WO2014195046A1 - Interferenzunterdrückung bei einem fmcw-radar - Google Patents

Interferenzunterdrückung bei einem fmcw-radar Download PDF

Info

Publication number
WO2014195046A1
WO2014195046A1 PCT/EP2014/057019 EP2014057019W WO2014195046A1 WO 2014195046 A1 WO2014195046 A1 WO 2014195046A1 EP 2014057019 W EP2014057019 W EP 2014057019W WO 2014195046 A1 WO2014195046 A1 WO 2014195046A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
code
sequence
phase
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2014/057019
Other languages
German (de)
English (en)
French (fr)
Inventor
Michael Schoor
Jingying Bi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to CN201480031924.6A priority Critical patent/CN105264400B/zh
Priority to EP14715624.4A priority patent/EP3004918B1/de
Priority to JP2016515684A priority patent/JP6109416B2/ja
Priority to US14/895,810 priority patent/US10048353B2/en
Publication of WO2014195046A1 publication Critical patent/WO2014195046A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/325Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of coded signals, e.g. P.S.K. signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • G01S13/38Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal wherein more than one modulation frequency is used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/536Discriminating between fixed and moving objects or between objects moving at different speeds using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0233Avoidance by phase multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0234Avoidance by code multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/282Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using a frequency modulated carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/284Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses
    • G01S13/286Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses frequency shift keyed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/284Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses
    • G01S13/288Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses phase modulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Definitions

  • the invention relates to the determination of distances and / or relative speeds of objects with an FMCW radar.
  • the invention relates to an FMCW radar sensor, an FMCW radar system having a first and at least a second radar sensor, and a radar system for a vehicle fleet, comprising a plurality of FMCW radar sensors.
  • Radar sensors are used in motor vehicles, for example for measuring the distances, relative speeds and azimuth angles of vehicles located in the apron of one's own vehicle or other objects.
  • the transmission frequency of a continuous radar signal is ramped. From a received signal, a baseband signal is generated by mixing with the transmission signal, which is then evaluated.
  • FMCW Frequency Modulated Continuous Wave
  • FMCW radar sensors which operate according to the method of chirp sequence modulation, in which the transmission signal comprises at least one sequence of similar frequency modulation ramps (chirps).
  • the modulation parameters such as the ramp duration and the frequency deviation as well as the time interval between adjacent ramps of a sequence are the same within a sequence.
  • the radar objects are first separated according to their distances, for example, in that a first Fourier transformation of the baseband signal takes place in each case for the individual frequency ramps of the transmission signal. Subsequently, the spectra of the first Fourier transforms of the frequency ramps of a sequence are used as input signal for a second Fourier transformation.
  • DE 10100417 A1 discloses a pulse radar in which a transmission signal is modulated according to a pseudo-noise code by amplitude modulation, phase modulation or frequency modulation.
  • a receiving branch is a modulation with a delayed code.
  • orthogonal codes are used, which are generated for example by counters and EXOR gates from the pseudo-noise code.
  • WO 2010/1 15418 A2 discloses a radar system with two transmit antennas arranged in one plane and with a defined lateral spacing and a common receive antenna in which both transmit antennas are operated simultaneously according to a sequence of similar frequency ramps, wherein a switchable inverter controls the phase of the signal the first transmit antenna varies randomly from ramp to ramp by 0 ° or 180 °.
  • a second DFT is calculated via the ramp sequence once with a phase correction and once without phase correction to obtain spectra separated for obtaining azimuth information for receive signals originating from the respective transmit antennas .
  • the signal originating from the respective other transmitting antenna results in a noise about 30 dB lower.
  • the object of the invention is to provide an FMCW radar system and an FMCW radar sensor with chirp sequence modulation, in which unwanted signals from other radar sensors can be effectively suppressed.
  • Another approach is to detect interference in the time signal of the radar sensor based on interpolation of the time signal.
  • the model assumption is assumed that only a small portion of the time signal is disturbed.
  • interference detection and interpolation are no longer possible.
  • the object is achieved by a radar system according to claim 1.
  • a Fourier analysis is carried out in the form of a two-dimensional, two-stage discrete Fourier transformation.
  • a first Fourier transformation maps a coherent oscillation, which corresponds to a distance-dependent signal component, within the radar echo of a frequency ramp through a peak in the one-dimensional spectrum.
  • a second Fourier transformation is carried out via the one-dimensional, but in this case phase-demodulated, spectra of the first Fourier transformation and forms a coherent, Doppler portion corresponding vibration over the Radarechos the sequence of frequency ramps by the position of the peak in the spectrum of the second Fourier transform.
  • the result of the two-dimensional Fourier transformation is a two-dimensional, discrete or rasterized, ie in distance / velocity Cells divided, spectrum.
  • the phase demodulation is preferably done by multiplying the one-dimensional spectra of the frequency ramps by the respective conjugate-complex element of the code sequence used in the receiver.
  • the second Fourier transformation already contains the summation of the respective terms and therefore provides the value of the autocorrelation or cross-correlation as a factor of the amplitude in the corresponding distance / velocity cell of the two-dimensional spectrum.
  • the phase demodulation according to the invention results in a power peak of a radar echo after the second Fourier transformation only if, after the phase demodulation, a coherent oscillation of the phase position of the radar echoes is present over the sequence of the frequency ramps.
  • This condition is met by radar returns whose transmit signal has been phase-modulated with the code sequence that correlates with the code sequence used for the phase demodulation.
  • the baseband signal of a radar echo contains a portion of the at least one second radar sensor, then the corresponding peaks obtained after the first Fourier transformation have no coherence over the sequence of the frequency ramps after the phase demodulation.
  • the cross-correlation of the code sequences here provides the factor zero.
  • the object is further achieved by a radar system according to claim 6.
  • the separate processing of the radar echoes of the partial transmission signals until the determination of a two-dimensional spectrum corresponds for example to the evaluation steps described above.
  • the phase demodulation and summation of the two-dimensional spectra for the sub-signals results in a summed spectrum only a power peak of a radar echo when the separate spectra add up to a spectrum in which a coherent oscillation of the summed phase angles of Radarechos on the consequences of the frequency ramps is available.
  • the sum of the autocorrelation functions at zero time shift is obtained as a factor of the amplitude in the corresponding range / velocity cell.
  • the sum of the cross-correlation functions is obtained as a factor of the amplitude. This equals zero according to the code set orthogonality relationship, regardless of the value of a time shift between the code sequences.
  • Fig. 1 is a block diagram of an FMCW radar sensor; a schematic representation of a sequence of frequency modulation ramps of a transmission signal;
  • FIG. 3 is a block diagram for explaining the evaluation of a baseband signal; a schematic representation of a motor vehicle with an FMCW radar system in a situation with self-interference; a diagram showing distance information from sub-signals of a baseband signal, for explaining the evaluation of Fig. 3; a diagram showing velocity and distance information from a waveform over the sub-signals, for explanation of the evaluation of Fig. 3; an exemplary representation of a transmission signal with two sub-transmission signals in the form of a respective sequence of frequency modulation ramps, for explaining a phase demodulation when using code sets with multiple codes; a block diagram for explaining the evaluation of a baseband signal in a transmission signal with two ramp sets such as in FIG.
  • FIG. 7 a schematic representation of a motor vehicle with an FMCW radar system in a situation with foreign interference; a diagram showing distance information from sub-signals of a baseband signal in a ramp set, for explaining the evaluation of Fig. 8; a diagram showing velocity and distance information from waveforms on sequences of sub-signals in a ramp set, to explain the evaluation of Fig. 8; a distance-speed diagram after the summation of signal processing results for the two ramp sets, to explain the evaluation of Fig. 8; and a distance-speed diagram for explaining the interpretation of multispeed FMCW radar signals.
  • the FMCW radar sensor 10 shown in FIG. 1 is installed at the front of a motor vehicle. It comprises an oscillator 12 for generating a transmission signal, a frequency modulation device 14 for controlling the frequency of the oscillator 12 and a control and evaluation unit 16, which is connectable to a vehicle bus system 17. An output of the oscillator 12 is connected to a transmitting antenna element 20 via a controllable phase modulator 18. Further, an output of the oscillator 12 is connected to a mixer 22. This is adapted to mix a receive signal received by a receive antenna element 24 with the frequency modulated signal of the oscillator 12 to produce a baseband signal s.
  • the baseband signal is sampled and digitized by an analog-to-digital converter 26.
  • the mixing and digitizing is done while preserving the phase relationships between the received signal and the transmission signal.
  • the control and evaluation unit 16 controls the frequency modulation device 14 and comprises a signal processing unit 28 for evaluating the samples of the baseband signal s.
  • FIG. 2 shows an example of a modulation scheme of the transmission signal output by oscillator 12 and phase-modulated by phase modulator 18.
  • the frequency f of the transmission signal is plotted as a function of time t.
  • the frequency modulation device 14 is set up to modulate the signal of the oscillator 12 in accordance with a chirp sequence modulation with at least one sequence of frequency ramps 30 which follow one another at regular intervals, in particular a series of linear ramps of the same slope, the same center frequency and same hubs.
  • the frequency modulation ramps are also referred to as chirps, frequency ramps, or simply ramps.
  • the phase modulator 18 is adapted to modulate the phases of the chirps according to a code sequence C m , hereinafter also referred to as code C m .
  • the number of ramps of the sequence is L and is equal to the length of the code C m .
  • the chirp sequence modulation and the phase modulation can be synchronized via the vehicle bus 17 with a modulation of a further radar sensor 10 ', so that at the respective sequences of the frequency ramps or respective code sequences, the time locations of successive corresponding ramps or elements of the Code sequence have little or no time offset.
  • the time offset is less than the duration of a ramp.
  • the sequential ramps or elements of the code sequences are mostly overlapped on a timely basis, most preferably almost simultaneously (i.e., completely overlapping in time).
  • the average frequency of the transmission signal is on the order of 76 gigahertz, and the frequency deviation F of each ramp is on the order of a few megahertz.
  • the ramp duration T is smaller in Fig. 2 than the time interval T ⁇ , in which the ramps 30 follow each other.
  • T r2r is on the order of a few microseconds down to a few milliseconds.
  • FIG. 3 shows a block diagram of a method implemented in the signal processing unit 28 for evaluating the baseband signal s.
  • a first Fourier transformation 32 ensues by subjecting the partial signals of the baseband signal s corresponding to the chirps to a discrete Fourier transformation 32i in the form of a fast Fourier transformation (FFT) in order to determine a respective complex frequency spectrum 33.
  • FFT fast Fourier transformation
  • the spectrum 33 contains a peak at a respective frequency position f d .
  • the sequence of the chirps 30 results in a constant relative velocity v of the located object, a harmonic oscillation of the phase of the peak.
  • Their frequency position f v is proportional to the mean relative velocity v.
  • the signal within a ramp 30 has the phase offset ⁇ m (l).
  • the one-dimensional frequency spectra 33 are subjected to a phase demodulation 34 in which the phase offsets modulated onto the transmission signal are demodulated by opposite phase offsets.
  • a respective demodulation 34i is performed by multiplying the complex spectrum 33 by C * m (l), the conjugate complex of C m (l).
  • a second Fourier transformation 38 takes place, for example in the form of a respective FFT 38i, which is executed for a respective frequency range of the one-dimensional, phase demodulated spectra 33 'via the current ramp index I corresponding to a distance d.
  • the values of the frequency spectra 33 'belonging to a frequency position of the frequency spectra 33' are shown hatched in FIG. 3.
  • the frequency spectrum calculated with the second FFT shows the peak associated with the respective object at the Doppler frequency f v , corresponding to a peak position (f d , f v ) in the obtained two-dimensional spectrum.
  • the further evaluation and object detection is carried out by a detection unit 40.
  • the phase demodulation can take place before the first FFT 32 is calculated.
  • the series connection of the first FFT 32 and the second FFT 38 corresponds to a two-dimensional FFT of the phase-demodulated sequence of radar returns.
  • FIG. 4 shows an example in which, by using different code sequences of two FMCW radar sensors 10, 10 'in a motor vehicle 42, self-interference in the form of an interference signal received from one radar sensor 10 and from the other radar sensor 10' to a transmitting antenna 20 'comes, is suppressed.
  • the radar sensors 10, 10 ' have different installation locations and in particular are mounted separately on the vehicle.
  • An interfering signal from a second radar sensor 10 'of the own vehicle is received by an object 46 at a distance of 3.32 m and at a relative speed of 0 m / s, for example a preceding vehicle.
  • the transmission signals, and in particular the ramp sequences of the radar sensors 10, 10 ' are synchronized with one another via an on-board vehicle bus system of the motor vehicle 42.
  • the first radar sensor 10 uses a code sequence C m for the phase modulation, the second radar sensor 10 'uses an orthogonal code sequence C q .
  • the code sequences are also referred to below as codes.
  • Hadamard codes are binary codes in which the codes of a code set consist of mutually orthogonal lines of Hadamard matrices.
  • the elements of a code also referred to as code values, are limited to the values +1 and -1, corresponding to phase offsets of 0 ° and 180 °, respectively.
  • the elements of the code can be defined by one bit each.
  • the spectrum after the first FFT is multiplied by the conjugate complex of the associated element of the code train. Since the duration of a ramp is much greater than the propagation time of the signal to a real destination and back, the received signal may be considered to be synchronous with the transmitted signal, corresponding to a time offset of zero. This is referred to below as the synchronization condition.
  • the correlation sum of the codes is equal to the code length L. This corresponds to the synchronous multiplication of the two codes.
  • the amplitude is greater than the amplitude of the received signal due to the integration of the 1st FFT over K samples per ramp and the integration of the 2nd FFT over the L ramps of a follower by a factor KL.
  • the cross-correlation function of the two codes for the first Fourier transformation and the phase demodulation with the code C m results as a prefactor of an amplitude of the second Fourier transformation a time offset equal to zero, r Cm, c q (0).
  • an interference signal is a signal originating from the radar sensor 10 'and reflected at the object 44.
  • interfering signals originating directly from the radar sensor 10 ' can also be suppressed. These can correspond, for example, to a dummy object.
  • An interfering signal of a radar sensor 10 "mounted on the vehicle rear of a preceding vehicle 46 is received from a distance of 1.66 m at a relative speed of 0 m / s.
  • a measuring cycle comprises two partial transmission signals 47, 47 'in the form of interleaved sequences of frequency ramps 30, 30'.
  • the two sequences are also referred to below as ramp sets 47, 47 '.
  • the frequency ramps 30 and 30' have an identical ramp stroke, ramp slope and center frequency of the ramps.
  • the ramp sets may differ, for example, from one another by a different ramp stroke, a different center frequency and / or a different ramp gradient. In the example shown, the ramp sets only differ by the different sign of the ramp slope.
  • Each ramp set is phase modulated with an associated code sequence of a code set, the code sequence assigning a phase offset to each frequency ramp of the sequence.
  • the ramp set 47 (ramps 30) is modulated with a code sequence C m i and the ramp set 47 '(ramps 30') is modulated with a code sequence C m2 .
  • Groups of code sets with this property are also referred to as mutually orthogonal.
  • the signal of the radar sensor 10 is coded with the code set Cm.
  • the signal of the foreign radar sensor 10 "is coded with a code set Cq.
  • the separation can be realized, for example, by a time offset, different ramp parameters, and / or by a polarization of the antennas used for the individual ramp sets.
  • a time offset and a different slope are used in the form of a different sign of the ramp gradient.
  • the processing initially corresponds to the processing explained with reference to FIG. 3.
  • the first Fourier transformation 32 is performed.
  • a code set is used which correlates with the code set C m i, C m2 used for the phase modulation, here for example is identical.
  • the phase demodulation 34 is performed by multiplication with the conjugate-complex C * m, i or C * m, 2 of the respective code, and the second Fourier transform 38 is performed over the ramps of the respective ramp set.
  • the obtained two-dimensional spectra of the first ramp set 47 and the second ramp set 47 ' are added and passed on to the detection unit 40 for further evaluation. Since the distance of a target only changes by a very small value during the time offset of the ramp sets 47, 47 ', the summaries of the two-dimensional frequency spectra add the complex amplitudes coherently.
  • FIG. 10 shows schematically over the ramp index I of a single ramp set 47 or 47 'the information about the distance d obtained from the first FFT.
  • the signal from the external radar sensor is received by the radar sensor 10 5, 12 ms later than the radar echo of the target.
  • the respective phase demodulations and the second Fourier transformation 38 are then carried out for the frequency spectra of the respective ramp sets 47, 47 '.
  • the result for the two ramp sets is a two-dimensional spectrum over d and v according to FIG. 11.
  • the summation of the spectra results in a spectrum according to FIG. 12.
  • the amplitudes of the apparent target sum to zero.
  • an amplitude results due to the summation of the autocorrelation functions
  • the interfering signal is effectively suppressed, and the real target can be detected from the two-dimensional spectrum.
  • a code set may be randomly selected from a group of mutually orthogonal codes.
  • interference of signals from radar sensors of two vehicles using the same code group reduces the likelihood that the vehicles will simultaneously use the same code.
  • different values of at least one parameter of the frequency ramps of the ramp sets 47, 47 ' may be used in successive measuring cycles. If, for example, different ramp slopes are used, the probability is increased that an interfering signal has a different ramp slope than the signal of its own radar sensor. The energy of the interfering signal is then distributed in the baseband signal over frequencies and causes a noise background of the useful signal. For example, different durations or numbers of the ramps of the ramp sets and / or different center frequencies may also be used.
  • phase modulation and demodulation are each done with the same code
  • a code f m or a code set f m1 , f m2 instead for the phase demodulation which is correlated with the code C m but is not identical, the code set f m1 , f m2 with the at least one other Code set C q satisfies the code set orthogonality condition. This is indicated by dashed lines in FIGS. 1, 3 and 8.
  • a "mismatched filter" -
  • phase demodulation of the baseband signal may also be performed before the first FFT, e.g. the phase demodulation is done with the code sequences of a code set in separate channels.
  • phase demodulation may be accomplished with the code used in the transmit signal by mixing the mixer with a received signal with the phase modulated transmit signal to produce the baseband signal.
  • Multi-valued codes can also be used.
  • Binary codes allow a structurally simple structure, since for a phase offset of 180 ° only the amplitude of the signal is to be inverted.
  • a sensor design can also be modulated with at least one sequence of frequency ramps that is phase-and-amplitude-modulated according to a code sequence.
  • orthogonal codes may also be used, for example Fourier codes.
  • the described modulation method with frequency ramps of the same center frequency f 0 according to FIG. 2 or FIG. 7 can be modified by setting, for example within a ramp set or a ramp sequence, the center frequency f 0 of the respective Ramps according to a linear, higher frequency ramp with lift F S
  • 0W then corresponds to an FMCW equation for the higher-level ramp.
  • the described codes have the advantage that they exist for any code length and the favorable correlation property is present for each code length. This provides great flexibility in the design of radar signals and radar systems. For example, transmission signals with few ramps can be used. This can result in a shorter transmission time and reduced requirements for memory and the data transmission rate of the evaluation unit.
  • the described modulation methods use short, fast frequency ramps, so that the frequency spectra of the sub-signals corresponding to the ramps are dominated by the distance-dependent frequency component.
  • a functional relationship between v and d can be determined from a first Fourier analysis of a partial signal assigned to a ramp, for example according to the FMCW equation. In order to determine v and d, it is then possible, for example, to use information obtained from the second FFT and / or to match values over a plurality of sequences of ramps of different ramp parameters.
  • a respective first Fourier transformation of the respective radar returns of the frequency ramps of the transmission signal can take place; from at least one obtained one-dimensional spectrum first information in the form of a functional relationship between the distance d and the relative velocity v of a geor- object, which assigns different distances d to the different relative speeds v, wherein, for example, the functional relationship may correspond to an FMCW equation for a respective frequency ramp; performing at least one second Fourier transform in a second dimension over the time course of the sequence of the phase-demodulated, one-dimensional spectra of the radar echoes of the successive frequency ramps; from at least one obtained spectrum of the second Fourier transform, or, in the case of the partial transmit signals, from the summation of the obtained spectra of the second Fourier transform, further information about the relative velocity and optionally distance of the located object are obtained, the further information, for example, information in form a functional relationship according to an FMCW equation for the superordinate, slow ramp of the center frequencies of the frequency ramps can be; and the distance d
  • the first information may be compared with the second information in consideration of an ambiguity of the second information determined by a range of uniqueness for the relative speed v and optionally the distance d.
  • a method is also referred to as multispeed FMCW (MS-FMCW).
  • MS-FMCW multispeed FMCW
  • the use of the orthogonal codes or code sets which fulfill the orthogonality condition has the particular advantage that even with MS-FMCW modulation patterns with relatively few, comparatively long ramps, a very good suppression of self-interference and / or foreign interference can be achieved. It is thus possible with a reduced sampling rate of the A / D converter nevertheless achieve a good separation ability of the relative velocity v.
  • the spectrum of the second Fourier transform represents a spectrum of a two-dimensional Fourier analysis, or a sum of two such spectra of the partial transmit signals.
  • the distance and the relative speed are thus determined in particular on the basis of a value of the frequency spectrum of a two-dimensional determined by dimensional Fourier analysis, or based on a summation of such two-dimensional frequency spectra.
  • the first information can already be determined from a one-dimensional spectrum of a first Fourier transformation. It is also possible on the basis of a peak in the two-dimensional frequency spectrum to determine the first information from the position of the peak in the first dimension of the frequency spectrum and to determine the further information from the position of the peak in the second dimension of the frequency spectrum.
  • Fig. 13 shows an example of a v-d diagram of first and second information of a ramp sequence of an MS-FMCW measurement with a slow, higher frequency ramp of the center frequencies of the short ramps.
  • a frequency ramp results, instead of a value for d, the straight line slightly inclined with respect to the vertical, corresponding to a linear relationship between the relative speed v and the distance d (first information).
  • the phase demodulation results from the peak of the spectrum of the second FFT (or from the peak of the sum of the spectra of the second FFT) another, here flat, dashed line, which is subject to ambiguity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)
PCT/EP2014/057019 2013-06-03 2014-04-08 Interferenzunterdrückung bei einem fmcw-radar Ceased WO2014195046A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480031924.6A CN105264400B (zh) 2013-06-03 2014-04-08 Fmcw雷达中的干涉抑制
EP14715624.4A EP3004918B1 (de) 2013-06-03 2014-04-08 Interferenzunterdrückung bei einem fmcw-radar
JP2016515684A JP6109416B2 (ja) 2013-06-03 2014-04-08 Fmcwレーダにおける干渉抑制
US14/895,810 US10048353B2 (en) 2013-06-03 2014-04-08 Interference cancellation in an FMCW radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013210256.9 2013-06-03
DE102013210256.9A DE102013210256A1 (de) 2013-06-03 2013-06-03 Interferenzunterdrückung bei einem fmcw-radar

Publications (1)

Publication Number Publication Date
WO2014195046A1 true WO2014195046A1 (de) 2014-12-11

Family

ID=50440670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/057019 Ceased WO2014195046A1 (de) 2013-06-03 2014-04-08 Interferenzunterdrückung bei einem fmcw-radar

Country Status (6)

Country Link
US (1) US10048353B2 (enExample)
EP (1) EP3004918B1 (enExample)
JP (1) JP6109416B2 (enExample)
CN (1) CN105264400B (enExample)
DE (1) DE102013210256A1 (enExample)
WO (1) WO2014195046A1 (enExample)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793190A (zh) * 2015-03-24 2015-07-22 王方圆 基于信道监听机制的多汽车防撞雷达冲突抑制系统
WO2018086783A1 (de) * 2016-11-09 2018-05-17 Robert Bosch Gmbh Radarsensor für kraftfahrzeuge
WO2018130324A1 (de) * 2017-01-11 2018-07-19 Robert Bosch Gmbh Radarsensor und verfahren zur bestimmung einer relativgeschwindigkeit eines radarziels
WO2019224950A1 (ja) * 2018-05-23 2019-11-28 三菱電機株式会社 レーダ装置
TWI743456B (zh) * 2019-03-15 2021-10-21 昇雷科技股份有限公司 頻率調變連續波雷達之偵測方法

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594159B2 (en) * 2013-07-15 2017-03-14 Texas Instruments Incorporated 2-D object detection in radar applications
US9841497B2 (en) * 2014-06-05 2017-12-12 Infineon Technologies Ag Method, device and system for processing radar signals
DE102014212281A1 (de) * 2014-06-26 2015-12-31 Robert Bosch Gmbh Radarmessverfahren mit unterschiedlichen Sichtbereichen
DE102014226127A1 (de) * 2014-12-16 2016-06-16 Robert Bosch Gmbh Radarsystem, verfahren zum erzeugen eines sendesignals für ein radarsystem und fahrzeug
US10725150B2 (en) 2014-12-23 2020-07-28 Infineon Technologies Ag System and method for radar
EP3056920B1 (en) * 2015-02-11 2020-08-19 Veoneer Sweden AB A vehicle radar system with two transceiver arrangements
DE102016101041B4 (de) * 2016-01-21 2018-11-22 Infineon Technologies Ag Konzept für Car2X-Kommunikation
US9846228B2 (en) 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
US10261179B2 (en) 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
US9689967B1 (en) * 2016-04-07 2017-06-27 Uhnder, Inc. Adaptive transmission and interference cancellation for MIMO radar
WO2017187331A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Vehicle radar system with a shared radar and communication system
WO2017187304A2 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
WO2017187278A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Pmcw – pmcw interference mitigation
JP2017211336A (ja) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 レーダ装置および起動タイミング決定方法
US9753121B1 (en) 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
US20180011181A1 (en) 2016-07-07 2018-01-11 Infineon Technologies Ag Radar systems and methods thereof
US11460572B2 (en) 2016-08-12 2022-10-04 University Of Washington Millimeter wave imaging systems and methods using direct conversion receivers and/or modulation techniques
DE102016216176A1 (de) * 2016-08-29 2018-03-01 Audi Ag Verfahren zum Betreiben eines Radarsensors in oder an einem Kraftfahrzeug und Kraftfahrzeug
US10379201B2 (en) * 2016-10-26 2019-08-13 GM Global Technology Operations LLC Radar interference mitigation and collaborative operation
WO2018147929A2 (en) 2016-12-08 2018-08-16 University Of Washington Millimeter wave and/or microwave imaging systems and methods including examples of partioned inverse and enhanced resolution modes and imaging devices
DE102017200383A1 (de) * 2017-01-11 2018-07-12 Astyx Gmbh Radarsensor mit zweidimensionaler Strahlschwenkung und L-, U- oder T-förmiger Struktur für den Verbau im Bereich des Front-Kühlers beim Automobil
DE102017101763A1 (de) * 2017-01-30 2018-08-02 Valeo Schalter Und Sensoren Gmbh Verfahren zur Ermittlung von wenigstens einer Objektinformation wenigstens eines Objektes, das mit einem Radarsystem insbesondere eines Fahrzeugs erfasst wird, Radarsystem und Fahrerassistenzsystem
US11454697B2 (en) 2017-02-10 2022-09-27 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
WO2018146530A1 (en) 2017-02-10 2018-08-16 Uhnder, Inc. Reduced complexity fft-based correlation for automotive radar
WO2018146634A1 (en) 2017-02-10 2018-08-16 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
DE102017204495A1 (de) * 2017-03-17 2018-09-20 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln von transversalen Relativgeschwindigkeitskomponenten von Radarzielen
DE102017105783B4 (de) * 2017-03-17 2020-06-10 S.M.S Smart Microwave Sensors Gmbh Verfahren zum Bestimmen eines Abstandes und einer Geschwindigkeit eines Objektes
CN110462422B (zh) * 2017-03-30 2023-04-25 日立安斯泰莫株式会社 雷达装置
DE102017107212A1 (de) * 2017-04-04 2018-10-04 Infineon Technologies Ag Verfahren und Vorrichtung zum Verarbeiten von Radarsignalen
DE102017207607B4 (de) * 2017-05-05 2025-01-30 Continental Autonomous Mobility Germany GmbH Radarsystem mit Überwachung der Frequenzlage einer Folge von gleichartigen Sendesignalen
DE102017207604B4 (de) 2017-05-05 2019-11-28 Conti Temic Microelectronic Gmbh Radarsystem mit Überwachung der Frequenzmodulation einer Folge von gleichartigen Sendesignalen
EP3410150B1 (en) * 2017-05-30 2022-01-19 Nxp B.V. Apparatus for detection and ranging
WO2018219740A1 (en) * 2017-06-01 2018-12-06 Iee International Electronics & Engineering S.A. Method and system for moving target detection, and vehicle incorporating same
LU100468B1 (en) * 2017-10-06 2019-04-09 Iee Sa Method and system for moving target detection, and vehicle incorporating same
DE102017209628A1 (de) * 2017-06-08 2018-12-13 Robert Bosch Gmbh FMCW-Radarsensor für Kraftfahrzeuge
JP6926775B2 (ja) * 2017-07-24 2021-08-25 日本電気株式会社 移動目標探知システム及び移動目標探知方法
KR102365932B1 (ko) * 2017-08-03 2022-02-22 한국전자통신연구원 국부발진 주파수 특성 정합을 위한 레이더 시스템 및 이의 구동방법
DE102017119624A1 (de) 2017-08-28 2019-04-18 HELLA GmbH & Co. KGaA Verfahren zum Betrieb eines Radarsystems eines Fahrzeuges
KR102401188B1 (ko) * 2017-08-28 2022-05-24 삼성전자주식회사 차량의 레이더를 이용한 오브젝트 검출 방법 및 장치
DE102017215561A1 (de) * 2017-09-05 2019-03-07 Robert Bosch Gmbh FMCW-Radarsensor mit synchronisierten Hochfrequenzbausteinen
DE102018123383A1 (de) * 2017-10-13 2019-04-18 Infineon Technologies Ag Radarerfassung mit Störungsunterdrückung
KR102397095B1 (ko) 2017-11-17 2022-05-12 삼성전자주식회사 차량의 레이더를 이용한 오브젝트 검출 방법 및 장치
DE102017221257A1 (de) * 2017-11-28 2019-05-29 Audi Ag Radarsystem und Verfahren zum Betreiben eines Radarsystems
DE102017129149A1 (de) * 2017-12-07 2019-06-13 Valeo Schalter Und Sensoren Gmbh Verfahren zur Ermittlung von wenigstens einer Objektinformation wenigstens eines Zielobjekts, das mit einem Radarsystem insbesondere eines Fahrzeugs erfasst wird, Radarsystem und Fahrerassistenzsystem
US11105890B2 (en) 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
US10718860B2 (en) * 2018-01-11 2020-07-21 Infineon Technologies Ag System and method to improve range accuracy in FMCW radar using FSK modulated chirps
US12386029B2 (en) 2018-01-29 2025-08-12 Robert Bosch Gmbh Millimeter wave automotive radar systems
DE102018201303A1 (de) * 2018-01-29 2019-08-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben von mehreren Sensoren eines Fahrzeugs
DE102018102816B3 (de) * 2018-02-08 2019-07-04 Infineon Technologies Ag Radar mit phasenkorrektur
DE102018106858A1 (de) * 2018-03-22 2019-09-26 Infineon Technologies Ag Fmcw-radar mit zusätzlicher am zur störungsdetektion
JP7592492B2 (ja) * 2018-03-26 2024-12-02 クアルコム,インコーポレイテッド レーダー情報を交換してマルチレーダー共存を改善するためのサイド通信チャネルの使用
US11644529B2 (en) 2018-03-26 2023-05-09 Qualcomm Incorporated Using a side-communication channel for exchanging radar information to improve multi-radar coexistence
US10482768B1 (en) * 2018-05-08 2019-11-19 Denso International America, Inc. Vehicle function impairment detection
JP7131961B2 (ja) * 2018-05-17 2022-09-06 株式会社デンソーテン レーダ装置及び物標ピーク抽出方法
CN110531358B (zh) * 2018-05-25 2023-07-18 华为技术有限公司 信息测量方法及信息测量装置
EP3572829B1 (en) * 2018-05-25 2024-01-17 Airbus Defence and Space GmbH Synchronized radar networks
DE102018208992A1 (de) * 2018-06-07 2019-12-12 Robert Bosch Gmbh Radarsensorsystem
US11280876B2 (en) * 2018-06-18 2022-03-22 Qualcomm Incorporated Multi-radar coexistence using phase-coded frequency modulated continuous wave waveforms
DE102018210083A1 (de) * 2018-06-21 2019-12-24 Robert Bosch Gmbh Auswertevorrichtung und Verfahren zum Auswerten zumindest eines Radarsensors
US11385323B2 (en) 2018-06-25 2022-07-12 Qualcomm Incorporated Selection of frequency modulated continuous wave (FMWC) waveform parameters for multi-radar coexistence
KR102628655B1 (ko) * 2018-06-29 2024-01-24 삼성전자주식회사 레이더 구동 장치 및 방법
US11585919B2 (en) * 2018-07-19 2023-02-21 Qualcomm Incorporated Multi-radar coexistence using slow rate interference identification and suppression
US11585889B2 (en) * 2018-07-25 2023-02-21 Qualcomm Incorporated Methods for radar coexistence
US11187783B2 (en) * 2018-08-14 2021-11-30 Nxp B.V. Radar systems and methods for operating radar systems
US11360185B2 (en) * 2018-10-24 2022-06-14 Infineon Technologies Ag Phase coded FMCW radar
CN109471095B (zh) * 2018-11-06 2023-02-14 哈尔滨工程大学 一种基于快速迭代插值的fmcw雷达距离估计方法
US11474225B2 (en) 2018-11-09 2022-10-18 Uhnder, Inc. Pulse digital mimo radar system
DE102018128804A1 (de) * 2018-11-16 2020-05-20 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer Radarsensorvorrichtung für ein Kraftfahrzeug, bei welchem zwei frequenz-kodierte Radarsignale erzeugt werden, Computerprogrammprodukt, Radarsensorvorrichtung sowie Kraftfahrzeug
US11054516B2 (en) * 2018-12-18 2021-07-06 Nxp Usa, Inc. Extended doppler FMCW code division MIMO radar
US11099267B2 (en) * 2018-12-18 2021-08-24 Nxp Usa, Inc. Extended doppler PMCW code division MIMO radar
US11204410B2 (en) * 2019-02-11 2021-12-21 Nxp B.V. Radar-based communication
CN111638519B (zh) * 2019-03-01 2023-03-03 华为技术有限公司 一种利用无线电信号进行目标物探测的方法及相关装置
WO2020183392A1 (en) 2019-03-12 2020-09-17 Uhnder, Inc. Method and apparatus for mitigation of low frequency noise in radar systems
CN109870677B (zh) * 2019-03-13 2023-02-24 西安工业大学 一种调频连续波干涉信号幅度归一化方法
DE102019203760A1 (de) * 2019-03-20 2020-09-24 Zf Friedrichshafen Ag Sensorsystem und Verfahren zum Detektieren von Objekten in einer Umgebung eines Fahrzeugs
US11782148B2 (en) * 2019-03-25 2023-10-10 Texas Instruments Incorporated Radar system
US10778282B1 (en) * 2019-05-07 2020-09-15 Cisco Technology, Inc. Methods for improving flexibility and data rate of chirp spread spectrum systems in LoRaWAN
CN112014800B (zh) * 2019-05-31 2022-12-02 华为技术有限公司 一种雷达信号发送方法及设备
US10855328B1 (en) * 2019-07-03 2020-12-01 Qualcomm Incorporated Interference suppression for multi-radar coexistence
WO2021004625A1 (en) * 2019-07-09 2021-01-14 Nokia Technologies Oy Obstacle detection techniques for telecommmunications systems
CN110581818B (zh) * 2019-08-06 2022-01-04 北京遥测技术研究所 一种随机截断线性调频连续波信号的生成系统及方法
DE102019215107A1 (de) * 2019-09-27 2021-04-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Aussenden elektromagnetischer Strahlung und Empfangen von den Objekten reflektierter Teilstrahlung
DE102019214949A1 (de) * 2019-09-27 2021-04-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen eines absorptiven Radombelags
US11754669B2 (en) * 2019-09-30 2023-09-12 Qualcomm Incorporated Radar coordination for multi-radar coexistence
CN112578342B (zh) 2019-09-30 2025-01-14 深圳引望智能技术有限公司 一种信号发送方法、信号处理方法及雷达装置
WO2021086525A1 (en) * 2019-10-31 2021-05-06 Intel Corporation Systems, devices, and methods for synchronization
DE102019217066A1 (de) * 2019-11-06 2021-05-06 Robert Bosch Gmbh Verfahren für einen störungsarmen Betrieb mehrerer Radarsensoren
TWI734252B (zh) * 2019-11-08 2021-07-21 立積電子股份有限公司 雷達及雷達回波訊號的背景成分更新方法
DE102019133977A1 (de) 2019-12-11 2021-06-17 Valeo Schalter Und Sensoren Gmbh Verfahren zur Ermittlung von wenigstens einer Objektinformation wenigstens eines Objektes, das mit einem Radarsystem erfasst wird und Radarsystem
DE102019219640A1 (de) * 2019-12-14 2021-06-17 Robert Bosch Gmbh Radarmodul, Radarsystem und Verfahren zum Betreiben eines Radarmoduls
US11899126B2 (en) 2020-01-13 2024-02-13 Uhnder, Inc. Method and system for multi-chip operation of radar systems
KR102847657B1 (ko) 2020-03-17 2025-08-20 선전 인왕 인텔리전트 테크놀로지스 컴퍼니 리미티드 신호 처리 방법 및 장치, 및 저장 매체
DE102020107372A1 (de) * 2020-03-18 2021-09-23 HELLA GmbH & Co. KGaA Verfahren zum Betreiben eines Radarsystems
EP3883144B1 (en) * 2020-03-18 2022-12-07 Airbus Defence and Space GmbH Method for synchronizing wireless network nodes and wireless communication network
US11550027B2 (en) 2020-05-04 2023-01-10 Nxp B.V. Predistortion technique for joint radar/communication systems
CN113625240B (zh) * 2020-05-06 2022-05-24 华为技术有限公司 信号探测方法、装置和雷达系统
KR102653404B1 (ko) * 2020-05-08 2024-04-02 주식회사 에이치엘클레무브 차량의 제어 장치 및 제어 방법
CN114660544A (zh) * 2020-05-30 2022-06-24 华为技术有限公司 一种雷达信号发射和接收方法及装置
CN111693961B (zh) * 2020-06-15 2023-05-16 哈尔滨工业大学 一种基于kl散度单元筛选的cfar检测器
DE102020210079B3 (de) 2020-08-10 2021-08-19 Conti Temic Microelectronic Gmbh Radarverfahren sowie Radarsystem mit hoher Entfernungsauflösung bei geringem Signalprozessierungsaufwand
CN111983597B (zh) * 2020-08-28 2024-10-11 北京经纬恒润科技股份有限公司 调频连续波雷达发射波控制方法及装置
US11693107B2 (en) * 2020-09-29 2023-07-04 Steradian Semiconductors Private Limited System, device and method for efficient MIMO radar
CN112435473B (zh) * 2020-11-14 2022-05-27 公安部交通管理科学研究所 一种结合历史数据的快速路交通流溯源及匝道调控方法
US11733346B2 (en) * 2021-02-24 2023-08-22 Qualcomm Incorporated Assistance information to aid with cooperative radar sensing with imperfect synchronization
CN115134030A (zh) * 2021-03-29 2022-09-30 东风汽车集团股份有限公司 车载多传感器同步方法、装置、设备和存储介质
KR102628228B1 (ko) * 2021-06-15 2024-01-23 현대모비스 주식회사 레이더 신호 처리 시스템 및 처리 방법
JP7433528B2 (ja) * 2021-06-21 2024-02-19 三菱電機株式会社 レーダ装置および干渉波抑圧装置
CN113687344B (zh) * 2021-07-20 2023-08-11 西安空间无线电技术研究所 一种三角波调制线性调频连续波雷达测速方法
TWI802994B (zh) * 2021-09-17 2023-05-21 為昇科科技股份有限公司 雷達測速系統、方法及雷達裝置
US12007465B2 (en) 2021-10-19 2024-06-11 Nxp B.V. Radar apparatus and method with content embedded in the radar signal
KR102763801B1 (ko) * 2021-11-29 2025-02-07 주식회사 산엔지니어링 디지털 직교 코드를 이용한 레이더 시스템
US12196843B2 (en) 2022-05-26 2025-01-14 Waymo Llc Methods and systems for radar waveform diversity
EP4530669A4 (en) * 2022-06-13 2025-09-24 Huawei Tech Co Ltd DETECTION METHOD, COMMUNICATION APPARATUS AND COMMUNICATION SYSTEM
DE102022209859A1 (de) * 2022-09-20 2024-03-21 Continental Autonomous Mobility Germany GmbH Verfahren zum Fokussieren der Radarerfassung für eine Relativbewegung
DE102022211688A1 (de) * 2022-11-07 2024-05-08 Robert Bosch Gesellschaft mit beschränkter Haftung Radarverfahren und Radarvorrichtung
US12386026B2 (en) * 2022-12-20 2025-08-12 GM Global Technology Operations LLC Method and system of time-frequency sensor coding for interference mitigation in a vehicle
WO2024254751A1 (en) * 2023-06-13 2024-12-19 Huawei Technologies Co., Ltd. Methods, apparatuses, and devices for communication in integrated sensing and communication systems
CN118129849A (zh) * 2024-05-08 2024-06-04 杭州开闳流体科技有限公司 应用正交编码测量信号的时差法流量计测试方法及其应用
CN118884448B (zh) * 2024-08-22 2025-09-09 中国人民解放军海军工程大学 一种多接收阵合成孔径声纳成像方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100417A1 (de) 2001-01-08 2002-07-11 Bosch Gmbh Robert Radareinrichtung und Verfahren zum Codieren einer Radareinrichtung
WO2003104833A2 (en) * 2002-06-06 2003-12-18 Roadeye Flr General Partnership Forward-looking radar system
WO2005111655A2 (en) * 2004-05-03 2005-11-24 Raytheon Canada Limited System and method for concurrent operation of multiple radar or active sonar systems on a common frequency
DE102009000468A1 (de) * 2008-01-31 2009-08-13 Infineon Technologies Ag Radarverfahren und -systeme mit Rampensequenzen
WO2010012801A1 (en) * 2008-07-31 2010-02-04 Mitsubishi Electric Information Technology Centre Europe B.V. Automotive radar with composite multi-slope fm chirp waveform
WO2010115418A2 (de) 2009-04-06 2010-10-14 Conti Temic Microelectronic Gmbh Radarsystem mit anordnungen und verfahren zur entkopplung von sende- und empfangssignalen sowie unterdrückung von störeinstrahlungen
DE102010024328A1 (de) * 2010-06-18 2011-12-22 Audi Ag Radarvorrichtung mit situationsadaptiver Modulationsumschaltung und Steuerungsverfahren
WO2013156012A1 (de) * 2012-04-19 2013-10-24 S.M.S. Smart Microwave Sensors Gmbh Verfahren und vorrichtung zur bestimmung von abstand und radialgeschwindigkeit eines objekts mittels radarsignalen
DE102012212888A1 (de) * 2012-07-23 2014-01-23 Robert Bosch Gmbh Detektion von Radarobjekten mit einem Radarsensor eines Kraftfahrzeugs

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196536B2 (ja) 1994-11-22 2001-08-06 松下電器産業株式会社 レーダ装置
JP3397158B2 (ja) * 1999-01-20 2003-04-14 三菱電機株式会社 Ecmレーダ装置
DE102005048209A1 (de) * 2005-09-29 2007-04-05 Valeo Schalter Und Sensoren Gmbh Kraftfahrzeug-Radarverfahren und -Radarsystem
DE102006032539A1 (de) 2006-07-13 2008-01-17 Robert Bosch Gmbh FMCW-Radarsensor
US7787819B2 (en) * 2006-08-25 2010-08-31 Space Systems / Loral, Inc. Ground-based beamforming for satellite communications systems
JP5019316B2 (ja) 2007-04-26 2012-09-05 三菱電機株式会社 Fm−cw偏波レーダ装置
JP4724694B2 (ja) * 2007-08-08 2011-07-13 日立オートモティブシステムズ株式会社 電波レーダ装置
DE102008038365A1 (de) 2008-07-02 2010-01-07 Adc Automotive Distance Control Systems Gmbh Fahrzeug-Radarsystem und Verfahren zur Bestimmung einer Position zumindest eines Objekts relativ zu einem Fahrzeug
DE102009045141A1 (de) 2009-09-30 2011-03-31 Robert Bosch Gmbh Radarsensor mit IQ-Empfänger

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100417A1 (de) 2001-01-08 2002-07-11 Bosch Gmbh Robert Radareinrichtung und Verfahren zum Codieren einer Radareinrichtung
WO2003104833A2 (en) * 2002-06-06 2003-12-18 Roadeye Flr General Partnership Forward-looking radar system
WO2005111655A2 (en) * 2004-05-03 2005-11-24 Raytheon Canada Limited System and method for concurrent operation of multiple radar or active sonar systems on a common frequency
DE102009000468A1 (de) * 2008-01-31 2009-08-13 Infineon Technologies Ag Radarverfahren und -systeme mit Rampensequenzen
WO2010012801A1 (en) * 2008-07-31 2010-02-04 Mitsubishi Electric Information Technology Centre Europe B.V. Automotive radar with composite multi-slope fm chirp waveform
WO2010115418A2 (de) 2009-04-06 2010-10-14 Conti Temic Microelectronic Gmbh Radarsystem mit anordnungen und verfahren zur entkopplung von sende- und empfangssignalen sowie unterdrückung von störeinstrahlungen
DE102010024328A1 (de) * 2010-06-18 2011-12-22 Audi Ag Radarvorrichtung mit situationsadaptiver Modulationsumschaltung und Steuerungsverfahren
WO2013156012A1 (de) * 2012-04-19 2013-10-24 S.M.S. Smart Microwave Sensors Gmbh Verfahren und vorrichtung zur bestimmung von abstand und radialgeschwindigkeit eines objekts mittels radarsignalen
DE102012212888A1 (de) * 2012-07-23 2014-01-23 Robert Bosch Gmbh Detektion von Radarobjekten mit einem Radarsensor eines Kraftfahrzeugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUKE H D: "Mismatched filtering of periodic quadriphase and 8-phase sequences", IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ. USA, vol. 51, no. 7, 1 July 2003 (2003-07-01), pages 1061 - 1063, XP011099038, ISSN: 0090-6778, DOI: 10.1109/TCOMM.2003.814207 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793190A (zh) * 2015-03-24 2015-07-22 王方圆 基于信道监听机制的多汽车防撞雷达冲突抑制系统
WO2018086783A1 (de) * 2016-11-09 2018-05-17 Robert Bosch Gmbh Radarsensor für kraftfahrzeuge
US11199617B2 (en) 2016-11-09 2021-12-14 Robert Bosch Gmbh Radar sensor for motor vehicles
WO2018130324A1 (de) * 2017-01-11 2018-07-19 Robert Bosch Gmbh Radarsensor und verfahren zur bestimmung einer relativgeschwindigkeit eines radarziels
KR20190101459A (ko) * 2017-01-11 2019-08-30 로베르트 보쉬 게엠베하 레이더 표적의 상대 속도를 결정하기 위한 방법 및 레이더 센서
KR102336927B1 (ko) 2017-01-11 2021-12-08 로베르트 보쉬 게엠베하 레이더 표적의 상대 속도를 결정하기 위한 방법 및 레이더 센서
US11733368B2 (en) 2017-01-11 2023-08-22 Robert Bosch Gmbh Radar sensor and method for determining a relative speed of a radar target
WO2019224950A1 (ja) * 2018-05-23 2019-11-28 三菱電機株式会社 レーダ装置
JPWO2019224950A1 (ja) * 2018-05-23 2020-09-24 三菱電機株式会社 レーダ装置
DE112018007500B4 (de) 2018-05-23 2022-01-13 Mitsubishi Electric Corporation Radareinrichtung
US12032051B2 (en) 2018-05-23 2024-07-09 Mitsubishi Electric Corporation Radar device
TWI743456B (zh) * 2019-03-15 2021-10-21 昇雷科技股份有限公司 頻率調變連續波雷達之偵測方法

Also Published As

Publication number Publication date
CN105264400B (zh) 2018-11-13
US20160124075A1 (en) 2016-05-05
JP6109416B2 (ja) 2017-04-05
US10048353B2 (en) 2018-08-14
EP3004918A1 (de) 2016-04-13
JP2016524143A (ja) 2016-08-12
EP3004918B1 (de) 2020-03-04
CN105264400A (zh) 2016-01-20
DE102013210256A1 (de) 2014-12-04

Similar Documents

Publication Publication Date Title
EP3004918B1 (de) Interferenzunterdrückung bei einem fmcw-radar
EP2755045B1 (de) Verfahren zur zyklischen Messung von Abständen und Geschwindigkeiten von Objekten mit einem FMCW-Radarsensor
EP3014297B1 (de) Winkelauflösender fmcw-radarsensor
EP3155444B1 (de) Verfahren zur objektortung mit einem fmcw-radar
DE102020111533A1 (de) Mimo-radar-vorrichtungen und mimo-radar-verfahren
DE102018221085A1 (de) Mehrdeutigkeitsauflösung für MIMO-Radarsystem
DE102018106858A1 (de) Fmcw-radar mit zusätzlicher am zur störungsdetektion
DE102017200317A1 (de) Radarsensor und Verfahren zur Bestimmung einer Relativgeschwindigkeit eines Radarziels
WO2017084661A1 (de) Radarsystem mit verschachtelt seriellem senden und parallelem empfangen
WO2015197222A1 (de) Radarmessverfahren
DE102020202498A1 (de) MIMO-Radarsystem
DE102012212888A1 (de) Detektion von Radarobjekten mit einem Radarsensor eines Kraftfahrzeugs
WO2014187443A1 (de) Verfahren zur bestimmung von abstand und relativgeschwindigkeit eines entfernten objekts
DE102020202500A1 (de) MIMO-Radarsystem
DE102018111251A1 (de) Verbesserung der dopplerauflösung bei einem getriebe mit niedrigem tastverhältnis
WO2013083269A2 (de) Empfängerarchitektur für orthogonale multiple-input-multiple-output radarsysteme
DE69922428T2 (de) Dauerstrichradar-Empfänger mit Frequenzsprung
DE102020202499A1 (de) MIMO-Radarsystem
DE102013216461A1 (de) Synthetik-Apertur-Radarverfahren
EP1536247B1 (de) Interferometrisches Mikrowellen-Radarverfahren
DE102019219649A1 (de) Kooperatives Radarsensorsystem mit winkelauflösenden Radarsensoren
DE102015202874A1 (de) Radarsystem und Verfahren zum Erfassen von Objekten
DE102017208789A1 (de) Verfahren und Vorrichtung zur Ermittlung zumindest eines Parameters eines Objektes mittels Radar
DE102023205898A1 (de) Radarsensornetzwerk und Verfahren zur Bestimmung der Relativgeschwindig-keit eines Radarziels
DE102023125546A1 (de) PMCW-Radar mit abgestufter Trägerfrequenz

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031924.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14715624

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014715624

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016515684

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14895810

Country of ref document: US