WO2014194618A1 - 一种4a型分子筛的合成方法 - Google Patents

一种4a型分子筛的合成方法 Download PDF

Info

Publication number
WO2014194618A1
WO2014194618A1 PCT/CN2013/088323 CN2013088323W WO2014194618A1 WO 2014194618 A1 WO2014194618 A1 WO 2014194618A1 CN 2013088323 W CN2013088323 W CN 2013088323W WO 2014194618 A1 WO2014194618 A1 WO 2014194618A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
type
sodium hydroxide
synthesis
natural
Prior art date
Application number
PCT/CN2013/088323
Other languages
English (en)
French (fr)
Inventor
鲍晓军
岳源源
李铁森
刘海燕
石冈
杨金彪
Original Assignee
中国石油大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(北京) filed Critical 中国石油大学(北京)
Priority to US14/895,481 priority Critical patent/US20160185609A1/en
Publication of WO2014194618A1 publication Critical patent/WO2014194618A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A
    • C01B39/18Type A from a reaction mixture containing at least one aluminium silicate or aluminosilicate of a clay type, e.g. kaolin or metakaolin or its exotherm modification or allophane

Definitions

  • the invention belongs to the field of molecular sieve synthesis, and particularly relates to a method for synthesizing a type 4A molecular sieve, wherein all the silicon source and the aluminum source required for synthesizing the 4A type molecular sieve are mainly provided by using the natural clay mineral activated by the sub-molten salt as a raw material. Background technique
  • the skeleton structure of the NaA type molecular sieve is to place the ⁇ cages at the eight apex positions of the cube, and are connected to each other by a double four-membered ring, so that the eight ⁇ cages are surrounded by an ⁇ cage, and the ⁇ cage is passed through the eight-membered ring.
  • NaA type molecular sieve is also called the 4A type molecular sieve.
  • the NaA molecular sieves are exchanged with K + and Ca + to form 3 A and 5 A molecular sieves, respectively.
  • NaA molecular sieve is one of the most widely used molecular sieves due to its pore characteristics and high exchange capacity. It is mainly used for detergent additives, gas drying and purification, air nitrogen and oxygen separation.
  • the synthesis of 4A molecular sieves can be divided into two categories according to the source of raw materials: synthesis using chemicals and synthesis using natural minerals.
  • the process technology for synthesizing 4A molecular sieves from traditional inorganic chemicals is mature, but the production cost is high and the economic benefits are poor. Therefore, if the 4A type molecular sieve can be directly synthesized from natural minerals rich in silicon and aluminum, not only the raw materials are widely used, but also the synthetic route from the raw material to the molecular sieve product can be greatly shortened, and the energy consumption and material consumption of the molecular sieve production process are greatly reduced. And pollution emissions, and significantly reduce production costs, has broad prospects for development.
  • the current public reports on the synthesis of 4A molecular sieves from natural minerals are mainly concentrated on natural kaolin minerals.
  • Kaolin is a 1: 1 type dioctahedral layered aluminosilicate clay mineral. Its typical chemical composition is Al 2 0 3 -2Si0 2 -2H 2 0. Its silicon-aluminum ratio is similar to that of 4A type molecular sieve. It has been found that kaolin can be dehydrated at a certain temperature to remove structural water and converted into metakaolin with high activity. Compared with the process of synthesizing 4A molecular sieves from inorganic chemicals, the synthesis of 4A molecular sieves using kaolin as a raw material can greatly reduce the cost of raw materials, and thus is an ideal raw material for synthesizing 4A molecular sieves.
  • the optimal synthesis conditions for the molecular sieve are: molar Si0 2 /Al 2 0 3 is 2.5, molar Na 2 0/Si0 2 is 1.0, molar H 2 0/Na 2 0 is 50, crystallization time is 15 h, and the crystallization temperature is 100 ° C.
  • Selim et al. (Microporous and Mesoporous Materials, 2004; 74(1-3): 79-85) used hydrothermal synthesis of NaA molecular sieves in alkaline systems using Egyptian kaolin as raw materials, and prepared molecular sieves with different nickel ion exchange degrees. The performance of the hydrogenation reaction in sunflower oil was studied. The results showed that the nickel ion exchanged molecular sieve showed higher catalytic activity.
  • CN1350053A discloses a method for synthesizing 4A molecular sieve for washing with aluminum plant waste alkali and kaolin.
  • the waste NaOH solution and natural kaolin produced by electrochemical treatment of aluminum surface of aluminum factory are used as raw materials, and kaolin is activated by alkali burning method.
  • 4A type molecular sieves were synthesized by gelation and crystallization, and the calcium exchange rate was as high as 310 mg CaC0 3 /g molecular sieve.
  • CN101591025A discloses a method for preparing a binderless type A molecular sieve by using kaolin.
  • the ordinary natural kaolin clay with low cost is used as a raw material, and the pellet is first formed and granulated, and then calcined and then mixed with NaOH solution to be aged and crystallized, and finally passed. Separate, wash, and dry to obtain the product.
  • the binderless type A molecular sieve prepared by the invention has the characteristics of strong adsorption capacity and stable performance.
  • CN1287971A discloses a novel process for synthesizing 4A molecular sieve by kaolin alkali fusion method, the process comprises the following steps: mixing kaolin with alkali, grinding, calcining, water extraction, gelation and crystallization to synthesize 4A molecular sieve.
  • the molecular sieve has a calcium exchange capacity of 310 mg CaCO 3 /g molecular sieve.
  • the invention has the advantages of wide application range of kaolin, good gel forming performance, high utilization rate, simple and practical process.
  • the above literature uses kaolin or montmorillonite as raw material to prepare 4A molecular sieves, and both of them are activated by high temperature calcination or alkali fusion roasting.
  • the crystalline natural clay mineral material used has a stable crystal structure, and the silica-alumina element is located in the mineral crystal lattice, and has sufficient reactivity for the synthesis of the molecular sieve only after being activated.
  • the current activation mode is mainly high temperature baking (about 800-1000 ° C) or alkali baking. Burning (about 600-800 ° C), the energy consumption in the activation process is high, the environmental pollution is serious, and it does not meet the development trend of modern green chemicals.
  • high-temperature calcination can activate natural minerals, the activation effect is not good, especially the Si-0 bond in minerals is extremely difficult to be destroyed, thus affecting the utilization of silicon-aluminum species.
  • the present invention provides a method for synthesizing a molecular sieve of type 4A, which comprises: providing all silicon source and aluminum source required for molecular sieve synthesis by using natural clay mineral, and crystallization and synthesizing under hydrothermal conditions after activation Type 4A molecular sieve.
  • the natural clay mineral refers to a natural clay mineral having a molar ratio of silicon to aluminum similar to that of the silica gel aluminum of the 4A type molecular sieve. Therefore, in the method of the present invention, in addition to kaolin, natural clay minerals may also be selected from natural minerals such as montmorillonite, bentonite, attapulgite, and rector.
  • the natural clay mineral used in the present invention may be a mixture of one or more selected from the group consisting of natural kaolin minerals, natural montmorillonite minerals, natural bentonites, natural attapulgite, natural rector soils and the like.
  • the activation mode of the natural clay mineral is activation of a sub-molten salt.
  • the sub-molten salt is a high concentration alkali/inorganic salt solution, which is a kind of unconventional medium between aqueous solution and pure molten salt.
  • No research report on the preparation of 4A molecular sieves from sub-molten salt activated natural minerals has been found.
  • the inventors of the present invention studied the properties of sub-molten salts which exhibited some peculiar properties similar to molten salts.
  • the sub-molten salt medium has excellent physical and chemical properties such as low vapor pressure, good fluidity, high activity coefficient and high reactivity, and can provide high chemical reactivity and high activity negative oxygen ions, and the reaction system is well dispersed. The transfer effect significantly accelerates the reaction rate.
  • the present invention finds that the sub-molten salt system can effectively activate natural clay minerals under certain conditions for the preparation of type 4A molecular sieves, and the activation is a low energy, low pollution mode.
  • sub-molten salt used in the present invention is a sub-NaOH-H 2 0-molten salt.
  • the activation of the sub-molten salt in the present invention is specifically carried out in the following manner:
  • the natural clay mineral and the sodium hydroxide solution are in a mass ratio of 1:2 to 1:20 (preferably 1:2 to 1:10).
  • the mass ratio is uniformly mixed and then dried at 100 ° C to 300 ° C.
  • the obtained product is an activated clay mineral which can be used as a raw material for synthesizing 4A molecular sieve.
  • the sodium hydroxide solution is mixed by sodium hydroxide solids and water in a mass ratio of 1:1 to 1:10. Made.
  • the activated clay minerals in the preparation of zeolite 4A is a natural clay is activated after all of the silicon source and an aluminum source, according Na 1 to 6 2 0: Si0 2 of 1.8 to 2.2 : A1 2 0 3 : 20 to 200 H 2 0 molar ratio adjustment synthesis system (that is, according to the ratio, the activated natural clay and deionized water are mixed to obtain the material, which is a synthetic system, if necessary Further, a sodium hydroxide solution is added to adjust Na in the ratio range, and then the synthesis system is crystallized to prepare a molecular sieve of type 4A.
  • the 4A type molecular sieve prepared by the method of the present invention has a high whiteness and high calcium ion exchange performance.
  • the obtained 4A type molecular sieve has a whiteness of more than 90% and a calcium ion exchange amount of not less than 310 mg of CaCO 3 /g molecular sieve.
  • the 4A type molecular sieve synthesis method comprises the following steps:
  • (1) Activation of natural clay minerals Mix natural clay minerals with sodium hydroxide solution in a mass ratio of 1:2 to 1:20, then dry at 100 ° C to 300 ° C as a synthetic 4A molecular sieve a raw material, wherein the sodium hydroxide solution is prepared by mixing sodium hydroxide solids with water in a mass ratio of 1:1 to 1:10;
  • the aging temperature is 20 to 70 ° C, and the aging time is 0 to 24 h; for example, the synthesis system is stirred at 20 to 70 °C aging 0 to 24 h, such as aging 0, 4, 6, 8 or 12 hours.
  • the crystallization process under the hydrothermal conditions is usually carried out in a crystallization reactor.
  • a preferred crystallization temperature is 80 to 120 ° C, and a crystallization time is 1 to 12 h to obtain a crystallized product.
  • the above crystallized product is further cooled (naturally cooled), filtered to remove the mother liquor, and the filter cake is washed with deionized water to neutrality, dried (naturally dried, or dried at 60 to 130 ° C) to obtain a molecular sieve type 4A.
  • the operation steps not specifically mentioned e.g., stirring aging, filtration of the crystallization product, washing, etc.
  • the operation steps not specifically mentioned can be carried out in accordance with a conventional operation in the art.
  • all the silicon source and the aluminum source required for synthesizing the molecular sieve are provided by the natural clay mineral raw material, and no other forms of chemical silicon source or aluminum source are added, and the application of the natural clay mineral is broadened.
  • the source of raw materials for the field and synthetic molecular sieves are provided by the natural clay mineral raw material, and no other forms of chemical silicon source or aluminum source are added, and the application of the natural clay mineral is broadened.
  • the preparation method of the invention has the advantages of simple process, easy use of raw materials, low energy consumption of natural mineral activation, low pollution, etc. Advantages.
  • the molecular sieve synthesized by the present invention has an XRD characteristic peak of a molecular sieve of type 4A.
  • the obtained 4A molecular sieve has good performance, whiteness of more than 90%, and calcium ion exchange amount of not less than 310 mg CaCO 3 /g molecular sieve.
  • the synthetic route provided by the invention can not only greatly reduce the production cost of the synthesis of the 4A type molecular sieve, but also greatly improve the greenness of the synthesis process, and the obtained molecular sieve has excellent physical and chemical properties.
  • Type 4A molecular sieve is the most widely used molecular sieve material in the field of detergent and adsorption separation.
  • the low energy consumption and low pollution of the invention is based on the technique of synthesizing 4A molecular sieve with natural mineral clay as raw material, which has broad application prospects.
  • Fig. 1 is an XRD chart of a molecular sieve of type 4A obtained in Example 1 of the present invention.
  • Fig. 2 is a SEM photograph of a 10,000-fold magnification of the 4A type molecular sieve obtained in Example 1 of the present invention.
  • 3 to 8 are XRD patterns of the 4A type molecular sieve obtained in Examples 2 to 7 of the present invention, respectively. detailed description
  • the crystal phase of the product was measured by a Shimadzu Lab XRD-600 X-ray diffractometer; the crystal form and morphology of the product were observed using a Quanta 200F field emission scanning electron microscope; the whiteness of the product was measured by a WSB-2 digital whiteness meter.
  • the determination of calcium ion exchange amount refers to the national light industry standard QB 1768-93.
  • the specific steps are as follows: Pipette 0.05 mL of 0.05 mol/L calcium chloride solution into a 500 mL volumetric flask with a pipette, dilute to the mark with water, and add Three drops (about 0.15 mL) of 0.5 mol/L sodium hydroxide solution brought the pH of the solution to 10.
  • the solution was transferred into a 1000 mL three-necked flask, equipped with a stirrer, a thermometer, and the other was stoppered, placed in a constant temperature water bath at 35 ° C, and stirred at a rate of more than 700 r / min solution without splashing, when the solution reached the control temperature
  • the test piece is put into the filter paper by a three-necked bottle and the plug is applied. After 20 minutes of reaction, it is immediately filtered with a color filter paper. If the filtrate is unclear, it can be used for secondary filtration. The initial filtrate is discarded, and then 50 mL of the filtrate is taken up in 250 mL.
  • the kaolin, rector and montmorillonite used are all commercially available products.
  • the main components of kaolin are: Si0 2 content is 50.5 wt.%, A1 2 0 3 content is 44.6 wt.%;
  • the composition is: the content of Si0 2 is 41.3 wt.%, The content of A1 2 0 3 is 38.2 wt.%;
  • the main components of montmorillonite are: Si0 2 content is 61.5 wt.%, and A1 2 0 3 content is 18.2 wt.%.
  • the commercially available kaolin is dried and pulverized into a powder (the present invention has no specific requirement for the degree of pulverization, and is usually pulverized to a sieve of 20 mesh).
  • the sodium hydroxide solution was prepared by dissolving 14.00 g of sodium hydroxide solid in 70.00 g of deionized water.
  • the pretreatment method of kaolin is the same as in Example 1.
  • the pretreatment method of kaolin is the same as in Example 1.
  • the commercially available kaolin is dried and pulverized into a powder. Weigh 10.00 g of kaolin powder, mix well with 60.00 g of sodium hydroxide solution, and dry at 250 °C for use.
  • the sodium hydroxide solution was prepared by dissolving 10.00 g of sodium hydroxide solid in 50.00 g of deionized water.
  • the commercially available kaolin is dried and pulverized into a powder. Weigh lO.OOg of kaolin powder, mix well with 96.00g of sodium hydroxide solution, and dry at 150 °C for use.
  • the sodium hydroxide solution was prepared by dissolving 16.00 g of sodium hydroxide solid in 150.00 g of deionized water.
  • the commercially available rector soil is dried and pulverized into a powder. Weigh lO.OOg of the soil of the soil and mix it with 90.00g of sodium hydroxide solution. Dry at 280 °C and set aside.
  • the sodium hydroxide solution was prepared by dissolving 15.00 g of sodium hydroxide solids in 15.00 g of deionized water.
  • kaolin, rector, and montmorillonite are dried and pulverized into powder. Weigh a mixture of lO.OOg with a mass ratio of 1: 1:0.2, mix well with 90.00g sodium hydroxide solution, and dry at 250 °C for use.
  • the sodium hydroxide solution was prepared by dissolving 15.00 g of sodium hydroxide solid in 75.00 g of deionized water.
  • the phase of the product belongs to the 4A type molecular sieve as determined by XRD, and the whiteness of the 4A type molecular sieve in the product is 92, the calcium ion exchange amount is 313 mg CaC0 3 /g molecular sieve, and its XRD spectrum is shown in Fig. 8.
  • the commercially available kaolin is dried and pulverized into a powder. Weigh 10.00 g of kaolin powder, mix well with 48.00 g of sodium hydroxide solution, and dry at 250 °C for use.
  • the sodium hydroxide solution was prepared by dissolving 8.00 g of sodium hydroxide solid in 40.00 g of deionized water.
  • the commercially available kaolin is dried and pulverized into a powder. Weigh lO.OOg of kaolin powder, mix well with 25.20g of sodium hydroxide solution, and dry at 250 °C for use.
  • the sodium hydroxide solution was prepared by dissolving 14.00 g of sodium hydroxide solid in 11.20 g of deionized water.

Abstract

本发明提供了一种4A型分子筛的合成方法,该方法是利用天然黏土矿物提供分子筛合成所需的全部硅源和铝源,经活化后于水热条件下晶化而合成4A型分子筛。本发明方法工艺简单、所用原料廉价、所得的4A型分子筛的白度达到90%以上、钙离子交换量不低于310mg CaCO3 /g分子筛。本发明扩展了分子筛材料制备的原料范围,所采用的亚熔盐活化方法不仅可以大幅降低分子筛的生产成本,而且显著地提高了分子筛材料生产过程的绿色性。

Description

一种 4A型分子筛的合成方法 技术领域
本发明属于分子筛合成领域, 具体涉及一种 4A型分子筛的合成方法, 其中主要是 以亚熔盐活化的天然黏土矿物为原料提供合成 4A型分子筛所需要的全部硅源和铝源。 背景技术
NaA型分子筛, 理想晶胞组成为 Na96[(Al96Si96)0384]_216H20, 立方晶系, 空间群 Fm-3c, 晶胞参数 a=24.61 A。 NaA型分子筛的骨架结构为将 β笼置于立方体的八个顶点 位置上, 彼此间由双四元环连接, 这样由八个 β笼就围成了一个 α笼, α笼通过八元环 与相邻的 α笼相通, 八元环是 NaA型分子筛的主通道, 孔径大小为 4.2 A, 故 NaA型分 子筛又称 4A型分子筛。 NaA分子筛被 K+和 Ca+交换后分别成为 3 A与 5 A型分子筛。 NaA分子筛由于其孔道特点与高的交换容量, 是应用量最为广泛的分子筛之一, 主要用 于洗涤剂助剂、 气体的干燥与净化、 空气中氮、 氧的分离等。
目前合成 4A型分子筛的方法按照原料来源可分为两类: 利用化学品合成和利用天 然矿物合成。 以传统无机化学品为原料合成 4A型分子筛的工艺技术成熟, 但生产成本 高, 经济效益差。 因此, 如果能够直接以富含硅和铝的天然矿物为原料合成 4A型分子 筛, 不仅原料来源广泛, 而且可以极大地缩短从原料到分子筛产物的合成路线, 大幅降 低分子筛生产过程的能耗、 物耗和污染排放, 并显著降低生产成本, 具有广阔的发展前 景。 目前以天然矿物为原料合成 4A型分子筛的公开报道主要集中在天然高岭土矿物。
高岭土属 1 : 1 型二八面体层状硅铝酸盐黏土矿物, 其典型的化学组成为 Al203-2Si02-2H20,其硅铝比与 4A型分子筛的硅铝比相近,且经研究发现高岭土在一定 温度下焙烧可以脱去结构水, 转化为具有很高活性的偏高岭土。 与以无机化学品为原料 合成 4A分子筛的过程相比, 采用高岭土为原料合成 4A分子筛可以大幅降低原料成本, 因而成为合成 4A型分子筛的理想原料。
上世纪六十年代, Howell 成功地以热活化高岭土为原料采用二段合成法获得了 A 型分子筛, 之后美国乙基公司 (Ethyl Corporation)和法国拜耳公司 (Bayer Group)先后将其 工业化, 用于生产洗涤剂助剂以代替三聚磷酸钠。 之后, 采用高岭土合成 NaA型分子 筛的相关报道日益增多。
1988年, Costa (Industrial & Engineering Chemistry Research, 1988; 27(7): 1291-1296) 等人以煅烧高岭土为原料合成了洗涤剂用的 NaA型分子筛。 通过考察凝胶生成条件、 陈化及结晶条件, 确定了 NaA型分子筛的最佳合成工艺参数, 并且进行了放大实验; 还对母液进行了回收利用, 使其合成成本降到 0.43 $/kg。
Sanhueza等 (Journal of Chemical Technology & Biotechnology, 1999; 74(4): 358-363) 以 Chilean高岭土为原料, 在自生压力条件下合成出了 NaA型分子筛, 并详细考察了影 响分子筛合成的因素。 通过改变初始反应物料配比, 利用 X射线衍射 (XRD)、 扫描电子 显微镜 (SEM)、 微分热分析 (DTA)等手段分析结晶产物, 以及对所合成的分子筛进行阳 离子交换能力考察, 确定 NaA型分子筛的最佳合成条件为: 摩尔 Si02/Al203为 2.5, 摩 尔 Na20/Si02为 1.0, 摩尔 H20/Na20为 50, 晶化时间为 15h, 晶化温度为 100°C。
Selim等 (Microporous and Mesoporous Materials, 2004; 74(1-3): 79-85)等以埃及高岭 土为原料在碱性体系中水热合成了 NaA型分子筛, 并制备了不同镍离子交换度的分子 筛, 研究了其在葵花油加氢反应中的性能, 结果表明, 镍离子交换的分子筛表现出了较 高的催化活性。
CN1350053A公开了一种以铝厂废碱和高岭土合成洗涤用 4A型分子筛的方法, 以 铝厂铝型材表面电化学处理产生的废 NaOH溶液和天然高岭土为原料,采用碱烧法活化 高岭土后, 经成胶、 晶化等工艺合成了 4A型分子筛, 其钙交换率高达 310mg CaC03/g 分子筛以上。
CN101591025A公开了一种利用高岭土制备无粘结剂 A型分子筛的方法, 以价格低 廉的普通天然高岭土为原料, 先成型造粒, 经过焙烧处理后再与 NaOH溶液混合陈化、 晶化, 最后经过分离、 洗涤、 干燥得到产品。此发明制得的无粘结剂 A型分子筛具有吸 附能力强、 性能稳定等特点。
CN1287971A公开了一种高岭土碱熔法合成 4A型分子筛的新工艺, 其工艺过程包 括: 高岭土与碱混合磨匀、 煅烧、 水抽提、 胶化、 晶化合成 4A型分子筛。 分子筛的钙 交换量达到 310mg CaCO3/g分子筛。此发明具有对高岭土适用范围广、成胶性能好、利 用率高、 工艺过程简单实用等优点。
Abdmeziem等 (Applied Clay Science, 1989, 4(1): 1-9)以碱熔的蒙脱土为原料合成了 NaA型分子筛, 并对黏土-碳酸钠混合物的组成、 碱熔的温度和时间进行了考察, 确定 了在较宽的原料配比范围内均可以获得高纯度的目的产物。
以上文献以高岭土或者蒙脱土为原料制备 4A型分子筛时均采用高温焙烧或者碱熔 焙烧对矿物进行活化。 这是因为, 在上述各方法中, 所使用的结晶态天然黏土矿物原料 具有稳定的晶体结构, 硅铝元素位于矿物晶格中, 只有在被活化后才具有足够的反应活 性用于分子筛的合成。 而目前的活化方式主要是高温焙烧(约 800-1000°C )或者碱熔焙 烧(约 600-800°C ), 活化过程能耗高、环境污染严重、不符合现代绿色化工的发展趋势。 另外, 虽然高温焙烧可以活化天然矿物, 但活化效果不好, 尤其是矿物中的 Si-0键极 难被破坏, 从而影响了硅铝物种的利用率。
近年来, 随着绿色化学的发展, 使用无毒无害的原料, 提高原料利用率、 降低生产 过程的能耗和减少污染排放已成为新型化工过程研究开发关注的焦点。 因此, 利用低能 耗、 高效的活化方式对天然黏土矿物进行活化是以其为原料合成分子筛面临的极大挑 战。 发明内容
为解决上述问题, 本发明提供了一种 4A型分子筛的合成方法, 该方法包括: 利用天然黏土矿物提供分子筛合成所需的全部硅源和铝源, 经活化后于水热条件下 晶化合成 4A型分子筛。
根据本发明的具体实施方案, 本发明的 4A型分子筛的合成方法中, 所述的天然黏 土矿物是指硅铝摩尔比与 4A型分子筛硅铝摩尔比相近的天然黏土矿物。 因此, 在本发 明所述的方法中, 天然黏土矿物除高岭土外, 还可以选用蒙脱土、 膨润土、 凹凸棒土、 累托土等天然矿物。 即, 本发明所用的天然黏土矿物可以是选自天然高岭土矿物、 天然 蒙脱土矿物、天然膨润土、天然凹凸棒土、天然累托土等矿物中的一种或多种的混合物。
根据本发明的具体实施方案, 本发明的 4A型分子筛的合成方法中, 所述的天然黏 土矿物的活化方式为亚熔盐活化。
亚熔盐是高浓度碱 /无机盐溶液,是介于水溶液与纯熔盐之间的一类非常规介质。 目 前未发现有以亚熔盐活化天然矿物为原料制备 4A型分子筛的研究报道。 本案发明人研 究了亚熔盐的特性, 其表现出一些类似熔盐的特有性质。 亚熔盐介质具有蒸汽压低、 流 动性好、 活度系数高、 反应活性高等优异的物理化学性能, 可以提供高化学反应活性与 高活度负氧离子, 且对反应体系起到良好的分散、 传递作用, 明显加快反应速率。 本发 明中发现亚熔盐体系在一定条件下能够有效地活化天然黏土矿物以用于制备 4A型分子 筛, 且所述活化是一种低能耗、 低污染的方式。
根据本发明的具体实施方案,本发明中所用的亚熔盐为 NaOH-H20亚熔盐体系。具 体地, 本发明中所述亚熔盐活化具体是按照以下方式进行: 将天然黏土矿物与氢氧化钠 溶液按照 1 :2至 1 :20的质量比例 (优选为 1 :2至 1 : 10的质量比例)混合均匀,然后在 100°C 至 300°C下烘干, 所得产物即为活化后的黏土矿物, 可作为合成 4A型分子筛的原料。 更具体地,其中所述氢氧化钠溶液是由氢氧化钠固体与水按照 1 : 1至 1 : 10的质量比混合 而成。
根据本发明的具体实施方案, 活化后的黏土矿物在制备 4A型分子筛时, 是以活化 后的天然黏土为全部硅源和铝源,按照 1至 6的 Na20: 1.8至 2.2的 Si02: A1203: 20至 200 的 H20的摩尔配比调节合成体系 (即, 根据该配比需要将活化后的天然黏土与去离子水 混合而得物料即为合成体系, 视需要可进一步加入氢氧化钠溶液以调节 Na在所述配比 范围内), 然后, 合成体系经晶化制备 4A型分子筛。
根据本发明的具体实施方案, 本发明的 4A型分子筛的合成方法, 所制备的 4A型 分子筛具有高的白度、 高的钙离子交换性能。 所获得的 4A型分子筛的白度达到 90%以 上、 钙离子交换量不低于 310mg CaC03/g分子筛。
具体来说, 本发明所提供的 4A型分子筛合成方法包括以下步骤:
(1) 天然黏土矿物的活化: 将天然黏土矿物与氢氧化钠溶液按照 1 :2至 1 :20的质量 比例混合均匀,然后在 100°C至 300°C下烘干后作为合成 4A型分子筛的原料,其中所述 氢氧化钠溶液是由氢氧化钠固体与水按照质量比 1 : 1至 1 : 10混合配制的;
(2) 向步骤 (1)获得的合成原料中加入去离子水、氢氧化钠,调节物料的摩尔配比为: 1至 6的 Na20: 1.8至 2.2的 Si02: A1203: 20至 200的 ¾0, 在搅拌的条件下经老化、 晶 化得到晶化产物;
(3) 将步骤 (2)获得的晶化产物冷却、 过滤除去母液, 滤饼用去离子水洗涤至中性, 干燥得到 4A型分子筛。
在本发明方法的一个具体技术方案中, 在步骤 (2)中, 老化温度为 20至 70°C, 老化 时间为 0 至 24 h; 例如, 所述的合成体系在搅拌条件下于 20至 70°C老化 0至 24 h, 例 如老化 0、 4、 6、 8或 12小时。所述水热条件下的晶化过程通常是在晶化反应釜中进行, 本发明中优选的晶化温度为 80 至 120°C, 晶化时间为 1 至 12 h, 得到晶化产物。
上述晶化产物进一步冷却 (可自然冷却)、 过滤除去母液, 滤饼用去离子水洗涤至中 性, 干燥 (可自然干燥, 或是在 60至 130°C干燥), 得到 4A型分子筛。
本发明的 4A型分子筛的制备方法中, 未详细提及的操作步骤 (例如搅拌老化、 晶化 产物的过滤、 洗涤等), 可以按照所属领域的常规操作进行。
本发明的 4A型分子筛的制备方法中, 是由天然黏土矿物原料提供合成分子筛所需 要的全部硅源和铝源, 不需要添加其他形式的化学硅源或者铝源, 拓宽了天然黏土矿物 的应用领域和合成分子筛的原料来源。
本发明的制备方法具有流程简单、 使用原料易得、 天然矿物活化能耗低、 污染小等 优点。 采用本发明所合成的分子筛, 具有 4A型分子筛的 XRD特征峰。 所获得的 4A型 分子筛的性能良好, 白度达到 90%以上、 钙离子交换量不低于 310 mg CaCO3/g分子筛。
本发明所提供的合成工艺路线不仅可大幅降低 4A型分子筛合成的生产成本, 而且 可极大地提高合成过程的绿色性, 而所得到的分子筛具有优异的物理化学性质。 4A型 分子筛是洗涤剂和吸附分离领域中应用最为广泛的分子筛材料, 本发明的低能耗、 低污 染的以天然矿物黏土为原料合成 4A型分子筛的技术, 有着广阔的应用前景。 附图说明
图 1为本发明实施例 1所得 4A型分子筛的 XRD谱图。
图 2为本发明实施例 1所得 4A型分子筛放大 10000倍的 SEM照片。
图 3至图 8分别为本发明实施例 2至实施例 7所得到的 4A型分子筛的 XRD谱图。 具体实施方式
下面结合具体实施例对本发明作进一步的阐述,其旨在详细阐明本发明的实施方案 和特点, 不能理解为对本发明的任何限定。 各实施例中:
产物的晶相采用 Shimadzu Lab XRD-600型 X射线衍射仪测定; 产物的晶形和形貌 采用 Quanta 200F场发射扫描电子显微镜观测; 产物的白度用 WSB-2数显白度仪测定。
钙离子交换量的测定参照国家轻工行业标准 QB 1768-93,具体步骤如下:用移液管 吸取 0.05 mol/L氯化钙溶液 50 mL于 500 mL容量瓶中, 加水稀释至刻度, 并加三滴 (约 0.15 mL) 0.5 mol/L氢氧化钠溶液使溶液 pH值至 10。然后将此液移入 1000 mL三口烧瓶 中, 装上搅拌器、 温度计, 另一口加塞, 放入 35 °C恒温水浴中, 以大于 700 r/min溶液 不飞溅的速度搅拌, 当溶液达到控制温度时, 由三口瓶加塞口投入滤纸包试验份, 反应 20 min后, 立即用色层定量滤纸过滤, 如滤液不清可作二次过滤, 弃去起始部分滤液, 然后吸取 50 mL滤液于 250 mL锥形瓶中,加入 2.5 mol/L氢氧化钠溶液 2 mL和少许 (约 60-70mg)钙指示剂,用乙二胺四乙酸 (EDTA)溶液滴定溶液由酒红色变蓝色为终点, 记下 耗用 EDTA溶液的体积。分子筛的钙交换能力 E以毫克碳酸钙每克无水 4A分子筛表示, 按下式计算: E= 100.08 (5 Oco- 1 Oci VE)/ [m ( 1 -X)] 0式中, 100.08为碳酸钙的毫摩尔质量, g/mol; Co为氯化钙标准溶液的浓度, mol/L; Ci为 EDTA标准溶液的浓度, mol/L; VE 为在滴定时, 耗用 EDTA标准溶液的体积, mL; m为试样质量, g; X为分子筛的吸湿 水量, %。 取两次测定的平均值为测定结果。
所用的高岭土、 累托土和蒙脱土均为市售产品, 高岭土的主要成分为: Si02的含量 为 50.5 wt.%, A1203的含量为 44.6 wt.%;累托土的主要成分为: Si02的含量为 41.3 wt.%, A1203的含量为 38.2 wt.%; 蒙脱土的主要成分为: Si02的含量为 61.5 wt.%, A1203的含 量为 18.2 wt.%。
实施例 1
将市售的高岭土烘干、 粉碎成粉末 (本发明对粉碎程度无具体要求, 通常粉碎至过 20目筛即可)。 称取 lO.OOg高岭土粉末, 与 84.00g氢氧化钠溶液混合均匀, 在 200°C下 烘干,备用。其中氢氧化钠溶液由 14.00 g氢氧化钠固体溶解在 70.00g去离子水中制得。
称取上述烘干后的高岭土粉末 10.44 g, 加入 54.91g去离子水, 在 40°C下混合搅拌 12 h。 将该混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内, 升温至 90 °C静止晶化 2h。 晶化结束后, 冷却、 过滤除去母液, 洗涤至中性, 于 120°C下干燥, 得到晶化产物。 经 XRD测定, 其物相属于 4A型分子筛, 产物中 4A型分子筛的白度为 93, 钙离子交换量 为 330mg CaC03/g分子筛, 其 XRD谱图见图 1, SEM照片见图 2。
实施例 2
高岭土的预处理方法同实施例 1。
称取上述烘干后的高岭土粉末 8.70g,加入 51.48g去离子水,在 20°C下混合搅拌 4h。 将该混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内, 升温至 100°C静止晶化 6h。 晶化 结束后, 冷却、 过滤除去母液, 洗涤至中性, 于 120 °C下干燥, 得到晶化产物。 经 XRD 测定,其物相属于 4A型分子筛,产物中 4A型分子筛的白度为 92,钙离子交换量为 312mg CaC03/g分子筛, 其 XRD谱图见图 3。
实施例 3
高岭土的预处理方法同实施例 1。
称取上述烘干后的高岭土粉末 16.73 g, 加入 43.93g去离子水, 在 60 °C下混合搅拌 8 h。 将该混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内, 升温至 100 °C静止晶化 4h。 晶化结束后, 冷却、 过滤除去母液, 洗涤至中性, 于 120 °C下干燥, 得到晶化产物。 经 XRD测定, 其物相属于 4A型分子筛, 产物中 4A型分子筛的白度为 94, 钙离子交换量 为 320 mg CaCO3/g分子筛, 其 XRD谱图见图 4。
实施例 4
将市售的高岭土烘干、 粉碎成粉末。 称取 10.00 g高岭土粉末, 与 60.00 g氢氧化钠 溶液混合均匀, 在 250 °C下烘干, 备用。其中氢氧化钠溶液由 lO.OOg氢氧化钠固体溶解 在 50.00g去离子水中制得。
称取上述烘干后的高岭土粉末 6.98 g, 加入 55.00g去离子水, 在 40°C下混合搅拌 6 h。 将该混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内, 升温至 80°C静止晶化 4h。 晶 化结束后,冷却、过滤除去母液,洗涤至中性, 于 120°C下干燥,得到晶化产物。经 XRD 测定,其物相属于 4A型分子筛,产物中 4A型分子筛的白度为 91,钙离子交换量为 310mg CaC03/g分子筛, 其 XRD谱图见图 5。
实施例 5
将市售的高岭土烘干、 粉碎成粉末。 称取 lO.OOg高岭土粉末, 与 96.00g氢氧化钠 溶液混合均匀, 在 150°C下烘干, 备用。 其中氢氧化钠溶液由 16.00g氢氧化钠固体溶解 在 150.00g去离子水中制得。
称取上述烘干后的高岭土粉末 12.09 g, 加入 55.00g去离子水, 在 40°C下混合搅拌 6 h。 将该混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内, 升温至 80°C静止晶化 10h。 晶化结束后, 冷却、 过滤除去母液, 洗涤至中性, 于 120°C下干燥, 得到晶化产物。 经 XRD测定, 其物相属于 4A型分子筛, 产物中 4A型分子筛的白度为 92, 钙离子交换量 为 315 mg CaC03/g分子筛, 其 XRD谱图见图 6。
实施例 6
将市售的累托土烘干、 粉碎成粉末。 称取 lO.OOg累托土粉末, 与 90.00g氢氧化钠 溶液混合均匀, 在 280°C下烘干, 备用。 其中氢氧化钠溶液由 15.00g氢氧化钠固体溶解 在 15.00g去离子水中制得。
称取上述烘干后的累托土粉末 16.25 g,加入 0.8g氢氧化钠固体、 55.50 g去离子水, 在 40 °C下混合搅拌 20h。将该混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内,升温至 90 °C静止晶化 2h。 晶化结束后, 冷却、 过滤除去母液, 洗涤至中性, 于 120°C下干燥, 得到晶化产物。 经 XRD测定, 其物相属于 4A型分子筛, 产物中 4A型分子筛的白度为 90, 钙离子交换量为 323 mg CaC03/g分子筛, 其 XRD谱图见图 7。
实施例 7
将市售的高岭土、 累托土、 蒙脱土烘干、 粉碎成粉末。 称取 lO.OOg三者质量比为 1 : 1 :0.2的混合物, 与 90.00g氢氧化钠溶液混合均匀, 在 250°C下烘干, 备用。 其中氢氧 化钠溶液由 15.00g氢氧化钠固体溶解在 75.00g去离子水中制得。
称取上述烘干后的混合物粉末 16.25g, 加入 0.8g氢氧化钠固体、 55.50g去离子水, 在 40°C下混合搅拌 20h。 将该混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内, 升温至 90°C静止晶化 2h。 晶化结束后, 冷却、 过滤除去母液, 洗涤至中性, 于 120°C下干燥, 得到晶化产物。 经 XRD测定, 其物相属于 4A型分子筛, 产物中 4A型分子筛的白度为 92, 钙离子交换量为 313mg CaC03/g分子筛, 其 XRD谱图见图 8。
对比例 1
将市售的高岭土烘干、 粉碎成粉末。 称取 10.00 g高岭土粉末, 与 48.00 g氢氧化钠 溶液混合均匀, 在 250 °C下烘干, 备用。 其中氢氧化钠溶液由 8.00 g氢氧化钠固体溶解 在 40.00 g去离子水中制得。
称取上述烘干后的高岭土粉末 9.00g,加入 54.00g去离子水,在 40°C下混合搅拌 12h。 将该混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内, 升温至 90°C静止晶化 4h。 晶化 结束后, 冷却、 过滤除去母液, 洗涤至中性, 于 120°C下干燥, 得不到 4A型分子筛。
对比例 2
将市售的高岭土烘干、 粉碎成粉末。 称取 lO.OOg高岭土粉末, 与 25.20g氢氧化钠 溶液混合均匀, 在 250°C下烘干, 备用。 其中氢氧化钠溶液由 14.00g氢氧化钠固体溶解 在 11.20g去离子水中制得。
称取上述烘干后的高岭土粉末 10.44g, 加入 54.91g去离子水, 在 40°C下混合搅拌
12h。 将该混合物倒入带聚四氟乙烯内衬的不锈钢晶化釜内, 升温至 90°C静止晶化 4h。 晶化结束后, 冷却、 过滤除去母液, 洗涤至中性, 于 120°C下干燥, 得不到 4A型分子 筛。
上述实施例及对比例表明, 由亚熔盐活化的天然高岭土矿物提供合成所需要的全部 硅源或者铝源, 在适宜的条件下, 经水热晶化合成所制备的 4A型分子筛具有优异的物 理化学性质, 且其合成成本更低。

Claims

权利要求书
1、 一种 4A型分子筛的合成方法, 该方法包括:
利用天然黏土矿物提供分子筛合成所需的全部硅源和铝源, 经活化后于水热条件下 晶化而合成 4A型分子筛。
2、根据权利要求 1所述的 4A型分子筛的合成方法, 其中, 所述的天然黏土矿物选 自天然高岭土矿物、 天然蒙脱土矿物、 天然凹凸棒土、 天然累托土矿物中的一种或多种 的混合物。
3、根据权利要求 1所述的 4A型分子筛的合成方法, 其中, 所述的天然黏土矿物的 活化方式为亚熔盐活化。
4、 根据权利要求 3 所述的 4A 型分子筛的合成方法, 其中, 所述的亚熔盐为
NaOH-H20亚熔盐体系。
5、 根据权利要求 1所述的 4A型分子筛的合成方法, 其中, 所述 4A型分子筛具有 高的白度、 高的钙离子交换性能。
6、根据权利要求 1所述的 4A型分子筛的合成方法, 其中, 所述活化是按照以下方 式进行:
将天然黏土矿物与氢氧化钠溶液按照 1 :2至 1 :20的质量比例混合均匀, 然后在 100 °。至3001下烘干, 所得产物即为活化后的黏土矿物; 其中, 所述氢氧化钠溶液是由氢 氧化钠固体与水按照质量比为 1 : 1至 1 : 10混合而成。
7、根据权利要求 3所述的 4A型分子筛的合成方法, 其中, 所述活化是按照以下方 式进行:
将天然黏土矿物与氢氧化钠溶液按照 1 :2至 1 :20的质量比例混合均匀, 然后在 100 °。至3001下烘干, 所得产物即为活化后的黏土矿物; 其中, 所述氢氧化钠溶液是由氢 氧化钠固体与水按照质量比为 1 : 1至 1 : 10混合而成。
8、根据权利要求 1所述的 4A型分子筛的合成方法, 其中, 活化后的黏土矿物在制 备 4A型分子筛时, 是以活化后的天然黏土为全部硅源和铝源, 按照 1至 6的 Na20: 1.8 至 2.2的 Si02: A1203: 20至 200的 H20的摩尔配比调节合成体系, 于水热条件下晶化而 合成 4A型分子筛。
9、根据权利要求 3所述的 4A型分子筛的合成方法, 其中, 活化后的黏土矿物在制 备 4A型分子筛时, 是以活化后的天然黏土为全部硅源和铝源, 按照 1至 6的 Na20: 1.8 至 2.2的 Si02: A1203: 20至 200的 ¾0的摩尔配比调节合成体系, 于水热条件下晶化而 合成 4A型分子筛。
10、 根据权利要求 1所述的 4A型分子筛的合成方法, 该方法包括以下步骤:
(1) 天然黏土矿物的活化: 将天然黏土矿物与氢氧化钠溶液按照 1 :2至 1 :20的质量 比例混合均匀, 然后在 100至 300°C下烘干后作为合成 4A型分子筛的原料, 其中所述 氢氧化钠溶液是由氢氧化钠固体与水按照质量比为 1 : 1至 1 : 10混合配制的;
(2) 向步骤 (1)获得的合成原料中加入去离子水、氢氧化钠,调节物料的摩尔配比为: 1至 6的 Na20: 1.8至 2.2的 Si02: A1203: 20至 200的 ¾0, 在搅拌条件下经老化、 晶化 得到晶化产物;
(3) 将步骤 (2)所得晶化产物冷却、 过滤除去母液, 滤饼用去离子水洗涤至中性, 干 燥得到 4A型分子筛。
11、 根据权利要求 3所述的 4A型分子筛的合成方法, 该方法包括以下步骤:
(1) 天然黏土矿物的活化: 将天然黏土矿物与氢氧化钠溶液按照 1 :2至 1 :20的质量 比例混合均匀, 然后在 100至 300°C下烘干后作为合成 4A型分子筛的原料, 其中所述 氢氧化钠溶液是由氢氧化钠固体与水按照质量比为 1 : 1至 1 : 10混合配制的;
(2) 向步骤 (1)获得的合成原料中加入去离子水、氢氧化钠,调节物料的摩尔配比为:
1至 6的 Na20: 1.8至 2.2的 Si02: A1203: 20至 200的 ¾0, 在搅拌条件下经老化、 晶化 得到晶化产物;
(3) 将步骤 (2)所得晶化产物冷却、 过滤除去母液, 滤饼用去离子水洗涤至中性, 干 燥得到 4A型分子筛。
12、 根据权利要求 10所述的方法, 其中在步骤 (2)中, 老化温度为 20至 70°C, 老 化时间为 0至 24 h。
13、 根据权利要求 11所述的方法, 其中在步骤 (2)中, 老化温度为 20至 70°C, 老 化时间为 0至 24 h。
14、 根据权利要求 10所述的方法, 其中在步骤 (2)中, 晶化温度为 80至 120°C, 晶 化时间为 1至 12 h。
15、 根据权利要求 11所述的方法, 其中在步骤 (2)中, 晶化温度为 80至 120°C, 晶 化时间为 1至 12 h。
PCT/CN2013/088323 2013-06-03 2013-12-02 一种4a型分子筛的合成方法 WO2014194618A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/895,481 US20160185609A1 (en) 2013-06-03 2013-12-02 4a-type molecular sieve synthesis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310217164.5 2013-06-03
CN201310217164.5A CN104211082A (zh) 2013-06-03 2013-06-03 一种4a型分子筛的合成方法

Publications (1)

Publication Number Publication Date
WO2014194618A1 true WO2014194618A1 (zh) 2014-12-11

Family

ID=52007478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088323 WO2014194618A1 (zh) 2013-06-03 2013-12-02 一种4a型分子筛的合成方法

Country Status (3)

Country Link
US (1) US20160185609A1 (zh)
CN (1) CN104211082A (zh)
WO (1) WO2014194618A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683099A (zh) * 2021-08-31 2021-11-23 大连理工大学 一种富含羟基窝的缺陷型沸石分子筛合成方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105731486B (zh) * 2016-02-29 2018-01-30 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 利用低质凹凸棒石黏土尾矿制备球形方沸石介孔材料的方法
CN106517235B (zh) * 2016-12-08 2019-02-19 西京学院 一种以凹凸棒土为原料合成mcm-22分子筛的方法
CN107226473A (zh) * 2017-05-04 2017-10-03 明光市飞洲新材料有限公司 一种钙型分子筛的制备方法
CN107055565B (zh) * 2017-05-31 2019-08-02 合肥工业大学 一种用蛋白石凹凸棒石黏土制备沸石分子筛的方法
CN107376835B (zh) * 2017-08-18 2020-12-01 洛阳建龙微纳新材料股份有限公司 一种高效制氢吸附剂及其制备方法
CN107572824A (zh) * 2017-09-25 2018-01-12 江苏时空雨电子有限公司 一种高热稳定性介质粉体、其前体、制备方法及应用
CN108793184B (zh) * 2018-08-29 2020-08-18 中国石油大学(北京) 一种介-微复合等级孔丝光沸石及其制备方法
CN110395744B (zh) * 2019-07-11 2022-09-30 内蒙古工业大学 一种外电场因素作用下制备八面体4a分子筛的方法
CN110980760B (zh) * 2019-12-27 2023-05-02 上海交通大学 一种介孔-微孔分级结构4a分子筛的水热合成方法
CN111170331A (zh) * 2020-02-27 2020-05-19 中国日用化学研究院有限公司 一种连续化制备超细4a沸石的工艺及装置
CN115417421B (zh) * 2022-08-16 2023-12-05 陇东学院 一种黄土基4a型分子筛及其制备方法和应用
CN115710717A (zh) * 2022-11-25 2023-02-24 华北电力大学 一种微等离子体合成Na-A沸石分子筛的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1124716A (zh) * 1995-03-30 1996-06-19 林宪樟 高岭土合成4a沸石及其制备方法
CN1425748A (zh) * 2002-12-27 2003-06-25 中山大学 绿色无磷洗涤助剂超微4a分子筛的全微波合成方法
CN101033070A (zh) * 2006-03-10 2007-09-12 浙江师范大学 高岭土低温碱熔法合成4a沸石
CN102167352A (zh) * 2011-03-14 2011-08-31 浙江师范大学 高岭土碱熔一步法制备4a沸石的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2418771A1 (fr) * 1978-03-02 1979-09-28 Rhone Poulenc Ind Procede de fabrication d'un silico-aluminate synthetique et produits obtenus
JP2782744B2 (ja) * 1988-12-09 1998-08-06 東ソー株式会社 バインダレスゼオライト成型体の製造方法
US5026531A (en) * 1989-02-10 1991-06-25 Uop Silicate treatment of molecular sieve agglomerates
JP3066427B2 (ja) * 1990-04-16 2000-07-17 東ソー株式会社 高強度a型ゼオライト成形体およびその製造法
CN1125193A (zh) * 1994-12-20 1996-06-26 陕西省科联新技术开发中心 用高岭土合成高白度4a沸石的生产工艺
CN1128101C (zh) * 1999-09-10 2003-11-19 中国科学院福建物质结构研究所 高岭土碱融法合成4a分子筛
CN102107880B (zh) * 2009-12-23 2012-11-14 深圳市海川实业股份有限公司 一种制备4a沸石的方法
CN103043680B (zh) * 2011-10-14 2014-12-10 中国石油天然气股份有限公司 一种具有多级孔结构的NaY分子筛/天然矿物复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1124716A (zh) * 1995-03-30 1996-06-19 林宪樟 高岭土合成4a沸石及其制备方法
CN1425748A (zh) * 2002-12-27 2003-06-25 中山大学 绿色无磷洗涤助剂超微4a分子筛的全微波合成方法
CN101033070A (zh) * 2006-03-10 2007-09-12 浙江师范大学 高岭土低温碱熔法合成4a沸石
CN102167352A (zh) * 2011-03-14 2011-08-31 浙江师范大学 高岭土碱熔一步法制备4a沸石的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683099A (zh) * 2021-08-31 2021-11-23 大连理工大学 一种富含羟基窝的缺陷型沸石分子筛合成方法
CN113683099B (zh) * 2021-08-31 2023-12-29 大连理工大学 一种富含羟基窝的缺陷型沸石分子筛合成方法

Also Published As

Publication number Publication date
CN104211082A (zh) 2014-12-17
US20160185609A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
WO2014194618A1 (zh) 一种4a型分子筛的合成方法
AU2020100373A4 (en) Method for preparing ssz-13 molecular sieve by using fly ash
CN103848439B (zh) 一种zsm-5型分子筛的合成方法
CN101973563B (zh) 晶种法合成zsm-35分子筛的方法
Rozhkovskaya et al. Synthesis of high-quality zeolite LTA from alum sludge generated in drinking water treatment plants
WO2015000254A1 (zh) 一种丝光沸石的制备方法
CN104229818B (zh) 一种β分子筛的合成方法
CN102659133A (zh) 一种具有核壳结构的p型沸石分子筛的制备方法
CN102092738B (zh) 水热法无氟合成AlPO4-34
CN102838127A (zh) 含纯Na离子的A型和X型分子筛的一次晶化水热制备方法
CN109928406B (zh) 一种方沸石及其合成方法
CN109437232A (zh) 一种多级结构的zsm-5分子筛的制备方法
US10287172B2 (en) Preparation method for beta zeolite
CN103043679B (zh) 一种y型分子筛的合成方法
CN106379913A (zh) 一种以稻壳为原料合成p型沸石分子筛的方法
CN101462739A (zh) 红辉沸石制备4a沸石分子筛的方法
CN102976351B (zh) 一种利用高岭土和石英合成八面沸石的方法
CN101172619A (zh) 低温煅烧制备4a沸石分子筛的方法
CN104649290B (zh) 一种无有机模板合成β分子筛的方法
CN111186846B (zh) 一种ith结构硅铝分子筛及其制备方法
CN108658086B (zh) 粉煤灰酸法提铝残渣制备方钠石和高硅丝光沸石的方法以及粉煤灰的利用方法
CN110395745A (zh) 一种用自燃煤矸石制备的p-a型分子筛及其制备方法
CN112591760B (zh) 一种y分子筛转晶合成新形貌的ssz-16分子筛及其方法
CN115010144B (zh) 一种片状zsm-11分子筛的合成方法
CN103073023A (zh) 含伊利石的高岭土制备13x沸石分子筛的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14895481

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13886476

Country of ref document: EP

Kind code of ref document: A1