WO2014199541A1 - 熱電変換モジュール - Google Patents

熱電変換モジュール Download PDF

Info

Publication number
WO2014199541A1
WO2014199541A1 PCT/JP2014/001513 JP2014001513W WO2014199541A1 WO 2014199541 A1 WO2014199541 A1 WO 2014199541A1 JP 2014001513 W JP2014001513 W JP 2014001513W WO 2014199541 A1 WO2014199541 A1 WO 2014199541A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
type
type thermoelectric
conversion module
interlayer insulating
Prior art date
Application number
PCT/JP2014/001513
Other languages
English (en)
French (fr)
Inventor
聡 前嶋
かおり 豊田
東田 隆亮
和道 車谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201480001975.4A priority Critical patent/CN104508846B/zh
Priority to EP14810734.5A priority patent/EP2869354B1/en
Priority to US14/418,654 priority patent/US9496476B2/en
Priority to JP2014549261A priority patent/JP5696261B1/ja
Publication of WO2014199541A1 publication Critical patent/WO2014199541A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Definitions

  • thermoelectric conversion module This disclosure relates to a thermoelectric conversion module.
  • thermoelectric conversion element included in the thermoelectric conversion module for example, there is a P-type or N-type thermoelectric conversion element configured by filling a P-type or N-type thermoelectric conversion portion inside a hollow cylindrical insulator (for example, , See Patent Document 1).
  • a P-type or N-type thermoelectric conversion element configured by filling a P-type or N-type thermoelectric conversion portion inside a hollow cylindrical insulator (for example, , See Patent Document 1).
  • the P-type and N-type thermoelectric conversion units are electrically connected in series with each other.
  • thermoelectric conversion module when a temperature difference is provided on both surfaces of the thermoelectric conversion module, a heat flow is generated from one surface on the high temperature side to the other surface on the low temperature side of the temperature difference.
  • the heat flow flows through the P-type and N-type thermoelectric conversion elements, electric power is generated due to a phenomenon (Seebeck effect) in which a voltage proportional to the temperature difference between both ends of the P-type and N-type thermoelectric conversion elements is generated.
  • the periphery of the P-type and N-type thermoelectric converters is covered with an insulator. Therefore, an electrical short circuit between adjacent P-type and N-type thermoelectric conversion units can be prevented, and the pitch of the P-type and N-type thermoelectric conversion elements can be minimized and arranged at high density.
  • thermoelectric conversion module when a temperature difference is provided, the heat flow generated by the temperature difference is also transmitted to the insulator disposed so as to cover the side surfaces of the P-type and N-type thermoelectric conversion units. . Therefore, there is a problem that the amount of heat flowing through the P-type and N-type thermoelectric conversion units decreases, and the thermoelectric conversion efficiency of the thermoelectric conversion module decreases.
  • the ratio of the cross-sectional area of the P-type and N-type thermoelectric conversion parts to the cross-sectional area of the insulator in the short direction of the thermoelectric conversion element is 1: 1, and the heat conduction of the P-type and N-type thermoelectric conversion parts
  • the rate is 1.4 W / mK and the thermal conductivity of the insulator is 0.6 W / mK
  • the amount of heat flowing through the P-type and N-type thermoelectric converters is reduced by about 40%.
  • the present disclosure solves the above-described problem, and suppresses the amount of heat flowing through the insulator, increases the amount of heat flowing through the P-type and N-type thermoelectric conversion units, and improves the thermoelectric conversion efficiency.
  • the purpose is to provide modules.
  • thermoelectric conversion module is a thermoelectric conversion module including P-type and N-type thermoelectric conversion elements disposed between two laminated substrates
  • the P-type thermoelectric conversion element is A columnar P-type thermoelectric converter; An insulator provided on a side surface of the P-type thermoelectric converter; A diffusion prevention film provided on the top surface which is a surface different from the side surface of the P-type thermoelectric conversion unit;
  • the N-type thermoelectric conversion element is A columnar N-type thermoelectric converter; An insulator provided on a side surface of the N-type thermoelectric converter; A diffusion preventing film provided on a top surface which is a surface different from the side surface of the N-type thermoelectric conversion unit;
  • Each of the laminated substrates is A wiring layer that electrically connects the P-type and N-type thermoelectric conversion portions via the diffusion prevention film; A bonding material for bonding the diffusion prevention film and the wiring layer; With In the direction connecting the upper and lower top surfaces of the P-type or N-type
  • thermoelectric conversion module can suppress the amount of heat flowing through the insulator, increase the flow rate flowing through the P-type and N-type thermoelectric conversion units, and improve the thermoelectric conversion efficiency.
  • FIG. 3 is a diagram showing one manufacturing process of the thermoelectric conversion module according to the first embodiment.
  • FIG. 3 is a diagram showing one manufacturing process of the thermoelectric conversion module according to the first embodiment.
  • FIG. 3 is a longitudinal sectional view showing one manufacturing process (substrate preparation process) of the thermoelectric conversion module according to Embodiment 1.
  • FIG. 3 is a longitudinal sectional view showing one manufacturing process (solder printing process) of the thermoelectric conversion module according to Embodiment 1.
  • FIG. 3 is a longitudinal sectional view showing one manufacturing process (element mounting process) of the thermoelectric conversion module according to the first embodiment.
  • FIG. 3 is a longitudinal sectional view showing one manufacturing process (board mounting process) of the thermoelectric conversion module according to the first embodiment.
  • FIG. 3 is a longitudinal sectional view showing one manufacturing process (reflow process) of the thermoelectric conversion module according to Embodiment 1.
  • FIG. 4 is a longitudinal sectional view showing a sectional structure of a thermoelectric conversion module according to a second embodiment.
  • FIG. 6 is a longitudinal sectional view showing a sectional structure of a thermoelectric conversion module according to a third embodiment. The longitudinal cross-sectional view which expands and shows the vicinity of the upper side top surface of the thermoelectric conversion element of FIG. FIG.
  • FIG. 6 is a longitudinal sectional view showing a sectional structure of a thermoelectric conversion module according to a fourth embodiment.
  • FIG. 6 is a plan view showing a planar structure of a thermoelectric conversion element according to a fifth embodiment.
  • FIG. 15 is a longitudinal sectional view taken along line XV-XV in FIG. 14.
  • FIG. 1 is a longitudinal sectional view showing a sectional structure of a thermoelectric conversion module 100A according to the first embodiment.
  • the thermoelectric conversion module 100 ⁇ / b> A is arranged between two upper and lower laminated substrates 90 arranged so as to face each other, and the two laminated substrates 90 sandwiching both end portions thereof.
  • each of the upper and lower laminated substrates 90 includes a heat transfer body 106, an insulating plate 103, a conductor 101, an interlayer insulating film 104, a bonding material 102, and the like. Is provided.
  • the heat transfer body 106 is provided on the outermost side of each multilayer substrate 90 in a direction connecting the upper and lower top surfaces of the P-type and N-type thermoelectric conversion elements 110 and 120 (hereinafter referred to as “longitudinal direction”). It is done.
  • a ceramic substrate is used as the heat transfer body 106.
  • a metal body containing any of Cu, Al, and Fe, graphite, or the like may be used as the heat transfer body 106.
  • the insulating plate 103 is provided on each heat transfer body 106 in each laminated substrate 90.
  • a polyimide film having a thickness of 10 ⁇ m or less can be used for the insulating plate 103.
  • the flexibility of the thermoelectric conversion module 100A improves, and it is preferable in the viewpoint of the heat receiving from a curved surface.
  • the heat transfer body 106 having high thermal conductivity may be provided outside the insulating plate 103 as in the first embodiment. It is more preferable to use the heat transfer body 106 having high thermal conductivity because the thermal diffusibility and rigidity in the surface direction are further increased.
  • a conductor (wiring layer) 101 electrically connects P-type and N-type thermoelectric conversion elements 110 and 120 adjacent to a direction orthogonal to the longitudinal direction (hereinafter referred to as “short direction”) (this embodiment).
  • short direction a direction orthogonal to the longitudinal direction
  • the conductor 101 for example, an alloy containing two or more of Bi, Cu, Sb, and In can be used.
  • the interlayer insulating film 104 is provided on each laminated substrate 90 between the conductor 101 and the cylinders 112 and 122 in the longitudinal direction via a gap 130 (not shown in FIG. 1) described later. Further, as will be described later, the interlayer insulating film 104 is provided for the purpose of increasing the thermal resistance of the heat path to the cylinders 112 and 122.
  • the interlayer insulating film 104 is formed of, for example, an imide compound or an acrylic resin. In order to further increase the thermal resistance, it is effective to reduce the contact area between the cylinders 112 and 122 and the interlayer insulating film 104 by providing predetermined irregularities on the surface of the interlayer insulating film 104.
  • the surface roughness provided on the surface of the interlayer insulating film 104 is preferably larger than the surface roughness of the tubes 112 and 122. This is to prevent heat from flowing from the interlayer insulating film 104 into the cylinders 112 and 122.
  • the surface roughness of the interlayer insulating film 104 is preferably 0.1 mm or more, for example. Further, the inventors have found that the difference in surface roughness between the cylinders 112 and 122 and the interlayer insulating film 104 is 80 ⁇ m or more, which is effective in suppressing heat inflow.
  • the surface roughness refers to the centerline average roughness Ra per 1 ⁇ m 2 .
  • the bonding material 102 is provided in each opening 104 a (not shown in FIG. 1) formed in each interlayer insulating film 104 at a position corresponding to the diffusion preventing film 105, and is a P-type and N-type thermoelectric conversion element 110. 120 and each laminated substrate 90 are bonded together.
  • the bonding material 102 is solder for guiding current from the P-type and N-type thermoelectric conversion units 111 and 121 to the conductor 101.
  • the bonding material 102 may be a single metal or an alloy containing any of Sn, Pb, Ag, Bi, In, Sb, and Au.
  • the P-type and N-type thermoelectric conversion elements 110 and 120 include columnar P-type and N-type thermoelectric conversion units 111 and 121. , Cylinders 112 and 122, and a diffusion prevention film 105, respectively.
  • the P-type and N-type thermoelectric converters 111 and 121 are columnar members formed of a predetermined thermoelectric conversion material that generates an electromotive force when a temperature difference is generated between both ends thereof.
  • Bi-Te (bismuth-tellurium) -based material having a high electromotive force in a temperature range from room temperature to 500 K is used as the P-type and N-type thermoelectric conversion units 111 and 121.
  • the P-type and N-type thermoelectric converters 111 and 121 can be selected according to the temperature difference existing during use.
  • the temperature difference is in the range from room temperature to 800K, use a Pb-Te (lead-tellurium) system, and if the temperature difference is in the range from room temperature to 1,000K, use a Si-Ge (silicon-germanium) system. Can do.
  • Pb-Te lead-tellurium
  • Si-Ge silicon-germanium
  • the P-type and N-type thermoelectric conversion units 111 and 121 can be formed by adding an appropriate P-type or N-type dopant to the thermoelectric conversion material.
  • Examples of the P-type dopant for obtaining the P-type thermoelectric conversion unit 111 include Sb.
  • Examples of the N-type dopant for obtaining the N-type thermoelectric converter 121 include Se.
  • the thermoelectric conversion material forms a mixed crystal. Therefore, these P-type or N-type dopants have a compositional expression such as “Bi 0.5 Sb 1.5 Te 3 ” or “Bi 2 Te 2.7 Se 0.3 ”. Added in an amount.
  • the shape of the P-type and N-type thermoelectric conversion units 111 and 121 is preferably a polygonal column or a column from the viewpoint of aligning the element productivity and the crystal orientation of the thermoelectric conversion material in the axial direction of the cylinder. Furthermore, from the viewpoint of preventing cracking of the thermoelectric conversion portions 111 and 121 made of a brittle thermoelectric conversion material, a cylinder capable of suppressing stress concentration at the corner is more preferable.
  • the length L in the longitudinal direction of the P-type and N-type thermoelectric converters 111 and 121 is, for example, 0.3 mm to 2 from the viewpoint of causing an appropriate temperature difference between both ends of the P-type and N-type thermoelectric converters 111 and 121. It is preferably within a range of 0.0 mm.
  • the cross-sectional area in the short direction of the P-type and N-type thermoelectric conversion units 111 and 121 is preferably in the range of 0.1mm 2 ⁇ 4mm 2.
  • the cylinders (insulators) 112 and 122 are provided so as to surround the side surfaces of the P-type and N-type thermoelectric conversion units 111 and 121.
  • the cylinders 112 and 122 are members made of an insulating material having heat resistance and insulating properties and having cavities that open at both ends.
  • the shapes of the cylinders 112 and 122 may be, for example, a cylinder, a polygonal cylinder, and a polygonal cylinder having an R at a corner.
  • Examples of the material of the cylinders 112 and 122 include metal oxides such as silica and alumina, heat resistant glass, and quartz.
  • the material of the cylinders 112 and 122 is preferably quartz from the viewpoint of heat resistance, and heat resistant glass is preferable in consideration of manufacturing cost. Further, the surface roughness of the cut surfaces of the cylinders 112 and 122 is, for example, 10 ⁇ m to 20 ⁇ m because they are cut with a wire saw, a dicer or the like when forming the P-type and N-type thermoelectric conversion elements 110 and 120 described later. It becomes a range.
  • thermoelectric conversion module 100A When the cross-sectional area in the short direction of the cylinders 112 and 122 is smaller than the cross-sectional area in the short direction of the P-type and N-type thermoelectric converters 111 and 121, the P-type occupies the entire thermoelectric conversion module 100A. And the cross-sectional area ratio of the N-type thermoelectric converters 111 and 121 can be increased. Thereby, the thermoelectric conversion performance of the thermoelectric conversion module 100A is improved. On the other hand, when the cross-sectional area in the short direction of the cylinders 112 and 122 is too small compared to that of the P-type and N-type thermoelectric conversion units 111 and 121, the P-type and N-type thermoelectric conversion elements 110 and 120 Causes a decrease in mechanical strength.
  • the cross-sectional area in the short direction of the tubes 112 and 122 is, for example, 0.2 times to 1.7 times the cross-sectional area in the short direction of the P-type and N-type thermoelectric converters 111 and 121. It is preferable to be within the range.
  • the diffusion prevention film 105 is provided on the top surfaces of the P-type and N-type thermoelectric converters 111 and 121, respectively.
  • the diffusion prevention film 105 is provided to prevent the components in the bonding material 102 from diffusing into the P-type and N-type thermoelectric conversion units 111 and 121.
  • Ni is used as the diffusion prevention film 105.
  • the diffusion prevention film 105 may be a single metal or alloy containing any of Ni, Mo, Ti, and W. Further, the diffusion preventing film 105 may use Ni or Mo.
  • thermoelectric conversion module 100A further includes a gap (second gap) 140 that separates the P-type and N-type thermoelectric conversion elements 110 and 120 adjacent in the short direction.
  • FIG. 2 is an enlarged vertical sectional view showing the vicinity of the upper top surface of the P-type thermoelectric conversion element 110 of FIG. 1, and an enlarged portion shown in FIG. 1 is enlarged.
  • the configuration in the vicinity of the upper top surface of the P-type thermoelectric conversion element 110 will be described as an example with reference to FIG.
  • the P-type thermoelectric conversion element 110 has a gap in which the cylinder 112 and the interlayer insulating film 104 are spaced apart from each other with a predetermined distance (substantially the film thickness TA of the diffusion prevention film 105) in the longitudinal direction. 130.
  • the diffusion prevention film 105 is provided substantially only on the top surface of the P-type thermoelectric conversion unit 111 and does not cover the top surface of the cylinder 112. Therefore, a gap 130 corresponding to the film thickness TA of the diffusion prevention film 105 is formed between the cylinder 112 and the interlayer insulating film 104.
  • the top surface of the diffusion preventing film 105 protrudes from the top surface on the upper side and the lower side of the tube 112 in the longitudinal direction.
  • the P-type thermoelectric conversion element 110 has a gap 130 on the cylinder 112 in the longitudinal direction.
  • the gap 130 is filled with air.
  • the gap 130 is preferably filled (filled) with a gas such as, for example, decompressed (negative pressure) air. This is because the heat conductivity of the decompressed gas is low.
  • predetermined gas such as argon gas whose heat conductivity is lower than general dry air, may be satisfy
  • the gap 130 is, for example, a vacuum with a higher heat insulating effect.
  • the gap 130 functions as a heat insulating material, and the heat received from the heat transfer body 106 on the high temperature side (heat receiving side) flows directly from the interlayer insulating film 104 to the cylinder 112. This can be suppressed. Therefore, the received heat can be efficiently guided to the P-type thermoelectric conversion unit 111.
  • the outer diameter dimension d 1 of the diffusion prevention film 105 is smaller than the outer diameter dimension d 2 of the P-type thermoelectric conversion section 111 and the inner diameter dimension D 1 of the opening 104 a of the interlayer insulating film 104.
  • Preferably satisfies a predetermined relationship (d1 ⁇ d2, D1 ⁇ d1) that is smaller than the outer diameter d1 of the diffusion prevention film 105.
  • the cross-sectional area of the diffusion preventing film 105 in the short direction is larger than the cross-sectional area of the opening 104a, and the cross-sectional areas of the top surfaces of the P-type and N-type thermoelectric converters 111 and 121 in the short direction are diffusion.
  • a gap 130 can be provided between the tube 112 and the interlayer insulating film 104 so as to be substantially separated by an interval corresponding to the film thickness TA of the diffusion prevention film 105.
  • the inner diameter dimension D1 of the opening 104a is approximately equal to the outer diameter dimension d1 of the diffusion prevention film 105. More preferably, it is 90%.
  • the inner diameter dimension D1 of the opening 104a is smaller than the diffusion prevention film 105 with respect to the positional deviation amount d1_xy in the xy direction of the outer diameter dimension d1 of the diffusion prevention film 105. It is preferable that the difference (d1 ⁇ d1 ⁇ d1_xy) be smaller than the difference in the positional deviation amount d1_xy from the outer diameter dimension d1.
  • the outer diameter dimension d1 of the diffusion prevention film 105 is greater than the outer diameter dimension d2 of the P-type thermoelectric conversion section 111 with respect to the positional deviation amount d2_xy in the xy direction of the outer diameter dimension d2 of the P-type thermoelectric conversion section 111. It is more preferable that the difference is smaller than the difference in positional deviation amount d2_xy (d1 ⁇ d2-d2_xy).
  • the film thickness TA of the diffusion preventing film 105 is preferably 5 ⁇ m or more from the viewpoint of suppressing the bonding material 102 from leaking from the opening 104 a and reaching the cylinder 112. On the other hand, if the film thickness TA is too large, the electrical resistance also increases. Therefore, the film thickness TA of the diffusion preventing film 105 is preferably 30 ⁇ m or less.
  • the configuration of the upper top surface of the P-type thermoelectric conversion element 110 is described as an example with reference to FIG. However, similarly, in the configuration of the lower top surface of the P-type thermoelectric conversion element 110, the cylinder 112 and the interlayer insulating film 104 are spaced at a predetermined interval (substantially the film thickness TA of the diffusion prevention film 105) in the longitudinal direction. There is a gap 130 that is spaced apart. Further, in each of the configurations of the upper and lower top surfaces of the N-type thermoelectric conversion element 120, similarly, the cylinder 122 and the interlayer insulating film 104 have a predetermined distance in the longitudinal direction (substantially the film thickness TA of the diffusion prevention film 105). ) And a spaced gap 130.
  • thermoelectric conversion module 100A Refer to Embodiment 1
  • the heat transfer body 106 of the upper laminated substrate 90 is set to a high temperature
  • the heat transfer body 106 of the lower stacked substrate 90 is set to a low temperature.
  • the generated heat flow is sequentially from the heat transfer body 106 on the high temperature side like the flow path indicated by the arrow HA in FIG. 1, and the insulating plate 103, the conductor 101, the bonding material 102, the diffusion prevention film 105, and P It flows to the mold thermoelectric converter 111.
  • the P-type thermoelectric converter 111 generates a voltage proportional to the temperature difference between both ends of the high-temperature end and the low-temperature end.
  • the flow path indicated by the arrow HA refers to the insulating plate 103, the conductor 101, the bonding material 102, the diffusion prevention film 105, and the P-type thermoelectric conversion unit 111 (or N) sequentially from the heat transfer body 106 on the high temperature side.
  • the generated heat flow flows through the flow path indicated by the arrow HA, so that the N-type thermoelectric conversion unit 121 has both ends at the high-temperature end and the low-temperature end.
  • a voltage proportional to the temperature difference is generated.
  • the polarity of the voltage generated in the N-type thermoelectric conversion element 120 is different from the polarity generated in the P-type thermoelectric conversion element 110. Therefore, in order to prevent the generated voltage from canceling, the P-type and N-type thermoelectric conversion elements 110 and 120 adjacent in the lateral direction are electrically connected in series with each other by the conductor 101. By electrically connecting in this way, a larger electromotive force can be generated in the entire thermoelectric conversion module 100A.
  • the flow path of the heat flow caused by the temperature difference given to the thermoelectric conversion module 100A not only flows through the arrow HA that contributes to power generation but also flows through the P-type and N-type thermoelectric conversion units 111 and 121 and contributes to power generation.
  • heat from the heat transfer member 106 on the high temperature side sequentially flows through the insulating plate 103, the conductor 101, the interlayer insulating film 104, the gap 130, and the cylinder 112 (or 122). The flow path until it flows to the heat transfer body 106 of the lower laminated substrate 90 on the side.
  • the thermoelectric conversion module 100A has the gap 130 in which the cylinders 112 and 122 and the interlayer insulating film 104 are separated from each other in the longitudinal direction. Since the gap 130 is filled with air in the first embodiment, the thermal resistance of the gap 130 is larger by one digit or more than the thermal resistance of a solid substance such as an insulating material. Therefore, the gap 130 functions as a heat insulating material, and the amount of heat flowing in the flow path indicated by the arrow HB that does not contribute to power generation can be suppressed.
  • thermoelectric conversion efficiency of the thermoelectric conversion module 100A can be improved.
  • the outer diameter dimension d1 of the diffusion prevention film 105 is larger than the outer diameter dimension d2 of the P-type and N-type thermoelectric converters 111 and 121, the volume of the gap 130 decreases. As a result, part of the heat flow indicated by the arrow HA flows to the cylinders 112 and 122 via the diffusion prevention film 105, and the heat flow flowing to the P-type and N-type thermoelectric conversion units 111 and 121 is reduced.
  • the outer diameter dimension d1 of the diffusion prevention film 105 is smaller than the inner diameter dimension D1 of the opening 104a, the bonding material 102 in the opening 104a has a portion in contact with the P-type and N-type thermoelectric conversion portions 111 and 121.
  • the bonding material 102 is solder for guiding the current from the P-type and N-type thermoelectric converters 111 and 121 to the conductor 101, and the bonding material 102 has high thermal conductivity. Therefore, when the outer diameter dimension d1 of the diffusion preventing film 105 is smaller than the inner diameter dimension D1 of the opening 104a, the inflow of heat to the cylinders 112 and 122 through the bonding material 102 is increased.
  • the outer diameter dimension d1 of the diffusion prevention film 105 is smaller than the outer diameter dimension d2 of the P-type thermoelectric converter 111, and the inner diameter dimension D1 of the opening 104a of the interlayer insulating film 104 is the outer diameter dimension of the diffusion prevention film 105. It is preferable to satisfy a predetermined relationship (d1 ⁇ d2, D1 ⁇ d1) smaller than d1.
  • thermoelectric conversion module 100A 3. Manufacturing Method Next, a manufacturing method of the thermoelectric conversion module 100A according to the first embodiment will be described with reference to FIGS.
  • the pipe 201 includes, for example, glass, particularly heat-resistant glass (a kind of borosilicate glass in which SiO 2 and B 2 O 3 are mixed, and has a thermal expansion coefficient of about 3 ⁇ 10 ⁇ 6 / K. Material) may be used.
  • a pipe 201 having a total length of 150 mm and an inner diameter and an outer diameter of 0.8 mm and 2 mm can be used.
  • the cylinder 203 is attached to one end of the pipe 201 via the silicon tube 202, and the other end is immersed in the molten thermoelectric conversion material 205 in the crucible 204.
  • the molten thermoelectric conversion material 205 is a P-type thermoelectric conversion material (or N-type thermoelectric conversion material) melted by heating.
  • the molten thermoelectric conversion material 205 is sucked into the pipe 201 by operating the cylinder 203. Then, the sucked molten thermoelectric conversion material 205 is cooled and solidified inside the pipe 201. Subsequently, along the short direction substantially perpendicular to the longitudinal direction of the pipe 201, for example, the wire saw or dicer 207 is controlled so as to have a desired length L in the longitudinal direction, and P-type thermoelectric conversion The part 111 and the pipe 201 are cut simultaneously. By separating the P-type thermoelectric conversion unit 111 from the pipe 201 by the cutting process as described above, the P-type thermoelectric conversion unit 111 and the cylinder 112 are formed simultaneously.
  • a diffusion prevention film 105 made of Ni or the like is selectively formed on each of the upper and lower top surfaces of the formed P-type thermoelectric conversion unit 111 using, for example, barrel plating. Form.
  • the outer diameter dimension d1 of the diffusion prevention film 105 formed is smaller than the outer diameter dimension d2 of the P-type thermoelectric converter 111, and the inner diameter dimension D1 of the opening 104a of the interlayer insulating film 104 described later is
  • the formation conditions are controlled so as to satisfy the predetermined relationship (d1 ⁇ d2, D1 ⁇ d1) that is smaller than the outer diameter dimension d1 of the diffusion prevention film 105.
  • it is preferable to control the formation conditions so that the film thickness TA of the diffusion prevention film 105 to be formed is 5 ⁇ m or more and 30 ⁇ m or less.
  • a plurality of P-type thermoelectric conversion elements 110 are formed by the above manufacturing process.
  • the manufacturing process of the N-type thermoelectric conversion element 120 is substantially the same as the manufacturing process of the P-type thermoelectric conversion element 110 except that the molten thermoelectric conversion material to be melted in the crucible 204 is an N-type thermoelectric conversion material. The same. Therefore, detailed description of the manufacturing process of the N-type thermoelectric conversion element 120 is omitted.
  • thermoelectric conversion elements 110 and 120 a mounting process of the P-type and N-type thermoelectric conversion elements 110 and 120 on the multilayer substrate 90 will be described with reference to FIGS. 5 to 9.
  • a lower laminated substrate 90 is prepared on the transport tray 220.
  • the lower laminated substrate 90 includes an insulating plate 103, a conductor 101, and an interlayer insulating film 104 that are sequentially laminated on the heat transfer body 106.
  • a part of the conductor 101 is separated in the lateral direction so that the P-type and N-type thermoelectric conversion elements 110 and 120 to be mounted in a later process are electrically connected in series.
  • an opening 104a having an inner diameter dimension D1 is formed in the interlayer insulating film 104 by using, for example, an etching process or the like.
  • solder printing step shown in FIG. 6 an optimized amount of solder is printed in each opening 104 a of the interlayer insulating film 104 by, for example, screen printing to form the bonding material 102.
  • the upper laminated substrate 90 is also formed in the same manner by performing the same steps shown in FIGS.
  • the P-type and N-type thermoelectric conversion elements 110 and 120 are mounted on each bonding material 102 of the lower laminated substrate 90 using, for example, a chip mounter.
  • the mounted P-type and N-type thermoelectric conversion elements 110 and 120 are electrically connected to each other in series by the conductor 101.
  • a predetermined reflow process is performed, and heating and cooling are performed, for example, in a reflow furnace having a predetermined temperature profile so that each bonding material 102 is melted and solidified in each opening 104 a of the interlayer insulating film 104.
  • the same process shown in FIGS. 5 and 6 is performed to prepare an upper laminated substrate 90 formed in the same manner.
  • the upper laminated substrate 90 is arranged so that the respective bonding materials 102 of the prepared upper laminated substrate 90 are respectively disposed on the respective diffusion prevention films 105 on the upper side of the P-type and N-type thermoelectric conversion elements 110 and 120.
  • each bonding material 102 is melted and solidified in each opening 104 a of the interlayer insulating film 104 in a state where the upper laminated substrate 90 is loaded. Heating and cooling are performed in a reflow furnace having a temperature profile. Then, each bonding material 102 is melted and solidified in each opening 104a to manufacture the thermoelectric conversion module 100A according to the first embodiment. As described above, in the first embodiment, the reflow process is performed on each of the upper and lower laminated substrates 90 to form the bonding material 102 in each predetermined opening 104a. Therefore, it becomes possible to manufacture the thermoelectric conversion module 100A within a range of allowable positional deviation.
  • the thermoelectric conversion module 100A has the gap 130 in which the tubes 112 and 122 and the interlayer insulating film 104 are separated from each other in the longitudinal direction. Since the gap 130 is filled with air in the first embodiment, the thermal resistance of the gap 130 is larger by one digit or more than a solid substance such as an insulating material. Therefore, the gap 130 functions as a heat insulating material, and the amount of heat flowing through the flow path indicated by the arrow HB that does not contribute to power generation shown in FIG. 1 can be suppressed. The amount of heat flowing through the flow path indicated by arrow HA that contributes to power generation shown in FIG. 1 can be increased by the amount of heat that flows through the flow path indicated by arrow HB. Therefore, the thermoelectric conversion efficiency of the thermoelectric conversion module 100A can be improved.
  • the ratio of the cross-sectional area in the short direction of the P-type and N-type thermoelectric converters 111 and 121 to the cross-sectional area in the short direction of the tubes 112 and 122 is 1: 1, and the P-type and N-type thermoelectric conversions
  • the thermal conductivity of the parts 111 and 121 is 1.4 W / mK and the thermal conductivity of the cylinders 112 and 122 is 0.6 W / mK
  • the amount of heat flowing through the P-type and N-type thermoelectric conversion parts 111 and 121 is about 40%. Decrease degree.
  • most of the amount of heat flowing through the cylinders 112 and 122 can be suppressed by having the gap 130.
  • thermoelectric conversion efficiency of the thermoelectric conversion module 100A can be improved.
  • thermoelectric conversion module 100A has a gap 140 in which the P-type or N-type thermoelectric conversion elements 110 and 120 adjacent to each other in the short direction are separated. Therefore, by increasing the thermal resistance between the P-type or N-type thermoelectric conversion elements 110 and 120 adjacent in the short direction, the amount of heat flowing through the P-type and N-type thermoelectric conversion units 111 and 121 is further increased, and the thermoelectric The thermoelectric conversion efficiency of the conversion module 100A can be improved.
  • FIG. 10 is a longitudinal sectional view showing a sectional structure of a thermoelectric conversion module 100B according to the second embodiment.
  • thermoelectric conversion module 100B according to the second embodiment is characterized by including the lower and upper laminated substrates 90B.
  • the multilayer substrate 90B is different from the multilayer substrate 90 according to the first embodiment in that it does not include the heat transfer body 106 and the insulating plate 103.
  • the laminated substrate 90B of the thermoelectric conversion module 100B includes the conductor 101 and the interlayer insulating film 104, but does not include the heat transfer body 106 and the insulating plate 103.
  • the heat transfer body 106 and the insulating plate 103 are not provided, the heat flow from the heat source does not pass through the heat transfer body 106 and the insulating plate 103, and the conductor 101 and the interlayer It flows to the P-type and N-type thermoelectric converters 111 and 121 only through the insulating film 104. Therefore, there is no heat loss caused by passing through the heat transfer body 106 and the insulating plate 103, and the heat flow efficiently flows, so that the thermoelectric conversion efficiency of the thermoelectric conversion module 100B can be improved.
  • thermoelectric conversion module 100B according to Embodiment 2 in which the heat loss from the heat source to the top surfaces of the P-type and N-type thermoelectric conversion units 111 and 121 is small is the viewpoint of thermoelectric conversion efficiency. Is more effective.
  • FIG. 11 is a longitudinal sectional view showing a sectional structure of a thermoelectric conversion module 100C according to the third embodiment.
  • FIG. 12 is an enlarged vertical sectional view showing the vicinity of the upper top surface of the P-type thermoelectric conversion element 110 of FIG. 11, in which the portion surrounded by FIG. 11 is enlarged.
  • thermoelectric conversion module 100C is characterized in that the laminated substrate 90C further includes a conductive ring 107 as compared with the thermoelectric conversion module 100A according to the first embodiment.
  • the conductive ring 107 is provided between the interlayer insulating film 104 and the diffusion prevention film 105 in the longitudinal direction so as to surround the side surface of the bonding material 102 in a ring shape.
  • the inner diameter dimension of the conductive ring 107 is made larger than the inner diameter dimension D1 of the opening 104a.
  • the outer diameter D2 of the conductive ring 107 is made smaller than the outer diameter d1 of the diffusion prevention film 105 (D2 ⁇ d1).
  • the gap 130B can be provided larger by the film thickness of the conductive ring 107. Therefore, in the thermoelectric conversion module 100C according to the third embodiment, the tube 112 and the interlayer insulating film 104 in the longitudinal direction are substantially separated by an interval corresponding to the film thickness TB between the diffusion prevention film 105 and the conductive ring 107. Gap 130B.
  • the outer diameter D2 of the conductive ring 107 is made smaller than the outer diameter d1 of the diffusion prevention film 105 in order to further suppress the inflow of heat into the tubes 112 and 122 (D2 ⁇ d1).
  • the inner diameter of the conductive ring 107 is made larger than the inner diameter D1 of the opening 104a.
  • the conductive ring 107 is preferably composed of a conductor having a low electrical resistance in order to efficiently extract the current generated in the P-type and N-type thermoelectric converters 111 and 121.
  • the film thickness of the conductive ring 107 is, for example, 30 ⁇ m.
  • the laminated substrate 90 shown in FIG. 5 is prepared, a resist film is applied on the laminated substrate 90, and a ring-shaped opening surrounding the opening 104a is formed in the applied resist film. . Subsequently, a conductor is embedded in the formed opening using a predetermined method to form a ring-shaped conductive ring 107. Subsequently, the applied resist film is peeled off from the laminated substrate 90.
  • Other configurations, operations, and manufacturing methods are substantially the same as those in the first embodiment, and thus detailed descriptions thereof are omitted.
  • thermoelectric conversion module 100C is a conductive layer provided between the interlayer insulating film 104 and the diffusion prevention film 105 in the longitudinal direction so as to surround the side surface of the bonding material 102 in a ring shape.
  • a ring 107 is further provided. Therefore, the thermoelectric conversion module 100 ⁇ / b> C has a gap 130 ⁇ / b> B that is substantially spaced apart by a film thickness TB between the diffusion prevention film 105 and the conductive ring 107 between the cylinder 112 and the interlayer insulating film 104 in the longitudinal direction.
  • thermoelectric conversion performance of the thermoelectric conversion module 100C can be further improved.
  • thermoelectric conversion modules 100A and 100C according to the first and third embodiments including the laminated substrate 90 is provided from the viewpoint of preventing a short circuit and electrolytic corrosion. It is valid. Furthermore, in the case where it is desired to separate the cylinder 112 and the interlayer insulating film 104 in the longitudinal direction in a larger and more reliable manner, the configuration of the thermoelectric conversion module 100C having the gap 130B according to the third embodiment is more effective.
  • FIG. 13 is a longitudinal sectional view showing a sectional structure of a thermoelectric conversion module 100D according to the fourth embodiment.
  • thermoelectric conversion module 100D according to the fourth embodiment further includes a hole 108 provided in the interlayer insulating film 104 of the multilayer substrate 90D, as compared with the thermoelectric conversion module 100B according to the second embodiment. It is characterized by providing.
  • the hole 108 is a ring-shaped hole provided through the interlayer insulating film 104 so as to surround the periphery of the opening 104a.
  • the contact area between the cylinders 112 and 122 and the interlayer insulating film 104 is reduced, and the thermal resistance of the heat path flowing from the interlayer insulating film 104 to the cylinders 112 and 122 can be further increased.
  • the total area of the cross-sectional area of the hole 108 in the short direction is preferably 50% or less of the cross-sectional area of the interlayer insulating film 104 in the short direction from the viewpoint of the strength of the thermoelectric conversion module 100D. This is because if the total area of the holes 108 exceeds 50%, the effect of thermal deformation generated in each member cannot be absorbed by the interlayer insulating film 104, and the reliability as the thermoelectric conversion module may be reduced.
  • an etching process or the like is performed so as to surround the opening 104a, for example, until it penetrates the interlayer insulating film 104 in a ring shape.
  • the hole 108 shown in FIG. 13 can be formed.
  • Other configurations, operations, and manufacturing methods are substantially the same as those in the second embodiment, and thus detailed descriptions thereof are omitted.
  • the thermoelectric conversion module 100D includes the ring-shaped hole 108 that penetrates the interlayer insulating film 104 so as to surround the opening 104a.
  • the thermal resistance is increased, and the thermal resistance of the heat path flowing from the interlayer insulating film 104 to the cylinders 112 and 122 can be further increased.
  • the applied heat is less likely to be transmitted in the plane of the interlayer insulating film 104 provided with the holes 108, and the heat concentrates on the flow path passing through the bonding material 102. As a result, more heat flows through the P-type and N-type thermoelectric converters 111 and 121.
  • thermoelectric conversion efficiency of the thermoelectric conversion module 100D can be further improved.
  • FIG. 14 is a plan view showing a planar structure of P-type thermoelectric conversion element 110B according to the fifth embodiment.
  • FIG. 15 is a longitudinal sectional view taken along line XV-XV in FIG.
  • the P-type thermoelectric conversion element 110 ⁇ / b> B according to the fifth embodiment is higher than the P-type thermoelectric conversion element 110 according to the first embodiment, and It is characterized by having a gap 130C on each side surface on the lower side.
  • the gap 130 ⁇ / b> C is provided by projecting the upper and lower top surfaces of the P-type thermoelectric converter 111 in a convex shape in the longitudinal direction from the upper and lower top surfaces of the cylinder 112.
  • the diffusion prevention film 105 according to the fifth embodiment is formed on each top surface of the P-type thermoelectric conversion unit 111 protruding from the top surfaces on the upper side and the lower side of the cylinder 112.
  • the cross section is provided so as to have a U shape.
  • illustration is abbreviate
  • FIG. 1 is a diagrammatic representation of the N type thermoelectric conversion element which concerns on Embodiment 5.
  • the multilayer substrate according to Embodiment 5 does not use the interlayer insulating film 104. Therefore, in the thermoelectric conversion module according to Embodiment 5, the P-type and N-type thermoelectric conversion elements 110B and 120B are similarly mounted on the laminated substrate 90 that does not have the interlayer insulating film 104, for example, in the longitudinal direction. Further, a gap 130 ⁇ / b> C that separates the cylinders (insulators) 112 and 122 from the conductor (wiring layer) 101 is provided.
  • the P-type thermoelectric conversion unit 111 is formed by using a manufacturing process similar to the manufacturing process described in FIGS. Subsequently, when the P-type thermoelectric conversion unit 111 is separated from the pipe 201, as shown in FIG. 15, only the top surfaces of the upper side and the lower side of the cylinder 112 are respectively cut to the center side by the thickness TC in the longitudinal direction. The top surfaces of the upper side and the lower side of the P-type thermoelectric converter 111 are protruded by separating them.
  • a diffusion prevention film 105 made of Ni or the like is selectively formed on each of the upper and lower top surfaces of the protruding P-type thermoelectric conversion unit 111 using, for example, a plating method, and the P-type thermoelectric conversion is performed.
  • Element 110B is formed.
  • the manufacturing process of the N-type thermoelectric conversion element is the same as the manufacturing process of the P-type thermoelectric conversion element 110B.
  • the formed P-type and N-type thermoelectric conversion elements are similarly mounted on the lower and lower laminated substrates 90 that do not have the interlayer insulating film 104, for example, so that the thermoelectric conversion module according to the fifth embodiment is mounted. Manufacturing.
  • Other configurations, operations, and manufacturing methods are substantially the same as those in the first embodiment, and thus detailed descriptions thereof are omitted.
  • the P-type and N-type thermoelectric conversion elements included in the thermoelectric conversion module according to Embodiment 5 have the gap 130C on each of the upper and lower side surfaces of the P-type and N-type thermoelectric conversion units 111 and 121. Have. Therefore, the heat flow of heat flowing through the cylinders 112 and 122 can be further suppressed, and the thermoelectric conversion efficiency can be increased by further increasing the heat flow of heat flowing through the P-type and N-type thermoelectric conversion units 111 and 121.
  • the thermal conductivity of the P-type thermoelectric conversion unit 111 is 1.27 W ⁇ m ⁇ 1 ⁇ K ⁇ 1
  • the thermal conductivity of the N-type thermoelectric conversion unit 121 is 1.35 W.
  • ⁇ m is -1 ⁇ K -1
  • heat conductivity may be used Corning Pyrex 1.1W ⁇ m -1 ⁇ K -1 (R) as the cylinder 112, 122.
  • the transverse area in the short direction is 0.5 mm 2 (a cylinder with a diameter of 0.8 mm).
  • the cross-sectional area of the tube 112 in the short direction is 0.28 mm 2 (cylinder with an outer diameter of 0.5 mm), and the cross-sectional area of the tube 122 in the short direction is 0.7 mm 2 (cylinder with an outer diameter of 0.62 mm). ).
  • the top surface of the opening 104a, the diffusion prevention film 105, the P-type and N-type thermoelectric converters 111 and 122 is circular
  • the outer diameter or inner diameter is used.
  • these shapes may be other than circular.
  • the opening 104a is the smallest, and then the diffusion preventing film 105 and the top surfaces of the P-type and N-type thermoelectric converters 111 and 122 are the largest. .
  • the gap 130 can be similarly formed, and the inflow of heat into the cylinders 112 and 122 can be suppressed.
  • ring-shaped hole 108 penetrating the interlayer insulating film 104 has been described with reference to FIG.
  • the present invention is not limited to this.
  • a ring-shaped hole that penetrates the insulating plate 103 and the interlayer insulating film 104 may be provided so as to surround the opening 104a.
  • thermoelectric conversion modules capable of converting heat into electricity.
  • thermoelectric conversion module 110 110B ... P-type thermoelectric conversion element 111 ... P-type thermoelectric conversion part 112, 122 ... Tube 120 ... N-type thermoelectric conversion element 121 ... N-type thermoelectric converter 101 ... conductor 102 ... bonding material 103 ... insulating plate 104 ... interlayer insulating film 105 ... diffusion prevention film 106 ... heat transfer body 107 ... conductive ring 130, 130B, 130C, 140 ... gap 201 ... pipe 202 ... Silicon tube 203 ... Cylinder 204 ... Crucible 205 ... Mold thermoelectric conversion material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 熱電変換モジュールは、2つの積層基板90の間に配置されるP型及びN型熱電変換素子110、120を具備する。P型及びN型熱電変換素子は、柱状のP型及びN型熱電変換部111、121と、P型及びN型熱電変換部の側面に設けられた絶縁体112、122と、P型及びN型熱電変換部の側面と異なる面である頂面上に設けられる拡散防止膜105と、を備える。各積層基板は、拡散防止膜を介してP型及びN型熱電変換部を電気的に接続する配線層101と、拡散防止膜と前記配線層とを接合する接合材102と、を備える。P型又はN型熱電変換部の上側及び下側の頂面を結ぶ方向において、拡散防止膜の頂面は、絶縁体の上側及び下側の各頂面から突出し、上記方向において、絶縁体上に間隙130を有する。

Description

熱電変換モジュール
 本開示は、熱電変換モジュールに関する。
 熱電変換モジュールが備える熱電変換素子の構成として、例えば、中空筒状の絶縁体の内部にP型又はN型熱電変換部が充填して構成されるP型又はN型熱電変換素子がある(例えば、特許文献1参照。)。上記のようなP型及びN型熱電変換素子は、例えば、上記P型及びN型熱電変換部が、電気的に互いに直列接続される。
 ここで、上記の熱電変換モジュールの両面に温度差を設けると、当該温度差の高温側の一方の面から低温側の他方の面へ熱流が発生する。当該熱流がP型及びN型熱電変換素子を流れると、P型及びN型熱電変換素子の両端の温度差に比例した電圧が発生する現象(ゼーベック効果)により、電力が発生する。また、上記のP型及びN型熱電変換部は、その周囲が絶縁体に覆われている。そのため、隣接するP型及びN型熱電変換部の間の電気的短絡を防止することができ、P型及びN型熱電変換素子のピッチを最小限に抑制して高密度に配置できる。
国際公開第2012/066788号
 しかし、上記の熱電変換モジュールの構成において、温度差を設けたとき、当該温度差により発生する熱流は、P型及びN型熱電変換部の側面を覆うように配置される上記絶縁体にも伝わる。そのため、P型及びN型熱電変換部に流れる熱量が減少し、熱電変換モジュールの熱電変換効率が低下するという課題がある。
 例えば、当該熱電変換素子の短手方向におけるP型及びN型熱電変換部の断面積と絶縁体の断面積との比率が1:1であって、P型及びN型熱電変換部の熱伝導率が1.4W/mK、絶縁体の熱伝導率0.6W/mKの場合、P型及びN型熱電変換部に流れる熱量は約40%程度低下する。
 本開示は、上記の課題を解決するものであり、絶縁体に流れる熱量を抑制して、P型及びN型熱電変換部に流れる熱量を増大させ、熱電変換効率を向上させることができる熱電変換モジュールを提供することを目的とする。
 上記目的を達成するために、本開示に係る熱電変換モジュールは、2つの積層基板の間に配置されるP型及びN型熱電変換素子を具備する熱電変換モジュールであって、
 前記P型熱電変換素子は、
  柱状のP型熱電変換部と、
  前記P型熱電変換部の側面に設けられた絶縁体と、
  前記P型熱電変換部の前記側面と異なる面である頂面上に設けられる拡散防止膜と、
を備え、
 前記N型熱電変換素子は、
  柱状のN型熱電変換部と、
  前記N型熱電変換部の側面に設けられた絶縁体と、
  前記N型熱電変換部の前記側面と異なる面である頂面上に設けられる拡散防止膜と、
を備え、
 前記各積層基板は、
  前記拡散防止膜を介して前記P型及びN型熱電変換部を電気的に接続する配線層と、
  前記拡散防止膜と前記配線層とを接合する接合材と、
を備え、
 前記P型又はN型熱電変換部の上側及び下側の頂面を結ぶ方向において、前記拡散防止膜の頂面は、前記絶縁体の上側及び下側の各頂面から突出し、前記方向において、前記絶縁体上に間隙を有する。
 本開示に係る熱電変換モジュールによれば、絶縁体に流れる熱量を抑制して、P型及びN型熱電変換部に流れる流量を増大させ、熱電変換効率を向上させることができる。
本開示の実施の形態1に係る熱電変換モジュールの断面構造を示す縦断面図。 図1の熱電変換素子の上側頂面の近傍を拡大して示す縦断面図。 実施の形態1に係る熱電変換モジュールの一製造工程を示す図。 実施の形態1に係る熱電変換モジュールの一製造工程を示す図。 実施の形態1に係る熱電変換モジュールの一製造工程(基板準備工程)を示す縦断面図。 実施の形態1に係る熱電変換モジュールの一製造工程(はんだ印刷工程)を示す縦断面図。 実施の形態1に係る熱電変換モジュールの一製造工程(素子実装工程)を示す縦断面図。 実施の形態1に係る熱電変換モジュールの一製造工程(基板実装工程)を示す縦断面図。 実施の形態1に係る熱電変換モジュールの一製造工程(リフロー工程)を示す縦断面図。 実施の形態2に係る熱電変換モジュールの断面構造を示す縦断面図。 実施の形態3に係る熱電変換モジュールの断面構造を示す縦断面図。 図11の熱電変換素子の上側頂面の近傍を拡大して示す縦断面図。 実施の形態4に係る熱電変換モジュールの断面構造を示す縦断面図。 実施の形態5に係る熱電変換素子の平面構造を示す平面図。 図14のXV-XV線に沿った縦断面図。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、この説明において、実質的に重複する部分の詳細な説明については省略する。
(実施の形態1)
 1.構成について
 1-1.熱電変換モジュールの全体構成について
 まず、図1を用い、実施の形態1に係る熱電変換モジュールの全体構成について説明する。図1は、実施の形態1に係る熱電変換モジュール100Aの断面構造を示す縦断面図である。図1に示すように、熱電変換モジュール100Aは、互いに対向するように配置される上側及び下側の2つの積層基板90と、上記2つの積層基板90の間にその両端部を挟んで配置される複数のP型及びN型熱電変換素子110、120と、を備える。
 1-1-1.積層基板90の構成について
 図1に示すように、上側及び下側の各積層基板90は、伝熱体106と、絶縁板103と、導電体101と、層間絶縁膜104と、接合材102とを備える。
 伝熱体106は、P型及びN型熱電変換素子110、120の上側及び下側の各頂面を結ぶ方向(以下、「長手方向」という。)において、各積層基板90の最も外側に設けられる。伝熱体106は、本実施の形態1では、例えば、セラミック基板等を用いる。また、伝熱体106として、面方向への熱拡散性の観点から、例えば、Cu、Al、Feのいずれかを含む金属体やグラファイト等を用いてもよい。
 絶縁板103は、各積層基板90中において各伝熱体106上に設けられる。絶縁板103は、例えば、厚さが10μm以下のポリイミド製のフィルム等を用いることが可能である。また、絶縁板103として、上記ポリイミド製のフィルムを用いた場合、熱電変換モジュール100Aのフレキシブル性が向上し、曲面からの受熱の観点において好ましい。さらに、絶縁板103としてポリイミド製のフィルムを用いた場合、絶縁板103の外側に、本実施の形態1のように熱伝導性の高い伝熱体106を備えてもよい。熱伝導性の高い伝熱体106を用いると、面方向への熱拡散性と剛性がより高まり、より好ましい。
 導電体(配線層)101は、長手方向と直交する方向(以下、「短手方向」という。)に隣接するP型及びN型熱電変換素子110、120を電気的に接続(本実施の形態では互いに直列接続)するように、各積層基板90中においてP型及びN型熱電変換素子110、120の上面側及び下面側にそれぞれ設けられる。導電体101の材料としては、例えば、Bi、Cu、Sb、及びInの二以上を含む合金等を用いることが可能である。
 層間絶縁膜104は、長手方向において導電体101と筒112、122との間に、後述する間隙130(図1において図示せず)を介して各積層基板90に設けられる。また、後述するように、層間絶縁膜104は、筒112、122へ到る熱経路の熱抵抗を高める目的で設けられる。層間絶縁膜104は、例えば、イミド化合物又はアクリル樹脂等により形成される。熱抵抗をさらに高めるために、層間絶縁膜104の表面に所定の凹凸を設けることにより、筒112、122と層間絶縁膜104との接触面積を小さくすることが有効である。より具体的には、層間絶縁膜104の表面に設ける表面粗さは、筒112、122の表面粗さより大きいことが好ましい。これは、層間絶縁膜104から筒112、122への熱の流入を防ぐためである。層間絶縁膜104の表面粗さは、例えば、0.1mm以上であることが好ましい。また、筒112、122と層間絶縁膜104との表面粗さの差は、80μm以上であることが、熱の流入を抑制するのに効果的であることを発明者らは見出している。ここで、表面粗さとは、1μm当りの中心線平均荒さRaをいう。
 接合材102は、拡散防止膜105上に対応する位置の各層間絶縁膜104に形成される各開口部104a(図1において図示せず)内に設けられ、P型及びN型熱電変換素子110、120と各積層基板90とを接合する。接合材102は、本実施の形態1では、P型及びN型熱電変換部111、121からの電流を導電体101へ導くための半田である。これに限られず、接合材102は、例えば、Sn、Pb、Ag、Bi、In、Sb、Auのいずれかを含む単金属又は合金等を用いることが可能である。
 1-1-2.P型及びN型熱電変換素子110、120の構成について
 次いで、P型及びN型熱電変換素子110、120は、図1に示すように、柱状のP型及びN型熱電変換部111、121と、筒112、122と、拡散防止膜105と、をそれぞれ備える。
 P型及びN型熱電変換部111、121は、その両端に温度差を生じさせると起電力が生じる所定の熱電変換材料で形成された柱状の部材である。P型及びN型熱電変換部111、121として、本実施の形態1では、常温から500Kの温度域で高い起電力を持つBi-Te(ビスマス-テルル)系材料を用いる。P型及びN型熱電変換部111、121は、使用時に存在する温度差に応じて選択することができる。例えば、温度差が常温から800Kの範囲であればPb-Te(鉛-テルル)系を、前記温度差が常温から1,000Kの範囲であればSi-Ge(シリコン-ゲルマニウム)系を用いることができる。
 P型及びN型熱電変換部111、121は、上記熱電変換材料に、適当なP型又はN型のドーパントを添加して形成することができる。P型熱電変換部111を得るためのP型のドーパントとしては、例えばSbが挙げられる。N型熱電変換部121を得るためのN型のドーパントとしては、例えばSeが挙げられる。これらのP型又はN型のドーパントの添加によって、熱電変換材料は混晶を形成する。したがって、これらのP型又はN型のドーパントは、例えば「Bi0.5Sb1.5Te」や「BiTe2.7Se0.3」のような組成式で表される程度の量で添加される。また、P型及びN型熱電変換部111、121の形状は、素子の生産性や熱電変換材料の結晶方位を筒の軸方向に揃える観点から、多角柱や円柱が好ましい。さらに、脆性である熱電変換材料からなる熱電変換部111、121の割れを防ぐ観点から、角への応力集中を抑制できる円柱がより好ましい。
 P型及びN型熱電変換部111、121の長手方向における長さLは、P型及びN型熱電変換部111、121の両端に適度な温度差を生じさせる観点から、例えば0.3mm~2.0mmの範囲内であることが好ましい。
 P型及びN型熱電変換部111、121の短手方向における断面積は、小さ過ぎると熱電変換部が破壊され、一方で大き過ぎると熱電変換モジュール100Aの単位面積当たりの熱電変換素子数が減少して性能低下につながる。そのため、P型及びN型熱電変換部111、121の短手方向の断面積は、例えば、0.1mm~4mmの範囲内であることが好ましい。
 筒(絶縁体)112、122は、P型及びN型熱電変換部111、121の側面を囲うように設けられる。筒112、122は、耐熱性と絶縁性とを有する絶縁材料で形成され、両端に開口する空洞を有する部材である。筒112、122の形状は、例えば、円筒、多角筒、及び角にRを持つ多角筒等とすることができる。筒112、122の材料としては、例えば、シリカ、アルミナ等の金属酸化物、耐熱ガラス、石英等が挙げられる。また、筒112、122の材料は、耐熱性の観点によれば石英が好ましく、さらに製造コストを考慮すると耐熱ガラスが好ましい。また、筒112、122の切断面の表面粗さは、後述するP型及びN型熱電変換素子110、120を形成する際に、ワイヤーソーやダイサー等で切断するため、例えば、10μm~20μmの範囲となる。
 筒112、122の短手方向の断面積が、P型及びN型熱電変換部111、121の短手方向の断面積に比較して小さい場合には、熱電変換モジュール100Aの全体に占めるP型及びN型熱電変換部111、121の断面積率を大きくできる。これによって、熱電変換モジュール100Aの熱電変換性能が向上する。一方で、筒112、122の短手方向の断面積が、P型及びN型熱電変換部111、121のそれに比較して小さ過ぎる場合には、P型及びN型熱電変換素子110、120の機械的強度の低下を引き起こす。そのため、筒112、122の短手方向の断面積は、P型及びN型熱電変換部111、121の短手方向の断面積と比較して、例えば、0.2倍~1.7倍の範囲内であることが好ましい。
 拡散防止膜105は、P型及びN型熱電変換部111、121の上側及び下側の各頂面上に設けられる。また、拡散防止膜105は、接合材102中の成分がP型及びN型熱電変換部111、121へ拡散することを防止するために設けられる。拡散防止膜105として、本実施の形態1では、Niを用いる。これに限られず、拡散防止膜105としては、例えば、Ni、Mo、Ti、Wのいずれかを含む単金属又は合金等を用いることができる。また、拡散防止膜105は、Ni又はMoを用いてもよい。
 また、本実施の形態1に係る熱電変換モジュール100Aは、短手方向において隣接するP型及びN型熱電変換素子110、120の間を離間する間隙(第2間隙)140を更に有する。
 1-2.P型及びN型熱電変換素子の頂面の近傍の構成について
 次に、P型及びN型熱電変換素子110、120の頂面の近傍の構成について説明する。図2は、図1のP型熱電変換素子110の上側頂面の近傍を拡大して示す縦断面図であって、図1において囲って示す部分を拡大している。ここでは、図2を用い、P型熱電変換素子110の上側頂面の近傍の構成を例に挙げて説明する。
 図2に示すように、P型熱電変換素子110は、長手方向において筒112と層間絶縁膜104とが所定の間隔(実質的に拡散防止膜105の膜厚TA)を有して離間する間隙130を有する。図2に示すように、拡散防止膜105は、実質的にP型熱電変換部111の頂面上のみに設けられ、筒112の頂面を覆わない。このため、筒112と層間絶縁膜104との間には、拡散防止膜105の膜厚TA分の間隙130が形成される。換言すると、拡散防止膜105の頂面は、長手方向において、筒112の上側及び下側の各頂面から突出する。その結果、P型熱電変換素子110は、長手方向において、筒112上に間隙130を有する。
 また、この間隙130には、本実施の形態1では、空気が満たされる。しかし、空気に限られず、間隙130には、例えば、減圧された(負圧の)空気等の気体が満たされている(充填されている)のが好ましい。減圧された気体の熱伝導率は低いからである。また一般的な乾燥空気よりも熱伝導率の低いアルゴンガス等の所定のガスが満たされてもよい。所定のガスが、減圧されたアルゴンガスであればなお良い。さらに、間隙130は、例えば、断熱効果のより高い真空であるのがより望ましい。後述するように、この間隙130を有することによって、間隙130が断熱材として働き、高温側(受熱側)の伝熱体106から受熱した熱が、層間絶縁膜104から筒112に直接的に流れることを抑制できる。そのため、受熱した熱を効率よくP型熱電変換部111に導くことができる。
 ここで、間隙130を設けるためには、拡散防止膜105の外径寸法d1がP型熱電変換部111の外径寸法d2よりも小さく、かつ、層間絶縁膜104の開口部104aの内径寸法D1が拡散防止膜105の外径寸法d1よりも小さくなる所定の関係(d1<d2、D1<d1)を満たすことが好ましい。換言すると、短手方向における拡散防止膜105の断面積は、開口部104aの断面積より大きく、短手方向におけるP型及びN型熱電変換部111、121の各頂面の断面積は、拡散防止膜105の断面積よりも大きくなる関係を満たすことが好ましい。上記所定の関係を満たすことにより、筒112と層間絶縁膜104との間に、実質的に拡散防止膜105の膜厚TA分の間隔で離間する間隙130を有することができる。
 さらに、導電体101とP型及びN型熱電変換部111、121との接合抵抗を最小化するために、例えば、開口部104aの内径寸法D1を、拡散防止膜105の外径寸法d1のおよそ90%とすることがより好ましい。
 また、後述する製造方法の際の位置のバラツキを考慮すると、拡散防止膜105の外径寸法d1のxy方向の位置ズレ量d1_xyに対して、開口部104aの内径寸法D1が、拡散防止膜105の外径寸法d1からの上記位置ズレ量d1_xyの差よりも小さいこと(D1<d1-d1_xy)が好ましい。さらに、P型熱電変換部111の外径寸法d2のxy方向の位置ズレ量d2_xyに対して、拡散防止膜105の外径寸法d1が、P型熱電変換部111の外径寸法d2からの上記位置ズレ量d2_xyの差よりも小さいこと(d1<d2-d2_xy)がより好ましい。
 拡散防止膜105の膜厚TAは、接合材102が開口部104aから漏れ広がり、筒112まで到達することを抑制する観点から、5μm以上が好ましい。一方、膜厚TAが大きすぎると電気的な抵抗も高くなる。そのため、拡散防止膜105の膜厚TAは、30μm以下が好ましい。
 なお、上記説明においては、図2を用いて、P型熱電変換素子110の上側頂面の構成を一例に挙げて説明した。しかし、P型熱電変換素子110の下側頂面の構成においても同様に、筒112と層間絶縁膜104とが、長手方向において所定の間隔(実質的に拡散防止膜105の膜厚TA)で離間する間隙130を有する。さらに、N型熱電変換素子120の上側及び下側頂面の各構成においても同様に、筒122と層間絶縁膜104とが長手方向において所定の間隔(実質的に拡散防止膜105の膜厚TA)を有して離間する間隙130を有する。
 2.発電動作について
 次に、図1を用い、実施の形態1に係る熱電変換モジュール100Aの発電動作について説明する。
 ここで、図1に示す熱電変換モジュール100Aの構成において、上側の積層基板90の伝熱体106を高温とし、下側の積層基板90の伝熱体106を低温とする。これによって、当該高温と低温との差による温度差により、高温側(受熱側)の上側の積層基板90から低温側(放熱側)の下側の積層基板90へ流れる熱の熱流が発生する。
 そして、発生した熱流が、図1の矢印HAで示す流路のように、高温側の伝熱体106から、順次、絶縁板103、導電体101、接合材102、拡散防止膜105、及びP型熱電変換部111に流れる。これによって、P型熱電変換部111は、高温側の端部と低温側の端部とにおける両端の温度差に比例した電圧を発生する。ここで、矢印HAで示す流路とは、高温側の伝熱体106から、順次、絶縁板103、導電体101、接合材102、拡散防止膜105、及びP型熱電変換部111(又はN型熱電変換部121)に流れ、低温側の下側の積層基板90の伝熱体106に流れるまでの流路をいう。
 N型熱電変換素子120においても、同様に、発生した熱流が、矢印HAで示す流路を流れることにより、N型熱電変換部121は、高温側の端部と低温側の端部とにおける両端の温度差に比例した電圧を発生する。ここで、N型熱電変換素子120において発生する電圧の極性は、P型熱電変換素子110において発生する極性と異なる。そこで、発生した電圧が相殺されることを防止するため、導電体101により、短手方向に隣接するP型及びN型熱電変換素子110、120を電気的に互いに直列接続する。このように電気的に接続することで、熱電変換モジュール100Aの全体において、より大きな起電力を発生させることができる。
 ここで、熱電変換モジュール100Aに与えられた温度差により生じる熱流の流路は、発電に寄与する上記矢印HAだけでなく、P型及びN型熱電変換部111、121を流れず、発電に寄与しない図1の矢印HBに示す流路も存在する。矢印HBに示す流路とは、高温側の伝熱体106からの熱が、順次、絶縁板103、導電体101、層間絶縁膜104、間隙130、及び筒112(又は122)に流れ、低温側の下側の積層基板90の伝熱体106に流れるまでの流路をいう。
 しかし、上記のように、実施の形態1に係る熱電変換モジュール100Aは、長手方向において筒112、122と層間絶縁膜104との間が離間する間隙130を有する。この間隙130には、本実施の形態1では、空気が満たされることから、間隙130の熱抵抗は、例えば絶縁材料等の固体物質の熱抵抗に比較して、1桁以上その値が大きい。そのため、この間隙130が断熱材として働き、発電に寄与しない矢印HBの流路に流れる熱量を抑制することができる。そして、この矢印HBの流路に流れる熱量を抑制する分、発電に寄与する矢印HAの流路が支配的となり、矢印HAの流路に流れる熱量を増大させことができる。そのため、熱電変換モジュール100Aの熱電変換効率を向上させることができる。
 なお、拡散防止膜105の外径寸法d1が、P型及びN型熱電変換部111、121の外径寸法d2よりも大きい場合、間隙130の体積が減少する。その結果、矢印HAで示す熱流の一部が、拡散防止膜105を経由して、筒112、122に流れ、P型及びN型熱電変換部111、121に流れる熱流が低下してしまう。また、拡散防止膜105の外径寸法d1が、開口部104aの内径寸法D1より小さい場合、開口部104a内の接合材102が、P型及びN型熱電変換部111、121に接する部分を有するおそれがある。この場合、当該接する部分がP型及びN型熱電変換部111、121の頂面全体に濡れ広がり、筒112、122にまで接する可能性がある。また、接合材102は、P型及びN型熱電変換部111、121からの電流を導電体101に導くための半田であるが、この接合材102は熱伝導率が高い。そのため、拡散防止膜105の外径寸法d1が開口部104aの内径寸法D1よりも小さい場合、接合材102を介して筒112、122への熱の流入を増大させてしまう。そのため、拡散防止膜105の外径寸法d1がP型熱電変換部111の外径寸法d2よりも小さく、かつ、層間絶縁膜104の開口部104aの内径寸法D1が拡散防止膜105の外径寸法d1よりも小さくなる所定の関係(d1<d2、D1<d1)を満たすことが好ましい。
 3.製造方法について
 次に、図3乃至図9を用い、実施の形態1に係る熱電変換モジュール100Aの製造方法について説明する。
 3-1.P型及びN型熱電変換素子110、120の製造工程について
 図3及び図4を用い、P型及びN型熱電変換素子110、120の製造工程について説明する。ここでは、P型熱電変換部111と、筒112と、拡散防止膜105とを備えるP型熱電変換素子110の製造工程を一例に挙げて説明する。
 まず、図3に示すように、耐熱性及び絶縁性を有するパイプ201を準備する。本実施の形態1では、パイプ201には、例えば、ガラス、特に耐熱ガラス(SiOとBを混合したホウケイ酸ガラスの一種で、熱膨張率は約3×10-6/Kの材料)を使用してもよい。また、パイプ201には、例えば、全長が150mm、内径と外径がそれぞれ、0.8mm、2mmであるものを使用できる。そして、パイプ201の一端にシリコンチューブ202を介してシリンダー203を取り付け、他端をるつぼ204内の溶融熱電変換材料205に浸す。ここで、溶融熱電変換材料205とは、加熱により溶融したP型熱電変換材料(又はN型熱電変換材料)である。
 続いて、図4に示すように、シリンダー203を動作させることにより、パイプ201の内部に溶融熱電変換材料205を吸引する。そして、吸引した溶融熱電変換材料205を冷却して、パイプ201の内部で凝固させる。続いて、パイプ201の長手方向に対して実質的に垂直な短手方向に沿って、例えば、ワイヤーソー又はダイサー207を長手方向の所望の長さLとなるように制御し、P型熱電変換部111とパイプ201とを同時に切断する。上記のような切断工程により、P型熱電変換部111をパイプ201から切り離すことで、P型熱電変換部111と筒112とを同時に形成する。
 続いて、図示は省略するが、形成したP型熱電変換部111の上側及び下側の各頂面上に、例えば、バレルめっき法を用いて、Ni等からなる拡散防止膜105を選択的に形成する。この工程の際、形成される拡散防止膜105の外径寸法d1がP型熱電変換部111の外径寸法d2よりも小さく、かつ、後述する層間絶縁膜104の開口部104aの内径寸法D1が拡散防止膜105の外径寸法d1よりも小さくなる上記所定の関係(d1<d2、D1<d1)を満たすように、形成条件を制御する。さらに、この工程の際、形成される拡散防止膜105の膜厚TAが、5μm以上、かつ30μm以下となるように、形成条件を制御することが好ましい。
 以上の製造工程により、複数のP型熱電変換素子110を形成する。なお、N型熱電変換素子120の製造工程については、るつぼ204内に溶融させる溶融熱電変換材料がN型の熱電変換材料である点を除いて、上記P型熱電変換素子110の製造工程と実質的に同様である。そのため、N型熱電変換素子120の製造工程の詳細な説明については省略する。
 3-2.P型及びN型熱電変換素子110、120の実装工程について
 次に、図5乃至図9を用い、P型及びN型熱電変換素子110、120の積層基板90への実装工程について説明する。
 まず、図5に示すように、搬送トレー220上に、下側の積層基板90を準備する。図5に示すように、下側の積層基板90は、伝熱体106上に順次積層された絶縁板103、導電体101、及び層間絶縁膜104を備える。ここで、導電体101は、後の工程において実装されるP型及びN型熱電変換素子110、120が電気的に互いに直列接続するように、その一部が短手方向において分離される。さらに、層間絶縁膜104には、例えば、エッチング工程等を用いて、内径寸法D1を有する開口部104aが形成される。ここで、開口部104aを形成する際に、開口部104aの内径寸法D1が、拡散防止膜105の外径寸法d1よりも小さくなる(D1<d1)ように、形成条件を制御することが好ましい。
 続いて、図6に示す半田印刷工程において、層間絶縁膜104の各開口部104a内に、例えば、スクリーン印刷によって、最適化された量の半田を印刷し、接合材102を形成する。ここで、上側の積層基板90についても、上記図5及び図6において示した同様の工程を行って、同様に形成する。
 続いて、図7に示す素子実装工程において、下側の積層基板90の各接合材102上に、P型及びN型熱電変換素子110、120を、例えば、チップマウンター等を用いて実装する。実装されたP型及びN型熱電変換素子110、120は、導電体101により、電気的に互いに直列接続される。続いて、所定のリフロー工程を行い、各接合材102が層間絶縁膜104の各開口部104a内で溶融し凝固するように、例えば、所定の温度プロファイルを有するリフロー炉で加熱及び冷却を行う。
 続いて、図8に示す基板実装工程において、上記図5及び図6に示した同様の工程を行って、同様に形成した上側の積層基板90を準備する。そして、準備した上側の積層基板90の各接合材102が、P型及びN型熱電変換素子110、120の上側の各拡散防止膜105上にそれぞれ配置されるように、上側の積層基板90を実装する。
 続いて、図9に示すリフロー工程において、上側の積層基板90が加重された状態で、各接合材102が層間絶縁膜104の各開口部104a内で溶融し凝固するように、例えば、所定の温度プロファイルを有するリフロー炉で加熱及び冷却を行う。そして、各接合材102を各開口部104a内で溶融させ凝固させて、本実施の形態1に係る熱電変換モジュール100Aを製造する。上記のように、本実施の形態1では、上側及び下側の各積層基板90に対してそれぞれリフロー工程を行い、所定の各開口部104a内に接合材102をそれぞれ形成する。そのため、許容される位置ずれの範囲内で熱電変換モジュール100Aを製造することが可能となる。
 4.作用効果について
 以上説明したように、実施の形態1に係る熱電変換モジュール100Aは、長手方向において筒112、122と層間絶縁膜104との間が離間する間隙130を有する。この間隙130には、本実施の形態1では、空気が満たされることから、間隙130の熱抵抗は、例えば絶縁材料等の固体物質に比較して、1桁以上大きい。そのため、間隙130が断熱材として働き、図1に示した発電に寄与しない矢印HBの流路に流れる熱量を抑制することできる。そして、この矢印HBの流路に流れる熱量を抑制する分、同図1に示す発電に寄与する矢印HAの流路に流れる熱量を増大させることができる。そのため、熱電変換モジュール100Aの熱電変換効率を向上させることができる。
 例えば、P型及びN型熱電変換部111、121の短手方向の断面積と筒112、122の短手方向の断面積との比率が1:1であって、P型及びN型熱電変換部111、121の熱伝導率が1.4W/mK、筒112、122の熱伝導率0.6W/mKの場合、P型及びN型熱電変換部111、121に流れる熱量は、約40%程度低下する。しかし、本実施の形態1では、上記間隙130を有することにより、筒112、122に流れる熱量の大部分を抑制することができる。そのため、筒112、122に流れる熱量を抑制して、P型及びN型熱電変換部111、121に流れる熱量を増大させ、熱電変換モジュール100Aの熱電変換効率を向上させることができる。
 さらに、本実施の形態1に係る熱電変換モジュール100Aは、短手方向において隣接するP型又はN型熱電変換素子110、120の間が離間する間隙140を有する。そのため、短手方向に隣接するP型又はN型熱電変換素子110、120の間の熱抵抗を増大させることで、P型及びN型熱電変換部111、121に流れる熱量をより増大させ、熱電変換モジュール100Aの熱電変換効率を向上させることができる。
(実施の形態2)
 次に、図10を用い、実施の形態2に係る熱電変換モジュールについて説明する。図10は、実施の形態2に係る熱電変換モジュール100Bの断面構造を示す縦断面図である。
 図10に示すように、実施の形態2に係る熱電変換モジュール100Bは、下側及び上側の積層基板90Bを備えることを特徴としている。積層基板90Bは、上記実施の形態1に係る積層基板90と比較して、伝熱体106と絶縁板103とを備えていない点で相違する。
 製造方法に関しては、図5において説明した基板準備工程の際に、積層基板90の代わりに、導電体101と層間絶縁膜104とをそれぞれ備える下側及び上側の積層基板90Bを同様に準備すればよい。その他の構成、動作、及び製造方法については、上記実施の形態1と実質的に同様であるため、各詳細な説明については省略する。
 以上説明したように、実施の形態2に係る熱電変換モジュール100Bの積層基板90Bは、導電体101と層間絶縁膜104とを備えるが、伝熱体106と絶縁板103とを備えていない。この積層基板90Bの構成によれば、伝熱体106と絶縁板103とを備えていないため、熱源からの熱流は、伝熱体106と絶縁板103とを介することなく、導電体101及び層間絶縁膜104のみを介して、P型及びN型熱電変換部111、121に流れる。そのため、伝熱体106と絶縁板103とを介することによる熱の損失がなく、熱流が効率よく流れるため、熱電変換モジュール100Bの熱電変換効率を向上させることができる。
 ここで、高温側と低温側との温度差をとり難く、温度差が小さい場合には、少ない温度勾配の状況下で、P型及びN型熱電変換部111、121の両端の温度差をより大きくとる必要がある。そのため、このような状況下においては、熱源からP型及びN型熱電変換部111、121の各頂面までの熱損失が小さい実施の形態2に係る熱電変換モジュール100Bが、熱電変換効率の観点からより有効である。
(実施の形態3)
 次に、図11及び図12を用い、実施の形態3に係る熱電変換モジュールについて説明する。図11は、実施の形態3に係る熱電変換モジュール100Cの断面構造を示す縦断面図である。図12は、図11のP型熱電変換素子110の上側頂面の近傍を拡大して示す縦断面図であって、図11において囲って示す部分を拡大している。
 図11に示すように、実施の形態3に係る熱電変換モジュール100Cは、実施の形態1に係る熱電変換モジュール100Aと比較して、積層基板90Cが導電リング107を更に備えることを特徴としている。導電リング107は、長手方向における層間絶縁膜104と拡散防止膜105との間に、接合材102の側面をリング状に囲うように設けられる。
 図12に示すように、導電リング107の内径寸法は、開口部104aの内径寸法D1よりも大きくする。また、導電リング107の外径寸法D2は、拡散防止膜105の外径寸法d1よりも小さくする(D2<d1)。これにより、導電リング107の膜厚分、間隙130Bをより大きく設けることができる。そのため、実施の形態3に係る熱電変換モジュール100Cは、長手方向における筒112と層間絶縁膜104との間を、実質的に拡散防止膜105と導電リング107との膜厚TB分の間隔で離間する間隙130Bを有する。
 上記のように、導電リング107の外径寸法D2は、筒112、122への熱の流入をより抑制するために、拡散防止膜105の外径寸法d1より小さくする(D2<d1)。その一方で、P型及びN型熱電変換部111、121に熱を効率よく流すために、導電リング107の内径寸法は、開口部104aの内径寸法D1よりも大きくする。また、導電リング107は、P型及びN型熱電変換部111、121で発生した電流を効率よく取り出すために、電気抵抗の低い導電体で構成することが好ましい。導電リング107の膜厚は、例えば、30μmである。
 製造方法に関しては、例えば、図5で示した積層基板90を準備し、当該積層基板90上にレジスト膜を塗布し、塗布したレジスト膜に開口部104aを囲うようなリング状の開口を形成する。続いて、形成した開口中に所定の方法を用いて、導電体を埋め込み形成してリング状の導電リング107を形成する。続いて、塗布したレジスト膜を積層基板90から剥離する。その他の構成、動作、及び製造方法については、上記実施の形態1と実質的に同様であるため、各詳細な説明については省略する。
 以上説明したように、実施の形態3に係る熱電変換モジュール100Cは、長手方向における層間絶縁膜104と拡散防止膜105との間に、接合材102の側面をリング状に囲うように設けられる導電リング107を更に備える。そのため、熱電変換モジュール100Cは、長手方向における筒112と層間絶縁膜104との間に、実質的に拡散防止膜105と導電リング107との膜厚TB分の間隔で離間する間隙130Bを有する。上記の構成によれば、長手方向における筒112と層間絶縁膜104との間の間隔130Bを、間隙130と比較してより大きく設けることができるため、層間絶縁膜104から筒112、122への熱の流入をより抑制することができる。このため、熱電変換モジュール100Cの熱電変換性能をより向上させることができる。
 また、熱源が、例えば導電体やイオン化された液体等の場合には、短絡や電解腐食を防ぐ観点から、積層基板90を備える実施の形態1、3に係る熱電変換モジュール100A、100Cの構成が有効である。さらに、より大きくかつ確実に長手方向における筒112と層間絶縁膜104との間を離間したい場合には、実施の形態3に係る間隙130Bを有する熱電変換モジュール100Cの構成がより有効である。
(実施の形態4)
 次に、図13を用い、実施の形態4に係る熱電変換モジュールについて説明する。図13は、実施の形態4に係る熱電変換モジュール100Dの断面構造を示す縦断面図である。
 図13に示すように、実施の形態4に係る熱電変換モジュール100Dは、実施の形態2に係る熱電変換モジュール100Bと比較して、積層基板90Dの層間絶縁膜104中に設けられる孔108を更に備えることを特徴としている。
 孔108は、開口部104aの周囲を囲うように、層間絶縁膜104を貫通して設けられるリング状の孔である。このような孔108を設けることで、筒112、122と層間絶縁膜104との接触面積が小さくなり、層間絶縁膜104から筒112、122へ流れる熱経路の熱抵抗をより高めることができる。また、短手方向における孔108の断面積の総面積は、熱電変換モジュール100Dの強度の観点から、短手方向における層間絶縁膜104の断面積の50%以下であることが好ましい。それは、孔108の上記総面積が50%を超えると、各部材に生じる熱変形の影響を層間絶縁膜104で吸収できず、熱電変換モジュールとしての信頼性が低下するおそれがあるからである。
 製造方法に関しては、上記実施の形態2に係る積層基板90Bを同様に準備した後、開口部104aの周囲を囲うように、例えば、リング状に層間絶縁膜104を貫通するまでエッチング工程等を行うことで、図13に示した孔108を形成することが可能である。その他の構成、動作、及び製造方法については、上記実施の形態2と実質的に同様であるため、各詳細な説明については省略する。
 以上説明したように、実施の形態4に係る熱電変換モジュール100Dは、開口部104aの周囲を囲うように、層間絶縁膜104を貫通するリング状の孔108を備える。このような孔108を備えることで、熱抵抗が大きくなり、層間絶縁膜104から筒112、122へ流れる熱経路の熱抵抗をより高めることができる。さらに、与えられた熱が、孔108を設けた層間絶縁膜104の面内に伝わりにくくなり、接合材102を通る流路に熱が集中して流れる。その結果として、P型及びN型熱電変換部111、121に流れる熱が多くなる。このように、開口部104aを囲うようなリング状の孔108を備えることで、層間絶縁膜104の面内への熱の流入をより強力に抑制することでき、熱電変換モジュール100Dの熱電変換効率をさらに向上させることができる。
(実施の形態5)
 次に、図14及び図15を用い、実施の形態5に係る熱電変換素子及びモジュールについて説明する。図14は、実施の形態5に係るP型熱電変換素子110Bの平面構造を示す平面図である。図15は、図14のXV-XV線に沿った縦断面図である。
 図14及び図15に示すように、実施の形態5に係るP型熱電変換素子110Bは、実施の形態1に係るP型熱電変換素子110と比較して、P型熱電変換部111の上側及び下側の各側面に間隙130Cを有することを特徴としている。この間隙130Cは、P型熱電変換部111の上側及び下側の各頂面が、筒112の上側及び下側の各頂面から長手方向において凸状に突出することで設けられる。また、図14及び図15に示すように、実施の形態5に係る拡散防止膜105は、筒112の上側及び下側の各頂面から突出したP型熱電変換部111の各頂面上を覆って、断面がコの字状となるように設けられる。なお、実施の形態5に係るN型熱電変換素子については、図示を省略するが、同様の構成であり、N型熱電変換部121の上側及び下側の各側面に同様の間隙130Cを有する。
 また、図示を省略するが、実施の形態5に係る積層基板は、層間絶縁膜104を用いていない。そのため、実施の形態5に係る熱電変換モジュールは、P型及びN型熱電変換素子110B、120Bを、例えば層間絶縁膜104を有さない積層基板90上に同様に実装することにより、長手方向において、筒(絶縁体)112、122と導電体(配線層)101とを離間する間隙130Cを有する。
 製造方法に関しては、まず、上記図3及び図4において説明した製造工程と同様の製造工程を用いて、P型熱電変換部111を形成する。続いて、パイプ201からP型熱電変換部111を切り離す際に、図15に示すように、筒112の上側及び下側の各頂面のみを、長手方向において厚さTCだけ中央側へそれぞれ削って切り離すことで、P型熱電変換部111の上側及び下側の各頂面を突出させる。
 続いて、突出したP型熱電変換部111の上側及び下側の各頂面上に、例えば、メッキ法を用いて、Ni等からなる拡散防止膜105を選択的に形成し、P型熱電変換素子110Bを形成する。N型熱電変換素子の製造工程についても、P型熱電変換素子110Bの上記製造工程と同様である。その後、形成したP型及びN型熱電変換素子を、例えば層間絶縁膜104を有さない下側及び下側の積層基板90上に同様に実装することで、実施の形態5に係る熱電変換モジュールを製造する。その他の構成、動作、及び製造方法については、上記実施の形態1と実質的に同様であるため、各詳細な説明については省略する。
 以上説明したように、実施の形態5に係る熱電変換モジュールが備えるP型及びN型熱電変換素子は、P型及びN型熱電変換部111、121の上側及び下側の各側面に間隙130Cを有する。そのため、筒112、122に流れる熱の熱流をさらに抑制でき、P型及びN型熱電変換部111、121に流れる熱の熱流をさらに増大させることで、熱電変換効率を増大させることができる。
 なお、上記実施の形態1乃至5では、例えば、P型熱電変換部111の熱伝導率が1.27W・m-1・K-1、N型熱電変換部121の熱伝導率が1.35W・m-1・K-1であり、筒112、122として熱伝導率が1.1W・m-1・K-1のコーニング社のパイレックス(登録商標)を用いてもよい。また、P型及びN型熱電変換部111、121では、例えば、短手方向の横断面積は、0.5mm(直径0.8mmの円柱)である。また、筒112の短手方向の横断面積は、0.28mm(外径0.5mmの円筒)、筒122の短手方向の横断面積は、0.7mm(外径0.62mmの円筒)である。
 また、上記実施の形態1乃至5では、開口部104a、拡散防止膜105、P型及びN型熱電変換部111、122の頂面が円形の例を説明したため、外径寸法または内径寸法を用いて説明した。しかし、これらの形状は、円形以外の場合であってもよい。この場合、短手方向における断面積に関しては、開口部104aが最も小さく、次いで拡散防止膜105、そしてP型及びN型熱電変換部111、122の頂面が最も大きいとなる関係とすればよい。このような関係を満たす構成により、同様に、間隙130を形成でき、筒112、122への熱の流入を抑制できる。
 さらに、図13において、層間絶縁膜104を貫通するリング状の孔108を説明した。しかし、これに限られず、例えば、積層基板90において、開口部104aの周囲を囲うように、絶縁板103及び層間絶縁膜104を貫通するリング状の孔を設けてもよい。
 また、前述の各実施の形態のうちの任意の実施の形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにできる。
 本開示は、熱を電気に変換することが可能な熱電変換モジュールに広く適用することが可能である。
 90、90B、90C、90D…積層基板
 100A、100B、100C、100D…熱電変換モジュール
 110、110B…P型熱電変換素子
 111…P型熱電変換部
 112、122…筒
 120…N型熱電変換素子
 121…N型熱電変換部
 101…導電体
 102…接合材
 103…絶縁板
 104…層間絶縁膜
 105…拡散防止膜
 106…伝熱体
 107…導電リング
 130、130B、130C、140…間隙
 201…パイプ
 202…シリコンチューブ
 203…シリンダー
 204…るつぼ
 205…溶融熱電変換材料

Claims (14)

  1.  2つの積層基板の間に配置されるP型熱電変換素子及びN型熱電変換素子を具備する熱電変換モジュールであって、
     前記P型熱電変換素子は、
      柱状のP型熱電変換部と、
      前記P型熱電変換部の側面に設けられた絶縁体と、
      前記P型熱電変換部の前記側面と異なる面である頂面上に設けられる拡散防止膜と、
    を備え、
     前記N型熱電変換素子は、
      柱状のN型熱電変換部と、
      前記N型熱電変換部の側面に設けられた絶縁体と、
      前記N型熱電変換部の前記側面と異なる面である頂面上に設けられる拡散防止膜と、
    を備え、
     前記各積層基板は、
      前記拡散防止膜を介して前記P型熱電変換部及びN型熱電変換部を電気的に接続する配線層と、
      前記拡散防止膜と前記配線層とを接合する接合材と、
    を備え、
     前記P型又はN型熱電変換部の上側及び下側の頂面を結ぶ方向において、前記拡散防止膜の頂面は、前記絶縁体の上側及び下側の各頂面から突出し、
     前記方向において、前記絶縁体上に間隙を有する、熱電変換モジュール。
  2.  前記各積層基板は、前記方向における前記拡散防止膜と前記配線層との間に設けられる層間絶縁膜を更に備え、
     前記層間絶縁膜は、前記拡散防止膜上に位置する開口部を有する、
    請求項1に記載の熱電変換モジュール。
  3.  前記方向と直交する第2方向における前記拡散防止膜の断面積は、前記第2方向における前記開口部の断面積よりも大きく、
     前記第2方向における前記P型及びN型熱電変換部の前記頂面の断面積は、前記第2方向における前記拡散防止膜の断面積よりも大きい請求項2に記載の熱電変換モジュール。
  4.  前記各積層基板は、前記接合材の側面を囲う導電リングを更に備える請求項2又は3に記載の熱電変換モジュール。
  5.  前記各積層基板は、前記開口部の周囲を囲うように、前記層間絶縁膜を貫通して設けられるリング状の孔を更に備える請求項2乃至4のいずれか一項に記載の熱電変換モジュール。
  6.  前記方向と直交する第2方向における前記孔の断面積の総面積は、前記第2方向における前記層間絶縁膜の断面積の50%以下である請求項5に記載の熱電変換モジュール。
  7.  前記層間絶縁膜の表面粗さは、前記絶縁体の表面粗さよりも荒い請求項2乃至6のいずれかに記載の熱電変換モジュール。
  8.  前記層間絶縁膜の表面粗さと前記絶縁体の表面粗さとの差は、80μm以上である請求項7に記載の熱電変換モジュール。
  9.  前記P型及びN型熱電変換部は、Bi-Te系材料を含み、
     前記絶縁体は、耐熱ガラスまたは石英を含み、
     前記層間絶縁膜は、イミド化合物またはアクリル樹脂を含む請求項2乃至8のいずれかに記載の熱電変換モジュール。
  10.  前記方向と直交する第2方向における前記拡散防止膜、前記P型及びN型熱電変換部、及び前記開口部の断面の形状は、円形であって、
     前記方向と直交する第2方向において、前記拡散防止膜の外径寸法が、前記P型又はN型熱電変換部の外径寸法よりも小さく、かつ、前記開口部の内径寸法が、前記拡散防止膜の外径寸法よりも小さい請求項2乃至9のいずれかに記載の熱電変換モジュール。
  11.  前記P型及びN型熱電変換部の上側及び下側の各頂面は、前記方向において、前記絶縁体の上側及び下側の各頂面から突出し、
     前記P型及びN型熱電変換素子は、前記方向において、前記P型及びN型熱電変換部の上側及び下側の各側面に間隙を有する、請求項1乃至10のいずれかに記載の熱電変換モジュール。
  12.  前記方向と直交する第2方向において隣接する前記P型及びN型熱電変換素子の間を離間する第2間隙を更に有する請求項1乃至11のいずれかに記載の熱電変換モジュール。
  13.  前記間隙には、減圧された気体が充填される請求項1乃至12のいずれかに記載の熱電変換モジュール。
  14.  前記間隙には、アルゴンが充填される請求項1乃至13のいずれかに記載の熱電変換モジュール。
PCT/JP2014/001513 2013-06-11 2014-03-17 熱電変換モジュール WO2014199541A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480001975.4A CN104508846B (zh) 2013-06-11 2014-03-17 热电转换模块
EP14810734.5A EP2869354B1 (en) 2013-06-11 2014-03-17 Thermoelectric conversion module
US14/418,654 US9496476B2 (en) 2013-06-11 2014-03-17 Thermoelectric conversion module
JP2014549261A JP5696261B1 (ja) 2013-06-11 2014-03-17 熱電変換モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-122767 2013-06-11
JP2013122767 2013-06-11

Publications (1)

Publication Number Publication Date
WO2014199541A1 true WO2014199541A1 (ja) 2014-12-18

Family

ID=52021868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001513 WO2014199541A1 (ja) 2013-06-11 2014-03-17 熱電変換モジュール

Country Status (5)

Country Link
US (1) US9496476B2 (ja)
EP (1) EP2869354B1 (ja)
JP (1) JP5696261B1 (ja)
CN (1) CN104508846B (ja)
WO (1) WO2014199541A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092295A (ja) * 2015-11-12 2017-05-25 日東電工株式会社 半導体装置の製造方法
WO2017159594A1 (ja) * 2016-03-15 2017-09-21 パナソニックIpマネジメント株式会社 熱電変換素子および熱電変換モジュール
WO2018168837A1 (ja) * 2017-03-16 2018-09-20 リンテック株式会社 熱電変換モジュール用電極材料及びそれを用いた熱電変換モジュール
US10141492B2 (en) * 2015-05-14 2018-11-27 Nimbus Materials Inc. Energy harvesting for wearable technology through a thin flexible thermoelectric device
WO2019146991A1 (ko) * 2018-01-23 2019-08-01 엘지이노텍 주식회사 열전 모듈
JP2020510987A (ja) * 2017-06-15 2020-04-09 エルジー・ケム・リミテッド 熱電モジュール
WO2022124674A1 (ko) * 2020-12-10 2022-06-16 엘지이노텍 주식회사 열전 소자

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH707390A2 (de) * 2012-12-28 2014-06-30 Greenteg Ag Wärmeflusssensor.
JP6424961B2 (ja) * 2015-06-09 2018-11-21 株式会社村田製作所 熱電変換素子、熱電変換モジュールおよび電気機器
TWI563909B (en) * 2016-01-29 2016-12-21 Delta Electronics Inc Thermo electric heat dissipation module
JP6567098B2 (ja) * 2016-02-18 2019-08-28 三菱電機株式会社 熱電変換モジュールおよびその製造方法
KR20180134340A (ko) * 2016-04-06 2018-12-18 마그나 시팅 인크. 가요성 열전 엔진
KR101947237B1 (ko) * 2016-10-27 2019-05-10 현대자동차주식회사 열전 모듈 제조 장치
IT201600109345A1 (it) * 2016-10-28 2018-04-28 Consorzio Delta Ti Res Generatore termoelettrico integrato e relativo metodo di fabbricazione
JP6467740B2 (ja) * 2016-11-22 2019-02-13 パナソニックIpマネジメント株式会社 熱電変換素子およびその製造方法
JP6690017B2 (ja) * 2016-11-29 2020-04-28 京セラ株式会社 熱電モジュール
US20180287038A1 (en) * 2017-03-28 2018-10-04 Tdk Corporation Thermoelectric conversion device
KR102128893B1 (ko) * 2017-08-18 2020-07-01 주식회사 엘지화학 열전 발전 장치
WO2019090526A1 (zh) * 2017-11-08 2019-05-16 南方科技大学 一种高性能热电器件及其超快速制备方法
KR102459953B1 (ko) * 2018-03-22 2022-10-27 엘지이노텍 주식회사 열전 레그 및 이를 포함하는 열전소자
JP2021022614A (ja) * 2019-07-25 2021-02-18 イビデン株式会社 プリント配線板
KR20210081617A (ko) * 2019-12-24 2021-07-02 엘지이노텍 주식회사 열전소자
KR102414221B1 (ko) * 2020-08-04 2022-06-27 서울시립대학교 산학협력단 열전 소자 어셈블리, 이의 제조 방법, 및 이를 포함하는 열전 모듈
CN113098325B (zh) * 2021-03-19 2022-03-08 北京科技大学 一种具有多层相变材料散热器的可穿戴热电发电器
CN113594345A (zh) * 2021-06-23 2021-11-02 华为技术有限公司 热电子模块、热电器件和可穿戴设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135259A (ja) * 2004-11-09 2006-05-25 Toshiba Corp 熱電変換装置および熱電変換装置の製造方法
WO2011118341A1 (ja) * 2010-03-25 2011-09-29 京セラ株式会社 熱電素子及び熱電モジュール
WO2012066788A2 (en) 2010-11-18 2012-05-24 Panasonic Corporation Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing the same
JP2012231025A (ja) * 2011-04-26 2012-11-22 Toto Ltd 熱電変換モジュール

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2937569B2 (ja) * 1991-08-30 1999-08-23 セントラル硝子株式会社 基材表面への微細凹凸形成法
US5441576A (en) * 1993-02-01 1995-08-15 Bierschenk; James L. Thermoelectric cooler
JP2000164942A (ja) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd 熱電モジュール
US8455751B2 (en) * 2003-12-02 2013-06-04 Battelle Memorial Institute Thermoelectric devices and applications for the same
JP4901350B2 (ja) * 2005-08-02 2012-03-21 株式会社東芝 熱電変換装置及びその製造方法
JP4266228B2 (ja) * 2006-03-24 2009-05-20 株式会社東芝 熱電変換モジュールおよびその製造方法
WO2009001598A1 (ja) * 2007-06-27 2008-12-31 Kyocera Corporation 熱電モジュール及びその製造方法
CN100583478C (zh) 2007-10-16 2010-01-20 中国科学院上海硅酸盐研究所 一种π型CoSb3基热电转换器件及制备方法
US9136195B2 (en) * 2009-07-17 2015-09-15 Tyco Electronics Corporation Oxygen barrier compositions and related methods
CN101969094B (zh) * 2009-07-27 2012-08-29 中国科学院上海硅酸盐研究所 一种用于热电材料的涂层及其含有该涂层的器件
WO2012114650A1 (en) 2011-02-22 2012-08-30 Panasonic Corporation Thermoelectric conversion element and producing method thereof
EP2619812B1 (en) 2011-04-06 2015-07-15 Panasonic Intellectual Property Management Co., Ltd. Method of manufacturing a thermoelectric element
JP5235038B2 (ja) 2011-04-12 2013-07-10 パナソニック株式会社 熱電変換素子の製造装置および製造方法
JP6008293B2 (ja) * 2012-04-09 2016-10-19 パナソニックIpマネジメント株式会社 熱電変換素子および熱電変換モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135259A (ja) * 2004-11-09 2006-05-25 Toshiba Corp 熱電変換装置および熱電変換装置の製造方法
WO2011118341A1 (ja) * 2010-03-25 2011-09-29 京セラ株式会社 熱電素子及び熱電モジュール
WO2012066788A2 (en) 2010-11-18 2012-05-24 Panasonic Corporation Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing the same
JP2012231025A (ja) * 2011-04-26 2012-11-22 Toto Ltd 熱電変換モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2869354A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141492B2 (en) * 2015-05-14 2018-11-27 Nimbus Materials Inc. Energy harvesting for wearable technology through a thin flexible thermoelectric device
JP2017092295A (ja) * 2015-11-12 2017-05-25 日東電工株式会社 半導体装置の製造方法
JPWO2017159594A1 (ja) * 2016-03-15 2019-01-24 パナソニックIpマネジメント株式会社 熱電変換素子および熱電変換モジュール
WO2017159594A1 (ja) * 2016-03-15 2017-09-21 パナソニックIpマネジメント株式会社 熱電変換素子および熱電変換モジュール
US11424397B2 (en) 2017-03-16 2022-08-23 Lintec Corporation Electrode material for thermoelectric conversion modules and thermoelectric conversion module using same
JPWO2018168837A1 (ja) * 2017-03-16 2020-01-16 リンテック株式会社 熱電変換モジュール用電極材料及びそれを用いた熱電変換モジュール
WO2018168837A1 (ja) * 2017-03-16 2018-09-20 リンテック株式会社 熱電変換モジュール用電極材料及びそれを用いた熱電変換モジュール
JP7486949B2 (ja) 2017-03-16 2024-05-20 リンテック株式会社 熱電変換モジュール用電極材料及びそれを用いた熱電変換モジュール
JP2020510987A (ja) * 2017-06-15 2020-04-09 エルジー・ケム・リミテッド 熱電モジュール
US11349055B2 (en) 2017-06-15 2022-05-31 Lg Chem, Ltd. Thermoelectric module
WO2019146991A1 (ko) * 2018-01-23 2019-08-01 엘지이노텍 주식회사 열전 모듈
JP2021512488A (ja) * 2018-01-23 2021-05-13 エルジー イノテック カンパニー リミテッド 熱電モジュール
EP3745480A4 (en) * 2018-01-23 2021-11-10 LG Innotek Co., Ltd. THERMOELECTRIC MODULE
US11730056B2 (en) 2018-01-23 2023-08-15 Lg Innotek Co., Ltd. Thermoelectric module
JP7407718B2 (ja) 2018-01-23 2024-01-04 エルジー イノテック カンパニー リミテッド 熱電モジュール
WO2022124674A1 (ko) * 2020-12-10 2022-06-16 엘지이노텍 주식회사 열전 소자

Also Published As

Publication number Publication date
JPWO2014199541A1 (ja) 2017-02-23
EP2869354A1 (en) 2015-05-06
EP2869354A4 (en) 2015-10-21
CN104508846A (zh) 2015-04-08
JP5696261B1 (ja) 2015-04-08
US9496476B2 (en) 2016-11-15
EP2869354B1 (en) 2017-03-01
US20150179912A1 (en) 2015-06-25
CN104508846B (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
JP5696261B1 (ja) 熱電変換モジュール
JP5598152B2 (ja) 熱電変換モジュールおよびその製造方法
JP5956608B2 (ja) 熱電モジュール
US20190058101A1 (en) Thermoelectric conversion module and thermoelectric conversion device
JP2010109132A (ja) 熱電モジュールを備えたパッケージおよびその製造方法
US20130269744A1 (en) Thermoelectric conversion module
JP2019054116A (ja) 配線基板、及びプレーナトランス
US10236430B2 (en) Thermoelectric module
JP2017045970A (ja) 熱電モジュール
WO2018021173A1 (ja) 熱電変換モジュール
JP4523306B2 (ja) 熱電素子の製造方法
JP6818465B2 (ja) 熱電モジュール
JP6317178B2 (ja) 回路基板および電子装置
JP2014072314A (ja) 半導体装置、及び半導体装置の製造方法
JP2013157446A (ja) 熱電モジュール
CN115004392A (zh) 发电设备
JP2006108507A (ja) 熱電変換装置
JP5974289B2 (ja) 熱電変換素子及び熱電変換モジュール
JP6987656B2 (ja) 熱電変換装置
JP6595320B2 (ja) 熱電モジュール組立体
JP2017076744A (ja) 熱電変換モジュール及び熱発電装置
JP2015060899A (ja) 熱電変換モジュールの製造方法
JP2003324218A (ja) 熱電変換モジュール
JP2011114139A (ja) 熱電変換モジュール
JP2000244026A (ja) 熱電変換素子とその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014549261

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014810734

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014810734

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14418654

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE