of acetonitrile and toluene (ratio of volume of 8: 2) at a concentration of 10% by weight, to obtain a PEO solution. Sulfur powder (3.00g), Ketjen TM black (1.00g), and PEO solution (4.49g) were mixed using a centrifugal planetary mixer (Thinky Mixer ARE-250 TM). An additional solvent portion (acetonitrile + toluene at 8: 2 volume ratio) was added to the mixture to achieve a viscosity of -10,000 cP, suitable for coating. The mixture thus obtained was coated on a carbon-coated aluminum sheet using a scraper (Doctor Blade) having a spacing of 100 ⁇ . b) Stack assembly
  • PEO ethylene oxide
  • CR2032 button cells were assembled in a glove box filled with helium using a Celgard 3501 TM separator and a lithium foil anode (Hoshen, 200 ⁇ ). Then 0.12 ml of 1 M lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) in a mixture of ethylene glycol dimethyl ether (DME) and 1,3-dioxolane (DOX) (volume ratio of 1: 1) was injected into the pile. The first charge (0.1 C) and discharge (0.1C) curves of Example 1 (comparative) are shown in FIG. 5.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • DME ethylene glycol dimethyl ether
  • DOX 1,3-dioxolane
  • a crosslinkable polymer of poly (ethylene oxide) was dissolved in a mixture of acetonitrile and toluene (8: 2 by volume) at a concentration of 28.75% by weight ("polymer solution” hereinafter).
  • the sulfur composite (9.79 g) of step (a), Ketjen TM black (4.88 g), the polymer solution (17.0 g), and solvents (acetonitrile: toluene, 8: 2 volume ratio, 99.2 g ) were milled for 24 hours in an alumina vessel filled with alumina beads. LiClO (0.44 g) and 2,2-dimethoxy-1,2-diphenylethan-1-one (0.06 g) were then added and the mixture ground again for 30 minutes.
  • Silica (4.46 g) was added to the polymer solution (94.57 g) and milled in a ball mill for 24 hours.
  • LiClO 4 (5.05 g) and 2,2-dimethoxy- 1, 2-diphenylethan-1-one (0.12 g) was added to the solution and the mixture ground again for 30 minutes.
  • the solution was cast onto a polypropylene substrate and, after removing the solvent at 60 for 10 minutes, the film was irradiated for 2 minutes with UV light under a nitrogen atmosphere. After drying, the thickness of the film was measured as 25 ⁇ .
  • the stack was assembled by stacking and rolling the 3 films: positive electrode, solid polymer electrolyte and lithium sheet (40 ⁇ ) under a pressure of 30 psi to 80. After connecting the terminals to the electrodes, the battery was sealed in an airtight plastic bag. The performance of the stack of this example is shown in Figure 5.
  • Example 2 (a) The sulfur composite material of Example 2 (2.438 g), carbon black (0.993 g, Super P ® Graphite Carbon Timcal), the polymer solution of Example 2 (b) (4.391 g ), and solvents (acetonitrile: toluene, 8: 2 in volume ratio, 26.08 g) were mixed using a centrifugal planetary mixer (Thinky Mixer ARE-250 TM). LiTFSI (0.298 g) and 2,2-dimethoxy-1,2-diphenylethan-1-one (0.015 g) were then added and the mixture was mixed for 4 minutes. The mixture obtained was coated, using a scraper, on a carbon-coated aluminum foil. After drying the solvent at 60 for 10 minutes, the film was irradiated for 2 minutes with UV light under a nitrogen atmosphere. b) Preparation of the solid polymer electrolyte film
  • Si0 2 (0.799 g) was added to the polymer solution (20.00 g) and milled in a ball mill for 24 hours. Then, LiTFSI (1.205 g) and 2,2-dimethoxy-1,2-diphenylethan-1-one (0.022 g) were added to the solution and mixed with a centrifugal planetary mixer for 2 min. In order to prepare a film, the The solution was cast on a polypropylene substrate and after removal of the solvent at 60 for 10 minutes, film was irradiated for 2 minutes with UV light under a nitrogen atmosphere. The thickness of the film was measured as 25 ⁇ after drying. As an alternative method, the solution was cast onto the positive electrode film and the polymer was crosslinked under the same conditions. c) Stack assembly
  • the stack was assembled by stacking and rolling the 3 films: positive electrode, solid polymer electrolyte and lithium sheet (40 ⁇ ) at 80. After connecting the terminals to the electrodes, the battery was sealed in an airtight package.
  • the third charge (0.1C) and discharge (0.1 C) curves are shown in Figure 6 compared to those in the Example 1 stack. The behavior at consecutive cycles is shown in Figure 7.
  • Example 2 (a) The sulfur composite of Example 2 (a) (2.529 g), Super P ® (1.01 g), Si0 2 (0.165 g), the polymer solution (3 969 g), and the solvents (acetonitrile: toluene, 8 : 2 in volume ratio, 28.04 g) were mixed using a centrifugal planetary mixer. LiTFSI (0.244 g) and 2,2-dimethoxy-1,2-diphenylethan-1-one (0.016 g) were then added and the mixture was mixed for 4 minutes. The mixture obtained was coated, using a scraper, on a carbon-coated aluminum foil. After drying the solvent at 60 ° C for 10 minutes, the film was irradiated for 2 minutes with UV light under a nitrogen atmosphere.
  • a lubricant solution was prepared by dissolving the PEO200 distearate (6.6 g, PEO unit molecular weight: approximately 200) in toluene (100 mL) and adding hexane (900 mL). A 300 ⁇ thick sheet of lithium is laminated between two rollers to form a 30 ⁇ thick lithium film while injecting the lubricant solution onto the sheet. d) Stack assembly
  • the stack was assembled by stacking and rolling the 3 films: positive electrode, solid polymer electrolyte and 80 lithium sheet. After connecting the terminals to the electrodes, the battery was sealed in an airtight package. The cycle performance is compared to that of Example 3 in Figure 7.
  • Example 4 An electrochemical cell is prepared as in Example 4, wherein the sulfur composite material is prepared using TiS 2 instead of C-LiFePO 4 .
  • the other conditions are the same as for Example 4.
  • Example 7 An electrochemical cell was prepared as in Example 4, wherein the sulfur composite material was prepared using Ti0 2 instead of C-LiFePO. The other conditions were the same as for Example 4. The initial discharge capacity at 0.1 C and its coulombic efficiency are demonstrated in Figure 8.
  • Example 7 The initial discharge capacity at 0.1 C and its coulombic efficiency are demonstrated in Figure 8.
  • Example 4 An electrochemical cell was prepared as in Example 4, in which the sulfur composite material was prepared using MoS 2 instead of C-LiFePO 4 . The other conditions were the same as for Example 4. The initial discharge capacity at 0.1 C and its coulombic efficiency are demonstrated in Figure 8.
  • Example 9 An electrochemical cell is prepared as in Example 4, in which the sulfur composite material is prepared using Mo0 2 instead of C-LiFePO 4 . The other conditions are the same as for Example 4.
  • Example 9 An electrochemical cell is prepared as in Example 4, in which the sulfur composite material is prepared using Mo0 2 instead of C-LiFePO 4 . The other conditions are the same as for Example 4.
  • Example 9 An electrochemical cell is prepared as in Example 4, in which the sulfur composite material is prepared using Mo0 2 instead of C-LiFePO 4 . The other conditions are the same as for Example 4.
  • Example 9 Example 9:
  • Example 4 An electrochemical cell was prepared as in Example 4, wherein the sulfur composite material was prepared using LiV 3 0 8 instead of the C-4 LiFeP0. The other conditions were the same as for Example 4. The initial discharge capacity at 0.1 C and its coulombic efficiency are demonstrated in FIG. 8. EXAMPLE 10
  • Example 4 An electrochemical cell was prepared as in Example 4, wherein the sulfur composite material was prepared using V 2 0 5 instead of C-LiFePO. The other conditions were the same as for Example 4. The initial discharge capacity at 0.1 C and its coulombic efficiency are demonstrated in FIG. 8. EXAMPLE 11
  • Example 4 An electrochemical cell was prepared as in Example 4, wherein the sulfur composite material was prepared using Li Ti 5 O 12 instead of C-LiFePO. The other conditions were the same as for Example 4. The initial discharge capacity at 0.1 ° C. and its coulombic efficiency are demonstrated in FIG. 8. EXAMPLE 12
  • Example 4 An electrochemical cell was prepared as in Example 4, wherein the sulfur composite material was prepared using Si0 2 instead of C-LiFePO 4 . The other conditions were the same as for Example 4. The initial discharge capacity at 0.1 C and its coulombic efficiency are demonstrated in Figure 8.
  • Example 4 An electrochemical cell is prepared as in Example 4, wherein the sulfur composite material is prepared using Al 2 O 3 instead of C-LiFePO 4 .
  • the other conditions are the same as for Example 4.
  • Example 4 An electrochemical cell was prepared as in Example 4, in which the solid electrolyte was prepared by stacking an OHARA glass film (thickness 150 ⁇ ) and the solid polymer electrolyte film of Example 4 to obtain a structure as shown in Figure 2 (c). The other conditions were the same as for Example 4. The discharge capacity at 0.02C and its coulombic efficiency are shown in Figure 8.
  • Example 15 An electrochemical cell is prepared as in Example 4, in which the solid electrolyte is prepared using Li 6 La 3 ZrTaOi 2 instead of Si0 2 . The other conditions are the same as for Example 4.
  • Example 4 An electrochemical cell is prepared as in Example 4, wherein the solid electrolyte is prepared using Al 2 O 3 instead of SiO 2 . The other conditions are the same as for Example 4.
  • Example 18 An electrochemical cell was prepared as in Example 4, wherein the solid electrolyte was prepared using Ti0 2 instead of Si0 2 . The other conditions were the same as for Example 4. The discharge capacity at 0.1 C and its coulombic efficiency are shown in Figure 8.
  • Example 18 (Comparative):
  • Example 8 An electrochemical cell was prepared as in Example 4, in which pure sulfur powder (Pristine) was used instead of the sulfur composite material of Example 4. The other conditions were the same as for Example 4. The discharge capacity at 0.1 C and coulombic efficiency are shown in Figure 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Sont décrites des cellules électrochimiques lithium-soufre tout-solide et leurs méthodes de fabrication. Les cellules électrochimiques Li-S comprennent au moins un composant multicouche qui comprend un film d'électrolyte solide conducteur d'ion, un film d'électrode positive contenant un composite de soufre, et une film d'électrode négative contenant du lithium. Des films d'électrodes positives, des éléments électrolyte-électrode positive préfabriqués, leurs utilisations ainsi que leurs méthodes de fabrication sont aussi décrites.

Description

CELLULES ÉLECTROCHIMIQUES LITHIUM-SOUFRE D'ÉTAT TOUT SOLIDE ET LEURS MÉTHODES DE FABRICATION
DEMANDES RELIÉES
Cette demande revendique la priorité de la demande de brevet canadienne no. 2,820,635 déposée le 21 juin 2013, laquelle est incorporée ici en référence dans son intégralité.
DOMAINE DE L'INVENTION
L'invention se rapporte au domaine des cellules électrochimiques au lithium-soufre (Li-S) et à leur fabrication. Plus spécifiquement, l'invention se rapporte aux cellules électrochimiques, systèmes et éléments préfabriqués tout solides au Li-S et à leurs procédés de fabrication.
CONTEXTE DE L'INVENTION
Un batterie Li-S comprend généralement une anode de lithium métallique (Li(m)), une cathode contenant du soufre (S8) mélangé à du carbone (le soufre lui-même étant mauvais conducteur), et un électrolyte liquide. Durant la décharge, le lithium de l'anode est oxydé pour former des ions lithium et le soufre est réduit dans la cathode pour générer des espèces Li-polysulfure. Le principe des réactions en charge-décharge dans un électrolyte liquide conventionnel est illustré à la Figure 1.
L'énergie spécifique théorique des batteries lithium-soufre (Li-S) est d'environ 3 à 5 fois plus élevée (2567 Wh/kg) que pour les batteries Li-ion. Pour cette raison, et pour ses bénéfices économiques et environnementaux, la technologie des batteries Li-S est souvent référée comme étant l'une des technologies de remplacement du Li-ion des plus prometteuses. Cependant, plusieurs inconvénients ont repoussé son entrée sur le marché, incluant une endurance cyclique médiocre, une efficacité cyclique basse, et de sévères problèmes d'autodécharge et une sécurité discutable. Ceci serait dû aux espèces polysulfures de lithium qui sont, au moins en partie, soluble dans l'électrolyte, et, plus fondamentalement, à la nature isolante du soufre et du sulfure de lithium, limitant l'utilisation de ce matériau actif (voir Zhang S. S. et al, 2013, J. Power. Sources, 231 , pp 153-162). La plupart des efforts d'amélioration de la technologie des batteries Li-S ont été concentrés sur les modifications du composite contenant le soufre (afin de frapper le soufre à l'intérieur de la cathode, X. Ji et al, 2010, J. Mat. Chem., 20, pp 9821-9826). Cependant, la plupart des méthodes proposées impliquent des étapes qui sont moins applicables à la production sur une échelle industrielle plus grande et/ou impliquent des coûts de production plus élevés.
Certains groupes de recherche ont développé des systèmes comprenant un électrolyte polymère, par exemple utilisant des homopolymères PEO, dans le but de retarder la solubilité des ions polysulfure, mais la performance de la cellule démontre une dégradation instantanée après la décharge initiale (S. S. Jeong et al., 2007, Journal of Power Sources 174, pp 745-750).
Une batterie Li-S toute-solide a été décrite dans Nagao et al, 2013, J. Power. Sources, 222, pp 237-242. Ce système inclut une cathode de composite mésoporeux, une anode d'alliage Li-AI et un électrolyte solide de thio-LISICON (Li3.25Ge0.25P0.75S4) . Malgré la capacité extraordinairement élevée, la cellule démontre un voltage faible de décharge et une performance limitée de puissance inférieure à 0.1 C à la température de la pièce.
Il existe un besoin pour des cellules électrochimiques Li-S industriellement applicables, possédant au moins un de ces avantages: endurance cyclique améliorée, meilleure efficacité cyclique, autodécharge plus basse, sécurité améliorée, et/ou des coûts de production plus bas lorsque comparées aux autres alternatives de batteries Li-S.
RÉSUMÉ DE L'INVENTION
Selon un aspect, l'invention porte sur une cellule électrochimique comprenant au moins un composant multicouche qui comprend: un film d'électrode positive comprenant du soufre en tant que matériau électrochimiquement actif; un film d'électrolyte solide entre les électrodes négative et positive, ledit film d'électrolyte solide comprenant au moins une couche(s) incluant au moins un sel de lithium et au moins un polymère; et un film d'électrode négative comprenant du lithium comme matériau électrochimiquement actif.
Dans un mode de réalisation, le film d'électrolyte solide est un film conducteur d'ion et comprend aussi au moins un composé inorganique dans la couche polymérique ou séparément dans une couche solide conductrice d'ion. Dans un autre mode de réalisation, le polymère de l'électrolyte consiste en un copolymère séquencé composé d'au moins un segment de solvatation d'ions lithium et d'au moins un segment réticulable. Préférablement, le segment de solvatation d'ions lithium est sélectionné parmi les homo- ou copolymères ayant des unités répétitives de Formule (I):
-(CH2-CH-0)x-
R (D
dans lequel,
R est choisi parmi H, C C10 alkyl, ou -(CH2-0-RaRb);
Ra est (CH2-CH2-0)y;
Rb est choisi parmi H et un groupe C1-C10 alkyl;
x est un nombre entier choisi dans l'intervalle de 10 à 200,000; et
y est un nombre choisi dans l'intervalle de 0 à 10. Dans un autre mode de réalisation, le segment réticulable du polymère est un segment de polymère comprenant au moins un groupement fonctionnel réticulable de façon multidimensionnelle par irradiation ou traitement thermique. L'électrolyte solide peut aussi comprendre au moins un sel de lithium dissout dans le solide conducteur d'ion, de préférence, le sel de lithium est de formule Li+X", où X" est un anion ayant une charge délocalisée, de préférence un anion choisi parmi PF6 ", BF4 ", AsF6 ", CI04 ", CF3S03 ", (CF3S02)2N- (TFSI), et (C2F5S02)2N- (BETI).
Dans un autre mode de réalisation, le composé inorganique de l'électrolyte solide est choisi parmi Si02, Al203, Ti02, et d'autres solides conducteurs d'ions lithium, et leurs combinaisons, dans lequel the solide conducteur d'ions lithium peut être choisi parmi les céramiques ou verres conducteurs d'ions lithium, tels que NASICON, LISICON, thio- LISICON, Garnet, de forme cristalline ou amorphe, et leurs combinaisons. La céramique ou le verre conducteur d'ions lithium a de préférence une conductivité en ions lithium d'au moins 10"4 S/cm à 25 . Le film conducteur d'ions a une épais seur entre 10 et 200 μηι, entre 10 et 100 μηι, ou entre 20 et 50 μηι. Selon un autre aspect, l'invention porte sur une électrode positive comprenant un liant polymère. De préférence, le liant polymère est un copolymère séquencé composé d'au moins un segment de solvatation d'ions lithium et d'au moins un segment réticulable, dans lequel le segment de solvatation d'ions lithium est sélectionné parmi les homo- ou copolymères ayant des unités répétitives de Formule (I) telle que définie plus haut. Dans un mode de réalisation, le liant polymère de l'électrode positive est le même que le polymère de l'électrolyte. Dans un autre mode de réalisation, le liant polymère de l'électrode positive est différent du polymère de l'électrolyte.
Dans un autre mode de réalisation, l'électrode positive comprend un matériau composite incluant du soufre encapsulé dans un matériau d'enrobage, optionnellement préparé par mécanofusion. De préférence, le matériau d'enrobage comprend un matériau inorganique choisi parmi: - LiaM1 b(X04), dans lequel 0≤a≤ 2, 0< b≤ 1 ; M1 est choisi parmi Fe, Mn, Co,
Ni, et Ti, ou leurs combinaisons, X est choisi parmi P, Si et S, tels que LiFeP0 , LiNiP0 , LiMnP0 , LiCoP0 , ou LiFe1-xTixP0 , où 0 < x < 1 ; ou - LicM2 dZe, dans lequel 0≤ c≤ 4, 0 < d≤ 5, 0 < e≤ 12; M2 est choisi parmi Mo, V, Ti, Al, et Si; et Z est choisi parmi O, S, et Se, tels que Ti02, TiS2, V205, LiV308, Li4Ti50i2, MoS2, Mo02, Si02, ou Al203.
De façon optionnelle, le matériau inorganique est sous forme de particules, éventuellement enrobées de carbone. Dans un autre mode de réalisation, le film d'électrode positive comprend aussi un carbone conducteur, comme par exemple, une poudre ou des fibres de carbone choisi parmi le noir de carbone, le charbon activé, le graphite, le graphène, et leurs mélanges. De préférence, le carbone conducteur possède une surface spécifique d'au moins 5 m2/g, ou au moins 50 m2/g. Dans un autre mode de réalisation, carbone conducteur possède une surface spécifique d'au moins 500 m2/g.
Selon un autre mode de réalisation de l'invention, le film d'électrode négative de la cellule électrochimique comprend une feuille de lithium métallique, ou un alliage de lithium métallique, ledit alliage comprenant au moins 90% de lithium par poids. Dans un mode de réalisation, la surface du matériau électrochimiquement actif du film d'électrode négative inclut une couche de passivation formée in situ. Dans un autre mode de réalisation, le film d'électrode négative comprend, en outre, une couche protectrice comprenant, par exemple, un lubrifiant tel qu'une huile synthétique, où l'huile synthétique peut être le produit d'estérification d'un acide gras et d'un polyéthylène glycol. Dans un autre mode de réalisation, le matériau électrochimiquement actif de l'électrode négative est un film ayant une épaisseur entre environ 5 μηι et environ 200 μηι.
Dans un autre mode de réalisation, la cellule électrochimique de l'invention comprend en outre une couche isolante adjacente à l'électrode négative. Dans un autre mode de réalisation, l'électrode positive de la cellule électrochimique de l'invention comprend, en outre, un collecteur de courant agissant aussi comme support pour le matériau électrochimiquement actif de l'électrode positive, ledit matériau électrochimiquement actif étant adjacent à l'électrolyte solide. De préférence, le collecteur de courant est une feuille d'aluminium, par exemple, ayant une épaisseur située entre environ 10 μηι et environ 30 μηι, incluant éventuellement une couche de carbone.
Un procédé de fabrication d'une cellule électrochimique selon l'invention comprend les étapes de: a) se procurer un film d'électrode positive, un film d'électrolyte, et un film d'électrode négative tels que décrits dans le présent document; et b) empiler et laminer ensemble le film d'électrode positive, le film d'électrolyte, et le film d'électrode négative.
Dans un mode de réalisation, l'étape de procuration du film d'électrode négative comprend une étape de laminage d'une feuille de lithium entre au moins deux rouleaux et, optionnellement, d'enrobage de la surface du film d'une couche de protection.
Dans un autre mode de réalisation, l'étape de procuration du flim d'électrode positive comprend des étapes de mélange du matériau électrochimiquement actif de l'électrode positive avec un carbone conducteur, des précurseurs polymères, optionnellement un sel de lithium, un composé inorganique et/ou un solvant, d'épandage du mélange obtenu sur un collecteur de courant, évaporation du solvant (si nécessaire) et de polymérisation, tel que par irradiation UV ou chauffage, pour former le film d'électrode positive.
Dans une autre mode de réalisation, l'étape de procuration du film d'électrolyte comprend les étapes de mélange de précurseurs de polymère, de sel de lithium, de composé(s) inorganique(s), et optionnellement d'un solvant, afin d'ajuster la viscosité, de coulage du mélange ainsi obtenu sur un substrat, évaporation du solvant (si nécessaire) et de polymérisation, tel que par irradiation UV ou chauffage, pour former le film d'électrolyte solide.
Dans un autre mode de réalisation, l'étape de procuration du film d'électrolyte comprend les étapes de (a) mélange de précurseurs de polymère, de sel(s) de lithium, de composé(s) inorganique(s), et optionnellement de solvant(s), afin d'ajuster la viscosité, coulage du mélange ainsi obtenu sur un substrat, évaporation du solvant (si nécessaire) et polymérisation, tel que par irradiation UV ou chauffage, pour former un film polymère- composé inorganique; et (b) mélange de précurseurs de polymère, de sel(s) de lithium, et optionnellement de solvant(s), afin d'ajuster la viscosité, coulage du mélange ainsi obtenu sur le film polymère-composé inorganique, évaporation du solvant (si nécessaire) et polymérisation, tel que par irradiation UV ou chauffage, pour former le film d'électrolyte solide.
Dans une autre mode de réalisation, l'étape d'empilage et de laminage des films d'électrode positive, d'électrolyte, et d'électrode négative comprend, en outre, des étapes de laminage du film d'électrode positive avec le film d'électrolyte et de laminage subséquent du film d'électrode négative sur celui-ci.
Dans un autre mode de réalisation de l'invention, la cellule électrochimique comprend un composant multicouche qui peut être roulé ou plié. Dans un autre mode de réalisation, la cellule électrochimique comprend deux composants multicouches ou plus empilés.
L'invention envisage aussi un élément électrolyte-électrode positive préfabriqué comprenant une électrode positive contenant du soufre comprenant un matériau composite selon l'un des modes de réalisation de l'invention; et un électrolyte solide tel que défini dans le présent document, dans lequel l'électrode positive et l'électrolyte sont empilés et laminés ensemble.
Dans une autre mode de réalisation, l'invention porte sur un procédé de préparation d'un élément électrolyte-électrode positive préfabriqué de l'invention, comprenant les étapes de: a) mélange du matériau électrochimiquement actif de l'électrode positive avec du carbone conducteur, des précurseurs de polymère, optionnellement des sel(s) de lithium, composé(é) inorganique(s) et/ou solvant(s); b) épandage du mélange obtenu à l'étape (a) sur un collecteur de courant, évaporation du solvant (si présent) et polymérisation pour former le film d'électrode positive; c) mélange de précurseurs de polymère, de sel(s) de lithium et de composé(s) inorganiques, optionnellement dans un(des) solvant(s) et épandage sur un substrat pour former un précurseur de film d'électrolyte; d) irradiation ou chauffage du précurseur de film d'électrolyte de l'étape (c) pour former film d'électrolyte solide; et e) empilage et laminage du film d'électrode positive de l'étape (b) avec le film d'électrolyte solide de l'étape (d). Le procédé peut aussi inclure une étape de retrait du substrat avant ou après l'étape (e).
Dans un autre mode de réalisation, le procédé de préparation d'un élément électrolyte- électrode positive préfabriqué de l'invention, comprend les étapes de: a) mélange du matériau électrochimiquement actif de l'électrode positive avec du carbone conducteur, des précurseurs de polymère, optionnellement des sel(s) de lithium, composé(s) inorganique(s) et/ou un solvant(s); b) épandage du mélange obtenu à l'étape (a) sur un collecteur de courant, évaporation du solvant (si présent) et polymérisation pour former le film d'électrode positive; c) mélange de précurseurs de polymère, sel(s) de lithium et de composé(s) inorganique(s), optionnellement dans un(des) solvant(s), et épandage sur la surface opposée au collecteur de courant du film d'électrode positive de l'étape (b) afin de produire une électrode positive enrobée; d) irradiation ou chauffage de l'électrode positive enrobée obtenue à l'étape (c) pour former un élément électrolyte- électrode positive; et e) laminage optionnel de la composition obtenue à l'étape (d). Dans encore un autre mode de réalisation, l'invention porte sur des systèmes comprenant une cellule électrochimique, une électrode positive, ou un élément électrolyte-électrode positive préfabriqué selon l'invention, et l'utilisation d'un élément électrolyte-électrode positive préfabriqué ou d'une électrode positive dans la fabrication d'une cellule électrochimique selon l'invention. L'invention envisage aussi l'utilisation des cellules électrochimiques de l'invention en remplacement des batteries lithium-ion et dans des systèmes demandant des batteries rechargeables de haute énergie, et plus particulièrement dans des systèmes tels que dans les véhicules électriques et les appareils d'informatique ubiquitaire.
BRÈVE DESCRIPTION DES DESSINS La Figure 1 illustre le principe général des batteries lithium-soufre dans un système conventionnel à électrolyte liquide. La Figure 2 illustre des exemples de configurations de l'électrolyte solide à l'intérieur de la cellule électrochimique de l'invention.
La Figure 3 illustre schématiquement le matériau composite de soufre caractérisé par une particule interne de soufre encapsulée dans un enrobage extérieur. La Figure 4 montre une image SEM du composite soufre-LiFeP04, où les particules de soufre sont encapsulées dans une couche de LiFeP0 .
La Figure 5 montre les profils de première décharge et charge testés à 0.1C (167 mA/g) comparant les résultats obtenus avec la cellule électrochimique préparée à l'Exemple 2 et la cellule électrochimique obtenu à l'Exemple 1 (Comparatif). La Figure 6 montre les profils de troisième décharge et charge de la cellule illustrée à l'Exemple 3 en comparaison de ceux de la cellule de l'Exemple 1 (Comparatif).
La Figure 7 montre la performance de cyclage des cellules préparées dans les Exemples 3 et 4 respectivement.
La Figure 8 montre le résumé de la capacité initiale et de l'efficacité coulombique des cellules préparées aux Exemples 1 (Comparatif), 2 à 4, 6, 7, 9 à 12, 14, 17 et 18 (Comparatif).
DESCRIPTION DÉTAILLÉE
La description détaillée et les exemples qui suivent sont à titre d'illustration et ne doivent pas être interprétés comme limitant davantage la portée de l'invention. La cellule électrochimique Li-S de l'invention ne contient pas d'électrolyte liquide, gel, ou céramique seulement. De façon générale, la cellule électrochimique comprend au moins un composant multicouche comprenant un film d'électrode négative contenant du lithium, un film d'électrode positive contenant du souffre sur un collecteur de courant, l'électrode négative et l'électrode positive étant séparées par un film d'électrolyte solide comprenant au moins une couche, ladite couche contenant un polymère.
De préférence, un composant multicouche de la cellule électrochimique a une épaisseur totale d'environ 10 μηι à environ 1000 μηι, de préférence d'environ 100 μηι à environ 500 μηι. Une cellule électrochimique comprend, par exemple, de 1 à 100 composant(s) multicouche(s), dépendamment de la configuration de la batterie. Par exemple, une cellule électrochimique peut être composée d'un composant multicouche, qui peut être roulé ou plié. Comme autre exemple, la cellule électrochimique peut être composée de 2 composants multicouches ou plus, qui peuvent être empilés.
Le polymère utilisé dans l'électrolyte de cette cellule électrochimique Li-S inclut un polymère conducteur d'ions auquel des additifs sont ajoutés avant polymérisation (par exemple, par chauffage ou irradiation). L'utilisation de polymères réticulés procure en outre, des propriétés améliorées de conduction. L'addition de matériau inorganique à l'électrolyte solide, soit sous forme de nano-particules ou de feuille de céramique, améliore la résistance mécanique du film d'électrolyte et améliore la réversibilité de l'électrode de lithium métallique. Ces particules inorganiques sont incluses dans la couche polymérique ou dans une couche séparée de l'électrolyte.
La Figure 2 illustre des exemples de cellule électrochimique ayant différentes configurations d'électrolyte solide selon l'invention, où l'électrode négative contenant du lithium inclut aussi une couche de passivation.
En raison de la solubilité limitée et donc de la mobilité limitée des ions polysulfure dans le système électrochimique de l'invention, la cellule démontre une efficacité coulombique significativement améliorée, plus de 90% sans (ou avec très peu de) réaction de navette des polysulfures, tel que montré à la Figure 5.
Un autre aspect de l'invention concerne l'électrode positive telle que définie plus en détail ci-dessous. Cette électrode positive selon l'invention contient des particules de soufre élémentaire, un liant polymère conducteur d'ions et un additif de carbone conducteur. Les particules de soufre de l'électrode positive peuvent aussi être encapsulées dans un matériau inorganique conducteur avant l'application du liant. D'autres additifs, tels que des sels de lithium et des composés inorganiques comme des particules de verre et/ou de céramique, peuvent également être ajoutés à la composition d'électrode positive.
L'invention envisage aussi des éléments électrolyte-électrode positive préfabriqués, ainsi que leur préparation et utilisation dans la fabrication de cellules électrochimiques. Ces unités électrolyte-électrode positive préfabriquées comprennent un film d'électrode positive et un film d'électrolyte solide, chacun étant tel que décrit dans le présent document.
Les cellules électrochimiques de l'invention conviennent aux utilisations où les batteries lithium-ion sont généralement utilisées et en remplacement de ces dernières, et dans des systèmes demandant des batteries rechargeables de haute énergie, et plus particulièrement dans des systèmes tels que les véhicules électriques et les appareils d'informatique ubiquitaire.
Suivent des exemples de la composition et des propriétés des composants de la cellule électrochimique selon l'invention. Electrolyte solide
L'électrolyte solide inclut un film conducteur d'ions comprenant au moins un sel de lithium et au moins un polymère conducteur d'ions. L'électrolyte solide peut inclure, en outre, un composé inorganique qui peut être présent dans le film polymère ou dans un film différent de l'électrolyte. Dans un aspect préféré, le polymère consiste en un copolymère séquencé composé d'au moins un segment A de solvatation d'ions lithium et d'au moins un segment réticulable B. Le segment A est choisi parmi les homo- ou copolymères ayant des unités répétitives de Formule (I):
-(CH2-CH-0)x-
R (D dans lequel,
R est choisi parmi H, C C10 alkyl, ou -(CH2-0-Ra-Rb);
Ra est (CH2-CH2-0)y;
Rb choisi parmi H ou un groupement C1-C10 alkyl;
x est un nombre entier choisi dans l'intervalle de 10 à 200,000; et
y est un nombre choisi dans l'intervalle de 0 à 10.
Le segment B est un segment polymère comprenant au moins un groupement fonctionnel réticulable de façon multidimensionnelle par irradiation ou traitement thermique. Le sel de lithium est représenté par Li+X", dans lequel X" est un anion ayant une charge délocalisée, par exemple, un anion choisi parmi PF6 ", BF4 ", AsF6 ", CI0 ", CF3S03 ", (CF3S02)2N" (TFSI), et (C2F5S02)2N- (BE"n).
Les composés inorganiques dans l'électrolyte solide sont, par exemple, choisis parmi Si02, Al203, Ti02, et d'autres solides conducteurs d'ions lithium, tels que les céramiques ou verres conducteurs d'ions lithium comme, par exemple, NASICON, LISICON, thio- LISICON, Garnet, et leurs combinaisons, sous forme cristalline et/ou amorphe.
La structure de l'électrolyte solide de l'invention peut être constituée d'une seule couche ou de deux couches ou plus. Par exemple, l'électrolyte solide peut être choisi parmi les trois configurations différentes illustrées à la Figure 2, et résumées comme suit: a) l'électrolyte solide comprend un film comprenant une couche polymère contenant des particules de composé inorganique; b) l'électrolyte solide comprend deux films, un premier film tel que défini en (a), et un second film polymère sans composés inorganiques; ou c) l'électrolyte solide comprend deux films, un premier film étant un film polymère, le second film comprenant des composés inorganiques sans polymère.
Dans l'option (c), le film polymère peut éventuellement aussi comprendre un composé inorganique. Le film d'électrolyte solide est fabriqué par coulage de la solution polymère ci-dessus mentionnée sur un substrat ou directement sur l'électrode positive suivi d'une réticulation par irradiation UV ou faisceau d'électron ou par traitement à la chaleur. L'épaisseur du film sec est, de préférence, contrôlée entre 10 μηι et 100 μηι, de préférence entre 20 μηι et 50 μηι. Le substrat est, par exemple, un film plastique qui peut être retiré avant le laminage du film d'électrolyte solide aux autres éléments de la cellule électrochimique. Électrode positive:
L'électrode positive de la cellule électrochimique de l'invention comprend au moins un matériau contenant du soufre, de préférence un matériau composite de soufre comprenant des particules de soufre élémentaire, au moins un additif de carbone conducteur, et au moins un liant polymère. Le matériau de l'électrode positive comprend optionnellement aussi au moins un sel de lithium et/ou composé inorganique.
Un matériau composite de soufre peut être caractérisé par des particules de soufre ayant une taille de particule entre 10 nm et 100 μηι, de préférence entre 0.1 μηι et 50 μηι.
Le liant polymère est ajouté aux particules de soufre afin de former le film d'électrode positive. Le liant polymère est de préférence un polymère conducteur d'ions. Dans un mode préféré de réalisation, le liant polymère est un copolymère séquencé composé d'au moins un segment A de solvatation d'ions lithium et d'au moins un segment B réticulable, de préférence le segment A est tel que défini par la Formule I. Le liant polymère peut être le même ou différent du polymère présent dans l'électrolyte solide.
De plus, un additif de carbone conducteur peut être ajouté au liant polymère ce qui en augmente la conductivité. Des exemples d'additifs de carbone conducteur incluent les poudres ou fibres de carbone choisies parmi le noir de carbone, le charbon activé, le graphite, le graphène, et leurs mélanges. Par exemple, la surface spécifique du carbone sélectionné est plus grande que 5 m2/g, de façon optionnelle plus grande que 50 m2/g, ou plus grande que 500 m2/g.
Selon un aspect, les particules de soufre dans le liant polymère sont optionnellement encapsulées dans une couche d'enrobage externe, le matériau d'enrobage comprenant des particules d'un matériau inorganique, éventuellement enrobées de carbone, le matériau inorganique étant choisi parmi:
- LiaM1 b(X04), dans lequel 0≤a≤ 2, 0< b≤ 1 , M1 est choisi parmi Fe, Mn, Co, Ni, et Ti, ou une de leur combinaison, et X est choisi parmi P, Si, et S, par exemple, le matériau d'enrobage est choisi parmi LiFeP04, LiNiP04, LiMnP04, LiCoP04, et LiFe1-xTixP0 , où 0 < x < 1 ; ou
- LicM2 dZe, dans lequel 0≤ c≤ 4, 0 < d≤ 5, 0 < e≤ 12, M2 est choisi parmi Mo, V, Ti, Al, et Si, et Z est choisi parmi O, S, et Se, par exemple, le matériau d'enrobage est Ti02, TiS2, V205, LiV308, Li4Ti5012, MoS2, Mo02, Si02, ou Al203. Des exemples de matériaux inorganiques peuvent aussi être retrouvés, par exemple dans le brevet américain No. 5,910,382 (Goodenough et al), le sujet duquel est incorporé ici par référence dans son intégralité pour toutes les utilisations.
Un ou plusieurs sel(s) de lithium est(sont) optionnellement ajouté(s) au composite de l'électrode positive. Des exemples incluent les sels de lithium du PF6 ", BF4 ", AsF6 ", CI0 ", CF3SO3 ", (CF3S02)2N" (TFSI), et (C2F5S02)2N" (BETI), et peuvent être identiques ou différents d'un sel présent dans l'électrolyte solide.
Des composés inorganiques sont aussi ajoutés au composite de l'électrode positive de façon optionnelle. Des exemples de composés inorganiques incluent Si02, Al203, Ti02, et des solides conducteurs d'ions lithium tels que céramiques et verres conducteurs d'ions lithium, par exemple, NASICON, LISICON, thio-LISICON, Garnet, et leurs combinaisons, sous forme cristalline et/ou amorphe, et peuvent être identiques ou différente d'un composé inorganique présent dans l'électrolyte solide.
Le collecteur de courant de l'électrode positive est constitué de, par exemple, une feuille d'aluminium, de préférence ayant une épaisseur d'environ 10 μηι à 30 μηι. Le collecteur de courant peut aussi inclure une couche de revêtement de carbone, et ce, afin de promouvoir l'adhésion du collecteur de courant au carbone conducteur présent dans le composite de l'électrode positive.
Électrode négative: L'électrode négative de cette invention comprend du lithium, soit sous forme de feuille de lithium métallique ou d'alliage de lithium contenant au moins 90% de lithium par poids. Selon un aspect préféré, l'électrode négative comprend une feuille de lithium métallique possédant une couche de protection sur sa surface. La feuille de lithium a une épaisseur de 10 μηι à 500 μηι, de préférence de 20 μηι à 200 μηι. Un procédé de préparation d'un film de lithium peut être retrouvé dans le brevet américain No. 5,528,920 (Bouchard et al.), le contenu duquel est incorporé ici par référence dans son intégralité.
La couche de protection est formée par revêtement d'un matériau lubrifiant sur la surface fraîche d'une feuille de lithium avant la formation d'oxyde natif. Le lubrifiant peut être choisi parmi les huiles synthétiques, de préférence parmi les produits d'estérification d'acides gras et de PEG (polyéthylène glycol). Des exemples de lubrifiants et d'additifs pour utilisation dans la préparation de films de lithium peuvent être retrouvés dans le brevet américain No. 6,517,590 (Gauthier et al.), le contenu duquel est incorporé ici par référence dans son intégralité.
Méthodes de fabrication:
Un procédé de fabrication de la cellule électrochimique de l'invention comprend les étapes suivantes: (a) se procurer un film d'électrode positive, un film d'électrolyte solide, et un film d'électrode négative tels que décrits dans le présent document, et (b) empiler et laminer ensemble le film d'électrode positive, le film d'électrolyte solide, et le film d'électrode négative.
Selon un aspect, l'étape de procuration du film d'électrode négative inclut une étape de laminage d'une feuille de lithium et revêtement de sa surface par une couche protectrice. Selon un autre aspect, l'étape de procuration du film d'électrode positive inclut les étapes de mélange du matériau électrochimiquement actif de l'électrode positive avec un carbone conducteur, des précurseurs de polymère, optionnellement des sel(s) de lithium, composé(s) inorganique(s) et/ou solvant(s), épandage du mélange obtenu sur un collecteur de courant, évaporation du solvant (si nécessaire) et polymérisation, par irradiation UV ou chauffage, pour l'obtention du film d'électrode positive.
Selon un autre aspect, l'étape de procuration du film d'électrolyte solide inclut les étapes de mélange de précurseurs de polymère(s), sel(s) de lithium, composé(s) inorganique(s), et optionnellement de solvant(s), afin d'ajuster la viscosité, coulage du mélange obtenu sur un substrat, évaporation du solvant (si nécessaire) et polymérisation, par irradiation UV ou chauffage, pour l'obtention du film d'électrolyte solide.
Alternativement, l'étape de procuration du film d'électrolyte solide inclut les étapes de (a) mélange de précurseurs de polymère(s), sel(s) de lithium, composé(s) inorganique(s), et optionnellement de solvant(s), afin d'ajuster la viscosité, coulage du mélange obtenu sur un substrat, évaporation du solvant (si nécessaire) et polymérisation, par irradiation UV ou chauffage, pour l'obtention d'un film polymère-composé inorganique; et (b) mélange de précurseurs de polymère(s), sel(s) de lithium, et optionnellement de solvant(s), afin d'ajuster la viscosité, coulage du mélange obtenu sur le film polymère-composé inorganique, évaporation du solvant (si nécessaire) et polymérisation, par irradiation UV ou chauffage, pour former le film d'électrolyte solide. Selon un autre aspect, l'étape d'empilage et laminage des films d'électrode positive, électrolyte solide, et électrode négative inclut les étapes de laminage du film d'électrode positive avec le film d'électrolyte solide et de laminage subséquent du film d'électrode négative sur ce dernier.
Un procédé de fabrication d'une cellule électrochimique telle qu'illustrée à la Figure 2(a) comprend, par exemple, les étapes suivantes : a) laminage d'une feuille de lithium et revêtement optionnel de la surface avec une couche de protection telle que décrite ci- haut; b) mélange du matériau électrochimiquement actif de l'électrode positive avec du carbone conducteur, des précurseurs de polymère, et optionnellement des sel(s) de lithium, composé(s) inorganique(s) et/ou solvant(s); c) épandage du mélange obtenu à l'étape (b) sur un collecteur de courant, évaporation du solvant (si nécessaire) et polymérisation par irradiation UV ou chauffage pour former un film d'électrode positive; d) mélange de précurseurs de polymère, sel(s) de lithium, composé(s) inorganique(s), et optionnellement de solvant(s) pour ajuster la viscosité; e) coulage du mélange obtenu à l'étape (d) sur un substrat, évaporation du solvant (si nécessaire) et polymérisation, par irradiation UV ou chauffage, pour former un film d'électrolyte solide; f) empilage et laminage du film d'électrode positive obtenu à l'étape (c), du film d'électrolyte solide obtenu en (e), et du film d'électrode négative de l'étape (a), où les films d'électrodes négative et positive sont chacun en contact avec une surface opposée du film d'électrolyte solide. Le procédé peut aussi inclure une étape de retrait du substrat du film d'électrolyte solide avant l'étape (f).
Selon un autre aspect, le procédé de fabrication de la cellule électrochimique de l'invention comprend les étapes suivantes : a) laminage d'une feuille de lithium et revêtement optionnel de la surface avec une couche de protection telle que décrite ci- haut; b) mélange du matériau électrochimiquement actif de l'électrode positive avec du carbone conducteur, des précurseurs de polymère, et optionnellement des sel(s) de lithium, composé(s) inorganique(s) et/ou solvant(s); c) épandage du mélange obtenu à l'étape (b) sur un collecteur de courant et évaporation du solvant (si nécessaire) pour former un précurseur de film d'électrode positive; d) mélange de précurseurs de polymère, sel(s) de lithium, composé(s) inorganique(s), et optionnellement de solvant(s) pour ajuster la viscosité; e) coulage du mélange obtenu à l'étape (d) sur le précurseur de film d'électrode positive de l'étape (c), évaporation du solvant (si nécessaire) et polymérisation, par irradiation UV ou chauffage, pour former un film électrode positive/électrolyte solide; f) empilage et laminage du film électrode positive/électrolyte solide obtenu à l'étape (e), avec le film d'électrode négative de l'étape (a), où les films d'électrodes négative et positive sont respectivement en contact avec une surface opposée du film d'électrolyte solide. Un procédé de fabrication d'une cellule électrochimique telle qu'illustrée à la Figure 2(b) comprend les étapes suivantes : a) laminage d'une feuille de lithium et revêtement optionnel de la surface avec une couche de protection telle que décrite ci-haut; b) mélange du matériau électrochimiquement actif de l'électrode positive avec du carbone conducteur, des précurseurs de polymère, et optionnellement des sel(s) de lithium, composé(s) inorganique(s) et/ou solvant(s); c) épandage du mélange obtenu à l'étape (b) sur un collecteur de courant, évaporation du solvant (si nécessaire) et polymérisation par irradiation UV ou chauffage pour former un film d'électrode positive; d) mélange de précurseurs de polymère, sel(s) de lithium, et optionnellement de solvant(s) pour ajuster la viscosité; e) coulage du mélange obtenu à l'étape (d) sur un substrat, évaporation du solvant (si nécessaire) et polymérisation, par irradiation UV ou chauffage, pour former un premier film d'électrolyte solide; f) mélange de précurseurs de polymère, sel(s) de lithium, composé(s) inorganique(s), et optionnellement de solvant(s) pour ajuster la viscosité; g) coulage du mélange obtenu à l'étape (f) sur un substrat, évaporation du solvant (si nécessaire) et polymérisation, par irradiation UV ou chauffage, pour former un deuxième film d'électrolyte solide; h) empilage et laminage du film d'électrode positive obtenu à l'étape (c), du premier film d'électrolyte solide obtenu en (e), du deuxième film d'électrolyte solide obtenu en (g), et du film d'électrode négative de l'étape (a), où les films d'électrodes positive et négative font face respectivement au premier film d'électrolyte solide et au deuxième film d'électrolyte solide. Le procédé peut aussi inclure une étape de retrait du ou des substrat(s) du ou des film(s) d'électrolyte solide avant l'étape (h).
Selon un autre aspect, le procédé de fabrication de la cellule électrochimique de l'invention comprend les étapes suivantes : a) laminage d'une feuille de lithium et revêtement optionnel de la surface avec une couche de protection telle que décrite ci- haut; b) mélange du matériau électrochimiquement actif de l'électrode positive avec du carbone conducteur, des précurseurs de polymère, et optionnellement des sel(s) de lithium, composé(s) inorganique(s) et/ou solvant(s); c) épandage du mélange obtenu à l'étape (b) sur un collecteur de courant et évaporation du solvant (si nécessaire) pour former un précurseur de film d'électrode positive; d) mélange de précurseurs de polymère, sel(s) de lithium, et optionnellement de solvant(s) pour ajuster la viscosité; e) coulage du mélange obtenu à l'étape (d) sur le précurseur de film d'électrode positive obtenu en (c), évaporation du solvant (si nécessaire) et polymérisation, par irradiation UV ou chauffage, pour former un film « électrode positive/premier film d'électrolyte solide »; f) mélange de précurseurs de polymère, sel(s) de lithium, composé(s) inorganique(s) et optionnellement de solvant(s) pour ajuster la viscosité; g) coulage du mélange obtenu à l'étape (f) sur un substrat, évaporation du solvant (si nécessaire) et polymérisation, par irradiation UV ou chauffage, pour former un deuxième film d'électrolyte solide; h) empilage et laminage du film « électrode positive/premier film d'électrolyte solide » obtenu à l'étape (e), du deuxième film d'électrolyte solide obtenu en (g) et du film d'électrode négative obtenu à l'étape (a), où le deuxième film d'électrolyte solide fait face à la surface libre du premier film d'électrolyte solide, à l'opposé du film d'électrode positive, le film d'électrode négative faisant face au deuxième film d'électrolyte solide du côté opposé du premier film d'électrolyte solide. Le procédé peut aussi inclure une étape de retrait du substrat du deuxième film d'électrolyte solide avant l'étape (h).
Selon un autre aspect, le procédé de fabrication de la cellule électrochimique de l'invention comprend les étapes suivantes : a) laminage d'une feuille de lithium et revêtement optionnel de la surface avec une couche de protection telle que décrite ci- haut; b) mélange du matériau électrochimiquement actif de l'électrode positive avec du carbone conducteur, des précurseurs de polymère, et optionnellement des sel(s) de lithium, composé(s) inorganique(s) et/ou solvant(s); c) épandage du mélange obtenu à l'étape (b) sur un collecteur de courant et évaporation du solvant (si nécessaire) pour former un précurseur de film d'électrode positive; d) mélange de précurseurs de polymère, sel(s) de lithium, et optionnellement de solvant(s) pour ajuster la viscosité; e) coulage du mélange obtenu à l'étape (d) sur le précurseur de film d'électrode positive de l'étape (c), évaporation du solvant (si nécessaire); f) mélange de précurseurs de polymère, sel de lithium, composés inorganiques et optionnellement un solvant pour ajuster la viscosité; g) coulage du mélange obtenu à l'étape (f) sur la surface « électrolyte » du film obtenu à l'étape (e), évaporation du solvant (si nécessaire) et polymérisation par irradiation UV ou chauffage pour former un film électrode positive/électrolyte solide où le film d'électrolyte solide comprend deux couches; h) empilage et laminage du film électrode positive/électrolyte solide obtenu à l'étape (g), et du film d'électrode négative de l'étape (a), où les films d'électrode négative et positive sont chacun en contact avec une surface opposée du film d'électrolyte solide.
Un procédé de fabrication d'une cellule électrochimique telle qu'illustrée à la Figure 2(c) est réalisé de manière similaire à ce qui précède, comprenant en outre, une étape de préparation et d'ajout d'une couche inorganique entre le film d'électrolyte solide et le film d'électrode négative. Par exemple, la couche inorganique est préparée par pressage de poudres inorganiques pour former une pastille ou une feuille et par chauffage à une température de 500Ό - 1000Ό. La pastille ou feuil le de poudre inorganique a, de préférence, une épaisseur d'environ 10 μηι à environ 1000 μηι, de préférence entre 50 - 500 μηι. La couche inorganique peut aussi être déposée par pulvérisation cathodique.
EXEMPLES
Exemple 1 (Comparatif): a) Préparation du film d'électrode positive Un homo-polymère poly(oxyde d'éthylène) (PEO) (Poids moléculaire: 5,000,000) a été dissout dans un mélange d'acétonitrile et de toluène (rapport en volume de 8:2) à une concentration de 10 % par poids, pour obtenir une solution de PEO. De la poudre de soufre (3.00g), du noir Ketjen™ (1.00g), et la solution de PEO (4.49g) ont été mélangés à l'aide d'un mélangeur planétaire centrifuge (Thinky Mixer ARE-250™). Une portion de solvant additionnelle (acétonitrile + toluène à 8:2 de rapport de volume) a été ajouté au mélange afin d'atteindre une viscosité de -10,000 cP, appropriée pour l'enduction. Le mélange ainsi obtenu a été enduit sur une feuille d'aluminium enduite de carbone à l'aide d'un racloir (Doctor Blade) ayant un espacement de 100 μηι. b) Assemblage de la pile
Des piles boutons de type CR2032 ont été assemblées dans une boîte à gants remplie d'hélium à l'aide d'un séparateur Celgard 3501™ et une anode de feuille de lithium (Hoshen, 200 μηι). Ensuite, 0.12 ml de bis(trifluorométhanesulfonyl)imide de lithium (LiTFSI) 1 M dans un mélange d'éther diméthylique d'éthylene glycol (DME) et de 1 ,3- dioxolane (DOX) (rapport en volume de 1 : 1) a été injecté dans la pile. Les courbes de première charge (0.1 C) et décharge (0.1C) de l'Exemple 1 (comparatif) sont démontrées à la Figure 5.
Exemple 2: a) Préparation du matériau composite de soufre
Du soufre en poudre pré-séché (20g) et du LiFeP04 enrobé de carbone (C-LiFeP04, moyenne de 100 nm, 5g) ont été traités dans un mélangeur à poudre Nobilta™ (NOB- MINI™, Hosokawa Micron Corp.) à 5000 rpm pendant 5 minutes. L'image SEM du composite de soufre ainsi obtenu est présentée à la Figure 4. b) Préparation du film d'électrode positive
Un polymère réticulable de poly(oxyde d'éthylène) a été dissout dans un mélange d'acétonitrile et de toluène (8:2 de rapport en volume) à une concentration de 28.75 % par poids ("solution polymère" ci-après). Le composite de soufre (9.79 g) de l'étape (a), du noir Ketjen™ (4.88 g), la solution polymère (17.0 g), et des solvants (acétonitrile:toluène, 8:2 rapport de volume; 99.2 g) ont été broyés pendant 24 heures dans un récipient d'alumine rempli de billes d'alumine. Du LiCI0 (0.44 g) et du 2,2- diméthoxy-1 ,2-diphényléthan-1-one (0.06 g) ont ensuite été ajoutés et le mélange broyé de nouveau pendant 30 minutes. Le mélange obtenu a ensuite été enduit, à l'aide d'un racloir, sur une feuille d'aluminium enduite de carbone. Après séchage du solvant à 60 pendant 10 minutes, le film a été irradié pend ant 2 minutes avec une lumière UV sous atmosphère d'azote. c) Préparation du film d'électrolyte polymère solide
De la silice (4.46 g) a été ajoutée à la solution polymère (94.57 g) et a été broyée dans un broyeur à billes pendant 24 heures. Ensuite, du LiCI04 (5.05 g) et du 2,2-diméthoxy- 1 ,2-diphényléthan-1-one (0.12 g) ont été ajoutés à la solution et le mélange broyé de nouveau pendant 30 minutes. Afin de préparer un film, la solution a été coulée sur un substrat de polypropylène et, après élimination du solvant à 60 pendant 10 minutes, le film a été irradié pendant 2 minutes avec une lumière UV sous atmosphère d'azote. Après séchage, l'épaisseur du film a été mesurée comme étant de 25 μηι.
Comme méthode alternative, la solution a été coulée sur le film d'électrode positive et le polymère a été réticulé dans les mêmes conditions. d) Assemblage de la pile
La pile a été assemblée par empilage et laminage des 3 films: électrode positive, électrolyte polymère solide et feuille de lithium (40μηι) sous une pression de 30 psi à 80 . Après connexion des terminaux aux électrodes, la pile a été scellée dans un sac en plastique étanche à l'air. La performance de la pile de cet exemple est démontrée à la Figure 5.
Exemple 3: a) Préparation du film d'électrode positive
Le matériau composite de soufre de l'Exemple 2(a) (2.438 g), du noir de carbone (0.993 g, Super P® de Timcal Graphite et Carbon), la solution polymère de l'Exemple 2(b) (4.391 g), et des solvants (acétonitrile:toluène, 8:2 en rapport de volume; 26.08 g) ont été mélangés à l'aide d'un mélangeur planétaire centrifuge (Thinky Mixer ARE-250™). Du LiTFSI (0.298 g) et du 2,2-diméthoxy-1 ,2-diphényléthan-1-one (0.015 g) ont ensuite été ajoutés et le mélange a été mélangé pendant 4 minutes. Le mélange obtenu a été enduit, à l'aide d'un racloir, sur une feuille d'aluminium enduite de carbone. Après séchage du solvant à 60 pendant 10 minutes, le fi Im a été irradié pendant 2 minutes avec une lumière UV sous atmosphère d'azote. b) Préparation du film d'électrolyte polymère solide
Du Si02 (0.799 g) a été ajouté à la solution polymère (20.00 g) et a été broyé dans un broyeur à billes pendant 24 heures. Ensuite, du LiTFSI (1.205 g) et du 2,2-diméthoxy- 1 ,2-diphényléthan-1-one (0.022 g) ont été ajoutés à la solution et ont été mélangés à l'aide d'un mélangeur planétaire centrifuge pendant 2 min. Afin de préparer un film, la solution a été coulée sur un substrat de polypropylène et, après élimination du solvant à 60 pendant 10 minutes, film a été irradié pendant 2 minutes avec une lumière UV sous atmosphère d'azote. L'épaisseur du film a été mesurée comme étant de 25 μηι après séchage. Comme méthode alternative, la solution a été coulée sur le film d'électrode positive et le polymère a été réticulé dans les mêmes conditions. c) Assemblage de la pile
La pile a été assemblée par empilage et laminage des 3 films: électrode positive, électrolyte polymère solide et feuille de lithium (40μηι) à 80 . Après connexion des terminaux aux électrodes, la pile a été scellée dans un emballage étanche à l'air. Les courbes de troisième charge (0.1C) et décharge (0.1 C) sont démontrées à la Figure 6 en comparaison de celles de la pile de l'Exemple 1. Le comportement aux cycles consécutifs est présenté à la Figure 7.
Exemple 4: a) Préparation du film d'électrode positive
Le composite de soufre de l'Exemple 2(a) (2.529 g), du Super P® (1.01 g), Si02 (0.165 g), la solution polymère (3.969 g), et les solvants (acétonitrile:toluène, 8:2 en rapport de volume; 28.04 g) ont été mélangés à l'aide d'un mélangeur planétaire centrifuge. Du LiTFSI (0.244 g) et du 2,2-diméthoxy-1 ,2-diphényléthan-1-one (0.016 g) ont ensuite été ajoutés et le mélange a été mélangé pendant 4 minutes. Le mélange obtenu a été enduit, à l'aide d'un racloir, sur une feuille d'aluminium enduite de carbone. Après séchage du solvant à 60^ pendant 10 minutes, le fi Im a été irradié pendant 2 minutes avec une lumière UV sous atmosphère d'azote. b) Préparation du film d'électrolyte solide polymère Du Si02 (0.799 g) a été ajouté à la solution polymère (20.00 g) et broyé dans un broyeur à billes pendant 24 heures. Ensuite, du LiTFSI (1.205 g) et du 2,2-diméthoxy-1 ,2- diphényléthan-1-one (0.022 g) ont été ajoutés à la solution et ont été mélangés à l'aide d'un mélangeur planétaire centrifuge pendant 2 min. Afin de préparer un film, la solution a été coulée sur un substrat de polypropylène et, après élimination du solvant à 60^ pendant 10 minutes, le film a été irradié pendant 2 minutes avec une lumière UV sous atmosphère d'azote. L'épaisseur du film a été mesurée comme étant de 25 μηι après séchage.
Comme méthode alternative, la solution a été coulée sur le film d'électrode positive et le polymère a été réticulé dans les mêmes conditions. c) Préparation du film d'électrode négative
Une solution de lubrifiant est préparée par la dissolution du distéarate de PEO200 (6.6 g, poid moléculaire de l'unité PEO: approximativement 200) dans du toluène (100 mL) et l'ajout d'hexane (900 mL). Un feuille de lithium d'une épaisseur de 300 μηι est laminée entre deux rouleaux pour former un film de lithium d'une épaisseur de 30 μηι tout en injectant la solution de lubrifiant sur la feuille. d) Assemblage de la pile
La pile a été assemblée par empilage et laminage des 3 films: électrode positive, électrolyte polymère solide et feuille de lithium à 80 . Après connexion des terminaux aux électrodes, la pile a été scellée dans un emballage étanche à l'air. La performance de cycle est comparée à celle de l'Exemple 3 à la Figure 7.
Exemple 5:
Une cellule électrochimique est préparée comme à l'Exemple 4, dans lequel le matériau composite de soufre est préparé en utilisant du TiS2 au lieu du C-LiFeP04. Les autres conditions sont les mêmes que pour l'Exemple 4.
Exemple 6:
Une cellule électrochimique a été préparée comme à l'Exemple 4, dans lequel le matériau composite de soufre a été préparé en utilisant du Ti02 au lieu du C-LiFeP0 . Les autres conditions étaient les mêmes que pour l'Exemple 4. La capacité initiale de décharge à 0.1 C et son efficacité coulombique sont démontrées à la Figure 8. Exemple 7:
Une cellule électrochimique a été préparée comme à l'Exemple 4, dans lequel le matériau composite de soufre a été préparé en utilisant du MoS2 au lieu du C-LiFeP04. Les autres conditions étaient les mêmes que pour l'Exemple 4. La capacité initiale de décharge à 0.1 C et son efficacité coulombique sont démontrées à la Figure 8.
Exemple 8:
Une cellule électrochimique est préparée comme à l'Exemple 4, dans lequel le matériau composite de soufre est préparé en utilisant du Mo02 au lieu du C-LiFeP04. Les autres conditions sont les mêmes que pour l'Exemple 4. Exemple 9:
Une cellule électrochimique a été préparée comme à l'Exemple 4, dans lequel le matériau composite de soufre a été préparé en utilisant du LiV308 au lieu du C-LiFeP04. Les autres conditions étaient les mêmes que pour l'Exemple 4. La capacité initiale de décharge à 0.1 C et son efficacité coulombique sont démontrées à la Figure 8. Exemple 10:
Une cellule électrochimique a été préparée comme à l'Exemple 4, dans lequel le matériau composite de soufre a été préparé en utilisant du V205 au lieu du C-LiFeP0 . Les autres conditions étaient les mêmes que pour l'Exemple 4. La capacité initiale de décharge à 0.1 C et son efficacité coulombique sont démontrées à la Figure 8. Exemple 11 :
Une cellule électrochimique a été préparée comme à l'Exemple 4, dans lequel le matériau composite de soufre a été préparé en utilisant du Li Ti5012 au lieu du C- LiFeP0 . Les autres conditions étaient les mêmes que pour l'Exemple 4. La capacité initiale de décharge à 0.1 C et son efficacité coulombique sont démontrées à la Figure 8. Exemple 12:
Une cellule électrochimique a été préparée comme à l'Exemple 4, dans lequel le matériau composite de soufre a été préparé en utilisant du Si02 au lieu du C-LiFeP04. Les autres conditions étaient les mêmes que pour l'Exemple 4. La capacité initiale de décharge à 0.1 C et son efficacité coulombique sont démontrées à la Figure 8.
Exemple 13:
Une cellule électrochimique est préparée comme à l'Exemple 4, dans lequel le matériau composite de soufre est préparé en utilisant du Al203 au lieu du C-LiFeP04. Les autres conditions sont les mêmes que pour l'Exemple 4.
Exemple 14:
Une cellule électrochimique a été préparée comme à l'Exemple 4, dans lequel l'électrolyte solide a été préparé par empilage d'un film de verre OHARA (épaisseur de 150 μηι) et du film d'électrolyte polymère solide de l'Exemple 4 pour l'obtention d'une structure telle que montrée à la Figure 2(c). Les autres conditions étaient les mêmes que pour l'Exemple 4. La capacité de décharge à 0.02C et son efficacité coulombique sont démontrées à la Figure 8.
Exemple 15: Une cellule électrochimique est préparée comme à l'Exemple 4, dans lequel l'électrolyte solide est préparé en utilisant du Li6La3ZrTaOi2 au lieu du Si02. Les autres conditions sont les mêmes que pour l'Exemple 4.
Exemple 16:
Une cellule électrochimique est préparée comme à l'Exemple 4, dans lequel l'électrolyte solide est préparé en utilisant du Al203 au lieu du Si02. Les autres conditions sont les mêmes que pour l'Exemple 4.
Exemple 17:
Une cellule électrochimique a été préparée comme à l'Exemple 4, dans lequel l'électrolyte solide a été préparé en utilisant du Ti02 au lieu du Si02. Les autres conditions étaient les mêmes que pour l'Exemple 4. La capacité de décharge à 0.1 C et son efficacité coulombique sont démontrées à la Figure 8. Exemple 18 (Comparatif):
Une cellule électrochimique a été préparée comme à l'Exemple 4, dans lequel du soufre pur en poudre (Pristine) a été utilisé au lieu du matériau composite de soufre de l'Exemple 4. Les autres conditions étaient les mêmes que pour l'Exemple 4. La capacité de décharge à 0.1 C et son efficacité coulombique sont démontrées à la Figure 8.

Claims

REVENDICATIONS
1. Une cellule électrochimique comprenant au moins un composant multicouche qui comprend :
un film d'électrode positive comprenant du soufre en tant que matériau électrochimiquement actif;
un film d'électrode négative comprenant du lithium comme matériau électrochimiquement actif; et
un film d'électrolyte solide entre les films d'électrodes négative et positive, ledit film d'électrolyte solide comprenant au moins un sel de lithium et au moins un polymère.
2. Cellule électrochimique selon la revendication 1 , dans laquelle le film d'électrolyte solide comprend au moins une couche polymérique.
3. Cellule électrochimique selon la revendication 1 ou 2, dans laquelle le film d'électrolyte solide est un film conducteur d'ion et comprend, en outre, au moins un composé inorganique dans la couche polymérique ou dans une couche solide séparée et conductrice d'ions.
4. Cellule électrochimique selon la revendication 3, dans laquelle le film d'électrolyte solide comprend au moins sel de lithium dissout dans la couche solide conductrice d'ion.
5. Cellule électrochimique selon l'une quelconque des revendications 1 à 4, dans laquelle le polymère consiste en un copolymère séquencé composé d'au moins un segment de solvatation d'ions lithium et au moins un segment réticulable.
6. Cellule électrochimique selon la revendication 5, dans laquelle le segment de solvatation d'ions lithium est choisi parmi les homo- ou copolymères ayant des unités répétitives de Formule (I):
-(CH2-CH-0)x-
R (D dans lequel,
R est choisi parmi H, C C10 alkyl, ou -(CH2-0-RaRb);
Ra est (CH2-CH2-0)y;
Rb est choisi parmi H et un groupement Ci-Ci0 alkyl;
x est un nombre entier choisi dans l'intervalle de 10 à 200,000; et y est un nombre choisi dans l'intervalle de 0 à 10.
7. Cellule électrochimique selon la revendication 5 ou 6, dans laquelle le segment réticulable du polymère est un segment de polymère comprenant au moins un groupement fonctionnel réticulable de façon multidimensionnelle par irradiation ou traitement thermique.
8. Cellule électrochimique selon l'une quelconque des revendications 1 à 7, dans laquelle le sel de lithium est de formule Li+X", où X" est un anion ayant une charge délocalisée, de préférence un anion choisi parmi PF6 ", BF4 ", AsF6 ", CI04 ", CF3SO3-, (CF3S02)2N" (TFSI), et (C2F5S02)2N- (BETI).
9. Cellule électrochimique selon l'une quelconque des revendications 3 à 8, dans laquelle le composé inorganique du film d'électrolyte solide est choisi parmi Si02, Al203, Ti02, les céramiques ou verres conducteurs d'ions lithium, d'autres solides conducteurs d'ions lithium, et leurs combinaisons.
10. Cellule électrochimique selon la revendication 9, dans laquelle les céramiques ou verres conducteurs d'ions lithium sont choisi parmi NASICON, LISICON, thio- LISICON, Garnet, de forme cristalline ou amorphe, et leurs combinaisons.
1 1. Cellule électrochimique selon la revendication 9 ou 10, dans laquelle la céramique ou le verre conducteur d'ions lithium a une conductivité en ions lithium d'au moins 10"4 S/cm à 25 .
12. Cellule électrochimique selon l'une quelconque des revendications 3 à 11 , dans laquelle le film d'électrolyte solide a une épaisseur entre 10 et 200 μηι, entre 10 et 100 μηι, ou entre 20 et 50 μηι.
13. Cellule électrochimique selon l'une quelconque des revendications 1 à 12, dans laquelle le film d'électrode positive comprend en outre un liant polymère.
14. Cellule électrochimique selon la revendication 13, dans laquelle le liant polymère est un copolymère séquencé composé d'au moins un segment de solvatation d'ions lithium et au moins un segment réticulable.
15. Cellule électrochimique selon la revendication 14, dans laquelle le segment de solvatation d'ions lithium est choisi parmi les homo- ou copolymères ayant des unités répétitives de Formule (I) telle que définie à la revendication 4.
16. Cellule électrochimique selon l'une quelconque des revendications 13 à 15, dans laquelle le liant polymère est le même que le polymère du film d'électrolyte solide.
17. Cellule électrochimique selon l'une quelconque des revendications 13 à 15, dans laquelle le liant polymère est différent du polymère du film d'électrolyte solide.
18. Cellule électrochimique selon l'une quelconque des revendications 1 à 17, dans laquelle le film d'électrode positive comprend un matériau composite incluant du soufre encapsulé dans un matériau d'enrobage.
19. Cellule électrochimique selon la revendication 18, dans laquelle le matériau d'enrobage comprend un matériau inorganique choisi parmi:
- LiaM1 b(X04), dans lequel 0≤a≤ 2, 0< b≤ 1 ; M1 est choisi parmi Fe, Mn, Co, Ni, et Ti, ou leurs combinaisons, et X est choisi parmi P, Si et S; et
- LicM2 dZe, dans lequel 0≤ c≤ 4, 0 < d≤ 5, 0 < e≤ 12; M2 est choisi parmi Mo, V, Ti, Al, et Si; et Z est choisi parmi O, S, et Se.
20. Cellule électrochimique selon la revendication 19, dans laquelle le matériau inorganique est choisi parmi LiFeP0 , LiNiP0 , LiMnP0 , LiCoP0 , et LiFe1-xTixP0 , où 0 < x < 1.
21. Cellule électrochimique selon la revendication 20, dans laquelle le matériau inorganique est LiFeP0 .
22. Cellule électrochimique selon la revendication 19, dans laquelle le matériau inorganique est choisi parmi Ti02, TiS2, V205, LiV308, Li4Ti50i2, MoS2, Mo02, Si02, et Al203.
23. Cellule électrochimique selon l'une quelconque des revendications 19 à 22, dans laquelle le matériau inorganique est sous forme de particules, éventuellement enrobées de carbone.
24. Cellule électrochimique selon l'une quelconque des revendications 18 à 23, dans laquelle le matériau composite est préparé par mécanofusion.
25. Cellule électrochimique selon l'une quelconque des revendications 13 à 24, dans laquelle le film d'électrode positive comprend en outre un carbone conducteur.
Cellule électrochimique selon la revendication 25, dans laquelle le carbone conducteur est une poudre ou fibre de carbone choisi parmi le noir de carbone, le charbon activé, le graphite, le graphène, et leurs mélanges.
Cellule électrochimique selon la revendication 25 ou 26, dans laquelle le carbone c oonndduucctteeuurr ppoossssèèddee uunnee surface spécifique d'au moins 5 m2/g, au moins m2/g, ou au moins 500 m2/g
Cellule électrochimique selon l'une quelconque des revendications 1 à 27, dans laquelle le matériau électrochimiquement actif du film d'électrode négative comprend une feuille de lithium métallique.
Cellule électrochimique selon l'une quelconque des revendications 1 à 27, dans laquelle le matériau électrochimiquement actif du film d'électrode négative comprend un alliage de lithium métallique.
Cellule électrochimique selon l'une quelconque des revendications 1 à 29, dans laquelle une surface du matériau électrochimiquement actif du film d'électrode négative inclut en outre une couche de passivation formée in situ.
31. Cellule électrochimique selon l'une quelconque des revendications 1 à 30, dans laquelle le film d'électrode négative comprend en outre une couche protectrice.
32. Cellule électrochimique selon la revendication 29, dans laquelle l'alliage de lithium métallique comprend au moins 90% en poids de lithium.
33. Cellule électrochimique selon l'une quelconque des revendications 24 à 32, dans laquelle le matériau électrochimiquement actif du film d'électrode négative est un film ayant une épaisseur d'environ 5 μηι έ environ 200 μηι.
34. Cellule électrochimique selon l'une quelconque des revendications 24 à 33, dans laquelle la cellule électrochimique comprend en outre une couche isolante adjacente au film d'électrode négative.
35. Cellule électrochimique selon l'une quelconque des revendications 1 à 34, dans laquelle le film d'électrode positive comprend en outre un collecteur de courant agissant aussi comme support pour le matériau électrochimiquement actif du film d'électrode positive, ledit matériau électrochimiquement actif étant adjacent au film d'électrolyte solide.
36. Cellule électrochimique selon la revendication 35, dans laquelle le collecteur de courant comprend une feuille d'aluminium.
37. Cellule électrochimique selon la revendication 36, dans laquelle la feuille d'aluminium a une épaisseur entre environ 10 μηι et environ 30 μηι.
38. Cellule électrochimique selon la revendication 36 ou 37, dans laquelle la feuille d'aluminium inclut en outre une couche de carbone.
39. Une méthode de fabrication d'une cellule électrochimique telle que définie dans l'une quelconque des revendications 1 à 38, comprenant les étapes suivantes : a) procuration du film d'électrode positive, du film d'électrolyte solide, et du film d'électrode négative; et
b) empilage et laminage ensemble du film d'électrode positive, d'électrolyte, et d'électrode négative entre au moins deux rouleaux.
40. Méthode selon la revendication 39, dans laquelle l'étape de procuration du film d'électrode négative comprend une étape de laminage d'une feuille de lithium entre au moins deux rouleaux et, éventuellement, enrobage de la surface dudit film d'une couche de protection.
41. Méthode selon la revendication 39 ou 40, dans laquelle l'étape de procuration du flim d'électrode positive comprend les étapes de mélange du matériau électrochimiquement actif de l'électrode positive avec un carbone conducteur, des précurseurs de polymères, éventuellement des sel(s) de lithium, composé(s) inorganique(s) et/ou solvant(s), épandage du mélange obtenu sur un collecteur de courant, évaporation du solvant (si présent) et polymérisation pour former le film d'électrode positive.
42. Méthode selon l'une quelconque des revendications 39 à 41 , dans laquelle l'étape de procuration du film d'électrolyte comprend les étapes de mélange de précurseurs de polymère, de sel(s) de lithium, éventuellement de composé(s) inorganique(s) et/ou de solvant(s), afin d'ajuster la viscosité, coulage du mélange ainsi obtenu sur un substrat, évaporation du solvant (si présent) et polymérisation pour former le film d'électrolyte solide.
43. Méthode selon l'une quelconque des revendications 39 à 41 , dans laquelle l'étape de procuration du film d'électrolyte comprend les étapes de (i) mélange de précurseurs de polymère, de sel(s) de lithium, de composé(s) inorganique(s), et éventuellement de solvant(s), afin d'ajuster la viscosité, coulage du mélange ainsi obtenu sur un substrat, évaporation du solvant (si présent) et polymérisation pour former le film d'électrolyte solide, obtenant ainsi un film polymère-composé inorganique; et (ii) mélange de précurseurs de polymère, de sel(s) de lithium, et éventuellement de solvant(s), afin d'ajuster la viscosité, coulage du mélange ainsi obtenu sur le film polymère-composé inorganique, évaporation du solvant (si nécessaire) et polymérisation pour former le film d'électrolyte solide.
44. Méthode selon l'une quelconque des revendications 39 à 43, dans laquelle l'étape (b) comprend le laminage du film d'électrode positive avec le film d'électrolyte solide et de laminage subséquent du film d'électrode négative sur celui-ci.
45. Méthode selon l'une quelconque des revendications 41 à 44, dans laquelle la polymérisation est effectuée par irradiation UV ou par traitement thermique.
46. Cellule électrochimique selon l'une quelconque des revendications 1 to 38 ou obtenue par une méthode selon l'une quelconque des revendications 39 à 45, ladite cellule électrochimique comprenant un composant multicouche roulé ou plié.
47. Cellule électrochimique selon l'une quelconque des revendications 1 à 38 ou obtenue par une méthode selon l'une quelconque des revendications 39 to 45, ladite cellule électrochimique comprenant deux composants multicouches ou plus empilés.
48. Un film d'électrode positive comprenant un matériau contenant du soufre, un liant polymère et un carbone conducteur.
49. Le film d'électrode positive selon la revendication 48, dans lequel le liant polymère est tel que défini dans l'une quelconque des revendications 5 à 7.
50. Le film d'électrode positive selon la revendication 48 ou 49, comprenant en outre au moins un sel de lithium.
51. Le film d'électrode positive selon l'une quelconque des revendications 48 à 50, comprenant en outre au moins un composé inorganique.
52. Le film d'électrode positive selon la revendication 48, comprenant en outre les éléments de film d'électrode positive tels que définis dans l'une quelconque des revendications 13 à 27.
53. Un élément électrolyte-électrode positive préfabriqué comprenant:
un film d'électrode positive tel que défini dans l'une quelconque des revendications 48 à 52; et un film d'électrolyte solide comprenant les éléments du film d'électrolyte solide tel que défini dans l'une quelconque des revendications 3 à 12; dans lequel les films d'électrode positive et d'électrolyte solide sont empilés ensemble et laminés.
54. Une méthode pour la préparation d'un élément électrolyte-électrode positive préfabriqué tel que défini à la revendication 53, comprenant les étapes de :
a) mélange de soufre avec du carbone conducteur, des précurseurs de polymère, et éventuellement des sel(s) de lithium, composé(s) inorganique(s), et/ou solvant(s);
b) épandage du mélange obtenu à l'étape (a) sur un collecteur de courant, évaporation du solvant (si présent) et polymérisation pour former film d'électrode positive;
c) mélange de précurseurs de polymère, sel(s) de lithium et de composé(s) inorganique(s) dans un(des) solvant(s) et épandage sur un substrat pour former un précurseur de film d'électrolyte;
d) irradiation ou chauffage du précurseur de film d'électrolyte de l'étape (c) pour former film d'électrolyte solide; et
e) empilage et laminage du film d'électrode positive de l'étape (b) avec le film d'électrolyte solide de l'étape (d) pour produire l'élément électrolyte- électrode positive préfabriqué.
55. Une méthode pour la préparation d'un élément électrolyte-électrode positive préfabriqué tel que défini à la revendication 53, comprenant les étapes de: a) mélange de soufre avec du carbone conducteur, des précurseurs de polymère, et éventuellement des sel(s) de lithium, composé(s) inorganique(s), et/ou solvant(s);
b) épandage du mélange obtenu à l'étape (a) sur un collecteur de courant et évaporation du solvant (si présent) pour former précurseur de film d'électrode positive;
c) mélange de précurseurs de polymère, sel(s) de lithium, composé(s) inorganique(s), et éventuellement de solvant(s) et épandage sur une surface du précurseur de film d'électrode positive de l'étape (b) pour former un précurseur de film d'électrolyte/film d'électrode positive; et d) irradiation ou chauffage du précurseur de film d'électrolyte/film d'électrode positive obtenu à l'étape (c) pour former l'élément électrolyte-électrode positive préfabriqué.
Un système comprenant une cellule électrochimique telle que définie dans l'une quelconque des revendications 1 à 38, un film d'électrode positive tel que défini dans l'une quelconque des revendications 48 à 52, ou un élément électrolyte- électrode positive préfabriqué tel que défini dans la revendication 53.
Utilisation d'un élément électrolyte-électrode positive préfabriqué tel que défini dans la revendication 53, ou d'un film d'électrode positive tel que défini dans l'une quelconque des revendications 48 to 52 dans la fabrication d'une cellule électrochimique.
Utilisation d'une cellule électrochimique telle que définie dans l'une quelconque des revendications 1 à 38 ou obtenue par une méthode telle que définie dans l'une quelconque des revendications 39 à 45, dans des systèmes demandant des batteries rechargeables de haute énergie, tels que dans des véhicules électriques et ses appareils d'informatique ubiquitaire.
PCT/CA2014/050584 2013-06-21 2014-06-20 Cellules électrochimiques lithium-soufre d'état tout solide et leurs méthodes de fabrication WO2014201568A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14814630.1A EP3011615B1 (fr) 2013-06-21 2014-06-20 Cellules électrochimiques lithium-soufre d'état tout solide et leurs méthodes de fabrication
CN201480034816.4A CN105409032B (zh) 2013-06-21 2014-06-20 全固态锂-硫电化学电池及其生产方法
JP2016520207A JP6530385B2 (ja) 2013-06-21 2014-06-20 全固体リチウム−硫黄電気化学セルおよびその生産方法
CA2911628A CA2911628C (fr) 2013-06-21 2014-06-20 Cellules electrochimiques lithium-soufre d'etat tout solide et leurs methodes de fabrication
ES14814630T ES2802926T3 (es) 2013-06-21 2014-06-20 Celdas electroquímicas de litio-azufre de estado totalmente sólido y sus métodos de fabricación
KR1020167001128A KR102224361B1 (ko) 2013-06-21 2014-06-20 모두-고체-상태의 리튬-황 전기화학 셀 및 이의 제조방법
US14/899,788 US10320029B2 (en) 2013-06-21 2014-06-20 All-solid-state lithium-sulfur polymer electrochemical cells and production methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2820635A CA2820635A1 (fr) 2013-06-21 2013-06-21 Cellules electrochimiques polymere li-s a l'etat solide et leurs procedes de fabrication
CA2,820,635 2013-06-21

Publications (1)

Publication Number Publication Date
WO2014201568A1 true WO2014201568A1 (fr) 2014-12-24

Family

ID=52103752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2014/050584 WO2014201568A1 (fr) 2013-06-21 2014-06-20 Cellules électrochimiques lithium-soufre d'état tout solide et leurs méthodes de fabrication

Country Status (8)

Country Link
US (1) US10320029B2 (fr)
EP (1) EP3011615B1 (fr)
JP (1) JP6530385B2 (fr)
KR (1) KR102224361B1 (fr)
CN (1) CN105409032B (fr)
CA (2) CA2820635A1 (fr)
ES (1) ES2802926T3 (fr)
WO (1) WO2014201568A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600266A (zh) * 2015-01-09 2015-05-06 上海大学 一种碳纤维布负载硫复合材料的制备方法
WO2017120133A1 (fr) * 2016-01-04 2017-07-13 Nanotek Instruments, Inc. Électrolyte à l'état solide pour batterie secondaire au lithium
CN107069086A (zh) * 2015-09-16 2017-08-18 株式会社东芝 二次电池、复合电解质、电池包以及车辆
US20190036157A1 (en) * 2017-07-25 2019-01-31 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. All-solid-state battery, hybrid-structured solid electrolyte membrane and manufacturing methods thereof
WO2020102906A1 (fr) * 2018-11-21 2020-05-28 HYDRO-QUéBEC Additifs comprenant des ions métalliques alcalins ou alcalino-terreux et leur utilisation dans les cellules électrochimiques
WO2020102907A1 (fr) * 2018-11-21 2020-05-28 HYDRO-QUéBEC Compositions polymériques comprenant au moins deux sels de lithium et leur utilisation dans des cellules électrochimiques
US10680287B2 (en) 2016-12-12 2020-06-09 Global Graphene Group, Inc. Hybrid solid state electrolyte for lithium sulfur secondary battery
CN112563563A (zh) * 2020-12-17 2021-03-26 广东微电新能源有限公司 复合固态电解质、固态电池及其制备方法
US11031623B2 (en) 2018-04-27 2021-06-08 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery having cathod active material layer and anode active material layer generated via self-forming reaction of solid electrolyte layer
FR3111475A1 (fr) 2020-06-16 2021-12-17 Saft Protection des electrolytes solides
WO2021255111A1 (fr) 2020-06-16 2021-12-23 Saft Electrode traitee en surface, protection des electrolytes solides, les elements, modules et batteries la comprenant
US11362335B2 (en) 2015-02-13 2022-06-14 The Regents Of The University Of California Coated sulfur particle electrode and method

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6173357B2 (ja) * 2012-03-01 2017-08-02 ジョンソン・アイピー・ホールディング・エルエルシー 高容量固体複合体カソード、固体複合体セパレータ、固体リチウム二次電池及びそれらの製造方法
US9793525B2 (en) 2012-10-09 2017-10-17 Johnson Battery Technologies, Inc. Solid-state battery electrodes
CN107848247B (zh) 2015-05-20 2021-06-01 锡安能量公司 电极的保护层
CN108604665B (zh) 2015-12-21 2022-04-22 约翰逊Ip控股有限公司 固态电池、隔板、电极和制造方法
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
JP7049269B2 (ja) * 2016-05-20 2022-04-06 シオン・パワー・コーポレーション 電極用保護層および電気化学電池
CN106159320A (zh) * 2016-08-23 2016-11-23 洁能电投(北京)新能源科技有限公司 一种改性lagp固态电解质材料及其制备方法
KR101905992B1 (ko) * 2016-10-28 2018-10-08 현대자동차주식회사 음극 계면이 안정화된 전고체 전지
CN106374095B (zh) * 2016-11-08 2019-02-22 太原理工大学 一种作为锂硫电池正极材料的复合材料的制备方法
EP3322008A1 (fr) * 2016-11-11 2018-05-16 Oxis Energy Limited Électrode pour batterie d'accumulateur au soufre-lithium
CN106784966B (zh) * 2016-12-07 2019-10-01 中国科学院化学研究所 一类低界面电阻、高机械强度全固态电池的制备方法及应用
CN106785010A (zh) * 2016-12-13 2017-05-31 燕山大学 一种与Na3SbS4交联的聚合物钠快离子导体及其制备方法
DE102017201233A1 (de) * 2017-01-26 2018-07-26 Robert Bosch Gmbh Verfahren zur Herstellung eines Elektrodenlaminats für eine Festkörperbatterie
US11631839B2 (en) 2017-03-22 2023-04-18 Lg Energy Solution, Ltd. Electrode for solid state battery and method for manufacturing the same
CN110679029A (zh) * 2017-04-03 2020-01-10 德克萨斯大学系统董事会 具有高电压阴极的电化学电池
JP2020523733A (ja) * 2017-06-02 2020-08-06 ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. 形状適合性のアルカリ金属−硫黄電池
DE112018000297T5 (de) 2017-06-09 2019-10-10 Robert Bosch Gmbh Batteriezelle mit Anodenschutzschicht
JP7369988B2 (ja) * 2017-06-14 2023-10-27 パナソニックIpマネジメント株式会社 硫化物固体電解質材料を用いた電池
CN107492681A (zh) * 2017-08-09 2017-12-19 上海纳晓能源科技有限公司 固体电解质膜及其制备方法
DE102017216021A1 (de) * 2017-09-12 2019-03-14 Robert Bosch Gmbh Anode mit Polymer-Keramikpartikel-Zwischenschicht
KR102268180B1 (ko) * 2017-11-08 2021-06-22 주식회사 엘지화학 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
CN109873163B (zh) * 2017-12-05 2021-07-06 宁德时代新能源科技股份有限公司 一种集流体,其极片和电池及应用
CN108598560B (zh) * 2018-02-27 2020-02-21 北京匠芯电池科技有限公司 复合固体电解质及其制备方法和应用
CN108767311B (zh) * 2018-04-28 2021-06-11 浙江锋锂新能源科技有限公司 一种固态电池的复合电解质膜的制备方法
CN108695547B (zh) * 2018-04-28 2021-03-30 浙江锋锂新能源科技有限公司 一种有机-无机复合电解质膜及具有该电解质膜的电池
CN110828883B (zh) * 2018-08-08 2021-09-03 比亚迪股份有限公司 一种锂离子电池及其制备方法和电动车辆
JP2020030924A (ja) * 2018-08-22 2020-02-27 ユースエンジニアリング株式会社 リチウムイオン電池及びリチウムイオン電池の製造方法
KR20210043689A (ko) * 2018-08-23 2021-04-21 바스프 에스이 고체 리튬 이온 전도성 물질 및 이의 제조 방법
CN110858660B (zh) * 2018-08-24 2021-06-18 比亚迪股份有限公司 锂离子电池及其制备方法和电动车辆
DE102018216315A1 (de) * 2018-09-25 2020-03-26 Robert Bosch Gmbh Verfahren zur Herstellung eine Elektrodeneinheit für eine Batteriezelle und Batteriezelle
KR102150999B1 (ko) * 2018-12-20 2020-09-02 광주과학기술원 인시츄(in-situ) 중합된 전도성 고분자층을 함유하는 리튬-칼코겐 이차전지의 제조방법 및 이로부터 제조된 리튬-칼코겐 이차전지
CN109761265B (zh) * 2019-01-23 2020-08-14 宁德新能源科技有限公司 固态电解质及其制备方法与包含其的电化学装置及电子装置
CN109830670B (zh) * 2019-03-04 2021-11-12 郑州大学 一种锂离子电池负极材料用中空三明治型SiO2/C/MoS2杂化微球
CN109768318A (zh) * 2019-03-12 2019-05-17 浙江锋锂新能源科技有限公司 一种混合固液电解质锂蓄电池
US20220223900A1 (en) * 2019-05-03 2022-07-14 HYDRO-QUéBEC Multilayer electrode-electrolyte components and their production methods
CN110556574A (zh) * 2019-08-12 2019-12-10 北京协同创新研究院 一种多层固态电解质及其制备方法、固态电池和电子设备
CN110492169B (zh) * 2019-08-15 2022-12-23 中山大学 一种焊接式一体化全固态锂硫电池及其制备方法
KR102281451B1 (ko) 2019-10-16 2021-07-27 삼성전기주식회사 전고체 전지
TWI719683B (zh) * 2019-10-22 2021-02-21 輝能科技股份有限公司 陶瓷隔離層
CN111193029A (zh) * 2020-01-10 2020-05-22 西安建筑科技大学 一种双核壳结构的s@v2o5@go锂硫电池正极材料及其制备
CN112151857B (zh) * 2020-09-03 2021-11-19 浙江锋锂新能源科技有限公司 一种高稳定性多层固态电解质及其制备方法和固态电池
CN112563575B (zh) * 2020-12-08 2022-08-05 上海电力大学 一种以过渡态三氧化钼为填料的复合固态电解质、制备方法及应用
US11830977B2 (en) 2021-02-25 2023-11-28 International Business Machines Corporation Method to reduce interfacial resistance of hybrid solid-state electrolytes for secondary energy storage devices
JP2023006994A (ja) 2021-07-01 2023-01-18 トヨタ自動車株式会社 全固体電池
JP2023006997A (ja) 2021-07-01 2023-01-18 トヨタ自動車株式会社 全固体電池
WO2023234717A1 (fr) * 2022-05-31 2023-12-07 주식회사 엘지에너지솔루션 Procédé de production d'électrolyte solide composite
WO2023234716A1 (fr) * 2022-05-31 2023-12-07 주식회사 엘지에너지솔루션 Procédé de fabrication d'électrolyte solide composite
US20240039037A1 (en) * 2022-07-28 2024-02-01 Sk On Co., Ltd. Negative electrode-glass electrolyte layer laminate, all-solid-state secondary battery including the same, and method of manufacturing the same
CN117059886A (zh) * 2023-10-12 2023-11-14 有研(广东)新材料技术研究院 一种增强固态电解质膜及其干法制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073005A1 (en) * 2001-10-15 2003-04-17 Samsung Sdi Co., Ltd. Electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
CA2514783A1 (fr) * 2003-01-30 2004-08-12 Hydro-Quebec Generateur electrochimique rechargeable
US20040191617A1 (en) * 2002-10-15 2004-09-30 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US7745048B2 (en) * 2003-10-23 2010-06-29 Samsung Sdi Co., Ltd. Rechargeable lithium polymer battery
US20100231168A1 (en) * 2005-09-26 2010-09-16 Vladimir Kolosnitsyn Lithium-sulphur battery with high specific energy
US20120094189A1 (en) * 2009-04-08 2012-04-19 IUCF-HYU (Industry-University Cooperation Foundation Hanyang Univeristy) Lithium-sulfur battery
US20120207994A1 (en) * 2011-02-11 2012-08-16 Donghai Wang Carbon-metal oxide-sulfur cathodes for high-performance lithium-sulfur batteries
US20130059193A1 (en) * 2011-09-07 2013-03-07 Sion Power Corporation Electrochemical cell including nitrogen-containing compound, battery including the cell, and methods of making and using same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0157818B1 (fr) 1983-09-20 1989-02-08 Societe Nationale Elf Aquitaine Nouveaux derives de sulfures de polycarbone, leur preparation et leurs applications, notamment en electrochimie
US5528920A (en) 1993-07-02 1996-06-25 Hydro-Quebec Process for laminating a thin film of lihium by controlled detachment
US6019801A (en) 1994-07-12 2000-02-01 Hydro-Quebec Additives for lubricating agents used in the lamination of lithium sheets into thin films
US5910382A (en) 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
US5919587A (en) * 1996-05-22 1999-07-06 Moltech Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
US7574400B1 (en) * 1999-09-10 2009-08-11 Jpmorgan Chase Bank, N.A. Financing information processing system and method
KR20030092662A (ko) 2002-05-30 2003-12-06 대한민국 (경상대학교 총장) 4단계 방전 평탄 구간을 가지는 리튬/유황 전지
KR100484642B1 (ko) * 2002-09-23 2005-04-20 삼성에스디아이 주식회사 리튬-설퍼 전지용 양극 활물질 및 그 제조방법
WO2004036669A2 (fr) 2002-10-15 2004-04-29 Polyplus Battery Company Composites conducteurs d'ions servant a proteger des anodes metalliques actives
CA2418257A1 (fr) * 2003-01-30 2004-07-30 Hydro-Quebec Composition electrolytique et electrolyte, generateurs les contenant et operant sans formation de dendrite lors du cyclage
US7630945B2 (en) * 2005-05-12 2009-12-08 Yahoo! Inc. Building support vector machines with reduced classifier complexity
CA2552282A1 (fr) * 2006-07-18 2008-01-18 Hydro Quebec Materiau multi-couches a base de lithium vif, procedes de preparation et applications dans les generateurs electrochimiques
JP2009081106A (ja) * 2007-09-27 2009-04-16 Central Res Inst Of Electric Power Ind 非水電解質二次電池
WO2009157524A1 (fr) * 2008-06-26 2009-12-30 Agcセイミケミカル株式会社 Oxyde complexe contenant du lithium modifié en surface pour un matériau actif d'électrode positive de batterie secondaire lithium-ion et son procédé de fabrication
CN102199846A (zh) * 2011-04-29 2011-09-28 华南师范大学 一种多孔聚合物电解质支撑膜材料及其制备方法和应用
US8828575B2 (en) * 2011-11-15 2014-09-09 PolyPlus Batter Company Aqueous electrolyte lithium sulfur batteries
CN102496736A (zh) * 2011-12-27 2012-06-13 瑞声新能源发展(常州)有限公司 锂-硫二次电池用全固态聚合物电解质及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073005A1 (en) * 2001-10-15 2003-04-17 Samsung Sdi Co., Ltd. Electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
US20040191617A1 (en) * 2002-10-15 2004-09-30 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
CA2514783A1 (fr) * 2003-01-30 2004-08-12 Hydro-Quebec Generateur electrochimique rechargeable
US7745048B2 (en) * 2003-10-23 2010-06-29 Samsung Sdi Co., Ltd. Rechargeable lithium polymer battery
US20100231168A1 (en) * 2005-09-26 2010-09-16 Vladimir Kolosnitsyn Lithium-sulphur battery with high specific energy
US20120094189A1 (en) * 2009-04-08 2012-04-19 IUCF-HYU (Industry-University Cooperation Foundation Hanyang Univeristy) Lithium-sulfur battery
US20120207994A1 (en) * 2011-02-11 2012-08-16 Donghai Wang Carbon-metal oxide-sulfur cathodes for high-performance lithium-sulfur batteries
US20130059193A1 (en) * 2011-09-07 2013-03-07 Sion Power Corporation Electrochemical cell including nitrogen-containing compound, battery including the cell, and methods of making and using same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KIM ET AL.: "Facile dry synthesis of sulfur-LiFeP04 core-shell composite for the scalable fabrication of lithium/sulfur batteries", ELECTROCHEMISTRY COMMUNICATIONS, vol. 32, July 2013 (2013-07-01), pages 35 - 38, XP028531640 *
See also references of EP3011615A4 *
YANG ET AL.: "High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries", J. AM. CHEM. SOC., vol. 134, no. 37, 2012, pages 15387 - 15394, XP055216686 *
YANG ET AL.: "Improving the Performance of Lithium-Sulfur Batteries by Conductive Polymer Coating", ACS NANO, vol. 5, no. 11, 2011, pages 9187 - 9193, XP055187449 *
ZHAO ET AL.: "Polymer electrolytes for lithium/sulfur batteries Review", MEMBRANES, 2012, pages 553 - 564 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600266A (zh) * 2015-01-09 2015-05-06 上海大学 一种碳纤维布负载硫复合材料的制备方法
US11362335B2 (en) 2015-02-13 2022-06-14 The Regents Of The University Of California Coated sulfur particle electrode and method
CN107069086A (zh) * 2015-09-16 2017-08-18 株式会社东芝 二次电池、复合电解质、电池包以及车辆
EP3367490A1 (fr) * 2015-09-16 2018-08-29 Kabushiki Kaisha Toshiba Batterie secondaire, bloc-batterie et véhicule
WO2017120133A1 (fr) * 2016-01-04 2017-07-13 Nanotek Instruments, Inc. Électrolyte à l'état solide pour batterie secondaire au lithium
US10497968B2 (en) 2016-01-04 2019-12-03 Global Graphene Group, Inc. Solid state electrolyte for lithium secondary battery
US11374254B2 (en) 2016-01-04 2022-06-28 Global Graphene Group, Inc. Solid state electrolyte for lithium secondary battery
US10680287B2 (en) 2016-12-12 2020-06-09 Global Graphene Group, Inc. Hybrid solid state electrolyte for lithium sulfur secondary battery
US20190036157A1 (en) * 2017-07-25 2019-01-31 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. All-solid-state battery, hybrid-structured solid electrolyte membrane and manufacturing methods thereof
US11031623B2 (en) 2018-04-27 2021-06-08 Toyota Jidosha Kabushiki Kaisha Fluoride ion battery having cathod active material layer and anode active material layer generated via self-forming reaction of solid electrolyte layer
WO2020102906A1 (fr) * 2018-11-21 2020-05-28 HYDRO-QUéBEC Additifs comprenant des ions métalliques alcalins ou alcalino-terreux et leur utilisation dans les cellules électrochimiques
WO2020102907A1 (fr) * 2018-11-21 2020-05-28 HYDRO-QUéBEC Compositions polymériques comprenant au moins deux sels de lithium et leur utilisation dans des cellules électrochimiques
FR3111475A1 (fr) 2020-06-16 2021-12-17 Saft Protection des electrolytes solides
WO2021255111A1 (fr) 2020-06-16 2021-12-23 Saft Electrode traitee en surface, protection des electrolytes solides, les elements, modules et batteries la comprenant
CN112563563A (zh) * 2020-12-17 2021-03-26 广东微电新能源有限公司 复合固态电解质、固态电池及其制备方法

Also Published As

Publication number Publication date
EP3011615B1 (fr) 2020-04-01
EP3011615A1 (fr) 2016-04-27
KR20160021831A (ko) 2016-02-26
CA2911628C (fr) 2022-08-02
CN105409032A (zh) 2016-03-16
JP2016524803A (ja) 2016-08-18
US20160149261A1 (en) 2016-05-26
US10320029B2 (en) 2019-06-11
CN105409032B (zh) 2019-10-18
KR102224361B1 (ko) 2021-03-09
ES2802926T3 (es) 2021-01-21
EP3011615A4 (fr) 2017-02-22
CA2820635A1 (fr) 2014-12-21
JP6530385B2 (ja) 2019-06-12
CA2911628A1 (fr) 2014-12-24

Similar Documents

Publication Publication Date Title
EP3011615B1 (fr) Cellules électrochimiques lithium-soufre d&#39;état tout solide et leurs méthodes de fabrication
CA2914039C (fr) Anode pour batteries a haute energie
EP2729978B1 (fr) Accumulateur lithium/soufre
WO2020102907A1 (fr) Compositions polymériques comprenant au moins deux sels de lithium et leur utilisation dans des cellules électrochimiques
EP3042410B1 (fr) Additifs pour améliorer la conductivité ionique des électrodes de batteries lithium-ion
CA2967918A1 (fr) Batterie lithium organique
WO2021159209A1 (fr) Électrodes à surface modifiée, procédés de préparation, et utilisations dans des cellules électrochimiques
EP2583333B1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire specifique
WO2021237335A1 (fr) Cellules électrochimiques à l&#39;état solide, procédés pour leur préparation et leurs utilisations
WO2020102906A1 (fr) Additifs comprenant des ions métalliques alcalins ou alcalino-terreux et leur utilisation dans les cellules électrochimiques
WO2020206552A1 (fr) Électrolytes céramiques, leurs procédés de préparation et les cellules électrochimiques les comprenant
WO2018014137A1 (fr) Éléments électrode-séparateur flexibles et procédés pour leur préparation
CA3171199A1 (fr) Materiaux d&#39;enrobage a base d&#39;hydrocarbures aliphatiques insatures et leurs utilisations dans des applications electrochimiques
KR102477175B1 (ko) 산화환원 중심을 갖는 유기 화합물과 그래핀 및 셀룰로오스 섬유를 포함하는 다공성 나노 복합체 전극, 이의 제조 방법 및 이를 포함하는 이차 전지
WO2018141062A1 (fr) Matériau d&#39;électrode, électrode et batterie tout solide comprenant un oxyde complexe de structure olivine
WO2022251969A1 (fr) Liants d&#39;électrode comprenant un mélange d&#39;un polymère basé sur le polybutadiène et d&#39;un polymère basé sur le polynorbornène, électrodes les comprenant et leur utilisation en électrochimie
WO2023133640A1 (fr) Matériau d&#39;électrode avec couche organique, procédés de préparation, et utilisations électrochimiques

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034816.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2911628

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14899788

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016520207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167001128

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014814630

Country of ref document: EP