WO2014199851A1 - 半導体発光装置 - Google Patents

半導体発光装置 Download PDF

Info

Publication number
WO2014199851A1
WO2014199851A1 PCT/JP2014/064575 JP2014064575W WO2014199851A1 WO 2014199851 A1 WO2014199851 A1 WO 2014199851A1 JP 2014064575 W JP2014064575 W JP 2014064575W WO 2014199851 A1 WO2014199851 A1 WO 2014199851A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
semiconductor light
emitting device
semiconductor
Prior art date
Application number
PCT/JP2014/064575
Other languages
English (en)
French (fr)
Inventor
布士人 山口
奈央 白倉
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to CN201480033276.8A priority Critical patent/CN105340088B/zh
Priority to KR1020157032282A priority patent/KR20150143648A/ko
Priority to JP2015522713A priority patent/JP5935031B2/ja
Priority to EP14811003.4A priority patent/EP3010048B1/en
Priority to US14/897,159 priority patent/US9653657B2/en
Priority to BR112015030722A priority patent/BR112015030722A2/pt
Publication of WO2014199851A1 publication Critical patent/WO2014199851A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures

Definitions

  • the present invention relates to a semiconductor light emitting device including a semiconductor light emitting element and a wavelength conversion member.
  • LEDs Light emitting diodes
  • LEDs which are semiconductor light emitting devices using semiconductor layers, have characteristics such as small size, high power efficiency, and fast on / off response compared to conventional light emitting devices such as conventional fluorescent lamps and incandescent bulbs. It has many advantages such as being strong against vibration and having a long device life because it is all made of solid.
  • the LED has a single emission center wavelength, in order to use it as various light sources, the use of the single wavelength can be limited. Therefore, white light is required as the emission light source.
  • Patent Document 1 a blue LED and a fluorescent material that absorbs the emitted light and emits yellow fluorescence are combined, and yellow light and blue light that has not been absorbed are mixed to generate white light.
  • An invention relating to a semiconductor light emitting device is disclosed.
  • Patent Document 2 discloses an invention relating to a white LED lamp having a light-emitting diode chip that emits primary light of UV light to violet light and a transparent resin layer in which a fluorescent material layer is dispersed.
  • the fluorescent material powder in the fluorescent material layer emits light (secondary light) such as blue light, green light, yellow light and red light, At this time, the color of the light obtained by mixing the secondary lights of the respective colors is determined to be white.
  • Patent Document 3 discloses an invention related to a semiconductor light emitting element which is one configuration of a semiconductor light emitting device.
  • a micro-order concavo-convex pattern is provided on the surface of a substrate constituting an LED, and the light guiding direction in the light emitting layer is changed to improve the light extraction efficiency.
  • a white light emitting device having high light extraction efficiency can be obtained by forming a fluorescent material containing YAG on the surface of a semiconductor light emitting element by mixing it with a resin. (Refer to [0077] column of Patent Document 3).
  • Patent Document 4 discloses an invention relating to a light-emitting device having high light extraction efficiency by forming a concavo-convex structure on a light-emitting exposed surface of a semiconductor light-emitting element and coating it with a coating layer containing a phosphor.
  • Patent Document 5 discloses a semiconductor light emitting device in which a light extraction layer made of a resin material having a concavo-convex structure formed on a surface of a laminated semiconductor layer including a light emitting layer is provided.
  • Patent Document 6 discloses an invention relating to a semiconductor light emitting element substrate and a semiconductor light emitting element in which a nano-sized pattern is provided on a substrate and a micro-period long period is provided in the pattern. According to Patent Document 6, it is possible to suppress crystal defect dislocations in epitaxial growth during LED manufacturing, increase the internal quantum efficiency of the LED, and increase the light extraction efficiency by providing a micro-period long period. The external quantum efficiency defined by the product of the internal quantum efficiency and the light extraction efficiency is improved.
  • the semiconductor light emitting device having the uneven pattern described in Patent Document 3 to Patent Document 6 is used as the white light emitting device that emits the emitted light and the fluorescent light described in Patent Document 1 and Patent Document 2.
  • the white light emitting device that emits the emitted light and the fluorescent light described in Patent Document 1 and Patent Document 2.
  • Patent Document 3 in order to improve the luminous efficiency of a single LED, a technique of providing a micro-order uneven pattern on the substrate surface constituting the LED is widely applied.
  • the factors that determine the external quantum efficiency EQE which indicates the light emission efficiency of the LED, are the electron injection efficiency EIE (Electron Injection Efficiency), the internal quantum efficiency IQE (Internal Quantity Efficiency), and the light extraction efficiency. Is mentioned.
  • the internal quantum efficiency IQE depends on the dislocation density caused by the crystal mismatch of the GaN-based semiconductor crystal. Further, the light extraction efficiency LEE is improved by breaking the waveguide mode inside the GaN-based semiconductor crystal by light scattering due to the uneven pattern provided on the substrate.
  • the roles (effects) of the concavo-convex pattern provided in the semiconductor light emitting device include (1) improvement of internal quantum efficiency IQE by reducing dislocations in the semiconductor crystal, and (2) light extraction efficiency by eliminating the waveguide mode.
  • the improvement of LEE is mentioned.
  • a dislocation density of 1 ⁇ 10 9 pieces / cm 2 corresponds to 10 pieces / ⁇ m 2 in terms of nano-order
  • a dislocation density of 1 ⁇ 10 8 pieces / cm 2 corresponds to 1 piece / ⁇ m 2 .
  • the concavo-convex pattern density is 0.08 ⁇ 10 8 pieces / cm 2
  • about 2 concavo-convex patterns are formed on 500 nm ⁇ 500 nm ( ⁇ 500 nm).
  • the uneven pattern density is 8 ⁇ 10 8 pieces / cm 2 .
  • the above-described crystal defect dislocations in the epitaxial growth during LED manufacturing are suppressed by the nano-sized uneven pattern, and the internal quantum efficiency IQE of the LED is increased. Furthermore, the arrangement of the nano-sized uneven pattern is provided with a micro-order long period, so that the light extraction efficiency LEE is also increased. As a result, the external quantum efficiency EQE defined by the product of the internal quantum efficiency IQE and the light extraction efficiency LEE. It becomes possible to improve.
  • the above-described technology focuses on improving the light emission efficiency of the LED itself, and is described in Patent Document 1 or Patent Document 2 using an LED to which the above-described technology is applied.
  • a white light emitting device that emits emitted light and fluorescence
  • the efficiency is lower than the efficiency of monochromatic light emission.
  • color unevenness of white light is observed.
  • the light emission distribution of the white light-emitting device has little angle dependency and requires a Lambertian light emission distribution at all visible light wavelengths.
  • the above problem is interpreted as follows.
  • the micro-order long-period structure provided in the LED is set to be suitable for emitted light. For this reason, it is considered that sufficient light scattering does not function when the fluorescent material absorbs part of the emitted light and fluorescent light having a wavelength different from that of the emitted light is emitted. As a result, the light extraction efficiency with respect to fluorescence is lower than that of the emitted light, and thus the overall efficiency of the white light from the white light emitting device is not improved. Furthermore, since the light scattering property is different between the emitted light and the fluorescence in the same manner as described above, the angle distribution is different, and as a result, the angle dependency at all visible light wavelengths is observed.
  • the above problem is interpreted as follows.
  • a concavo-convex structure By forming a concavo-convex structure on the light emitting exposed surface of the semiconductor light emitting element, a diffraction or light scattering effect is produced, the waveguide mode inside the semiconductor light emitting element is broken, and the light extraction efficiency of the primary emitted light is improved.
  • the refractive index of the coating layer containing the nanoparticle phosphor is approximated by an effective medium approximation because it contains nanoparticles, and the refractive index of the phosphor is higher than the dispersion medium of the coating layer, resulting in coating The refractive index of the layer is high.
  • fa and fb are volume fractions of the medium a and the medium b
  • ⁇ a, ⁇ b, and ⁇ are the dielectric constants of the medium a, the medium b, and the effective medium, respectively
  • n is the refractive index of the effective medium.
  • the difference in refractive index between the concavo-convex structure and the coating layer is reduced, and as a result, the diffraction / dispersion effect due to the concavo-convex structure is reduced. It is considered that the light extraction efficiency of the emitted light is lowered.
  • the white light emitting device combined with the fluorescent material has a problem in that sufficient light emission efficiency does not appear and the light emission distribution has an angle dependency.
  • an object of the present invention is to provide a semiconductor light emitting device capable of increasing light scattering properties and improving light emission efficiency. It is another object of the present invention to provide a semiconductor light-emitting device that has less angle dependency of the light emission distribution and can be easily applied for industrial use.
  • the semiconductor light emitting device of the present invention has a laminated semiconductor layer formed by laminating at least two semiconductor layers and a light emitting layer, and emits a first light, and at least the semiconductor light emitting device.
  • the semiconductor light-emitting element includes a microstructure layer including dots formed by a plurality of convex portions or concave portions extending in an out-of-plane direction on any main surface constituting the semiconductor light-emitting device.
  • the microstructure layer constitutes a two-dimensional photonic crystal controlled at least by the pitch between dots, the dot diameter or the dot height, and the two-dimensional photonic crystal is at least And having more than one period of more than ⁇ _1Myuemu.
  • the two-dimensional photonic crystal has at least two periods of 6 times or more of the optical wavelength of the first light and 6 times or more of the optical wavelength of the second light. It is preferable to have.
  • a semiconductor light emitting device having a laminated semiconductor layer formed by laminating at least two semiconductor layers and a light emitting layer, emitting a first light, and at least the semiconductor
  • a wavelength conversion member that covers a part of the light emitting element, absorbs at least a part of the first light, and emits a second light different from the wavelength of the first light.
  • the semiconductor light-emitting element includes a fine structure layer including dots formed by a plurality of convex portions or concave portions extending in an out-of-plane direction on any main surface constituting the semiconductor light-emitting element.
  • the fine structure layer constitutes a two-dimensional photonic crystal controlled by at least one of the pitch between dots, the dot diameter, or the dot height, and the two-dimensional photonic crystal First More than six times the optical wavelength of light more than six times and the second optical wavelength of the light, and having at least two or more periods.
  • the wavelength conversion member is a first material that is transparent to at least the first light and the second light, and at least a part of the first light. It is preferable to contain the 2nd material which absorbs and emits said 2nd light.
  • the fine structure layer is provided as a constituent element at least on the outermost surface of the semiconductor light emitting device, and at least the first light and the second light are provided between the fine structure layer and the wavelength conversion member. It is preferable that the intermediate material which is substantially transparent and does not contain the second material is filled.
  • the second material has an average particle diameter smaller than the optical wavelength in the first material of the first light.
  • the wavelength conversion member emits the second light and a third light different from each wavelength of the first light and the second light.
  • the wavelength converting member absorbs at least a part of the first light, the second material, and the first light that is transparent to the third light, and at least a part of the first light.
  • the second material includes a third material that emits the third light, and the two-dimensional photonic crystal has a period of six times or more the optical wavelength of the third light.
  • the fine structure layer is provided as a constituent element at least on the outermost surface of the semiconductor light emitting device, and at least the first light and the second light are provided between the fine structure layer and the wavelength conversion member. And an intermediate material which is substantially transparent to the third light and does not contain the second material and the third material.
  • At least one of the second material and the third material has an average particle diameter smaller than an optical wavelength of the first light in the first material.
  • the wavelength conversion member includes the second light, the third light, the first light, the second light, and the third light. It is configured to emit fourth light different from the wavelength, and the wavelength conversion member is transparent to at least the first light, the second light, the third light, and the fourth light.
  • a first material and a fourth material that absorbs at least a part of the first light and emits the fourth light, and the two-dimensional photonic crystal includes the fourth light. It is preferable to have a period of 6 times or more of the optical wavelength.
  • the fine structure layer is provided as a constituent element at least on the outermost surface of the semiconductor light emitting device, and at least the first light and the second light are provided between the fine structure layer and the wavelength conversion member.
  • an intermediate material that is practically transparent to the third light and the fourth light and does not include the second material, the third material, and the fourth material. preferable.
  • At least one of the second material, the third material, and the fourth material has an average particle diameter smaller than the optical wavelength of the first light in the first material.
  • the two-dimensional photonic crystal is formed on any two or more main surfaces constituting the semiconductor light-emitting element, and the period of each two-dimensional photonic crystal is Preferably they are different from each other.
  • the two-dimensional photonic crystal may have a period at least in one axis direction of the main surface, or the main surface may have at least an independent period of the two-dimensional photonic crystal. It can be configured to have a period in the biaxial direction.
  • the two-dimensional photonic crystal constituting the microstructure layer is 1 ⁇ m or more, or 6 times or more of the optical wavelength of the first light and the second light (the first light by the wavelength conversion member).
  • Light having a wavelength different from that of the first light emitted by absorbing at least a part of the light has a period of at least two times that is six times or more of the optical wavelength, thereby enhancing the light scattering property rather than the light diffraction property. be able to. Therefore, in the semiconductor light emitting device of the present invention, the light scattering property can be strongly expressed with respect to the light emission from the semiconductor layer and the light emission from the wavelength conversion member, and the waveguide mode is eliminated by this light scattering property.
  • the light extraction efficiency LEE can be increased. Furthermore, it is possible to efficiently convert the wavelength of primary light emitted from the semiconductor light emitting device efficiently. As a result, the final luminous efficiency of the semiconductor light emitting device can be improved. Furthermore, it is possible to provide a semiconductor light emitting device that reduces the angle dependency of the light emission distribution and is easily applicable for industrial use.
  • the semiconductor light emitting device includes a semiconductor light emitting element that has a laminated semiconductor layer formed by laminating at least two or more semiconductor layers and a light emitting layer, emits first light, and at least the semiconductor.
  • a wavelength conversion member that covers a part of the light emitting element, absorbs at least a part of the first light, and emits a second light different from the wavelength of the first light.
  • the semiconductor light emitting device of the present embodiment is configured by a schematic cross-sectional view shown in FIG.
  • the semiconductor light emitting device 500 has a configuration in which the semiconductor light emitting element 100 is disposed in the housing portion 520 a of the package 520.
  • the package 520 is filled with the wavelength conversion member 511. Therefore, each surface except the back surface 100a of the semiconductor light emitting element 100 is covered with the wavelength conversion member 511.
  • the wavelength conversion member 511 includes a filler 541 that is a first material substantially transparent with respect to the emission center wavelength of the emitted light (first light) from the semiconductor light emitting device 100, and the filler 541. And a fluorescent material (second material) 531 dispersed therein.
  • the fluorescent material 531 has fluorescence characteristics with respect to the emission center wavelength of the first light that is emitted light from the semiconductor light emitting device 100, absorbs at least a part of the first light, and the first light. Fluorescence, which is second light different from the wavelength of, is emitted.
  • the filler 541 is substantially transparent to the fluorescence that is the second light, and is also substantially transparent to third light and fourth light described later.
  • the term “substantially transparent” in the present invention refers to a state in which there is almost no absorption with respect to light of the corresponding wavelength. Or less, more preferably 2% or less.
  • the term “substantially transparent” is defined as a transmittance of light of a corresponding wavelength of 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the filler 541 can be organic or inorganic, and can be composed of materials including, for example, epoxy, acrylic polymer, polycarbonate, silicone polymer, optical glass, chalcogenide glass, spiro compound, and mixtures thereof, The material is not particularly limited.
  • the filler 541 may also contain fine particles that are substantially transparent to the first light, the second light, the third light, and the fourth light. By containing fine particles, heat resistance, durability, weather resistance, and thermal dimensional stability are improved, which is preferable.
  • the fine particles contained in the filler 541 are not particularly limited, and may be metal oxides, metal nitrides, nitridosilicates, and mixtures thereof.
  • suitable metal oxides can include calcium oxide, cerium oxide, hafnium oxide, titanium oxide, zinc oxide, zirconium oxide and mixtures thereof.
  • the emitted light from the semiconductor light emitting device 500 a color mixture of the first light emitted from the semiconductor light emitting element 100 and the second light that is fluorescence from the wavelength conversion member 511 is observed.
  • a blue fluorescent material having an emission center wavelength in the vicinity of 450 nm and the second light is a yellow fluorescent material having a dominant wavelength in the vicinity of 590 nm, the emitted light of the semiconductor light emitting device 500 is observed as white.
  • the wavelengths of the first light and the second light are not particularly limited, and are arbitrarily selected so that the emission color from the semiconductor light emitting device 500 exhibits a color according to the purpose as described above. However, since the first light is absorbed and second light that is fluorescent light is obtained, the wavelength of the second light is always longer than that of the first light.
  • both the first light and the second light need not be visible light, for example, even if the first light is ultraviolet light having a wavelength of 410 nm or less and the second light is green. Good. In this case, only the monochromatic light is observed as the emitted light from the semiconductor light emitting device 500.
  • the light emitted from the semiconductor light emitting device 500 can be variously selected according to the purpose, and accordingly, the configuration of the semiconductor light emitting element 100 and the material of the fluorescent material 531 are variously selected.
  • Part of the emitted light from the semiconductor light emitting element 100 is absorbed by the fluorescent material 531 and emits fluorescence. Although the fluorescence is led out of the semiconductor light emitting device 500 as it is, a part of the fluorescence is scattered as shown in FIG. 1 and returns to the semiconductor light emitting element 100. At this time, the fluorescence is scattered by a fine structure layer provided in the semiconductor light emitting element 100 described later, and is led out of the semiconductor light emitting device 500.
  • the semiconductor light emitting element 100 when the semiconductor light emitting element 100 is not provided with a fine structure layer, the angle of the light returning to the semiconductor light emitting device 500 is not changed, and a part thereof is in a light guide mode, and the semiconductor light emitting device 500 As a result, the light emission efficiency of the semiconductor light emitting device 500 is lowered.
  • FIG. 2 is a schematic cross-sectional view showing another example of the semiconductor light emitting device according to the present embodiment.
  • the semiconductor light emitting device 501 a part of the light emitting surface of the semiconductor light emitting element 100 installed in the package 520 is covered with the wavelength conversion member 512.
  • the package 520 is filled with a sealing material 542.
  • the wavelength converting member 512 includes a filler 541 that is substantially transparent to the light emitted from the semiconductor light emitting element 100 and a fluorescent material 531 that is contained and dispersed therein.
  • the semiconductor light emitting device 501 shown in FIG. 2 similarly to the semiconductor light emitting device 500 in FIG. 1 described above, emitted light (first light) from the semiconductor light emitting element 100 and fluorescence from the fluorescent material 531 (second light). Light) is scattered by the fine structure layer provided in the semiconductor light emitting element 100 and is efficiently led out of the semiconductor light emitting device 501.
  • the volume of the wavelength conversion member 512 is smaller than in the semiconductor light emitting device 500 in FIG. 1, and the emitted light and fluorescence from the semiconductor light emitting element 100 are less susceptible to scattering from the fluorescent material 531. Therefore, the fine structure layer provided in the semiconductor light emitting device 100 needs to have stronger scattering properties.
  • the microstructure layer provided in the semiconductor light emitting element 100 can be appropriately designed depending on the configuration, use, and the like of the semiconductor light emitting device.
  • the same transparent member as the filler 541 used in the wavelength conversion member 512 can be used.
  • FIG. 3 is a schematic cross-sectional view showing another example of the semiconductor light emitting device according to the present embodiment.
  • the semiconductor light emitting device 510 has a configuration in which the semiconductor light emitting element 100 is disposed in the housing portion 520 a of the package 520.
  • the package 520 is filled with the wavelength conversion member 511, and the semiconductor light emitting element 100 further includes a fine structure including dots formed of concave portions or convex portions on the outermost surface thereof.
  • Layer 120 is provided as a component.
  • the intermediate material 121 is interposed between the fine structure layer 120 and the wavelength conversion member 511, and the fine structure layer 120 is not in contact with the wavelength conversion member 511. That is, the intermediate material 121 is formed with a thickness between the outermost surface of the fine structure layer 120 and the facing surface of the fine structure layer 120 of the wavelength conversion member 511.
  • the intermediate material 121 is filled between dots formed by the convex portions of the fine structure layer 120.
  • the intermediate material 121 is filled in the recesses. Therefore, the entire space from the surface of the microstructure layer 120 to the wavelength conversion member 511 is filled with the intermediate material 121.
  • the intermediate material 121 shown in FIG. 3 is cured and hardened after application.
  • the intermediate material 121 may be formed following the undulation of the surface of the microstructure layer 120, but the surface 121a of the intermediate material 121 (intermediate layer) may be formed as a flat surface as shown in FIG. Good.
  • the intermediate material 121 may be filled only between the dots formed by the convex portions of the microstructure layer 120 or only in the dots formed by the concave portions. In such a configuration, at least a portion between the outermost surface of the microstructure layer 120 and the facing surface of the wavelength conversion member 511 facing the microstructure layer 120 is in contact.
  • Such a configuration is also defined as a configuration in which the intermediate material 121 is interposed (filled) between the microstructure layer 120 and the wavelength conversion member 511.
  • the intermediate material 121 is interposed between the fine structure layer 120 and the wavelength conversion member 511 so that the fine structure layer 120 is not in contact with the wavelength conversion member 511.
  • the wavelength conversion member 511 includes a filler 541 that is a substantially transparent first material with respect to the emission center wavelength of the emitted light (first light) from the semiconductor light emitting device 100, and the inclusion and dispersion thereof. And a fluorescent material (second material) 531.
  • the fluorescent material 531 has fluorescence characteristics with respect to the emission center wavelength of the first light that is emitted light from the semiconductor light emitting device 100, absorbs at least a part of the first light, and the first light. Fluorescence, which is second light different from the wavelength of, is emitted.
  • the filler 541 is substantially transparent to the fluorescence that is the second light, and is also substantially transparent to third light and fourth light described later.
  • the intermediate material 121 filled between the dots of the microstructure layer 120 described above is substantially transparent with respect to the emission center wavelength of the emitted light (first light) from the semiconductor light emitting element 100. Furthermore, it is substantially transparent to the fluorescence that is the second light, and is also substantially transparent to third light and fourth light described later.
  • the intermediate material 121 can be organic or inorganic, and can be composed of materials including, for example, epoxy, acrylic polymer, polycarbonate, silicone polymer, optical glass, chalcogenide glass, spiro compound, and mixtures thereof, The material is not particularly limited.
  • the intermediate material 121 may be either the same material as the filler 541 or a different material. However, it is preferable to use the same material for the intermediate material 121 and the filler 541 because the light emission characteristics can be effectively improved.
  • a silicone resin can be selected for the intermediate material 121 and the filler 541.
  • the intermediate material 121 may also contain fine particles that are substantially transparent to the first light, the second light, the third light, and the fourth light. By containing fine particles, heat resistance, durability, weather resistance, and thermal dimensional stability are improved, which is preferable.
  • the fine particles contained in the intermediate material 121 are not particularly limited, but it is not preferable that the effective refractive index of the intermediate material 121 filled between the dots of the microstructure layer 120 is increased.
  • the refractive index is preferably equal to or less than that of the intermediate material 121.
  • substantially equivalent means that the difference in refractive index from the intermediate material 121 is 0.1 or less. If the difference in refractive index is 0.1 or less, when the fine particles contained in the intermediate material 121 have a volume fraction within 50%, the effective refractive index of the intermediate material 121 containing the fine particles is only the intermediate material 121. This is preferable because it is equivalent to the refractive index of.
  • the fine particles contained in the intermediate material 121 are not particularly limited, and may be metal oxides, metal nitrides, nitridosilicates, and mixtures thereof.
  • suitable metal oxides can include silicon oxide, calcium oxide, cerium oxide, hafnium oxide, titanium oxide, zinc oxide, zirconium oxide and mixtures thereof.
  • the same material as the fine particles contained in the filler 541 described above may be used.
  • the intermediate material 121 is filled between the microstructure layer 120 and the wavelength conversion member 511, but the fluorescent material (second material) 531 is not included.
  • the fluorescent material (second material) 531 does not enter between the dots.
  • the fluorescent material (second material) 531 is not contained in the dots. Therefore, only the intermediate material 121 is interposed between the microstructure layer 120 and the wavelength conversion member 511, or the intermediate material 121 containing the fine particles is interposed.
  • the fluorescent material 531 is not filled between the dots or in the dots of the fine structure layer 120, the effective refractive index between the dots or within the dots does not increase, and the semiconductor light emitting device 100 by the fine structure layer 120 is used.
  • the efficiency of diffraction or scattering for the first light from is not reduced.
  • the wavelength conversion member 511 is provided so as to cover at least a part of the semiconductor light emitting element 100, it is possible to prevent the light extraction efficiency from the semiconductor light emitting device 500 from being lowered.
  • the fluorescent material 531 exists between dots or in dots in the microstructure layer 120 of the semiconductor light emitting device 100, and the effective refractive index between dots or within dots increases, Since the diffraction or scattering efficiency with respect to fluorescence decreases, the phenomenon that the semiconductor light emitting device 510 is led out of the system is suppressed, and as a result, the light emission efficiency of the semiconductor light emitting device 510 decreases.
  • FIG. 4 is a schematic cross-sectional view showing another example of the semiconductor light emitting device according to the present embodiment.
  • the semiconductor light emitting device 508 a part of the light emitting surface of the semiconductor light emitting element 100 installed in the package 520 is covered with the wavelength conversion member 512.
  • the package 520 is filled with a sealing material 542.
  • the wavelength converting member 512 includes a filler 541 that is substantially transparent to the light emitted from the semiconductor light emitting element 100 and a fluorescent material 531 that is contained and dispersed therein.
  • the semiconductor light emitting device 508 shown in FIG. 4 similarly to the semiconductor light emitting device 510 in FIG. 3 described above, light emitted from the semiconductor light emitting element 100 (first light) and fluorescence from the fluorescent material 531 (second light) Light) is scattered by the fine structure layer 120 provided in the semiconductor light emitting element 100 and is efficiently led out of the semiconductor light emitting device 508.
  • the volume of the wavelength conversion member 512 is smaller than that of the semiconductor light emitting device 510 of FIG. Therefore, the fine structure layer 120 provided in the semiconductor light emitting device 100 needs to have a stronger scattering property.
  • the microstructure layer 120 provided in the semiconductor light emitting element 100 can be appropriately designed depending on the configuration, use, and the like of the semiconductor light emitting device.
  • the intermediate material 121 not including the fluorescent material 531 is interposed between the fine structure layer 120 provided in the semiconductor light emitting element 100 and the wavelength conversion member 512, and the fine structure layer 120 is composed of the wavelength conversion member 512. Not touching.
  • the same transparent member as the filler 541 used in the wavelength conversion member 512 can be used.
  • FIG. 5 is a schematic cross-sectional view showing another example of the semiconductor light emitting device according to the present embodiment.
  • the semiconductor light emitting element 100 installed in the package 520 is covered with a wavelength conversion member 513 as in FIG.
  • the wavelength conversion member 513 includes and is dispersed in a filler 541 that is a first material substantially transparent to the emission center wavelength of the emitted light from the semiconductor light emitting element 100 that is the first light. It is composed of a fluorescent material 531 and a fluorescent material 532.
  • the fluorescent material 532 has a fluorescence characteristic with respect to the emission center wavelength of the first light that is the emitted light emitted from the semiconductor light emitting element 100, absorbs at least a part of the first light, and the first light. And a third material that emits fluorescence that is third light different from the wavelength of the second light.
  • the emitted light from the semiconductor light emitting device 502 is observed as a mixed color of the first light emitted from the semiconductor light emitting element 100, the second light that is fluorescence from the wavelength conversion member, and the third light. .
  • the semiconductor light emitting device when the first light is blue having an emission center wavelength near 450 nm, the second light is green having a dominant wavelength near 545 nm, and the third light is red having a dominant wavelength near 700 nm, the semiconductor light emitting device The emitted light 502 is recognized as white.
  • the filler 541 described above is substantially transparent to the second light and the third light.
  • the wavelengths of the first light, the second light, and the third light are not particularly limited, and as described above, the emission color from the semiconductor light emitting device 502 exhibits a color according to the purpose. Arbitrarily selected. However, since the second light and the third light, which are fluorescent light, are absorbed, the wavelengths of the second light and the third light are always longer than the first light. Become.
  • the second light and part of the third light are scattered and returned to the semiconductor light emitting element 100. Then, it is scattered by the fine structure layer provided in the semiconductor light emitting element 100 and led out of the semiconductor light emitting device 502. With such an action, the light emission efficiency of the semiconductor light emitting device 502 can be improved.
  • the semiconductor light emitting device 502 shown in FIG. 5 similarly to the semiconductor light emitting device 501 shown in FIG. 2, a part of the light emitting surface of the semiconductor light emitting element 100 is converted into a wavelength conversion in which fluorescent materials 531 and 532 are dispersed in a filler 541.
  • the package 520 may be covered with the member 513 and filled with the sealing material 542 in FIG.
  • FIG. 6 is a schematic cross-sectional view showing another example of the semiconductor light emitting device according to the present embodiment.
  • the semiconductor light emitting element 100 installed in the package 520 is covered with a wavelength conversion member 513 as in FIG.
  • the wavelength conversion member 513 includes and is dispersed in a filler 541 that is a first material substantially transparent to the emission center wavelength of the emitted light from the semiconductor light emitting element 100 that is the first light.
  • a fluorescent material (second material) 531 and a fluorescent material (third material) 532 are included.
  • an intermediate material 121 that does not include the fluorescent materials 531 and 532 is interposed between the microstructure layer 120 provided in the semiconductor light emitting device 100 and the wavelength conversion member 513, and the microstructure layer 120 is wavelength-converted. It is not in contact with the member 513.
  • the second light and part of the third light are scattered and returned to the semiconductor light emitting element 100. Then, the light is scattered by the fine structure layer 120 provided in the semiconductor light emitting element 100 and led out of the system of the semiconductor light emitting device 509. With such an action, the light emission efficiency of the semiconductor light emitting device 509 can be improved.
  • a part of the light emitting surface of the semiconductor light emitting device 100 is partly replaced by a wavelength conversion member 513 in which fluorescent materials 531 and 532 are dispersed in a filler 541.
  • the package 520 may be covered in the same manner as 508, and the package 520 may be filled with the sealing material 542 in FIG.
  • the intermediate material 121 that does not include the fluorescent materials 531 and 532 is interposed between the fine structure layer 120 provided on the surface of the semiconductor light emitting element 100 and the wavelength conversion member 513, and the fine structure layer 120.
  • the wavelength conversion member 513 are not in direct contact with each other.
  • FIG. 7 is a schematic cross-sectional view showing another example of the semiconductor light emitting device according to the present embodiment.
  • the semiconductor light emitting device 503 in FIG. 7 has a configuration in which the semiconductor light emitting element 100 installed in the package 520 is covered with a wavelength conversion member 514.
  • the wavelength conversion member 514 is contained and dispersed in a filler 541 that is a first material that is substantially transparent to the emission center wavelength of the emitted light from the semiconductor light emitting device 100 that is the first light.
  • the fluorescent material 531, the fluorescent material 532, and the fluorescent material 533 are configured.
  • the fluorescent material 533 has a fluorescence characteristic with respect to the emission center wavelength of the first light that is the emitted light emitted from the semiconductor light emitting device 100, absorbs at least a part of the first light, and the first light. And fluorescent light that is fourth light different from the wavelength of the second light and the third light.
  • the emitted light from the semiconductor light emitting device 503 includes the first light emitted from the semiconductor light emitting element 100, the second light, the third light, and the fourth light that are fluorescence from the wavelength conversion member 514. Observed as a color mixture.
  • the first light is UV light having an emission center wavelength near 360 nm
  • the second light is green having a dominant wavelength near 545 nm
  • the third light is red having a dominant wavelength near 700 nm
  • the fourth light is recognized as white.
  • the filler 541 described above is substantially transparent to the second light, the third light, and the fourth light.
  • the wavelengths of the first light, the second light, the third light, and the fourth light are not particularly limited, and as described above, the emission color from the semiconductor light emitting device 503 depends on the purpose. Arbitrarily selected to exhibit color. However, since the second light, the third light, and the fourth light that are fluorescent light are absorbed and the wavelengths of the second light, the third light, and the fourth light are obtained. Always be longer than the first light.
  • part of the second light, the third light, and the fourth light is scattered and returns to the semiconductor light emitting element 100. Accordingly, the fine structure layer provided in the semiconductor light emitting element 100 is scattered and led out of the semiconductor light emitting device 503. With such an action, the light emission efficiency of the semiconductor light emitting device 503 can be improved.
  • FIG. 8 is a schematic cross-sectional view showing another example of the semiconductor light emitting device according to the present embodiment.
  • the semiconductor light emitting device 515 in FIG. 8 has a configuration in which the semiconductor light emitting element 100 installed in the package 520 is covered with a wavelength conversion member 514.
  • the wavelength conversion member 514 is contained and dispersed in a filler 541 that is a first material that is substantially transparent to the emission center wavelength of the emitted light from the semiconductor light emitting device 100 that is the first light.
  • the fluorescent material (second material) 531, the fluorescent material (third material) 532, and the fluorescent material (fourth material) 533 are configured.
  • an intermediate material 121 that does not include the fluorescent materials 531, 532, and 533 is interposed between the fine structure layer 120 provided in the semiconductor light emitting element 100 and the wavelength conversion member 514, and the fine structure layer 120 has a wavelength. It is not in contact with the conversion member 514.
  • the filler 541 and the intermediate material 121 described above are substantially transparent to the second light, the third light, and the fourth light.
  • the semiconductor light emitting device 515 shown in FIG. 8 part of the second light, the third light, and the fourth light is scattered and returns to the semiconductor light emitting element 100. Therefore, the fine structure layer 120 provided in the semiconductor light emitting element 100 is scattered and led out of the semiconductor light emitting device 515. With such an action, the light emission efficiency of the semiconductor light emitting device 515 can be improved.
  • the fluorescent material 531, the fluorescent material 532, and the fluorescent material 533 are not particularly limited as long as they absorb at least part of the first light and emit predetermined fluorescence.
  • yttrium, aluminum, and garnet. Sulfur-substituted aluminate, unsubstituted aluminate, alkaline earth metal borate halide, alkaline earth metal aluminate, alkaline earth silicate, alkaline earth thiogallate, alkaline earth silicon nitride, germanic acid
  • Examples include salts, phosphates, silicates, selenides, sulfides, nitrides, oxynitrides, and mixtures thereof.
  • lanthanoid elements such as Ce and Eu can be doped into these materials and activated.
  • Ce and Eu one or more selected from Tb, Cu, Ag, Cr, Nd, Dy, Co, Ni, Ti, and Mg may be included.
  • Each of the fluorescent materials 531, 532, and 533 preferably has an average particle size smaller than the optical wavelength in the first light filler (first material) 541.
  • the so-called nano-particle fluorescent particles having an average particle size smaller than the optical wavelength of the first material of the first light reduces the light scattering property by the fluorescent particles and improves the light extraction efficiency from the semiconductor light-emitting device. Can be improved.
  • the primary light emission (first light) emitted from the semiconductor light emitting element can be wavelength-converted efficiently, so that the light extraction efficiency can be further improved.
  • the average particle diameter in the present invention is the mass average particle diameter of the primary particles of the fluorescent particles, and can be determined by the method described in JIS Z8827 using a transmission electron microscope (TEM).
  • At least one of the fluorescent materials 531 and 532 may have an average particle diameter smaller than the optical wavelength in the first light filler (first material) 541. It is preferable that the fluorescent materials 531 and 532 have an average particle diameter smaller than the optical wavelength in the first light filler (first material) 541.
  • At least one of the fluorescent materials 531, 532, and 533 may have an average particle diameter smaller than the optical wavelength in the first light filler (first material) 541. However, it is preferable that all the fluorescent materials 531, 532, and 533 have an average particle diameter smaller than the optical wavelength in the first light filler (first material) 541.
  • Each fluorescent material 531, 532, 533 is preferably in the form of particles. However, it is not limited to a spherical shape, and may be a polygonal shape, an ellipsoid or the like.
  • FIG. 9 is a schematic cross-sectional view of a semiconductor light emitting element in the semiconductor light emitting device according to this embodiment.
  • an n-type semiconductor layer 103, a light emitting layer 104, and a p-type semiconductor are formed on a two-dimensional photonic crystal 102 provided on one main surface of a substrate 101 for a semiconductor light emitting device.
  • Layers 105 are sequentially stacked.
  • the n-type semiconductor layer 103, the light-emitting layer 104, and the p-type semiconductor layer 105 that are sequentially stacked on the semiconductor light-emitting element substrate 101 are referred to as a stacked semiconductor layer 110.
  • the “main surface” refers to a wide surface that constitutes the semiconductor light emitting element substrate 101 and the layer, for example, a laminated surface (formation surface) when the laminated semiconductor layer 110 is laminated or a surface opposite to the laminated surface. is there.
  • the “main surface” includes the interface between the substrate for the semiconductor light emitting element and the layer, the interface between the layers, the exposed surface of the semiconductor light emitting element substrate 101 and the layer, and the exposed back surface.
  • a photonic crystal is a nanostructure whose refractive index (dielectric constant) changes periodically, and a two-dimensional photonic crystal refers to a two-dimensional periodic structure.
  • a transparent conductive film 106 is formed on the p-type semiconductor layer 105.
  • a cathode electrode 107 is formed on the surface of the n-type semiconductor layer 103, and an anode electrode 108 is formed on the surface of the transparent conductive film 106.
  • the laminated semiconductor layer 110 is formed on the two-dimensional photonic crystal 102 provided on one main surface of the semiconductor light-emitting element substrate 101, but the two-dimensional photo of the semiconductor light-emitting element substrate 101 is formed.
  • the laminated semiconductor layer 110 may be formed on another main surface opposite to the surface on which the nick crystal 102 is provided.
  • FIG. 10 is a schematic cross-sectional view showing another example of the semiconductor light emitting device according to the present embodiment.
  • a p-type semiconductor layer 302 a light emitting layer 303, and an n-type semiconductor layer 304 are sequentially stacked on a semiconductor light emitting device substrate 301.
  • a two-dimensional photonic crystal 305 is provided on one main surface (exposed surface) of the n-type semiconductor layer 304.
  • an anode electrode 306 is formed on the main surface opposite to the main surface in contact with the p-type semiconductor layer 302 of the semiconductor light emitting element substrate 301, and a cathode electrode 307 is formed on the surface of the n-type semiconductor layer 304. Each is formed.
  • an n-type semiconductor layer 304, a light emitting layer 303, and a p-type semiconductor layer 302 are sequentially stacked on a base material (not shown), and then attached to the base material 301 for a semiconductor light emitting element, and the base material is peeled off.
  • a method for manufacturing a semiconductor light emitting device is employed. After the substrate is peeled off, the anode electrode 306 and the cathode electrode 307 are respectively formed to obtain the semiconductor light emitting element in the semiconductor light emitting device of this embodiment. After providing the n-type semiconductor layer on the substrate, the two-dimensional photonic crystal 305 is transferred and formed in order to peel off at the interface with the n-type semiconductor layer.
  • FIG. 11 is a schematic cross-sectional view showing another example of the semiconductor light emitting device according to the present embodiment.
  • a two-dimensional photonic crystal 201 is formed on the main surface (exposed surface) of the transparent conductive film 106 shown in FIG.
  • the two-dimensional photonic crystal of the present embodiment needs to have at least two periods. As shown in FIG.
  • two-dimensional photonic crystals 102 and 201 are provided as constituent elements on different main surfaces of the semiconductor light emitting device, respectively, and two or more two-dimensional photonic crystals 102, 201, it is not necessary that each two-dimensional photonic crystal 102, 201 has two or more periods, and two or more two-dimensional photonic crystals 102, 201 having different periods are used as constituent elements of the semiconductor light emitting device. It is also good.
  • the light emitted from the semiconductor light emitting element and the light emitted from the wavelength conversion member are diffracted at the interface constituting the two-dimensional photonic crystal by transmission, reflection, diffraction, and scattering in the semiconductor light emitting device. , Will receive a scattering effect. This effect does not need to be the same interface, and the same effect can be obtained at different interfaces or the same interface. Therefore, the effect of the present invention can be exhibited by providing two or more periods at different interfaces or by providing them at the same interface.
  • the semiconductor light emitting devices 100, 200, and 300 shown in FIGS. 9 to 11 are examples in which the present embodiment is applied to a semiconductor light emitting device having a double hetero structure, but the stacked structure of the stacked semiconductor layers is limited to this. It is not something. Moreover, you may provide the buffer layer which is not shown in figure, and an undoped semiconductor layer between the base material for semiconductor light-emitting devices and an n-type semiconductor layer. Moreover, you may provide the reflection layer which is not shown in the interface of the base material for semiconductor light-emitting devices, and a semiconductor layer.
  • FIG. 12 is a schematic perspective view illustrating an example of the substrate 1 for a semiconductor light emitting element according to the first embodiment.
  • the substrate 1 for a semiconductor light emitting device has a generally flat plate shape, and a substrate 11 and a microstructure layer 12 (two-dimensional) provided on one main surface of the substrate 11. Photonic crystal).
  • the fine structure layer 12 includes a plurality of convex portions 13 (convex portion rows 13-1 to 13-N) protruding upward from the main surface of the substrate 11.
  • the convex portions 13 are arranged with specific intervals.
  • the fine structure layer 12 may be separately formed on the main surface of the substrate 11 or may be formed by directly processing the substrate 11.
  • FIG. 12 shows an example in which the microstructure of the microstructure layer 12 is configured by a plurality of convex portions 13, but is not limited thereto, and the microstructure of the microstructure layer 12 is configured by a plurality of concave portions. It may be.
  • FIG. 13 is a schematic perspective view showing another example of the substrate for a semiconductor light emitting element according to the present embodiment.
  • the substrate for semiconductor light emitting element 1a has a generally flat plate shape, and a substrate 11a and a microstructure layer 12a (two-dimensional) provided on one main surface of the substrate 11a. Photonic crystal).
  • the fine structure layer 12a includes a plurality of concave portions 14 (concave portions 14-1 to 14-N) recessed from the surface S of the fine structure layer 12a toward the back surface of the base material 11a.
  • the recesses 14 are arranged with specific intervals.
  • the fine structure layer 12a may be separately formed on the main surface of the base material 11a, or may be formed by directly processing the base material 11a.
  • the convex part 13 or the concave part 14 constituting the fine structure of the fine structure layers 12 and 12a in the semiconductor light emitting device bases 1 and 1a is referred to as “dot”.
  • the diameter and pitch of the dots are on the nano order.
  • the semiconductor layer is formed on the surface of the semiconductor light-emitting element substrate 1, 1a by providing a nano-order uneven structure on the surface of the semiconductor light-emitting element substrate 1, 1a, the semiconductor The CVD growth mode of the layer is disturbed, dislocation defects accompanying phase growth collide and disappear, and the effect of reducing dislocation defects can be produced. And by reducing the dislocation defects in the semiconductor crystal, the internal quantum efficiency IQE of the semiconductor light emitting device can be increased.
  • a two-dimensional photonic crystal controlled by any one of the pitch between dots, the dot diameter, and the dot height is formed.
  • the reflection, transmission, and diffraction characteristics for propagating light inside the crystal can be controlled by the photonic crystal whose refractive index changes periodically.
  • the diameter and pitch of the dots formed on one main surface of the substrate for a semiconductor light emitting device of the present embodiment are on the order of nanometers and are approximately the same as the wavelength of propagating light. Therefore, in the present embodiment, the characteristics of the photonic crystal are determined by a periodic change in the effective refractive index distribution obtained by averaging the refractive index due to the structure (effective medium approximation). Since the effective refractive index distribution is repeated in the main surface of the substrate for a semiconductor light emitting element, a two-dimensional photonic crystal is formed.
  • the period of the two-dimensional photonic crystal has at least two different periods each of 1 ⁇ m or more. Alternatively, it has at least two periods that are 6 times or more of the optical wavelength of the first light and 6 times or more of the optical wavelength of the second light. Since the two-dimensional photonic crystal has two or more different periods of 1 ⁇ m or more, or more than six times the optical wavelength of the first light and the second light, it is more light scattering than light diffractive. Sex will be strengthened. Therefore, in the semiconductor light emitting device of the present embodiment, the light scattering property can be strongly expressed with respect to the light emission from the semiconductor layer and the light emission from the wavelength conversion member. And the light extraction efficiency LEE can be increased.
  • the angle dependency in the light emission characteristic is weakened, and it approaches the Lambertian light emission characteristic that is easier to apply to industrial applications.
  • the period of the two-dimensional photonic crystal is 1 ⁇ m or more, 6 times or more of the optical wavelength of the first light, and 6 times or more of the optical wavelength of the second light. More preferably, it has at least two periods.
  • the light scattering property can be enhanced more effectively than the light diffraction property, and the light extraction efficiency LEE can be further increased.
  • the two-dimensional photonic crystal is not limited to being provided on one main surface of the substrate for a semiconductor light-emitting element, but is provided at one or more places in the semiconductor light-emitting element and also on the outermost surface of the semiconductor light-emitting element. .
  • the two-dimensional photonic crystal controlled by the pitch between dots, the dot diameter, and the dot height will be described in more detail with reference to the drawings.
  • FIG. 14 is a schematic plan view of the substrate 1 for a semiconductor light emitting device according to the present embodiment, showing a two-dimensional photonic crystal formed on the surface (one main surface) of the substrate 1 for a semiconductor light emitting device. Yes.
  • the dots are a plurality of dots in which a plurality of dots are arranged at a pitch Py of indefinite intervals in the first direction D ⁇ b> 1 in the main surface of the substrate 1 for semiconductor light emitting elements.
  • Dot rows (convex row 13-1 to 13-N or concave row 14-1 to 14-N; see FIGS. 12 and 13).
  • each dot row is arranged at a pitch Px of indefinite intervals in the second direction D2 orthogonal to the first direction D1 within the main surface of the substrate 1 for semiconductor light emitting element.
  • the pitch Py with an indefinite interval between the dots periodically increases and decreases.
  • the pitch Px at indefinite intervals in the second direction D2 orthogonal to the first direction D1 periodically increases and decreases.
  • the pitches Py and Px having indefinite intervals in both the first direction D1 and the second direction D2 may be periodically increased or decreased, and the pitches having indefinite intervals in either the first direction D1 or the second direction D2.
  • Py and Px may be configured to periodically increase and decrease.
  • the pitch Py with indefinite intervals between the dots periodically increases and decreases. Therefore, the light is periodically increased or decreased by the effective medium approximation. It shows a behavior equivalent to the presence of a larger concavo-convex structure.
  • FIG. 15 is a schematic diagram illustrating an arrangement example of dot rows in the second direction D2.
  • the dot rows in the second direction D2 are arranged at specific intervals (pitch Px) by eight rows, and eight dot rows are repeatedly arranged.
  • a unit composed of a plurality of (z) dot rows is referred to as a long cycle unit Lxz (where z is a positive integer and x indicates the x direction).
  • the long period unit Lxz needs to be 1 ⁇ m or more, or 6 times or more of the optical wavelength emitted from the semiconductor light emitting element.
  • the dots in the first direction D1 arranged at indefinite intervals at different pitches Py can also be arranged in the same manner as described below using the long period unit Lyz.
  • the pitch Px is a distance between adjacent dot rows.
  • each dot is smaller than the pitch Pxn.
  • the length from the pitch Px1 to Pxn constitutes the long cycle unit Lxz.
  • the relationship of the following formula (2) is established in the pitch Pxn between the dot rows in the long cycle unit L1.
  • the pitch Px in the long cycle unit Lxz has a maximum phase shift ⁇ represented by the difference between the maximum value (Px (max)) and the minimum value (Px (min)) of the pitch Px, (Px (min) ) ⁇ 0.01 ⁇ ⁇ (Px (min)) ⁇ 0.66, preferably (Px (min)) ⁇ 0.02 ⁇ ⁇ (Px (min)) ⁇ 0.5, more preferably It is set to satisfy (Px (min)) ⁇ 0.1 ⁇ ⁇ (Px (min)) ⁇ 0.4.
  • the pitch Pxn between the dot rows is expressed as follows.
  • Px1 Px (min)
  • Px2 Px (min) + ⁇ a
  • Px4 Px (min) + ⁇ c
  • Px5 Px (min) + ⁇ d
  • Px6 Px (min) + ⁇ e
  • Px7 Px (min) + ⁇ f
  • the maximum value of z in the long cycle unit Lxz or the long cycle unit Lyz is set so as to satisfy 4 ⁇ z ⁇ 1000, preferably 4 ⁇ z ⁇ 100, and more preferably 4 ⁇ z ⁇ 20. Yes.
  • At least one dot group having the long cycle unit Lyz is arranged, and in the second direction D2, the long cycle unit described above is arranged. It is preferable that at least one dot row group having Lxz is arranged.
  • the arrangement arranged at irregular intervals of the pitch Py is defined by replacing the dot arrangement with dots in the arrangement example of the dot arrangement in the second direction D2 arranged at irregular intervals with the different pitch Px described above. Is done.
  • the dots constituting the fine structure of the fine structure layer 12 (12a) are indefinite as described above in both the first direction D1 and the second direction D2.
  • the pitches Px and Py may be arranged at intervals (see FIG. 14), or only one of the first direction D1 and the second direction D2 may be arranged at an indefinite interval pitch as described above, and the other Can also be arranged at regular intervals (see FIG. 16).
  • FIG. 16 is a schematic plan view showing another example of the base material for a semiconductor light emitting device according to the present embodiment. In FIG. 16, dots in the first direction D1 are arranged at an infinite interval pitch, and dot rows in the second direction D2 are arranged at a constant interval pitch.
  • the two-dimensional photonic crystal illustrated in FIGS. 14 and 16 is a two-dimensional photonic crystal formed from non-periodic dots (dot rows).
  • the pattern of dots constituting the two-dimensional photonic crystal may be periodic. Since the periodicity of individual dots is canceled by approximation of the effective medium as described above, the long period unit Lxz is necessary for expressing the effect of the substrate for a semiconductor light emitting device of the present embodiment.
  • the dot period / non-period is not critical.
  • FIG. 17, FIG. 18, FIG. 19 and FIG. 20 are given as examples of periodic dot patterns.
  • adjacent dot rows FIGGS. 19 and 20
  • every other dot row FIGGS. 17 and 18
  • FIGS. 17 to 20 are schematic plan views showing other examples of the substrate for a semiconductor light emitting element according to the present embodiment.
  • the two-dimensional photonic crystal having a dot pattern is composed of at least the first light and the first light in the uniaxial direction of any main surface constituting the semiconductor light emitting device. It is preferable to have a period of 6 times or more of the optical wavelength of the second light different from the period, and specifically, a two-dimensional photonic crystal as shown in FIGS.
  • the period of the two-dimensional photonic crystal is periodic in at least two independent biaxial directions.
  • the two-dimensional photonic crystal is as shown in FIGS.
  • the two-dimensional photonic crystal formed by the density of dots can be a triangular lattice arrangement.
  • the ratio of the pitch of the indefinite interval to the constant interval pitch is specified. It is preferable to be within the range.
  • the ratio of the pitch Px with indefinite intervals to the pitch Pyc with constant intervals is in the range of 85% to 100%. It is preferable that the ratio of the pitch Px of the indefinite interval to the pitch Pyc of the constant interval is 85% or more because the overlap between adjacent dots is reduced. In addition, it is preferable that the ratio of the pitch Px of the indefinite interval to the pitch Pyc of the constant interval is 100% or less because the filling rate of the convex portions 13 constituting the dots is improved. It is more preferable that the ratio of the irregularly spaced pitch Px to the regularly spaced pitch Pyc is in the range of 90% to 95%.
  • one long-period unit Lxz or Lyz is preferable because a long-period fluctuation in the refractive index of light generated in the light-emitting layer moves away from the nano-order and light scattering is likely to occur.
  • the long-period unit Lxz or Lyz is preferably composed of 1001 or less dots (the pitch Px or Py to which it belongs is 1000 or less).
  • a two-dimensional photonic crystal that satisfies the above-described microstructure relationship of the microstructure layer 12 (12a) is formed on the substrate 1 (1a) for a semiconductor light emitting device according to the present embodiment.
  • the light scattering effect is sufficient, and the interval between the dots (the convex portion 13 or the concave portion 14) becomes small, so that an effect of reducing dislocation defects is produced.
  • the dislocation defects in the semiconductor layer are reduced by the nano-order irregularities, and at the same time, the nano-order periodicity is disturbed, and the light scattering property can be strongly expressed against the light emission from the semiconductor layer.
  • the dot shape (uneven structure) constituting the two-dimensional photonic crystal of the fine structure layer 12 (12a) of the substrate 1 for semiconductor light emitting device 1 (1a) according to the present embodiment will be described.
  • the shape of the convex part 13 and the recessed part 14 will not be specifically limited if it is a range with which the effect of this invention is acquired, It can change timely according to a use.
  • the two-dimensional photonic crystal in the present embodiment is configured with a dot interval, but may be configured with a large or small dot diameter.
  • the diameter of each dot is The pitch Py and / or the pitch Px is preferably increased or decreased.
  • the dot diameter Dyn (3 ⁇ n ⁇ 2a) constituting at least four adjacent and m or less pitches.
  • the long period unit Lxz or Lyz is 1 ⁇ m or more, or 6 times or more of the optical wavelength of the first light and the second light emitted from the semiconductor light emitting element.
  • Lxz it is the same also about Lyz.
  • the dot diameter decreases as the distance between adjacent dots increases, and the dot diameter increases as the dot distance decreases. If the increase / decrease range of the dot diameter to be increased / decreased is too large, the adjacent dot comes into contact with the adjacent dots. Within ⁇ 20% of the average dot diameter within the same long period unit Lxz, the light extraction efficiency LEE increases, which is preferable.
  • the volume of the dot is increased or decreased by the long period unit Lxz, and a two-dimensional photonic crystal is configured.
  • the effective medium approximation can be simply expressed by the volume fraction of the dielectric constant distribution, and the dielectric constant is the square of the refractive index. That is, when the volume of the medium changes in the long cycle unit Lxz, the effective refractive index changes in the long cycle unit Lxz.
  • the light scattering property with respect to the emitted light is large.
  • the light extraction efficiency LEE in the semiconductor light emitting device is increased.
  • each of the dot shapes constituting the fine structure of the fine structure layer 12 (12a) in synchronization with the two-dimensional pattern described above. It is preferable that the height of each dot increases or decreases with respect to the pitch Py and / or the pitch Px.
  • the pitch Py is an indefinite interval
  • the dot group constituted by the dot heights Hy1 to Hyn is repeatedly arranged in the long cycle unit Lyz, and the pitch Px is an indefinite interval, at least four adjacent and constitute m or less pitch.
  • the dot height in the second direction Dot group consisting of x1 ⁇ Hxn it is preferably repeatedly arranged in long period units Lxz.
  • the long period unit Lxz or Lyz is 1 ⁇ m or more, or 6 times or more of the optical wavelength of the first light and the second light emitted from the semiconductor light emitting element.
  • Lxz it is the same also about Lyz.
  • FIG. 22 is a schematic diagram illustrating an arrangement example of dots in the second direction D2 of the semiconductor light-emitting element substrate according to the present embodiment.
  • the dot height decreases as the interval between adjacent dots increases, and the dot height increases as the dot interval decreases. If the increase / decrease range of the dot height to be increased / decreased is too large, the unevenness of the light extraction efficiency LEE at that portion becomes large, which is not preferable. Absent. Within ⁇ 20% of the average dot height within the same long period unit Lxz, the light extraction efficiency LEE is preferably increased without unevenness.
  • the volume of the dot is increased or decreased by the long period unit Lxz, and a two-dimensional photonic crystal is configured.
  • the effective medium approximation can be simply expressed by the volume fraction of the dielectric constant distribution, and the dielectric constant is the square of the refractive index. That is, when the volume of the medium changes in the long cycle unit Lxz, the effective refractive index changes in the long cycle unit Lxz.
  • the light scattering property with respect to the emitted light is large.
  • the light extraction efficiency LEE in the semiconductor light emitting device is increased.
  • the above is a case of a two-dimensional photonic crystal having one period in the same main surface. As illustrated in FIG. 11, two-dimensional photons having different periods are formed on any main surface constituting the semiconductor light emitting device. By providing at least two or more nick crystals 102 and 201, the semiconductor light-emitting device of this embodiment can be obtained.
  • FIG. 23 is a schematic plan view of a two-dimensional photonic crystal composed of dots having a long dot interval as in FIG.
  • the long periods constituted by the pitch Py in the D1 direction and the pitch Px in the D2 direction that are orthogonal to each other are different.
  • the period in the D1 direction is 1 ⁇ m or more, or 6 times or more of the optical wavelength of the first light
  • the period in the D2 direction is 1 ⁇ m or more, or the optical wavelength of the second light. It can be set to 6 times or more, and becomes a two-dimensional photonic crystal having two or more different periods in the same main surface.
  • the D1 direction can have a long period suitable for diffraction and scattering of the first light
  • the D2 direction can have a long period suitable for diffraction and scattering of the second light. be able to.
  • FIG. 24 is another schematic plan view of a two-dimensional photonic crystal having two or more periods in the same main surface.
  • two types of long periods overlap the long period of the pitch Py in the D1 direction. Therefore, it becomes possible to form a two-dimensional photonic crystal having a period of 1 ⁇ m or more, or a period of 6 or more times the optical wavelength of the first light and the second light, and the first light and the second light.
  • the pitch Py in the D1 direction and the pitch Px in the D2 direction are the same, but in the semiconductor light emitting device of the present embodiment, they are not necessarily the same and can be changed as appropriate.
  • the long period in the D1 direction and the D2 direction can be changed. 1) Two or more long periods are formed only in the D1 direction, and 1 in the D2 direction. 2) Two or more long periods are formed in the D1 direction and the D2 direction, and only one long period is the same among the long periods.
  • each long period is set to 2 Form one or more.
  • the semiconductor light emitting device of the present embodiment can be obtained by appropriately selecting, for example, forming a long cycle in the D1 direction and the D2 direction, or forming two or more long cycles in the D1 direction. .
  • the pitch Px and the pitch Py are preferably 100 nm or more and 1000 nm or less, respectively.
  • the pitches Px and Py are within this range, nano-order irregularities are provided on the surface of the semiconductor light-emitting element substrate constituting the semiconductor light-emitting device of the present embodiment.
  • a semiconductor layer is provided on the surface, the number of dislocation defects in the semiconductor layer can be reduced.
  • the pitches Px and Py are 100 nm or more, the light extraction efficiency LEE of the semiconductor light emitting device is improved, and the effect of reducing dislocation defects contributing to the improvement of the light emission efficiency appears. Further, when the pitches Px and Py are 1000 nm or less, the effect of reducing the number of dislocation defects is maintained.
  • the semiconductor light emitting element includes a fine structure layer as a constituent element, and the fine structure layer constitutes a two-dimensional photonic crystal.
  • the two-dimensional photonic crystal has a period of 1 ⁇ m or more, or at least two times that is 6 times or more of the optical wavelength of the first light and 6 times or more of the optical wavelength of the second light.
  • the first light is emitted from the semiconductor light emitting element, and the second light is emitted by absorbing at least part of the first light by the wavelength conversion member, and having a wavelength different from that of the first light.
  • the third light, the fourth light,... are present as in the embodiments of FIGS. 5 to 8, the two-dimensional photonic crystal has a light scattering property of 1 ⁇ m or more. It has an optimal period or two or more periods that are six times or more the optical wavelength of each light.
  • a waveguide mode is eliminated by light scattering by providing a two-dimensional photonic crystal composed of a nano-order unevenness (dot) microstructure layer at any interface that forms a semiconductor light emitting device.
  • a two-dimensional photonic crystal composed of a nano-order unevenness (dot) microstructure layer at any interface that forms a semiconductor light emitting device.
  • the same effect will be produced.
  • the behavior of light can be explained by an average refractive index distribution (effective medium approximation), so if the average refractive index distribution in space is calculated, it is as if long-period unit Lxz
  • the plurality of dots act on light as if repeated as one unit. In this way, the plurality of dots arranged in the long-period unit Lxz exhibit a light scattering effect.
  • the light scattering property with respect to the emitted light can be increased, and the light extraction efficiency LEE in the semiconductor light emitting element is increased.
  • the light emission efficiency of the semiconductor light emitting device can be improved. Furthermore, it is possible to provide a semiconductor light emitting device that reduces the angle dependency of the light emission distribution and is easily applicable for industrial use.
  • a semiconductor light emitting device having a two-dimensional photonic crystal of 1 ⁇ m or more, or 6 times or more of the optical wavelength of each light, as shown in the experimental results described later, It has been found that a high light emission efficiency as a semiconductor light emitting device can be obtained as compared with a conventional structure having no period of 6 times or more of the optical wavelength. Furthermore, it was found that there was almost no angle dependency in the light emission characteristics, and it was found that a semiconductor light emitting device suitable for industrial practical use could be obtained.
  • the period of the two-dimensional photonic crystal is preferably 200 times or less. If the period of the two-dimensional photonic crystal exceeds 200 times, the two-dimensional photonic crystal is not sufficiently smaller than the outer shape of the semiconductor light-emitting element constituting the semiconductor light-emitting device. The difference becomes large, which is not preferable. This is because the density of the two-dimensional photonic crystal formed on the semiconductor light emitting element is likely to vary between the semiconductor light emitting elements.
  • the diameter of each dot can be increased or decreased according to the pitch. Since the average refractive index distribution of the space changes depending on the volume fraction of the structural unit, the change in the average refractive index distribution increases as the volume of each dot changes in a plurality of dots in the long period unit Lxz. Even in the same long period unit Lxz, the light scattering effect is further enhanced. This effect becomes more prominent by increasing the dot diameter when the pitch between dots is narrow and decreasing the dot diameter when the dot pitch is wide.
  • the dot height can be increased or decreased according to the pitch between the dots.
  • the pitch between dots when the pitch between dots is narrow, the dot height is increased, and when the pitch between dots is wide, when the dot height is decreased, the average refractive index distribution in the long period unit Lxz is This will increase the light scattering effect.
  • both the diameter of each dot and the height of the dot are increased or decreased according to the pitch, which is described by effective medium approximation.
  • the difference in refractive index distribution is further increased.
  • the dot pitch is narrow, the dot diameter and dot height are increased, and when the dot pitch is wide, the dot diameter and dot height are reduced.
  • the difference in the volume fraction of the structural units is increased, and the light scattering effect is further increased.
  • the material of the base material for the semiconductor light emitting element to be applied is not particularly limited as long as it can be used as the base material for the semiconductor light emitting element.
  • a substrate for a semiconductor light emitting element such as neodymium gallium oxide, lanthanum strontium aluminum tantalum, strontium titanium oxide, titanium oxide, hafnium, tungsten, molybdenum, GaP, or GaAs can be used.
  • a substrate for sapphire GaN, GaP, GaAs, SiC semiconductor light emitting element, or the like.
  • it may be used alone or as a substrate for a semiconductor light emitting element having a heterostructure in which another semiconductor light emitting element base is provided on the semiconductor light emitting element base body using these.
  • the material of the n-type semiconductor layer is not particularly limited as long as it can be used as an n-type semiconductor layer suitable for the semiconductor light-emitting device.
  • elemental semiconductors such as silicon and germanium
  • compound semiconductors such as III-V, II-VI, and VI-VI can be appropriately doped with various elements.
  • the material of the p-type semiconductor layer is not particularly limited as long as it can be used as a p-type semiconductor layer suitable for the semiconductor light emitting device.
  • elemental semiconductors such as silicon and germanium
  • compound semiconductors such as III-V, II-VI, and VI-VI can be appropriately doped with various elements.
  • the material of the transparent conductive film is not particularly limited as long as it can be used as a transparent conductive film suitable for the semiconductor light emitting device.
  • a metal thin film such as a Ni / Au electrode or a conductive oxide film such as ITO, ZnO, In 2 O 3 , SnO 2 , IZO, or IGZO can be applied.
  • ITO is preferable from the viewpoints of transparency and conductivity.
  • the semiconductor light emitting element according to the semiconductor light emitting device of this embodiment will be described.
  • the base material for a semiconductor light emitting element according to the present embodiment described above is included in the configuration.
  • the substrate for a semiconductor light emitting device according to this embodiment it is possible to improve internal quantum efficiency IQE, electron injection efficiency EIE, and light extraction efficiency LEE.
  • the semiconductor light emitting device has, for example, a laminated semiconductor layer formed by laminating at least two semiconductor layers and a light emitting layer on the main surface of the substrate for a semiconductor light emitting device.
  • the laminated semiconductor layer includes two dots including a plurality of convex portions or concave portions extending in the out-of-plane direction (for example, a direction substantially orthogonal to the main surface) from the main surface of the semiconductor layer located on the outermost surface.
  • a two-dimensional photonic crystal is provided, and the two-dimensional photonic crystal corresponds to the two-dimensional photonic crystal structure of the substrate for a semiconductor light emitting device according to the above-described embodiment.
  • the stacked semiconductor layer is as described with reference to FIGS. 9, 10, and 11.
  • the semiconductor layer is not particularly limited as long as it can be used as a semiconductor layer suitable for the semiconductor light emitting device.
  • elemental semiconductors such as silicon and germanium, compound semiconductors such as III-V group, II-VI group, VI-VI group, and the like can be appropriately doped with various elements.
  • an n-type cladding layer and a p-type cladding layer (not shown) can be appropriately provided in the n-type semiconductor layer and the p-type semiconductor layer.
  • the light emitting layer is not particularly limited as long as it has a light emitting characteristic as a semiconductor light emitting element.
  • a semiconductor layer such as AsP, GaP, AlGaAs, InGaN, GaN, AlGaN, ZnSe, AlHaInP, or ZnO can be used as the light emitting layer.
  • the light emitting layer may be appropriately doped with various elements according to characteristics.
  • These laminated semiconductor layers can be formed on the surface of a semiconductor light-emitting element substrate by a known technique.
  • a metal organic chemical vapor deposition method MOCVD
  • HVPE hydride vapor phase epitaxy method
  • MBE molecular beam epitaxy method
  • the method for manufacturing a semiconductor light emitting element according to the present embodiment includes at least the step of providing a semiconductor layer on the substrate for a semiconductor light emitting element of the present embodiment.
  • the n-type semiconductor layer, the light-emitting layer, and the p-type semiconductor layer are formed on the main surface side having the two-dimensional photonic crystal of the base material for the semiconductor light-emitting element having the two-dimensional photonic crystal on the main surface.
  • FIG. 25 is a schematic cross-sectional view showing each step of the method of manufacturing a semiconductor light emitting element according to this embodiment.
  • an n-type semiconductor layer 30, a light-emitting layer 40, and a p-type semiconductor layer 50 are sequentially laminated on the substrate 1 for a semiconductor light-emitting element. Further, a p-electrode layer 60 and a support 70 are sequentially stacked on the p-type semiconductor layer 50.
  • the support 70 a conductive substrate made of Si, Ge, GaAs, Fe, Ni, Co, Mo, Au, Cu, Cu—W, or the like can be used.
  • the laminated semiconductor layer 123 is configured to conduct in a direction perpendicular to the element surface, but may be a parallel electrode type.
  • the support 70 may be an insulating substrate.
  • a metal eutectic such as Au—Sn, Au—Si, Ag—Sn—Cu, Sn—Bi or the like, which is a low melting point metal, or a low melting point metal is not used.
  • An Au layer, a Sn layer, a Cu layer, or the like can also be used.
  • the support 70 may be formed by directly forming a metal layer on the p-electrode layer 60 by plating, sputtering, vapor deposition, or the like. Furthermore, you may provide the back surface electrode which is not shown in the surface which does not face the p electrode layer 60 of the support body 70. As shown in FIG.
  • the two-dimensional photonic crystal 20 is inverted on the separation surface of the n-type semiconductor layer 30 by peeling (lifting off) the semiconductor light-emitting element substrate 1 from the laminated semiconductor layer 123.
  • a semiconductor light emitting device 600 having the photonic crystal 80 is obtained.
  • the structure of the two-dimensional photonic crystal 20 serving as the inversion source is appropriately designed so that the inverted two-dimensional photonic crystal 80 has a structure suitable for the obtained semiconductor light emitting device 600.
  • laser lift-off For example, laser lift-off, chemical lift-off, or the like is employed for peeling the semiconductor light-emitting element substrate 1.
  • the irradiated laser has a wavelength that passes through the semiconductor light emitting element substrate 1 but does not pass through the n-type semiconductor layer 30.
  • chemical lift-off a method of laminating a thin etching layer on the two-dimensional photonic crystal 20 and peeling the substrate 1 for a semiconductor light emitting element by chemical etching can be mentioned.
  • an n-electrode layer 90 is provided on the surface of the n-type semiconductor layer 30 including the two-dimensional photonic crystal 80, as shown in FIG. 25C.
  • the manufacturing method shown below is an example, and the manufacturing method of the base material for semiconductor light emitting elements is not limited to this.
  • FIG. 26 is a schematic explanatory view showing an example of a method for manufacturing the substrate for semiconductor light emitting element 1 (1a) of the present embodiment.
  • the exposure apparatus 400 holds a roll-shaped member 401 coated with a resist layer by a roll holding unit (not shown), and includes a rotation control unit 402, a processing head unit 403, and a moving mechanism unit 404. And an exposure control unit 405.
  • the rotation control unit 402 rotates the roll member 401 around the center of the roll member 401.
  • the processing head unit 403 irradiates a laser beam to expose the resist layer of the roll-shaped member 401.
  • the moving mechanism unit 404 moves the processing head unit 403 at a control speed along the long axis direction of the roll-shaped member 401.
  • the exposure control unit 405 controls a pulse signal for laser exposure by the processing head unit 403 based on a reference signal synchronized with the rotation of the roll-shaped member 401 by the rotation control unit 402.
  • the processing of the roll-shaped member 401 by the exposure apparatus 400 is performed by irradiating a pulse laser from the processing head unit 403 while the roll-shaped member 401 is rotated.
  • the processing head unit 403 is moved along the long axis direction of the roll-shaped member 401 by the moving mechanism unit 404 while irradiating the pulse laser.
  • the pattern 406 is recorded at an arbitrary pitch on the resist layer on the outer peripheral surface of the roll-shaped member 401 in the rotation direction. This is the pitch Py in the first direction D1 in the roll-to-roll nanoimprint mold.
  • the processing head portion 403 is displaced in the long-axis direction.
  • the pitches Py and Px of the pattern 406 are very small on the order of nanometers, so that the first direction when viewed in the major axis direction while maintaining the pitch Py in the first direction D1.
  • a columnar pattern in which the shift amount in the direction D1 is shifted can be formed.
  • the pitches Py and Px of the pattern 406 are very small compared to the circumferential length of the roll-shaped member 401, the first direction D1 and the second direction D2 are substantially orthogonal.
  • the roll-shaped member 401 is a member formed in a cylindrical shape and provided with a rotation shaft, and as a material, a metal, a carbon core, glass, quartz, or the like can be applied. Since the roll-shaped member 401 requires processing accuracy capable of high rotation, the material is preferably a metal, a carbon core, or the like. Furthermore, only the cylindrical surface portion to be laser-exposed can be coated with a different material. In particular, when using a heat-reactive resist, it is preferable to apply a material having a lower thermal conductivity than metal in order to enhance the heat insulation effect, and examples thereof include glass, quartz, oxide, and nitride. It is also possible to use the layer covering the cylindrical surface as an etching layer for etching using a resist layer described later as a mask.
  • the resist that covers the roll-shaped member 401 is not particularly limited as long as it is exposed by laser light, and a photo-curing resist, a light amplification resist, a thermal reaction resist, or the like can be applied.
  • a heat-reactive resist is preferable because a pattern can be formed at a wavelength smaller than the wavelength of laser light.
  • the heat-reactive resist is preferably an organic resist or an inorganic resist.
  • the resist layer formed of these resists may have a single layer structure or a multilayer structure in which a plurality of resist layers are combined.
  • the type of resist to be selected can be changed as appropriate depending on the process, required processing accuracy, and the like.
  • an organic resist can be applied with a roll coater or the like when forming a resist layer that covers the roll-shaped member 401, thereby simplifying the process.
  • it since it is applied on the sleeve, there is a limit to the viscosity of the resist, and it is difficult to apply coating thickness accuracy and control, or to coat multiple layers.
  • the inorganic resist is preferably provided with a resist layer covering the roll-like member 401 by a vapor phase method such as a resistance heating vapor deposition method, an electron beam sputtering method, or a CVD method. Since these methods are basically vacuum processes, it takes a lot of man-hours to form them on the sleeve, but the film thickness can be controlled with high accuracy and can be easily laminated in multiple layers.
  • a vapor phase method such as a resistance heating vapor deposition method, an electron beam sputtering method, or a CVD method. Since these methods are basically vacuum processes, it takes a lot of man-hours to form them on the sleeve, but the film thickness can be controlled with high accuracy and can be easily laminated in multiple layers.
  • the inorganic resist material can be variously selected depending on the reaction temperature.
  • examples of the inorganic resist material include Al, Si, P, Ni, Cu, Zn, Ga, Ge, As, Se, In, Sn, Sb, Te, Pb, Bi, Ag, Au, and alloys thereof.
  • the inorganic resist materials are Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Y, Zr, Nb, Mo.
  • pre-heating for processing the resist at a temperature lower than that at the time of pattern formation may be performed before exposure for forming the following pattern.
  • the pattern resolution at the time of pattern formation can be improved.
  • the details of the mechanism by which the pattern resolution is improved by preheating are unknown, but if the change in the material that forms the resist layer due to the thermal energy of the heat-reactive resist material is based on multiple reactions, the preheating causes a reaction other than the reaction during pattern formation. It is presumed that the pattern formation reaction is simplified and the pattern resolution is improved by terminating in advance.
  • the method of preheating the resist covering the roll-shaped member 401 is not particularly limited, and the output is lower than the method of heating the entire roll-shaped member 401 or patterning the roll-shaped member 401 with a laser. Examples include a method of scanning the entire roll surface and irradiating the resist with thermal energy.
  • the diameter of each dot forming the pattern is The pitch Py and / or the pitch Px is preferably increased or decreased corresponding to the pitch Px.
  • the clear mechanism by which the dot diameter increases or decreases corresponding to the pitch is unknown, but is estimated as follows.
  • the material forming the resist layer is changed by the thermal energy of the laser irradiated to the irradiated portion, and the pattern is formed by changing the etching characteristics.
  • the irradiated heat is not completely used for the change of the resist layer, but a part of the heat is stored and transferred to an adjacent region. Therefore, the heat energy in the adjacent region is added with the heat transfer energy from the adjacent region in addition to the irradiation energy.
  • the contribution of this heat transfer energy cannot be ignored, and the contribution of heat transfer is inversely proportional to the distance between dots forming the pattern, so the resulting pattern diameter is the distance between adjacent dots. Affected by.
  • the inter-dot distance changes due to phase modulation, the above-mentioned contribution of heat transfer energy differs from dot to dot. If the inter-dot distance is wide, the contribution of heat transfer energy becomes small and the dot diameter becomes small. Thus, if the distance between dots is narrow, the contribution of heat transfer energy increases, and the dot diameter increases.
  • the processing depth of the pattern is controlled, as described above, based on the reference signal synchronized with the rotation.
  • the height of each dot forming a pattern is preferably increased or decreased corresponding to the pitch Py and / or the pitch Px.
  • the etching depth increases or decreases according to the dot diameter.
  • the etching depth increases, and when the dot diameter decreases, the etching depth tends to decrease.
  • the etching technique is remarkable in dry etching. This is presumably because the etchant is not exchanged or the etching product is not rapidly removed.
  • the dot diameter decreases when the inter-dot distance is wide, and the dot diameter increases when the inter-dot distance is narrow. Since the etching depth tends to increase or decrease depending on the dot diameter, as a result, when the inter-dot distance is large, the dot depth becomes shallow, and when the inter-dot distance is narrow, the dot depth becomes deep.
  • a roll-to-roll nanoimprint mold may be applied as it is using a resist layer covering roll-shaped member 401, or the surface of roll-shaped member 401 is etched using the resist layer as a mask. A pattern may be formed.
  • the processing depth of the pattern can be freely controlled, and the thickness of the heat-reactive resist layer can be selected to an optimum thickness for processing. That is, the processing depth can be freely controlled by controlling the thickness of the etching layer. Further, since the processing depth can be controlled by the etching layer, the heat-reactive resist layer may be selected to have a thickness that can be easily exposed and developed.
  • the laser used for the processing head unit 403 that performs exposure preferably has a wavelength of 150 nm to 550 nm. Moreover, it is preferable to use a semiconductor laser from the viewpoint of miniaturization of wavelength and availability.
  • the wavelength of the semiconductor laser is preferably 150 nm or more and 550 nm or less. This is because when the wavelength is shorter than 150 nm, the output of the laser becomes small and it is difficult to expose the resist layer covering the roll-shaped member 401. On the other hand, when the wavelength is longer than 550 nm, the laser spot diameter cannot be made 500 nm or less, and it is difficult to form a small exposed portion.
  • gas lasers of XeF, XeCl, KrF, ArF, and F 2 are preferable because the wavelengths are as short as 351 nm, 308 nm, 248 nm, 193 nm, and 157 nm and can be condensed into a very small spot size.
  • a second harmonic, a third harmonic, and a fourth harmonic of an Nd: YAG laser can be used as a laser used for the processing head unit 403.
  • the wavelengths of the second harmonic, third harmonic, and fourth harmonic of the Nd: YAG laser are 532 nm, 355 nm, and 266 nm, respectively, and a small spot size can be obtained.
  • the rotational position accuracy of the roll-shaped member 401 is very high, and the optical of the laser is set so that the surface of the member is first within the depth of focus. Manufacture is easy if the system is adjusted. However, it is very difficult to maintain roll dimensional accuracy and rotational accuracy that are suitable for nanoimprinting. Therefore, it is preferable that the laser used for exposure is focused by the objective lens and the surface of the roll-shaped member 401 is autofocused so that it is constantly present in the depth of focus.
  • Rotation control unit 402 is not particularly limited as long as it is a device having a function of rotating roll-shaped member 401 about the center of the roll, and a spindle motor or the like is suitable, for example.
  • the moving mechanism unit 404 that moves the processing head unit 403 in the major axis direction of the roll-shaped member 401 is not particularly limited as long as the processing head unit 403 can be moved at a controlled speed, and a linear servo motor or the like is preferable. Can be mentioned.
  • the exposure pattern formed on the surface of the roll-shaped member 401 is phase-modulated based on a reference signal synchronized with the rotation of the rotation control unit 402 (for example, the rotation of the spindle motor).
  • the position of the exposure unit is controlled by the exposure control unit 405 based on the pulse signal.
  • the reference signal an output pulse from an encoder synchronized with the rotation of the spindle motor can be used.
  • the pulse signal phase-modulated based on the reference signal synchronized with the rotation can be controlled as follows, for example.
  • FIG. 27 is an explanatory diagram for explaining an example in which the reference pulse signal and the modulation pulse signal are set using the Z-phase signal of the spindle motor as the reference signal in the exposure apparatus for forming the semiconductor light emitting device substrate according to the present embodiment.
  • the relationship between the Z-phase signal of the spindle motor, the reference pulse signal, and the modulation pulse signal will be described with reference to FIGS. 27A to 27C.
  • a pulse signal with a frequency of m times (an integer of m> 2) is a reference pulse signal with a Z-phase signal as a reference, and a pulse signal with a frequency of n times (an integer of m / n> k and k> 1). It becomes a modulated pulse signal. Since both the reference pulse signal and the modulation pulse signal are integer multiples of the frequency of the Z-phase signal, an integer pulse signal exists within the time that the roll-shaped member 401 makes one rotation around the central axis.
  • FIG. 28 is an explanatory diagram for explaining an example in which a phase modulation pulse signal is set from a reference pulse signal and a modulation pulse signal in an exposure apparatus for forming a semiconductor light emitting element substrate according to the present embodiment.
  • the relationship between the reference pulse signal, the modulation pulse signal, and the phase modulation pulse signal will be described with reference to FIG.
  • a phase modulation pulse signal is obtained.
  • the reference pulse frequency fY0 Asin ( ⁇ 0t + ⁇ 0)
  • fYL Bsin ( ⁇ 1t + ⁇ 1)
  • fY Asin ( ⁇ 0t + ⁇ 0 + Csin ( ⁇ 1t)) (9)
  • the phase modulation pulse signal fY ′ can also be obtained by adding a sine wave obtained from the modulation pulse signal to the reference pulse frequency fY0.
  • fY ′ fY0 + C′sin (t ⁇ fYL / fY0 ⁇ 2 ⁇ ) (10)
  • the wavelength LY of the phase modulation pulse signal can be obtained by adding a sine wave obtained from the wavelength LYL of the modulation pulse signal to the pulse wavelength LY0 of the reference pulse.
  • the obtained phase modulation pulse signal is a signal in which the pulse interval of the reference pulse signal is periodically increased or decreased according to the signal interval of the modulation pulse signal.
  • a sine wave obtained from a modulation pulse signal having two periods is added to the reference pulse frequency fY0 to obtain a phase modulation pulse signal fY ′′.
  • the two modulation frequencies fYL in Expression (11). , FYL ′ are two long periods in the semiconductor light emitting device of the present embodiment.
  • the modulation pulse signal is adjusted so as to have a long period of 1 ⁇ m or more, or 6 times or more of the optical wavelength of the first light and 6 times or more of the optical wavelength of the second light. Control to obtain a phase modulated pulse signal.
  • the pulse signal of the laser exposure by the processing head unit 403 is controlled using the reference pulse signal having a constant frequency, not the phase-modulated pulse signal, and the processing head unit 403 of the moving mechanism unit 404 is controlled. It is good also as a structure which increases / decreases a moving speed periodically. In this case, for example, as shown in FIG. 29, the moving speed of the machining head unit 403 is periodically increased or decreased.
  • FIG. 29 is an explanatory diagram illustrating an example of the moving speed of the processing head unit that irradiates the laser beam in the exposure apparatus that forms the substrate for a semiconductor light emitting device according to the present embodiment.
  • the movement speed illustrated in FIG. 29 is an example of the movement speed of the reference movement speed ⁇ ⁇ .
  • This moving speed is preferably synchronized with the rotation of the roll-shaped member 401.
  • the moving speed is controlled so that the speed in the Z-phase signal becomes the speed shown in FIG.
  • the pattern 406 (see FIG. 26) is controlled by periodic phase modulation, but the pattern 406 can also be formed by random phase modulation instead of periodic.
  • the pitch Py is inversely proportional to the pulse frequency. Therefore, when random frequency modulation is performed on the pulse frequency so that the maximum phase shift is 1/10, the pitch Py is 1 / of the pitch Py. It is possible to obtain a pattern having ten fluctuation ranges ⁇ 1 (maximum fluctuation range) with the pitch Py increasing or decreasing randomly.
  • the modulation pulse signal may be controlled by a reference signal having a frequency of a plurality of times such as every roll, or only by the initial reference signal set at the initial stage of exposure. May be.
  • the control is performed only with the initial reference signal
  • the rotation number of the rotation control unit 402 is modulated
  • the exposure pulse signal is phase-modulated. This is because nano-order rotation control is performed, and even a slight potential fluctuation of the rotation control unit 402 causes nano-order pitch fluctuation and is integrated.
  • a pattern pitch of 500 nm pitch if the roll outer peripheral length is 250 mm, the laser exposure is 500,000 times, and even if the deviation is 1 nm every 10,000 times, the deviation is 50 nm.
  • the fine structure having the arrangement shown in FIGS. 14 and 17 can be created by adjusting the control frequency of the reference signal.
  • the control frequency of the reference signal is lowered, and when the fine structure having the arrangement shown in FIG. 17 is formed, the control frequency of the reference signal is increased.
  • the phase (position) of the corresponding dot in the second direction is aligned, and in the arrangement shown in FIG. 14, the phase (position) of the corresponding dot in the second direction is shifted.
  • Arise The arrangement relationship shown in FIGS. 16 and 18 is the same.
  • the exposure apparatus 400 develops the roll-shaped member 401 on which the resist layer provided on the surface is exposed, and etches the etching layer by dry etching using the developed resist layer as a mask. When the residual resist layer is removed after etching, a roll-to-roll nanoimprint mold can be obtained.
  • the pattern 406 obtained as described above is not particularly limited as a method for transferring the pattern 406 to a predetermined substrate for a semiconductor light emitting element to obtain a substrate for a semiconductor light emitting element.
  • the pattern 406 can be transferred to the semiconductor light emitting device substrate by transferring the pattern onto the surface of the semiconductor light emitting device substrate and etching the semiconductor light emitting device substrate by dry etching using the transfer pattern portion as a mask.
  • the roll-shaped member 401 on which the pattern 406 is formed is used as a cylindrical mold (roll-to-roll nanoimprint mold).
  • a resist layer made of an organic material is formed on the surface side of the substrate for a semiconductor light emitting element, a cylindrical mold is pressed against the resist layer, and the pattern 406 is transferred to the resist layer.
  • a fine concave structure layer can be formed on the surface side of the substrate for a semiconductor light emitting element, and a substrate for a semiconductor light emitting element can be obtained.
  • the pattern 406 is once transferred to a film to form a resin mold, and then the resin mold is used.
  • a method of obtaining a substrate for a semiconductor light emitting device by forming a pattern on the substrate for a semiconductor light emitting device by a nanoimprint lithography method may also be mentioned. According to this method, the mold utilization efficiency can be increased and the flatness of the semiconductor light emitting device substrate can be absorbed. Therefore, as a method for transferring the pattern to the semiconductor light emitting device substrate, a nanoimprint lithography method using a resin mold is used. More preferred.
  • the method for transferring the pattern 406 from the cylindrical mold to the resin mold is not particularly limited, and for example, a direct nanoimprint method can be applied.
  • a direct nanoimprint method thermal nanoimprint is performed by filling the pattern 406 of the cylindrical mold with a thermosetting resin while heating at a predetermined temperature, releasing the cured thermosetting resin after cooling the cylindrical mold, and transferring it.
  • the photocurable resin filled in the cylindrical mold pattern 406 is irradiated with light of a predetermined wavelength to cure the photocurable resin, and then the cured photocurable resin is released from the cylindrical mold. And photo-nanoimprinting method for transfer.
  • cylindrical mold (roll-shaped member 401) is a seamless cylindrical mold, it is particularly suitable for continuously transferring a resin mold by roll-to-roll nanoimprint.
  • an electroformed mold is produced by electroforming from a resin mold to which the pattern 406 is transferred, and a pattern is formed by nanoimprint lithography using this electroformed mold.
  • the electroformed mold it is preferable in terms of extending the life of the cylindrical mold as the original mold, and even in the method of forming the electroformed mold once, the flatness of the substrate for the semiconductor light emitting element can be absorbed.
  • a method of forming a resin mold is preferred.
  • the resin mold method is preferable because repeated transfer is easy.
  • “repetitive transfer” means (1) producing a plurality of transferred concavo-convex pattern transfer products from a resin mold (+) having a concavo-convex pattern shape, or (2) a curable resin composition in particular.
  • a transfer material When used as a transfer material, obtain an inverted transfer body (-) from the resin mold (+), and then use the transfer body (-) as a resin mold (-) to obtain an inverted transfer body (+).
  • (+) indicates a male type
  • (-) indicates a female type.
  • a pattern is formed on the surface side of the substrate for a semiconductor light emitting element by the resist layer, and then irregularities are formed on the substrate for the semiconductor light emitting element by etching using the resist layer as a mask.
  • the etching method is not particularly limited as long as irregularities can be formed on the substrate for a semiconductor light emitting device using the resist layer as a mask, and wet etching, dry etching, and the like can be applied.
  • the dry etching method is preferable because the unevenness of the substrate for a semiconductor light emitting device can be formed deeply.
  • anisotropic dry etching is preferable, and ICP-RIE and ECM-RIE are preferable.
  • the reaction gas used for dry etching is not particularly limited as long as it reacts with the material of the substrate for a semiconductor light emitting device, but BCl 3 , Cl 2 , CHF 3 , or a mixed gas thereof is preferable, and appropriately , Ar, O 2 and the like can be mixed.
  • a pattern is transferred to the surface of a predetermined transparent conductive film by nanoimprint lithography, and the pattern 406 is formed into a transparent conductive film by etching the transparent conductive film by etching using the transfer pattern portion as a mask. Can be transferred.
  • a film having a refractive index substantially equivalent to that of the transparent conductive film is formed on the surface of the transparent conductive film, and the pattern 406 is transferred to the film in the same manner as described above, so that the semiconductor in the semiconductor light emitting device of this embodiment A light emitting element can be obtained.
  • Example 1 Cylindrical mold production (preparation of resin mold production mold)
  • a cylindrical quartz glass roll having a diameter of 80 mm and a length of 50 mm was used as the substrate for the semiconductor light emitting device of the cylindrical mold.
  • a fine structure fine concavo-convex structure was formed on the surface of this cylindrical quartz glass roll by the direct drawing lithography method using a semiconductor pulse laser by the following method.
  • a resist layer was formed on the fine structure of the quartz glass surface by a sputtering method.
  • the sputtering method was performed using CuO as a target (resist layer) with a power of RF 100 W.
  • the film thickness of the resist layer after film formation was 20 nm.
  • the target pitch Py and the effective pitch Py ′ are Py ⁇ Py ′, but since L / Py ⁇ 10 7 ,
  • / Py′ ⁇ 10 ⁇ 7 , which is substantially Can be treated as equivalent to Similarly, for the long period unit PyL, the effective long period unit PyL ′ is obtained by the following equation (14) so that L / PyL is an integer. L / PyL ′ n (n is an integer) (14)
  • the pulse frequency fy at the elapsed time t from the Z-phase signal of the spindle motor is determined as in equation (17).
  • fy fy0 + ⁇ 1 ⁇ sin (t ⁇ (fyL / fy0) ⁇ 2 ⁇ ) (17)
  • Vx Vx0 + V ⁇ 2 ⁇ sin (Px / PxL ⁇ t ⁇ 2 ⁇ ) (19)
  • V ⁇ 2 is a speed fluctuation width in the long cycle unit PxL in the x-axis direction
  • the following formula is obtained by the pitch fluctuation width ⁇ 2 in the long cycle unit PxL, the pitch Px in the X-axis direction, and the reference feed speed Vx0 in the axial direction.
  • V ⁇ 2 ⁇ 2 ⁇ Vx0 / Px
  • Durasurf registered trademark, the same applies hereinafter
  • HD-1101Z (Daikin Chemical Industry Co., Ltd.) was applied to the obtained two types of cylindrical quartz glass roll surfaces (transfer mold) and heated at 60 ° C. for 1 hour. Then, it was left still at room temperature for 24 hours and fixed. Thereafter, it was washed 3 times with Durasurf HD-ZV (manufactured by Daikin Chemical Industries, Ltd.) and subjected to mold release treatment.
  • a reel-shaped resin mold was produced from the obtained cylindrical mold.
  • OPTOOL registered trademark, hereinafter the same
  • DAC manufactured by Daikin Industries
  • trimethylolpropane triacrylate manufactured by Toagosei Co., Ltd., M350
  • Irgacure registered trademark, hereinafter the same
  • Ciba manufactured by Ciba
  • this photo-curing resin is applied to the easily adhesive surface of a PET film (A4100, manufactured by Toyobo Co., Ltd .: width 300 mm, thickness 100 ⁇ m) by microgravure coating (manufactured by Yasui Seiki Co., Ltd.) so that the coating film thickness becomes 6 ⁇ m. Applied.
  • a PET film coated with a photocurable resin is pressed against a cylindrical mold (cylindrical mold) with a nip roll (0.1 MPa), and integrated in the air at a temperature of 25 ° C. and a humidity of 60% under the center of the lamp.
  • UV curing is performed continuously using a UV exposure device (H bulb, manufactured by Fusion UV Systems Japan Co., Ltd.), and the surface has a fine structure.
  • a reel-shaped transparent resin mold (length 200 m, width 300 mm) that was reversely transferred was obtained.
  • Resin mold A X-axis direction pitch Px: 398 nm Variation width ⁇ 2 with respect to pitch Px in the X-axis direction: 40 nm Long period unit PxL in the X-axis direction of the fluctuation range ⁇ 2: 3.98 ⁇ m Y-axis direction pitch Py: 460 nm Variation width ⁇ 1: 46 nm with respect to the pitch Py in the Y-axis direction Long period unit PyL in the Y-axis direction of the fluctuation width ⁇ 1: 4.60 ⁇ m
  • Resin mold B X-axis direction pitch Px: 398 nm Variation width ⁇ 2 with respect to pitch Px in the X-axis direction: 40 nm Long period unit PxL in the X-axis direction of the fluctuation width ⁇ 2: 1.99 ⁇ m Y-axis direction pitch Py: 460 nm Variation width ⁇ 1: 46 nm with respect to the pitch Py in the Y-axis direction Long period unit
  • This photo-curing resin was applied to the easily adhesive surface of a PET film (A4100, manufactured by Toyobo Co., Ltd .: width 300 mm, thickness 100 ⁇ m) by microgravure coating (manufactured by Yurai Seiki Co., Ltd.) so as to have a coating film thickness of 2 ⁇ m.
  • a PET film coated with a photocurable resin is pressed onto the reel-shaped resin mold with a nip roll (0.1 MPa), and the integrated exposure amount under the center of the lamp is 600 mJ in the air at a temperature of 25 ° C. and a humidity of 60%. / Cm 2 , UV curing is performed using a UV exposure device (Fusion UV Systems Japan Co., Ltd., H bulb), and photocuring is performed continuously. Resin mold A and resin mold B are formed on the surface. The sheet-like transparent resin mold A and the sheet-like transparent resin mold B (length: 200 mm, width: 300 mm) were obtained.
  • a mask material was applied by spin coating (2000 rpm, 20 seconds) onto a substrate for a C-plane sapphire semiconductor light-emitting element having a ⁇ 2 ”thickness of 0.33 mm, and a resist layer was formed.
  • Photosensitive resin composition As the photosensitive resin composition, 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane (OXT-221, manufactured by Toagosei Co., Ltd.) 20 parts by weight, 3 ′, 4′- Epoxycyclohexanecarboxylic acid 3,4-epoxycyclohexylmethyl (manufactured by Wako Pure Chemical Industries) 80 parts by weight, phenoxydiethylene glycol acrylate (Aronix (registered trademark, hereinafter the same) M-101A, manufactured by Toagosei Co., Ltd.) 50 parts by weight, ethylene oxide modified 50 parts by weight of bisphenol A diacrylate (Aronix M-211B, manufactured by Toa Gosei Co., Ltd.), 8 parts by weight of DTS-102 (manufactured by Midori Chemical Co., Ltd.), 1,9-dibutoxyanthracene
  • the transparent resin mold B was cut into 70 mm ⁇ 70 mm ( ⁇ 70 mm) and bonded onto the sapphire semiconductor light-emitting element substrate on which the resist layer was formed.
  • a film bonding apparatus (TMS-S2) manufactured by Suntech Co., Ltd. was used, and bonding was performed with a bonding nip force of 90 N and a bonding speed of 1.5 m / s.
  • the pasted and integrated transparent resin mold / resist layer / sapphire semiconductor light emitting element substrate was sandwiched between two transparent silicone plates (hardness 20) of 70 mm ⁇ t10 mm.
  • GaN low-temperature buffer layer (2) n-type GaN layer, (3) n-type AlGaN cladding layer, (4) InGaN light-emitting layer (MQW) on the obtained sapphire semiconductor light-emitting element substrate by MOCVD (5)
  • a p-type AlGaN cladding layer, (6) a p-type GaN layer, and (7) an ITO layer were successively laminated.
  • Irregularities on the substrate for a sapphire semiconductor light-emitting element were (2) film-forming conditions for filling and planarizing when the n-type GaN layer was laminated.
  • a mask material was applied to the ITO layer formed on the surface by a spin coating method (2000 rpm, 20 seconds) to form a resist layer.
  • a coating solution was prepared by diluting with a propylene glycol monomethyl ether so that the solid content of the photosensitive resin composition was 5% by weight.
  • the transparent resin mold A was cut into 70 mm ⁇ 70 mm ( ⁇ 70 mm) and pasted on the ITO on which the resist layer was formed.
  • a film bonding apparatus (TMS-S2) manufactured by Suntech Co., Ltd. was used, and bonding was performed with a bonding nip force of 90 N and a bonding speed of 1.5 m / s.
  • the transparent resin mold / resist layer / ITO layer / laminated semiconductor layer / sapphire semiconductor light-emitting device base material bonded and integrated was sandwiched between two transparent silicone plates (hardness 20) of 70 mm ⁇ t10 mm.
  • the optical wavelength in the ITO layer (refractive index: 2.0) with respect to 460 nm emitted from the semiconductor layer of the ITO layer was 230 nm. Further, the electrode pad was attached by etching.
  • the semiconductor light emitting device obtained as described above was placed in a package and electrically connected to the electrode pad via an Au wire. Next, the inside of the package was filled with a wavelength conversion member in which CaAlSiN 3 : Eu (fluorescent material) having a dominant wavelength of 650 nm was mixed with silicone resin.
  • Example 1 shows the light emission output ratio when the light emission output from the semiconductor light emitting device of Comparative Example 1 is 1.
  • Example 1 as compared with Comparative Example 1, it was found that no variation specific to diffraction was observed in the light emission from the semiconductor light emitting element, and there was almost no emission angle dependency.
  • Cylindrical mold C Semiconductor laser wavelength for exposure: 405 nm Exposure laser power: 3.5mW Pitch Px in the X axis direction: 260 nm Variation width ⁇ 2 with respect to pitch Px in the X-axis direction: 26 nm Long period unit PxL1 in the X-axis direction of the fluctuation width ⁇ 2: 2.60 ⁇ m Y-axis direction pitch Py: 300 nm Variation width ⁇ 1: 30 nm with respect to pitch Py in the Y-axis direction Long cycle unit PyL1 in the Y-axis direction of the fluctuation width ⁇ 1: 2.60 ⁇ m Long-period unit PyL2 in the Y-axis direction of the fluctuation width ⁇ 1: 1.30 ⁇ m
  • the target pitch Py and the effective pitch Py ′ are Py ⁇ Py ′, but since L / Py ⁇ 10 7 ,
  • L / PyL1 ′ n (n is an integer) (21)
  • L / PyL2 ′ m (m is an integer) (22)
  • the reference pulse frequency fy0 and the modulation frequency fyL are calculated by the equations (15), (23), and (24).
  • fy0 s / Py ′
  • fyL1 s / PyL1 ′
  • fyL2 s / PyL2 ′
  • the pulse frequency fy at the elapsed time t from the Z-phase signal of the spindle motor is determined as the equation (25).
  • fy fy0 + ⁇ 1 ⁇ sin (t ⁇ (fyL1 / fy0) ⁇ 2 ⁇ + t ⁇ (fyL2 / fy0) ⁇ 2 ⁇ ) (25)
  • Resin mold C Semiconductor laser wavelength for exposure: 405 nm Exposure laser power: 3.5mW Pitch Px in the X axis direction: 260 nm Variation width ⁇ 2 with respect to pitch Px in the X-axis direction: 26 nm Long period unit PxL1 in the X-axis direction of the fluctuation width ⁇ 2: 2.60 ⁇ m Y-axis direction pitch Py: 300 nm Variation width ⁇ 1: 30 nm with respect to pitch Py in the Y-axis direction Long cycle unit PyL1 in the Y-axis direction of the fluctuation width ⁇ 1: 2.60 ⁇ m Long-period unit PyL2 in the Y-axis direction of the fluctuation width ⁇ 1: 1.30 ⁇ m
  • the pattern of the resin mold C was transferred to the surface of the base material for the sapphire semiconductor light emitting device to produce a semiconductor light emitting device.
  • the semiconductor light emitting device obtained as described above was placed in a package and electrically connected to the electrode pad via an Au wire.
  • the inside of the package was filled with a wavelength conversion member in which CaAlSiN 3 : Eu (fluorescent material) having a dominant wavelength at 650 nm and ⁇ -SiAlON: Eu (fluorescent material) having a dominant wavelength at 530 nm were mixed in silicone resin.
  • Table 4 shows the light emission output ratio of Example 2 at 20 mA. As in Example 1, no luminescence with glare peculiar to diffraction was observed, and there was almost no emission angle dependency.
  • Example 3 A semiconductor light emitting device similar to that of Example 2 was placed in a package and electrically connected to the electrode pad via an Au wire. Next, the inside of the package was filled with a wavelength conversion member in which a fluorescent material having the following main wavelength was mixed with silicone resin. 530 nm ⁇ -SiAlON: Eu 580 nm Ca- ⁇ -SiAlON: Eu 650 nm CaAlSiN 3 : Eu
  • Table 4 shows the light emission output ratio of Example 3 at 20 mA.
  • Example 3 as in Example 1 and Example 2, no luminescence with glare peculiar to diffraction was observed, and there was almost no emission angle dependency.
  • Example 2 In the same manner as in Example 1, a nano-patterned fine structure (fine concavo-convex structure) was formed on the quartz glass surface by a direct writing lithography method using a semiconductor laser.
  • the pitches in the X-axis direction and the Y-axis direction are the same, and the hexagonal array has no pitch variation.
  • Example 2 Thereafter, a semiconductor light emitting device was formed by the same method as in Example 1, and the light emission output was measured. In light emission from the obtained semiconductor light emitting device, diffracted light peculiar to the diffraction structure was strongly observed, and the light emission angle distribution was large.
  • Example 2 Thereafter, a semiconductor light emitting device was formed by the same method as in Example 1, and the light emission output was measured. In light emission from the obtained semiconductor light emitting device, diffracted light peculiar to the diffraction structure was strongly observed, and the light emission angle distribution was large.
  • the optical wavelength had a period of 6 times or more and two or more periods.
  • Table 4 shows the light emission output ratio of each sample when the output of Comparative Example 1 is 1. From Table 4, according to the semiconductor generator according to the present embodiment (Examples 1 to 3), the conventional flat substrate for a sapphire semiconductor light emitting device (Comparative Example 1), 6 times the conventional optical wavelength The number of dislocation defects in the semiconductor layer formed on the sapphire semiconductor light-emitting element substrate is reduced as compared to the base material for sapphire semiconductor light-emitting element (Comparative Example 2) having a two-dimensional photonic crystal without the above period. In addition, the light extraction efficiency can be improved by eliminating the waveguide mode by light scattering caused by the irregular pattern with disordered periodicity, and thus a semiconductor light emitting device having high light emission efficiency can be obtained. all right. Further, it is found that there is almost no angle dependency in the light emission characteristics from the light emitting element, which is a light emitting element suitable for industrial practical use.
  • the angle dependency was evaluated as x when the light emission state at 20 mA was visually observed and strong light emission was observed at a specific angle, or when the light emission color changed depending on the observation angle, as the angle dependency was strong.
  • Example 4 (Formation of laminated semiconductor) (1) GaN low-temperature buffer layer, (2) n-type GaN layer, (3) n-type AlGaN cladding layer, (4) InGaN light-emitting layer (MQW), (5) ) A p-type AlGaN cladding layer, (6) a p-type GaN layer, and (7) an ITO layer were successively laminated.
  • MQW InGaN light-emitting layer
  • a mask material was applied to the ITO layer formed on the surface by a spin coating method (2000 rpm, 20 seconds) to form a resist layer.
  • a coating solution was prepared by diluting with a propylene glycol monomethyl ether so that the solid content of the photosensitive resin composition was 5% by weight.
  • the transparent resin mold C was cut into 70 mm ⁇ 70 mm ( ⁇ 70 mm) and pasted on the ITO on which the resist layer was formed.
  • a film bonding apparatus (TMS-S2) manufactured by Suntech Co., Ltd. was used, and bonding was performed with a bonding nip force of 90 N and a bonding speed of 1.5 m / s.
  • the pasted and integrated transparent resin mold / resist layer / ITO layer / laminated semiconductor layer / sapphire semiconductor light emitting device substrate was sandwiched between two transparent silicone plates (hardness 20) of 70 mm ⁇ t10 mm.
  • the semiconductor light emitting device obtained as described above was placed in a package and electrically connected to the electrode pad via an Au wire.
  • the surface of the microstructure layer is sealed with a silicone resin (refractive index of 1.53) as an intermediate material so as to cover only the surface of the microstructure layer of the semiconductor light emitting element disposed in the package, and then The silicone resin was cured.
  • the inside of the package was filled with a wavelength conversion member in which a silicone resin (refractive index) as a first material and a fluorescent material having the following main wavelength were mixed.
  • the average particle size of the fluorescent material used was 200 nm.
  • CaAlSiN 3 Eu
  • Example 5 When the semiconductor light-emitting device obtained in the same manner as in Example 4 was sealed in a package, CaAlSiN 3 : Eu (fluorescent material) having a dominant wavelength of 650 nm in the silicone resin (refractive index of 1.5) used in Example 4 ) was mixed only with the wavelength conversion member mixed.
  • Table 5 shows the light emission output ratio of each sample when the output of Comparative Example 4 is 1. From Table 5, Example 4 in which a silicone resin as an intermediate material is interposed between the fine structure layer and the wavelength conversion member is more semiconductor than Example 5 in which the fine structure layer is formed in contact with the wavelength conversion member. Since the waveguide mode in the light emitting element can be eliminated, the scattering property of fluorescent light can be increased, and the light extraction efficiency can be increased, a semiconductor light emitting element having high light emission efficiency can be obtained. Furthermore, by forming a two-dimensional photonic crystal having two different periods, the waveguide mode is eliminated and the scattering property is increased, so that it is possible to obtain a semiconductor light emitting device with further improved light extraction efficiency. The light emitting device is suitable for industrial use.
  • the internal quantum efficiency IQE is improved in the emitted light by reducing the number of dislocation defects in the semiconductor layer by the fine structure layer provided in the semiconductor light emitting element, and the emitted light In fluorescence, the waveguide mode is eliminated by light scattering, and the light extraction efficiency LEE can be increased. Furthermore, it is possible to efficiently convert the wavelength of primary light emitted from the semiconductor light emitting device efficiently. With these effects, the final light emission efficiency of the semiconductor light emitting device can be improved, and furthermore, the angle dependency of the light emission distribution can be reduced, so that it can be easily applied to industrial practical uses. In addition, the semiconductor light emitting device of the present invention has high luminous efficiency, can effectively use electric power, and can greatly contribute to energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

 少なくとも2層以上の半導体層(103)(105)と、発光層(104)とを積層して構成される積層半導体層(110)を有し、第一の光を発光する半導体発光素子(100)と、少なくとも半導体発光素子(100)の一部を覆い、第一の光の少なくとも一部を吸収し、第一の光の波長とは異なる第二の光を発光する波長変換部材とで構成されており、半導体発光素子(100)は、半導体発光素子(100)を構成するいずれかの主面において、面外方向に延在する複数の凸部又は凹部から構成されるドットを含む微細構造層を構成要素として備え、微細構造層は、少なくともドット間のピッチ、ドット径又はドット高さのいずれかにより制御された二次元フォトニック結晶(102)を構成し、二次元フォトニック結晶(102)は少なくとも、各々1μm以上の2つ以上の周期を有することを特徴とする半導体発光装置。

Description

半導体発光装置
 本発明は、半導体発光素子と波長変換部材とを有して構成される半導体発光装置に関する。
 半導体層を利用した半導体発光素子である発光ダイオード(LED)は、従来の蛍光灯や白熱球等の旧来の発光装置に比較し、小型で電力効率が高い、オンオフ応答性が速い等の特性を有し、かつ、全て固体で構成されているため振動に強く機器寿命が長い等の多くの利点を有している。
 またLEDは、発光中心波長が単一であるが、各種光源として使用するためには、単一波長ではその使用用途に制限ができることから、発光光源としては、白色光が求められる。
 例えば、特許文献1には、青色LEDと、その発光光を吸収して黄色の蛍光を発する蛍光材とを組み合わせ、黄色光と、吸収されなかった青色光とを混合して白色光を生成する半導体発光デバイスに関する発明が開示されている。
 また特許文献2には、UV光~紫色光の1次光を放射する発光ダイオードチップと、蛍光材層が分散された透明樹脂層とを有する白色LEDランプに関する発明が開示されている。1次光が透明樹脂層を透過して蛍光材層に到達すると、蛍光材層中の蛍光材粉末が青色光、緑色光、黄色光及び赤色光等の光(2次光)を放射し、この際、各色の2次光を混合した光の色が白色になるように定められている。
 特許文献3には、半導体発光装置の一構成である半導体発光素子に関する発明が開示されている。特許文献3では、マイクロオーダーの凹凸パターンを、LEDを構成する基板表面に設け、発光層での光の導波方向を変えて、光取り出し効率を向上させるとしている。なお特許文献3に記載された発明においても、半導体発光素子の表面にYAGを含んだ蛍光材を樹脂と混合させて形成することで、光取り出し効率の高い白色発光装置を得ることができるとしている(特許文献3の[0077]欄等参照)。
 特許文献4には、半導体発光素子の発光露出面に凹凸構造を形成し、蛍光体を含んだコーティング層でコーティングすることにより、光取り出し効率の高い発光装置に関する発明が開示されている。
 さらに、特許文献5には、発光層を含む積層半導体層上に、表面に凹凸構造が形成された樹脂材からなる光取り出し層を設けた半導体発光装置が開示されている。
 また特許文献6には、基板にナノサイズのパターンを設け、且つ、そのパターンにマイクロオーダーの長周期を設けた半導体発光素子用基材及び半導体発光素子に関する発明が開示されている。特許文献6によれば、LED製造時のエピタキシャル成長における結晶欠陥転位を抑制し、LEDの内部量子効率を上げることができ、且つ、マイクロオーダーの長周期が設けられることで光取り出し効率も上がり、結果として、内部量子効率と光取り出し効率の積で定義される外部量子効率が向上するとしている。
特開2004-15063号公報 特開2013-38447号公報 特開2003-318441号公報 特開2008-205511号公報 特開2007-35967号公報 国際公開第2013/031887号パンフレット
 しかしながら従来では、特許文献3から特許文献6に記載された、凹凸パターンを備えた半導体発光素子を、特許文献1や特許文献2に記載された発光光と蛍光とが発光される白色発光装置に適用した際に、白色発光装置の発光効率を向上させることが可能な構成について何ら言及がなされていなかった。
 また特許文献3に示すように、LED単体の発光効率を向上させるために、マイクロオーダーの凹凸パターンを、LEDを構成する基板表面に設ける技術が広く適用されている。
 LEDの発光効率を示す外部量子効率EQE(External Quantum Efficieney)を決定する要因として、電子注入効率EIE(Electron Injection Efficiency)、内部量子効率IQE(Internal Quantum Efficiency)及び光取り出し効率LEE(Light Extraction Efficiency)が挙げられる。このうち、内部量子効率IQEは、GaN系半導体結晶の結晶不整合に起因する転位密度に依存する。また光取り出し効率LEEは、基板に設けられた凹凸パターンによる光散乱により、GaN系半導体結晶内部の導波モードを崩すことで改善される。
 すなわち、半導体発光素子に設けられた凹凸パターンの役割(効果)としては、(1)半導体結晶内の転位低減による内部量子効率IQEの改善、(2)導波モードを解消することによる光取り出し効率LEEの改善が挙げられる。
 しかしながら、特許文献3に記載の技術では、(2)の効果による光取り出し効率LEEの改善はなされるが、(1)の転位低減の効果は少ないと考えられる。半導体発光素子用基材の表面に凹凸を設けることで、転位欠陥が減少する理由は、凹凸によりGaN系半導体層のCVD成長モードが乱され、層成長に伴う転位欠陥が衝突して消滅するためである。そのため、欠陥数に相当するだけの凹凸パターンが存在すれば欠陥減少には効果的であるが、欠陥数よりも少ない凹凸パターンの数では、転位低減の効果は限定される。例えば、転位密度1×10個/cmは、ナノオーダーに換算すると10個/μmに相当し、転位密度1×10個/cmは、1個/μmに相当する。5μm×5μm(□5μm)に2個程度の凹凸パターンを設けると、凹凸パターン密度は、0.08×10個/cmとなり、500nm×500nm(□500nm)に2個程度の凹凸パターンを設けると、凹凸パターン密度は、8×10個/cmとなる。このように、凹凸パターンのサイズをナノオーダーのピッチとすると、転位密度の低減に大きな効果がある。
 しかしながら、凹凸パターン密度が細かくなると、光に対する散乱効果が減少し、(2)の導波モード解消の効果が減る問題があった。
 そこで、特許文献6に記載の技術では、基板にナノサイズの凹凸パターンを設け、且つ、そのパターンにマイクロオーダーの長周期を設け、LEDの外部量子効率EQEを向上させている。
 この技術においては、上記したような、LED製造時のエピタキシャル成長における結晶欠陥転位をナノサイズの凹凸パターンで抑制し、LEDの内部量子効率IQEを上げている。さらに、ナノサイズの凹凸パターンの配置に、マイクロオーダーの長周期が設けられることで光取り出し効率LEEも上がり、結果として、内部量子効率IQEと光取り出し効率LEEの積で定義される外部量子効率EQEを向上させることが可能になる。
 しかしながら、上記した技術は、LEDそのものの発光効率の向上を図ることを主眼に置いており、上記した技術を適用したLEDを利用して、特許文献1、あるいは、特許文献2に記載されているように、発光光と蛍光とが発光される白色発光装置に適用した場合、単色発光の効率に比べ、効率が低下する問題があった。さらには、白色光の色ムラが観察される問題もあった。特に、照明用途の場合、白色発光装置の発光分布としては、角度依存性が少なく、可視光全波長においてランバーシアン型の発光分布が必要とされる。
 上記問題は、次のように解釈される。LEDに設けられたマイクロオーダーの長周期構造は、発光光に適するように設定されている。このため、蛍光材が発光光の一部を吸収し、発光光とは異なる波長の蛍光が発光された際に、十分な光散乱性が機能しないと考えられる。その結果、蛍光に対する光取り出し効率が、発光光よりも低下するため、白色発光装置からの白色光全体の効率が向上しない。さらには、上記と同様に発光光と蛍光とで光散乱性が異なるため、角度分布が異なり、結果として、可視光全波長における角度依存性が観察される。
 また、特許文献4に記載された、半導体発光素子の発光露出面に凹凸構造を備えた半導体発光素子を、蛍光体を含んだコーティング層でコーティングしてなる半導体発光装置においては、半導体発光素子からの一次発光光の光取り出し効率は向上するが、蛍光体からの蛍光光の光取り出し効率については、なんら効果を見いだせるものではなかった。
 同様に、特許文献5に記載された半導体発光装置においても、半導体発光素子からの一次発光光に対する光取り出し効率の向上効果を開示しているが、蛍光体からの蛍光光の光取り出し効率については、何ら効果を見出していない。
 さらに、特許文献2に記載のナノ粒子の蛍光体を含むコーティング層を用いて、半導体発光素子の発光露出面に凹凸構造を備えた半導体発光素子をコーティングした場合、マイクロオーダーの蛍光体を含むコーティング層を使用した場合と比較して、半導体発光素子からの一次発光光の光取り出し効率が低下する問題があった。
 上記問題は、次のように解釈される。半導体発光素子の発光露出面に凹凸構造を形成することで、回折または光散乱効果を生じさせ、半導体発光素子の内部の導波モードを崩し、一次発光光の光取り出し効率を向上させている。しかしながら、ナノ粒子の蛍光体を含むコーティング層の屈折率は、ナノ粒子を含有するため、有効媒質近似で近似され、蛍光体の屈折率は、コーティング層の分散媒質よりも高く、結果として、コーティング層の屈折率は高くなる。例えば、2.3の屈折率を有する蛍光体を1.5の屈折率を有する分散媒に40%の体積分率で分散した場合、次の式(A)及び式(B)からコーティング層の屈折率は、1.80と計算される。
fa(εa-ε)/(εa+2ε)+fb(εb-ε)/(εb+2ε)=0(A)
n=√ε(B)
 ここで、fa、fbは媒質a、媒質bの体積分率であり、εa、εb、εは各々、媒質a、媒質b、有効媒質の誘電率であり、nは有効媒質の屈折率である。
 以上により凹凸構造とコーティング層との間における屈折率の差が減少し、その結果、凹凸構造による回折/分散効果が減少するため、半導体発光素子の発光露出面に凹凸構造を形成しても一次発光光の光取り出し効率が低下すると考えられる。
 このように、従来の技術では、LEDからの発光光に対しては、(1)内部量子効率IQEの改善、(2)光散乱により導波モードを解消することによる光取り出し効率LEEの改善の両者を満たすことができているが、蛍光材と組み合わせた白色発光装置においては、十分な発光効率が発現せず、さらに、発光分布の角度依存性があるという問題があった。
 本発明は、かかる点に鑑みてなされたものであり、LEDからの発光光に対しては、内部量子効率IQEと光取り出し効率LEEを高めることで、発光効率を向上させると同時に、蛍光に対しても、光散乱性を増加させ、発光効率を向上させることが可能な半導体発光装置を提供することを目的とする。さらには、発光分布の角度依存性が少なく、工業用途として適用容易な半導体発光装置を提供することを目的とする。
 本発明の半導体発光装置は、少なくとも2層以上の半導体層と、発光層とを積層して構成される積層半導体層を有し、第一の光を発光する半導体発光素子と、少なくとも前記半導体発光素子の一部を覆い、前記第一の光の少なくとも一部を吸収し、前記第一の光の波長とは異なる第二の光を発光する波長変換部材と、を有して構成される半導体発光装置であって、前記半導体発光素子は、前記半導体発光素子を構成するいずれかの主面において、面外方向に延在する複数の凸部又は凹部から構成されるドットを含む微細構造層を構成要素として備え、前記微細構造層は、少なくとも前記ドット間のピッチ、ドット径又はドット高さのいずれかにより制御された二次元フォトニック結晶を構成し、前記二次元フォトニック結晶は少なくとも、各々1μm以上の2つ以上の周期を有することを特徴とする。
 本発明の半導体発光装置においては、前記二次元フォトニック結晶は、前記第一の光の光学波長の6倍以上及び前記第二の光の光学波長の6倍以上の、少なくとも2つ以上の周期を有することが好ましい。
 また本発明の半導体発光装置は、少なくとも2層以上の半導体層と、発光層とを積層して構成される積層半導体層を有し、第一の光を発光する半導体発光素子と、少なくとも前記半導体発光素子の一部を覆い、前記第一の光の少なくとも一部を吸収し、前記第一の光の波長とは異なる第二の光を発光する波長変換部材と、を有して構成される半導体発光装置であって、前記半導体発光素子は、前記半導体発光素子を構成するいずれかの主面において、面外方向に延在する複数の凸部又は凹部から構成されるドットを含む微細構造層を構成要素として備え、前記微細構造層は、少なくとも前記ドット間のピッチ、ドット径又はドット高さのいずれかにより制御された二次元フォトニック結晶を構成し、前記二次元フォトニック結晶は、前記第一の光の光学波長の6倍以上及び前記第二の光の光学波長の6倍以上の、少なくとも2つ以上の周期を有することを特徴とする。
 また、本発明の半導体発光装置においては、前記波長変換部材が、少なくとも前記第一の光及び前記第二の光に対し透明である第一の材料、及び、前記第一の光の少なくとも一部を吸収し、前記第二の光を発光する第二の材料を含有することが好ましい。
 さらに、前記微細構造層を、少なくとも、前記半導体発光素子の最表面に構成要素として備え、前記微細構造層と前記波長変換部材との間には、少なくとも前記第一の光及び前記第二の光に対し実質的に透明であり、前記第二の材料を含まない中間材料が充填されていることが好ましい。
 さらに、前記第二の材料が、前記第一の光の第一の材料における光学波長よりも小さい平均粒子径であることが好ましい。
 また、本発明の半導体発光装置においては、前記波長変換部材は、前記第二の光と、前記第一の光及び前記第二の光の各波長とは異なる第三の光とを発光する構成であり、前記波長変換部材が、少なくとも前記第一の光と前記第二の光及び前記第三の光に対し透明である第一の材料、及び、前記第一の光の少なくとも一部を吸収し、前記第三の光を発光する第三の材料を含有し、前記二次元フォトニック結晶は、前記第三の光の光学波長の6倍以上の周期を有することが好ましい。
 さらに、前記微細構造層を、少なくとも、前記半導体発光素子の最表面に構成要素として備え、前記微細構造層と前記波長変換部材との間には、少なくとも前記第一の光と前記第二の光及び前記第三の光に対し実質的に透明であり、前記第二の材料及び前記第三の材料を含まない中間材料が充填されていることが好ましい。
 さらに、前記第二の材料及び第三の材料の少なくとも一つが、前記第一の光の前記第一の材料における光学波長よりも小さい平均粒子径であることが好ましい。
 また、本発明の半導体発光装置においては、前記波長変換部材は、前記第二の光と、前記第三の光と、前記第一の光、前記第二の光及び前記第三の光の各波長とは異なる第四の光とを発光する構成であり、前記波長変換部材が、少なくとも前記第一の光と前記第二の光と前記第三の光及び前記第四の光に対し透明である第一の材料、及び、前記第一の光の少なくとも一部を吸収し、前記第四の光を発光する第四の材料を含有し、前記二次元フォトニック結晶は、前記第四の光の光学波長の6倍以上の周期を有することが好ましい。
 さらに、前記微細構造層を、少なくとも、前記半導体発光素子の最表面に構成要素として備え、前記微細構造層と前記波長変換部材との間には、少なくとも前記第一の光と前記第二の光と前記第三の光及び前記第四の光に対し実施的に透明であり、前記第二の材料、前記第三の材料及び前記第四の材料を含まない中間材料が充填されていることが好ましい。
 さらに、前記第二の材料、前記第三の材料及び前記第四の材料の少なくとも一つが、前記第一の光の前記第一の材料における光学波長よりも小さい平均粒子径であることが好ましい。
 さらに、本発明の半導体発光装置においては、前記二次元フォトニック結晶が、前記半導体発光素子を構成するいずれか異なる二つ以上の主面に構成され、各々の二次元フォトニック結晶の前記周期が互いに異なることが好ましい。
 本発明の半導体発光装置においては、前記二次元フォトニック結晶の周期が少なくとも前記主面の一軸方向に周期を有する構成にでき、あるいは、前記二次元フォトニック結晶の周期が少なくとも独立する前記主面の二軸方向に周期を有する構成にできる。
 本発明によれば、微細構造層を構成する二次元フォトニック結晶が、1μm以上、あるいは、第一の光の光学波長の6倍以上及び第二の光(波長変換部材にて第一の光の少なくとも一部を吸収して発する第一の光とは異なる波長の光)の光学波長の6倍以上の、少なくとも2つ以上の周期を有することで、光回折性よりも光散乱性を強めることができる。そのため、本発明の半導体発光素子においては、半導体層中からの発光、及び、波長変換部材からの発光に対し、光散乱性を強く発現させることができ、この光散乱性によって導波モードを解消し、光取り出し効率LEEを高めることが可能となる。さらに、半導体発光素子からの効率的に発光された一次発光を効率的に波長変換できる。この結果、半導体発光装置の最終的な発光効率を向上させることができる。さらには、発光分布の角度依存性を少なくし、工業用途として適用容易な半導体発光装置を提供することができる。
本実施の形態に係る半導体発光装置の断面模式図である。 本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。 本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。 本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。 本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。 本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。 本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。 本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。 本実施の形態に係る半導体発光素子の断面模式図である。 本実施の形態に係る半導体発光素子の他の例を示す断面模式図である。 本実施の形態に係る半導体発光素子の他の例を示す断面模式図である。 第1の実施の形態に係る半導体発光素子用基材の一例を示す斜視模式図である。 本実施の形態に係る半導体発光素子用基材の他の例を説明するための斜視模式図である。 本実施の形態に係る半導体発光素子用基材の一例を示す平面模式図である。 半導体発光素子用基材の第2方向D2におけるドット列の配置例を示す模式図である。 本実施の形態に係る半導体発光素子用基材の別の例を示す平面模式図である。 本実施の形態に係る半導体発光素子用基材の別の例を示す平面模式図である。 本実施の形態に係る半導体発光素子用基材の別の例を示す平面模式図である。 本実施の形態に係る半導体発光素子用基材の別の例を示す平面模式図である。 本実施の形態に係る半導体発光素子用基材の別の例を示す平面模式図である。 本実施の形態に係る半導体発光素子用基材の第2方向D2におけるドットの配置例を示す模式図である。 本実施の形態に係る半導体発光素子用基材の第2方向D2におけるドットの配置例を示す模式図である。 ドット間隔が長周期を有するドットで構成される半導体発光素子用基材の平面模式図である。 同一主面内に2つ以上の周期を有する半導体発光素子用基材の別の平面模式図である。 本実施の形態に係る半導体発光素子の製造方法の各工程を示す断面模式図である。 本実施の形態に係る半導体発光素子用基材の製造方法の一例を示す概略説明図である。 本実施の形態に係る半導体発光素子用基材を形成する露光装置におけるスピンドルモーターのZ相信号を基準信号として基準パルス信号、変調パルス信号を設定した一例を説明する説明図である。 本実施の形態に係る半導体発光素子用基材を形成する露光装置における基準パルス信号と変調パルス信号から、位相変調パルス信号を設定した一例を説明する説明図である。 本実施の形態に係る半導体発光素子用基材を形成する露光装置におけるレーザ光を照射する加工ヘッド部の移動速度の一例を説明する説明図である。
 以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 以下、本実施の形態に係る半導体発光装置について詳細に説明する。本発明における半導体発光装置は、少なくとも2層以上の半導体層と、発光層とを積層して構成される積層半導体層を有し、第一の光を発光する半導体発光素子と、少なくとも、前記半導体発光素子の一部を覆い、前記第一の光の少なくとも一部を吸収し、第一の光の波長とは異なる第二の光を発光する波長変換部材と、を有して構成される。
 例えば、本実施の形態の半導体発光装置は、図1に示す断面模式図にて構成される。図1に示すように、半導体発光装置500は、半導体発光素子100をパッケージ520の収納部520a内に配置した構成となっている。
 図1に示す実施の形態では、パッケージ520が、波長変換部材511で充填されている。そのため半導体発光素子100の裏面100aを除く各面が波長変換部材511で覆われた構造となっている。
 図1に示すように波長変換部材511は、半導体発光素子100からの発光光(第一の光)の発光中心波長に対して実質的に透明な第一の材料である充填材541とそれに含有、分散されている蛍光材(第二の材料)531とを有して構成されている。蛍光材531は、半導体発光素子100から発光される発光光である第一の光の発光中心波長に対する蛍光特性を有しており、第一の光の少なくとも一部を吸収し、第一の光の波長とは異なる第二の光である蛍光を発光する。さらに、充填材541は、前記第二の光である蛍光に対しても実質的に透明であり、後述する第三の光及び第四の光に対しても実質的に透明である。
 以下、本発明において実質的に透明とは、該当する波長の光に対する吸収がほとんどない状態を指し、具体的には、該当する波長の光に対する吸収率が10%以下であり、好ましくは5%以下であり、より好ましくは2%以下である。あるいは、実質的に透明とは、該当する波長の光の透過率が、80%以上であり、好ましくは、85%以上であり、より好ましくは、90%以上と定義される。
 充填材541は、有機物又は無機物とすることができ、例えば、エポキシ、アクリルポリマー、ポリカーボネート、シリコーンポリマー、光学ガラス、カルコゲナイドガラス、スピロ化合物、及びこれらの混合物を含む材料から構成することができるが、特に材質を限定するものではない。
 さらに充填材541は、また、第一の光、第二の光、第三の光、及び第四の光に対して実質的に透明な微粒子を含有しても良い。微粒子を含有することで、耐熱性、耐久性、耐候性、熱寸法安定性が向上し好ましい。
 充填材541に含有される前記微粒子としては、特に限定されるものではないが、金属酸化物、金属窒化物、ニトリドシリケート、及びこれらの混合物とすることができる。好適な金属酸化物の例としては、酸化カルシウム、酸化セリウム、酸化ハフニウム、酸化チタン、酸化亜鉛、酸化ジルコニウム及びこれらの混合物を含むことができる。
 半導体発光装置500からの発光光は、半導体発光素子100から発光される第一の光と、波長変換部材511からの蛍光である第二の光との混色が観察され、例えば、第一の光が450nm付近に発光中心波長を有する青色、第二の光が590nm付近に主波長を有する黄色蛍光材である場合、半導体発光装置500の発光光は、白色として観察される。
 第一の光と第二の光の波長は、特に制限されるものではなく、上記したように、半導体発光装置500からの発光色が目的に応じた色を呈するように任意に選択される。ただし、第一の光を吸収し、蛍光である第二の光が得られることから、第二の光の波長は、必ず、第一の光よりも長くなる。
 また、第一の光、第二の光が共に、可視光である必要はなく、例えば、第一の光が410nm以下の波長を有する紫外光であり、第二の光が緑色であってもよい。この場合、半導体発光装置500からの発光光は、単色光のみ観察されることとなる。半導体発光装置500からの発光光は、目的に応じて種々選択することができ、それに応じて、半導体発光素子100の構成と、蛍光材531の材料とが種々選択される。
 半導体発光素子100からの発光光の一部は、蛍光材531に吸収され、蛍光を発する。蛍光は、そのまま、半導体発光装置500の系外へ導出されるが、一部は、図1に示すように散乱され、半導体発光素子100に戻る。このとき、後述する半導体発光素子100に設けられている微細構造層により、蛍光は散乱を受け、半導体発光装置500の系外へ導出される。本実施の形態と異なって、半導体発光素子100に微細構造層が設けられていない場合、半導体発光装置500に戻った光の角度は変わらず、一部は、導光モードとなり、半導体発光装置500の系外へ導出されない現象がおき、結果として、半導体発光装置500の発光効率は低下することとなる。
 図2は、本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。半導体発光装置501においては、パッケージ520に設置された半導体発光素子100の発光面の一部が、波長変換部材512で覆われている。図2に示すようにパッケージ520内は、封止材542で充填されている。波長変換部材512は、半導体発光素子100からの発光光に対して、実質的に透明である充填材541とそれに含有、分散されている蛍光材531とを有して構成されている。
 図2に示す半導体発光装置501においても、上記した図1の半導体発光装置500と同様に、半導体発光素子100からの発光光(第一の光)と、蛍光材531からの蛍光(第二の光)とが、半導体発光素子100に設けられた微細構造層により、散乱を受け、半導体発光装置501の系外へ効率的に導出される。図2の半導体発光装置501においては、図1の半導体発光装置500よりも、波長変換部材512の体積が少なく、半導体発光素子100からの発光光及び蛍光は、蛍光材531からの散乱を受けにくくなるため、半導体発光素子100に設けられる微細構造層は、より強い散乱性が必要となる。このように、半導体発光装置の構成、用途等により、半導体発光素子100に設ける微細構造層を適宜、設計することができる。
 図2に示す半導体発光装置501に用いられる封止材542としては、例えば波長変換部材512に用いられる充填材541と同じ透明な部材を用いることができる。
 図3は、本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。図3に示すように、半導体発光装置510は、半導体発光素子100をパッケージ520の収納部520a内に配置した構成となっている。
 図3に示す実施の形態では、パッケージ520が、波長変換部材511で充填されており、さらに、半導体発光素子100は、その最表面に、凹部または、凸部から構成されるドットを含む微細構造層120を構成要素として備えている。
 図3に示すように、微細構造層120と波長変換部材511との間には、中間材料121が介在しており、微細構造層120は波長変換部材511に接していない。すなわち中間材料121は、微細構造層120の最表面と波長変換部材511の微細構造層120との対向面との間に厚みを持って形成されている。
 図3に示すように、中間材料121は、微細構造層120の凸部から構成されるドット間に充填されている。あるいは、ドットが凹部で構成される形態では、凹部内に中間材料121が充填されている。したがって微細構造層120の表面から波長変換部材511に至る空間の全域が、中間材料121で埋まった状態とされている。
 図3に示す中間材料121は塗布後、硬化して固められている。中間材料121は、微細構造層120の表面のうねりに倣って形成されていてもよいが、図3に示すように中間材料121(中間層)の表面121aは平坦な面で形成されていてもよい。
 あるいは、中間材料121が、微細構造層120の凸部から構成されるドット間のみ、または、凹部で形成されたドット内にのみ充填された形態とすることもできる。かかる構成では、微細構造層120の最表面と波長変換部材511の微細構造層120との対向面との間の少なくとも一部が接触する。なお、かかる構成も、微細構造層120と波長変換部材511との間に、中間材料121が介在(充填)された構成と定義される。
 ただし、微細構造層120と波長変換部材511との間に中間材料121が介在して、微細構造層120が波長変換部材511に非接触の形態であることが好ましい。
 図3においても波長変換部材511は、半導体発光素子100からの発光光(第一の光)の発光中心波長に対して実質的に透明な第一の材料である充填材541とそれに含有、分散されている蛍光材(第二の材料)531とを有して構成されている。蛍光材531は、半導体発光素子100から発光される発光光である第一の光の発光中心波長に対する蛍光特性を有しており、第一の光の少なくとも一部を吸収し、第一の光の波長とは異なる第二の光である蛍光を発光する。さらに、充填材541は、前記第二の光である蛍光に対しても実質的に透明であり、後述する第三の光及び第四の光に対しても実質的に透明である。
 前記した微細構造層120のドット間に充填された中間材料121は、半導体発光素子100からの発光光(第一の光)の発光中心波長に対して実質的に透明である。さらに、前記第二の光である蛍光に対しても実質的に透明であり、後述する第三の光及び第四の光に対しても実質的に透明である。
 中間材料121は、有機物または無機物とすることができ、例えば、エポキシ、アクリルポリマー、ポリカーボネート、シリコーンポリマー、光学ガラス、カルコゲナイドガラス、スピロ化合物、及びこれらの混合物を含む材料から構成することができるが、特に材質を限定するものではない。
 中間材料121は、充填材541と同じ材質であっても異なる材質であってもどちらであってもよい。ただし、中間材料121と充填材541とを同じ材質としたほうが、効果的に発光特性を向上させることができ好適である。例えば、中間材料121と充填材541とにシリコーン樹脂を選択することができる。
 さらに、中間材料121は、また、第一の光、第二の光、第三の光、第四の光に対して実質的に透明な微粒子を含有しても良い。微粒子を含有することで、耐熱性、耐久性、耐候性、熱寸法安定性が向上し好ましい。
 中間材料121に含有される前記微粒子としては、特に限定されるものではないが、微細構造層120のドット間に充填される中間材料121の有効屈折率が増加することは好ましくなく、実質的に、中間材料121と同等かそれ以下の屈折率であることが好ましい。ここで、実質的に同等であるとは、中間材料121との屈折率の差が0.1以下である。屈折率の差が0.1以下であれば、中間材料121に含有される前記微粒子が50%以内の体積分率であるとき、前記微粒子を含む中間材料121の有効屈折率が中間材料121のみの屈折率と同等となるので好ましい。中間材料121に含有される前記微粒子としては、特に限定されるものではなく、金属酸化物、金属窒化物、ニトリドシリケート、及びこれらの混合物とすることができる。好適な金属酸化物の例としては、酸化シリコン、酸化カルシウム、酸化セリウム、酸化ハフニウム、酸化チタン、酸化亜鉛、酸化ジルコニウム及びこれらの混合物を含むことができる。また、前記した充填材541に含有される微粒子と同一の材質であってもよい。
 本実施の形態では、微細構造層120と波長変換部材511との間には、中間材料121が充填されるが、蛍光材(第二の材料)531は含まれていない。微細構造層120が凸部のドットで形成される場合、ドット間には、蛍光材(第二の材料)531が入っていない。また、微細構造層120が凹部のドットで形成される場合、ドット内には、蛍光材(第二の材料)531が入っていない。したがって、微細構造層120と波長変換部材511との間には、中間材料121のみが介在しているか、あるいは、前記微粒子を含む中間材料121が介在した構成となっている。このように蛍光材531が微細構造層120のドット間やドット内に充填されていないために、ドット間やドット内での有効屈折率が増加せず、微細構造層120による、半導体発光素子100からの第一の光に対する回折あるいは散乱の効率が低下しない。その結果として、半導体発光素子100の少なくとも一部を覆うように波長変換部材511を設けても、半導体発光装置500からの光取り出し効率が低下することを防止できる。
 本実施の形態と異なって、半導体発光素子100の微細構造層120のドット間やドット内に蛍光材531が存在し、ドット間やドット内での有効屈折率が増加すると、微細構造層120による蛍光に対する回折あるいは散乱効率が低下するため、半導体発光装置510の系外への導出が抑制される現象がおき、結果として、半導体発光装置510の発光効率は低下することとなる。
 図4は、本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。半導体発光装置508においては、パッケージ520に設置された半導体発光素子100の発光面の一部が、波長変換部材512で覆われている。図4に示すようにパッケージ520内は、封止材542で充填されている。波長変換部材512は、半導体発光素子100からの発光光に対して、実質的に透明である充填材541とそれに含有、分散されている蛍光材531とを有して構成されている。
 図4に示す半導体発光装置508においても、上記した図3の半導体発光装置510と同様に、半導体発光素子100からの発光光(第一の光)と、蛍光材531からの蛍光(第二の光)とが、半導体発光素子100に設けられた微細構造層120により、散乱を受け、半導体発光装置508の系外へ効率的に導出される。図4の半導体発光装置508においては、図3の半導体発光装置510よりも、波長変換部材512の体積が少なく、半導体発光素子100からの発光光及び蛍光は、蛍光材531からの散乱を受けにくくなるため、半導体発光素子100に設けられる微細構造層120は、より強い散乱性が必要となる。このように、半導体発光装置の構成、用途等により、半導体発光素子100に設ける微細構造層120を適宜、設計することができる。
 図4においても、半導体発光素子100に設けられた微細構造層120と波長変換部材512との間には、蛍光材531を含まない中間材料121が介在し、微細構造層120は波長変換部材512に接していない。
 図4に示す半導体発光装置508に用いられる封止材542としては、例えば波長変換部材512に用いられる充填材541と同じ透明な部材を用いることができる。
 図5は、本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。図5の半導体発光装置502では、パッケージ520に設置された半導体発光素子100は、図1と同様に波長変換部材513で覆われている。波長変換部材513は、第一の光である半導体発光素子100からの発光光の発光中心波長に対して実質的に透明な第一の材料である充填材541と、それに含有、分散されている蛍光材531、及び蛍光材532とで構成されている。
 蛍光材532は、半導体発光素子100から発光される発光光である第一の光の発光中心波長に対する蛍光特性を有しており、第一の光の少なくとも一部を吸収し、第一の光、及び第二の光の波長とは異なる第三の光である蛍光を発光する第三の材料である。半導体発光装置502からの発光光は、半導体発光素子100から発光される第一の光と、波長変換部材からの蛍光である第二の光と、第三の光との混色にて観察される。例えば、第一の光が450nm付近に発光中心波長を有する青色、第二の光が545nm付近に主波長を有する緑色、第三の光が700nm付近に主波長を有する赤色の場合、半導体発光装置502の発光光は、白色として認識される。
 さらに、前記した充填材541は、第二の光及び第三の光に対しても実質的に透明である。
 第一の光と第二の光、及び第三の光の波長は、特に制限されるものではなく、上記したように、半導体発光装置502からの発光色が目的に応じた色を呈するように任意に選択される。ただし、第一の光を吸収し、蛍光である第二の光と第三の光が得られることから、第二の光と第三の光の波長は、必ず、第一の光よりも長くなる。
 図5の半導体発光装置502において、第二の光、及び第三の光の一部は、散乱され、半導体発光素子100に戻る。そして、半導体発光素子100に設けられている微細構造層により、散乱を受け、半導体発光装置502の系外へ導出される。このような作用により、半導体発光装置502の発光効率を向上させることができる。
 図5に示す半導体発光装置502では、図2に示す半導体発光装置501と同様に、半導体発光素子100の発光面の一部を、充填材541内に蛍光材531、532が分散された波長変換部材513で覆い、さらにパッケージ520内を図2の封止材542で充填した構成とすることもできる。
 図6は、本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。図6の半導体発光装置509では、パッケージ520に設置された半導体発光素子100が、図5と同様に波長変換部材513で覆われている。波長変換部材513は、第一の光である半導体発光素子100からの発光光の発光中心波長に対して実質的に透明な第一の材料である充填材541と、それに含有、分散されている蛍光材(第二の材料)531、及び蛍光材(第三の材料)532とで構成されている。
 図6においては、半導体発光素子100に設けられた微細構造層120と波長変換部材513との間には、蛍光材531、532を含まない中間材料121が介在し、微細構造層120は波長変換部材513に接していない。
 図6の半導体発光装置509において、第二の光、及び第三の光の一部は、散乱され、半導体発光素子100に戻る。そして、半導体発光素子100に設けられている微細構造層120により、散乱を受け、半導体発光装置509の系外へ導出される。このような作用により、半導体発光装置509の発光効率を向上させることができる。
 図6に示す半導体発光装置509では、半導体発光素子100の発光面の一部を、充填材541内に蛍光材531、532が分散された波長変換部材513にて、図4に示す半導体発光装置508と同じ様に覆い、さらにパッケージ520内を図4の封止材542で充填した構成とすることもできる。この場合も、半導体発光素子100の表面に設けられた微細構造層120と波長変換部材513との間には、蛍光材531、532を含まない中間材料121が介在しており、微細構造層120と波長変換部材513とは直接接しない構造となる。
 図7は、本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。図7の半導体発光装置503は、パッケージ520に設置された半導体発光素子100が、波長変換部材514で覆われた構成となっている。波長変換部材514は、第一の光である半導体発光素子100からの発光光の発光中心波長に対して実質的に透明な第一の材料である充填材541と、それに含有、分散されている蛍光材531、蛍光材532、及び蛍光材533とで構成されている。
 蛍光材533は、半導体発光素子100から発光される発光光である第一の光の発光中心波長に対する蛍光特性を有しており、第一の光の少なくとも一部を吸収し、第一の光、及び、第二の光、さらに、第三の光の波長とは異なる第四の光である蛍光を発光する。半導体発光装置503からの発光光は、半導体発光素子100から発光される第一の光と、波長変換部材514からの蛍光である第二の光、第三の光、及び第四の光との混色として観察される。例えば、第一の光が360nm付近に発光中心波長を有するUV光、第二の光が545nm付近に主波長を有する緑色、第三の光が700nm付近に主波長を有する赤色、第四の光が、436nm付近に主波長を有する青色の場合、半導体発光装置503の発光光は、白色として認識される。
 さらに、前記した充填材541は、第二の光、第三の光、及び第四の各光に対しても、実質的に透明である。
 第一の光、第二の光、第三の光、及び第四の光の波長は、特に制限されるものではなく、上記したように、半導体発光装置503からの発光色が目的に応じた色を呈するように任意に選択される。ただし、第一の光を吸収し、蛍光である第二の光、第三の光、第四の光が得られることから、第二の光、第三の光、第四の光の波長は、必ず、第一の光よりも長くなる。
 図7に示す半導体発光装置503において、第二の光、第三の光、及び第四の光の一部は、散乱され、半導体発光素子100に戻る。そこで、半導体発光素子100に設けられている微細構造層により、散乱をうけ、半導体発光装置503の系外へ導出される。このような作用により、半導体発光装置503の発光効率を向上させることができる。
 図8は、本実施の形態に係る半導体発光装置の他の例を示す断面模式図である。図8の半導体発光装置515は、パッケージ520に設置された半導体発光素子100が、波長変換部材514で覆われた構成となっている。波長変換部材514は、第一の光である半導体発光素子100からの発光光の発光中心波長に対して実質的に透明な第一の材料である充填材541と、それに含有、分散されている蛍光材(第二の材料)531、蛍光材(第三の材料)532、及び蛍光材(第四の材料)533とで構成されている。
 図8においては、半導体発光素子100に設けられた微細構造層120と波長変換部材514との間に、蛍光材531、532、533を含まない中間材料121が介在し、微細構造層120は波長変換部材514に接していない。
 さらに、前記した充填材541、及び中間材料121は、第二の光、第三の光、及び第四の各光に対しても、実質的に透明である。
 図8に示す半導体発光装置515においても、第二の光、第三の光、及び第四の光の一部は、散乱され、半導体発光素子100に戻る。そこで、半導体発光素子100に設けられている微細構造層120により、散乱をうけ、半導体発光装置515の系外へ導出される。このような作用により、半導体発光装置515の発光効率を向上させることができる。
 蛍光材531、蛍光材532、及び蛍光材533としては、第一の光の少なくとも一部を吸収し、所定の蛍光を発光すれば、特に限定されるものではなく、例えば、イットリウム・アルミニウム・ガーネット、硫黄置換アルミン酸塩、非置換アルミン酸塩、アルカリ土類金属ホウ酸ハロゲン化物、アルカリ土類金属アルミン酸塩、アルカリ土類ケイ酸塩、アルカリ土類チオガレート、アルカリ土類窒化ケイ素、ゲルマン酸塩、リン酸塩、ケイ酸塩、セレン化物、硫化物、窒化物、酸窒化物及びこれらの混合物が挙げられる。これらの材料に、例えば、Ce、Eu等のランタノイド系元素をドープし、賦活することができる。また、Ce、Euに加えて、Tb、Cu、Ag、Cr、Nd、Dy、Co、Ni、Ti、Mgから選択される1種以上を含有させることもできる。
 各蛍光材531、532、533は、第一の光の充填材(第一の材料)541における光学波長よりも小さい平均粒径であることが好ましい。第一の光の第一の材料における光学波長よりも小さい平均粒径であるいわゆるナノ粒径の蛍光粒子であると、蛍光粒子による光散乱性を減少させ、半導体発光装置からの光取り出し効率を向上させることができる。さらに、ナノ粒径の蛍光粒子であるために、半導体発光素子から発光された一次発光(第一の光)を効率的に波長変換できるため、さらに光取り出し効率を向上させることができる。ここで、本発明における平均粒径とは、蛍光粒子の一次粒子の質量平均粒子径であり、透過型電子顕微鏡(TEM)を使用し、JIS Z8827に記載の方法で求めることができる。
 図5、図6においては、蛍光材531、532の少なくともいずれか一つが、第一の光の充填材(第一の材料)541における光学波長よりも小さい平均粒子径であればよいが、全ての蛍光材531、532が、第一の光の充填材(第一の材料)541における光学波長よりも小さい平均粒子径であることが好ましい。
 また図7、図8においては、蛍光材531、532、533の少なくともいずれか一つが、第一の光の充填材(第一の材料)541における光学波長よりも小さい平均粒子径であればよいが、全ての蛍光材531、532、533が、第一の光の充填材(第一の材料)541における光学波長よりも小さい平均粒子径であることが好ましい。
 各蛍光材531、532、533は粒子状であることが好ましい。ただし球状に限定されるものでなく、多角形状、楕円体等であってもよい。
 次に、本実施の形態の半導体発光装置の一部を構成する半導体発光素子100について、詳細に説明する。
 図9は、本実施の形態に係る半導体発光装置における半導体発光素子の断面模式図である。図9に示すように、半導体発光素子100においては、半導体発光素子用基材101の一主面に設けられた二次元フォトニック結晶102上にn型半導体層103、発光層104及びp型半導体層105が順次積層されている。なお、半導体発光素子用基材101上に順次積層されたn型半導体層103、発光層104及びp型半導体層105を、積層半導体層110と称する。ここで「主面」とは、半導体発光素子用基材101や層を構成する広い面を指し、例えば、積層半導体層110を積層する際の積層面(形成面)あるいは積層面に対する逆面である。「主面」には、半導体発光素子用基材と層との間や層間の界面、半導体発光素子用基材101や層の露出表面、露出裏面が含まれる。
 フォトニック結晶とは、屈折率(誘電率)が周期的に変化するナノ構造体であり、二次元フォトニック結晶とは、二次元の周期構造体を指す。
 図9に示すように、p型半導体層105上には透明導電膜106が形成されている。また、n型半導体層103表面にカソード電極107が、透明導電膜106表面にアノード電極108がそれぞれ形成されている。なお、図9においては、半導体発光素子用基材101の一主面に設けられた二次元フォトニック結晶102上に積層半導体層110を形成したが、半導体発光素子用基材101の二次元フォトニック結晶102が設けられた面と相対する他の一主面上に積層半導体層110を形成してもよい。
 図10は、本実施の形態に係る半導体発光素子の他の例を示す断面模式図である。図10に示すように、半導体発光素子300においては、半導体発光素子用基材301上にp型半導体層302、発光層303、及び、n型半導体層304を順次積層している。そしてn型半導体層304の一主面(露出表面)に二次元フォトニック結晶305が設けられている。
 また図10に示すように、半導体発光素子用基材301のp型半導体層302と接する主面とは反対側の主面にアノード電極306が、n型半導体層304の表面にカソード電極307がそれぞれ形成されている。
 図10においては、図示しない基材上に、n型半導体層304、発光層303、p型半導体層302を順次積層後、半導体発光素子用基材301に貼着し、前記基材を剥離する半導体発光素子の製造方法が採用される。前記基材を剥離後、アノード電極306、カソード電極307を各々形成し、本実施の形態の半導体発光装置における半導体発光素子が得られる。基材上に、n型半導体層を設けた後、n型半導体層との界面で剥離するために、二次元フォトニック結晶305が転写、形成されている。
 図11は、本実施の形態に係る半導体発光素子の他の例を示す断面模式図である。図11に示すように、半導体発光素子200においては、図9で示した透明導電膜106の主面上(露出表面)に二次元フォトニック結晶201が形成されている。後述するように、本実施の形態の二次元フォトニック結晶においては、少なくとも2つ以上の周期を有する必要がある。図11に示すように、半導体発光素子200において、構成要素として、半導体発光装置の異なる主面に夫々、二次元フォトニック結晶102、201が設けられ、2つ以上の二次元フォトニック結晶102、201を備える場合、各々の二次元フォトニック結晶102、201に2つ以上の周期を有する必要はなく、周期の異なる2つ以上の二次元フォトニック結晶102、201を、半導体発光装置の構成要素としても良い。半導体発光素子から発光された光、及び、波長変換部材から発光された光は、半導体発光装置内での透過、反射、回折、及び散乱により、二次元フォトニック結晶を構成している界面の回折、散乱効果を受けることとなる。この効果は、同一界面である必要はなく、異なる界面、あるいは、同一界面、いずれでも同様の効果を奏する。そのため、2つ以上の周期を異なる界面に設けること、あるいは、同一界面に設けることの、いずれによっても本発明の効果を発現することができる。
 図9から図11に示した半導体発光素子100、200、300は、ダブルヘテロ構造の半導体発光素子に、本実施の形態を適用した例であるが、積層半導体層の積層構造はこれに限定されるものではない。また、半導体発光素子用基材とn型半導体層との間に、図示しないバッファ層や、非ドープ半導体層を設けてもよい。また、半導体発光素子用基材と半導体層との界面に図示しない反射層を設けてもよい。
 次に、図12を参照して、第1の実施の形態に係る半導体発光素子用基材の構成について詳細に説明する。図12は、第1の実施の形態に係る半導体発光素子用基材1の一例を示す斜視模式図である。図12に示すように、半導体発光素子用基材1は、概して平板形状を有しており、基材11と、この基材11の一主面上に設けられた微細構造層12(二次元フォトニック結晶)と、を備えている。微細構造層12は、基材11の主面から上方に突出する複数の凸部13(凸部列13-1~13-N)を含む。凸部13は、それぞれ特定の間隔を持って配置されている。
 微細構造層12は、基材11の主面上に別途形成してもよいし、基材11を直接加工して形成してもよい。
 なお、図12においては、微細構造層12の微細構造が複数の凸部13で構成される例について示しているが、これに限られず、微細構造層12の微細構造は複数の凹部で構成されていてもよい。
 図13は、本実施の形態に係る半導体発光素子用基材の他の例を示す斜視模式図である。図13に示すように、半導体発光素子用基材1aは、概して平板形状を有しており、基材11aと、この基材11aの一主面上に設けられた微細構造層12a(二次元フォトニック結晶)と、を備えている。微細構造層12aは、微細構造層12aの表面Sから基材11aの裏面に向けて陥没した複数の凹部14(凹部列14-1~14-N)を含む。凹部14は、それぞれ特定の間隔を持って配置されている。
 微細構造層12aは、基材11aの主面上に別途形成してもよいし、基材11aを直接加工して形成してもよい。
 以下、半導体発光素子用基材1、1aにおける微細構造層12、12aの微細構造を構成する凸部13又は凹部14を「ドット」と称する。
 本実施の形態においては、上記ドットの径やピッチはナノオーダーである。この構成によれば、ナノオーダーの凹凸構造が半導体発光素子用基材1、1aの表面に設けられることにより、半導体発光素子用基材1、1aの表面に半導体層を形成する際に、半導体層のCVD成長モードが乱され、相成長に伴う転位欠陥が衝突して消滅し、転位欠陥の低減効果を生じさせることができる。そして半導体結晶内の転位欠陥が低減することにより、半導体発光素子の内部量子効率IQEを高めることが可能となる。
 本実施の形態の半導体発光素子においては、前記したドット間のピッチ、ドット径、ドット高さのいずれかにより制御された二次元フォトニック結晶が形成されている。本実施の形態において、屈折率が周期的に変化するフォトニック結晶により、結晶内部の伝播光に対する反射、透過、回折特性を制御することができる。
 本実施の形態の半導体発光素子用基材の一主面に形成されたドットの径やピッチはナノオーダーであり、伝播光の波長と概ね同程度である。そのため、本実施の形態においてフォトニック結晶の特性を決定するのは、構造に起因した屈折率を平均化した有効屈折率分布の周期的な変化である(有効媒質近似)。有効屈折率分布が、半導体発光素子用基材の主面内で繰り返されているため、二次元フォトニック結晶が形成される。
 さらに、本実施の形態の半導体発光素子用基材においては、前記した二次元フォトニック結晶の周期が、少なくとも、各々1μm以上の2つ以上の異なる周期を有する。あるいは、第一の光の光学波長の6倍以上であり、且つ、第二の光の光学波長の6倍以上の、少なくとも2つ以上の周期を有している。二次元フォトニック結晶が、1μm以上の2つ以上の異なる周期、あるいは、第一の光、及び第二の光の光学波長の6倍以上の周期を有するために、光回折性よりも光散乱性が強まることになる。そのため、本実施の形態の半導体発光素子においては、半導体層中からの発光、及び、波長変換部材からの発光に対し、光散乱性を強く発現させることができ、この光散乱性によって導波モードを解消し、光取り出し効率LEEを高めることが可能となる。
 さらに、同時に、強い光散乱性により、その発光特性における角度依存性は弱まり、より工業用途に適用しやすいランバーシアン発光特性に近づくことになる。
 本実施の形態では、二次元フォトニック結晶の周期が、各々1μm以上であるとともに、第一の光の光学波長の6倍以上であり、且つ、第二の光の光学波長の6倍以上の、少なくとも2つ以上の周期を有していることがより好ましい。これにより、より効果的に、光回折性よりも光散乱性を強めることができ、光取り出し効率LEEをより高めることが可能となる。
 なお、図12及び図13は、本実施の形態の二次元フォトニック結晶を有する微細構造層を、半導体発光素子用基材1、1aに適用した一例であるが、半導体発光素子を構成するいずれかの界面に適用する場合も同様であり、以下も同様である。すなわち二次元フォトニック結晶は、半導体発光素子用基材の一主面に設けられることに限定されず、半導体発光素子内の一か所以上に設けられ、半導体発光素子の最表面にも設けられる。
 ドット間のピッチ、ドット径、ドット高さで制御された二次元フォトニック結晶について、図面によりさらに、詳細に説明する。
 図14は、本実施の形態に係る半導体発光素子用基材1の平面模式図であり、半導体発光素子用基材1の表面(一主面)に形成された二次元フォトニック結晶を示している。
 図14に示すように、ドット(凸部13又は凹部14)は、半導体発光素子用基材1の主面内の第1方向D1において、複数のドットが不定間隔のピッチPyで配列された複数のドット列(凸部列13-1~13-N又は凹部列14-1~14-N;図12、図13参照)を構成する。また、各ドット列は、半導体発光素子用基材1の主面内で第1方向D1に直交する第2方向D2において、不定間隔のピッチPxで配置されている。
 さらに、第1方向D1において、ドット間の不定間隔のピッチPyが周期的に増減する。また、第1方向D1に直交する第2方向D2における不定間隔のピッチPxが周期的に増減する。第1方向D1及び第2方向D2の両方において不定間隔のピッチPy、Pxが周期的に増減してもよいし、第1方向D1及び第2方向D2のどちらか一方にて、不定間隔のピッチPy、Pxが周期的に増減する構成としてもよい。このように各ドットの間隔を増減させることで、ドット間のピッチで制御された二次元フォトニック結晶を形成することができる。なんとなれば、個々のドットの大きさ、ピッチは、発光波長と同程度以下であるため、光学的には、個々のドットの存在は、有効媒質近似により有効屈折率で代替される。図14においては、第1方向D1において、ドット間の不定間隔のピッチPyが周期的に増減しているため、前記有効媒質近似により、光としては、不定間隔のピッチPyの周期的増減の周期を感じることになり、あたかも、より大きな凹凸構造が存在することと等価な挙動を示す。
 さらに図15を用いて、ドット間の不定間隔のピッチPxが周期的に増減した第2方向D2におけるドット列の配置例について詳細に説明する。図15は、第2方向D2におけるドット列の配置例を示す模式図である。図15に示すように、第2方向D2におけるドット列は、8列ずつ特定の間隔(ピッチPx)で配置されており、かつ、8列のドット列が繰り返し配置されている。この複数(z)のドット列で構成された単位を、長周期単位Lxz(ただし、zは正の整数であり、xはx方向であることを指す)と称する。
 本実施の形態においては、この長周期単位Lxzが、1μm以上、あるいは、半導体発光素子から発せられる光学波長の6倍以上である必要がある。なお、互いに異なるピッチPyで不定間隔に配置された第1方向D1におけるドットについても、長周期単位Lyzを使用し、以下の説明と同様に配置できる。
 ピッチPxは、隣接するドット列間の距離である。ここで、長周期単位Lxzにおける少なくとも隣接する4個以上、m個以下のドット列間のピッチPxn(3≦n≦2a又は3≦n≦2a+1。ただし、m、aは正の整数であり、n=m-1である。)には、次の式(1)の関係が成り立つ。
  Px1<Px2<Px3<…<Pxa>…>Pxn  (1)
 なお、各ドットの直径は、ピッチPxnより小さい。ピッチPx1からPxnまでの長さは、長周期単位Lxzを構成する。
 図15は、長周期単位Lxzが8列のドット列で構成される場合、すなわち、m=8の場合を示している。この場合、n=7、a=3となるため、長周期単位L1において、ドット列間のピッチPxnには、次の式(2)の関係が成り立っている。
  Px1<Px2<Px3>Px4>Px5>Px6>Px7  (2)
 また、長周期単位LxzにおけるピッチPxは、ピッチPxの最大値(Px(max))と、最小値(Px(min))との差で表される最大位相ずれδが、(Px(min))×0.01<δ<(Px(min))×0.66、好ましくは、(Px(min))×0.02<δ<(Px(min))×0.5、より好ましくは、(Px(min))×0.1<δ<(Px(min))×0.4、を満たすよう設定されている。
 例えば、図15に示す長周期単位L1においては、各ドット列間のピッチPxnは次のように表される。
  Px1=Px(min)
  Px2=Px(min)+δa
  Px3=Px(min)+δb=Px(max)
  Px4=Px(min)+δc
  Px5=Px(min)+δd
  Px6=Px(min)+δe
  Px7=Px(min)+δf
 ただし、δaからδfの値は、Px(min)×0.01<(δa~δf)<Px(min)×0.5を満たす。隣接する長周期単位L2についても同様である。
 また、長周期単位Lxz、あるいは長周期単位Lyzにおけるzの最大値は、4≦z≦1000、好ましくは、4≦z≦100、より好ましくは、4≦z≦20、を満たすよう設定されている。
 なお、第1方向D1及び第2方向D2における長周期単位Lxz及びLyzは互いに同一である必要はない。
 本実施の形態の半導体発光素子用基材1における第1方向D1においては、上記した長周期単位Lyzを有するドット群が少なくとも1個以上配列され、第2方向D2においては、上記した長周期単位Lxzを有するドット列群が少なくとも1個以上配列されることが好ましい。
 ピッチPyの不定期間隔に配置された配置は、上記にて説明した互いに異なるピッチPxで不定間隔に配置された第2方向D2におけるドット列の配置例において、ドット列をドットと読み替えることで定義される。
 本実施の形態に係る半導体発光素子用基材1においては、微細構造層12(12a)の微細構造を構成するドットは、第1方向D1、第2方向D2ともに上記にて説明したような不定間隔のピッチPx、Pyで配置することもできるし(図14参照)、第1方向D1、第2方向D2のいずれか一方のみを上記にて説明したような不定間隔のピッチで配置し、他方を一定間隔のピッチで配置することもできる(図16参照)。図16は、本実施の形態に係る半導体発光素子用基材の別の例を示す平面模式図である。なお、図16においては、第1方向D1におけるドットが不定間隔のピッチで配置され、第2方向D2におけるドット列が一定間隔のピッチに配置されている。
 図14、図16において図示した二次元フォトニック結晶は、非周期のドット(ドット列)から形成された二次元フォトニック結晶であるが、本実施の形態に係る半導体発光素子用基材1においては、二次元フォトニック結晶を構成するドットのパターンは、周期的であってもよい。個々のドットの周期性は、前記したように有効媒質近似によりキャンセルされるので、長周期単位Lxzが、本実施の形態の半導体発光素子用基材の効果を発現するために必要であり、個々のドットの周期/非周期は重要ではない。
 周期的ドットパターンの例として、図17、図18、図19、図20を例として挙げる。これらの配置例においては、隣接する各ドット列間(図19、図20)、一つ置きのドット列同士(図17、図18)がそろった配置となっており、ドットパターンは周期的に配列されている。なお、図17~図20は、それぞれ、本実施の形態に係る半導体発光素子用基材の別の例を示す平面模式図である。
 さらに、本実施の形態の半導体発光素子においては、ドットパターンによる二次元フォトニック結晶は、少なくとも半導体発光素子を構成するいずれかの主面の一軸方向に第一の光、及び第一の光の周期と異なる第二の光の光学波長の6倍以上の周期を有することが好ましく、具体的には、図16、図18、図20のような二次元フォトニック結晶である。
 又は、二次元フォトニック結晶の周期は、少なくとも独立する二軸方向に周期的であることが好ましく、具体的には、図14、図17、図19のような二次元フォトニック結晶である。
 図14、図17、図19では、独立する二軸方向が互いに直交している例であるが、必ずしも直交する必要はなく、任意の角度で配置させることができる。さらに、独立する3軸方向のパターンとしてもよく、この場合は、ドットの粗密により形成される二次元フォトニック結晶は、三角格子配列とすることができる。
 また、第1方向D1におけるドット間距離、あるいは第2方向D2におけるドット列間距離のいずれか一方が一定間隔で配置される場合には、一定間隔のピッチに対する不定間隔のピッチの比が、特定の範囲内にあることが好ましい。
 ここで、第1方向D1におけるドットが一定間隔のピッチPycで配置され、第2方向D2におけるドット列が不定間隔のピッチPxで配置される例について説明する。この場合には、一定間隔のピッチPycに対する、不定間隔のピッチPxの比は、85%~100%の範囲内にあることが好ましい。一定間隔のピッチPycに対する、不定間隔のピッチPxの比が85%以上であれば、隣接するドット間の重なりが小さくなるため好ましい。また、一定間隔のピッチPycに対する、不定間隔のピッチPxの比が100%以下であれば、ドットを構成する凸部13の充填率が向上するため好ましい。なお、一定間隔のピッチPycに対する、不定間隔のピッチPxの比は、90%~95%の範囲内にあることが、より好ましい。
 また、1つの長周期単位LxzあるいはLyzは、発光層内で発生した光の屈折率の長周期の変動が、ナノオーダーから遠ざかり、光散乱が生じやすくなるため好ましい。一方、十分な光取り出し効率LEEを得るためには、長周期単位Lxz、あるいはLyzは、1001個以下のドットから構成される(属するピッチPx又はPyが1000以下である)ことが好ましい。
 本実施の形態に係る半導体発光素子用基材1(1a)には、以上のような微細構造層12(12a)の微細構造の関係を満足する二次元フォトニック結晶が形成されている。これにより、光散乱効果が十分となり、かつ、ドット(凸部13又は凹部14)の間隔が小さくなるため転位欠陥の低減効果が生じることとなる。その結果、ナノオーダーの凹凸で半導体層中の転位欠陥を減らすと同時に、ナノオーダーの周期性が乱れることとなり、半導体層中からの発光に対し、光散乱性を強く発現することができる。
 さらに、二次元フォトニック結晶であるにも関わらず、その光回折性が抑制され、より工業的用途に好適なランバーシアン発光に近づくことになる。
 続いて、本実施の形態に係る半導体発光素子用基材1(1a)の微細構造層12(12a)の二次元フォトニック結晶を構成するドット形状(凹凸構造)について説明する。凸部13及び凹部14の形状は、本発明の効果が得られる範囲であれば特に限定されず、用途に応じて適時変更可能である。凸部13及び凹部14の形状としては、例えば、ピラー形状、ホール形状、円錐形状、角錐形状及び楕円錘形状等を用いることができる。
 上記したのは、本実施の形態における二次元フォトニック結晶がドットの間隔で構成されている場合であるが、ドット径の大小で構成されてもよい。具体的には、本実施の形態に係る半導体発光素子用基材1(1a)の微細構造層12(12a)の微細構造を構成するドット形状(凹凸構造)においては、ドットの各々の直径が、ピッチPy及び/又はピッチPxに対応して増減することが好ましい。
 以下、ピッチに対応して増減するドットの直径の例について、詳細に説明する。本実施の形態に係る半導体発光素子用基材においては、ピッチPyが不定間隔である場合には、少なくとも隣接する4個以上でm個以下のピッチを構成するドット径Dyn(3≦n≦2a又は3≦n≦2a+1。ただし、m、aは正の整数であり、n=m-1である。)は、下記式(3)の関係を満たすとともに、第1方向D1において、ドット径Dy1~Dynで構成されるドット群が長周期単位Lyzで繰り返し配列され、かつピッチPxが不定間隔である場合には、少なくとも隣接する4個以上でm個以下のピッチを構成するドット径Dxn(3≦n≦2a又は3≦n≦2a+1。ただし、m、aは正の整数であり、n=m-1である。)は、下記式(4)の関係を満たすとともに、第2方向D2において、ドット径Dx1~Dxnで構成されるドット群が長周期単位Lxzで繰り返し配列されることが好ましい。本実施の形態においては、この長周期単位Lxz、あるいはLyzが、1μm以上であり、あるいは、半導体発光素子から発せられる第一の光、及び第二の光の光学波長の6倍以上である必要がある。なお、以下の説明は、Lxzについて述べるが、Lyzについても同様である。
  Dy1<Dy2<Dy3<…<Dya>…>Dyn  (3)
  Dx1<Dx2<Dx3<…<Dxa>…>Dxn  (4)
 図21は、長周期単位Lxzが8列のドット列で構成される場合、すなわち、m=8の場合を示している。図21は、本実施の形態に係る半導体発光素子用基材の第2方向D2におけるドットの配置例を示す模式図である。この場合、n=7、a=3となるため、長周期単位L1において、ドット列を構成する各ドット径Dxnには、上記式(4)の関係が成り立っている。
 図21においては、隣接するドット間隔が広くなると、ドット径が小さくなり、ドット間隔が狭くなるとドット径が大きくなっている。増減するドット径の増減範囲は、大きすぎると隣接するドットと接するようになり好ましくなく、小さすぎると、光取り出し効率LEEが低下するため好ましくない。同じ長周期単位Lxz内における、ドットの平均径に対し、±20%以内であると、光取り出し効率LEEが増加し好ましい。
 上記構成により、ドットの体積が長周期単位Lxzで増減することになり、二次元フォトニック結晶を構成することになる。なんとなれば、有効媒質近似は、誘電率分布の体積分率で簡易的に表現することができ、誘電率は、屈折率の2乗となるからである。つまり、媒質の体積が長周期単位Lxzで変化することで、有効屈折率が長周期単位Lxzで変化することになる。
 本実施の形態では、1μm以上、あるいは、第一の光及び第二の光の光学波長の6倍以上の周期をもつ二次元フォトニック結晶が形成されるため、発光光に対する光散乱性が大きくなり、半導体発光素子における光取り出し効率LEEが増加することとなる。
 次に、本実施の形態の半導体発光素子において、二次元フォトニック結晶がドット高さにより制御される例について説明する。
 本実施の形態に係る半導体発光素子用基材1(1a)においては、前記した二次元パターンに同期して微細構造層12(12a)の微細構造を構成するドット形状(凹凸構造)の、各ドットの各々の高さが、ピッチPy及び/又はピッチPxに対して増減することが好ましい。
 本実施の形態に係る半導体発光素子用基材1(1a)においては、ピッチPyが不定間隔である場合には、少なくとも隣接する4個以上でm個以下のピッチを構成するドット高さHyn(3≦n≦2a又は3≦n≦2a+1。ただし、m、aは正の整数であり、n=m-1である。)は、下記式(5)の関係を満たすとともに、第1方向D1において、ドット高さHy1~Hynで構成されるドット群が長周期単位Lyzで繰り返し配列され、ピッチPxが不定間隔である場合には、少なくとも隣接する4個以上でm個以下のピッチを構成するドット高さHxn(3≦n≦2a又は3≦n≦2a+1。ただし、m、aは正の整数であり、n=m-1である。)は、下記式(6)の関係を満たすとともに、かつ、第2方向において、ドット高さHx1~Hxnで構成されるドット群が長周期単位Lxzで繰り返し配列されることが好ましい。本実施の形態においては、この長周期単位Lxz、あるいはLyzが、1μm以上であり、あるいは、半導体発光素子から発せられる第一の光、及び第二の光の光学波長の6倍以上である必要がある。なお、以下の説明は、Lxzについて述べるが、Lyzについても同様である。
  Hy1<Hy2<Hy3<…<Hya>…>Hyn  (5)
  Hx1<Hx2<Hx3<…<Hxa>…>Hxn  (6)
 図22は、長周期単位Lxzが8列のドット列で構成される場合、すなわち、m=8の場合を示している。図22は、本実施の形態に係る半導体発光素子用基材の第2方向D2におけるドットの配置例を示す模式図である。この場合、n=7、a=3となるため、長周期単位L1において、ドット列を構成する各ドットの高さHxnには、上記式(6)の関係が成り立っている。
 図22においては、隣接するドット間隔が広くなると、ドット高さが小さくなり、ドット間隔が狭くなるとドット高さが大きくなっている。増減するドット高さの増減範囲は、大きすぎるとその部分における光取り出し効率LEEのムラが大きくなり好ましくなく、小さすぎると、ドット高さの増減による光取り出し効率LEEの向上効果が低下するため好ましくない。同じ長周期単位Lxz内における、ドットの平均高さに対し、±20%以内であると、光取り出し効率LEEがムラなく増加し好ましい。
 上記構成により、ドットの体積が長周期単位Lxzで増減することになり、二次元フォトニック結晶を構成することになる。なんとなれば、有効媒質近似は、誘電率分布の体積分率で簡易的に表現することができ、誘電率は、屈折率の2乗となるからである。つまり、媒質の体積が長周期単位Lxzで変化することで、有効屈折率が長周期単位Lxzで変化することになる。
 本実施の形態では、1μm以上、あるいは、第一の光及び第二の光の光学波長の6倍以上の周期をもつ二次元フォトニック結晶が形成されるため、発光光に対する光散乱性が大きくなり、半導体発光素子における光取り出し効率LEEが増加することとなる。
 以上は、同一主面内に1つの周期を有する二次元フォトニック結晶の場合であり、図11に例示したように、半導体発光素子を構成するいずれかの主面に、異なる周期の二次元フォトニック結晶102、201を少なくとも2つ以上設けることで、本実施の形態の半導体発光装置とすることも可能である。
 次に、同一主面内に2つ以上の周期を有する二次元フォトニック結晶の場合について述べる。図23は、図17と同様に、ドット間隔が長周期を有するドットで構成される二次元フォトニック結晶の平面模式図である。図23に示す二次元フォトニック結晶においては、各々直行するD1方向のピッチPyとD2方向のピッチPxで構成される長周期が異なっている。この構成においては、例えば、D1方向の周期は、1μm以上、あるいは、第一の光の光学波長の6倍以上であり、D2方向の周期は、1μm以上、あるいは第二の光の光学波長の6倍以上と設定することができ、同一主面内で異なる2つ以上の周期を有する二次元フォトニック結晶となる。
 この構成によれば、例えば、D1方向は、第一の光の回折、散乱に好適な長周期とすることができ、D2方向は、第二の光の回折、散乱に好適な長周期とすることができる。
 図24は、同一主面内に2つ以上の周期を有する二次元フォトニック結晶の別の平面模式図である。図24に示す二次元フォトニック結晶においては、D1方向のピッチPyの長周期に2種類の長周期が重なっている。そのため、周期が1μm以上、あるいは、第一の光及び第二の光の光学波長の6倍以上の周期をもつ二次元フォトニック結晶を形成することが可能となり、第一の光及び第二の光に対する光散乱性を各々増強させることができ、半導体発光素子における光取り出し効率LEEが増加することとなる。図24においては、D1方向のピッチPyとD2方向のピッチPxは同一であるが、本実施の形態の半導体発光素子においては、必ずしも同一である必要はなく、適宜、変えることができる。
 例えば、図23で例示した二次元フォトニック結晶のように、D1方向とD2方向の長周期を変えることができ、1)D1方向のみに2つ以上の長周期を形成し、D2方向に1つの長周期とする、あるいは、2)D1方向及びD2方向に2つ以上の長周期を形成し、各々の長周期のうち、1つの長周期のみ同一とする等が挙げられる。
 さらに、図11に例示したように、半導体発光素子を構成するいずれかの主面に、異なる周期の二次元フォトニック結晶102、201を少なくとも2つ以上設ける場合にも、各々の長周期を2つ以上形成する。あるいは、D1方向、D2方向で長周期を変えて形成する、D1方向に2つ以上の長周期を形成する等、適宜、選択することで、本実施の形態の半導体発光装置とすることができる。
 また、上記した本実施の形態に係る半導体発光装置において、ピッチPx及びピッチPyは、それぞれ100nm以上1000nm以下であることが好ましい。ピッチPx、Pyがこの範囲内にあると、ナノオーダーの凹凸が、本実施の形態の半導体発光装置を構成する半導体発光素子用基材の表面に設けられることにより、半導体発光素子用基材の表面に半導体層を設けた場合の半導体層中の転位欠陥数を減らすことができる。ピッチPx、Pyは、100nm以上であることにより、半導体発光素子の光取り出し効率LEEが向上し、発光効率向上に寄与する転位欠陥の減少の効果が現れる。また、ピッチPx、Pyが1000nm以下であることにより、転位欠陥数の低減効果が維持される。
 続いて、本実施の形態に係る半導体発光装置により、光取り出し効率LEEが向上する原理について説明する。
 本実施の形態では、半導体発光素子と波長変換部材とを有して構成される半導体発光装置において、半導体発光素子は微細構造層を構成要素として備え、微細構造層は二次元フォトニック結晶を構成している。そして、二次元フォトニック結晶は、1μm以上、あるいは、第一の光の光学波長の6倍以上及び、第二の光の光学波長の6倍以上の少なくとも2つ以上の周期を有している。ここで第一の光は、半導体発光素子から発光され、第二の光は、波長変換部材にて第一の光の少なくとも一部が吸収されて発せられる、第一の光とは異なる波長の光である。なお、図5~図8の実施の形態のように、第三の光、第四の光・・・が存在する場合には、二次元フォトニック結晶は、1μm以上の各光の散乱性に最適な周期、あるいは、各光の光学波長の6倍以上の2つ以上の周期を有している。
 前記のとおり、半導体発光素子を形成するいずれかの界面に、ナノオーダーの凹凸(ドット)の微細構造層により構成される二次元フォトニック結晶を設けることにより、光散乱により導波モードを解消することによる光取り出し効率LEEの改善の効果が得られる。
 複数のドットから構成される長周期単位Lxzを繰り返し並べることにより、長周期単位Lxzごとに屈折率が変化し、長周期単位Lxzを構成する複数のドットが1単位となって繰り返された場合と同じ効果を生じることとなる。換言すると、波長と同程度の複数のドットの場合、平均的な屈折率分布で光の挙動を説明できるため(有効媒質近似)、空間の平均屈折率分布を計算すると、あたかも、長周期単位Lxzの複数のドットが1単位として繰り返されたように光に作用する。このように長周期単位Lxzで並べられた複数のドットは、光散乱効果を奏する。
 このように二次元フォトニック結晶の周期を調整・制御することで、発光光に対する光散乱性を大きくでき、半導体発光素子における光取り出し効率LEEが増加することとなる。この結果、半導体発光装置の発光効率を向上させることができる。さらには、発光分布の角度依存性を少なくし、工業用途として適用容易な半導体発光装置を提供することができる。
 本実施の形態において、1μm以上、あるいは、各光の光学波長の6倍以上の二次元フォトニック結晶を備えた半導体発光装置とすることで、後述する実験結果に示すように、1μm以上、及び光学波長の6倍以上の周期をもたない従来の構造に比べて、半導体発光装置としての高い発光効率を得ることができるとわかった。さらに、発光特性において、角度依存性がほとんどないことがわかり、工業実用上、好適な半導体発光装置にできることがわかった。
 また二次元フォトニック結晶の周期は、200倍以下であることが好適である。二次元フォトニック結晶の周期が、200倍を超える周期であると、半導体発光装置を構成する半導体発光素子の外形に比べ、十分に小さな二次元フォトニック結晶でなくなるため、半導体発光素子間の性能差が大きくなり好ましくない。なんとなれば、半導体発光素子上に形成される二次元フォトニック結晶の密度が、半導体発光素子間で変動しやすくなるためである。
 なお本実施の形態に係る半導体発光装置においては、ドットの各々の直径を、ピッチに応じて増減させることができる。空間の平均屈折率分布は、構成単位の体積分率に依存し変化するため、長周期単位Lxzの複数のドットにおいて、各ドットの体積が変化するとそれだけ、平均屈折率分布の変化が大きくなり、同じ長周期単位Lxzでも、より光散乱効果が高まることとなる。この効果は、ドット間のピッチが狭い場合、ドットの直径を大きく、ドット間のピッチが広い場合、ドットの直径を小さくすることでより顕著となる。
 さらに、本実施の形態にかかる半導体発光装置においては、ドットの高さもドット間のピッチに応じて増減させることができる。この場合も上記した理由と同様、ドット間のピッチが狭い場合、ドット高さを大きくし、ドット間のピッチが広い場合、ドット高さを小さくすると、長周期単位Lxz内の平均屈折率分布が大きくなり、光散乱効果を増加させることになる。
 さらに、複数のドットから構成される長周期単位Lxzを繰り返し並べた配列において、上記したドットの各々の直径とドットの高さの両方を、ピッチに応じて増減させると、有効媒質近似により記述される屈折率分布の差がさらに大きくなるため好ましい。この場合、ドット間のピッチが狭い場合、ドットの直径とドットの高さを大きくし、ドット間のピッチが広い場合、ドットの直径とドットの高さを小さくすると、空間の平均屈折率分布において、構成単位の体積分率の差が大きくなり、より光散乱効果が高まり好ましい。
 本実施の形態に係る半導体発光装置において、適用される半導体発光素子用基材の材質は、半導体発光素子用基材として使用できるものであれば特に制限はない。例えば、サファイア、SiC、SiN、GaN、シリコン、酸化亜鉛、酸化マグネシウム、酸化マンガン、酸化ジルコニウム、酸化マンガン亜鉛鉄、酸化マグネシウムアルミニウム、ホウ化ジルコニウム、酸化ガリウム、酸化インジウム、酸化リチウムガリウム、酸化リチウムアルミニウム、酸化ネオジウムガリウム、酸化ランタンストロンチウムアルミニウムタンタル、酸化ストロンチウムチタン、酸化チタン、ハフニウム、タングステン、モリブデン、GaP、GaAs等の半導体発光素子用基材を用いることができる。なかでも半導体層との格子マッチングの観点から、サファイア、GaN、GaP、GaAs、SiC半導体発光素子用基材等を適用することが好ましい。さらに、単体で用いてもよく、これらを用いた半導体発光素子用基材本体上に別の半導体発光素子用基材を設けたヘテロ構造の半導体発光素子用基材としてもよい。
 本実施の形態に係る半導体発光素子においては、n型半導体層の材質は、半導体発光素子に適したn型半導体層として使用できるものであれば、特に制限はない。例えば、シリコン、ゲルマニウム等の元素半導体、及び、III-V族、II-VI族、VI-VI族等の化合物半導体に適宜、種々の元素をドープしたものを適用できる。
 また、本実施の形態に係る半導体発光素子においては、p型半導体層の材質は、半導体発光素子に適したp型半導体層として使用できるものであれば、特に制限はない。例えば、シリコン、ゲルマニウム等の元素半導体、及び、III-V族、II-VI族、VI-VI族等の化合物半導体に適宜、種々の元素をドープしたものを適用できる。
 本実施の形態に係る半導体発光素子においては、透明導電膜の材質は、半導体発光素子に適した透明導電膜として使用できるものであれば、特に制限はない。例えば、Ni/Au電極等の金属薄膜や、ITO、ZnO、In、SnO、IZO、IGZO等の導電性酸化物膜等を適用できる。特に、透明性、導電性の観点からITOが好ましい。
 次に、本実施の形態の半導体発光装置に係る半導体発光素子について説明する。本実施の形態に係る半導体発光素子においては、上述の本実施の形態に係る半導体発光素子用基材を構成に含む。本実施の形態に係る半導体発光素子用基材を構成に入れることで、内部量子効率IQEの向上、電子注入効率EIEの向上、光取り出し効率LEEの向上を図ることができる。
 本実施の形態に係る半導体発光素子は、例えば、半導体発光素子用基材主面上に、少なくとも2層以上の半導体層と発光層とを積層して構成される積層半導体層を有する。そして、積層半導体層が最表面に位置する半導体層の主面から面外方向(例えば主面に対して略直交する方向)に延在する複数の凸部又は凹部から構成されるドットを含む二次元フォトニック結晶を備え、この二次元フォトニック結晶が、上述の実施の形態に係る半導体発光素子用基材の二次元フォトニック結晶構造に相当する。積層半導体層については、図9、図10、図11を用いて説明した通りである。
 本実施の形態に係る半導体発光素子において、半導体層としては、半導体発光素子に適した半導体層として使用できるものであれば、特に制限はない。例えば、シリコン、ゲルマニウム等の元素半導体、III-V族、II-VI族、VI-VI族等の化合物半導体等に適宜、種々の元素をドープしたものを適用できる。また、n型半導体層、p型半導体層には、適宜、図示しないn型クラッド層、p型クラッド層を設けることができる。
 発光層としては、半導体発光素子として発光特性を有するものであれば、特に限定されない。例えば、発光層として、AsP、GaP、AlGaAs、InGaN、GaN、AlGaN、ZnSe、AlHaInP、ZnO等の半導体層を適用できる。また、発光層には、適宜、特性に応じて種々の元素をドープしてもよい。
 これらの積層半導体層(n型半導体層、発光層、及びp型半導体層)は、半導体発光素子用基材の表面に公知の技術により成膜できる。例えば、成膜方法としては、有機金属気相成長法(MOCVD)、ハイドライド気相成長法(HVPE)、分子線エピタキシャル成長法(MBE)等が適用できる。
 次に、本実施の形態に係る半導体発光素子の製造方法について説明する。本実施の形態に係る半導体発光素子の製造方法においては、前記した、本実施の形態の半導体発光素子用基材上に、半導体層を設ける工程を少なくとも含むことを特徴とする。
 前記したように、主面に二次元フォトニック結晶を有する半導体発光素子用基材の、二次元フォトニック結晶を有する主面側に、n型半導体層、発光層、p型半導体層を形成する。本実施の形態の半導体発光素子の製造方法においては、半導体発光素子用基材上に、半導体層を設ける工程が含まれていればよく、得られる半導体発光素子中に、半導体発光素子用基材が含まれている必要はない。具体的には、半導体発光素子用基材上に半導体層を設けた後、半導体発光素子用基材を除去する方法が挙げられる。
 図25で上記工程を説明する。図25は、本実施の形態に係る半導体発光素子の製造方法の各工程を示す断面模式図である。
 図25Aに示す積層半導体層123は、半導体発光素子用基材1上に、n型半導体層30、発光層40、p型半導体層50が順次積層されている。さらに、p型半導体層50上に、さらにp電極層60及び支持体70が順次積層されている。
 支持体70としては、Si、Ge、GaAs、Fe、Ni、Co、Mo、Au、Cu、又は、Cu-W等からなる導電性基板を用いることができる。また、図25Aでは、積層半導体層123は素子面に垂直な方向に導通を取る構成となっているが、平行電極型でもよい。この場合、支持体70は絶縁性基板でもよい。支持体70とp電極層60との接合には、低融点金属であるAu-Sn、Au-Si、Ag-Sn-Cu、Sn-Bi等の金属共晶や、又は低融点金属ではないが、Au層、Sn層、Cu層等を用いることもできる。なお、p電極層60上に直接めっき、スパッタ、蒸着等によって金属層を形成して支持体70としてもよい。さらに、支持体70のp電極層60と面していない面に、図示しない裏面電極を設けてもよい。
 積層半導体層123から、図25Bに示すように、半導体発光素子用基材1を剥離(リフトオフ)することにより、n型半導体層30の剥離面に、二次元フォトニック結晶20が反転した二次元フォトニック結晶80を有する半導体発光素子600が得られる。この場合、反転した二次元フォトニック結晶80が、得られる半導体発光素子600に適した構造となるよう、反転元となる二次元フォトニック結晶20の構造が適宜設計される。
 半導体発光素子用基材1の剥離には、例えばレーザリフトオフ、ケミカルリフトオフ等が採用される。レーザリフトオフの場合、照射されるレーザは、半導体発光素子用基材1を透過し、n型半導体層30を透過しない波長が用いられる。また、ケミカルリフトオフの場合は、二次元フォトニック結晶20上に薄いエッチング層を積層し、ケミカルエッチングによって、半導体発光素子用基材1を剥離する方法が挙げられる。
 続いて、半導体発光素子600は、図25Cに示すように、二次元フォトニック結晶80を含むn型半導体層30の表面上に、n電極層90を設ける。
 本実施の形態の半導体発光素子用基材上に半導体層を順次積層する工程、あるいは、上記のように得られた積層半導体層から、半導体発光素子用基材をリフトオフする工程の後、さらに、デバイスプロセスを行い、電極等を適宜形成し、半導体発光素子とする。
 続いて、本実施の形態に係る半導体発光装置において、微細構造層を半導体発光素子用基材に適用する場合の製造方法について説明する。ただし、以下に示す製造方法は一例であって、半導体発光素子用基材の製造方法はこれに限定されるものではない。
 図26は、本実施の形態の半導体発光素子用基材1(1a)の製造方法の一例を示す概略説明図である。
 図26に示すように、露光装置400は、レジスト層が被覆されたロール状部材401を図示しないロール把持部により把持しており、回転制御部402と、加工ヘッド部403と、移動機構部404と、露光制御部405と、を備えている。回転制御部402は、ロール状部材401の中心を軸として、ロール状部材401を回転させる。加工ヘッド部403は、レーザ光を照射して、ロール状部材401のレジスト層を露光する。移動機構部404は、加工ヘッド部403をロール状部材401の長軸方向に沿って、制御速度で移動させる。露光制御部405は、回転制御部402によるロール状部材401の回転と同期した基準信号に基づいて、加工ヘッド部403によるレーザ露光のパルス信号を制御する。
 露光装置400によるロール状部材401の加工は、ロール状部材401を回転させた状態で、加工ヘッド部403からパルスレーザを照射することにより行う。加工ヘッド部403は、パルスレーザを照射しながら、移動機構部404によって、ロール状部材401の長軸方向に沿って移動する。ロール状部材401の回転数及びパルスレーザの周波数から、回転方向におけるロール状部材401の外周面のレジスト層に任意のピッチでパターン406が記録される。これが、ロールツーロールナノインプリントモールドにおける第1方向D1のピッチPyとなる。
 さらに、ロール状部材401の長軸方向に沿って走査しているため、任意の位置からロール状部材401が1周すると、加工ヘッド部403が長軸方向にずれることになる。これがロールツーロールナノインプリントモールドにおける第2方向D2のピッチPxとなる。ロール状部材401の周長に比較して、パターン406のピッチPy、Pxは、ナノメートルオーダーと非常に小さいので、第1方向D1のピッチPyを維持しながら、長軸方向でみると第1方向D1のシフト量がずれた列状パターンを形成することができる。さらに、上述したように、パターン406のピッチPy、Pxは、ロール状部材401の周長に比較して非常に小さいので、第1方向D1と第2方向D2は実質的に直交する。
 ロール状部材401は、円筒状に形成された部材に回転軸が備えられているものであり、材質としては、金属、カーボンコア、ガラス、石英等が適用できる。ロール状部材401は、高回転が可能な加工精度が必要とされることから、材質は、金属、カーボンコア等が好ましい。さらに、レーザ露光される円筒表面部のみ、異なる材料で被覆することもできる。特に、熱反応型レジストを使用するときは、断熱効果を高めるために金属よりも熱伝導率が低い材料を適用することが好ましく、ガラス、石英、酸化物、窒化物等が挙げられる。円筒表面に被覆した層を、後述するレジスト層をマスクとしてエッチングするエッチング層として、使用することも可能である。
 ロール状部材401を被覆するレジストは、レーザ光により露光されるものであれば、特に限定されるものではなく、光硬化型レジスト、光増幅型レジスト、熱反応型レジスト等が適用できる。特に、熱反応型レジストは、レーザ光の波長よりも小さい波長でパターン形成できるので好ましい。
 熱反応型レジストは、有機レジスト又は無機レジストであることが好ましい。これらのレジストにより形成されたレジスト層は、単層構造であっても、複数のレジスト層を組み合わせた多層構造であってもよい。なお、どのようなレジストを選択するかは、工程や要求加工精度等によって適宜変更することができる。例えば、有機レジストは、ロール状部材401を被覆するレジスト層を形成する際に、ロールコーター等で塗布できるため工程が簡便となる。ただし、スリーブ上に塗布するためレジストの粘性に制限があり、塗布厚精度や制御あるいは多層にコーティングすることは難しい。
 有機レジストとしては、(株)情報機構発刊 「最新レジスト材料ハンドブック」や(株)工業調査会 「フォトポリマーハンドブック」にあるように、ノボラック樹脂又はノボラック樹脂とジアゾナフトキンとの混合物、メタクリレート系樹脂、ポリスチレン系樹脂、ポリエチレン系樹脂、フェノール系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、シリコーン樹脂、ポリエステル系樹脂、エポキシ系樹脂、メラミン系樹脂、ビニル系樹脂等が挙げられる。
 一方、無機レジストは、ロール状部材401を被覆するレジスト層を、抵抗加熱蒸着法や電子ビームスパッタ法、CVD法等の気相法等によって設けることが好適である。これらの方法は、基本的に真空プロセスになるため、スリーブ上に形成するには工数が掛かるが、膜厚が精度良く制御でき、また、多層に積層することが容易である。
 無機レジスト材料は、反応させる温度によって種々選択することができる。例えば、無機レジスト材料としては、Al、Si、P、Ni、Cu、Zn、Ga、Ge、As、Se、In、Sn、Sb、Te、Pb、Bi、Ag、Au及びこれらの合金が挙げられる。また、無機レジスト材料は、Mg、Al、Si、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Sr、Y、Zr、Nb、Mo、Pd、Ag、In、Sn、Sb、Te、Ba、Hf、Ta、W、Pt、Au、Pb、Bi、La、Ce、Sm、Gd、Tb、Dyの酸化物、窒化物、窒酸化物、炭化物、硫化物、硫酸化物、フッ化物、塩化物や、これらの混合物を適用してもよい。
 ロール状部材401を被覆するレジストとして熱反応型レジスト材料を使用した場合、下記のパターンを形成する露光前に、レジストをパターン形成時よりも低い温度で処理する予備加熱を施してもよい。予備加熱を加えることで、パターン形成時のパターン分解能を向上させることが可能となる。予備加熱によりパターン分解能が向上するメカニズムの詳細は不明だが、熱反応型レジスト材料の熱エネルギーによるレジスト層を形成する材料の変化が複数の反応に基づく場合、予備加熱により、パターン形成時の反応以外を事前に終了させることで、パターン形成反応が単純となり、パターン分解能が向上すると推測される。
 ロール状部材401を被覆するレジストを予備加熱する方法としては、特に制限されるものではなく、ロール状部材401の全体を加熱する方法や、ロール状部材401にレーザでパターニングするよりも低い出力でロール表面全体を走査し、レジストに熱エネルギーを照射する方法等が挙げられる。
 ロール状部材401を被覆するレジストとして、熱反応型レジストを使用すると、後述する回転と同期した基準信号に基づいて位相変調させたパルス信号で露光する場合、パターンを形成するドットの各々の直径が、ピッチPy及び/又はピッチPxに対応して増減するため好ましい。熱反応型レジストを使用した場合に、ピッチに対応してドットの直径が増減する明確なメカニズムは不明であるが、つぎのように推測される。
 熱反応型レジストの場合、照射部に照射されたレーザの熱エネルギーによりレジスト層を形成する材料に変化が生じ、エッチング特性が変わることでパターンが形成される。この時、照射された熱はレジスト層の変化にすべて使われるのではなく、一部は蓄熱され隣接する領域に伝熱される。そのため、隣接する領域での熱エネルギーは、照射エネルギーに加え、隣接する領域からの伝熱エネルギーが加わることになる。ナノオーダーのパターン形成では、この伝熱エネルギーの寄与は無視できず、伝熱の寄与は、パターンを形成するドット間距離に反比例するため、結果として、得られるパターン径は、隣接するドット間距離の影響を受ける。
 ここで、ドット間距離が位相変調により変わると、上記した伝熱エネルギーの寄与が、ドット毎に異なることになり、ドット間距離が広いと、伝熱エネルギーの寄与が小さくなり、ドット径が小さくなり、ドット間距離が狭いと、伝熱エネルギーの寄与が大きくなるため、ドット径が大きくなる。
 また、ロール状部材401を被覆するレジストとして、熱反応型レジストを使用し、後述するエッチング層を設け、パターンの加工深さを制御すると、前記したと同様、回転と同期した基準信号に基づいて位相変調させたパルス信号で露光する場合、パターンを形成するドットの各々の高さが、ピッチPy及び/又はピッチPxに対応して増減するため好ましい。熱反応型レジストとエッチング層を併用した場合に、ピッチPxに対応してドットの直径が増減するメカニズムは不明であるが、上記した、ドット間距離に応じてドット径が増減することから説明が可能である。
 すなわち、ナノオーダーのパターニングにおいて、ドット径に応じて、エッチング深さは増減し、ドット径が広くなるとエッチング深さは深くなり、ドット径が狭くなるとエッチング深さが浅くなる傾向がある。特に、エッチング手法がドライエッチングにおいて顕著である。これは、エッチャントの交換、あるいは、エッチング生成物の離脱が迅速に行われないためであると考えられる。
 前記したように、熱反応型レジストを使用すると、ドット間距離が広いとドット径が小さくなり、ドット間距離が狭いと、ドット径が大きくなる。ドット径に応じて、エッチング深さが増減する傾向があるため、結果として、ドット間距離が広いと、ドット深さは浅くなり、ドット間距離が狭いと、ドット深さが深くなる。
 以上ドット間距離と、ドット径、ドット深さの増減の影響は、平均ピッチが小さくなると顕著である。これは、上記した伝熱エネルギーの影響が大きくなるためと推定される。
 本実施の形態においては、ロール状部材401を被覆するレジスト層を利用してそのままロールツーロールナノインプリントモールドとして適用してもよく、また、レジスト層をマスクとして、ロール状部材401の表面をエッチングすることによりパターンを形成してもよい。
 ロール状部材401にエッチング層を設けることで、パターンの加工深さを自由に制御でき、かつ、熱反応レジスト層の厚みを加工に最適な膜厚に選択することができる。すなわち、エッチング層の厚みを制御することで、加工深さを自由に制御できる。また、加工深さはエッチング層で制御できることから、熱反応型レジスト層は露光や現像が容易な膜厚を選択すればよい。
 露光を行う加工ヘッド部403に用いるレーザは、波長150nm以上550nm以下が好ましい。また、波長の小型化及び入手の容易さから、半導体レーザを使用することが好ましい。半導体レーザの波長は、150nm以上550nm以下であることが好ましい。波長が150nmより短い場合には、レーザの出力が小さくなり、ロール状部材401を被覆するレジスト層を露光することが困難なためである。一方、波長が550nmより長い場合には、レーザのスポット径を500nm以下にすることができず、小さな露光部を形成することが困難なためである。
 一方、スポットサイズが小さな露光部を形成するためには、加工ヘッド部403に用いるレーザとして、ガスレーザを使用することが好ましい。特に、XeF、XeCl、KrF、ArF、Fのガスレーザは、波長が351nm、308nm、248nm、193nm、157nmと短く、非常に小さなスポットサイズに集光することができるため好ましい。
 また、加工ヘッド部403に用いるレーザとして、Nd:YAGレーザの2倍波、3倍波、4倍波を用いることができる。Nd:YAGレーザの2倍波、3倍波、4倍波の波長は、それぞれ532nm、355nm、266nmであり、小さなスポットサイズを得ることができる。
 ロール状部材401の表面に設けられたレジスト層に微細パターンを露光により形成する場合、ロール状部材401の回転位置精度が非常に高く、初めに焦点深度内に部材表面があるようにレーザの光学系を調整しておけば製造は容易である。しかしながら、ナノインプリントに適合するほどのロール寸法精度、回転精度を保持することは非常に困難である。そのため、露光に用いるレーザは対物レンズにより収束されロール状部材401表面が焦点深度の中に絶えず、存在するようにオートフォーカスがかけられていることが好ましい。
 回転制御部402は、ロール状部材401をロールの中心を軸に回転させる機能を有する装置であれば特に制限されるものではなく、例えば、スピンドルモーター等が好適である。
 加工ヘッド部403をロール状部材401の長軸方向に移動させる移動機構部404としては、制御された速度で加工ヘッド部403を移動できれば特に制限されるものではなく、リニアサーボモーター等が好適に挙げられる。
 図26に示す露光装置400では、ロール状部材401の表面上に形成される露光パターンが回転制御部402の回転(例えば、スピンドルモーターの回転)と同期した基準信号に基づいて、位相変調させたパルス信号により露光制御部405で露光部の位置を制御している。基準信号としては、スピンドルモーターの回転に同期したエンコーダーからの出力パルスを用いることができる。
 回転と同期した基準信号に基づいて位相変調させたパルス信号は、例えば、次のように制御することができる。
 図27は、本実施の形態に係る半導体発光素子用基材を形成する露光装置におけるスピンドルモーターのZ相信号を基準信号として基準パルス信号、変調パルス信号を設定した一例を説明する説明図である。図27A~図27Cを用いて、スピンドルモーターのZ相信号と、基準パルス信号、変調パルス信号との関係を説明する。Z相信号を基準とし、そのm倍(m>2の整数)の周波数のパルス信号が基準パルス信号であり、n倍(m/n>kかつk>1の整数)の周波数のパルス信号が変調パルス信号となる。基準パルス信号、変調パルス信号のいずれも、Z相信号の周波数の整数倍であるために、ロール状部材401が中心軸周りに1回転する時間内に整数のパルス信号が存在することになる。
 図28は、本実施の形態に係る半導体発光素子用基材を形成する露光装置における基準パルス信号と変調パルス信号から、位相変調パルス信号を設定した一例を説明する説明図である。図28を用いて、基準パルス信号と変調パルス信号、位相変調パルス信号との関係を説明する。基準パルス信号の位相を変調パルス信号の波長で周期的に増減させると、位相変調パルス信号となる。例えば、基準パルス周波数fY0を次の式(7)で表わし、変調周波数fYLを次の式(8)で表わすと、周波数変調させた変調パルス信号fYは次の式(9)で表せられる。
fY0=Asin(ω0t+φ0)  (7)
fYL=Bsin(ω1t+φ1)  (8)
fY=Asin(ω0t+φ0+Csin(ω1t))  (9)
 また、次の式(10)で表わすように、基準パルス周波数fY0に、変調パルス信号から得られるサイン波を加算することでも位相変調パルス信号fY’を得ることができる。
fY´=fY0+C´sin(t・fYL/fY0×2π) (10)
 さらには、基準パルスのパルス波長LY0に、変調パルス信号の波長LYLから得られるサイン波を加算することで、位相変調パルス信号の波長LYを得ることができる。
 図28に示すように、得られる位相変調パルス信号は、変調パルス信号の信号間隔に応じて、基準パルス信号のパルス間隔が周期的に増減した信号となる。
 また、図24に示したように、D1方向、あるいはD2方向に2つの長周期を形成するためには、例えば、式(10)に、もう一つ変調パルスの周期を加え、式(11)のようにすることで、可能となる。
fY”=fY0+C”sin(t・fYL/fY0×2π+t・fYL’/fY0×2π)  (11)
 式(11)では、基準パルス周波数fY0に、二つの周期を有する変調パルス信号から得られるサイン波を加算し、位相変調パルス信号fY”を得ている。式(11)における二つの変調周波数fYL、fYL’が各々、本実施の形態の半導体発光装置における二つの長周期となる。
 このとき本実施の形態では、1μm以上、あるいは、第一の光の光学波長の6倍以上及び第二の光の光学波長の6倍以上の長周期となるように、変調パルス信号を調整・制御して位相変調パルス信号を得る。
 また、露光装置400においては、位相変調したパルス信号によらず、一定周波数の基準パルス信号を用いて加工ヘッド部403によるレーザ露光のパルス信号を制御し、移動機構部404による加工ヘッド部403の移動速度を周期的に増減させる構成としてもよい。この場合には、例えば、図29に示すように、加工ヘッド部403の移動速度を周期的に増減する。図29は、本実施の形態に係る半導体発光素子用基材を形成する露光装置におけるレーザ光を照射する加工ヘッド部の移動速度の一例を説明する説明図である。図29に図示した移動速度は、基準移動速度±σの移動速度の例である。この移動速度は、ロール状部材401の回転と同期させることが好ましく、例えば、Z相信号における速度が図29に示す速度となるように制御する。
 以上は、パターン406(図26参照)が周期的な位相変調で制御された場合であるが、周期的でなくランダムな位相変調によってパターン406を形成することもできる。例えば第1方向D1においては、ピッチPyは、パルス周波数に反比例するので、パルス周波数に、最大位相ずれが1/10になるようにランダム周波数変調を行うと、ピッチPyは、ピッチPyの1/10の変動幅δ1(最大変動幅)を有し、ランダムにピッチPyが増減したパターンを得ることができる。
 回転と同期した基準信号の制御頻度については、ロール1周毎等、複数回以上の頻度による基準信号により、変調パルス信号を制御してもよく、露光初期に設定した初期の基準信号のみで制御してもよい。初期の基準信号のみで制御する場合、回転制御部402の回転数に変調が生じた場合、露光パルス信号に位相変調が生じることとなる。なんとなれば、ナノオーダーの回転制御であるため、回転制御部402のわずかな電位変動でも、ナノオーダーのピッチ変動が生じ、それが積算されるためである。仮に500nmピッチのパターンピッチの場合、ロール外周長が250mmであると、50万回のレーザ露光となり、1万回毎に1nmのずれでも、50nmのずれとなる。
 同じピッチ、同じ長周期でも、基準信号の制御頻度の調整により、図14及び図17に示す配置の微細構造を作成することが可能となる。図14に示す配置の微細構造を形成する場合は、基準信号の制御頻度を下げており、図17に示す配置の微細構造を形成する場合は基準信号の制御頻度を上げている。そのため、図17に示す配置においては、該当するドットの第2方向の位相(位置)がそろっており、図14に示す配置においては、該当するドットの第2方向の位相(位置)にずれが生じる。図16及び図18に示す配置の関係も同様である。
 露光装置400により、表面に設けられたレジスト層が露光されたロール状部材401を現像し、現像したレジスト層をマスクとして、ドライエッチングによりエッチング層をエッチングする。エッチング後、残渣のレジスト層を除去すると、ロールツーロールナノインプリントモールドを得ることができる。
 上記のように得られたパターン406を、所定の半導体発光素子用基材に転写し、半導体発光素子用基材を得る方法としては特に限定されるものではなく、例えば、ナノインプリントリソグラフィ法により所定の半導体発光素子用基材表面にパターンを転写し、転写パターン部分をマスクとして、ドライエッチングにより半導体発光素子用基材をエッチングすることでパターン406を半導体発光素子用基材に転写することができる。具体的には、パターン406を形成したロール状部材401を円筒型モールド(ロールツーロールナノインプリントモールド)として用いる。半導体発光素子用基材の表面側に有機材料からなるレジスト層を形成し、このレジスト層に円筒型モールドを押し付けて、パターン406をレジスト層に転写した後、レジスト層及び半導体発光素子用基材を表面側からエッチングすることで半導体発光素子用基材の表面側に微細凹構造層を形成し、半導体発光素子用基材とすることができる。
 また、円筒型モールド(ロール状部材401)からパターン406を直接半導体発光素子用基材に転写するのではなく、パターン406を一度フィルムに転写し、樹脂モールドを形成してから、この樹脂モールドによるナノインプリントリソグラフィ法により半導体発光素子用基材上にパターンを形成し、半導体発光素子用基材を得る方法も挙げられる。この方法によれば、モールドの利用効率を高めて、半導体発光素子用基材の平坦性を吸収できるため、パターンを半導体発光素子用基材に転写する方法としては、樹脂モールドによるナノインプリントリソグラフィ法がより好ましい。
 円筒型モールドから樹脂モールドにパターン406を転写する方法としては、特に限定されるものではなく、例えば、直接ナノインプリント法が適用できる。直接ナノインプリント法としては、所定温度で加熱しながら円筒型モールドのパターン406に熱硬化性樹脂を充填し、円筒型モールドを冷却してから硬化した熱硬化性樹脂を離型して転写する熱ナノインプリント法や、円筒型モールドのパターン406に充填した光硬化性樹脂に所定の波長の光を照射し、光硬化性樹脂を硬化させてから、円筒型モールドから硬化した光硬化性樹脂を離型して転写する光ナノインプリント法が挙げられる。
 円筒型モールド(ロール状部材401)は、シームレスの円筒状モールドであるため、特に、ロールツーロールナノインプリントにより樹脂モールドを連続転写することに好適である。
 また、パターン406を転写した樹脂モールドから電鋳により電鋳モールドを作製し、この電鋳モールドによりナノインプリントリソグラフィ法によりパターンを形成する方法も挙げられる。電鋳モールドを形成した場合は、元型となる円筒型モールドの寿命を延ばす点で好ましく、電鋳モールドを一度形成する方式においても、半導体発光素子用基材の平坦性を吸収できるため、さらに樹脂モールドを形成する方法が好ましい。
 さらに、樹脂モールド法においては、繰り返し転写が容易であるため好ましい。ここでの「繰り返し転写」とは、(1)凸凹パターン形状を有する樹脂モールド(+)から、転写反転した凹凸パターン転写物を複数製造すること、又は、(2)特に硬化性樹脂組成物を転写材として用いる場合において、樹脂モールド(+)から反転した転写体(-)を得て、次に転写体(-)を樹脂モールド(-)として、反転転写した転写体(+)を得て、凸凹/凹凸/凸凹/凹凸/・・・/を繰り返しパターン反転転写することのいずれか一方、あるいは両方を意味する。また(+)は雄型、(-)は雌型を指す。
 レジスト層により半導体発光素子用基材の表面側にパターンを形成したのち、レジスト層をマスクとして、エッチングにより半導体発光素子用基材に凹凸を形成する。エッチング方法としては、レジスト層をマスクとして半導体発光素子用基材に凹凸を形成できれば、特に限定されるものではなく、ウェットエッチング、ドライエッチング等が適用できる。特に、半導体発光素子用基材の凹凸を深く形成できるためドライエッチング法が好ましい。ドライエッチング法の中でも異方性ドライエッチングが好ましく、ICP-RIE、ECM-RIEが好ましい。ドライエッチングに使用する反応ガスとしては、半導体発光素子用基材の材質と反応すれば、特に限定されるものではないが、BCl、Cl、CHF、あるいはこれらの混合ガスが好ましく、適宜、Ar、O等を混合できる。
 上記のように得られたパターン406を、半導体発光素子用基材以外、例えば、図11に記載した半導体発光素子200の二次元フォトニック結晶201に適用する方法としては、上記と同様に、特に限定されるものではなく、例えば、ナノインプリントリソグラフィ法により所定の透明導電膜表面にパターンを転写し、転写パターン部分をマスクとして、エッチングにより透明導電膜をエッチングすることで、パターン406を透明導電膜に転写することができる。
 また、透明導電膜表面に、透明導電膜と実質的に同等の屈折率を有する膜を形成し、その膜に上記と同様に、パターン406を転写し、本実施の形態の半導体発光装置における半導体発光素子とすることができる。
 以下、本発明の効果を明確にするために行った実施例をもとに本発明をより詳細に説明する。なお、下記実施の形態における材料、使用組成、処理工程等は例示的なものであり、適宜変更して実施することが可能である。その他、本発明の範囲を逸脱しない限りにおいて、適宜変更して実施することが可能である。そのため、本発明は以下の実施例によって何ら限定されるものではない。
[実施例1]
(円筒状金型作製(樹脂モールド作製用鋳型の作製))
 円筒状金型の半導体発光素子用基材としては、直径80mm、長さ50mmの円筒型石英ガラスロールを用いた。この円筒型石英ガラスロール表面に、次の方法により半導体パルスレーザを用いた直接描画リソグラフィ法により微細構造(微細凹凸構造)を形成した。
 まず、この石英ガラス表面の微細構造上にスパッタリング法によりレジスト層を成膜した。スパッタリング法は、ターゲット(レジスト層)として、CuOを用いて、RF100Wの電力で実施した。成膜後のレジスト層の膜厚は20nmであった。以上のように作製した円筒状金型を線速度s=1.0m/secで回転させながら、以下の条件で露光し、2種類の長周期を有する円筒状金型を作成した。
  露光用半導体レーザ波長:405nm
  露光レーザパワー:3.5mW
 円筒状金型A:
   X軸方向のピッチPx:398nm
   X軸方向のピッチPxに対する変動幅δ2:40nm
   変動幅δ2のX軸方向の長周期単位PxL :3.98μm
   Y軸方向のピッチPy:460nm
   Y軸方向のピッチPyに対する変動幅δ1:46nm
   変動幅δ1のY軸方向の長周期単位PyL :4.60μm
 円筒状金型B
   X軸方向のピッチPx:398nm
   X軸方向のピッチPxに対する変動幅δ2:40nm
   変動幅δ2のX軸方向の長周期単位PxL :1.99μm
   Y軸方向のピッチPy:460nm
   Y軸方向のピッチPyに対する変動幅δ1:46nm
   変動幅δ1のY軸方向の長周期単位PyL :2.33μm
 Y軸方向のピッチPyは次のように決定される。スピンドルモーターのZ相信号を基準に、1周に要する時間Tが測定され、線速度sから周長Lが計算され、次の式(12)が得られる。
  L=T×s  (12)
 目標のピッチをPyとして、L/Pyが整数になるように目標ピッチPyの0.1%以下の値を足して調整し、実効ピッチPy’を次の式(13)によって得る。
  L/Py’=m (mは整数)  (13)
 目標のピッチPyと実効ピッチPy’とは、厳密にはPy≠Py’であるが、L/Py≒10であるので、|Py-Py’|/Py’≒10-7となり、実質的に等しいものとして扱うことができる。同様に、長周期単位PyLも、L/PyLが整数になるように実効長周期単位PyL’を次の式(14)によって得る。
  L/PyL’=n (nは整数)  (14)
 この場合も、厳密にはPyL≠PyL’であるが、L/PyL≒10であるので、|PyL-PyL’|/PyL’≒10-5となり、実質的に等しいものとして扱うことができる。
 次に実効ピッチPy’から、式(15)、(16)により、基準パルス周波数fy0、変調周波数fyLが算出される。
  fy0=s/Py’  (15)
  fyL=s/PyL’  (16)
 最後に、式(15)、(16)から、スピンドルモーターのZ相信号からの経過時間tにおけるパルス周波数fyが、式(17)のように決定される。
fy=fy0+δ1×sin(t×(fyL/fy0)×2π)(17)
 X軸方向の軸送り速度は次のように決定される。スピンドルモーターのZ相信号を基準に、1周に要する時間Tが測定され、X軸方向のピッチPxから、軸方向の基準送り速度Vx0が次の式(18)のように決定される。
  Vx0=Px/T  (18)
 X軸方向の長周期単位PxLから、時刻tにおける軸送り速度Vxを次の式(19)で決定し、スキャンする。
Vx=Vx0+Vδ2・sin(Px/PxL×t×2π)(19)
 ここで、Vδ2は、x軸方向の長周期単位PxLにおける速度変動幅であり、長周期単位PxLのピッチ変動幅δ2、X軸方向のピッチPx、軸方向の基準送り速度Vx0により、次の式(20)で示される。
  Vδ2=δ2×Vx0/Px  (20)
 次に、レジスト層を現像し、現像したレジスト層をマスクとし、ドライエッチングによるエッチング層のエッチングを行った。ドライエッチングは、エッチングガスとしてSFを用い、処理ガス圧1Pa、処理電力300W、処理時間5分の条件で実施した。次に、表面に微細構造が付与された円筒状金型から、残渣のレジスト層のみをpH=1の塩酸で6分間の条件で剥離して円筒モールド(転写用モールド)を作製した。
(樹脂モールドの作製)
 得られた2種類の円筒状の石英ガラスロール表面(転写用モールド)に対し、デュラサーフ(登録商標、以下同じ)HD-1101Z(ダイキン化学工業社製)を塗布し、60℃で1時間加熱後、室温で24時間静置、固定化した。その後、デュラサーフHD-ZV(ダイキン化学工業社製)で3回洗浄し、離型処理を施した。
 次に、得られた円筒モールドからリール状樹脂モールドを作製した。OPTOOL(登録商標、以下同じ) DAC(ダイキン工業社製)、トリメチロールプロパントリアクリレート(東亞合成社製 M350)及びIrgacure(登録商標、以下同じ) 184(Ciba社製)を重量部で10:100:5の割合で混合して光硬化性樹脂を調製した。次に、この光硬化性樹脂をPETフィルム(A4100、東洋紡社製:幅300mm、厚さ100μm)の易接着面にマイクログラビアコーティング(廉井精機社製)により、塗布膜厚6μmになるように塗布した。
 次いで、円筒モールド(円筒状金型)に対し、光硬化性樹脂を塗布したPETフィルムをニップロール(0.1MPa)で押し付け、大気下、温度25℃、湿度60%で、ランプ中心下での積算露光量が600mJ/cmとなるように、UV露光装置(フュージョンUVシステムズ・ジャパン社製、Hバルブ)を用いて紫外線を照射して連続的に光硬化を実施して、表面に微細構造が反転転写されたリール状透明樹脂モールド(長さ200m、幅300mm)を得た。
 樹脂モールドを走査型電子顕微鏡で観察したところ、断面形状がφ400nm、h800nmの凸部がつぎの長周期構造を有する周期構造で形成されている2種類の樹脂モールドA、及び樹脂モールドBを得た。
 樹脂モールドA:
   X軸方向のピッチPx:398nm
   X軸方向のピッチPxに対する変動幅δ2:40nm
   変動幅δ2のX軸方向の長周期単位PxL :3.98μm
   Y軸方向のピッチPy:460nm
   Y軸方向のピッチPyに対する変動幅δ1:46nm
   変動幅δ1のY軸方向の長周期単位PyL :4.60μm
 樹脂モールドB:
   X軸方向のピッチPx:398nm
   X軸方向のピッチPxに対する変動幅δ2:40nm
   変動幅δ2のX軸方向の長周期単位PxL :1.99μm
   Y軸方向のピッチPy:460nm
   Y軸方向のピッチPyに対する変動幅δ1:46nm
   変動幅δ1のY軸方向の長周期単位PyL :2.33μm
(電子顕微鏡)
 装置;HITACHI s-5500
 加速電圧;10kV
 MODE;Normal
(反転樹脂モールドの作製)
 次に、OPTOOL DAC HP(ダイキン工業社製)、トリメチロールプロパントリアクリレート(東亞合成社製 M350)、及びIrgacure 184(Ciba社製)を重量部で10:100:5の割合で混合して光硬化性樹脂を調製した。この光硬化性樹脂をPETフィルム(A4100、東洋紡社製:幅300mm、厚さ100μm)の易接着面にマイクログラビアコーティング(廉井精機社製)により、塗布膜厚2μmになるように塗布した。
 次いで、上記リール状樹脂モールドに、光硬化性樹脂を塗布したPETフィルムをニップロール(0.1MPa)で押し付け、大気下、温度25℃、湿度60%で、ランプ中心下での積算露光量が600mJ/cmとなるように、UV露光装置(フュージョンUVシステムズ・ジャパン社製、Hバルブ)を用いて紫外線を照射して連続的に光硬化を実施して、表面に樹脂モールドA、樹脂モールドBの微細構造が反転転写されたシート状の透明樹脂モールドA、シート状の透明樹脂モールドB(長さ200mm、幅300mm)を得た。
(ナノインプリントリソグラフィ:サファイア基板)
 φ2”厚さ0.33mmのC面サファイア半導体発光素子用基材上に、マスク材料をスピンコーティング法(2000rpm、20秒)により塗布し、レジスト層を形成した。マスク材料は、感光性樹脂組成物の固形分を5重量%になるようにプロピレングリコールモノメチルエーテルで希釈した塗布溶液を作成した。
(感光性樹脂組成物)
 感光性樹脂組成物としては、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(OXT-221、東亜合成社製)20重量部、3’、4’-エポキシシクロヘキサンカルボン酸3、4-エポキシシクロヘキシルメチル(和光純薬社製)80重量部、フェノキシジエチレングリコールアクリレート(アロニックス(登録商標、以下同じ)M-101A、東亜合成社製)50重量部、エチレンオキサイド変性ビスフェノールAジアクリレート(アロニックスM-211B、東亜合成社製)50重量部、DTS-102(みどり化学社製)8重量部、1、9-ジブトキシアントラセン(アントラキュア(登録商標)UVS-1331、川崎化成社製)1重量部、Irgacure 184(Ciba社製)5重量部及びOPTOOL DAC HP(20%固形分、ダイキン工業社製)4重量部、を混合して使用した。
 レジスト層を形成したサファイア半導体発光素子用基材上に、透明樹脂モールドBを70mm×70mm(□70mm)に切断し貼り合わせた。貼り合わせには、サンテック社製のフィルム貼合装置(TMS-S2)を使用し、貼合ニップ力90N、貼合速度1.5m/sで貼り合わせた。次に、貼合し一体化した透明樹脂モールド/レジスト層/サファイア半導体発光素子用基材を、□70mm×t10mmの透明シリコーン板(硬度20)2枚で挟んだ。その状態で、エンジニアリングシステム社製のナノインプリント装置(EUN-4200)を用いて、0.05MPaの圧力でプレスした。プレスした状態で、透明樹脂モールド側から紫外線を2500mJ/cmで照射し、レジスト層を硬化させた。硬化後、透明シリコーン板と透明樹脂モールドを剥離し、C面状にパターンが形成されたレジスト/サファイア積層体を得た。
(エッチング:サファイア半導体発光素子用基材)
 反応性イオンエッチング装置(RIE-101iPH、サムコ株式会社製)を用い、下記エッチング条件でサファイア半導体発光素子用基材をエッチングした。
 エッチングガス:Cl/(Cl+BCl)=0.1
 ガス流量:10sccm
 エッチング圧力:0.1Pa
 アンテナ:50w
 バイアス:50w
 エッチング後、サファイア半導体発光素子用基材の断面を電子顕微鏡で観察したところ、断面形状φ400nm、h=250nmの凸部が、ナノインプリントに使用した透明樹脂モールドBと同様の長周期構造を含む周期構造として形成されていることがわかった。
(半導体発光素子の形成)
 得られたサファイア半導体発光素子用基材上に、MOCVDにより、(1)GaN低温バッファ層、(2)n型GaN層、(3)n型AlGaNクラッド層、(4)InGaN発光層(MQW)、(5)p型AlGaNクラッド層、(6)p型GaN層、(7)ITO層を連続的に積層した。サファイア半導体発光素子用基材上の凹凸は、(2)n型GaN層の積層時に埋められて、平坦化する製膜条件とした。上記構成により、半導体層からの発光は460nmであり、GaN層(屈折率:2.46)中の光学波長は、187nmであった。
(ナノインプリント:ITO)
 次に、表面に形成されたITO層に、マスク材料をスピンコーティング法(2000rpm、20秒)により塗布し、レジスト層を形成した。マスク材料は、前記感光性樹脂組成物の固形分を5重量%になるようにプロピレングリコールモノメチルエーテルで希釈した塗布溶液を作成した。
 レジスト層を形成したITO上に、透明樹脂モールドAを70mm×70mm(□70mm)に切断し貼り合わせた。貼り合わせには、サンテック社製のフィルム貼合装置(TMS-S2)を使用し、貼合ニップ力90N、貼合速度1.5m/sで貼り合わせた。次に、貼合し一体化した透明樹脂モールド/レジスト層/ITO層/積層半導体層/サファイア半導体発光素子用基材を、□70mm×t10mmの透明シリコーン板(硬度20)2枚で挟んだ。その状態で、エンジニアリングシステム社製のナノインプリント装置(EUN-4200)を用いて、0.05MPaの圧力でプレスした。プレスした状態で、透明樹脂モールド側から紫外線を2500mJ/cmで照射し、レジスト層を硬化させた。硬化後、透明シリコーン板と透明樹脂モールドを剥離し、ITO表面パターンが形成されたレジスト/ITO/積層半導体層を得た。
(エッチング:ITO層)
 反応性イオンエッチング装置(RIE-101iPH、サムコ株式会社製)を用い、下記エッチング条件でITO層をエッチングした。
 エッチングガス:Cl/(Cl+BCl)=0.1
 ガス流量:10sccm
 エッチング圧力:0.1Pa
 アンテナ:50w
 バイアス:50w
 エッチング後、ITO面上を電子顕微鏡で観察したところ、断面形状φ400nm、h=50nmの凸部が、ナノインプリントに使用したリール状透明樹脂モールドAと同様の長周期構造を含む周期構造として形成されていることがわかった。ITO層の半導体層からの発光460nmに対する、ITO層(屈折率:2.0)中の光学波長は、230nmであった。さらに、エッチング加工し電極パッドを取り付けた。
(半導体発光装置)
 上記のように得られた半導体発光素子をパッケージに配置し、電極パッドにAuワイヤを介して電気的に接続した。次に、パッケージ内をシリコーン樹脂に650nmの主波長を有するCaAlSiN:Eu(蛍光材)を混合した波長変換部材で充填した。
 この状態で、カソードとアノードの間に20mAの電流を流し発光出力を測定した。表4には、比較例1の半導体発光装置からの発光出力を1としたときの発光出力比が示されている。実施例1では、比較例1と比較して、半導体発光素子からの発光に、回折特有のバラツキは観察されず、発光角度依存性はほとんどないことがわかった。
[実施例2]
 実施例1と同様に作成した円筒状金型を線速度s=1.0m/secで回転させながら、以下の条件で露光した。
 円筒状金型C
  露光用半導体レーザ波長:405nm
  露光レーザパワー:3.5mW
   X軸方向のピッチPx:260nm
   X軸方向のピッチPxに対する変動幅δ2:26nm
   変動幅δ2のX軸方向の長周期単位PxL1 :2.60μm
   Y軸方向のピッチPy:300nm
   Y軸方向のピッチPyに対する変動幅δ1:30nm
   変動幅δ1のY軸方向の長周期単位PyL1 :2.60μm
   変動幅δ1のY軸方向の長周期単位PyL2 :1.30μm
 Y軸方向のピッチPyは次のように決定される。スピンドルモーターのZ相信号を基準に、1周に要する時間Tが測定され、線速度sから周長Lが計算され、次の式(12)が得られる。
  L=T×s  (12)
 目標のピッチをPyとして、L/Pyが整数になるように目標ピッチPyの0.1%以下の値を足して調整し、実効ピッチPy’を次の式(13)によって得る。
  L/Py’=m (mは整数)  (13)
 目標のピッチPyと実効ピッチPy’とは、厳密にはPy≠Py’であるが、L/Py≒10であるので、|Py-Py’|/Py’≒10-7となり、実質的に等しいものとして扱うことができる。同様に、長周期単位PyL1も、L/PyL1が整数になるように実効長周期単位PyL1’、PyL2’を次の式(21)、式(22)によって得る。
  L/PyL1’=n (nは整数)  (21)
  L/PyL2’=m (mは整数)  (22)
 この場合も、厳密にはPyL1≠PyL1’、PyL2≠PyL2’であるが、L/PyL1≒10であるので、|PyL1-PyL1’|/PyL1’≒10-5、|PyL2-PyL2’|/PyL2’≒10-5なり、実質的に等しいものとして扱うことができる。
 次に実効ピッチPy’から、式(15)、式(23)、式(24)により、基準パルス周波数fy0、変調周波数fyLが算出される。
  fy0=s/Py’  (15)
  fyL1=s/PyL1’  (23)
  fyL2=s/PyL2’  (24)
 最後に、式(15)、式(23)、式(24)から、スピンドルモーターのZ相信号からの経過時間tにおけるパルス周波数fyが、式(25)のように決定される。
  fy=fy0+δ1×sin(t×(fyL1/fy0)×2π+t×(fyL2/fy0)×2π)  (25)
 次に実施例1と同様に、表面構造が反転転写されたリール状透明樹脂モールド(長さ200m、幅300mm)が得られた。
 樹脂モールドを走査型電子顕微鏡で観察したところ、断面形状がφ250nm、h500nmの凸部がつぎの長周期構造を有する周期構造で形成されている樹脂モールドCを得た。
 樹脂モールドC:
  露光用半導体レーザ波長:405nm
  露光レーザパワー:3.5mW
   X軸方向のピッチPx:260nm
   X軸方向のピッチPxに対する変動幅δ2:26nm
   変動幅δ2のX軸方向の長周期単位PxL1 :2.60μm
   Y軸方向のピッチPy:300nm
   Y軸方向のピッチPyに対する変動幅δ1:30nm
   変動幅δ1のY軸方向の長周期単位PyL1 :2.60μm
   変動幅δ1のY軸方向の長周期単位PyL2 :1.30μm
 以下、実施例1と同様に、サファイア半導体発光素子用基材表面に樹脂モールドCのパターンを転写し、半導体発光素子を作製した。
 上記のように得られた半導体発光素子をパッケージに配置し、電極パッドにAuワイヤを介して電気的に接続した。次に、パッケージ内をシリコーン樹脂に650nmに主波長を有するCaAlSiN:Eu(蛍光材)、530nmに主波長を有するβ-SiAlON:Eu(蛍光材)を各々混合した波長変換部材で充填した。
 20mAにおける実施例2の発光出力比を表4に示す。実施例1と同様、回折特有のギラツキがある発光は観察されず、発光角度依存性はほとんどなかった。
[実施例3]
 実施例2と同様の半導体発光素子をパッケージに配置し、電極パッドにAuワイヤを介して電気的に接続した。次に、パッケージ内を、シリコーン樹脂に下記の主波長を有する蛍光材を混合した波長変換部材で充填した。
 530nm β-SiAlON:Eu
 580nm Ca-α―SiAlON:Eu
 650nm CaAlSiN:Eu
 20mAにおける実施例3の発光出力比を表4に示す。実施例3では、実施例1、実施例2と同様、回折特有のギラツキがある発光は観察されず、発光角度依存性はほとんどなかった。
[比較例1]
 実施例1と同様の条件で通常のフラットなサファイア半導体発光素子用基材上に半導体発光素子を形成した後、実施例1と同様の波長変換部材で封止し発光出力を測定した。
[比較例2]
 実施例1と同様の方法で、半導体レーザを用いた直接描画リソグラフィ法によりナノパターンの微細構造(微細凹凸構造)を石英ガラス表面に形成した。X軸方向、Y軸方向のピッチは同じで、ピッチ変動がない六方配列とした。
  X軸方向のピッチPx:398nm
  Y軸方向のピッチPy:460nm
 その後、実施例1と同様の方法で、半導体発光装置を形成し、発光出力を測定した。得られた半導体発光素子からの発光においては、回折構造特有の回折光が強く観察され、発光角度分布が大きかった。
[比較例3]
 実施例1と同様の方法で、半導体レーザを用いた直接描画リソグラフィ法によりナノパターンの微細構造(微細凹凸構造)を石英ガラス表面に形成した。X軸方向、Y軸方向のピッチは同じで、ピッチ変動がない六方配列とした。
  X軸方向のピッチPx:260nm
  Y軸方向のピッチPy:300nm
 その後、実施例1と同様の方法で、半導体発光装置を形成し、発光出力を測定した。得られた半導体発光素子からの発光においては、回折構造特有の回折光が強く観察され、発光角度分布が大きかった。
 実施例1、2、3における、二次元フォトニック結晶の周期と、光学波長の関係をまとめて表1、表2及び表3に表示した。
 いずれの実施例においても、1μm以上の周期を2つ以上有することがわかった。また、光学波長の6倍以上の周期を有し、かつ、その周期が2つ以上あることがわかった。
 実施例1
Figure JPOXMLDOC01-appb-T000001
 実施例2
Figure JPOXMLDOC01-appb-T000002
 実施例3
Figure JPOXMLDOC01-appb-T000003
 表4には、比較例1の出力を1とした際の、各試料の発光出力比が示されている。表4から、本実施の形態に係る半導体発装置(実施例1~実施例3)によれば、従来の平坦なサファイア半導体発光素子用基材(比較例1)、従来の光学波長の6倍以上の周期をもたない二次元フォトニック結晶を有するサファイア半導体発光素子用基材(比較例2)に比べ、サファイア半導体発光素子用基材上に成膜した半導体層中の転位欠陥数を減らすことができ、また、周期性が乱れた凹凸パターンに起因する光散乱により導波モードを解消して光取り出し効率を上げることができるため、高い発光効率を有する半導体発光素子を得ることができることがわかった。さらに、発光素子からの発光特性において、角度依存性がほとんどないことがわかり、工業実用上、好適な発光素子である。
 角度依存性は、20mAにおける発光状況を目視で観察し、特定角度に強い発光光が観察される、あるいは、観察角度により発光色が変化する場合を角度依存性が強いとして×として評価した。
 また、20mAにおける3次元の発光状況を配光分光装置(IMS5000-LED、朝日分光社製)で測定し、仰角45度における円周方向の発光強度分布の変動係数(変動係数=標準偏差/平均値)で示した。
 表4に示すように変動係数は、比較例2及び比較例3で10%を超えており、一方、実施例1~実施例3では、角度依存性がない平坦基板の比較例1と同等の変動係数を示し、4%よりも小さくできることがわかった。これにより、実施例では、特定角度に強い発光光が観察されておらず、角度依存性がほとんどないことがわかった。
Figure JPOXMLDOC01-appb-T000004
[実施例4]
(積層半導体の形成)
 サファイア半導体発光素子用基材上に、MOCVDにより、(1)GaN低温バッファ層、(2)n型GaN層、(3)n型AlGaNクラッド層、(4)InGaN発光層(MQW)、(5)p型AlGaNクラッド層、(6)p型GaN層、(7)ITO層を連続的に積層した。上記構成により、半導体層からの発光は460nmであり、ITO層の膜厚は、600nmとした。
(ナノインプリント:ITO)
 次に、表面に形成されたITO層に、マスク材料をスピンコーティング法(2000rpm、20秒)により塗布し、レジスト層を形成した。マスク材料は、前記感光性樹脂組成物の固形分を5重量%になるようにプロピレングリコールモノメチルエーテルで希釈した塗布溶液を作成した。
 レジスト層を形成したITO上に、透明樹脂モールドCを70mm×70mm(□70mm)に切断し貼り合わせた。貼り合わせには、サンテック社製のフィルム貼合装置(TMS-S2)を使用し、貼合ニップ力90N、貼合速度1.5m/sで貼り合わせた。次に、貼合し一体化した透明樹脂モールド/レジスト層/ITO層/積層半導体層/サファイア半導体発光素子用基材を、70mm×t10mmの2枚の透明シリコーン板(硬度20)で挟んだ。その状態で、エンジニアリングシステム社製のナノインプリント装置(EUN-4200)を用いて、0.05MPaの圧力でプレスした。プレスした状態で、透明樹脂モールド側から紫外線を2500mJ/cmで照射し、レジスト層を硬化させた。硬化後、透明シリコーン板と透明樹脂モールドを剥離し、ITO表面パターンが形成されたレジスト/ITO/積層半導体層を得た。
(エッチング:ITO層)
 反応性イオンエッチング装置(RIE-101iPH、サムコ株式会社製)を用い、下記エッチング条件でITO層をエッチングした。
 エッチングガス:BCl
 ガス流量:10sccm
 エッチング圧力:0.2Pa
 アンテナ:150w
 バイアス:50w
 エッチング後、ITO面上を電子顕微鏡で観察したところ、断面形状φ230nm、h=250nmの凸部が、ナノインプリントに使用したリール状透明樹脂モールドCと同様の周期構造として形成されている微細構造層が得られ、2つの異なる周期を有する二次元フォトニック結晶が形成されていることがわかった。
 上記のように得られた半導体発光素子をパッケージに配置し、電極パッドにAuワイヤを介して電気的に接続した。次に、パッケージ内に配置された半導体発光素子の微細構造層の表面のみを覆うように、前記微細構造層の表面を中間材料としてのシリコーン樹脂(屈折率1.53)で封止し、その後、前記シリコーン樹脂を硬化させた。続いて、パッケージ内を、第一の材料としてのシリコーン樹脂(屈折率)と下記の主波長を有する蛍光材とを混合した波長変換部材により充填した。使用した蛍光材の平均粒径は、いずれも200nmであった。
 530nm β-SiAlON:Eu
 580nm Ca-α―SiAlON:Eu
 650nm CaAlSiN:Eu
[実施例5]
 実施例4と同様に得られた半導体発光素子をパッケージ内に封止する際、実施例4に使用したシリコーン樹脂(屈折率1.5)に650nmの主波長を有するCaAlSiN:Eu(蛍光材)を混合した波長変換部材のみで充填した。
[比較例4]
 実施例4と同様の条件でサファイア半導体発光素子用基材上に半導体発光素子を形成した後、ITO層表面に微細構造層を設けずに、実施例1と同様の波長変換部材で封止し発光出力を測定した。
 表5には、比較例4の出力を1とした際の、各試料の発光出力比が示されている。表5から、微細構造層と波長変換部材との間に、中間材料としてのシリコーン樹脂を介在させた実施例4は、微細構造層を波長変換部材に接して形成した実施例5に比べ、半導体発光素子中の導波モードを解消し、さらに、蛍光光の散乱性を増加させ、光取り出し効率をあげることができるため、高い発光効率を有する半導体発光素子を得ることができる。さらに、2つの異なる周期を有する二次元フォトニック結晶を形成することで、導波モードの解消と、散乱性が増加するために、さらに、光取り出し効率を上げた半導体発光素子を得ることができ、工業実用上、好適な発光素子である。
Figure JPOXMLDOC01-appb-T000005
 なお、本発明は上記実施の形態に限定されず、さまざまに変更して実施可能である。上記実施の形態において、添付図面に図示されている大きさや形状等については、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。
 本発明の半導体発光装置によれば、半導体発光素子に備えられた微細構造層によって、半導体層中の転位欠陥数を減らすことにより発光光においては、内部量子効率IQEを改善し、かつ、発光光と蛍光においては、光散乱により導波モードを解消して光取り出し効率LEEを高めることができる。さらに、半導体発光素子からの効率的に発光された一次発光を効率的に波長変換できる。これらの効果により、半導体発光装置の最終的な発光効率を向上させることができ、さらには、発光分布の角度依存性を少なくできるので、簡便に工業実用上の用途に適用し得る。また、本発明の半導体発光装置は、高い発光効率を有し、電力の有効活用ができ、省エネルギーに大きく貢献できる。
 本出願は、2013年6月10日出願の特願2013-121580、2013年7月23日出願の特願2013-152682、及び2013年7月26日出願の特願2013-155598に基づく。これらの内容は全てここに含めておく。

Claims (15)

  1.  少なくとも2層以上の半導体層と、発光層とを積層して構成される積層半導体層を有し、第一の光を発光する半導体発光素子と、
     少なくとも前記半導体発光素子の一部を覆い、前記第一の光の少なくとも一部を吸収し、前記第一の光の波長とは異なる第二の光を発光する波長変換部材と、を有して構成される半導体発光装置であって、
     前記半導体発光素子は、前記半導体発光素子を構成するいずれかの主面において、面外方向に延在する複数の凸部又は凹部から構成されるドットを含む微細構造層を構成要素として備え、
     前記微細構造層は、少なくとも前記ドット間のピッチ、ドット径又はドット高さのいずれかにより制御された二次元フォトニック結晶を構成し、
     前記二次元フォトニック結晶は少なくとも、各々1μm以上の2つ以上の周期を有することを特徴とする半導体発光装置。
  2.  前記二次元フォトニック結晶は、前記第一の光の光学波長の6倍以上及び前記第二の光の光学波長の6倍以上の、少なくとも2つ以上の周期を有することを特徴とする請求項1に記載の半導体発光装置。
  3.  少なくとも2層以上の半導体層と、発光層とを積層して構成される積層半導体層を有し、第一の光を発光する半導体発光素子と、
     少なくとも前記半導体発光素子の一部を覆い、前記第一の光の少なくとも一部を吸収し、前記第一の光の波長とは異なる第二の光を発光する波長変換部材と、を有して構成される半導体発光装置であって、
     前記半導体発光素子は、前記半導体発光素子を構成するいずれかの主面において、面外方向に延在する複数の凸部又は凹部から構成されるドットを含む微細構造層を構成要素として備え、
     前記微細構造層は、少なくとも前記ドット間のピッチ、ドット径又はドット高さのいずれかにより制御された二次元フォトニック結晶を構成し、
     前記二次元フォトニック結晶は、前記第一の光の光学波長の6倍以上及び前記第二の光の光学波長の6倍以上の、少なくとも2つ以上の周期を有することを特徴とする半導体発光装置。
  4.  前記波長変換部材が、少なくとも前記第一の光及び前記第二の光に対し透明である第一の材料、及び、前記第一の光の少なくとも一部を吸収し、前記第二の光を発光する第二の材料を含有することを特徴とする請求項1から請求項3のいずれかに記載の半導体発光装置。
  5.  前記微細構造層を、少なくとも、前記半導体発光素子の最表面に構成要素として備え、
     前記微細構造層と前記波長変換部材との間には、少なくとも前記第一の光及び前記第二の光に対し実質的に透明であり、前記第二の材料を含まない中間材料が充填されていることを特徴とする請求項4に記載の半導体発光装置。
  6.  前記第二の材料が、前記第一の光の第一の材料における光学波長よりも小さい平均粒子径であることを特徴とする請求項5に記載の半導体発光装置。
  7.  前記波長変換部材は、前記第二の光と、前記第一の光及び前記第二の光の各波長とは異なる第三の光とを発光する構成であり、
     前記波長変換部材が、少なくとも前記第一の光と前記第二の光及び前記第三の光に対し透明である第一の材料、及び、前記第一の光の少なくとも一部を吸収し、前記第三の光を発光する第三の材料を含有し、
     前記二次元フォトニック結晶は、前記第三の光の光学波長の6倍以上の周期を有することを特徴とする請求項4に記載の半導体発光装置。
  8.  前記微細構造層を、少なくとも、前記半導体発光素子の最表面に構成要素として備え、
     前記微細構造層と前記波長変換部材との間には、少なくとも前記第一の光と前記第二の光及び前記第三の光に対し実質的に透明であり、前記第二の材料及び前記第三の材料を含まない中間材料が充填されていることを特徴とする請求項7に記載の半導体発光装置。
  9.  前記第二の材料及び第三の材料の少なくとも一つが、前記第一の光の前記第一の材料における光学波長よりも小さい平均粒子径であることを特徴とする請求項8に記載に半導体発光装置。
  10.  前記波長変換部材は、前記第二の光と、前記第三の光と、前記第一の光、前記第二の光及び前記第三の光の各波長とは異なる第四の光とを発光する構成であり、
     前記波長変換部材が、少なくとも前記第一の光と前記第二の光と前記第三の光及び前記第四の光に対し透明である第一の材料、及び、前記第一の光の少なくとも一部を吸収し、前記第四の光を発光する第四の材料を含有し、
     前記二次元フォトニック結晶は、前記第四の光の光学波長の6倍以上の周期を有することを特徴とする請求項7に記載の半導体発光装置。
  11.  前記微細構造層を、少なくとも、前記半導体発光素子の最表面に構成要素として備え、
     前記微細構造層と前記波長変換部材との間には、少なくとも前記第一の光と前記第二の光と前記第三の光及び前記第四の光に対し実質的に透明であり、前記第二の材料、前記第三の材料及び前記第四の材料を含まない中間材料が充填されていることを特徴とする請求項10に記載の半導体発光装置。
  12.  前記第二の材料、前記第三の材料及び前記第四の材料の少なくとも一つが、前記第一の光の前記第一の材料における光学波長よりも小さい平均粒子径であることを特徴とする請求項11に記載の半導体発光装置。
  13.  前記二次元フォトニック結晶が、前記半導体発光素子を構成するいずれか異なる二つ以上の主面に構成され、各々の二次元フォトニック結晶の前記周期が互いに異なることを特徴とする請求項1から請求項12のいずれかに記載の半導体発光装置。
  14.  前記二次元フォトニック結晶の周期が少なくとも前記主面の一軸方向に周期を有することを特徴とする請求項1から請求項12のいずれかに記載の半導体発光装置。
  15.  前記二次元フォトニック結晶の周期が少なくとも独立する前記主面の二軸方向に周期を有することを特徴とする請求項1から請求項12のいずれかに記載の半導体発光装置。
PCT/JP2014/064575 2013-06-10 2014-06-02 半導体発光装置 WO2014199851A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480033276.8A CN105340088B (zh) 2013-06-10 2014-06-02 半导体发光装置
KR1020157032282A KR20150143648A (ko) 2013-06-10 2014-06-02 반도체 발광 장치
JP2015522713A JP5935031B2 (ja) 2013-06-10 2014-06-02 半導体発光装置
EP14811003.4A EP3010048B1 (en) 2013-06-10 2014-06-02 Semiconductor light-emitting device
US14/897,159 US9653657B2 (en) 2013-06-10 2014-06-02 Semiconductor light emitting apparatus
BR112015030722A BR112015030722A2 (pt) 2013-06-10 2014-06-02 aparelho emissor de luz semicondutor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-121580 2013-06-10
JP2013121580 2013-06-10
JP2013152682 2013-07-23
JP2013-152682 2013-07-23
JP2013155598 2013-07-26
JP2013-155598 2013-07-26

Publications (1)

Publication Number Publication Date
WO2014199851A1 true WO2014199851A1 (ja) 2014-12-18

Family

ID=52022149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064575 WO2014199851A1 (ja) 2013-06-10 2014-06-02 半導体発光装置

Country Status (8)

Country Link
US (1) US9653657B2 (ja)
EP (1) EP3010048B1 (ja)
JP (1) JP5935031B2 (ja)
KR (1) KR20150143648A (ja)
CN (1) CN105340088B (ja)
BR (1) BR112015030722A2 (ja)
TW (1) TWI545804B (ja)
WO (1) WO2014199851A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150048380A1 (en) * 2012-04-02 2015-02-19 Asahi Kasei E-Materials Corporation Optical substrate, semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element
JP2017126726A (ja) * 2016-01-15 2017-07-20 旭化成株式会社 半導体発光素子用基板、及びその製造方法、並びにその基板を用いた半導体発光素子
JP2019117267A (ja) * 2017-12-27 2019-07-18 国立研究開発法人産業技術総合研究所 積層透明蛍光体および照明装置
JP2019120946A (ja) * 2017-12-27 2019-07-22 国立研究開発法人産業技術総合研究所 ガラス蛍光体および照明装置
WO2023037631A1 (ja) * 2021-09-09 2023-03-16 ソニーセミコンダクタソリューションズ株式会社 発光素子アレイ、発光装置、電子機器、及びフォトニック結晶構造体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644192B2 (en) * 2015-07-13 2020-05-05 Toyoda Gosei Co., Ltd. Method of manufacturing light-emitting device
CN107611244B (zh) * 2017-10-19 2023-11-14 深圳莱特光电股份有限公司 一种可调焦的led封装体
JP7100246B2 (ja) * 2018-06-01 2022-07-13 日亜化学工業株式会社 発光装置
US11271143B2 (en) 2019-01-29 2022-03-08 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11610868B2 (en) 2019-01-29 2023-03-21 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11156759B2 (en) 2019-01-29 2021-10-26 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
US11302248B2 (en) 2019-01-29 2022-04-12 Osram Opto Semiconductors Gmbh U-led, u-led device, display and method for the same
US11538852B2 (en) 2019-04-23 2022-12-27 Osram Opto Semiconductors Gmbh μ-LED, μ-LED device, display and method for the same
WO2020229576A2 (de) * 2019-05-14 2020-11-19 Osram Opto Semiconductors Gmbh Beleuchtungseinheit, verfahren zur herstellung einer beleuchtungseinheit, konverterelement für ein opto-elektronisches bauelement, strahlungsquelle mit einer led und einem konverterelement, auskoppelstruktur, und optoelektronische vorrichtung
TWI693726B (zh) * 2019-08-14 2020-05-11 錼創顯示科技股份有限公司 微型發光元件及微型發光元件結構

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318441A (ja) 2001-07-24 2003-11-07 Nichia Chem Ind Ltd 半導体発光素子
JP2004015063A (ja) 2002-06-07 2004-01-15 Lumileds Lighting Us Llc ナノ粒子を用いる発光デバイス
JP2007035967A (ja) 2005-07-27 2007-02-08 Matsushita Electric Ind Co Ltd 半導体発光装置及びその製造方法
JP2007088277A (ja) * 2005-09-22 2007-04-05 Matsushita Electric Works Ltd 半導体発光素子およびその製造方法
JP2007208236A (ja) * 2006-02-02 2007-08-16 Samsung Electro Mech Co Ltd 発光ダイオードモジュール
JP2007234968A (ja) * 2006-03-02 2007-09-13 Nichia Chem Ind Ltd 発光装置の製造方法および発光装置
JP2008205511A (ja) 2001-10-12 2008-09-04 Nichia Chem Ind Ltd 発光装置及びその製造方法
WO2010082286A1 (ja) * 2009-01-13 2010-07-22 株式会社小糸製作所 発光モジュールおよび灯具ユニット
JP2012074701A (ja) * 2010-09-27 2012-04-12 National Chung Hsing Univ パターン基板、及びそれを用いた発光ダイオード
JP2012124257A (ja) * 2010-12-07 2012-06-28 Toshiba Corp 半導体発光素子及びその製造方法
JP2013031887A (ja) 2009-11-25 2013-02-14 Kazumasa Onishi 研磨具
JP2013038447A (ja) 2008-02-25 2013-02-21 Toshiba Corp 白色ledランプ、バックライトおよび照明装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200531315A (en) * 2004-01-26 2005-09-16 Kyocera Corp Wavelength converter, light-emitting device, method of producing wavelength converter and method of producing light-emitting device
KR100900620B1 (ko) * 2007-02-20 2009-06-02 삼성전기주식회사 백색 발광 장치
US7804103B1 (en) 2009-01-07 2010-09-28 Lednovation, Inc. White lighting device having short wavelength semiconductor die and trichromatic wavelength conversion layers
TWI424251B (zh) * 2009-12-31 2014-01-21 Ind Tech Res Inst 發光單元陣列、用以製造其之方法及成像裝置
JP5150684B2 (ja) 2010-07-13 2013-02-20 株式会社東芝 半導体発光素子および半導体発光素子の製造方法
JP2012193283A (ja) 2011-03-16 2012-10-11 Sharp Corp 発光体、発光装置、照明装置および前照灯
KR101675206B1 (ko) 2011-08-31 2016-11-10 아사히 가세이 이-매터리얼즈 가부시키가이샤 광학용 기재 및 반도체 발광 소자

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318441A (ja) 2001-07-24 2003-11-07 Nichia Chem Ind Ltd 半導体発光素子
JP2008205511A (ja) 2001-10-12 2008-09-04 Nichia Chem Ind Ltd 発光装置及びその製造方法
JP2004015063A (ja) 2002-06-07 2004-01-15 Lumileds Lighting Us Llc ナノ粒子を用いる発光デバイス
JP2007035967A (ja) 2005-07-27 2007-02-08 Matsushita Electric Ind Co Ltd 半導体発光装置及びその製造方法
JP2007088277A (ja) * 2005-09-22 2007-04-05 Matsushita Electric Works Ltd 半導体発光素子およびその製造方法
JP2007208236A (ja) * 2006-02-02 2007-08-16 Samsung Electro Mech Co Ltd 発光ダイオードモジュール
JP2007234968A (ja) * 2006-03-02 2007-09-13 Nichia Chem Ind Ltd 発光装置の製造方法および発光装置
JP2013038447A (ja) 2008-02-25 2013-02-21 Toshiba Corp 白色ledランプ、バックライトおよび照明装置
WO2010082286A1 (ja) * 2009-01-13 2010-07-22 株式会社小糸製作所 発光モジュールおよび灯具ユニット
JP2013031887A (ja) 2009-11-25 2013-02-14 Kazumasa Onishi 研磨具
JP2012074701A (ja) * 2010-09-27 2012-04-12 National Chung Hsing Univ パターン基板、及びそれを用いた発光ダイオード
JP2012124257A (ja) * 2010-12-07 2012-06-28 Toshiba Corp 半導体発光素子及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Latest Resist Material Handbook", JOHOKIKO CO., LTD.
"Photo-polymer Handbook", KOGYO CHOSAKAI PUBLISHING CO., LTD.
See also references of EP3010048A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150048380A1 (en) * 2012-04-02 2015-02-19 Asahi Kasei E-Materials Corporation Optical substrate, semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element
JP2017126726A (ja) * 2016-01-15 2017-07-20 旭化成株式会社 半導体発光素子用基板、及びその製造方法、並びにその基板を用いた半導体発光素子
JP2019117267A (ja) * 2017-12-27 2019-07-18 国立研究開発法人産業技術総合研究所 積層透明蛍光体および照明装置
JP2019120946A (ja) * 2017-12-27 2019-07-22 国立研究開発法人産業技術総合研究所 ガラス蛍光体および照明装置
JP7241386B2 (ja) 2017-12-27 2023-03-17 国立研究開発法人産業技術総合研究所 ガラス蛍光体および照明装置
WO2023037631A1 (ja) * 2021-09-09 2023-03-16 ソニーセミコンダクタソリューションズ株式会社 発光素子アレイ、発光装置、電子機器、及びフォトニック結晶構造体

Also Published As

Publication number Publication date
BR112015030722A2 (pt) 2017-07-25
EP3010048A4 (en) 2016-04-20
US9653657B2 (en) 2017-05-16
CN105340088B (zh) 2018-09-25
EP3010048A1 (en) 2016-04-20
KR20150143648A (ko) 2015-12-23
TW201511352A (zh) 2015-03-16
JP5935031B2 (ja) 2016-06-15
TWI545804B (zh) 2016-08-11
US20160149089A1 (en) 2016-05-26
EP3010048B1 (en) 2017-08-09
JPWO2014199851A1 (ja) 2017-02-23
CN105340088A (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
JP5935031B2 (ja) 半導体発光装置
JP6084282B2 (ja) シームレス樹脂モールドシート
TWI514618B (zh) An optical substrate, a semiconductor light emitting element, and a method of manufacturing the same
TWI531086B (zh) An optical substrate, a semiconductor light-emitting element, and a semiconductor light-emitting element
JP2010533976A5 (ja)
EP2940741B1 (en) Reversely-installed photonic crystal led chip and method for manufacturing same
JP2010533976A (ja) 固体照明に有用な量子ドットベースの光シート
JP2011526075A (ja) 光抽出器の作製方法
JP2017063099A (ja) 凹凸構造を含む基板の製造方法及び半導体発光素子の製造方法
JP5632081B2 (ja) ナノインプリントモールドを用いた発光ダイオードの製造方法、及びこの方法により製造された発光ダイオード
JP2016021428A (ja) 半導体発光素子用基板、半導体発光素子、モールド及び半導体発光素子の製造方法
Cho et al. Light extraction efficiency improvement in GaN-based blue light emitting diode with two-dimensional nano-cavity structure
KR101221075B1 (ko) 나노 임프린트를 이용한 질화갈륨계 발광 다이오드 제조방법과 이를 통해 제조된 발광 다이오드 소자
Wang et al. Design of photonic crystals for light‐emitting diodes
Byeon et al. Enhanced light output from vertical light-emitting diodes with an imprinted highly refractive polymer layer
Wei Light Extraction Efficiency Enhancement in GaN‐Based LEDs by Colloidal Self‐assembly

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033276.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522713

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157032282

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14897159

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015030722

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014811003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014811003

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112015030722

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151209