WO2014192821A1 - Led用パタンウェハ、led用エピタキシャルウェハ及びled用エピタキシャルウェハの製造方法 - Google Patents

Led用パタンウェハ、led用エピタキシャルウェハ及びled用エピタキシャルウェハの製造方法 Download PDF

Info

Publication number
WO2014192821A1
WO2014192821A1 PCT/JP2014/064153 JP2014064153W WO2014192821A1 WO 2014192821 A1 WO2014192821 A1 WO 2014192821A1 JP 2014064153 W JP2014064153 W JP 2014064153W WO 2014192821 A1 WO2014192821 A1 WO 2014192821A1
Authority
WO
WIPO (PCT)
Prior art keywords
concavo
convex structure
semiconductor layer
led
convex
Prior art date
Application number
PCT/JP2014/064153
Other languages
English (en)
French (fr)
Inventor
潤 古池
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to JP2015519907A priority Critical patent/JP6049875B2/ja
Priority to CN201480031293.8A priority patent/CN105247693B/zh
Priority to EP14803459.8A priority patent/EP3007237B1/en
Priority to KR1020157033021A priority patent/KR101843627B1/ko
Priority to BR112015029641A priority patent/BR112015029641A2/pt
Priority to US14/894,480 priority patent/US9660141B2/en
Publication of WO2014192821A1 publication Critical patent/WO2014192821A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Definitions

  • the present invention relates to an LED pattern wafer, an LED epitaxial wafer, and an LED epitaxial wafer manufacturing method.
  • a semiconductor light emitting device chip for example, an LED chip, is generally an LED epitaxial wafer in which a first semiconductor layer having a light emitting diode structure, a light emitting semiconductor layer, and a second semiconductor layer are sequentially stacked and grown on the LED wafer. Then, the electrodes are formed on the second semiconductor layer and the first semiconductor layer, respectively, and are manufactured into chips. And the emitted light of LED can be visually recognized by taking out the emitted light which generate
  • the external quantum efficiency EQE External Quantum Efficiency indicating the efficiency of the LED
  • EIE Electromon Injection Efficiency
  • internal quantum efficiency IQE Internal Quantum Efficiency
  • light extraction efficiency LE Light extraction efficiency
  • the internal quantum efficiency IQE depends on the dislocation density caused by the lattice mismatch of the semiconductor crystal (for example, Non-Patent Document 1).
  • the light extraction efficiency LEE is improved by breaking the waveguide mode inside the semiconductor layer by light scattering due to the uneven structure of the LED pattern wafer (for example, Patent Document 1).
  • the electron injection efficiency EIE is improved by reducing the interface resistance between the second semiconductor layer and the transparent conductive layer made of an oxide such as ITO, ZnO, In 2 O 3 or SnO 2 .
  • the internal quantum efficiency IQE means the efficiency of light emission of the LED itself, and the first semiconductor layer, the light emitting semiconductor layer, and the first semiconductor layer are formed on the LED pattern wafer. If an epitaxial wafer for LED is manufactured by forming two semiconductor layers, a great improvement cannot be expected. That is, in order to manufacture an LED that achieves a high external quantum efficiency EQE, it is necessary to at least improve the internal quantum efficiency IQE.
  • the present invention has been made in view of the above-described problems, and provides an LED pattern wafer capable of forming a semiconductor layer with improved internal quantum efficiency IQE while suppressing the occurrence of cracks.
  • Another object of the present invention is to provide an LED epitaxial wafer with improved cracks and internal quantum efficiency IQE, and a method for manufacturing the same.
  • the LED pattern wafer of the present invention comprises a concavo-convex structure A having a substantially n-fold symmetrical arrangement on at least a part of a main surface, and at least a part of the concavo-convex structure A is an LED pattern wafer in the main surface.
  • the rotational shift angle ⁇ of the array axis A of the concavo-convex structure A with respect to the crystal axis direction satisfies 0 ° ⁇ ⁇ (180 / n) °, and the top of the convex portion of the concavo-convex structure A has a radius of curvature exceeding 0. It is a corner part.
  • the LED epitaxial wafer of the present invention is characterized in that at least a first semiconductor layer, a light emitting semiconductor layer, and a second semiconductor layer are laminated in this order on the main surface of the LED pattern wafer provided with the concavo-convex structure A.
  • the manufacturing method of the epitaxial wafer for LED of this invention has the process of preparing the pattern wafer for LED, the process of carrying out the optical test of the prepared said pattern wafer for LED, and the epitaxial wafer for LED using the said patterned wafer for LED optically inspected And a step of manufacturing.
  • the internal quantum efficiency IQE is improved by dispersing dislocations generated in the semiconductor layer by the concavo-convex structure A of the LED pattern wafer and reducing the density.
  • the rotation shift angle ⁇ between the crystal axis of the LED pattern wafer and the arrangement axis A of the concavo-convex structure A within a predetermined range, cracks generated in the semiconductor layer can be suppressed. That is, an LED epitaxial wafer having good light emitting diode characteristics can be manufactured. Accordingly, an LED chip having a high external quantum efficiency EQE can be efficiently manufactured.
  • FIG. It is a schematic diagram for demonstrating the rotation shift angle (theta) made with the crystal axis of the LED pattern wafer (1) which concerns on this Embodiment, and the array axis
  • FIG. It is a schematic diagram which shows the example of an arrangement
  • the rotational shift angle ⁇ the size of the bottom of the concave portion contributing to the growth of the semiconductor layer, and the density of the convex portion through which the growing semiconductor layer passes are
  • a graph which shows a relationship. Shows the relationship between the duty when the semiconductor layer is grown on the LED pattern wafer (1), and the size of the bottom of the recess contributing to the growth of the semiconductor layer and the density of the protrusion passing through the growing semiconductor layer It is a graph.
  • FIG. 10A is a scanning electron micrograph showing an example of a cross-sectional shape of the top of the convex portion of the concavo-convex structure A according to the present embodiment
  • FIG. 10B is a schematic diagram showing a part of FIG. 10A.
  • FIG. 12A is a scanning electron micrograph showing a crack
  • FIG. 12B is a scanning electron micrograph showing a crack
  • FIG. 12B is a schematic diagram showing a part of FIG. 12A. It is a graph which shows the relationship between a crack density and the half value width (FWHM) of a rocking curve. It is a graph which shows the relationship between the dark density obtained from the image obtained by the crack density and cathodoluminescence (CL) evaluation. It is a scanning electron micrograph which shows the example of the cross-sectional shape of the convex part top part of the uneven structure A which concerns on this Embodiment. It is a graph which shows the relationship between the average space
  • the LED pattern wafer (1) includes a concavo-convex structure A having a substantially n-fold symmetric arrangement on the main surface, and at least a part of the concavo-convex structure A is an LED in the main surface.
  • Pattern wafer (1) The rotational shift angle ⁇ of the array axis A of the concavo-convex structure A with respect to the crystal axis direction satisfies 0 ° ⁇ ⁇ (180 / n) °, and the top of the convex portion of the concavo-convex structure A has a radius of curvature. Is a corner portion exceeding 0.
  • the convex part top part of the concavo-convex structure A of the LED pattern wafer (1) is a corner part with a curvature radius exceeding zero. For this reason, when forming a semiconductor layer on the concavo-convex structure A of the LED pattern wafer (1), the semiconductor layer can be grown on the basis of the concave bottom of the concavo-convex structure. That is, the semiconductor layer grows preferentially from the bottom of the concave portion of the concave-convex structure.
  • the concavo-convex structure A provided on the LED pattern wafer (1) has a substantially n-fold symmetrical arrangement.
  • the nucleation of the semiconductor layer should be evenly dispersed and the non-uniformity of the nucleation should be balanced.
  • the non-uniformity of the nucleus growth means that the semiconductor layer partially rises due to the nucleus growth. That is, it is possible to disperse the semiconductor layer in the nucleation stage that is partially raised.
  • size of the recessed part bottom part of the uneven structure which contributes greatly to the initial stage growth of a semiconductor layer can be enlarged.
  • the number of convex portions of the concavo-convex structure through which the growing semiconductor layer passes can be reduced. From the above, when the semiconductor layer grows, the coalescence (adhesion) between the growing nuclei becomes good, and cracks to the semiconductor layer can be suppressed. At the same time, the dislocation progress direction in the semiconductor layer changes to the in-plane direction of the LED pattern wafer (1) during the coalescence. Thereby, since collision between dislocations is effectively induced, the internal quantum efficiency IQE is improved.
  • the average interval Pave of the concavo-convex structure A preferably satisfies 50 nm ⁇ Pave ⁇ 1500 nm.
  • both the improvement effect of the internal quantum efficiency IQE and the crack suppression effect are increased.
  • the average interval Pave satisfies the above range
  • the density of the concave portions of the concavo-convex structure A is improved, and thus the coalescence frequency of the already-grown semiconductor layers described above can be increased. That is, since the frequency of dislocations in the semiconductor layer changing the traveling direction thereof can be improved, the effect of reducing the dislocations is increased, thereby effectively improving the internal quantum efficiency IQE.
  • the size of the bottom of the concave portion of the concave-convex structure that greatly contributes to the initial growth of the semiconductor layer can be kept within a predetermined range.
  • the nucleus growth of the semiconductor layer in the bottom part of the recessed part of the uneven structure A can be kept favorable. Therefore, the effect of suppressing cracks in the semiconductor layer is increased by shifting the arrangement axis A of the concavo-convex structure A within the predetermined range by the rotational shift angle ⁇ .
  • the duty that is the ratio ( ⁇ ave / Pave) of the average width ( ⁇ ave) of the convex bottom portion of the concavo-convex structure A to the average interval Pave is used.
  • the rotation shift angle ⁇ preferably satisfies the range of atan (Duty / 2) ° ⁇ ⁇ ⁇ (180 / n) °.
  • the effect of improving the internal quantum efficiency IQE and the effect of suppressing cracks in the semiconductor layer are both increased.
  • the size of the bottom of the concave portion of the concavo-convex structure A that greatly contributes to the initial growth of the semiconductor layer is approximately the same as the growth direction of the semiconductor layer in the in-plane direction of the LED pattern wafer (1). Since the size can be increased in the vertical direction, the size of the semiconductor layer with a high growth rate is increased. Thereby, when attention is paid to the coalescence of the growing semiconductor layers, the interface area between the semiconductor layers to be coalesced becomes large.
  • the degree of the convex parts of the concavo-convex structure A that the surface of the semiconductor layer having a high growth speed crosses can be reduced, the unity of the growing semiconductor layers becomes good. From the above, the internal quantum efficiency IQE is further improved, and cracks generated in the semiconductor layer are effectively suppressed.
  • the LED pattern wafer (1) is preferably a sapphire wafer, a silicon wafer, a silicon carbide wafer, or a gallium nitride-based wafer.
  • the first semiconductor layer, the light emitting semiconductor layer, and the second semiconductor layer are arranged in this order on the main surface of the LED pattern wafer (1) where the uneven structure A is provided. It is characterized by being laminated.
  • the distance (Hbun) between the surface of the LED pattern wafer (1) on the light emitting semiconductor layer side and the surface of the light emitting semiconductor layer on the first semiconductor layer side The ratio (Hbun / Have) to the average height (Have) of the uneven structure A preferably satisfies 2 ⁇ Hbun / Have ⁇ 300.
  • an epitaxial wafer for LED with high internal quantum efficiency IQE in which cracks are suppressed can be efficiently manufactured.
  • the concavo-convex structure A provided on the main surface of the LED pattern wafer (1) can increase the crystallinity of the first semiconductor layer and suppress cracks.
  • the ratio (Hbun / Have) is 2 or more, the degree of planarization of the concavo-convex structure A by the first semiconductor layer is improved. This effectively improves the film formation accuracy of the light emitting semiconductor layer and the second semiconductor layer provided on the first semiconductor layer.
  • the performance of the first semiconductor layer with few dislocations as a semiconductor can be reflected in the light emitting semiconductor layer and the second semiconductor layer in a state in which cracks are suppressed, cracks are suppressed, and internal quantum A semiconductor layer having a light-emitting diode structure with high efficiency IQE (including a first semiconductor layer, a light-emitting semiconductor layer, and a second semiconductor layer; the same applies hereinafter) can be obtained. Furthermore, since the ratio (Hbun / Have) is 300 or less, in addition to the above effects, the warpage of the LED pattern wafer (1) can be suppressed, so that the LED chip formation efficiency can be improved.
  • the ratio (Hbun / Have) satisfies the predetermined range, it is possible to form a semiconductor layer having a high internal quantum efficiency IQE in which cracks are suppressed, and the LED pattern wafer (1) on which the semiconductor layer is formed. Since warpage can be suppressed, a highly efficient LED chip can be manufactured with high production efficiency. In particular, even when the size of the LED pattern wafer (1) has a diameter of 6 inches or more, the warpage of the LED epitaxial wafer can be effectively suppressed. Therefore, by using the LED pattern wafer (1) of the present invention in a size of 6 inches or more, the thickness of the LED pattern wafer (1) is reduced and the warp of the LED epitaxial wafer is effectively reduced. Can be suppressed.
  • the amount of the LED pattern wafer used can be reduced, that is, the environmental suitability can be increased. Furthermore, since the heat applied to the LED pattern wafer (1) can be suppressed, temperature management during the formation of the semiconductor layer is facilitated.
  • the LED epitaxial wafer according to the present embodiment includes an undoped first semiconductor layer and a doped first semiconductor layer in which the first semiconductor layer is sequentially laminated from the LED pattern wafer (1) side,
  • the ratio (Hbu / Have) preferably satisfies 1.5 ⁇ Hbu / Have ⁇ 200.
  • an epitaxial wafer for LED with high internal quantum efficiency IQE in which cracks are suppressed can be efficiently manufactured.
  • the concavo-convex structure A provided on the main surface of the LED pattern wafer (1) can enhance the crystallinity of the undoped first semiconductor layer and suppress cracks from the principle already described.
  • the ratio (Hbu / Have) is 1.5 or more, the degree of planarization of the concavo-convex structure A by the undoped first semiconductor layer is improved. Thereby, it is possible to effectively improve the film formation accuracy of the doped first semiconductor layer, the light emitting semiconductor layer, and the second semiconductor layer provided on the undoped first semiconductor layer.
  • the ratio (Hbu / Have) satisfies a predetermined range
  • a semiconductor layer having a high internal quantum efficiency IQE in which cracks are suppressed can be formed, and the LED pattern wafer (1) on which the semiconductor layer is formed can be formed. Since warpage can be suppressed, a highly efficient LED chip can be manufactured with high production efficiency. In particular, even when the size of the LED pattern wafer is 6 inches or more, warping of the LED epitaxial wafer can be effectively suppressed. Therefore, by using the LED pattern wafer (1) of the present invention in a size of 6 inches or more, the thickness of the LED pattern wafer (1) is reduced and the warp of the LED epitaxial wafer is effectively reduced. Can be suppressed.
  • the amount of the LED pattern wafer used can be reduced, that is, the environmental suitability can be increased. Furthermore, since the heat applied to the LED pattern wafer (1) can be suppressed, temperature management during the formation of the semiconductor layer is facilitated.
  • the first semiconductor layer, the light emitting semiconductor layer, and the second semiconductor layer may be III-V group semiconductors.
  • the first semiconductor layer, the light emitting semiconductor layer, and the second semiconductor layer may be GaN-based semiconductors.
  • the manufacturing method of the LED epitaxial wafer according to the present embodiment includes a step of preparing the LED pattern wafer (1), a step of optically inspecting the prepared LED pattern wafer (1), and an optical inspection of the LED wafer. And the step of manufacturing the above-described LED epitaxial wafer using the pattern wafer (1).
  • the step of preparing the LED pattern wafer (1) satisfies the rotational shift angle ⁇ by a transfer method using a mold having a fine pattern on the surface. It is preferable to be performed as follows.
  • the LED pattern wafer (1), the LED epitaxial wafer and the manufacturing method thereof according to the present embodiment will be described in detail in this order.
  • the LED pattern wafer according to the present embodiment enables the formation of a high-quality semiconductor layer in which cracks are suppressed, and the LED pattern wafer (1) capable of particularly improving the internal quantum efficiency IQE, and the LED pattern wafer (1 And LED pattern wafer (2) to which high light extraction efficiency LEE is imparted as a further function.
  • the description starts from the LED pattern wafer (1), and the description of the LED pattern wafer (2) will be described mainly by paying attention to additional elements.
  • the LED pattern wafer (1) has an uneven structure A on the surface.
  • the concavo-convex structure A may be obtained by processing one main surface of the LED wafer, or may be separately provided on one main surface of the LED wafer. That is, the material constituting the LED wafer and the material constituting the concavo-convex structure A may be the same or different.
  • this concavo-convex structure A has a substantially n-fold symmetric arrangement, and the arrangement axis A direction of the concavo-convex structure A and the crystal axis direction in the plane of the LED wafer are within a predetermined range. It is characterized by shifting. This shift amount is referred to as a rotational shift angle ⁇ .
  • FIG. 1 is a schematic diagram for explaining the rotational shift angle ⁇ formed by the crystal axis of the LED pattern wafer (1) according to the present embodiment and the arrangement axis A of the concavo-convex structure A.
  • FIG. 1A only one arrangement axis A (indicated by AXa in FIG.
  • the rotation shift angle ⁇ is the minimum angle when the crystal axis AXc is rotated until it overlaps the array axis AXa, with the intersection of the crystal axis AXc and the array axis AXa as the center point.
  • FIG. 1B shows a case in which three crystal axes (indicated by AXc1, AXc2, and AXc3 in FIG. 1B) and three arrangement axes A (indicated by AXa1, AXa2, and AXa3 in FIG. 1B) are drawn and drawn for convenience.
  • AXc1, AXc2, and AXc3 in FIG. 1B shows a case in which three crystal axes (indicated by AXc1, AXc2, and AXc3 in FIG. 1B) and three arrangement axes A (indicated by AXa1, AXa2, and AXa3 in FIG. 1B) are drawn and drawn for convenience.
  • a concavo-convex structure A having a 6-fold symmetry arrangement is provided for an LED wafer having a 6-fold symmetry crystal axis.
  • one crystal axis is selected.
  • the crystal axis AXc1 is selected.
  • the crystal axis AXc1 is rotated, and the angle overlapping the array axis A is recorded.
  • the small angle when overlapping with the array axis AXa3 is the angle ⁇ A
  • the small angle when overlapping with the array axis AXa1 is the angle ⁇ B.
  • the smallest of these angles is the rotational shift angle ⁇ .
  • the arrangement axis A is an axis that determines the arrangement direction of the concavo-convex structure A.
  • the arrangement of the concavo-convex structure A has substantial n-fold symmetry.
  • “n-fold symmetry” means “rotation symmetry”.
  • n is a positive integer of 2 or more.
  • the arrangement axis A has the same property as the rotation of (360 / n) ° or overlaps the other arrangement axis A.
  • the array axis A is defined separately for the case where n is 2 times symmetrical and n is 2 or more.
  • the array is symmetric with respect to a single axis.
  • the array axis A is defined as an axis in a direction perpendicular to the axis.
  • the concavo-convex structure A in which a plurality of lines parallel to each other are arranged, the concavo-convex structure A is two-fold symmetric with respect to a line segment perpendicular to the line.
  • the arrangement axis A is a line segment parallel to the stretching direction or the modulation direction.
  • the interval between a plurality of lines is modulated periodically (for example, by multiplying by a sine wave)
  • the line segment in the direction parallel to the plurality of lines becomes the array axis A.
  • the symmetry becomes twice in the direction perpendicular to any of the stretching directions.
  • the arrangement axis A is a line segment parallel to the extending direction.
  • the arrangement becomes symmetrical twice in the direction perpendicular to any of the modulation directions.
  • the array axis A is a line segment parallel to the modulation direction.
  • the axis that is the closest direction of the convex portions or concave portions of the concavo-convex structure A is defined as an array axis A.
  • the closest direction is a direction of a line segment connecting the central portions of the top portions of the convex portions closest to each other or a direction of a line segment connecting the central portions of the concave opening portions closest to each other.
  • FIG. 2 is a schematic diagram showing an arrangement example of the concavo-convex structure A having three or more symmetry in the LED pattern wafer (1) according to the present embodiment.
  • FIG. 2 shows a case where the concavo-convex structure A is arranged substantially in a regular tetragon.
  • the arrangement axis A is the closest direction of the convex portion or concave portion of the concavo-convex structure A.
  • the centers of the convex portions closest to the convex portion (or the concave portion, hereinafter the same) having the center indicated by symbol A are as indicated by symbols a, b, c, and d in FIG. 2A. That is, the direction parallel to any of the line segment Aa, the line segment Ab, the line segment Ac, and the line segment Ad connecting the center A and the other centers is the array axis AXa.
  • FIG. 3 is a schematic diagram showing an arrangement example of the concavo-convex structure A having three or more symmetry in the LED pattern wafer (1) according to the present embodiment. For example, it can obtain by observing the surface side with the uneven structure A of the LED pattern wafer (1) with a scanning electron microscope or an atomic force microscope.
  • FIG. 3 shows a case where the concavo-convex structure A is arranged substantially in a regular hexagon.
  • the arrangement axis A is the closest direction of the convex portion or concave portion of the concavo-convex structure A.
  • the center of the convex portion closest to the convex portion having the center indicated by A is as indicated by symbols a, b, c, d, e, and f in FIG. It is. That is, it is parallel to any one of the line segment Aa, line segment Ab, line segment Ac, line segment Ad, line segment Ae, and line segment Af connecting the center A and the other centers.
  • Direction is the array axis AXa.
  • the four-fold symmetric arrangement when the interval between the protrusions or depressions on two axes perpendicular to each other is periodically modulated (for example, multiplied by a sine wave), the four-fold symmetric arrangement It becomes.
  • the interval between the convex portions or the concave portions on the axis in increments of 60 ° with respect to a certain axis may be changed periodically (for example, by multiplying by a sine wave). It becomes a symmetric array.
  • the crystal axis is the closest direction of the lattice point of the crystal lattice in a plane parallel to the main surface of the LED pattern wafer (1).
  • FIG. 4 is a schematic diagram for explaining the crystal axes of the crystal lattice in the main surface of the LED pattern wafer (1) according to the present embodiment.
  • FIG. 4 shows a case where the crystal lattice in the plane parallel to the main surface of the LED wafer is a regular hexagonal lattice, and the lattice intersection points are marked and emphasized.
  • the crystal axis is the direction closest to the lattice point. For example, in FIG.
  • intersections closest to the intersection indicated by symbol A are as indicated by symbols a, b, c, d, e, and f. That is, it is parallel to any of the line segment Aa, line segment Ab, line segment Ac, line segment Ad, line segment Ae, and line segment Af connecting the intersection A with another intersection.
  • Direction is the crystal axis.
  • the arrangement of crystal lattices observed in a plane parallel to the main surface of the LED pattern wafer (1) is, for example, a hexagonal arrangement, a tetragonal arrangement, an arrangement with a hexagonal arrangement, or an uniaxial direction with a tetragonal arrangement.
  • the crystal axis of this specification is defined by applying the above definition.
  • the crystal axes are a-axis, c-axis, and n-axis, respectively.
  • the concavo-convex structure A provided on the LED pattern wafer (1) has a substantially n-fold symmetric arrangement. For this reason, when attention is paid to the initial growth stage of the semiconductor layer formed on the LED pattern wafer (1), the nucleation of the semiconductor layer should be evenly distributed and the non-uniformity of the nucleation should be balanced. Can do.
  • the non-uniformity of the nucleus growth means that the semiconductor layer partially rises due to the nucleus growth. That is, it is possible to disperse the semiconductor layer in the nucleation stage that is partially raised.
  • FIG. 5 is a schematic diagram showing a surface observation image when film formation is stopped at the nucleus growth stage when forming a semiconductor layer on the surface of the LED pattern wafer (1).
  • the symbol X indicates the position of the semiconductor layer at the partially growing nucleus growth stage.
  • FIG. 5A schematically illustrates a state in which the semiconductor layers X in the nuclear growth stage, which are partially raised, are dispersed in the LED pattern wafer (1) according to the embodiment of the present invention.
  • FIG. 5B shows a case in which the semiconductor layer X at the stage of the nuclear growth that partially protrudes is biased in the LED pattern wafer (1) having a low rotational symmetry of the arrangement of the concavo-convex structure A.
  • the uneven structure A has substantially n-fold symmetry, so that the dispersibility of the semiconductor layer X at the partially growing nucleus growth stage is large. Become. Thereby, the location where coalescence (adhesion) of the growing semiconductor layers occurs is also dispersed. That is, the stress concentration points inside the semiconductor layer are dispersed and the locations where the dislocations collide are also dispersed. Therefore, the crack of a semiconductor layer is suppressed and internal quantum efficiency IQE improves effectively.
  • the crack referred to in this specification is a nano-order crack.
  • the case where the semiconductor layer is formed on the uneven structure A of the LED pattern wafer (1) the case where the growth of the semiconductor layer is stopped in the facet formation process is observed.
  • the facet has an n-gon shape such as a hexagon, for example, when attention is paid to two adjacent n-corner concave portions, the sides of the n-gon concave portion enter a direction perpendicular to the sides.
  • a crack is a crack as defined herein.
  • the rotation shift angle ⁇ is relative to the rotation direction in the plane parallel to the main surface of the LED pattern wafer (1), and the crystal axis of the LED pattern wafer (1) and the array axis A of the concavo-convex structure A. This is the shift amount.
  • the rotational shift angle ⁇ satisfies 0 ° ⁇ ⁇ (180 / n) °.
  • n is the rotationally symmetric order of the concavo-convex structure A having an n-fold symmetric arrangement, as already described. For example, if the concavo-convex structure A has a six-fold symmetry, the rotation shift angle ⁇ is more than 0 ° and not more than 30 °.
  • the size of the bottom of the concave portion of the concavo-convex structure A that greatly contributes to the initial growth of the semiconductor layer can be increased.
  • the parallelism of a side at the time of the side of a facet formed facing a side becomes favorable, and a crack is suppressed.
  • a more preferable range of the rotational shift angle ⁇ can be considered as follows. First, improvement of the internal quantum efficiency IQE and improvement of cracks are effective, and it is effective to increase the coalescence frequency of the growing semiconductor layers and to disperse the coalescence sites. Furthermore, when considering the stage before the semiconductor layers are combined, it is necessary to improve the nucleus growth of the semiconductor layer and to maintain the nucleus growth. In order to realize these, it is effective to increase the size of the concave portion of the concave-convex structure A to which the nucleus of the semiconductor layer adheres, and to reduce the number of convex portions of the concave-convex structure A that cross when the semiconductor layer grows. Can be considered. At the same time, it is important to increase the parallelism between the sides of the facet to be formed.
  • FIG. 6 shows the rotational shift angle ⁇ , the size of the bottom of the concave portion contributing to the growth of the semiconductor layer, and the convex portion through which the growing semiconductor layer passes when the semiconductor layer is grown on the LED pattern wafer (1). It is a graph which shows the relationship between density.
  • FIG. 6 shows the size of the bottom of the recess that contributes to the growth of the semiconductor layer given by the rotational shift angle ⁇ with respect to the 6-fold concavo-convex structure A (hereinafter also simply referred to as the size L of the bottom of the recess), and The result of having calculated the influence on the density of the convex part (henceforth only the convex part density D) which the growing semiconductor layer passes is shown.
  • the rotational shift angle ⁇ represents the rotational shift angle ⁇
  • the left vertical axis represents the size L of the concave bottom
  • the right vertical axis represents the density D of the convex.
  • the black circle ( ⁇ ) plot represents the influence on the size L of the concave bottom
  • the black square ( ⁇ ) plot represents the influence on the density D of the convex portions.
  • the size L of the concave portion and the density D of the convex portion are both normalized as 1 when the rotation shift angle ⁇ is 0 °.
  • FIG. 6 shows that as the rotational shift angle ⁇ increases, the size L of the recesses of the concavo-convex structure A effective for the attachment and growth of nuclei increases.
  • the rotational shift angle ⁇ is increased, there is a maximum point, and even when the rotational shift angle ⁇ is maximized, the size L of the recess is larger than when the rotational shift angle ⁇ is 0 °.
  • the density D of the convex portions that function disadvantageously for the growth of the semiconductor layers and for the combination of the growing semiconductor layers decreases.
  • the rotational shift angle ⁇ is preferably 1 ° or more, more preferably 3 ° or more, and more preferably 5 ° or more. Most preferably it is. In this case, in particular, since the density D of the protrusions is greatly reduced, the growth of the semiconductor layer is stabilized and the effect of suppressing cracks is increased. Furthermore, the rotational shift angle ⁇ is preferably 7.5 ° or more, more preferably 10 ° or more, and most preferably 14 ° or more.
  • the rotation shift angle ⁇ further satisfies the following relationship with respect to the convex portion of the concavo-convex structure A, the crack suppressing effect and the internal quantum efficiency IQE improving effect are further increased.
  • the duty (duty) which is the ratio ( ⁇ ave / Pave) of the average width ( ⁇ ave) and average interval Pave of the convex portion bottom of the concavo-convex structure A
  • the rotational shift angle ⁇ is atan (Duty / 2) °. It is preferable to satisfy the range of ⁇ ⁇ ⁇ (180 / n) °.
  • the average width ( ⁇ ave), average interval (Pave), and duty of the bottom of the convex portion will be described later.
  • the effect of improving the internal quantum efficiency IQE and the effect of suppressing cracks in the semiconductor layer are both increased.
  • the rotational shift angle ⁇ satisfies the above range
  • the size L of the bottom of the recess that greatly contributes to the initial growth of the semiconductor layer is set in a direction substantially perpendicular to the growth direction of the semiconductor layer in the plane of the LED pattern wafer (1). Therefore, the size of the semiconductor layer with a high growth rate is increased. Thereby, when attention is paid to the coalescence of the growing semiconductor layers, the interface area between the semiconductor layers to be coalesced becomes large.
  • the degree of convex portions of the concavo-convex structure crossed by the surface with a high growth rate of the semiconductor layer can be reduced, the unity of the growing semiconductor layers is improved. From the above, the internal quantum efficiency IQE is further improved, and cracks generated in the semiconductor layer are effectively suppressed.
  • the relationship between the duty and the rotational shift angle ⁇ was determined and determined as follows. First, in order to improve the internal quantum efficiency IQE and the crack, it is effective to increase the coalescence frequency of the growing semiconductor layers and to disperse the coalescence locations. Furthermore, when considering the stage before the semiconductor layers are combined, it is necessary to improve the nucleus growth of the semiconductor layer and to maintain the nucleus growth. In order to realize these, it is effective to increase the size of the concave portion of the concave-convex structure A to which the nucleus of the semiconductor layer adheres, and to reduce the number of convex portions of the concave-convex structure A that traverse when the semiconductor layer grows. Can be considered.
  • FIG. 7 shows the duty when the semiconductor layer is grown on the LED pattern wafer (1), the size of the bottom of the concave portion contributing to the growth of the semiconductor layer, and the density of the convex portion through which the growing semiconductor layer passes, It is a graph which shows the relationship.
  • FIG. 7 is a result of calculating the influence of the Duty on the size L of the concave portion and the density D of the convex portion, taking the case where the concavo-convex structure A is 6-fold symmetric as an example.
  • the horizontal axis indicates Duty
  • the left vertical axis indicates the size L of the bottom of the concave portion
  • the right vertical axis indicates the density D of the convex portion.
  • the black circle ( ⁇ ) plot represents the influence on the size L of the concave bottom
  • the black square ( ⁇ ) plot represents the influence on the density D of the convex portions.
  • the size L of the bottom of the concave portion and the density D of the convex portion are both normalized by assuming that the duty is 0, that is, the case where there is no concavo-convex structure A.
  • FIG. 7 shows that as the duty increases, the size L of the concave portion of the concave-convex structure A that is effective for the adhesion and growth of the nucleus increases.
  • the density D of the convex portions functioning disadvantageously for the growth of the semiconductor layer and the combination of the growing semiconductor layers decreases.
  • the rotational shift angle ⁇ is given as ⁇ ⁇ atan (Duty / 2) °. .
  • FIG. 8 is a graph showing the relationship between the rotational shift angle ⁇ and Duty shown in FIGS. For example, taking the case where the concavo-convex structure A is 6-fold symmetric as an example, the range indicated by hatching in FIG. 8 is the most preferable range of the rotational shift angle ⁇ .
  • the rotational shift angle ⁇ is a certain value or more and within a range of (180 / n) ° or less, so that the nucleation of the semiconductor layer as described above, Since the growth and coalescence of the growing semiconductor layers become better, an LED epitaxial wafer with high internal quantum efficiency IQE with suppressed cracks can be obtained.
  • FIG. 8 is a graph showing the relationship between the rotational shift angle ⁇ and Duty shown in FIGS. For example, taking the case where the concavo-convex structure A is 6-fold symmetric as an example, the range indicated by hatching in FIG. 8 is the most preferable range of the rotational shift angle ⁇ .
  • the horizontal axis is Duty and the vertical axis is the rotation shift angle ⁇ .
  • the plot in FIG. 8 is atan (Duty / 2) °, and the upper part in the vertical axis direction from this curve is the most preferable range of the rotational shift angle ⁇ .
  • the size L of the bottom of the concave portion of the concavo-convex structure A is too small, the nucleation of the semiconductor layer is inhibited, so that the growth of the semiconductor layer is inhibited.
  • the size of the bottom of the concave portion of the concavo-convex structure A can be expressed using the average interval Pave and Duty.
  • the lower limit value of the size of the bottom of the recess of the concavo-convex structure A can be estimated from the size of the core of the semiconductor layer. More specifically, regarding the RAMP process after the low-temperature buffer layer film formation described later on the LED pattern wafer (1), the moving distance of the nuclei rediffused in the RAMP process is approximately 80 nm.
  • FIG. 9 is a graph showing the relationship between the average interval Pave and the Duty of the concavo-convex structure A of the LED pattern wafer (1) according to the present embodiment.
  • the horizontal axis is the average interval Pave of the concavo-convex structure A, and the vertical axis is Duty.
  • the black triangle ( ⁇ ) plot is a case where Y in the formula Duty ⁇ 1- (Y / Pave) is preferably 50 nm, and the black diamond ( ⁇ ) plot is that Y is 80 nm. This is the preferred case.
  • the Pave dimension is nanometers.
  • the concavo-convex structure A satisfies the range below the curve shown in FIG. 9, the nucleation of the semiconductor layer is improved as described above.
  • the rotation shift angle ⁇ is satisfied, the nucleus growth is good, the coalescence frequency between the growing semiconductor layers is high, and the coalescing portions can be dispersed, so that the internal quantum efficiency in which cracks are suppressed is suppressed.
  • a semiconductor layer having a high IQE can be obtained.
  • the crack which is one of the effects of the rotational shift angle ⁇ described above, will be described in more detail, including the actual examination results.
  • a 6-inch ⁇ C-plane sapphire wafer was used as the LED wafer.
  • the main surface of this LED wafer was processed using a nano-processed sheet method described later to obtain an LED pattern wafer (1).
  • the rotational shift angle ⁇ includes an error of ⁇ ⁇ 1 °.
  • FIG. 10A is a scanning electron micrograph showing an example of a cross-sectional shape of the convex top portion of the concave-convex structure A according to the present embodiment.
  • FIG. 10B is a schematic diagram illustrating a part of FIG. 10A. From FIG. 10, it can be seen that there is no flat table top at the top of the convex portion, and the cross-sectional shape of the top portion of the convex portion is made so that the convex curves slightly intersect with each other.
  • FIG. 11 is a scanning electron micrograph showing an example of the undoped first semiconductor layer according to the present embodiment.
  • FIG. 11 is an observation image of 2500 times. From FIG. 11, it can be seen that a plurality of facets are formed and the connection between the gallium nitride layers is random.
  • FIG. 12A is a scanning electron micrograph showing a crack.
  • FIG. 12B is a schematic diagram illustrating a part of FIG. 12A. From FIG. 12, when attention is paid to the hexagonal opening of the growing gallium nitride, a crack is generated in the gallium nitride layer at a position where the sides of the hexagon face each other in a direction perpendicular to the side. I understand that. The crack in this specification has pointed out such a nanoscale crack.
  • the crack density is 72 ⁇ 10 9 pieces / cm 2 , 70 ⁇ 10 9 pieces / cm 2 , 57 ⁇ 10 9 pieces / cm 2 , 51 ⁇ 10 9 pieces / cm 2 , 43 ⁇ 10 9 pieces / cm 2 , and It changed to 41 ⁇ 10 9 pieces / cm 2 . That is, it has been found that the crack density decreases as the rotational shift angle ⁇ increases.
  • FIG. 13 is a graph showing the relationship between the crack density and the full width at half maximum (FWHM) of the rocking curve.
  • the horizontal axis represents the crack density
  • the vertical axis represents the full width at half maximum (FWHM) of the rocking curve.
  • the crack density is 102 ⁇ 10 9 pieces / cm 2 , 71 ⁇ 10 9 pieces / cm 2 , 56 ⁇ 10 9 pieces / cm 2 , 52 ⁇ 10 9 pieces / cm 2 , 44 ⁇ 10 9 pieces /
  • FWHM decreases to 673, 671, 644, 630, 600, and 590 as it decreases to cm 2 and 40 ⁇ 10 9 cells / cm 2 .
  • the numerical value of FWHM effectively decreases in a region where the crack density is 70 ⁇ 10 9 pieces / cm 2 or less. That is, it was found that the crystal uniformity of the semiconductor layer was improved as the crack density decreased, particularly when the crack density was 70 ⁇ 10 9 pieces / cm 2 or less.
  • an n-type gallium nitride layer was formed as a doped first semiconductor layer on the sample used for the measurement of the rocking curve.
  • Cathodoluminescence (CL) evaluation was performed on this sample.
  • CL is a method for evaluating light generated by irradiating an electron beam and is an evaluation corresponding to a transition from the vicinity of the bottom of the conduction band to the vicinity of the top of the valence band.
  • This is a method for evaluating crystal information such as stress, impurities, and the like.
  • FIG. FIG. 14 is a graph showing the relationship between the crack density and the dark density obtained from an image obtained by cathodoluminescence (CL) evaluation.
  • the horizontal axis represents the crack density
  • the vertical axis represents the dark density obtained from the image obtained by CL.
  • the crack density is 102 ⁇ 10 9 pieces / cm 2 , 71 ⁇ 10 9 pieces / cm 2 , 52 ⁇ 10 9 pieces / cm 2 , 44 ⁇ 10 9 pieces / cm 2 , and 40 ⁇ 10 9 pieces. as / cm 2 to decrease, CL dim density, 5.51 ⁇ 10 8 / cm 2 , 5.52 ⁇ 10 8 / cm 2, 4.89 ⁇ 10 8 / cm 2, 4.44 ⁇ 10 8 / cm 2, and 4.34 seen to decrease to ⁇ 10 8 / cm 2.
  • the numerical value of the CL dark density is effectively reduced in a region where the crack density is 71 ⁇ 10 9 pieces / cm 2 or less.
  • the crystal quality is greatly improved when the crack density is 71 ⁇ 10 9 pieces / cm 2 or less.
  • the crack density can be effectively reduced by setting the rotational shift angle ⁇ to more than 0 °, preferably more than 2 °. This effectively improves the crystal uniformity of the undoped first semiconductor layer. Furthermore, the crystal quality of the doped first semiconductor layer can be improved. These improvements in crystal uniformity and crystal quality are factors that improve the internal quantum efficiency IQE and are also considered to be factors that improve the long-term reliability of semiconductor light-emitting devices, so the crack density is controlled by the rotational shift angle ⁇ . By doing so, it is estimated that the light emitting performance and long-term reliability of the semiconductor light emitting device can be improved at the same time.
  • FIG. 15 is a scanning electron micrograph showing an example of the cross-sectional shape of the top of the convex portion of the concavo-convex structure A according to the present embodiment.
  • the scanning electron microscope image shown in FIG. 15 is an observation image with respect to the cross section of the LED pattern wafer (1). From FIG. 15, it can be seen that the shape of the convex top used in the study includes a lens shape to a shape in which the convex curves slightly cross above each other to form a cross-sectional shape of the top. From this, it is considered that the effect of the rotational shift angle ⁇ described above can be exhibited by adopting the top of the convex portion that is a corner having a radius of curvature exceeding zero.
  • the top of the convex portion of the concavo-convex structure A is a corner having a radius of curvature exceeding zero.
  • the disadvantage of the table top structure can be suppressed by the combination with the rotation shift angle ⁇ . It has been suggested.
  • the disadvantage of the table top structure is that it is difficult to reduce dislocations due to the semiconductor layer grown from the table top. That is, it is difficult to reduce the dislocation density of the semiconductor layer, and the internal quantum efficiency IQE tends to decrease.
  • the mechanism is not clear, it was found that when the rotational shift angle ⁇ is in the range of more than 10 ° (180 / n) ° or less, the reduction amount of the internal quantum efficiency IQE by the table top tends to be reduced. . That is, the degree of reduction of the internal quantum efficiency IQE is reduced.
  • the table top structure the light scattering property with respect to the emitted light is improved by the large volume of the convex portion, so that the light extraction efficiency LEE can be further improved.
  • the LED pattern wafer (1) including the concavo-convex structure A in which the shape of the top of the convex portion is a table top shape and the rotation shift angle ⁇ is more than 10 ° (180 / n) ° It has been found that highly efficient LEDs can be manufactured. This effect was more remarkable in the region where the rotational shift angle was 15 ° or more (180 / n) ° or less.
  • table top sizes of 20 nm, 50 nm, 100 nm, 300 nm, and 500 nm were tested, but 300 nm and 500 nm have substantially the same efficiency, and performance is improved in the range of 100 nm or less.
  • the convex part of the concavo-convex structure A is constituted by the corner part having a curvature radius exceeding 0 including the case where the size of the table top is 100 nm or less, and the rotational shift angle ⁇ is more than 10 ° (180 / n) °
  • the LED pattern wafer (1) that preferably satisfies 15 ° or more (180 / n) ° or less, a highly efficient LED can be easily manufactured.
  • the crack with respect to a semiconductor layer can be reduced by controlling the shape of the convex part top part of the concavo-convex structure A, and the rotation shift angle ⁇ .
  • the internal quantum efficiency IQE can be increased and the light emission characteristics of the semiconductor light emitting device can be improved.
  • the long-term reliability of the semiconductor light emitting device can be improved.
  • the light extraction efficiency LEE which is another major problem of the LED
  • the external quantum efficiency EQE of the LED can be further improved.
  • the reason why the light extraction efficiency LEE of the LED remains low is that a semiconductor layer having a high refractive index is sandwiched by a medium having a relatively low refractive index.
  • the number of modes and the diffraction intensity of light diffraction by the concavo-convex structure A increase in the order of Z of 0.5, 0.6, and 0.65, the effect of disturbing the waveguide mode is increased, and the light extraction efficiency is increased.
  • LEE also improves. That is, it is preferable to satisfy the duty range located above the curve shown in FIG.
  • the dimension of Pave is nanometer.
  • FIG. 16 is a graph showing the relationship between the average interval Pave and the Duty of the concavo-convex structure A of the LED pattern wafer (1) according to the present embodiment.
  • the horizontal axis is the average interval Pave of the concavo-convex structure A
  • the vertical axis is Duty.
  • the plot of the black triangle ( ⁇ ) in FIG. 16 is a preferable case where Z of the formula Duty ⁇ (3.47 ⁇ 10 ⁇ 8 ) Pave 2 + Z is 0.5
  • the plot of the black diamond ( ⁇ ) is The case where Z is 0.6 is more preferable, and the black circle ( ⁇ ) plot is the most preferable case where Z is 0.65.
  • the concavo-convex structure A that satisfies the range of the rotational shift angle ⁇ and satisfies the relationship between the average interval Pave and Duty shown in FIG. 17 allows a semiconductor layer with high internal quantum efficiency IQE with suppressed cracks to be formed. Since it can be manufactured, the light emission efficiency itself is improved. At the same time, the efficiently emitted light is extracted to the outside of the LED by the improved light extraction efficiency LEE, so that the external quantum efficiency EQE increases. That is, an LED chip having a high external quantum efficiency EQE can be manufactured with a low defect efficiency. Moreover, since the crack density of the semiconductor layer in the LED chip is also reduced, the life is extended.
  • FIG. 17 is a graph showing the relationship between the average interval Pave and the Duty of the concavo-convex structure A of the LED pattern wafer (1) according to the present embodiment.
  • the horizontal axis is the average interval Pave of the concavo-convex structure A
  • the vertical axis is Duty.
  • the plots of black triangles ( ⁇ ), black diamonds ( ⁇ ), and black circles ( ⁇ ) are curves determined by improving the light extraction efficiency LEE, and already described Duty ⁇ (3.47 ⁇ 10 ⁇ 8 ). This is the case where Z in the expression expressed by Pave 2 + Z is 0.5, 0.6, and 0.65, respectively.
  • the plots of stars (asterisks) and black squares ( ⁇ ) are curves determined from the viewpoints of internal quantum efficiency IQE and cracks, and are expressed by the previously described Duty ⁇ 1- (Y / Pave).
  • Y is 50 nm and 80 nm, respectively. That is, if the concavo-convex structure A satisfies the range of 1- (Y / Pave) ⁇ Duty ⁇ (3.47 ⁇ 10 ⁇ 8 ) Pave 2 + Z, the above-described highly efficient and long-life semiconductor light emitting device can be improved in defect efficiency. An effect that can be produced low can be exhibited.
  • the convex part of the concavo-convex structure A is constituted by a corner part having a curvature radius of more than 0 at the top part of the convex part.
  • the corner portion having a radius of curvature exceeding 0 means that the top surface of the top of the convex portion of the concavo-convex structure A is composed of a curved surface. Examples include a cone having a rounded tip, a lens, a dome, a cone, and a shell, including the shape shown in FIG.
  • the top of the convex portion of the concavo-convex structure A of the LED pattern wafer (1) is composed of corner portions having a radius of curvature exceeding 0, so that improvement of internal quantum efficiency IQE and suppression of cracks can be realized at the same time.
  • the semiconductor layer can be preferentially grown from the bottom of the concavo-convex structure A. In other words, the growth of the semiconductor layer from the top of the convex portion of the concavo-convex structure A can be suppressed. That is, the initial conditions for the adhesion and growth of the nuclei of the semiconductor layer to the recesses of the concavo-convex structure A, which have already been described, and the coalescence of the growing semiconductor layers can be adjusted.
  • the semiconductor layer is preferentially grown from the concave portion of the concavo-convex structure A, and the coalescence of the growing semiconductor layers is effectively dispersed. Since it can be performed, dislocations are reduced and cracks can be suppressed. This effect becomes remarkable by satisfying the relationship between the rotational shift angle ⁇ and Duty described with reference to FIG. Further, it becomes more prominent by satisfying the relationship between the duty and the average interval Pave described with reference to FIG. Furthermore, the light extraction efficiency LEE can be improved at the same time by satisfying the relationship between the average interval Pave and Duty described with reference to FIG.
  • the convex portion of the concavo-convex structure A goes from the convex bottom to the convex top.
  • a smaller diameter is preferred.
  • the convex side surface part connecting the convex top part and the concave part bottom part has an inclination angle of two or more steps, and the curvature radius of the point where the inclination changes is more than 0 and forms a curved surface. Is preferred. In this case, since the stress applied to the semiconductor layer can be relaxed and relaxed before the stable growth surface of the semiconductor layer reaches the top of the convex portion, the effect of suppressing cracks is further increased.
  • the concavo-convex structure A is composed of a plurality of independent convex portions and continuous concave portions because the above-described effects can be further exhibited.
  • the size of the bottom of the concave portion can be relatively increased as compared with the case where the concave-convex structure A is configured by a plurality of independent concave portions and continuous convex portions. That is, since the growth property of the semiconductor layer from the bottom of the recess described above can be improved, the internal quantum efficiency IQE can be improved and cracks can be suppressed.
  • the effect of improving the internal quantum efficiency IQE is further enhanced. This is because the initial growth state of the semiconductor layer grown from the bottom of the concave portion of the concavo-convex structure A can be maintained well, and the dislocation dispersibility effect by the concavo-convex structure A can be further exhibited.
  • the average interval Pave of the concavo-convex structure (A) is not particularly limited because it can be selected from the viewpoint of the balance between the internal quantum efficiency IQE and the light extraction efficiency LEE.
  • an LED pattern wafer (1) having a concavo-convex structure A of 5000 nm are manufactured, and the above-described effects can be confirmed.
  • the internal quantum efficiency IQE must be improved.
  • the average interval Pave preferably satisfies 50 nm ⁇ Pave ⁇ 1500 nm.
  • the average interval Pave is 1500 nm or less, the density of the concave portions of the concavo-convex structure A is improved, so that the coalescence frequency can be increased between the already described growing semiconductor layers. That is, since the frequency of dislocations in the semiconductor layer changing the traveling direction can be improved, the effect of reducing the dislocations is increased, and thereby the internal quantum efficiency IQE is effectively improved.
  • the average interval Pave is 50 nm or more, it is possible to secure the size of the bottom of the concave portion of the concave-convex structure A that greatly contributes to the initial growth of the semiconductor layer. Thereby, the nucleus growth of the semiconductor layer in the bottom part of the recessed part of the uneven structure A can be kept favorable.
  • the effect of suppressing cracks in the semiconductor layer is increased by shifting the arrangement axis A of the concavo-convex structure A within the predetermined range by the rotational shift angle ⁇ .
  • the average interval Pave is preferably 100 nm or more, more preferably 200 nm or more, and most preferably 300 nm or more.
  • the average interval Pave is measured at substantially the same location as the sample used when obtaining the “average height (Have) of the concavo-convex structure” described in ⁇ Semiconductor Light Emitting Element >> below. Or it can measure with respect to the pattern wafer (1) for LED.
  • the average interval Pave of the concavo-convex structure A is determined according to the following definition regardless of the n-fold symmetrical arrangement of the concavo-convex structure A.
  • a distance P A1B1 between the center of a certain convex portion A1 and the center of the convex portion B1 closest to the convex portion A1 is defined as an interval P.
  • the average interval (Pave) is calculated according to the following definition.
  • the normal n-side arrangement is uniaxial.
  • the average interval (Pave) can be defined by replacing the center of the convex portion with the center of the concave portion opening.
  • ⁇ Average width ( ⁇ ave) of bottom of convex portion The average width ⁇ ave is measured at substantially the same location as the sample used when obtaining the “average height (Have) of the concavo-convex structure” described in ⁇ Semiconductor Light Emitting Element >> below. Or it measures with respect to the pattern wafer (1) for LED.
  • the average width ⁇ ave of the concavo-convex structure A is determined according to the following definition regardless of the n-fold symmetrical arrangement of the concavo-convex structure A.
  • the distance ⁇ A1 when the distance XY between one point X on the outer periphery of the contour and the other point Y on the outer periphery of the contour is the maximum is the width of the bottom of the convex portion.
  • the average width ( ⁇ ave) is calculated according to the following definition. (1) Select any ten convex portions A1, A2,... A10. (2) Measure the width ⁇ AM of the bottom of the protrusion with respect to the protrusion AM (1 ⁇ M ⁇ 10). (3) For the convex portions A1 to A10, the width ⁇ of the bottom portion of the convex portion is measured as in (2).
  • the arithmetic average value of the widths ⁇ A1 to ⁇ A10 of the bottom of the convex portion is defined as the average width ( ⁇ ave).
  • the width ⁇ of the bottom portion of the convex portion is one point X on the outer periphery of the contour shape of the bottom portion of the convex portion, and one other point Y. , Defined as the shortest distance.
  • Duty is defined as the ratio ( ⁇ ave / Pave) between the average width ( ⁇ ave) and the average interval (Pave).
  • the LED pattern wafer (1) includes the above-described concavo-convex structure A on part or the entire surface of the LED pattern wafer (1).
  • the more detailed shape / arrangement, manufacturing method, and material of the concavo-convex structure A will be described in ⁇ Semiconductor Light Emitting Element >> below. That is, even if the entire surface of the LED pattern wafer (1) is covered with the uneven structure A described above, the uneven structure A may be provided on a part of the surface of the LED pattern wafer (1).
  • the concavo-convex structure A is described as the concavo-convex structure G, and the concavo-convex structure not corresponding to the concavo-convex structure A is described as the concavo-convex structure B.
  • the LED pattern wafer (1) has an uneven structure G at least partially. That is, the entire surface of the LED pattern wafer (1) may be covered with the concavo-convex structure G, or a part thereof may be covered.
  • a region that is not covered by the uneven structure G is referred to as a “non-G region”.
  • the non-G region is constituted by the concavo-convex structure B and / or a flat portion.
  • a semiconductor layer with high efficiency IQE can be formed.
  • the light extraction efficiency LEE can be improved at the same time by satisfying the relationship between the average interval Pave and Duty described with reference to FIGS.
  • the uneven structure G provided on the surface of the LED pattern wafer (1) is provided at least in a region having an area of 10 Pave ⁇ 10 Pave when the average interval Pave is used, the above-described effect is obtained. preferable. That is, it is only necessary that the concavo-convex structure G is provided in an area of at least 10 Pave ⁇ 10 Pave with respect to the LED pattern wafer (1). That is, for example, when the surface of the LED pattern wafer (1) is observed using a scanning electron microscope or an atomic force microscope, the region having an area of 10 Pave ⁇ 10 Pave may be constituted by the concavo-convex structure G. .
  • the ratio or the size of the concavo-convex structure G described below is satisfied by the sum of the concavo-convex structures G that fill the region having an area of 10 Pave ⁇ 10 Pave. That is, the inside of the range having an area of 10 Pave ⁇ 10 Pave is constituted by the concavo-convex structure G, and a plurality of such ranges can be provided. In particular, it is preferable to satisfy 20 Pave ⁇ 20 Pave or more, more preferably 25 Pave ⁇ 25 Pave or more, because the effects of adhesion of the nuclei of the semiconductor layer due to the concavo-convex structure G, nucleus growth, and coalescence of the growing semiconductor layer become more remarkable.
  • the ratio or size of the concavo-convex structure G described below is satisfied by the sum of the concavo-convex structure G. Furthermore, since the region having an area of 50 Pave ⁇ 50 Pave or more, more preferably 75 Pave ⁇ 7 Pave P or more is constituted by the concavo-convex structure G, the semiconductor also in the non-G region adjacent to the region covered with the concavo-convex structure G It is preferable because the adhesion of the core of the layer, the core growth, and the coalescence of the growing semiconductor layer become favorable, and the effect of suppressing cracks and improving the internal quantum efficiency IQE is exhibited.
  • This effect is more exhibited as it becomes 100 Pave ⁇ 100 Pave or more, 150 Pave ⁇ 150 Pave or more, and 450 Pave ⁇ 450 Pave or more. Also in these cases, it is preferable that the ratio or the size of the concavo-convex structure G described below is satisfied by the total sum of the concavo-convex structure G.
  • the ratio of the non-G region is preferably 1/5 or less of the concavo-convex structure G.
  • the effect of the uneven structure G can be exhibited.
  • it is more preferably 1/10 or less, more preferably 1/25 or less, and most preferably 1/50 or less.
  • the suppression effect of a crack and the improvement effect of internal quantum efficiency IQE can be improved more.
  • satisfying 1/500 or less, more preferably 1/1000 or less, is preferable because the uniformity of emitted light emitted from the inside of the LED is improved.
  • the lower limit value is not particularly limited, and it is preferable that the lower limit value is smaller, in other words, the closer to 0, the more remarkable the effect of the concavo-convex structure G becomes.
  • the ratio of the concavo-convex structure G to the surface of the LED pattern wafer (1) depends on the outer shape and size of the LED chip. This is preferable because it can be played.
  • the LED pattern wafer (1) has a concavo-convex structure G of 0.02% or more, more preferably 0.2% or more, the dispersibility of dislocations in the semiconductor layer is improved, so that the internal quantum efficiency IQE uniformity is improved. Furthermore, since the dispersibility of the coalesced portion of the growing semiconductor layer is improved, the crack suppressing effect is increased. Further, the LED pattern wafer (1) includes the concavo-convex structure G of 2.3% or more, more preferably 10% or more, so that the above effect can be further exhibited.
  • the concavo-convex structure G is preferably included by 30% or more, more preferably by 40% or more, and most preferably by 50% or more. Further, when the concavo-convex structure G is included 60% or more, the propagation of the effect of the concavo-convex structure G to the non-G region is improved.
  • the effects of the concavo-convex structure G on the adhesion of the nucleus of the semiconductor layer, the nucleus growth, and the coalescence of the growing semiconductor layer are propagated to the non-G region.
  • the uneven structure G is preferably included by 70% or more, more preferably 80% or more, and most preferably 90% or more.
  • the concavo-convex structure G is 98% or more, in other words, when the surface of the LED pattern wafer (1) is substantially filled with the concavo-convex structure G, the growth of the semiconductor layer is the surface of the LED pattern wafer (1). Therefore, the equalization of the improvement degree of the internal quantum efficiency IQE is promoted. That is, the characteristic distribution curves of a plurality of LED chips manufactured from the LED epitaxial wafer become sharper.
  • the concavo-convex structure G included in the surface of the LED pattern wafer (1) is preferably 0.0025 ⁇ 10 ⁇ 6 m 2 or more.
  • the light emission output of the LED chip is increased. Although this depends on the size and outer shape of the LED chip, it can be determined from the collision probability between the emitted light guided in the LED chip and the concavo-convex structure G.
  • filling this range the initial stage growth property of the semiconductor layer formed into a film on the uneven structure G becomes favorable. That is, since the nucleation and growth speed of the semiconductor layer can be reduced by the concavo-convex structure G, the dislocation is reduced and the internal quantum efficiency IQE is improved.
  • the uneven structure G included in the surface of the LED pattern wafer (1) is preferably 0.01 ⁇ 10 ⁇ 6 m 2 or more, and 0.04 ⁇ 10 ⁇ 6 m 2. More preferably, it is more preferably 0.09 ⁇ 10 ⁇ 6 m 2 or more. Furthermore, since the in-plane uniformity of the semiconductor layer formed on the LED pattern wafer (1) is improved by being 0.9 ⁇ 10 ⁇ 6 m 2 or more, the ratio of suppressing cracks is large. Thus, the yield for obtaining the semiconductor light emitting device is improved. From the viewpoint of further exerting the effect, more preferably 9 ⁇ 10 -6 m 2 or more, and most preferably 90 ⁇ 10 -6 m 2 or more.
  • the propagation of the effect of the uneven structure G to the non-G region is improved. That is, the effect of moderately attaching the nucleus of the semiconductor layer due to the concavo-convex structure G, the growth of the nucleus, and the coalescence of the growing semiconductor layer is propagated to the non-G region.
  • the degree of improvement and the degree of reduction of cracks also increase.
  • 3.6 ⁇ 10 ⁇ 3 m 2 or more, more preferably 7.5 ⁇ 10 ⁇ 3 m 2 or more so that even when the outer edge portion of the LED pattern wafer (1) is used, A good LED can be obtained.
  • concavo-convex structures G that satisfy the size of the concavo-convex structure G described above on the surface of the LED pattern wafer (1), it is possible to produce a highly efficient LED chip with high yield.
  • a substrate can be obtained.
  • a plurality of concavo-convex structures G that satisfy the size of the concavo-convex structure G described above can also be provided. In this case, at least one uneven structure G satisfies the above size.
  • the arrangement relationship between the concavo-convex structure G and the non-G region is not particularly limited as long as the above contents are satisfied.
  • the arrangement relationship between the concavo-convex structure G and the non-G region can include the arrangement described below when the concavo-convex structure G and the non-G region are considered.
  • the concavo-convex structure G is a set of concavo-convex structures G that satisfies one or more of ⁇ , ⁇ , ⁇ , and ⁇ described above, that is, a concavo-convex structure G region.
  • ⁇ , ⁇ , ⁇ , and ⁇ described above
  • FIG. 18 is an explanatory diagram showing the relationship between the concavo-convex structure G and the non-G region in the LED pattern wafer (1) according to the present embodiment.
  • 18A and 18B a plurality of non-G regions 502 having an indefinite outline are arranged in the concavo-convex structure G region 501.
  • FIG. 18C a lattice-shaped non-G region 502 is provided in the concavo-convex structure G region 501.
  • FIG. 18D a plurality of substantially circular non-G regions 502 are formed in the concavo-convex structure G region 501.
  • the contour shape formed by the concavo-convex structure G region 501 is not particularly limited. That is, the interface shape between the concavo-convex structure G region 501 and the non-G region 502 is not limited. For this reason, for example, the interface shape between the concavo-convex structure G region 501 and the non-G region 502 includes an n-gon (n ⁇ 3), a non-n-gon (n ⁇ 3), a lattice shape, a line shape, and the like.
  • the n-gon may be a regular n-gon or a non-regular n-gon.
  • FIG. 19 is a schematic diagram showing a contour shape formed by the concavo-convex structure G region in the LED pattern wafer (1) according to the present embodiment.
  • a quadrangular shape a regular quadrangular shape (square), a rectangular shape, a parallelogram shape, a trapezoid shape, and a shape in which one or more sets of opposite sides of these quadrangular shapes are non-parallel are exemplified.
  • n-gon n ⁇ 3
  • FIGS. 19A to 19D are included.
  • 19A is a quadrangle
  • FIG. 19B is a hexagon
  • FIG. 19C is an octagon
  • the non-n-gonal shape has a structure including a corner portion with a radius of curvature exceeding 0, for example, a circle, an ellipse, or a shape with rounded corners of the n-angle described above (the radius of curvature of the corner of the n-angle above 0). Shape) or the above-described n-gon (n ⁇ 3) including a rounded corner (a portion having a radius of curvature exceeding 0). For this reason, for example, the shapes illustrated in FIGS. 19E to 19H are included. Note that as the contour shape of the non-G region, the shape described as the contour shape of the set of the uneven structure G described above can be adopted.
  • FIG. 20 is a schematic plan view showing a state in which the LED pattern wafer (1) according to the present embodiment is observed from the surface.
  • 20A to 20F show a state where the concavo-convex structure G region 501 is surrounded by the non-G region 502.
  • an uneven structure G region 501 may be provided on the surface of the LED pattern wafer (1) 500, and the outside thereof may be configured by a non-G region 502.
  • This uneven structure G region 501 preferably satisfies the above-described ratio.
  • region 501 satisfy
  • a plurality of concavo-convex structure G regions 501 are arranged on the surface of the LED pattern wafer (1) 500 so as to be spaced apart from each other, and between the concavo-convex structure G regions 501 and the concavo-convex structure G region 501. May be filled with a non-G region 502. In this case, it is preferable to satisfy the above-described ratio with respect to the total area of the uneven structure G.
  • the concavo-convex structure G regions 501 may be regularly arranged as shown in FIG. 20C or irregularly arranged as shown in FIG. 20D.
  • the regular arrangement include a tetragonal arrangement, a hexagonal arrangement, an arrangement in which these arrangements are extended in a uniaxial direction, and an arrangement in which these arrangements are extended in a biaxial direction.
  • the contour shape of the concavo-convex structure G region 501 is described as a circle in FIGS. 20A to 20D, an irregular shape can be adopted as shown in FIG. 20E.
  • the outer shape of the concavo-convex structure G region 501 may include shapes such as an n-gon (n ⁇ 3), a rounded n-gon (n ⁇ 3), a circle, an ellipse, a line, a star, and a lattice. it can. Further, as shown in FIG.
  • the concavo-convex structure G region 501 can be surrounded by the non-G region 502, the outer periphery thereof can be surrounded by the concavo-convex structure G region 501, and the outer periphery can be surrounded by the non-G region 502.
  • the concavo-convex structure G region 501 is described in a circular shape, but the shape described with reference to FIG. 19 can be adopted as the contour shape formed by the concavo-convex structure G region 501.
  • FIG. 21 is a schematic plan view showing a state in which the LED pattern wafer (1) according to the present embodiment is observed from the surface.
  • FIG. 21 shows a case where the concavo-convex structure G region 501 is sandwiched between non-G regions 502.
  • an uneven structure G region 501 may be provided on the surface of the LED pattern wafer (1) 500, and the outside thereof may be constituted by a non-G region 502.
  • This uneven structure G preferably satisfies the above-described ratio. Moreover, it is preferable to satisfy the size already described. As shown in FIG.
  • a plurality of uneven structure G regions 501 are arranged on the surface of the LED pattern wafer (1) 500 so as to be spaced apart from each other, and between the uneven structure G regions 501 and outside the uneven structure G region 501.
  • the non-G region 502 may be satisfied.
  • an arrangement may be made in which the concavo-convex structure G region 501 is continuously provided so as to include the non-G region 502.
  • the uneven structure G satisfies the size already described.
  • the interface shape between the concavo-convex structure G region 501 and the non-G region 502 may be a straight line or may be bent as shown in FIG. 21E.
  • Examples of the shape of the concavo-convex structure G region 501 include a line shape, a lattice shape, and a mesh shape. Further, as shown in FIG.
  • the concavo-convex structure G region 501 can be sandwiched between non-G regions 502, the outer periphery thereof can be sandwiched by the concavo-convex structure G region 501 and the outer periphery can be sandwiched by the non-G region 502.
  • the contour line formed by the concavo-convex structure G region 501 is described in a linear shape or a substantially linear shape, but the shape described with reference to FIG. 19 can be employed.
  • the interface shape between each concavo-convex structure G region 501 and the non-G region 502 is different for each concavo-convex structure G region 501 even if it is single. May be.
  • the concavo-convex structure G region 501 is surrounded by the non-G region 502 and the concavo-convex structure G region 501 is sandwiched between the non-G regions 502. Can be mixed.
  • a non-G region 502 is provided outside the first concavo-convex structure G region 501 (G1), and a second concavo-convex structure G region 501 (G2) is further provided outside the non-G region 502.
  • the second uneven structure G region 501 (G2) may be discontinuous.
  • the non-G region may be composed of the concavo-convex structure B, may be composed of a flat portion, or may be composed of the concavo-convex structure B and a flat portion.
  • the outer shape of the LED pattern wafer (1) 500 is drawn as a rectangle.
  • the outer shape of the LED pattern wafer (1) 500 is not limited to this, and an arc having a circular or circular curvature.
  • a shape including a straight line, an n-gon (n ⁇ 3), a non-n-gon (n ⁇ 3), a lattice shape, a line shape, or the like can be employed.
  • the n-gon may be a regular n-gon or a non-regular n-gon.
  • n-gon when n is 4 or more, shapes as shown in FIGS. 19A to 19D are included.
  • 19A is a quadrangle
  • FIG. 19B is a hexagon
  • FIG. 19C is an octagon
  • FIG. 19D is a dodecagon.
  • a non-n-gonal shape is a structure with no corners, for example, a circle, an ellipse, a shape with rounded corners of the above-described n-cornered shape (a shape with a radius of curvature of n-cornered corners greater than 0), or a rounded shape.
  • the shapes illustrated in FIGS. 19F to 19H are included. Among these, it is preferable to adopt a line-symmetric shape.
  • FIG. 22 is a schematic cross-sectional view showing an example of an LED epitaxial wafer according to the present embodiment.
  • the LED pattern wafer (1) 10 in the LED epitaxial wafer 100, the LED pattern wafer (1) 10 has a concavo-convex structure 20 on the surface thereof.
  • the uneven structure 20 is the uneven structure A described above. That is, the arrangement axis A of the concavo-convex structure 20 and the crystal axis of the LED pattern wafer (1) 10 satisfy the relationship of the rotational shift angle ⁇ described above, and the convex portion of the concavo-convex structure 20 has a curvature radius of 0 described above. Consists of super corners.
  • the emitted light generated in the light emitting semiconductor layer 40 is extracted from the second semiconductor layer 50 side or the LED pattern wafer (1) 10.
  • the first semiconductor layer 30 and the second semiconductor layer 50 are made of different semiconductor crystals.
  • the concavo-convex structure 20 is the concavo-convex structure A
  • dislocation of the first semiconductor layer 30 is reduced and cracks are suppressed.
  • the performance of the first semiconductor layer 30 as a semiconductor can be reflected in the light emitting semiconductor layer 40 and the second semiconductor layer 50. Therefore, the internal quantum efficiency IQE is improved and cracks are suppressed. That is, from the principle described in ⁇ LED pattern wafer (1) >>, the dislocation of the first semiconductor layer 30 is reduced and cracks can be suppressed, and the performance of the first semiconductor layer 30 having good crystallinity can be improved.
  • the light is reflected on the light emitting semiconductor layer 40 and the second semiconductor layer 50 sequentially, and the cracks of the semiconductor layer can be reduced even after the second semiconductor layer 50 is formed.
  • the first semiconductor layer 30 may be composed of an undoped first semiconductor layer 31 and a doped first semiconductor layer 32 as shown in FIG.
  • FIG. 23 is a schematic cross-sectional view showing another example of the LED epitaxial wafer according to the present embodiment.
  • the internal quantum efficiency IQE in the LED epitaxial wafer 200, when the LED pattern wafer (1) 10, the undoped first semiconductor layer 31, and the doped first semiconductor layer 32 are laminated in this order, the internal quantum efficiency IQE.
  • the manufacturing time of the epitaxial wafer for LED 200 can be shortened.
  • the undoped first semiconductor layer 31 is provided so as to planarize the concavo-convex structure 20, so that the performance of the undoped first semiconductor layer 31 as a semiconductor is improved by the doped first semiconductor layer 32 and the light emitting semiconductor layer 40.
  • the internal quantum efficiency IQE is improved and cracks are reduced. That is, from the principle described in ⁇ LED pattern wafer (1) >>, the crystallinity of the undoped first semiconductor layer 31 can be improved, and the undoped first semiconductor layer 31 having good crystallinity.
  • the doped first semiconductor layer 32, the light emitting semiconductor layer 40, and the second semiconductor layer 50 are sequentially reflected on the doped first semiconductor layer 32, the light emitting semiconductor layer 40, and the second semiconductor layer 50, and cracks in the semiconductor layer can be reduced even after the second semiconductor layer 50 is formed.
  • the first semiconductor layer 30 preferably includes a buffer layer 33 as shown in FIG.
  • FIG. 24 is a schematic cross-sectional view showing another example of the epitaxial wafer for LEDs according to the present embodiment.
  • the buffer layer 33 is provided on the concavo-convex structure 20, and then the undoped first semiconductor layer 31 and the doped first semiconductor layer 32 are sequentially stacked, Nucleation and nucleus growth, which are initial conditions for crystal growth of the first semiconductor layer 30, are improved, and the performance of the first semiconductor layer 30 as a semiconductor is improved, so that the degree of improvement in internal quantum efficiency IQE is improved.
  • the buffer layer 33 may be arranged so as to flatten the concavo-convex structure 20, but since the growth rate of the buffer layer 33 is slow, the buffer layer 33 is used from the viewpoint of shortening the manufacturing time of the LED epitaxial wafer 300. It is preferable to planarize the concavo-convex structure 20 with the undoped first semiconductor layer 31 provided thereon.
  • the performance of the undoped first semiconductor layer 31 as a semiconductor is improved by the doped first semiconductor layer 32, the light emitting semiconductor layer 40, and the second. Since it can be reflected in the semiconductor layer 50, the internal quantum efficiency IQE is improved and cracks are reduced.
  • the buffer layer 33 is disposed so as to cover the surface of the concavo-convex structure 20, but may be partially provided on the surface of the concavo-convex structure 20.
  • the buffer layer 33 can be preferentially provided at the bottom of the concave portion of the concave-convex structure 20.
  • the nucleus can be preferentially attached to the bottom of the concave portion of the concavo-convex structure 20, the subsequent nuclei growth property is improved, and the coalescence of the growing semiconductor layers can be kept good. Note that when the LED pattern wafer (1) 10 according to the present embodiment is used, the internal quantum efficiency IQE can be improved satisfactorily, and therefore the buffer layer 33 is not necessarily provided.
  • the LED epitaxial wafers 100, 200, and 300 shown in FIGS. 22 to 24 are examples in which a semiconductor layer having a double hetero structure is applied, but the first semiconductor layer 30, the light emitting semiconductor layer 40, and the second semiconductor layer 50 are formed.
  • the laminated structure is not limited to this.
  • FIG. 25 is a schematic cross-sectional view showing an example of an LED chip manufactured from the LED epitaxial wafer shown in FIGS.
  • the transparent conductive layer 60 is formed on the second semiconductor layer 50
  • the anode electrode 70 is formed on the surface of the transparent conductive layer 60
  • the cathode electrode 80 is formed on the surface of the first semiconductor layer 30.
  • Each can be provided.
  • the arrangement of the transparent conductive layer 60, the anode electrode 70, and the cathode electrode 80 is not limited because it can be appropriately optimized by the LED chip, but is generally provided as illustrated in FIG.
  • FIG. 26 is a schematic cross-sectional view showing another example of the LED chip according to the present embodiment.
  • examples of the uneven structure provided separately include the following.
  • the uneven structure 607 provided on the surface of the cathode electrode 80 The first semiconductor layer 30, the light emitting semiconductor layer 40, the second semiconductor layer 50, and the concavo-convex structure 608 provided on the side surface of the LED pattern wafer (1) 10.
  • the light extraction efficiency LEE is improved.
  • the internal quantum efficiency IQE is improved. That is, photons can be generated effectively inside the LED chip. For this reason, in the LED chip which concerns on this Embodiment, it is preferable to provide the uneven structure 601.
  • FIG. Note that the light extraction efficiency LEE is also greatly improved by removing the LED pattern wafer (1) by, for example, a laser lift-off method instead of providing the concavo-convex structure 601.
  • the light extraction efficiency LEE can be improved by providing the uneven structure 602, the external quantum efficiency EQE is greatly improved. Furthermore, since the diffusibility of electrons in the transparent conductive layer 60 is improved, the size of the LED chip can be increased.
  • the light extraction efficiency LEE can be improved.
  • the internal quantum efficiency IQE is improved. That is, photons can be generated effectively inside the LED chip. For this reason, in the LED chip which concerns on this Embodiment, it is preferable to provide the uneven structure 603. FIG.
  • the contact area between the transparent conductive layer 60 and the anode electrode 70 can be increased, so that the peeling of the anode electrode 70 can be suppressed. Furthermore, since ohmic resistance can be reduced and ohmic contact can be improved, electron injection efficiency EIE can be improved, and external quantum efficiency EQE can be improved. In the LED epitaxial wafer according to the present embodiment, the internal quantum efficiency IQE is improved. That is, photons can be generated effectively inside the LED chip. For this reason, in the LED chip according to the present embodiment, it is preferable to provide the uneven structure 604.
  • the contact area between the first semiconductor layer 30 and the cathode electrode 80 is increased, and therefore, the peeling of the cathode electrode 80 can be suppressed.
  • the fixing strength of the wiring connected to the anode electrode 70 is improved, so that peeling can be suppressed.
  • Providing the concavo-convex structure 608 can increase the amount of light emitted from the side surfaces of the first semiconductor layer 30, the light emitting semiconductor layer 40, the second semiconductor layer 50, and the LED pattern wafer (1) 10. It is possible to reduce the ratio of emitted light that attenuates and disappears. For this reason, the light extraction efficiency LEE is improved, and the external quantum efficiency EQE can be increased.
  • the internal quantum efficiency IQE of the LED epitaxial wafer can be improved and the warpage of the LED epitaxial wafer can be reduced. .
  • an LED epitaxial wafer with less warpage can be manufactured, and an LED chip can be manufactured with a low defect rate.
  • the LED pattern wafer (1) having a diameter of 6 inches or more the thickness of the LED pattern wafer (1) can be reduced. For this reason, since environmental compatibility improves and the thermal control property at the time of semiconductor layer film-forming improves, the crystallinity of the semiconductor layer of the epitaxial wafer for LED improves more.
  • the warp of the LED epitaxial wafer can be effectively suppressed. Furthermore, by providing at least one concavo-convex structure of the concavo-convex structures 601 to 608 described above, the effects of the concavo-convex structures 601 to 608 can be exhibited.
  • the uneven structure 604 from the viewpoint of improving the electron injection efficiency EIE.
  • an electrode is formed on the exposed surface of the second semiconductor layer 50 of the LED epitaxial wafers 100, 200, and 300 exemplified in FIGS. 22 to 24, and a supporting base material is formed on the exposed surface of the electrode.
  • the LED pattern wafer (1) 10 may be removed from the laminated body in which is disposed. The removal of the LED pattern wafer (1) 10 can be achieved by lift-off using a laser beam or by total dissolution or partial dissolution of the LED pattern wafer (1) 10. In particular, when a silicon wafer is employed as the LED pattern wafer (1) 10, removal due to dissolution is preferable from the viewpoint of the accuracy of the surface provided with the concavo-convex structure (hereinafter referred to as the concavo-convex structure surface).
  • the light extraction efficiency LEE can be further improved while maintaining the improvement of the internal quantum efficiency IQE. This is because the difference in refractive index between the LED pattern wafer (1) 10, the first semiconductor layer 30, the light emitting semiconductor layer 40, and the second semiconductor layer 50 is large.
  • an LED epitaxial wafer with the first semiconductor layer 30 as the light exit surface can be lifted.
  • the height of the concavo-convex structure 20 is given as an arithmetic average value of the distance between the top of the convex portion and the bottom of the concave portion of the concavo-convex structure.
  • an area of 50 ⁇ m ⁇ 50 ⁇ m square parallel to the main surface of the LED pattern wafer (1) 10 is formed on the surface of the concavo-convex structure 20 of the LED pattern wafer (1) 10.
  • the semiconductor layer is removed and the uneven structure surface of the LED pattern wafer (1) 10 is observed.
  • the 50 ⁇ m ⁇ 50 ⁇ m square region is divided into 25 by 10 ⁇ m ⁇ 10 ⁇ m square regions that do not overlap each other.
  • five regions are arbitrarily selected from 25 existing 10 ⁇ m ⁇ 10 ⁇ m regions.
  • the selected 10 ⁇ m ⁇ 10 ⁇ m square regions are referred to as region A, region B, region C, region D, and region E.
  • the region A is observed at a higher magnification, and is expanded until at least 100 convex portions are clearly observed.
  • ten convex portions are arbitrarily selected from the observed convex portions, and the height h of each convex portion is obtained.
  • the height h of the convex portion can be determined by observation reflecting a tilt (tilt) in scanning electron microscope observation or atomic force microscope observation.
  • the average height (Have) of the concavo-convex structure 20 is given as (ha + hb + hc + hd + he) / 5.
  • the said description is description when the uneven structure 20 is comprised from several independent convex part
  • the convex part of the said description is set as a recessed part.
  • the height h of the concavo-convex structure 20 is defined.
  • terms relating to the thickness of the semiconductor layer described below are calculated first, and then the semiconductor layer is removed to obtain the average height (Have) of the concavo-convex structure 20. . That is, the information related to the thickness of the semiconductor layer described below and the average height (Have) of the concavo-convex structure 20 described above are measured at substantially the same location of the same sample.
  • the average interval Pave of the concavo-convex structure 20 and the average width (average diameter) ⁇ ave of the convex portion of the concavo-convex structure 20 already described are the same samples as those used to obtain the average height (Have) of the concavo-convex structure. It is obtained from the same measurement location.
  • the distance between the surface of the LED pattern wafer (1) 10 on the light emitting semiconductor layer 40 side and the surface of the first semiconductor layer 30 on the light emitting semiconductor layer 40 side is defined as a distance Hbun.
  • the surface of the LED pattern wafer (1) 10 on the light emitting semiconductor layer 40 side is defined as the average concave bottom portion position of the concave-convex structure 20.
  • the surface of the first semiconductor layer 30 on the light emitting semiconductor layer 40 side is defined as an average surface.
  • the average is an arithmetic average, and the average score is 10 points. That is, the distance Hbun is an average thickness of the first semiconductor layer 30 when the average concave bottom portion position of the concavo-convex structure 20 is used as a reference.
  • the arithmetic mean is calculated by observing the cross section of the LED epitaxial wafer.
  • observation method observation with a transmission electron microscope or observation with a scanning electron microscope can be employed.
  • the observation range is a range in which 5 to 20 convex portions (or concave portions) can be clearly observed in these observations.
  • the distance between the surface of the LED pattern wafer (1) 10 on the light emitting semiconductor layer 40 side and the surface of the undoped first semiconductor layer 31 on the light emitting semiconductor layer 40 side is defined as a distance Hbu.
  • the surface of the LED pattern wafer (1) 10 on the light emitting semiconductor layer 40 side is defined as the average concave bottom portion position of the concave-convex structure 20.
  • the surface of the undoped first semiconductor layer 31 on the light emitting semiconductor layer 40 side is defined as an average plane. The average is an arithmetic average, and the average score is 10 points.
  • the distance Hbu is the average thickness of the undoped first semiconductor layer 31 when the average concave bottom portion position of the concavo-convex structure 20 is used as a reference.
  • the arithmetic mean is calculated by observing the cross section of the LED epitaxial wafer. As an observation method, observation with a transmission electron microscope or observation with a scanning electron microscope can be employed.
  • the observation range is a range in which 5 to 20 convex portions (or concave portions) can be clearly observed in these observations.
  • each element constituting the epitaxial wafer for LED 100 (including 200 and 300 and LED chips 400 and 600; the same applies hereinafter) will be described in detail.
  • the ratio (Hbun / Have) means the ratio between the average height (Have) of the concavo-convex structure 20 and the average thickness Hbun of the first semiconductor layer 30.
  • a ratio (Hbun / Have) of 2 or more is preferable because the effect of improving the internal quantum efficiency IQE by the concavo-convex structure 20 can be exhibited.
  • the ratio (Hbun / Have) is 2 or more, the degree of planarization of the concavo-convex structure A by the first semiconductor layer 30 in which cracks are suppressed is improved.
  • the ratio (Hbun / Have) is 10 or more, the influence on the surface of the first semiconductor layer 30 at the top of the convex portion of the concavo-convex structure 20 can be further reduced. The flatness of the surface can be made better. That is, the effect of improving the internal quantum efficiency IQE is increased.
  • the ratio (Hbun / Have) is preferably 12 or more, more preferably 14 or more, and most preferably 16 or more.
  • the ratio (Hbun / r) is the ratio from the viewpoint of increasing the collision probability of dislocations between the first semiconductor layer 30 and the average convex portion top position of the concavo-convex structure 20 and the light emitting semiconductor layer 40 and further increasing the internal quantum efficiency IQE.
  • Have is more preferably 20 or more, and most preferably 25 or more.
  • the ratio (Hbun / Have) is 300 or less, the warpage of the epitaxial wafer 100 for LED can be suppressed, so that the chip formation efficiency can be improved.
  • BOW An index related to warpage after the semiconductor layer is formed is generally known as BOW.
  • BOW is inversely proportional to the thickness of the LED pattern wafer (1) 10, and is also proportional to the square of the size (diameter) of the LED pattern wafer (1) 10 and the thickness of the semiconductor layer. The larger the BOW, the more difficult it is to manufacture the LED chip. Considering the photolithography process when manufacturing the LED chip, the BOW is preferably 1.5 or less.
  • the thickness of the LED pattern wafer (1) 10 may be increased, the thickness of the semiconductor layer may be decreased, and the size of the LED pattern wafer (1) 10 may be decreased.
  • the thickness of the LED pattern wafer (1) 10 is increased, the manufacturing cost of the LED chip increases greatly, and the thermal behavior of the LED pattern wafer (1) 10 when the semiconductor layer is formed changes.
  • the film formability of the semiconductor layer may decrease, and the internal quantum efficiency IQE may decrease.
  • reducing the size of the LED pattern wafer (1) 10 is a factor that greatly reduces the yield of LED chips. That is, if BOW can be suppressed by reducing the thickness of the semiconductor layer, it can be seen that the effect is great.
  • the use of the concavo-convex structure A improves the film formability of the semiconductor layer.
  • the ratio (Hbun / Have) is preferably 200 or less, and more preferably 150 or less. Furthermore, the ratio (Hbun / Have) is more preferably 100 or less and 50 or less from the viewpoint of shortening the film formation time of the semiconductor layer, reducing the amount of the semiconductor layer used, and achieving environmental compatibility. Most preferred.
  • the ratio (Hbu / Have) means the ratio between the average height (Have) of the concavo-convex structure 20 and the average thickness Hbu of the undoped first semiconductor layer 31.
  • the average thickness Hbu of the undoped first semiconductor layer 31 is increased.
  • the ratio (Hbu / Have) is 1.5 or more, the degree of planarization of the concavo-convex structure A by the undoped first semiconductor layer 31 is improved in a state where cracks are suppressed.
  • the ratio (Hbu / Have) is 2.5 or more, the planarization of the concavo-convex structure 20 by the undoped first semiconductor layer 31 becomes better, and accordingly, the film thickness uniformity of the light emitting semiconductor layer 40 is improved. This improves the in-plane uniformity of the emission wavelength. From the viewpoint of more exerting these effects, it is most preferably 3.5 or more.
  • the ratio (Hbu / Have) is 4 or more, the influence on the surface of the undoped first semiconductor layer 31 at the top of the convex portion of the concavo-convex structure 20 can be further reduced. The flatness of the surface on the layer 40 side can be further improved. That is, the effect of improving internal quantum efficiency IQE and suppressing cracks is increased.
  • the ratio (Hbu / Have) is preferably 5 or more, more preferably 8 or more, and most preferably 10 or more. Further, in the inside of the undoped first semiconductor layer 31, the ratio (Hbu / Have) is more preferably 12 or more, and most preferably 15 or more from the viewpoint of increasing the collision probability of dislocation and further increasing the internal quantum efficiency IQE. On the other hand, when the ratio (Hbu / Have) is 200 or less, the warp of the LED epitaxial wafer 100 can be suppressed. This can be determined from the BOW point of view already described. From the same viewpoint, the ratio (Hbu / Have) is preferably 100 or less, and more preferably 50 or less.
  • the ratio (Hbu / Have) is most preferably 30 or less from the viewpoint of reducing the amount of the semiconductor layer used, greatly reducing the film formation time, and achieving environmental compatibility. From the above, when the ratio (Hbu / Have) satisfies a predetermined range, a semiconductor layer having a high internal quantum efficiency IQE in which cracks are suppressed can be formed, and an LED pattern wafer (1) 10 on which a semiconductor layer is formed. Therefore, a highly efficient LED chip can be manufactured with high production efficiency.
  • the concavo-convex structure 20 of the LED epitaxial wafer 100 according to the present embodiment that is, the concavo-convex structure A has substantially n-fold symmetry regularity as described in ⁇ LED pattern wafer (1) >>. It is not particularly limited as long as it has a concavo-convex structure and the top portion of the convex portion is composed of a corner portion having a radius of curvature exceeding zero. Among them, by satisfying the relationship between the Duty and the rotational shift angle ⁇ described with reference to FIG. 8 and the relationship between the average interval Pave and Duty described with reference to FIG. 9, the crack suppression effect and the internal quantum efficiency IQE are improved. The effect is increased. Furthermore, the light extraction efficiency LEE can be improved at the same time by satisfying the relationship between the average interval Pave and Duty described with reference to FIG. Hereinafter, further preferred embodiments of the concavo-convex structure 20 will be described.
  • the concavo-convex structure 20 is a dot-like structure composed of a plurality of independent convex portions and continuous concave portions, a hole-shaped structure composed of a plurality of independent concave portions and continuous convex portions, or a concave portion independent of independent convex portions. And a hybrid structure including both of them.
  • a dot-like structure is most preferable. This is because, due to the dot-like structure, as described above, the adhesion and growth of the nuclei of the semiconductor layer become good, and the effect of suppressing cracks and the effect of improving the internal quantum efficiency IQE are increased.
  • the contour shape of the bottom of one convex portion or the opening shape of the concave portion is a circle, an ellipse, a fence, a bowl, an n-gon (n ⁇ 3), a corner An n-gon (n ⁇ 3) or the like having a corner with a curvature radius of more than 0 can be employed.
  • a circle, an ellipse, a fence, and a triangle having a corner with a radius of curvature of more than 0 stress applied from the concavo-convex structure 20 to the growing semiconductor layer can be reduced. The effect of suppressing cracks is increased.
  • a circular shape is most preferable.
  • the circular shape is a substantial circular shape, and some distortion is considered.
  • the average interval Pave of the concavo-convex structure 20 satisfies 50 nm ⁇ Pave ⁇ 1500 nm, it is possible to form a semiconductor layer in which cracks are suppressed and the internal quantum efficiency IQE is high. Further, when viewed as an LED epitaxial wafer, the effect of the ratio (Hbun / Have) or the ratio (Hbu / Have) described above can be suitably expressed when the average interval Pave is 1500 nm or less.
  • the semiconductor layer viewed from the concavo-convex structure 20 becomes large, and the effect of the ratio (Hbun / Have) or the ratio (Hbu / Have) based on the already explained principle is not disturbed by the concavo-convex structure 20. It is. Therefore, internal quantum efficiency IQE and a crack can be improved simultaneously. From the same principle, it is preferably 1200 nm or less, more preferably 1000 nm or less, and most preferably 950 nm or less. The lower limit is as already described.
  • the shape of the convex portion constituting the concavo-convex structure 20 is such that the diameter of the convex bottom portion is larger than the diameter of the convex top portion from the viewpoint of adhesion and growth of the nuclei of the semiconductor layer and coalescence of the growing semiconductor layers. It is preferable that the structure has a large structure, and it is more preferable that the convex side surface part connecting the convex part top part and the concave part bottom part has an inclination angle of two or more stages, and the radius of curvature at the point where the inclination changes is greater than zero. Most preferably, a curved surface is formed.
  • the aspect ratio that is, the ratio (Have / ⁇ ave), which is a parameter representing the shape of the convex portion, is preferably 0.1 or more and 5.0 or less.
  • produced from the light emitting semiconductor layer by being 0.1 or more becomes large, light extraction efficiency LEE can be improved.
  • an aspect ratio of 0.3 or more is preferable because the number of modes of light diffraction with respect to emitted light can be increased and the scattering property can be enhanced. From the same viewpoint, the aspect ratio is more preferably 0.5 or more, and most preferably 0.6 or more.
  • the aspect ratio is 5.0 or less, the inclination angle of the side surface of the convex portion can be made gentle. Thereby, it is considered that particles generated when obtaining the LED chip can be suppressed.
  • the aspect ratio is preferably 3.0 or less, more preferably 2.0 or less, and 1.1 or less from the same effect and the film formability of the semiconductor layer, particularly from the viewpoint of suppressing cracks. Is most preferred.
  • the bottom of the recess has a flat surface from the viewpoints of adhesion and growth of the nuclei of the semiconductor layer and coalescence of the growing semiconductor layer.
  • a flat surface hereinafter referred to as “flat surface B” having the bottom of the concave portion of the concavo-convex structure 20 and a surface substantially parallel to the stable growth surface of the first semiconductor layer 30. (Hereinafter referred to as “parallel stable growth surface”) are preferably parallel to each other.
  • the stable growth surface is the surface with the slowest growth rate in the material to be grown. In general, it is known that a stable growth surface appears as a facet surface during growth. For example, in the case of a gallium nitride compound semiconductor, a plane parallel to the A axis represented by the M plane is a stable growth plane.
  • the stable growth surface of the GaN-based semiconductor layer is the M plane (1-100), (01-10), (-1010) of the hexagonal crystal, and is one of the planes parallel to the A axis.
  • another plane including the A axis which is a plane other than the M plane of the GaN-based semiconductor, may be a stable growth plane.
  • ⁇ Buffer layer> As a material of the buffer layer 33, an AlGaN structure, an AlN structure, an AlInN structure, an InGaN / GaN superlattice structure, an InGaN / GaN laminated structure, an AlInGaN / InGaN / GaN laminated structure, or the like can be adopted. Further, regarding the film formation of the buffer layer, the film formation temperature can be in the range of 350 ° C. to 600 ° C. Thereby, uniformity can be improved also about the film-forming from a narrow recessed part bottom part.
  • the film thickness of the buffer layer 33 is desirably 1/5 or less with respect to the average height (Have) of the uneven structure 20. This is for suppressing the adhesion of nuclei to the side surface of the convex portion with respect to the re-diffusion and recrystallization behavior of the buffer layer 33 in the RAMP process. From this viewpoint, the film thickness of the buffer layer 33 is more preferably 1/10 or less, and most preferably 1/20 or less with respect to the average height (Have) of the concavo-convex structure 20.
  • the buffer layer 33 is preferably formed by MOCVD (Metal Organic Chemical Vapor Deposition) method or sputtering method. In particular, it is more preferable to employ the sputtering method from the viewpoint of improving the uniformity of the buffer layer 33.
  • the material of the first semiconductor layer 30 can be selected from the undoped first semiconductor layer 31 and the doped first semiconductor layer 32 described below.
  • the film thickness (Hbun) of the first semiconductor layer 30 flattens the concavo-convex structure 20 while suppressing cracks, and reduces dislocations in the first semiconductor layer 30, thereby leading to the light emitting semiconductor layer 40 and the second semiconductor layer 50. From the viewpoint of improving the internal quantum efficiency IQE by reflecting the performance as a semiconductor, it is preferably 800 nm or more. In particular, from the viewpoint of further exhibiting the effect of reducing dislocations by the concavo-convex structure 20, the thickness is preferably 1500 nm or more, and more preferably 2000 nm or more.
  • the upper limit value is preferably 100000 nm or less, more preferably 7500 nm or less, and most preferably 6500 nm or less from the viewpoint of warpage and environmental compatibility.
  • the doped first semiconductor layer 32 is not particularly limited as long as it can be used as an n-type semiconductor layer suitable for LED applications.
  • elemental semiconductors such as silicon and germanium, or compound semiconductors such as III-V, II-VI, and VI-VI can be appropriately doped with various elements.
  • an n-type GaN layer is desirable.
  • NH 3 is 3 ⁇ 10 ⁇ 2 to 4.2 ⁇ 10 ⁇ 2 mol / min, and trimethylgallium (TMGa) 0.8 ⁇ 10 ⁇ 4 to 1.8 ⁇ 10 ⁇ 4 mol.
  • the film thickness of the doped first semiconductor layer 32 is preferably 800 nm or more, more preferably 1500 nm or more, and most preferably 2000 nm or more, from the viewpoint of electron injection into the light emitting semiconductor layer 40.
  • the upper limit value is preferably 5000 nm or less from the viewpoint of reducing warpage.
  • the doped first semiconductor layer 32 is preferably 4300 nm or less, more preferably 4000 nm or less, and 3500 nm or less. Most preferably it is.
  • the undoped first semiconductor layer 31 can be appropriately selected within a range that does not hinder the performance of the doped first semiconductor layer 32 as an n-type semiconductor layer.
  • an elemental semiconductor such as silicon or germanium, or a compound semiconductor such as a III-V group, a II-VI group, or a VI-VI group can be used.
  • an undoped nitride layer is preferable.
  • the undoped nitride layer can be formed by supplying NH 3 and TMGa on the buffer layer or the LED wafer at a growth temperature of 900 ° C. to 1500 ° C., for example.
  • the film thickness (Hbu) of the undoped first semiconductor layer 31 is preferably 1000 nm or more from the viewpoint of planarizing the concavo-convex structure 20.
  • the thickness is preferably 1500 nm or more, more preferably 2000 nm or more, and most preferably 2500 nm or more.
  • the upper limit value is preferably 6000 nm or less from the viewpoint of reducing warpage of the LED epitaxial wafer 100.
  • the thickness is preferably 5000 nm or less, more preferably 4000 nm or less, and most preferably 3500 nm or less.
  • the undoped first semiconductor layer 31 and the doped first semiconductor layer 32 are sequentially stacked on the concave-convex structure 20 of the LED pattern wafer (1) 10, another undoped is further formed on the doped first semiconductor layer 32.
  • the semiconductor layer (2) may be provided, and the light emitting semiconductor layer 40 may be provided thereon.
  • the material described in the undoped first semiconductor layer 31 can be used as the other undoped semiconductor layer (2).
  • the film thickness of the other undoped semiconductor layer (2) is preferably 10 nm or more, more preferably 100 nm or more, and more preferably 200 nm or more from the viewpoint of the light emitting properties of the LED epitaxial wafers 200 and 300. Is most preferred.
  • the upper limit is preferably 500 nm or less, more preferably 400 nm or less, and most preferably 350 nm or less from the viewpoint of recombination of holes and electrons in the light emitting semiconductor layer 40.
  • the light emitting semiconductor layer 40 is not particularly limited as long as it has a light emitting characteristic as a semiconductor light emitting element (for example, LED).
  • a semiconductor layer such as AsP, GaP, AlGaAs, InGaN, GaN, AlGaN, ZnSe, AlHaInP, or ZnO can be applied.
  • the light emitting semiconductor layer may be appropriately doped with various elements according to characteristics.
  • the light emitting semiconductor layer 40 is an active layer having a single or multiple quantum well structure. For example, at a growth temperature of 600 ° C.
  • an electron blocking layer can be provided between the light emitting semiconductor layer 40 and the second semiconductor layer 50.
  • the electron block layer is made of, for example, p-AlGaN.
  • the second semiconductor layer 50 is not particularly limited as long as it can be used as a p-type semiconductor layer suitable for the application of the LED.
  • elemental semiconductors such as silicon and germanium, and compound semiconductors such as III-V, II-VI, and VI-VI can be appropriately doped with various elements.
  • the growth temperature can be raised to 900 ° C. or higher, TMGa and CP 2 Mg can be supplied, and the film can be formed to a thickness of several hundreds to thousands of liters.
  • the material of the LED pattern wafer (1) 10 is not particularly limited as long as it can be used as the LED pattern wafer (1).
  • Sapphire silicon carbide (SiC), silicon nitride (Si 3 N 4 ), gallium nitride (GaN), copper tungsten (W—Cu), silicon, zinc oxide, magnesium oxide, manganese oxide, zirconium oxide, manganese iron zinc oxide, Magnesium aluminum oxide, zirconium boride, gallium oxide, indium oxide, lithium gallium oxide, lithium aluminum oxide, neodymium gallium oxide, lanthanum strontium aluminum tantalum oxide, strontium titanium oxide, titanium oxide, hafnium, tungsten, molybdenum, GaP, GaAs, etc.
  • the substrate can be used.
  • sapphire GaN, GaP, GaAs, silicon carbide, silicon, spinel (for example, an insulating substrate typified by MgAl 2 O 4 ), or the like may be applied.
  • it may be used alone or may be a heterostructure wafer in which another wafer is provided on an LED wafer using these.
  • a sapphire wafer having a C-plane (0001) as a main surface can be used as the LED wafer.
  • the M plane which is a stable growth plane of the GaN-based semiconductor layer, is a plane parallel to the sapphire wafer A plane (11-20), (1-210), (-2110).
  • the size of the LED pattern wafer (1) 10 is not particularly limited, and examples thereof include 2 inch ⁇ , 4 inch ⁇ , 6 inch ⁇ , and 8 inch ⁇ . These may have a disk shape or a shape with an orientation flat.
  • the effect of the concavo-convex structure A is averaged from the viewpoint of the film formation phenomenon of the semiconductor layer, and from the viewpoint of manufacturing a high-quality LED epitaxial wafer, and among the above-described effects, reduction of the warpage of the LED epitaxial wafer From the viewpoint of exhibiting the above effect satisfactorily, it is preferably 4 inches ⁇ or 6 inches ⁇ .
  • the LED pattern wafer (1) 10 may be removed at least after the first semiconductor layer 30 is stacked. By removing the LED pattern wafer (1) 10, the effect of disturbing the waveguide mode is increased, so that the light extraction efficiency LEE is greatly improved.
  • the light emission surface of the LED emitted light is preferably on the first semiconductor layer 30 side when viewed from the light emitting semiconductor layer 40.
  • the transparent conductive layer 60 is provided on the second semiconductor layer 50.
  • the transparent conductive layer 60 is, for example, a transparent oxide film, and includes ITO (In 2 O 3 —SnO 2 ), ZnO, RuOx, TiOx, IrOx, SnOx, ADZnO (ZnO—Al 2 O 3 ), and IZnO ( In 2 O 3 —ZnO), GZO (ZnO—Ga 2 O 3 ), or InxOy is used.
  • the transparent conductive layer 60 can be formed by a vacuum deposition method, a sputtering method, or a CVD (Chemical Vapor Deposition) method.
  • the anode electrode 70 is provided on the transparent conductive layer 60.
  • the permeable oxide film or the transparent metal described in the transparent conductive layer 60 described above can be used.
  • the interface between the anode electrode 70 and the transparent conductive layer 60 can be eliminated.
  • the transparent metal is at least one selected from the group consisting of Ni, Co, Fe, Ti, Cu, Rh, Au, Ru, W, Zr, Mo, Ta, Pt, and oxides or nitrides thereof. Examples thereof include an alloy or a multilayer film.
  • a multilayer film in which Au is laminated on Ni is preferable from the viewpoint of adhesive strength.
  • a multilayer film in which Au is stacked on Ni and RhO is stacked on the Au can be employed.
  • the cathode electrode 80 is formed on the exposed surface of the first semiconductor layer 30 by etching the first semiconductor layer 30 from the second semiconductor layer 50 side.
  • a metal or metal oxide such as gold, silver, titanium, or chromium can be used.
  • a metal multilayer film is preferable.
  • a reflective film can be formed on the concave and convex structure 20 of the LED pattern wafer (1) 10 and on the opposite surface. By forming the reflective film, the light extraction efficiency LEE by the concavo-convex structure 20 can be further increased.
  • the reflectance of the reflective film is preferably 80% or more, more preferably 90% or more, and most preferably 91% or more at the emission wavelength of the light emitting semiconductor layer 40.
  • a dielectric multilayer film can be used.
  • the dielectric multilayer film is a multilayer film in which two or more dielectrics having different refractive indexes are alternately stacked. For example, ZrO 2 , AlN, Nb 2 O 3 , or Ta 2 O 3 and SiO 2 can be stacked with 3 to 8 pairs.
  • It can be manufactured by a transfer method, a photolithography method, a thermal lithography method, an electron beam drawing method, an interference exposure method, a lithography method using nanoparticles as a mask, a lithography method using a self-organized structure as a mask, or the like.
  • a transfer method from the viewpoint of processing accuracy and processing speed of the uneven structure 20 of the LED pattern wafer (1) 10.
  • the transfer method in the present specification is a method including a step of transferring a fine pattern of a mold having a fine pattern on the surface to an LED wafer (LED pattern wafer (1) 10 before producing the concavo-convex structure 20).
  • it is a method including at least a step of bonding a fine pattern of a mold and an LED wafer through a transfer material and a step of peeling the mold.
  • the transfer method can be classified into two. First, the transfer material transferred and applied to the LED wafer is used as a permanent agent. In this case, the materials constituting the LED wafer and the concavo-convex structure 20 are different.
  • the uneven structure 20 remains as a permanent agent and is used as an LED epitaxial wafer 100.
  • a metal alkoxide that generates a hydrolysis / polycondensation reaction or a metal alkoxide condensate as a raw material because the performance as a permanent agent is improved.
  • a mask material represented by SiO 2 formed by a vacuum process such as vapor deposition or sputtering is transferred and applied. Further, a mask is partially formed on the LED wafer by a transfer method, and then an inorganic material typified by SiO 2 is formed by vapor deposition or sputtering. Thereafter, the inorganic material can be patterned on the LED wafer by removing the mask produced by the transfer method.
  • an inorganic layer can be formed in advance on the main surface of the LED wafer, and the inorganic layer can be processed by a transfer method.
  • the concavo-convex structure 20 includes metal aluminum, amorphous aluminum oxide, polycrystalline aluminum oxide, polycrystalline sapphire, silicon oxide (SiO 2 ), silicon. It is possible to adopt a mixture of one or more of nitride (Si 3 N 4 ), silver (Ag), chromium (Cr), nickel (Ni), gold (Au), or platinum (Pt) Most preferred. As a result, the above-described effect of the rotational shift angle ⁇ can be fully exerted.
  • the nanoimprint lithography method includes a step of transferring a fine pattern of a mold onto an LED wafer, a step of providing a mask for processing the LED wafer by etching, and a step of etching the LED wafer. .
  • the LED wafer and the mold are first bonded via the transfer material.
  • the transfer material is cured by heat or light (UV), and the mold is peeled off.
  • Etching typified by oxygen ashing is performed on the concavo-convex structure composed of the transfer material to partially expose the LED wafer.
  • the LED wafer is processed by etching using the transfer material as a mask.
  • dry etching and wet etching can be employed. Dry etching is useful for increasing the height h of the concavo-convex structure 20 of the LED pattern wafer (1) 10.
  • a first transfer material layer is formed on the LED wafer.
  • the first transfer material layer and the mold are bonded via the second transfer material.
  • the transfer material is cured by heat or light (UV), and the mold is peeled off.
  • Etching typified by oxygen ashing is performed on the concavo-convex structure formed of the second transfer material to partially expose the first transfer material.
  • the first transfer material layer is etched by dry etching using the second transfer material layer as a mask.
  • the LED wafer is processed by etching using the transfer material as a mask.
  • dry etching and wet etching can be employed. Dry etching is useful for increasing the height h of the concavo-convex structure 20.
  • a nano-processed sheet method that does not require a remaining film treatment which will be described below, can be adopted.
  • the diluted mask layer (2) material is applied on the concavo-convex structure surface of the mold, and the solvent is removed. By this operation, the mask layer (2) can be disposed inside the recess of the mold.
  • the diluted mask layer (1) material is applied onto the concavo-convex structure of the mold containing the mask layer (2) inside the recess of the mold, and the solvent is removed. By this operation, the mask layer (2) is filled in the concave portion of the mold, and the mask layer (1) can be formed so as to fill and flatten the concavo-convex structure and the mask layer (2).
  • the mask layer (1) of the nano-processed sheet is laminated on the LED wafer.
  • an energy beam typified by UV light is irradiated to peel off the mold.
  • the obtained mask layer (2) / mask layer (1) / LED wafer is dry-etched from the mask layer (2) surface side to partially expose the LED wafer.
  • the LED wafer can be processed, and the LED pattern wafer (1) 10 can be manufactured.
  • the arrangement direction of the concavo-convex structure can be controlled in the direction in which the sheet is bonded.
  • the nano-processed sheet is fed out and set in a winding device.
  • an LED wafer is loaded.
  • the position of the orientation flat of the LED wafer is detected and controlled.
  • the nano-processed sheet is bonded to the loaded LED wafer. That is, the nano-processed sheet is mechanically bonded in a certain direction, but the rotation shift angle ⁇ can be easily controlled by controlling the direction of the LED wafer to be bonded.
  • the resolution of the rotational shift angle ⁇ was ⁇ 1 °.
  • a mask layer for processing and forming the concavo-convex structure 20 can be transferred and formed on the main surface of the LED wafer.
  • a dry etching method when manufacturing the concavo-convex structure 20 using the mask layer will be described.
  • this is effective when the mask layer provided on the LED wafer is two or more mask layers.
  • the following description will be given. The effectiveness of the dry etching method is maximized.
  • etching workpiece Call it a laminated body in which a mask layer used for forming a concavo-convex structure 20 by dry-etching an LED wafer on the main surface of the LED wafer is referred to as an etching workpiece Call it.
  • This etching work material is an etching work material provided with a mask layer having a pattern width of 5 ⁇ m or less and an aspect ratio of 0.1 to 5.0 on an LED wafer. It is preferable that the overall thermal resistance value when the etching workpiece is placed on the placing member is 6.79 ⁇ 10 ⁇ 3 (m 2 ⁇ K / W) or less.
  • the thermal resistance value is a value obtained by dividing the thickness of the member by the thermal conductivity ⁇ of the material constituting the member.
  • the LED pattern wafer (1) having the desired concavo-convex structure 20 can be manufactured by etching.
  • the mounting member, which is a component of the etching workpiece, as a conveying member the throughput can be improved in the dry etching process.
  • the etching workpiece is placed on the placement region of the placement member. Further, the etching work material may be placed directly on the placement region of the placement member, or the etching work material may be placed via another member such as a heat transfer sheet. In any case, it is important that the overall thermal resistance value is 6.79 ⁇ 10 ⁇ 3 (m 2 ⁇ K / W) or less.
  • the overall thermal resistance value is, for example, the case where the etching workpiece is disposed on the placement region of the placement member via the heat transfer sheet, and the thermal resistance value of the placement member in the placement region. It is the sum of the thermal resistance value of the etching workpiece and the thermal resistance value of the heat transfer sheet in the placement region.
  • seat can be read as another member. Moreover, what is necessary is just to make the thermal resistance value of a heat-transfer sheet
  • the thermal resistance value is a value obtained by dividing the thickness of the member by the thermal conductivity ⁇ of the material constituting the member. That is, the thermal resistance value R (m 2 ⁇ K / W) is a value calculated by the thickness d (m) of the member / the thermal conductivity ⁇ (W / m ⁇ K) of the member. Materials and thicknesses of members and layers constituting the etching workpiece so that the overall thermal resistance value is R ⁇ 6.79 ⁇ 10 ⁇ 3 (m 2 ⁇ K / W), and materials constituting the mounting member And adjust the thickness. In other words, the LED pattern wafer (1) can be manufactured with high accuracy by performing dry etching under conditions that satisfy the range of the overall thermal resistance value R.
  • the overall thermal resistance value is more preferably R ⁇ 3.04 ⁇ 10 ⁇ 3 (m 2 ⁇ K / W) or less, and R ⁇ 1.21 ⁇ 10 ⁇ 3 (m 2 ⁇ K / W) or less. More preferably.
  • the lower limit of the overall thermal resistance value R is preferably 0 ⁇ R.
  • the thermal resistance value can be easily measured by a laser flash method.
  • the thickness d of the mounting member there is no lower limit from the viewpoint of the thermal resistance value. However, if the thickness d of the mounting member is too small, the mounting member may be damaged when the mounting member is conveyed. It is preferable to adopt a range having durability, for example, 0.001 m or more. Further, although there is an upper limit value for the thickness d considered from the viewpoint of the thermal resistance value, the thickness d of the mounting member is preferably 0.05 m or less from the viewpoint of workability during transportation and cost.
  • a mounting member is a member which mounts an etching workpiece, and can be used as a conveyance tray for fixing or conveying an etching workpiece.
  • the mounting member By using the mounting member, it is possible to reduce the misalignment of the etching work material when the etching work material is transported to the vacuum reaction tank of the dry etching apparatus, and to transport a plurality of etching work materials simultaneously. Throughput can be increased.
  • the material constituting the mounting member include metal materials such as silicon (Si), aluminum (Al), and stainless steel, quartz (SiO 2 ), silicon carbide (SiC), silicon nitride (SiN), and alumina (Al 2 O).
  • Ceramics such as aluminum nitride (AlN), zirconia oxide (ZrO 2 ), yttria oxide (Y 2 O 3 ), silicon and aluminum coated with alumite, silicon, aluminum, and resin material with ceramic sprayed on the surface Metal materials such as silicon and aluminum coated with These materials are not particularly limited as long as the overall thermal resistance value R is satisfied. However, it is preferable to select materials that do not generate reactants having high deposition properties with respect to the dry etching gas.
  • silicon (Si), quartz (SiO 2 ), and aluminum (Al) have high availability and workability of the mounting member, silicon carbide (SiC), alumina (Al 2 O 3 ), Aluminum nitride (AlN), zirconia oxide (ZrO 2 ), yttria oxide (Y 2 O 3 ), and inorganic members coated with one or more of these generate particularly high depositing reactants. It is preferable in terms of difficulty.
  • the inorganic member used here is specifically a metal material having high workability such as silicon (Si) or aluminum.
  • AlN aluminum nitride
  • AlN aluminum nitride
  • Al2O3 alumina
  • the coating layer may be a mixture. Therefore, the description of “coated with any one or more of these” means that there is a case where other materials are mixed when attempting to cover with a certain material. Yes.
  • the shape of the mounting member is not particularly limited as long as the overall thermal resistance value R is satisfied, and examples thereof include a thin plate circular shape and a thin plate square shape.
  • the surface of the mounting member does not need to be flat, and a recess (counterbore, pocket) for accommodating the etching workpiece may be formed.
  • the mounting member does not need to be comprised with the single material, and may be comprised with two or more types of materials.
  • the mounting member does not need to be formed of a single structure, and two or more types of structures such as a lid for fixing the etching workpiece by covering the base portion and a part of the etching workpiece. May be configured in combination.
  • the mask layer is preferably two or more mask layers, which can be easily produced by a nano-processed sheet method or a nano-imprint method for two or more layers of resist. In particular, by using a nano-processed sheet, two or more highly accurate mask layers can be formed.
  • a transfer method is applied to obtain a two-layer resist on the main surface of the LED wafer.
  • films are formed in the order of organic resist / inorganic resist from the side close to the LED wafer, and at least the inorganic resist forms an uneven structure.
  • This process is called a residual film removal process.
  • reactive etching with a gas containing at least one of O 2 gas, H 2 gas, Xe gas, and Ar gas is preferably used.
  • the processing accuracy is improved.
  • the processing accuracy is improved by using only O 2 gas or a gas obtained by adding 50% by volume or less of Ar gas to O 2 gas. Thereby, a fine pattern mask having a high aspect ratio can be formed on the LED wafer.
  • An etching method for improving the processing accuracy of the concavo-convex structure 20 of the LED pattern wafer (1) is an etching method in which a mask layer having a pattern width of 5 ⁇ m or less and an aspect ratio of 0.1 to 5.0 is provided on the LED wafer.
  • the etching work material is placed on the placement member, and the overall thermal resistance value R is 6.79 ⁇ 10 ⁇ 3 (m 2 ⁇ K / W) or less
  • the mask layer Using the mask as a mask, the LED wafer is etched. Thereby, since etching damage to the fine pattern mask is suppressed, the etching uniformity of the fine pattern mask is maintained in the etching process, and the accuracy of the concavo-convex structure 20 of the LED pattern wafer (1) is improved.
  • etching using a chlorine-based gas or a chlorofluorocarbon-based gas can be performed.
  • the fluorocarbon gas include CF 4 , CHF 3 , C 2 F 6 , C 3 F 8 , C 4 F 6 , C 4 F 8 , CH 2 F 2 , and CH 3 F.
  • a gas in which Ar gas, O 2 gas, and Xe gas are mixed in a fluorocarbon gas to 50% or less of the total gas flow rate is used. Reactive etching is possible when etching for LED wafers (hardly etching base materials) that are difficult to be reactively etched with chlorofluorocarbon-based gases or for LED wafers that generate highly depositable reactants.
  • a mixed gas containing at least one kind of chlorine-based gas is used. Examples of the chlorine-based gas include Cl 2 , BCl 3 , CCl 4 , PCl 3 , SiCl 4 , HCl, CCl 2 F 2 , and CCl 3 F.
  • O 2 gas, Ar gas, or a mixed gas of O 2 gas and Ar gas may be added to the chlorine-based gas.
  • the etching pressure is preferably 0.1 Pa to 20 Pa, preferably 0.1 Pa to 10 Pa, because the ion incident energy contributing to the reactive etching is increased and the etching rate for the LED wafer is improved. More preferred.
  • the taper-shaped angle of the fine pattern produced for LED wafers can be made separately by increasing / decreasing the deposition amount of the fluorocarbon film which protects the etching side wall for LED wafers.
  • the ratio of the flow rate of the fluorocarbon gas with F / C ⁇ 3 and the fluorocarbon gas with F / C ⁇ 3 is 95 sccm: 5 sccm to 60 sccm: 40 sccm. It is preferable to be 70 sccm: 30 sccm to 60 sccm: 40 sccm. Even when the total gas flow rate changes, the ratio of the above flow rates does not change.
  • the mixed gas of Freon-based gas and Ar gas, and O 2 gas or Xe gas improves the etching rate for LED wafers when the reactive etching component and the ion incident component are appropriate amounts.
  • the gas flow rate ratio is preferably 99 sccm: 1 sccm to 50 sccm: 50 sccm, more preferably 95 sccm: 5 sccm to 60 sccm: 40 sccm, and still more preferably 90 sccm: 10 sccm to 70 sccm: 30 sccm.
  • the mixed gas of chlorine gas and Ar gas and O 2 gas or Xe gas improves the etching rate for LED wafers when the reactive etching component and the ion incident component are appropriate amounts.
  • the gas flow rate ratio is preferably 99 sccm: 1 sccm to 50 sccm: 50 sccm, more preferably 95 sccm: 5 sccm to 80 sccm: 20 sccm, and still more preferably 90 sccm: 10 sccm to 70 sccm: 30 sccm. Even when the total gas flow rate changes, the ratio of the above flow rates does not change.
  • the etching for LED wafer using a chlorine-based gas BCl 3 gas only or it is preferable to use a BCl 3 gas and a mixed gas of Cl 2 gas and Ar gas or a mixed gas of Xe gas.
  • These mixed gases preferably have a gas flow rate ratio of 99 sccm: 1 sccm to 50 sccm: 50 sccm from the viewpoint of improving the etching rate for the LED wafer when the reactive etching component and the ion incident component are appropriate. : 1 sccm to 70 sccm: 30 sccm is more preferable, and 99 sccm: 1 sccm to 90 sccm: 10 sccm is more preferable. Even when the total gas flow rate changes, the ratio of the above flow rates does not change.
  • capacitively coupled RIE inductively coupled RIE, inductively coupled RIE, or RIE using an ion attraction voltage
  • the processing pressure is set in the range of 0.1 to 5 Pa
  • capacitive coupling RIE or RIE using an ion pull-in voltage is used.
  • treatment is performed using only BCl 3 gas or a gas in which BCl 3 gas and Cl 2 gas or Ar gas are mixed at a gas flow rate ratio of 95 sccm: 5 sccm to 85 sccm: 15 sccm.
  • the pressure is set in the range of 0.1 to 10 Pa, and capacitive coupling RIE, inductive coupling RIE, or RIE using an ion pull-in voltage is used.
  • processing is performed using only BCl 3 gas or a gas in which BCl 3 gas and Cl 2 gas or Ar gas are mixed at a gas flow rate ratio of 95 sccm: 5 sccm to 70 sccm: 30 sccm.
  • the pressure is set in a range of 0.1 Pa to 10 Pa, and capacitive coupling type RIE, inductive coupling type RIE, or RIE using an ion attraction voltage is used. Even when the total gas flow rate of the mixed gas used for etching changes, the ratio of the above flow rates does not change.
  • etching is performed on the LED wafer in the state of the etching workpiece in the range of the entire thermal resistance value R.
  • a fine pattern mask having a pattern width of 5 ⁇ m or less and an aspect ratio in the range of 0.1 to 5.0 is secured as a mask while ensuring high throughput. Even in this case, the dry etching damage can be reduced and the uneven structure can be formed for the LED wafer as expected.
  • the fine pattern mask forming process and the LED wafer dry etching process may be continuously performed by the same apparatus.
  • the mounting member is used also in the fine pattern mask forming step, and each material and shape may be selected so as to satisfy the range of the entire thermal resistance value R.
  • the LED epitaxial wafer 100 is formed on the uneven structure 20 of the LED pattern wafer (1) 10 so as to satisfy the ratio (Hbun / Have) and / or the ratio (Hbu / Have) described above.
  • the first semiconductor layer 30, the light emitting semiconductor layer 40, and the second semiconductor layer 50 can be manufactured by sequentially forming a film.
  • a step of preparing an LED pattern wafer (1) 10, a step of performing optical measurement on the LED pattern wafer (1) 10, and a step of manufacturing an LED epitaxial wafer 100 using the LED pattern wafer (1) 10 Are preferably included in this order.
  • the accuracy of the LED pattern wafer (1) 10 can be evaluated in advance, it is possible to predict in advance the degree of improvement in the internal quantum efficiency IQE and the light extraction efficiency LEE.
  • the optical measurement both of detecting reflected light and detecting transmitted light can be adopted.
  • a highly versatile apparatus can be diverted, it is preferable to measure haze when detecting transmitted light.
  • a method of detecting reflected light is preferable. In this case, depending on the arrangement and size of the concavo-convex structure A, it is possible to appropriately set whether to detect a regular reflection component or a diffuse reflection component.
  • the regular reflection component it is possible to evaluate the accuracy of the contour shape of the concavo-convex structure 20, and by using the diffuse reflection component, it is possible to evaluate the volume accuracy of the concavo-convex structure 20.
  • which is adopted can be appropriately selected depending on the uneven structure 20 to be used and the purpose.
  • the ratio between diffuse reflection component and regular reflection component (diffuse reflection component-regular reflection component), (diffuse reflection component-regular reflection component) / regular reflection component, (diffuse reflection component-regular reflection component) / diffuse reflection Ingredients can also be used.
  • the defect of the concavo-convex structure 20 can be effectively evaluated by setting the wavelength of the light source to be larger than the average interval (Pave) of the concavo-convex structure 20.
  • the LED pattern wafer (1) As described above, by using the LED pattern wafer (1), the effects of the rotational shift angle ⁇ and the shape of the top of the convex portion are manifested, and cracks in the semiconductor layer can be satisfactorily suppressed. And internal quantum efficiency IQE can be improved effectively.
  • the LED pattern wafer (2) described below the light extraction efficiency LEE can be further improved while maintaining the above-described effects.
  • the LED pattern wafer (2) is provided with another uneven structure L in addition to the LED pattern wafer (1). With this uneven structure L, it is possible to impart strong light scattering properties and further improve the light extraction efficiency LEE.
  • the concavo-convex structure A corresponds to the concavo-convex structure A described in the LED pattern wafer (1).
  • the LED pattern wafer (2) is obtained by adding a concavo-convex structure L as a further concavo-convex structure to the LED pattern wafer (1).
  • the effect by the newly added uneven structure L will be expressed. Therefore, cracks can be effectively suppressed, the crystal quality of the semiconductor layer can be greatly improved, the internal quantum efficiency IQE can be improved, and the light extraction efficiency LEE can be effectively improved.
  • the LED pattern wafer (2) will be described in detail.
  • the LED pattern wafer (2) is obtained by adding a further uneven structure L to the LED pattern wafer (1). Therefore, in the following description, the description of the added uneven structure L will be mainly performed. Therefore, other structural requirements of the LED pattern wafer (2), an LED epitaxial wafer using the LED pattern wafer (2), an LED chip using the LED pattern wafer (2), and an LED pattern wafer (2) Although a detailed description of the manufacturing method is omitted, those of the LED pattern wafer (1) can be applied as they are.
  • the pattern wafer (2) for LED has a concavo-convex structure A having a substantially n-fold symmetric arrangement on the main surface and a substantially m-fold symmetric arrangement different from the concavo-convex structure A.
  • a concavo-convex structure L, and at least a part of the concavo-convex structure A has a rotation shift angle ⁇ of the array axis A of the concavo-convex structure A with respect to the crystal axis direction of the LED pattern wafer (2) in the main surface, It is characterized by satisfying 0 ° ⁇ ⁇ (180 / n) °.
  • the LED pattern wafer (2) has a substantially m-symmetric array different from the concavo-convex structure A on the surface having the concavo-convex structure A of the LED pattern wafer (1). It further has a concavo-convex structure L.
  • the internal quantum efficiency IQE of the LED epitaxial wafer using the LED pattern wafer (2) is improved, and the LED pattern wafer (2) has a concavo-convex structure (hereinafter referred to as a concavo-convex structure surface). It is possible to suppress cracks in the semiconductor layer formed on the substrate. Furthermore, the light emitted more efficiently than the LED can be taken out of the LED. In other words, the effects described in the LED pattern wafer (1) can be exhibited, and the light extraction efficiency LEE can be further improved by the concavo-convex structure L.
  • the concavo-convex structure A of the LED pattern wafer is the concavo-convex structure A of the LED pattern wafer (1) already described, it is possible to form a semiconductor layer with reduced cracks by the same principle. As a result, a high-quality semiconductor crystal can be obtained. Furthermore, the internal quantum efficiency IQE of the LED epitaxial wafer can be improved.
  • the effect of the uneven structure A will be described, but this can be read as the same effect as the effect of the uneven structure A of the LED pattern wafer (1).
  • the concavo-convex structure L is composed of a plurality of convex portions and concave portions having a first average interval (PL), and the concavo-convex structure A is the concavo-convex structure.
  • L is formed on a surface of at least one of the convex portion and the concave portion constituting the L, and includes a plurality of convex portions and concave portions having a second average interval (PA), and the first average interval (PL )
  • the second average interval (PA) (PL / PA) is preferably more than 1 and not more than 2000.
  • the second average interval (PA) refers to the average interval (Pave) described in the LED pattern wafer (1).
  • the plurality of convex portions constituting the concavo-convex structure L are separated from each other, and at least at the bottoms of the plurality of concave portions constituting the concavo-convex structure L. It is preferable that the convex portion or the concave portion constituting the concave-convex structure A is provided.
  • the effect of the concavo-convex structure A is particularly good.
  • the semiconductor layer can be preferentially grown from the bottom of the concave portion of the concavo-convex structure L.
  • the concavo-convex structure A is provided at the bottom of the concave portion, crack suppression and improvement of the internal quantum efficiency IQE can be effectively realized from the principle already described.
  • the plurality of recesses constituting the concavo-convex structure L are separated from each other, and at least on the tops of the plurality of convex portions constituting the concavo-convex structure L. It is preferable that the convex portion or the concave portion constituting the concave-convex structure A is provided.
  • This configuration can particularly improve the light extraction efficiency LEE.
  • the concavo-convex structure A on the top of the convex portion of the concavo-convex structure L having a larger average interval, the effect of suppressing cracks and improving the internal quantum efficiency IQE can be improved for the semiconductor layer grown from the top of the convex portion of the concavo-convex structure L.
  • An effect can be expressed.
  • This space has a very small refractive index when viewed from the semiconductor layer. That is, since the difference in refractive index can be increased, the optical scattering property is increased, and the light extraction efficiency LEE is further improved.
  • laser lift-off can be suitably applied depending on the type of LED.
  • the coverage ratio of the concavo-convex structure A to the concavo-convex structure L is preferably more than 0% and less than 100%.
  • the concavo-convex structure A is composed of a plurality of convex portions and concave portions having a first average interval (PA), and the concavo-convex structure L is the concavo-convex structure.
  • the concavo-convex structure A is provided on the surface of A so as to be partially exposed, and is configured by a plurality of convex portions having a second average interval (PL), and the first average interval (PL), and the first average interval ( The ratio (PL / PA) between PA) and the second average interval (PL) is preferably more than 1 and not more than 2000.
  • the first average interval (PA) refers to the average interval (Pave) described in the LED pattern wafer (1).
  • the effect of the concavo-convex structure A can be exhibited and the light extraction efficiency LEE can be improved.
  • the LED pattern wafer (2) has a concavo-convex structure A on the surface thereof, and the concavo-convex structure A includes an exposed portion. Therefore, from the principle already described, cracks are suppressed and a semiconductor having a high internal quantum efficiency IQE. A layer can be formed.
  • an uneven structure L is provided on the surface of the uneven structure A.
  • the uneven structure L has a larger average interval than the uneven structure A. Therefore, the optical scattering property becomes strong.
  • a semiconductor layer in which cracks are suppressed can be formed, and the dislocation of the semiconductor layer is reduced, so that the internal quantum efficiency IQE is increased. And it becomes possible to take out the light effectively emitted by high internal quantum efficiency IQE to the exterior of LED by optical scattering property.
  • the average interval (PA) of the uneven structure A is preferably 50 nm or more and 1500 nm or less.
  • the average interval (PA) refers to the average interval (Pave) described in the LED pattern wafer (1).
  • the effect of the concavo-convex structure A is further improved from the principle described in the LED pattern wafer (1).
  • Duty ( ⁇ ave / PA) which is a ratio of the average width ( ⁇ ave) of the convex bottom portion of the concavo-convex structure A and the average interval (PA) is used.
  • the rotational shift angle ⁇ preferably satisfies the range of atan (Duty / 2) ° ⁇ ⁇ ⁇ (180 / n) °.
  • the effect of the concavo-convex structure A becomes more remarkable from the same principle as that of the LED pattern wafer (1). Therefore, the internal quantum efficiency IQE is further improved, and cracks generated in the semiconductor layer are effectively suppressed.
  • the expression concavo-convex structure AL is used.
  • the LED pattern wafer (2) according to the present embodiment has an uneven structure AL on its surface.
  • the concavo-convex structure AL may be obtained by processing one main surface of the LED wafer or separately provided on one main surface of the LED wafer. That is, the material constituting the LED wafer and the material constituting the uneven structure A and / or the uneven structure L may be the same or different.
  • the concavo-convex structure A has a substantially n-fold symmetric arrangement, and the rotational shift angle ⁇ described above shows a predetermined range, and the shape of the top of the convex part has a radius of curvature exceeding zero. It is a corner.
  • size of 100 nm or less can also be included as already demonstrated in the LED pattern wafer (1).
  • the concavo-convex structure A is provided on the LED wafer so that the rotational shift angle ⁇ satisfies a predetermined range.
  • the rotational shift angle with respect to the LED pattern wafer of the arrangement axis L of the concavo-convex structure L is not particularly limited, but the internal quantum efficiency IQE and the crack suppression effect can be further improved by satisfying the following ranges.
  • the rotational shift angle ⁇ with respect to the arrangement axis A of the concavo-convex structure A is denoted as ⁇ A
  • the rotational shift angle ⁇ with respect to the arrangement axis L of the concavo-convex structure L is denoted as ⁇ L
  • the rotation shift angle ⁇ L can be defined by replacing the concavo-convex structure A with the concavo-convex structure L and the array axis A with the array axis L in the description of the definition of the rotation shift angle ⁇ A.
  • ⁇ (
  • ) which is the difference between the rotational shift angle ⁇ L and the rotational shift angle ⁇ A, satisfies the range of 0 ° ⁇ ⁇ ⁇ (180 / n) °.
  • Duty is the duty of the concavo-convex structure A.
  • the angle formed by the alignment axis L of the concavo-convex structure L and the surface that is easily formed by the growth of the semiconductor layer is reduced, the stress applied from the concavo-convex structure L to the growing semiconductor layer can be reduced. it can.
  • the growth property of the semiconductor layer can be kept good, the coalescence of the growing semiconductor layers becomes good, dislocations are bent and reduced, and cracks can be suppressed.
  • satisfying 0 ° ⁇ ⁇ L ⁇ atan (Duty / 2) ° is preferable because the above-described effect is further exhibited.
  • the concavo-convex structure A has a substantially n-fold symmetric arrangement and satisfies the rotation shift angle ⁇ A already described.
  • the concavo-convex structure L has a substantially m-fold symmetric arrangement.
  • the rotational shift angle ⁇ L with respect to the concavo-convex structure L and the relationship ⁇ between the rotational shift angle ⁇ A and the rotational shift angle ⁇ L are as described above.
  • the rotational symmetry order n of the concavo-convex structure A and the rotational symmetric order m of the concavo-convex structure L may be the same or different.
  • n of the concavo-convex structure A and the rotational symmetric order of the concavo-convex structure L is described as (n, m), (6, 6), (6, 4), (6, 2), (4,6), (4,4), (4,2), (2,6), (2,4) or (2,2).
  • (6,6), (4,6), (2,6), (6,2), (4,2) ) Or (2,2), and (6,6), (4,6) or (2,6) is most preferable.
  • the uneven structure L will be described.
  • the main function of the uneven structure L is to improve the light extraction efficiency LEE. Therefore, it is preferable to have a structure that effectively causes an optical scattering (light scattering or light diffraction) phenomenon or a reflection phenomenon with respect to the light emitted from the LED, and an uneven structure L described below can be adopted. .
  • the average interval PL of the concavo-convex structure L is within a range larger than the average interval PA of the concavo-convex structure A from the viewpoint of effectively expressing optical scattering (light diffraction or light scattering) or reflection, that is, the average interval PL> It is preferable that the average distance PA is satisfied, and at the same time, it is 1000 nm or more and 100 ⁇ m or less.
  • the average interval PL is preferably 1200 nm or more, and more preferably 1500 nm or more, from the viewpoint of expressing light diffraction more strongly, effectively disturbing the waveguide mode and improving the light extraction efficiency LEE. Most preferably, it is 2000 nm or more.
  • the upper limit value is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less, and most preferably 10 ⁇ m or less from the viewpoint of the manufacturing time of the concavo-convex structure L and the amount of semiconductor layer used.
  • the width of the top of the convex portion of the concavo-convex structure L is not limited to the material of the concavo-convex structure L, as long as the concavo-convex structure A is provided on the convex portion 703 of the concavo-convex structure L as shown in FIGS. There is no particular limitation. This is because when the material of the concavo-convex structure L and the LED wafer 702 is different, the first semiconductor layer grows from the exposed surface of the LED wafer 702.
  • the dislocation generated from the top of the convex portion 703 of the concavo-convex structure L can be reduced by the concavo-convex structure A.
  • the top of the convex portion of the concavo-convex structure L from the viewpoint of improving the internal quantum efficiency IQE and the light extraction efficiency LEE regardless of the arrangement of the concavo-convex structure A with respect to the concavo-convex structure L.
  • the ratio of the width of the concave portion and the width of the concave portion opening portion of the concavo-convex structure L is preferably as small as possible, and is most preferably substantially zero. That is, the top of the convex portion of the concavo-convex structure L is most preferably a corner portion having a radius of curvature exceeding 0, similarly to the top of the convex portion of the concavo-convex structure A.
  • the corner portion with the curvature radius exceeding 0 includes the case where the size of the table top is 100 nm or less.
  • the ratio being 0 means that the width of the top of the convex portion is 0 nm.
  • the width of the top of the convex portion is 3 or less, the film formability of the semiconductor layer can be kept good. This is because the amount of semiconductor that grows from the top of the convex portion 703 of the concave-convex structure L can be reduced. Furthermore, when the ratio is 1 or less, the light extraction efficiency LEE can be improved.
  • the ratio is preferably 0.4 or less, more preferably 0.2 or less, and still more preferably 0.15 or less.
  • the internal quantum efficiency IQE is improved and the difference between the semiconductor film forming apparatuses is reduced. This is preferable because it is possible.
  • initial conditions of these physical phenomena are nucleation and growth when the semiconductor layer is formed by CVD (Chemical Vapor Deposition), VPE (Vapor Phase Epitaxy), or sputtering.
  • nucleation of the bottom of the concave portion of the concavo-convex structure L can be suitably generated, so that the growth of the semiconductor layer is stabilized.
  • the internal quantum efficiency IQE can be further increased.
  • the concavo-convex structure L in the case where the material of the concavo-convex structure L and the LED wafer 702 is different is composed of a plurality of convex portions provided on the LED wafer 702 and an exposed LED wafer 702 where no convex portions are provided. Is done.
  • the LED wafer 702 is made of sapphire, SiC, nitride semiconductor, Si, or spinel, metallic aluminum, amorphous aluminum oxide, polycrystalline aluminum oxide, polycrystalline sapphire, silicon oxide (SiO 2 ), silicon nitride ( Convex part 703 composed of any one or a mixture of Si 3 N 4 ), silver (Ag), chromium (Cr), nickel (Ni), gold (Au), or platinum (Pt). Can be provided.
  • the duty of the concavo-convex structure L expressed by the ratio of the average width of the convex bottom of the concavo-convex structure L to the average interval PL (average width of the convex bottom / PL) is 0. It is preferable that it is 03 or more and 0.83 or less. By being 0.03 or more, the volume of the convex part of the concavo-convex structure L is increased, and the optical scattering property is improved. From the same effect, the ratio is more preferably 0.17 or more, and most preferably 0.33 or more.
  • the ratio is more preferably 0.73 or less, and most preferably 0.6 or less.
  • the aspect ratio of the concavo-convex structure L that is, the average height of the concavo-convex structure L / the average width of the bottom of the convex portion of the concavo-convex structure L is 0.1 or more. Can be improved. In particular, from the viewpoint of increasing the number of modes of light diffraction, 0.3 or more is preferable, 0.5 or more is more preferable, and 0.8 or more is most preferable. On the other hand, the aspect ratio is preferably 5 or less from the viewpoint of suppressing cracks and voids in the semiconductor layer. Furthermore, since the time for producing the concavo-convex structure L can be shortened and the amount of semiconductor used can be reduced, 2 or less is more preferable, and 1.5 or less is most preferable.
  • the height H of the convex portion 703 of the concavo-convex structure L is preferably 2 times or less of the average interval PL from the viewpoint of the time required for producing the concavo-convex structure L and the amount of semiconductor crystals used.
  • the refractive index distribution of the concavo-convex structure L is appropriate from the viewpoint of the emitted light, so that the light extraction efficiency LEE can be further improved.
  • the height H of the concavo-convex structure L is more preferably 0.8 times or less of the average interval PL, and most preferably 0.7 times or less.
  • the LED pattern wafer (2) of the present invention comprises a concavo-convex structure A having an average interval PA satisfying the rotational shift angle ⁇ A described above and a concavo-convex structure L having an average interval PL, and the average interval PL and average It differs from the interval PA within a predetermined ratio range.
  • one concavo-convex structure L having a larger average interval mainly exhibits a function of improving light extraction efficiency LEE
  • the other concavo-convex structure A having a smaller average interval mainly improves internal quantum efficiency IQE and crack suppression.
  • the internal quantum efficiency IQE is improved and cracks are suppressed, and the light extraction efficiency LEE is reduced by the one concavo-convex structure A.
  • the other concavo-convex structure L that improves the light extraction efficiency LEE does not cause the internal quantum efficiency IQE to decrease and cracks occur, so that the other concavo-convex structure (L or A) has at least a part of the surface thereof.
  • the concavo-convex structure (A or L) is provided.
  • the rotational shift angles ⁇ L and ⁇ are as already described.
  • FIG. 27 is a schematic cross-sectional view showing an example of an LED pattern wafer (2) according to the present embodiment.
  • An LED pattern wafer (2) 710 shown in FIGS. 27A and 27B is provided with an uneven structure 720 on the main surface of the LED wafer 702.
  • the uneven structure 720 includes a first uneven structure (hereinafter referred to as an uneven structure L). And a second concavo-convex structure (hereinafter referred to as concavo-convex structure A).
  • the concavo-convex structure L is configured by a convex portion 703 (or a concave portion 704) provided apart from each other and a concave portion 704 (or a convex portion 703) that connects between adjacent convex portions 703 (or concave portions 704). .
  • the plurality of convex portions 703 (or concave portions 704) have an average interval PL.
  • the concavo-convex structure A is formed between a plurality of convex portions 705 (or concave portions 706) provided on the surfaces of the convex portions 703 and concave portions 704 constituting the concave-convex structure L and a plurality of convex portions 705 (or concave portions 706). It is comprised by the recessed part 706 (or convex part 705) to connect.
  • the plurality of convex portions 705 (or concave portions 706) have an average interval PA.
  • the concavo-convex structure A is provided on the top surface of the plurality of convex portions 703 and the bottom portion of the concave portion 704.
  • FIG. 27A the concavo-convex structure A is provided on the top surface of the plurality of convex portions 703 and the bottom portion of the concave portion 704.
  • the concavo-convex structure A is provided on the top of the convex portion 703 that connects a plurality of independent concave portions 704.
  • the concavo-convex structure A is not limited to the example of FIGS. 27A and 27B, and may be provided on at least one surface of the convex portion 703 or the concave portion 704.
  • the concavo-convex structure A satisfies the rotational shift angle ⁇ already described. Moreover, it is preferable to satisfy the shape already described. Moreover, it is preferable that the arrangement of the concavo-convex structure L satisfy the rotational shift angle ⁇ L or ⁇ already described.
  • the concavo-convex structure A can also be provided on the side surface of the convex portion 703 that connects the convex portion 703 and the bottom of the concave portion 704.
  • the concavo-convex structure A is provided on the side surface of the convex portion 703, it is considered that the effect of disturbing the waveguide mode is further enhanced, and the traveling direction of the disturbed emitted light can be further changed in the thickness direction of the LED. For this reason, it becomes easy to select a sealing material when packaging the LED.
  • the concavo-convex structure L is composed of a plurality of convex portions 703 spaced apart from each other, and the concavo-convex structure A is provided at least at the bottom of the concave portion 704 of the concavo-convex structure L.
  • the growth of the semiconductor layer can be started from the bottom of the concave portion 704 of the concave-convex structure L.
  • the concavo-convex structure A is provided at the bottom of the concave portion 704, the adhesion and growth of the nuclei of the semiconductor layer already described and the coalescence of the growing semiconductor layers become good. It is possible to suppress layer dislocations and at the same time reduce cracks.
  • the concavo-convex structure L is composed of a plurality of convex portions 703, cracks in the vicinity of the convex portions 703 of the semiconductor layer grown from the bottom of the concave portions 704 can be suppressed.
  • the internal quantum efficiency IQE can be improved and the reliability of the LED can be improved.
  • the concavo-convex structure L and the concavo-convex structure A satisfy a predetermined average interval relationship, and thus the optical scattering property is increased.
  • the concave-convex structure A is provided at least at the bottom of the concave portion 704, the waveguide mode can be disturbed by light scattering or optical reflection, and the waveguide mode can be prevented from being guided again.
  • the light extraction efficiency LEE is improved at the same time.
  • the concavo-convex structure L is preferably composed of a plurality of concave portions 704 spaced apart from each other, and at least the convex portion 705 or the concave portion 706 constituting the concavo-convex structure A is provided at the top of the convex portion 703 of the concave-convex structure L.
  • the growth of the semiconductor layer can be started from the top of the convex portion 703 of the concavo-convex structure L.
  • the concavo-convex structure A on the top of the convex portion 703, it is possible to suppress cracks in the semiconductor layer and improve the internal quantum efficiency IQE as already described.
  • the semiconductor layer grown from the top of the projection 703 has better growth than the semiconductor crystal grown from the bottom of the recess 704. For this reason, the semiconductor layer grown from the bottom of the recess 704 can be blocked by the semiconductor layer grown from the top of the projection 703. Therefore, cracks are suppressed and the internal quantum efficiency IQE is effectively improved.
  • the concavo-convex structure L and the concavo-convex structure A satisfy a predetermined average interval relationship, and thus the optical scattering property is increased.
  • the concavo-convex structure L is composed of the plurality of concave portions 704, the volume change is further increased, so that the effect of disturbing the waveguide mode is increased, and the light extraction efficiency LEE is improved.
  • the coverage ratio of the concavo-convex structure A to the concavo-convex structure L is more than 0% and less than 100%.
  • the concavo-convex structure A is always provided in the convex portion 703 or the concave portion 704 of the concavo-convex structure L, the internal quantum efficiency IQE can be effectively improved and cracks inside the semiconductor layer can be suppressed from the principle described above.
  • the convex portions 703 and the concave portions 704 of the concavo-convex structure L are not completely filled with the concavo-convex structure A. Thereby, it can suppress that the improvement effect of the light extraction efficiency LEE by the uneven structure L is reduced by the uneven structure A. That is, the effect of simultaneously improving the internal quantum efficiency IQE and the light extraction efficiency LEE is further enhanced.
  • FIG. 27C is a schematic cross-sectional view showing another example of the LED pattern wafer (2).
  • the LED pattern wafer (2) 710 is provided with an uneven structure 720 on the main surface of the LED wafer 702, and the uneven structure 720 includes a first uneven structure (hereinafter referred to as an uneven structure A) and a second.
  • the concavo-convex structure (hereinafter referred to as the concavo-convex structure L).
  • the concavo-convex structure A is composed of convex portions 705 that are spaced apart from each other and concave portions 706 that connect between adjacent convex portions 705.
  • the plurality of convex portions 705 have an average interval PA.
  • the concavo-convex structure L is provided on the surface of the concavo-convex structure A so as to be partly exposed so that the concavo-convex structure A is partially exposed. It is comprised by the convex part 703 of this.
  • the plurality of convex portions 703 have an average interval PL.
  • the ratio between the average interval PL of the concavo-convex structure L and the average interval PA of the concavo-convex structure A of the LED pattern wafer (2) 710 described with reference to FIGS. 27A, 27B, and 27C is 1 to 2000. By being more than 1 and 2000 or less, cracks can be suppressed and a semiconductor layer with improved internal quantum efficiency IQE can be formed, and light extraction efficiency LEE can be improved.
  • the ratio (PL / PA ) Is preferably 1.1 or more, more preferably 1.5 or more, and still more preferably 2.5 or more.
  • the ratio (PL / PA) is preferably 5.5 or more, and 7.0. More preferably, it is more preferably 10 or more.
  • the optical scattering property (light diffraction or light scattering) by the concavo-convex structure A is improved, and the internal quantum efficiency IQE by the concavo-convex structure A and the light extraction efficiency LEE by the concavo-convex structure L and the concavo-convex structure A are realized.
  • the ratio (PL / PA) is preferably 700 or less, more preferably 300 or less, and still more preferably 100 or less.
  • the stress applied to the semiconductor layer from the concavo-convex structure L is reduced to further suppress cracks, the volume change of the concavo-convex structure L is increased, and the density of the concavo-convex structure A is improved.
  • the ratio (PL / PA) is preferably 50 or less, more preferably 40 or less, and most preferably 30 or less.
  • the concavo-convex structure 720 composed of the concavo-convex structure L and the concavo-convex structure A of the LED pattern wafer (2) can be read as the concavo-convex structure 20 of the LED pattern wafer (1).
  • the ratio (Hbun) of the distance (Hbun) between the surface on the light emitting semiconductor layer side and the surface on the first semiconductor layer side of the light emitting semiconductor layer to the average height (Have) of the concavo-convex structure A / Have) corresponds to the ratio (Hbun / Have) described in the LED pattern wafer (1).
  • the ratio (Hbu / Have) to the height (Have) corresponds to the ratio (Hbu / Have) described in the LED pattern wafer (1).
  • the shape of the concavo-convex structure AL is, for example, a line-and-space structure in which a plurality of fence-like bodies are arranged, a lattice structure in which a plurality of fence-like bodies intersect, a dot structure in which a plurality of dot (projection, protrusion) -like structures are arranged, A hole structure in which a plurality of hole (concave) -like structures are arranged can be employed.
  • Examples of the dot structure and the hole structure include a cone, a cylinder, a quadrangular pyramid, a quadrangular prism, a hexagonal pyramid, a hexagonal pyramid, an n pyramid (n ⁇ 3), an n prism (n ⁇ 3), a caldera shape, a double ring shape, and a multiple shape.
  • a ring-shaped structure is mentioned.
  • the caldera shape refers to a shape in which the tip of a large cone is brought into contact with the tip of a small cone having a hollow inside, and then the small cone is pushed into the large cone, and is also called a volcano type.
  • these shapes include a shape in which the outer diameter of the bottom surface is distorted, a corner portion of the n-gonal bottom surface having a radius of curvature exceeding 0, a rounded shape, a shape having a curved side surface, and a curvature in which the top portion exceeds 0.
  • a rounded shape with a radius includes a shape in which the outer diameter of the bottom surface is distorted, a corner portion of the n-gonal bottom surface having a radius of curvature exceeding 0, a rounded shape, a shape having a curved side surface, and a curvature in which the top portion exceeds 0.
  • the dot structure is a structure in which a plurality of convex portions are arranged independently of each other. That is, each convex part is separated by a continuous concave part. In addition, each convex part may be smoothly connected by the continuous recessed part.
  • the hole structure is a structure in which a plurality of recesses are arranged independently of each other. That is, each recessed part is separated by the continuous convex part. In addition, each recessed part may be smoothly connected by the continuous convex part.
  • the dot structure or the hole structure is selected can be appropriately selected according to the apparatus used for manufacturing the epitaxial wafer for LED and the application of the LED.
  • the concavo-convex structure L is preferably a dot-like structure. This is because the uneven structure L having a large average interval PL can induce lateral growth of the semiconductor layer (Epitaxial Lateral Overgrowth), suppress cracks at the top of the convex portion, and improve the internal quantum efficiency IQE. is there.
  • the uneven structure AL is preferably a hole structure.
  • the combination of the concavo-convex structure A and the concavo-convex structure L is (dot structure, dot structure), (hole structure, hole structure), (dot structure, hole structure) or (hole structure). , Dot structure).
  • FIG. 28 is a schematic cross-sectional view showing another example of the LED pattern wafer (2) according to the present embodiment, and includes (Case 1) and (Case 2) described with reference to FIGS. 27A and 27B. It is. As shown in FIG. 28A to FIG. 28C, an uneven structure L having a large volume change is provided on the surface of the LED pattern wafer (2) 710, and the structure is formed on at least one surface of the protrusions 703 and the recesses 704 constituting the uneven structure L. An uneven structure A having a high density is provided.
  • the first concavo-convex structure L includes a plurality of convex portions 703 spaced apart from each other, and at least the second concavo-convex structure at the bottom of the concave portion 704 of the first concavo-convex structure L.
  • a convex portion 705 or a concave portion 706 constituting A is preferably provided.
  • the concavo-convex structure L is composed of a plurality of concave portions 704 spaced apart from each other, and at least a convex portion 705 or a concave portion constituting the concavo-convex structure A on the top of the convex portion 703 of the concave-convex structure L. 706 is preferably provided.
  • the growth of the semiconductor layer can be started from the top of the convex portion 703 of the concavo-convex structure L. Therefore, dislocations in the semiconductor layer grown from the top of the convex portion 703 can be effectively reduced and cracks can be reduced. Furthermore, since it becomes easy to generate a gap in the recess 704, the removal accuracy when the LED pattern wafer (2) 710 is removed by, for example, laser lift-off is improved. Moreover, since the concavo-convex structure L and the concavo-convex structure A satisfy a predetermined average distance relationship, the optical scattering property is increased. In particular, since the concavo-convex structure L is composed of the plurality of concave portions 704, the volume change is further increased, so that the effect of disturbing the waveguide mode is increased, and the light extraction efficiency LEE is improved.
  • the coverage of the concavo-convex structure A to the concavo-convex structure L is preferably more than 0% and less than 100%.
  • the concavo-convex structure A is always provided in the convex portion 703 or the concave portion 704 of the concavo-convex structure L, the internal quantum efficiency IQE is effectively improved and cracks are reduced from the principle described above.
  • the convex portions 703 and the concave portions 704 of the concavo-convex structure L are not completely filled with the concavo-convex structure A. Thereby, it can suppress that the improvement effect of the light extraction efficiency LEE by the uneven structure L is reduced by the uneven structure A. That is, the internal quantum efficiency IQE and the light extraction efficiency LEE can be improved simultaneously, and cracks can be suppressed.
  • the coverage is 90%. Or less, more preferably 80% or less, and most preferably 50% or less. Further, from the viewpoint of improving the internal quantum efficiency IQE by the concavo-convex structure A, reducing the amount of the semiconductor layer used, and improving the productivity of the LED, the coverage may be 0.01% or more. Preferably, it is 0.1% or more, and most preferably 0.15% or more.
  • the coverage is preferably 50% or more and 90% or less, and more preferably 60% or more and 86% or less in the widest range. 70% or more and 84% or less is most preferable.
  • the effect of the concavo-convex structure A can be expressed most effectively.
  • the coverage is a plane occupation ratio of the convex portion 705 or the concave portion 706 of the concave-convex structure A with respect to the surface of the convex portion 703 and the concave portion 704 of the concave-convex structure L. That is, when a plane area of the convex portion 703 and the concave portion 704 surrounding the outline of the convex portion 703 when the certain convex portion 703 is observed from the upper surface side is S, the concave-convex structure A in the observation image If the total plane area of the convex portion 705 or the concave portion 706 is Si, the coverage is (Si / S) ⁇ 100.
  • FIG. 29 is a schematic diagram showing the concavo-convex structure in the LED pattern wafer (2) according to the present embodiment.
  • FIG. 29A shows a case where the concavo-convex structure L is composed of a plurality of independent convex portions 703, particularly when the concavo-convex structure A is provided on the bottom surface of the concave portion 704. Or the case where the uneven structure L is provided in the surface of the uneven structure A so that the uneven structure A may be partially exposed is shown.
  • the contour shape of the bottom portion of the convex portion 703 and the contour shape of the bottom portion of the convex portion 705 are circular.
  • S be the area of the convex portion 703 and the concave portion 704 surrounding the outline of the convex portion 703 in the planar image observed from the top side of the convex portion 703.
  • the area S is an area of a polygon 841 formed by connecting top central portions of other convex portions 703 adjacent to a certain convex portion 703. If the total area of the areas formed by the contour of the bottom of the convex part 705 of the concave-convex structure A included in the area S or the total area of the openings of the concave part 706 is Si, the coverage is Si / S ⁇ 100. As given. In FIG.
  • FIG. 29A shows a case where the concavo-convex structure L is formed of a plurality of independent concave portions 704, and in particular, a case where the concavo-convex structure A is provided on the upper surface of the convex portion 703.
  • the opening shape of the concave portion 704 and the contour shape of the bottom portion of the convex portion 703 are circular.
  • S be the area of the concave portion 704 and the convex portion 703 surrounding the outline of the concave portion 704 in the planar image observed from the top side of the convex portion 703.
  • the area S is an area of a polygon 841 formed by connecting the central portions of the openings of other concave portions 704 adjacent to a certain concave portion 704. If the total area of the area formed by the contour of the bottom of the convex part 705 of the concave-convex structure A included in the area S or the total area of the opening part of the concave part 706 is Si, the coverage is Si / S ⁇ 100. Given. In FIG. 29B, the case where the uneven structure A is arranged only at the top of the convex part 703 of the uneven structure L is illustrated, but the arrangement of the uneven structure A is not limited to this as already described.
  • the coverage (SiT / ST ⁇ 100) can be obtained by setting the sum of the flat areas of the concavo-convex structure A included in the top surface of the top of the convex part 703 having the area ST as SiT. This coverage is called the coverage T with respect to the top surface of the top of the convex portion 703.
  • the concavo-convex structure A is provided only on the bottom surface of the concave portion 704 of the concavo-convex structure L, as shown in FIG.
  • the coverage (SiB / SB ⁇ 100) can be determined by assuming that the sum of the flat areas of the concavo-convex structure A included in the bottom surface of the concave portion 704 having Si is SiB. This coverage is referred to as coverage B with respect to the bottom surface of the recess 704.
  • the coverage T with respect to the top surface of the convex portion 703 and the coverage B with respect to the bottom surface of the recess 704 are 1% or more and 90% or less.
  • the coverage T on the top surface of the convex portion 703 and the coverage B on the bottom surface of the concave portion 704 are 3% or more and 60% or less. It is preferably 5% to 55%, more preferably 10% to 40%.
  • the concavo-convex structure A is provided on the top of the convex portion 703 of the concavo-convex structure L, the side surface of the convex portion 703, and the bottom of the concave portion 704, the concavo-convex structure A with respect to the top surface of the convex portion 703 of the concavo-convex structure L
  • the coverage or the coverage of the concavo-convex structure A on the bottom surface of the concave portion 704 of the concavo-convex structure L preferably satisfies the coverage T on the top surface of the convex portion 703 or the coverage B on the bottom surface of the concave portion 704.
  • the concavo-convex structure L when a plurality of convex portions 703 are separately provided on the LED wafer 702, the concavo-convex structure L is constituted by the main surface of the LED wafer 702 and the plurality of convex portions 703.
  • the plurality of convex portions 703 correspond to the convex portions of the concavo-convex structure L
  • the exposed portion of the main surface of the LED wafer 702 between the convex portions 703 corresponds to the concave portion 704 of the concavo-convex structure L.
  • the material of the uneven structure L and the LED wafer 702 is the same.
  • FIG. 28A shows a case where the concavo-convex structure L is composed of a plurality of independent convex portions 703 and the concavo-convex structure A is provided on the surface of the concave portion 704 of the concavo-convex structure L.
  • FIG. 28B shows a case where the concavo-convex structure L is composed of a plurality of independent protrusions 703 and the concavo-convex structure A is provided on the surface of the protrusions 703 of the concavo-convex structure L.
  • FIG. 28A shows a case where the concavo-convex structure L is composed of a plurality of independent convex portions 703 and the concavo-convex structure A is provided on the surface of the concave portion 704 of the concavo-convex structure L.
  • FIG. 28B shows a case where the concavo-convex structure L is composed of a plurality of independent protrusions 703 and the conca
  • 28C shows a case where the concavo-convex structure L is composed of a plurality of independent convex portions 703 and the concavo-convex structure A is provided on the surfaces of the convex portions 703 and the concave portions 704 of the concavo-convex structure L.
  • the shape of the top of the convex portion 703 of the concavo-convex structure L is drawn in a rounded shape, but the shape of the top of the convex portion 703 of the concavo-convex structure L is already described, A table top shape or the like can also be used.
  • the concave-convex structure A is provided in the concave portion 704 of the concave-convex structure L, whereby the internal quantum efficiency IQE can be improved satisfactorily. Furthermore, since the concavo-convex structure L is composed of a plurality of independent protrusions 703, the effect of suppressing cracks in the semiconductor layer is increased. This is because the growth of the semiconductor layer starts from the concave portion 704 of the concave-convex structure L.
  • the concavo-convex structure A improves the adhesion and growth of the nuclei of the semiconductor layer, and the coalescence of the growing semiconductor layers, and the semiconductor layer with good growth grows from the concave portion 704 of the concavo-convex structure L. Dislocations can be reduced in the L concave portion 704.
  • the concavo-convex structure A is not drawn on the side surface of the convex portion 703, but the concavo-convex structure A can also be provided on the side surface of the convex portion 703. In this case, it is considered that the effect of disturbing the waveguide mode is further enhanced, and the traveling direction of the disturbed emitted light can be further changed in the thickness direction of the LED. For this reason, it becomes easy to select a sealing material when packaging the LED.
  • the diameter of the convex portion 703 of the concavo-convex structure L is the apex from the bottom in order to suppress dislocation generated from the top of the convex portion 703 of the concavo-convex structure L.
  • a structure that becomes smaller toward the end is preferable.
  • a structure in which the top of the convex portion 703 of the concavo-convex structure L is continuously connected to the side surface portion of the convex portion 703 of the concavo-convex structure L in other words, a structure in which the top of the convex portion is composed of corner portions having a radius of curvature greater than zero. Is preferable.
  • the concavo-convex structure L can have a disc shape, a conical shape, an n-prism (n ⁇ 3) shape, an n-pyramidal shape, etc., and among them, the uniformity of the growth of the first semiconductor layer is improved, and the first semiconductor is improved. From the viewpoint of further reducing cracks and dislocations generated in the layer, it is preferably any one of a conical shape, a disc shape, a triangular prism shape, a triangular pyramid shape, a hexagonal prism shape, and a hexagonal pyramid shape.
  • the apex of the pyramid may be a corner having a radius of curvature of 0 or a rounded corner having a radius of curvature exceeding 0.
  • the inclination angle of the side surface portion of the convex portion 703 has a switching point of 1 or more and 5 or less. In addition, it is more preferable in it being 1 or more and 3 or less.
  • the side part of the convex part 703 may not be linear but may have a bulging shape.
  • the convex portion 703 of the concavo-convex structure L has a disc shape or an n-sided prism in addition to a conical shape or an n-pyramidal shape (n ⁇ 3).
  • the diameter of the convex portion 703 of the concave-convex structure L is preferably a structure that decreases from the bottom toward the apex.
  • the inclination angle of the side surface portion of the convex portion 703 has a switching point of 1 or more and 5 or less.
  • the side part of the convex part 703 may not be linear but may have a bulging shape.
  • Is preferably 0.1 or more.
  • the internal quantum efficiency IQE can be increased even when there is a flat surface on the top of the convex portion 703 of the concavo-convex structure L. It can be improved satisfactorily. This is because the growth of the semiconductor layer starts from the flat surface of the concavo-convex structure L. That is, the adhesion and growth of the nuclei of the semiconductor layer on the flat surface of the top of the convex portion 703 of the concavo-convex structure L are improved, and the coalescence of the growing semiconductor layers is improved, so that cracks are suppressed.
  • Dislocation collisions increase and internal quantum efficiency IQE improves.
  • dislocations can be reduced by lateral growth of the semiconductor layer.
  • the growth of the semiconductor layer grown from the concave portion 704 of the concavo-convex structure L can be inhibited by the semiconductor layer grown from the top of the convex portion 703 of the concavo-convex structure L. Therefore, the dislocation density of the semiconductor layer is reduced, and the internal quantum efficiency IQE can be improved.
  • the bottom of the concave portion 704 of the concave-convex structure L preferably has a flat surface. Furthermore, it is preferable that the top of the convex portion 703 of the concavo-convex structure L has a structure smaller than the bottom. Further, from the viewpoint of maintaining good internal quantum efficiency IQE by the concavo-convex structure A, the concavo-convex structure A is a dot structure composed of a plurality of convex portions 705, and the bottom of the concave portion 706 of the concavo-convex structure A has a flat surface. It is preferable.
  • the concavo-convex structure L can have a disk shape, a conical shape, an n-prism (n ⁇ 3) shape, an n-pyramidal shape, etc. Among them, the uniformity of the growth of the first semiconductor layer is improved, and the first semiconductor is improved. From the viewpoint of reducing cracks and dislocations generated in the layer, it is preferably any one of a conical shape, a disc shape, a triangular prism shape, a triangular pyramid shape, a hexagonal prism shape, and a hexagonal pyramid shape.
  • the apex of the pyramid may be a corner having a radius of curvature of 0 or a rounded corner having a radius of curvature exceeding 0.
  • a pyramid shape by having a corner portion with a radius of curvature exceeding 0, cracks generated during the growth of the semiconductor layer can be suppressed, so that the long-term reliability of the LED is improved.
  • the inclination angle of the side surface portion of the convex portion 703 has a switching point of 1 or more and 5 or less.
  • the side part of the convex part 703 may not be linear but may have a bulging shape.
  • the LED pattern wafer (2) 710 can be easily removed by, for example, laser lift-off. Can be increased.
  • FIG. 28C makes it possible to combine the effects expressed by the structures of FIGS. 28A and 28B described above.
  • the concavo-convex structure L is composed of a plurality of independent convex portions 703, but the concavo-convex structure L may be composed of a plurality of independent concave portions 704.
  • FIG. 30 is a schematic cross-sectional view showing another example of the LED pattern wafer (2) according to the present embodiment.
  • FIG. 30A shows a case where the concavo-convex structure L is constituted by a plurality of independent concave portions 704 and the concavo-convex structure A is provided on the surface of the convex portion 703 of the concavo-convex structure L.
  • FIG. 30B shows a case where the concavo-convex structure L is composed of a plurality of independent recesses 704 and the concavo-convex structure A is provided on the surface of the recesses 704 of the concavo-convex structure L.
  • FIG. 30A shows a case where the concavo-convex structure L is constituted by a plurality of independent concave portions 704 and the concavo-convex structure A is provided on the surface of the convex portion 703 of the concavo-convex structure L.
  • FIG. 30B shows a case
  • FIG. 30C shows a case where the concavo-convex structure L is composed of a plurality of independent concave portions 704 and the concavo-convex structure A is provided on the surfaces of the convex portions 703 and the concave portions 704 of the concave-convex structure L.
  • the internal quantum efficiency IQE can be improved satisfactorily by providing the concavo-convex structure A on the convex portion 703 of the concavo-convex structure L. Furthermore, since the concavo-convex structure L is composed of a plurality of independent concave portions 704, it is easy to form a cavity inside the concave portion 704 of the concavo-convex structure L. In this case, the removal accuracy of the LED pattern wafer (2) by laser lift-off is improved. Further, when the cavity is formed, the difference in refractive index between the semiconductor layer and the cavity becomes very large, and the degree of increase in the light extraction efficiency LEE increases rapidly. The same applies to the concavo-convex structure shown in FIG. 30B or 30C.
  • the main functions of the concavo-convex structure A are the improvement of the internal quantum efficiency IQE and the suppression of cracks.
  • the material of the concavo-convex structure A is the same as the material constituting the LED wafer 702.
  • the main function of the concavo-convex structure L is to improve the light extraction efficiency LEE.
  • the material of the concavo-convex structure L may be the same as or different from that of the LED wafer 702.
  • the concavo-convex structure A and the concavo-convex structure L are both composed of sapphire, SiC (silicon carbide), nitride semiconductor, Si (silicon) or spinel
  • the concavo-convex structure A is sapphire, SiC, nitride semiconductor, Si
  • the concavo-convex structure L is composed of metal aluminum, amorphous aluminum oxide, polycrystalline aluminum oxide, polycrystalline sapphire, silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silver (Ag), chromium.
  • money (Au), or platinum (Pt) is mentioned.
  • FIG. 27C is a schematic cross-sectional view showing another example of the LED pattern wafer (2) according to the present embodiment.
  • an uneven structure A having a high structure density is provided on the surface of the LED pattern wafer (2) 710, and an uneven structure L having a large volume change is provided on at least a part of the surface of the uneven structure A.
  • a concavo-convex structure A composed of a plurality of convex portions 705 and concave portions 706 is formed on the main surface of the LED wafer 702, and further, the surface of the concavo-convex structure A is separated from each other so as to be partially exposed.
  • a plurality of convex portions 703 are formed to constitute the concavo-convex structure L.
  • the concavo-convex structure L on a part of the surface of the concavo-convex structure A, the internal quantum efficiency IQE can be improved and the light extraction efficiency LEE can be improved.
  • the concavo-convex structure A makes it possible to improve the adhesion and growth of the nuclei of the semiconductor layers and the coalescence of the growing semiconductor layers, so that the collision of dislocations occurs well and the internal quantum efficiency IQE is improved, and This is because it can be dispersed and cracks can be suppressed. Further, the waveguide mode can be disturbed by the optical scattering property of the concavo-convex structure L.
  • the concavo-convex structure L has substantially the width of the top of the convex portion and the width of the bottom of the convex portion, such as a disk shape or an n-prism (n ⁇ 3) shape.
  • the same structure may be used.
  • the width of the top of the convex portion of the concavo-convex structure L is preferably smaller than the width of the bottom of the convex portion of the concavo-convex structure L.
  • the top of the convex portion 703 of the concavo-convex structure L is from the bottom. Is preferably a small structure.
  • a structure in which the top of the convex portion 703 of the concavo-convex structure L is continuously connected to the side surface portion in other words, a structure in which the width of the convex portion top is asymptotic to zero is preferable. From the study on the LED pattern wafer (1), it can be considered that the expression that the width of the convex top asymptotically approaches 0 includes that the table top size is 100 nm or less.
  • the concavo-convex structure L is preferably a dot structure composed of a plurality of convex portions 703. This is because dislocations inside the semiconductor layer grown from the concave portions 704 provided between the convex portions 703 can be reduced by lateral growth. From the same effect, it is preferable that the width of the convex top portion of the concavo-convex structure L is smaller than the width of the convex bottom portion.
  • the concavo-convex structure A is a dot structure composed of a plurality of convex portions 705, and the bottom of the concave portion 706 of the concavo-convex structure A may have a flat surface.
  • the width of the top of the convex portion of the concavo-convex structure A is smaller than the width of the bottom of the convex portion because dislocation dispersion is further promoted.
  • the main function of the concavo-convex structure A is to improve the internal quantum efficiency IQE.
  • the material of the concavo-convex structure A is preferably a material constituting the LED wafer 702.
  • the main function of the uneven structure L is to improve the light extraction efficiency LEE.
  • the material of the concavo-convex structure L may be the same as or different from that of the LED wafer 702.
  • the LED pattern wafer (2) 710 By using the LED pattern wafer (2) 710 according to the present embodiment, it is possible to obtain a semiconductor layer in which cracks are suppressed and the internal quantum efficiency IQE is high from the principle already described. Further, the LED chip exhibits high light extraction efficiency LEE. That is, it is possible to efficiently emit light, to effectively extract the emitted light to the outside of the LED chip, and to improve the reliability of the LED chip. For this reason, the LED element manufactured using the LED pattern wafer (2) 710 according to the present embodiment has a small amount of heat generation. Decreasing the amount of heat generated not only improves the long-term stability of the LED element, but also means that the load related to heat dissipation measures (for example, providing an excessive heat dissipation member) can be reduced.
  • Examples of the material constituting the concavo-convex structure when the materials of the LED wafer 702 and the concavo-convex structure are different include, for example, the material of the LED wafer 702 described above, metal aluminum, amorphous aluminum oxide, polycrystalline aluminum oxide, and polycrystalline.
  • sapphire, silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silver (Ag), chromium (Cr), nickel (Ni), gold (Au), or platinum (Pt) One or a mixture of two or more can be used.
  • LED pattern wafer (2) 710 has a concavo-convex structure that satisfies the above-described conditions, its manufacturing method is not limited and is manufactured by the same manufacturing method as LED pattern wafer (1). it can.
  • the concavo-convex structure 720 can be manufactured by producing the concavo-convex structure L and subsequently producing the concavo-convex structure A.
  • the manufacturing method of the concavo-convex structure L can be classified into two.
  • a transfer method for directly processing the LED wafer 702 to provide the concavo-convex structure L
  • a transfer method for directly processing the LED wafer 702 to provide the concavo-convex structure L
  • a photolithography method for a photolithography method using nanoparticles as a mask
  • a lithography method using a self-organized structure as a mask for a photolithography method or a transfer method.
  • the etching method may be wet etching or dry etching.
  • the dry etching method is preferable, and the dry etching method described in the LED pattern wafer (1) can be employed.
  • the transfer method is as described in the LED pattern wafer (1).
  • the concavo-convex structure 720 can be manufactured by producing the concavo-convex structure L by the above-described method and subsequently producing the concavo-convex structure A.
  • a transfer method As a method of providing the concavo-convex structure A on the concavo-convex structure L, a transfer method, a photolithography method, a thermal lithography method, an electron beam drawing method, an interference exposure method, a lithography method using nanoparticles as a mask, and a self-organized structure as a mask Lithography method and the like.
  • a lithography method or a transfer method using nanoparticles as a mask it is preferable to employ a lithography method or a transfer method using nanoparticles as a mask. The transfer method will be described later.
  • the concavo-convex structure 720 can also be manufactured by manufacturing the concavo-convex structure A and subsequently manufacturing the concavo-convex structure L.
  • Examples of the method for providing the concavo-convex structure A include a transfer method, a photolithography method, a thermal lithography method, an electron beam drawing method, an interference exposure method, a lithography method using nanoparticles as a mask, and a lithography method using a self-organized structure as a mask. Can be mentioned. In particular, from the viewpoint of processing accuracy and processing speed of the concavo-convex structure, it is preferable to employ a lithography method or a transfer method using nanoparticles as a mask.
  • the transfer method is as described in the LED pattern wafer (1).
  • the concavo-convex structure 720 can be manufactured by producing the concavo-convex structure L for the LED wafer having the concavo-convex structure A.
  • the uneven structure 720 can be manufactured by further processing the uneven structure A.
  • Further processing methods for the concavo-convex structure A include a transfer method, a photolithography method, a thermal lithography method, an electron beam drawing method, an interference exposure method, a lithography method using nanoparticles as a mask, and a lithography method using a self-organized structure as a mask. Etc. can be manufactured.
  • a photolithography method or a transfer method it is preferable to employ a photolithography method or a transfer method.
  • the transfer method is as described in the LED pattern wafer (1).
  • the uneven structure 720 can be manufactured by forming the uneven structure A and subsequently forming the uneven structure L.
  • Examples of the method for providing the concavo-convex structure A include a transfer method, a photolithography method, a thermal lithography method, an electron beam drawing method, an interference exposure method, a lithography method using nanoparticles as a mask, and a lithography method using a self-organized structure as a mask. Can be mentioned. In particular, from the viewpoint of processing accuracy and processing speed of the concavo-convex structure, it is preferable to employ a lithography method or a transfer method using nanoparticles as a mask.
  • the transfer method is as described in the LED pattern wafer (1).
  • the pattern wafer (2) 710 for LED can be manufactured by providing the uneven structure L separately for the LED wafer having the uneven structure A.
  • Examples of the method of separately providing the concavo-convex structure L include a transfer method and a method of forming a thin film enclosing particles on the LED wafer 702 and then removing the binder filling the space between the particles. Further, a part of the resist formed on the LED wafer 702 is removed, and the removed part is filled with a material constituting the concavo-convex structure L (for example, vapor deposition, sputtering, electroforming, etc.), and finally the resist The method of removing is mentioned. Further, there is a method of forming a film of the concavo-convex structure L and directly processing the formed film of the concavo-convex structure L.
  • DACHP Fluorine-containing urethane (meth) acrylate (OPTOOL (registered trademark) DAC HP (manufactured by Daikin Industries))
  • M350 trimethylolpropane (EO-modified) triacrylate (M350, manufactured by Toagosei Co., Ltd.)
  • I. 184 1-hydroxycyclohexyl phenyl ketone (Irgacure (registered trademark, the same shall apply hereinafter) 184 manufactured by BASF) ⁇ I. 369...
  • the LED pattern wafer (1) was prepared, the LED pattern wafer (1) was used to prepare an LED epitaxial wafer, and the internal quantum efficiency IQE and cracks were evaluated. Subsequently, chips were made and the efficiency of the LEDs was compared.
  • the LED pattern wafer (1) in order to produce the LED pattern wafer (1), first, (1) a cylindrical master mold is produced, (2) a light transfer method is applied to the cylindrical master mold, and a reel-like resin is produced. A mold was produced. (3) Thereafter, the reel-shaped resin mold was processed into a film for nano-processing. Subsequently, (4) a nano-processing film was used to produce an LED pattern wafer (1). Finally, (5) the LED pattern wafer (1) was used to produce an LED epitaxial wafer and the performance was evaluated.
  • the concavo-convex structure A was controlled by the concavo-convex structure of the cylindrical master mold prepared in (1), the optical transfer method performed in (3), and the nano-processing film prepared in (4).
  • the resist layer after exposure was developed.
  • the development of the resist layer was performed for 240 seconds using a 0.03 wt% glycine aqueous solution.
  • the etching layer (quartz glass) was etched by dry etching. Dry etching was performed using SF 6 as an etching gas under conditions of a processing gas pressure of 1 Pa and a processing power of 300 W.
  • SF 6 as an etching gas under conditions of a processing gas pressure of 1 Pa and a processing power of 300 W.
  • only the resist layer residue was peeled off from the cylindrical quartz glass having a concavo-convex structure on its surface using hydrochloric acid having a pH of 1. The peeling time was 6 minutes.
  • Durasurf registered trademark, hereinafter the same
  • HD-1101Z made by Harves
  • a fluorine-based mold release agent was applied to the concavo-convex structure of the obtained cylindrical quartz glass, heated at 60 ° C. for 1 hour, And fixed for 24 hours. Then, it was washed 3 times with Durasurf HD-ZV (manufactured by Harves) to obtain a cylindrical master mold.
  • the material 1 shown below was applied to the easy adhesion surface of PET film A-4100 (manufactured by Toyobo Co., Ltd .: width 300 mm, thickness 100 ⁇ m) by microgravure coating (manufactured by Yurai Seiki Co., Ltd.) so as to have a coating film thickness of 3 ⁇ m. .
  • the PET film coated with the material 1 is pressed against the cylindrical master mold with a nip roll so that the integrated exposure amount under the center of the lamp is 1500 mJ / cm 2 at 25 ° C. and 60% humidity in the air.
  • a UV-irradiated UV exposure apparatus (H bulb) manufactured by Fusion UV Systems Japan Co., Ltd.
  • the film thickness of the hardening body of the material 1 provided on a PET film might be set to 1500 nm by the press of a nip roll.
  • the reel-shaped resin mold G1 was regarded as a template, and the optical nanoimprint method was applied to continuously produce the reel-shaped resin mold G2.
  • Material 1 was applied to the easily adhesive surface of PET film A-4100 (Toyobo Co., Ltd .: width 300 mm, thickness 100 ⁇ m) by microgravure coating (manufactured by Yurai Seiki Co., Ltd.) so as to have a coating film thickness of 3 ⁇ m.
  • the PET film coated with the material 1 is pressed against the concavo-convex structure surface of the reel-shaped resin mold G1 with a nip roll (0.1 MPa) and integrated under the center of the lamp at 25 ° C. and 60% humidity in the air.
  • UV light is irradiated using a UV exposure device (H bulb) manufactured by Fusion UV Systems Japan Co., Ltd.
  • Binding polymer methyl ethyl ketone solution of binary copolymer of 80% by mass of benzyl methacrylate and 20% by mass of methacrylic acid (solid content 50%, weight average molecular weight 29000)
  • the material 2 diluted with a mixed solvent of PGME, acetone, and isopropanol was directly applied onto the concavo-convex structure surface of the reel-shaped resin mold G2.
  • the dilution concentration is set so that the solid content contained in the coating raw material per unit area (material 2 diluted with a mixed solvent) is 20% or more smaller than the volume of the concavo-convex structure per unit area. did.
  • After coating it was passed through a blast drying oven at 105 ° C. for 5 minutes, and the reel-shaped resin mold G2 containing the material 2 inside the concavo-convex structure was wound up and collected.
  • the reel-shaped resin mold G2 that encloses the material 2 in the concavo-convex structure is unwound, and (2) using a device similar to the production of the reel-shaped resin mold, a mixed solvent of PGME, MEK, MIBK, and acetone is used.
  • the material 3 diluted in this manner was directly applied onto the concavo-convex structure surface.
  • the dilution concentration was set such that the distance between the interface between the material 2 disposed inside the concavo-convex structure and the coated material 3 and the surface of the material 3 was 400 nm to 800 nm.
  • the film was passed through a blast drying oven at 105 ° C. for 5 minutes, and a cover film made of a PET film having been subjected to a release treatment was put on the surface of the material 3 and wound up and collected.
  • LED Pattern Wafer (1) 10 As the LED pattern wafer (1) 10, a 4-inch ⁇ sapphire wafer having a C plane (0001) with an orientation flat on the A plane (11-20) was used.
  • the concave-convex structure of the reel-shaped resin mold G2 is a concave-convex structure in which a plurality of concave portions are arranged in a regular hexagon. That is, the film for nano-processing includes a reel-shaped resin mold G2 having a six-fold symmetrical recess arrangement.
  • the crystal axis of the sapphire wafer and the alignment axis A of the concavo-convex structure of the nano-processing film were adjusted within a predetermined rotation shift angle ⁇ , and bonded. Bonding was performed with the rotational shift angle ⁇ adjusted and the sapphire wafer heated to 110 ° C. Subsequently, a high pressure mercury lamp light source was used, a UV-LED light source having a center wavelength of 365 nm was used, and light was irradiated through the reel-shaped resin mold G2 so that the integrated light amount was 1200 mJ / cm 2 . Thereafter, the reel-shaped resin mold G2 was peeled off.
  • Etching (oxygen ashing) using oxygen gas is performed from the material 2 surface side of the obtained laminate (material 2 / material 3 / sapphire wafer laminate), and the material 3 is nano-processed using the material 2 as a mask.
  • the sapphire wafer surface was partially exposed.
  • Oxygen ashing was performed under conditions of a processing gas pressure of 1 Pa and a processing power of 300 W.
  • reactive ion etching using a mixed gas of BCl 3 gas and Cl 2 gas was performed from the material 2 surface side to nano-process the sapphire wafer.
  • Etching was performed at ICP: 150 W, BIAS: 50 W, and pressure 0.2 Pa, and a reactive ion etching apparatus (RIE-101iPH, manufactured by Samco Corporation) was used.
  • RIE-101iPH reactive ion etching apparatus
  • the shape of the convex part top part of the uneven structure A produced on the sapphire wafer was adjusted with the processing time of the reactive ion etching. That is, the reactive ion etching is stopped before the material 3 completely disappears, thereby forming a shape having a table top at the top of the convex portion, and the reactive ion etching is performed until the material 3 completely disappears. Then, a round top having no table top on the top of the convex portion was produced. Further, the diameter ( ⁇ ) of the bottom of the convex portion was adjusted by performing reactive ion etching excessively, that is, by applying over-etching.
  • a low-temperature growth buffer layer of Al x Ga 1-x N (0 ⁇ x ⁇ 1) was formed as a buffer layer in a thickness of 100 mm.
  • undoped GaN was formed as an undoped first semiconductor layer
  • Si-doped GaN was formed as a doped first semiconductor layer.
  • the layers were alternately stacked so that there were 6 layers and 7 barrier layers.
  • Mg-doped AlGaN, undoped GaN, and Mg-doped GaN were stacked as a second semiconductor layer so as to include an electroblocking layer.
  • an ITO film was formed and etched, and then an electrode pad was attached. In this state, a 20 mA current was passed between the p electrode pad and the n electrode pad using a prober, and the light emission output was measured.
  • the internal quantum efficiency IQE was determined from the PL intensity.
  • the internal quantum efficiency IQE is defined by (number of photons emitted from the light emitting semiconductor layer per unit time / number of electrons injected into the semiconductor light emitting element per unit time). In this example, (PL intensity measured at 300K / 10 PL intensity measured at 10K) was adopted as an index for evaluating the internal quantum efficiency IQE.
  • the light extraction efficiency LEE was calculated from the light emission output and the internal quantum efficiency IQE.
  • Example 1 Comparative Example 1
  • the influence of the shape of the convex part top was investigated.
  • the shape of the top of the convex portion was observed using a scanning electron microscope.
  • the concavo-convex structure A was a regular hexagonal arrangement. That is, it was a 6-fold symmetrical arrangement.
  • As the average interval Pave two types of 300 nm and 900 nm were produced.
  • the rotational shift angle ⁇ was 30 °. Based on this, the case where the top of the convex portion is a rounded corner (Example 1) and the case where there is a table top (Comparative Example 1) were compared.
  • the prepared samples are shown in Table 1.
  • the shape with respect to the cross section of the convex part top part of Example 1 was cone shape.
  • a crack is a density of cracks that run in a direction perpendicular to opposite sides in a certain opening and an opening adjacent thereto when attention is paid to a hexagonal opening formed by the formed facet. It is.
  • the crack densities were 39 ⁇ 10 9 / cm 2 and 41 ⁇ 10 9 / cm 2 , respectively.
  • Example 2 comparative example 2
  • Example 2 comparative example 2
  • the influence of the rotational shift angle ⁇ was investigated.
  • the arrangement of the concavo-convex structure A is a regular hexagonal arrangement, that is, a six-fold symmetrical arrangement.
  • the average interval Pave was all 300 nm
  • the shape of the top of the convex part was all rounded corners, which were the same as those of Example 1.
  • the rotational shift angle ⁇ as a parameter, the angle was changed from 0 ° to 30 ° in 10 ° increments.
  • Table 2 the internal quantum efficiency IQE was substantially the same in all samples, and was about 90%.
  • the cracks of the evaluation items in Table 2 were standardized as 1 when the rotational shift angle ⁇ was 0 ° (Comparative Example 2). More specifically, as the rotational shift angle ⁇ is changed to 0 °, 10 °, 20 °, and 30 °, the crack density is 81 ⁇ 10 9 / cm 2 , 72 ⁇ 10 9 / cm 2 , 58 ⁇ . 10 9 / cm 2 and 53 ⁇ 10 9 / cm 2 . From Table 2, it can be seen that cracks decrease as the rotational shift angle ⁇ increases.
  • the top of the convex portion of the concavo-convex structure A is a rounded corner, and the region where the rotational shift angle ⁇ is greater than 0 ° is preferable.
  • the FWHM and CL dark turnover density of the semiconductor layer was effectively improved in a region where the crack density was 70 ⁇ 10 9 pieces / cm 2 or less. It can be considered that the crystal quality of the semiconductor layer is greatly improved by setting the rotational shift angle ⁇ to be greater than 0 ° and simultaneously changing the shape of the top of the convex portion to a corner having a radius of curvature greater than 0 due to the effect of crack suppression. it can.
  • the LED pattern wafer (1) including the concavo-convex structure A composed of the convex tops having corners with a curvature radius of more than 0 the effect of the rotational shift angle ⁇ is extracted and cracks are effective. It was found that it can be suppressed.
  • Example 3 In Example 3, a more preferable range of the average interval Pave was investigated.
  • the uneven structure A of the LED pattern wafer (1) has a regular hexagonal arrangement (6-fold symmetrical arrangement), the top of the convex part has a rounded corner, the cross-sectional shape of the convex top has a dome shape, and the rotation shift angle ⁇ is 30. °.
  • the parameter was an average interval Pave, and was adjusted in the range of 200 nm to 1800 nm.
  • the prepared samples are summarized in Table 3.
  • the performance of the LED chip is not determined only by the magnitude of the internal quantum efficiency IQE. This is an influence of the light extraction efficiency LEE.
  • the average interval Pave When arranged in descending order of light emission and emission, the average interval Pave was 300 nm, 900 nm, 700 nm, 450 nm, 1200 nm, 200 nm, and 1800 nm. This is considered that when the average interval Pave is 300 nm, light diffraction acts very strongly and the number of diffraction modes is limited, but the diffraction intensity in a predetermined direction is large. Next, it is considered that when the average interval Pave is 900 nm and 700 nm, the diffraction mode intensity decreases, but the number of diffraction modes greatly increases.
  • the average interval Pave of the LED epitaxial wafer is preferably 200 nm to 1200 nm, more preferably 300 nm to 900 nm.
  • Example 4 In Example 4, a more preferable range of Duty of the concavo-convex structure A was investigated.
  • the concave / convex structure A of the LED pattern wafer (1) is a regular hexagonal arrangement (6-fold symmetrical arrangement), the shape of the top of the convex part is a rounded corner, the cross-sectional shape of the top of the convex part is a dome, and the rotation shift angle ⁇ is 30 ° and the average interval Pave were 700 nm.
  • the parameter was Duty and was adjusted in the range of 0.29 to 0.93.
  • Table 4 The prepared samples are summarized in Table 4.
  • the internal quantum efficiency IQE changes greatly between Duty of 0.86 and 0.93. This is considered to be because when the duty is 0.93, the size of the bottom of the recess is smaller than the size of the stable nucleus of the semiconductor layer. In other words, it is presumed that the effect of reducing dislocations is reduced and the internal quantum efficiency IQE is lowered because the adhesion and growth of nuclei are somewhat impaired.
  • the light extraction efficiency LEE improves as the duty increases. This is thought to be because the number of modes of light diffraction increases because the volume of the convex portion as viewed from the photons increases. In addition, about the crack, it was substantially the same with all the samples.
  • the duty of the concavo-convex structure A is preferably less than 0.93. Moreover, it turned out that it is preferable that it is 0.57 or more from a viewpoint of making external quantum efficiency EQE larger, and it is more preferable that it is 0.71 or more.
  • the crack density was between 40 ⁇ 10 9 / cm 2 and 50 ⁇ 10 9 / cm 2 .
  • Example 5 a more preferable range of the relationship between the thickness of the first semiconductor layer of the LED epitaxial wafer and the concavo-convex structure A was investigated. Using the thickness (Hbu) of the undoped first semiconductor layer, the thickness (Hbun) of the doped first semiconductor layer, and the average interval (Pave) and average height (Have) of the concavo-convex structure A as parameters, the internal quantum efficiency IQE , Cracks, and warpage of the epitaxial wafer for LED were evaluated.
  • IQE internal quantum efficiency
  • dimension is "%" -Crack: A crack generated in the semiconductor layer.
  • Curve: Evaluation is made as “X” when there is a problem with chipping, and “ ⁇ ” when there is no problem.
  • Comparative Example 5 described in Table 5 is a case where a flat sapphire wafer not having an uneven structure is used and an LED epitaxial wafer is manufactured in the same manner as in Example 1.
  • Table 5 shows the following.
  • Hbun / Have is in the range of 6.0 to 346.2, the internal quantum efficiency IQE increases from 1.17 times to 1.7 times compared to the case where the internal quantum efficiency IQE does not have the uneven structure (Comparative Example 5).
  • the warpage of the LED epitaxial wafer is also suppressed.
  • Hbu / Have is 3.3 or more and 203.8 or less. It can also be seen that when Hbun / Have is 17.6 or more and 72.5 or less, the improvement of the internal quantum efficiency IQE and the reduction of the warp become more remarkable.
  • Hbu / Have is 9.6 or more and 42.5 or less.
  • Hbun / Have satisfies a range of a predetermined value or more, so that dislocations in the first semiconductor layer can be dispersed and reduced by the concavo-convex structure A, and Hbun / Have is a range of a predetermined value or less. This is because the thickness of the first semiconductor layer can be reduced and the warpage can be reduced. No. 12, Hbun / Have is 6.0 and Hbu / Have is 3.3, which is a small value. For this reason, the improvement rate of internal quantum efficiency IQE compared with the case where there is no uneven structure (comparative example 5) is slightly low.
  • LED pattern wafer (2) As described above, in Example 1 to Example 5, the LED pattern wafer (1) has been described. In the following embodiments, an LED pattern wafer (2) in which another uneven structure L is added to the LED pattern wafer (1) will be described.
  • corrugated structure A was produced on the wafer surface for LED using the film for nano processing used in order to manufacture the pattern wafer (1) for LED in the said Example 1- Example 5.
  • the LED pattern wafer (2) provided with the obtained concavo-convex structure was used to produce an LED epitaxial wafer, which was then chipped to evaluate the performance.
  • the concavo-convex structure L was controlled by the mask shape and dry etching conditions in the photolithography method. Fabrication was performed in the same manner as in Example 1, and release treatment was performed in the same manner as in Example 1.
  • the nano-processing film was used in the same manner as the LED pattern wafer (1) of Example 1 to Example 5 was manufactured to process the LED wafer.
  • As the LED wafer a C-plane (0001) sapphire wafer having an orientation flat on the A-plane (11-20) was used.
  • the size of the LED wafer was 4 inches ⁇ .
  • the shape of the convex part top part of the uneven structure A produced on the sapphire wafer was controlled in the same manner as in the LED pattern wafer (1) of Example 1 to Example 5.
  • the LED wafer provided with the concavo-convex structure A was further processed to produce the concavo-convex structure L.
  • a novolak resin for photoresist was formed by spin coating, and prebaked on a hot plate at 120 ° C.
  • lithography was performed to produce a concavo-convex structure L.
  • the concavo-convex structure L was made into a dot shape by negatively developing and using the photoresist, and the concavo-convex structure L was made into a hole structure by positively developing the photoresist.
  • convex portions or concave portions are arranged in a regular hexagonal array, and the average interval PL is 3.2 ⁇ m.
  • the obtained LED pattern wafer (2) was observed with a scanning electron microscope.
  • the dot-like uneven structure L was the following dot-like body. -The average interval PL is 3.2 ⁇ m, and regular hexagons are arranged. -The bottom diameter of the dot is 2.4 ⁇ m, and the bottom shape is substantially circular. -The bottom of the recess between the dots was flat. -There is a flat surface at the top of the dot, and the dot has a truncated cone shape. The flat surface at the top of the dot was substantially circular, and its diameter was 1.6 ⁇ m.
  • the dot top was a substantially circular table top, and the concavo-convex structure A was disposed only on the dot top.
  • the hole-shaped uneven structure L was the following hole-shaped body. -The average interval PL is 3.2 ⁇ m, and regular hexagons are arranged. -The opening diameter of the hole is 1.5 ⁇ m, and the opening shape is substantially circular. -The depth of the hole is 1.4 ⁇ m. -The convex part top part between holes was flat, and the uneven structure A was arrange
  • the shape of the hole was a cone having a substantially circular bottom surface, and the top of the cone was a corner with a radius of curvature exceeding zero.
  • Another uneven structure L was also produced.
  • the spin-on-glass was formed by spin coating, and a SiO 2 and subsequently sintered. At this time, it was confirmed that the concavo-convex structure A was flattened by SiO 2 .
  • a novolak resin for photoresist was formed on SiO 2 by spin coating, and prebaked on a 120 ° C. hot plate.
  • lithography was performed, and only the SiO 2 was processed to produce a concavo-convex structure L.
  • the photoresist was positively developed, and a partially disk-like SiO 2 was partially formed on the surface of the concavo-convex structure A.
  • the average interval PL was 3.2 ⁇ m, and the array was a regular hexagonal array.
  • the SiO 2 pattern (uneven structure L) obtained by observing the obtained LED pattern wafer (2) with a scanning electron microscope was the following dot-like body. -The average interval PL is 3.2 ⁇ m, and regular hexagons are arranged. -The bottom diameter of the dot is 1.5 ⁇ m, and the bottom shape is substantially circular.
  • the concavo-convex structure A was provided at the bottom of the concave portion between the dots.
  • a low-temperature growth buffer layer of Al x Ga 1-x N (0 ⁇ x ⁇ 1) was formed as a buffer layer in a thickness of 100 mm.
  • undoped GaN was formed as an undoped first semiconductor layer
  • Si-doped GaN was formed as a doped first semiconductor layer.
  • the layers were alternately stacked so that there were 6 layers and 7 barrier layers.
  • Mg-doped AlGaN, undoped GaN, and Mg-doped GaN were stacked as a second semiconductor layer so as to include an electroblocking layer. Subsequently, an ITO film was formed and etched, and then an electrode pad was attached. In this state, a 20 mA current was passed between the p electrode pad and the n electrode pad using a prober, and the light emission output was measured.
  • the internal quantum efficiency IQE was determined from the PL intensity.
  • the internal quantum efficiency IQE is defined by (number of photons emitted from the light emitting semiconductor layer per unit time / number of electrons injected into the LED per unit time). In this example, (PL intensity measured at 300K / 10 PL intensity measured at 10K) was adopted as an index for evaluating the internal quantum efficiency IQE.
  • the light extraction efficiency LEE was calculated from the light emission output and the internal quantum efficiency IQE.
  • Cracks were judged by observation using an optical microscope, an atomic force microscope, and a scanning electron microscope from the semiconductor layer surface side of the LED epitaxial wafer after the semiconductor layer was formed. Moreover, the epitaxial wafer for LED was cut together, the scanning electron microscope observation with respect to the cross section of a semiconductor layer was performed, and the crack was evaluated. In addition, about evaluation of a crack, what stopped the film-forming of the semiconductor layer in the middle of facet formation was used.
  • Example 6 Comparative Example 6
  • PSS Patterned Sapphire Substrate
  • the shape of the top of the convex portion of the concavo-convex structure A was observed using a scanning electron microscope.
  • the concavo-convex structure A was a regular hexagonal arrangement. That is, it was a 6-fold symmetrical arrangement.
  • the average interval PA was 300 nm, and the diameter of the bottom of the convex portion was 220 nm.
  • the rotational shift angle ⁇ was 30 °. Under these conditions, the case where the top of the convex portion is a rounded corner and the case where there is a table top were produced by changing the processing time of the reactive ion etching, respectively.
  • angular part when the cross-sectional shape of a convex part is assumed, the curve where the outline of the said cross section bulges slightly upwards intersects at the top part of a convex part. It is a shape like this. In other words, the side surface portion of the convex portion has a slightly bulging shape.
  • PSS which is the sample of the comparative example 6 produced only the concavo-convex structure L by the photolithography method described above. The produced samples are shown in Table 6.
  • N rotational symmetry order of the concavo-convex structure A
  • PA Average interval of the concavo-convex structure A, and the dimension is “nm”.
  • is the rotational shift angle ⁇ of the concavo-convex structure A, and the dimension is “°”.
  • -Convex part top shape The shape of the top part of the convex part of the concavo-convex structure A. Table top (100 nm) means that the diameter of the flat surface of the top of the convex part of the concavo-convex structure A is 100 nm.
  • M rotational symmetry order of the concavo-convex structure L
  • PL average interval of the concavo-convex structure L, dimension is “nm”.
  • Structure In the case where the concavo-convex structure A is directly processed by the method described above and the concavo-convex structure L is provided, the case where the concavo-convex structure L is dot-shaped is described as dot, and the case where the concavo-convex structure L is hole-shaped is described as hol. Separately on the surface of the concavo-convex structure A, a case in which the convex portion of the concavo-convex structure L made of SiO 2, was described as SiO 2. These terms are used in Examples 7 to 9 and have the same meaning.
  • AonL When the concavo-convex structure A is arranged on the top surface of the convex part of the concavo-convex structure L.
  • AinL When the concavo-convex structure A is arranged at the bottom of the concave part of the concavo-convex structure L.
  • PL / PA Average interval PL And the ratio of the average interval PA.
  • IQE Internal quantum efficiency, a value calculated by the method described above. The dimension is “%”.
  • Light emission output ratio Light emission output standardized with 1 for the concavo-convex structure L only (Comparative Example 6).
  • ⁇ Crack A crack observed with an optical microscope. The case where the LED chip having an abnormality in the light emission output is 10% or more is ⁇ , the case where it is 5% or more and less than 10% is ⁇ , and the case where it is less than 5% is ⁇ .
  • the growth of the semiconductor layer can be started from the concave portion of the concavo-convex structure A.
  • dislocations are reduced.
  • the reduction of dislocations is based on the principle of coalescence of the growing semiconductor layers, the coalesced portions can be dispersed by the concavo-convex structure A. Thereby, it is estimated that the residual stress to the semiconductor layer is reduced and cracks are suppressed.
  • the top of the convex portion of the concavo-convex structure A is preferably a corner having a radius of curvature exceeding 0 from the viewpoint of increasing the frequency of collision between dislocations and effectively reducing the dislocation density. Note that these tendencies could be observed as similar tendencies with respect to the convex shape shown in FIG.
  • the semiconductor layer preferentially over the recesses of the concavo-convex structure L.
  • the concavo-convex structure A is provided at the bottom of the concave portion of the concavo-convex structure L, it is considered that the dislocation of the semiconductor layer is reduced and cracks are suppressed based on the phenomenon described above.
  • Example 7 Comparative Example 7
  • the arrangement of the concavo-convex structure A is a regular hexagonal arrangement, that is, a six-fold symmetrical arrangement. Further, the average interval PA was all 300 nm, the tops of the convex parts were all rounded corners, and the diameters of the bottoms of the convex parts were all 220 nm.
  • the rotational shift angle ⁇ was changed from 0 ° to 30 ° in 10 ° increments.
  • two types of concavo-convex structure L a hole type (hol) and SiO 2 , were produced and evaluated. In the case of a hall type, AonL, and in the case of SiO 2 , AinL.
  • the evaluated samples are summarized in Table 7.
  • the internal quantum efficiency IQE was substantially the same in any sample when the concavo-convex structure L was a hole type, and was about 75%. Further, when the concavo-convex structure L was SiO 2 , it was substantially the same in any sample, and was about 85%.
  • the cracks of the evaluation items in Table 7 were normalized and represented as 1 when the rotation shift angle ⁇ was 0 °. Specifically, when the concavo-convex structure L is a hole type, the crack density is 99 ⁇ 10 9 / cm 2 as the rotational shift angle ⁇ changes to 0 °, 10 °, 20 °, and 30 °, It changed to 87 ⁇ 10 9 / cm 2 , 69 ⁇ 10 9 / cm 2 and 66 ⁇ 10 9 / cm 2 .
  • Example 6 and Example 7 it was found that by providing both the concavo-convex structure A and the concavo-convex structure L, the internal quantum efficiency IQE, the light extraction efficiency LEE, and cracks can be improved. Furthermore, it has been found that when the top of the convex portion of the concavo-convex structure A is a rounded corner, the internal quantum efficiency IQE is improved and the crack suppression effect is further enhanced. It was also found that a semiconductor layer having a high internal quantum efficiency IQE in which cracks were suppressed when the rotational shift angle ⁇ was 10 ° or more was formed.
  • Example 8 In Example 8, a more preferable range of the ratio between the average interval PA and the average interval PL was investigated.
  • the concavo-convex structure A of the LED pattern wafer (2) was a regular hexagonal arrangement (6-fold symmetrical arrangement), the shape of the top of the convex part was a rounded corner, and the rotation shift angle ⁇ was 30 °.
  • the parameter is average interval PL / average interval PA, and the average interval PL is fixed and adjusted by moving the average interval PA.
  • the average interval PA was adjusted in the range of 200 nm to 1800 nm.
  • a hole type (Holl) and AonL having an average interval PL of 3000 nm was adopted as the concavo-convex structure L.
  • the produced samples are summarized in Table 8.
  • a large ratio (PL / PA) means that the presence of the concavo-convex structure A viewed from the concavo-convex structure L is reduced. That is, when viewed from the semiconductor layer flying by CVD, the concavo-convex structure L is first confirmed. Subsequently, when approaching the surface of the concavo-convex structure L, the presence of the concavo-convex structure A can be recognized for the first time.
  • the coalescence frequency of the growing semiconductor layers increases as the ratio (PL / PA) increases, It was confirmed that can be dispersed. In particular, it has been confirmed that this phenomenon is expressed more favorably when the shape of the top of the convex portion is a rounded corner. In other words, when a convex portion having a table top was arbitrarily formed, the frequency at which dislocations were confirmed in the semiconductor layer located on the convex top portion increased. For this reason, the internal quantum efficiency IQE tended to decrease. From the above, it was found that the ratio (PL / PA) is preferably more than 2.7, more preferably 3.6 or more, and most preferably 4.6 or more.
  • the ratio (PL / PA) was 10.7, 3.6, 4.6, 7.1, 2.7, 16.0, 1.8. This is considered to be due to the fact that when the ratio (PL / PA) is 10.7, light diffraction acts very strongly and the number of diffraction modes is limited, but the diffraction intensity in a predetermined direction is high. Next, it is considered that when the ratio (PL / PA) is 3.6 and 4.6, the diffraction mode intensity decreases, but the number of diffraction modes greatly increases.
  • the ratio (PL / PA) is less than 3.6, the light scattering property becomes too strong, so that there is a probability that the light guided inside the LED is once disturbed in the traveling direction and guided again. Therefore, it is considered that the light emission output decreases. From the above, it was found that the internal quantum efficiency IQE increases as the ratio (PL / PA) increases. Further, it was found that the ratio (PL / PA) of the LED is preferably 2.7 to 16.0, and more preferably 3.6 to 10.7. In addition, when the same examination was performed when the concavo-convex structure L was SiO 2 , the same tendency as in Example 8 was observed.
  • Example 9 In Example 9, a more preferable range of Duty of the concavo-convex structure A was investigated.
  • the concavo-convex structure A of the LED pattern wafer (2) is a regular hexagonal arrangement (6-fold symmetrical arrangement), the shape of the top of the convex part is a rounded corner, the rotation shift angle ⁇ is 30 °, and the average interval PA is 300 nm. .
  • the parameter is Duty and was adjusted in the range of 0.17 to 0.96.
  • a hole type (hol) was produced as the concavo-convex structure L. The produced samples are summarized in Table 9.
  • the internal quantum efficiency IQE changes greatly between Duty of 0.73 and 0.96. This is considered to be because when the duty is 0.96, the size of the bottom of the recess of the concavo-convex structure A is smaller than the size of the stable nucleus of the semiconductor layer. In other words, it is presumed that the effect of reducing dislocations is reduced and the internal quantum efficiency IQE is lowered because the adhesion and growth of nuclei are somewhat impaired. On the other hand, it can be seen that the light extraction efficiency LEE improves as the duty increases.
  • the function of improving the light extraction efficiency LEE can be added by adjusting the duty. This is thought to be because the number of modes of light diffraction increases because the volume of the convex portion as viewed from the photons increases.
  • the cracks were almost the same in all samples, and were in the range of 49 to 52 ⁇ 10 9 / cm 2 . From the above, it can be seen that the duty of the concavo-convex structure A is preferably less than 0.96 when viewed as an LED.
  • the present invention can be applied to LEDs, and in particular, can be suitably applied to GaN-based semiconductor light-emitting elements applied to blue LEDs, ultraviolet LEDs, and white LEDs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 LED用パタンウェハ(10)は、主面の少なくとも一部に実質的にn回対称の配列を有する凹凸構造A(20)を具備し、凹凸構造A(20)の少なくとも一部は、主面内における結晶軸方向に対する凹凸構造A(20)の配列軸Aの回転シフト角Θが、0°<Θ≦(180/n)°を満たすと共に、凹凸構造A(20)の凸部頂部は、曲率半径が0超の角部である。凹凸構造A(20)の上には、第1半導体層(30)、発光半導体層(40)及び第2半導体層(50)がこの順番に積層され、LED用エピタキシャルウェハ(100)を構成する。クラック及び内部量子効率IQEの改善されたLED用パタンウェハ及びLED用エピタキシャルウェハを提供できる。

Description

LED用パタンウェハ、LED用エピタキシャルウェハ及びLED用エピタキシャルウェハの製造方法
 本発明は、LED用パタンウェハ、LED用エピタキシャルウェハ及びLED用エピタキシャルウェハの製造方法に関する。
 半導体発光素子チップ、例えばLEDチップは、一般的に、LED用ウェハ上に発光ダイオード構造である第1半導体層、発光半導体層、及び、第2半導体層を順次積層成長させたLED用エピタキシャルウェハを製造し、その後、第2半導体層及び第1半導体層の上にそれぞれ電極を形成して、チップ化することで製造される。そして、各半導体層から注入される正孔と電子の再結合により発生する発光光を、LEDチップの外部へと取り出すことで、LEDの発光を視認することができる。なお、一般的には、第2半導体層上の透明電極側又はLED用ウェハ側から、発光光を取り出すようにした構造が採用されているが、LED用ウェハを除去し第1半導体層側から発光光を取り出すこともできる。
 LEDの効率を示す外部量子効率EQE(External Quantum Efficiency)を決定する要因としては、電子注入効率EIE(Electron Injection Efficiency)、内部量子効率IQE(Internal Quantum Efficiency)及び光取り出し効率LEE(Light Extraction Efficiency)が挙げられる。このうち、内部量子効率IQEは、半導体結晶の格子不整合に起因する転位密度に依存する(例えば、非特許文献1)。光取り出し効率LEEは、LED用パタンウェハの凹凸構造による光散乱により、半導体層内部の導波モードを崩すことで改善される(例えば、特許文献1)。更に、電子注入効率EIEは、第2半導体層とITO、ZnO、In又は、SnO等の酸化物で構成された透明導電層と、の界面抵抗を低減することで改善される。
 以上説明した3つの要素によりLEDの外部量子効率EQEは決定されるが、内部量子効率IQEは、LEDの発光する効率そのものを意味し、LED用パタンウェハに、第1半導体層、発光半導体層及び第2半導体層を成膜してLED用エピタキシャルウェハを製造してしまえば、大きな改善は見込めない。即ち、高い外部量子効率EQEを実現するLEDを製造するためには、内部量子効率IQEを少なくとも改善する必要がある。
 このような背景から、内部量子効率IQEを大きく改善するために、LED用ウェハの表面に予め凹凸構造を設けたLED用パタンウェハの、該凹凸構造上に半導体層を成膜し製造されたLEDが提案されている(例えば、非特許文献2参照)。
特開2009-200514号公報
IEEE photo. Tech. Lett.,20,13(2008) J. Appl. Phys.,103,014314(2008)
 しかしながら、内部量子効率IQEを改善するためにLED用ウェハに凹凸構造を設けた場合、半導体層の成長性が安定せず、これにより半導体層による凹凸構造の平坦化が良好に行われず、半導体層にクラックが生成するという問題がある。このようなクラックが生成することで、LED用エピタキシャルウェハの発光ダイオード特性が大きく低下すると共に、LEDチップの欠損率が増加する。
 本発明は、上記説明した問題点に鑑みてなされたものであり、内部量子効率IQEの改善された半導体層を、クラックの発生することを抑制し成膜可能なLED用パタンウェハを提供すること、並びに、クラック及び内部量子効率IQEの改善されたLED用エピタキシャルウェハ及びその製造方法を提供することを目的とする。
 本発明のLED用パタンウェハは、主面の少なくとも一部に実質的にn回対称の配列を有する凹凸構造Aを具備し、前記凹凸構造Aの少なくとも一部は、前記主面内におけるLED用パタンウェハ結晶軸方向に対する前記凹凸構造Aの配列軸Aの回転シフト角Θが、0°<Θ≦(180/n)°を満たすと共に、前記凹凸構造Aの凸部頂部は、曲率半径が0超の角部であることを特徴とする。
 また本発明のLED用エピタキシャルウェハは、LED用パタンウェハの前記凹凸構造Aが設けられた前記主面上に少なくとも第1半導体層、発光半導体層及び第2半導体層がこの順に積層されたことを特徴とする。
 また本発明のLED用エピタキシャルウェハの製造方法は、LED用パタンウェハを準備する工程と、準備した前記LED用パタンウェハを光学検査する工程と、光学検査した前記LED用パタンウェハを使用してLED用エピタキシャルウェハを製造する工程と、を含むことを特徴とする。
 本発明によれば、LED用パタンウェハの凹凸構造Aにより半導体層に生成する転位を分散化し、且つ密度を減らすことにより内部量子効率IQEを改善する。同時に、LED用パタンウェハの結晶軸と凹凸構造Aの配列軸Aと、の回転シフト角Θを所定の範囲にすることで、半導体層へ生じるクラックを抑制できる。即ち、発光ダイオード特性の良好なLED用エピタキシャルウェハを製造できる。これに伴い、外部量子効率EQEの高いLEDチップを効率よく製造することができる。
本実施の形態に係るLED用パタンウェハ(1)の結晶軸と凹凸構造Aの配列軸Aとで作られる回転シフト角Θを説明するための模式図である。 本実施の形態に係るLED用パタンウェハ(1)における3回以上の対称性を有す凹凸構造Aの配列例を示す模式図である。 本実施の形態に係るLED用パタンウェハ(1)における3回以上の対称性を有する凹凸構造Aの配列例を示す模式図である。 本実施の形態に係るLED用パタンウェハ(1)の主面内の結晶格子の結晶軸を説明するための模式図である。 LED用パタンウェハ(1)の表面上に半導体層を成膜する際に核成長段階にて成膜を停止させた場合の表面観察像を示す模式図である。 LED用パタンウェハ(1)上において半導体層を成長させた場合の、回転シフト角Θと、半導体層の成長に寄与する凹部底部の大きさ及び成長する半導体層の通過する凸部の密度と、の関係を示すグラフである。 LED用パタンウェハ(1)上において半導体層を成長させた場合の、Dutyと、半導体層の成長に寄与する凹部底部の大きさ及び成長する半導体層の通過する凸部の密度と、の関係を示すグラフである。 図6及び図7に示す回転シフト角ΘとDutyとの関係を示すグラフである。 本実施の形態に係るLED用パタンウェハ(1)の凹凸構造Aの平均間隔PaveとDutyとの関係を示すグラフである。 図10Aは、本実施の形態に係る凹凸構造Aの凸部頂部の断面形状の一例を示す走査型電子顕微鏡写真であり、図10Bは、図10Aの一部を表す模式図である。 本実施の形態に係る非ドープ第1半導体層の一例を示す走査型電子顕微鏡写真である。 図12Aは、クラックを示す走査型電子顕微鏡写真であり、図12Bは、図12Aの一部を表す模式図である。 クラック密度とロッキングカーブの半値幅(FWHM)との関係を示すグラフである。 クラック密度とカソードルミネッセンス(CL)評価により得られた画像から求めた暗転密度との関係を示すグラフである。 本実施の形態に係る凹凸構造Aの凸部頂部の断面形状の例を示す走査型電子顕微鏡写真である。 本実施の形態に係るLED用パタンウェハ(1)の凹凸構造Aの平均間隔PaveとDutyとの関係を示すグラフ図である。 本実施の形態に係るLED用パタンウェハ(1)の凹凸構造Aの平均間隔PaveとDutyとの関係を示すグラフである。 本実施の形態に係るLED用パタンウェハ(1)における凹凸構造Gと非G領域との関係を示す説明図である。 本実施の形態に係るLED用パタンウェハ(1)における凹凸構造G領域により作られる輪郭形状を示す模式図である。 本実施の形態に係るLED用パタンウェハ(1)を表面より観察した状態を示す平面模式図である。 本実施の形態に係るLED用パタンウェハ(1)を表面より観察した状態を示す平面模式図である。 本実施の形態に係るLED用エピタキシャルウェハの一例を示す断面概略図である。 本実施の形態に係るLED用エピタキシャルウェハの他の例を示す断面概略図である。 本実施の形態に係るLED用エピタキシャルウェハの他の例を示す断面概略図である。 本実施の形態に係るLEDチップを示す断面概略図である。 本実施の形態に係るLEDチップの他の例を示す断面概略図である。 本実施の形態に係るLED用パタンウェハ(2)の一例を示す断面概略図である。 本実施の形態に係るLED用パタンウェハ(2)の他の例を示す断面概略図である。 本実施の形態に係るLED用パタンウェハ(2)における凹凸構造を示す模式図である。 本実施の形態に係るLED用パタンウェハ(2)の他の例を示す断面概略図である。
 以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施の形態に係るLED用パタンウェハ(1)は、主面に実質的にn回対称の配列を有する凹凸構造Aを具備し、前記凹凸構造Aの少なくとも一部は、前記主面内におけるLED用パタンウェハ(1)結晶軸方向に対する前記凹凸構造Aの配列軸Aの回転シフト角Θが、0°<Θ≦(180/n)°を満たすと共に、前記凹凸構造Aの凸部頂部は曲率半径が0超の角部であることを特徴とする。
 この構成によれば、LED用パタンウェハ(1)の凹凸構造Aが設けられた主面上に成膜される半導体層に対し生成するクラックを抑制できる。同時に、半導体層に対し生成する転位を分散化し、その密度を低減できる。よって、LED用パタンウェハ(1)を使用したLED用エピタキシャルウェハの内部量子効率IQEを向上させると共に、LED用パタンウェハ(1)を製造する際の歩留りを向上させることが出来る。更には、LED用エピタキシャルウェハの半導体層に対するクラックを抑制できるため、LEDチップの欠損率を低減できる。
 まず、LED用パタンウェハ(1)の凹凸構造Aの凸部頂部は、曲率半径が0超の角部である。このため、LED用パタンウェハ(1)の凹凸構造A上に半導体層を成膜する際に、凹凸構造の凹部底部を基準として、半導体層を成長させることができる。即ち、凹凸構造の凹部底部から優先的に半導体層が成長する。次に、LED用パタンウェハ(1)上に設けられる凹凸構造Aは、実質的にn回対称の配列を有する。このため、LED用パタンウェハ(1)上に成膜される半導体層の初期成長段階に注目した場合、半導体層の核生成を均等に分散化すると共に、核成長の不均等性にバランスをとることができる。ここで、核成長の不均等性とは、核成長により半導体層が部分的に隆起することである。即ち、部分的に隆起する核成長段階の半導体層を分散化することができる。そして、LED用パタンウェハ(1)の主面内におけるLED用パタンウェハ(1)の結晶軸方向を基準とした際に、凹凸構造Aの配列軸Aが回転シフト角Θだけ所定の範囲内にてシフトしている。これにより、半導体層の初期成長に大きく貢献する凹凸構造の凹部底部の大きさを、大きくすることができる。同時に、半導体層の成長方向から見た場合の、成長する半導体層が通過する凹凸構造の凸部の数を減少させることができる。以上から、半導体層が成長する際の、成長する核同士の合体(癒着)性が良好となり、半導体層へのクラックを抑制できる。同時に、該合体時に、半導体層内部の転位の進行方向は、LED用パタンウェハ(1)の面内方向へと変化する。これにより、転位同士の衝突が効果的に誘発されるために、内部量子効率IQEが改善される。即ち、内部量子効率IQEの改善された半導体層を、クラックを抑制した状態にて得ることができるため、良好な発光ダイオード特性を有すLED用エピタキシャルウェハを製造でき、これに伴い外部量子効率EQEの高いLEDチップを効果的に製造することができる。
 本実施の形態に係るLED用パタンウェハ(1)においては、凹凸構造Aの平均間隔Paveは、50nm≦Pave≦1500nmを満たすことが好ましい。
 この場合、内部量子効率IQEの改善効果とクラック抑制効果が共に大きくなる。まず、平均間隔Paveが上記範囲を満たすことで、凹凸構造Aの凹部の密度が向上することから、既に説明した成長する半導体層同士の合体頻度を大きくすることができる。即ち、半導体層中の転位が、その進行方向を変化させる頻度を向上させることができるため、転位の低減効果が大きくなり、これにより、内部量子効率IQEが効果的に向上する。更に、半導体層の初期成長に大きく貢献する凹凸構造の凹部底部の大きさを、所定の範囲内に収めることができる。これにより、凹凸構造Aの凹部底部における半導体層の核成長を良好に保つことができる。よって、凹凸構造Aの配列軸Aが回転シフト角Θだけ所定の範囲内にてシフトすることによる半導体層へのクラック抑制効果が大きくなる。
 本実施の形態に係るLED用パタンウェハ(1)においては、前記凹凸構造Aの凸部底部の平均幅(φave)と前記平均間隔Paveとの比率(φave/Pave)であるDutyを用いたときに、前記回転シフト角Θは、atan(Duty/2)°≦Θ≦(180/n)°の範囲を満たすことが好ましい。
 この場合、内部量子効率IQE改善の効果と半導体層へのクラック抑制効果が共により大きくなる。回転シフト角Θが上記範囲を満たすことで、半導体層の初期成長に大きく貢献する凹凸構造Aの凹部底部の大きさを、LED用パタンウェハ(1)の面内方向において半導体層の成長方向に略垂直な方向に大きくとることができるため、半導体層の成長速度の速い面の大きさが大きくなる。これにより、成長する半導体層同士の合体に注目した場合に、合体する半導体層同士の界面積が大きくなる。更に、半導体層の成長速度の速い面が横切る凹凸構造Aの凸部の数を減少させることができるため、成長する半導体層同士の合体性が良好となる。以上から、内部量子効率IQEがより向上し、半導体層に生じるクラックが効果的に抑制される。
 本実施の形態に係るLED用パタンウェハにおいては、前記LED用パタンウェハ(1)が、サファイアウェハ、シリコンウェハ、シリコンカーバイドウェハ又は窒化ガリウム系ウェハであることが好ましい。
 この構成によれば、上記の内部量子効率IQEの向上、半導体層のクラックの抑制、生産時間の短縮をより効果的に発現することが可能となるため、内部量子効率IQEの高いLEDチップを歩留り高く、且つ生産時間短く得ることができる。
 本実施の形態に係るLED用エピタキシャルウェハは、上記LED用パタンウェハ(1)の前記凹凸構造Aが設けられた前記主面上に少なくとも第1半導体層、発光半導体層及び第2半導体層がこの順に積層されたことを特徴とする。
 この構成によれば、既に説明した原理から、クラックの抑制された内部量子効率IQEの高い発光ダイオード構造である半導体層を有するLED用エピタキシャルウェハを製造することができる。
 本実施の形態に係るLED用エピタキシャルウェハにおいては、前記LED用パタンウェハ(1)の前記発光半導体層側の表面と前記発光半導体層の前記第1半導体層側の表面との距離(Hbun)と、前記凹凸構造Aの平均高さ(Have)と、の比率(Hbun/Have)が、2≦Hbun/Have≦300を満たすことが好ましい。
 この構成によれば、クラックの抑制された内部量子効率IQEの高いLED用エピタキシャルウェハを効率的に製造できる。LED用パタンウェハ(1)の主面に設けられた凹凸構造Aにより、既に説明した原理から、第1半導体層の結晶性を高めると共に、クラックを抑制できる。特に、比率(Hbun/Have)が2以上であることにより、第1半導体層による凹凸構造Aの平坦化程度が向上する。これにより、効果的に、第1半導体層上に設けられる発光半導体層及び第2半導体層の成膜精度を向上させることが可能となる。このため、転位の少ない第1半導体層の半導体としての性能を、発光半導体層及び第2半導体層へと、クラックを抑制した状態にて反映させることが可能となり、クラックが抑制され、且つ内部量子効率IQEの高い発光ダイオード構造である半導体層(第1半導体層、発光半導体層及び第2半導体層を含む。以下、同様。)を得ることができる。更に、比率(Hbun/Have)が300以下であることにより、前記効果に加え、LED用パタンウェハ(1)の反りを抑制することができるため、LEDチップ化効率を向上させることができる。以上から、比率(Hbun/Have)が所定の範囲を満たすことで、クラックの抑制された内部量子効率IQEの高い半導体層を成膜できると共に、半導体層を成膜したLED用パタンウェハ(1)の反りを抑制できるために、高効率なLEDチップを生産効率高く製造できる。特に、LED用パタンウェハ(1)の大きさが6インチ以上の径になった場合であっても、LED用エピタキシャルウェハの反りを効果的に抑制可能である。このことから、本発明のLED用パタンウェハ(1)を6インチφ以上の大きさにて使用することにより、LED用パタンウェハ(1)の厚みを薄くすると共に、LED用エピタキシャルウェハの反りを効果的に抑制できる。特に、LED用パタンウェハ(1)の厚みを薄くすることで、LED用パタンウェハの使用量を低減、即ち、環境適合度を高めることができる。更に、LED用パタンウェハ(1)に対する熱の籠りを抑制できることから、半導体層成膜時の温度管理が容易になる。
 本実施の形態に係るLED用エピタキシャルウェハにおいては、前記第1半導体層が前記LED用パタンウェハ(1)側より順次積層された非ドープ第1半導体層及びドープ第1半導体層を含み、前記LED用パタンウェハ(1)の前記発光半導体層側の表面と非ドープ第1半導体層のドープ第1半導体層側の表面との距離(Hbu)と、前記凹凸構造Aの平均高さ(Have)と、の比率(Hbu/Have)が、1.5≦Hbu/Have≦200を満たすことが好ましい。
 この構成によれば、クラックの抑制された内部量子効率IQEの高いLED用エピタキシャルウェハを効率的に製造できる。LED用パタンウェハ(1)の主面に設けられた凹凸構造Aにより、既に説明した原理から、非ドープ第1半導体層の結晶性を高めると共に、クラックを抑制できる。特に、比率(Hbu/Have)が1.5以上であることにより、非ドープ第1半導体層による凹凸構造Aの平坦化程度が向上する。これにより、効果的に、非ドープ第1半導体層上に設けられるドープ第1半導体層、発光半導体層及び第2半導体層の成膜精度を向上させることが可能となる。このため、転位の少ない非ドープ第1半導体層の結晶性を、ドープ第1半導体層、発光半導体層及び第2半導体層へと、クラックを抑制した状態にて反映させることが可能となり、クラックが抑制され、且つ内部量子効率IQEの高いLED用エピタキシャルウェハを、生産時間を短縮しながら得ることができる。更に、比率(Hbu/Have)が200以下であることにより、前記効果に加え、LED用パタンウェハ(1)の反りを抑制することができるため、LEDチップ化効率を向上させることができる。以上から、比率(Hbu/Have)が所定の範囲を満たすことで、クラックの抑制された内部量子効率IQEの高い半導体層を成膜できると共に、半導体層を成膜したLED用パタンウェハ(1)の反りを抑制できるために、高効率なLEDチップを生産効率高く製造できる。特に、LED用パタンウェハの大きさが6インチ以上の径になった場合であっても、LED用エピタキシャルウェハの反りを効果的に抑制可能である。このことから、本発明のLED用パタンウェハ(1)を6インチφ以上の大きさにて使用することにより、LED用パタンウェハ(1)の厚みを薄くすると共に、LED用エピタキシャルウェハの反りを効果的に抑制できる。特に、LED用パタンウェハ(1)の厚みを薄くすることで、LED用パタンウェハの使用量を低減、即ち、環境適合度を高めることができる。更に、LED用パタンウェハ(1)に対する熱の籠りを抑制できることから、半導体層成膜時の温度管理が容易になる。
 本実施の形態に係るLED用エピタキシャルウェハにおいては、前記第1半導体層、前記発光半導体層及び前記第2半導体層が、III-V族系半導体であってもよい。また、本実施の形態に係るLED用エピタキシャルウェハにおいては、前記第1半導体層、前記発光半導体層及び前記第2半導体層が、GaN系半導体であってもよい。
 本実施の形態に係るLED用エピタキシャルウェハの製造方法は、上記LED用パタンウェハ(1)を準備する工程と、準備した前記LED用パタンウェハ(1)を光学検査する工程と、光学検査した前記LED用パタンウェハ(1)を使用して上記説明したLED用エピタキシャルウェハを製造する工程と、を含むことを特徴とする。
 この構成によれば、凹凸構造Aの配列軸Aの回転シフト角Θを測定できることから、LED用エピタキシャルウェハを製造することなく、LED用エピタキシャルウェハの発光ダイオード特性を予測し、篩い分けることが可能となる。このため、LED用エピタキシャルウェハの製造に対する歩留りを向上させることができる。
 本実施の形態に係るLED用エピタキシャルウェハの製造方法においては、前記LED用パタンウェハ(1)を準備する工程は、表面に微細パタンを具備するモールドを使用した転写法により前記回転シフト角Θを満足するように行われることが好ましい。
 凹凸構造Aを作製するのに転写法を採用することにより、過大な装置や制御機構を使用することなく、上記説明した回転シフト角Θの範囲を満たすLED用パタンウェハ(1)を製造することができる。特に、転写法を採用することにより、製造困難な、6インチ以上の径を有すLED用パタンウェハ(1)を、精度高く効率よく製造できる。
 以下、本実施の形態に係るLED用パタンウェハ(1)、LED用エピタキシャルウェハ及びその製造方法について、この順に詳細に説明する。
<<LED用パタンウェハ(1)>>
 本実施の形態に係るLED用パタンウェハは、クラックを抑制した高品位の半導体層を成膜可能とし、内部量子効率IQEを特に向上させることができるLED用パタンウェハ(1)と、LED用パタンウェハ(1)に更なる機能として高い光取り出し効率LEEを付与させたLED用パタンウェハ(2)の双方を含む。以下の説明においては、LED用パタンウェハ(1)から説明を始め、LED用パタンウェハ(2)の説明に関しては、主に、更に付加する要素に注目して説明することとする。
 本実施の形態に係るLED用パタンウェハ(1)は、表面に凹凸構造Aを具備する。凹凸構造AはLED用ウェハの一主面を加工されたものであっても、LED用ウェハの一主面上に別途設けられたものであってもよい。即ち、LED用ウェハを構成する材料と、凹凸構造Aを構成する材料と、は同一であっても異なっていてもよい。ここで、この凹凸構造Aは実質的にn回対称の配列を有すものであり、凹凸構造Aの配列軸A方向と、LED用ウェハの面内における結晶軸方向と、が所定範囲内にてシフトしていることを特徴とする。このシフト量を回転シフト角Θと称す。
<回転シフト角Θ>
 まず、回転シフト角Θについて説明する。なお、凹凸構造Aの配列軸A及びLED用パタンウェハ(1)の結晶軸については、後述する。回転シフト角Θは、LED用パタンウェハ(1)の結晶軸を基準にした際の、凹凸構造Aの配列軸Aの最小の回転角度として定義する。図1は、本実施の形態に係るLED用パタンウェハ(1)の結晶軸と凹凸構造Aの配列軸Aとで作られる回転シフト角Θを説明するための模式図である。図1A中、簡素化のため配列軸A(図1A中、AXaで示す)と結晶軸(図1A中、AXcで示す)とをそれぞれ一本のみ記載している。図1Aに示すように、結晶軸AXcと配列軸AXaの交点を中心点としたときに、結晶軸AXcを配列軸AXaと重なるまで回転させたときの最小の角度が回転シフト角Θである。
 次に、図1Bを用いて結晶軸及び配列軸Aを複数考慮する場合について説明する。図1Bは、便宜上、結晶軸(図1B中、AXc1,AXc2及びAXc3で示す)及び配列軸A(図1B中、AXa1,AXa2及びAXa3で示す)を共に3本ずつ抜き出し描いた場合である。例えば、6回対称の結晶軸を有するLED用ウェハに対して、6回対称の配列を有す凹凸構造Aを設けた場合である。このような場合、まず結晶軸を一つ選び出す。例えば、結晶軸AXc1を選択したとする。次に、結晶軸AXc1を回転させ配列軸Aと重なる角度を記録する。例えば、配列軸AXa3と重なる時の小さな角度は角度ΘAであり、配列軸AXa1と重なる時の小さな角度は角度ΘBである。これらの角度の中で最小のものが回転シフト角Θである。なお、上記定義は、配列軸Aと結晶軸とを逆にしても成立する。即ち、配列軸Aを回転させ、結晶軸と重なる時の最小の角度としても同様に定義される。
<配列軸>
 次に配列軸Aについて説明する。配列軸Aとは、凹凸構造Aの配列方向を定める軸である。凹凸構造Aの配列は実質的なn回対称性を有す。なお、本明細書における「n回対称」とは「回転対称」であることを意味する。このため、nは2以上の正の整数である。凹凸構造Aをその表面から、例えば、走査型電子顕微鏡や原子間力顕微鏡により観察することで、凹凸構造Aの配列を確認できる。よって、配列軸Aは、(360/n)°の回転により同一の、又は、他の配列軸Aに重なる性質をもつ。ここで、配列軸Aは、n回対称のnが2の場合と、3以上の場合と、で別々に定義される。
 まず、2回対称の場合、ある一つの軸に対して対称な配列となる。このとき、配列軸Aは該軸に対して垂直な方向の軸として定義する。例えば、互いに平行なラインが複数配置される凹凸構造Aの場合は、ラインに垂直な線分に対して2回対称であり、このため配列軸Aは、ラインに平行な線分となる。また、正四方配列や正六方配列を一軸方向に延伸した配列や、正四方配列や正六方配列を一軸方向に周期的に(例えば、サイン波に乗じて)変調した配列の場合、該延伸方向又は該変調方向とは垂直な方向に2回対称となり、このため、配列軸Aは、該延伸方向又は該変調方向に平行な線分となる。また、複数のラインの間隔が周期的に(例えば、サイン波に乗じて)変調される場合も、2回対称となり、複数のラインに平行な方向の線分が配列軸Aとなる。また、正四方配列や正六方配列を互いに垂直な二軸方向にそれぞれの軸方向に異なる延伸倍率にて延伸した配列の場合、いずれかの延伸方向に垂直な方向に2回対称となり、このため配列軸Aは、該延伸方向に平行な線分となる。また、正四方配列や正六方配列を互いに垂直な二軸方向にそれぞれの軸方向に異なる変調周期にて変調した配列の場合、いずれかの変調方向に垂直な方向に2回対称となり、このため配列軸Aは、該変調方向に平行な線分となる。
 一方で、3回以上の対称性のある配列の場合、凹凸構造Aの凸部又は凹部同士の最近接の方向である軸を配列軸Aとする。ここで、最近接の方向とは、最近接する凸部頂部の中央部同士を結ぶ線分の方向又は最近接する凹部開口部の中央部同士を結ぶ線分の方向である。図2は、本実施の形態に係るLED用パタンウェハ(1)における3回以上の対称性を有す凹凸構造Aの配列例を示す模式図である。例えば、LED用パタンウェハ(1)の凹凸構造Aのある面側を、走査型電子顕微鏡又は原子間力顕微鏡により観察することで、得ることができる。図2は、実質的に正四方に凹凸構造Aが配列している場合を示す。正四方配列は、4回対称配列である。即ち、任意にある軸を設定した際に、該軸を(360/n)°=(360/4)°回転させることで、別の対称軸に重なる。ここで、配列軸Aは、凹凸構造Aの凸部又は凹部の最近接方向である。図2において、例えば、記号Aにて示す中心を持つ凸部(又は凹部、以下同様)に最近接する凸部の中心は、図2A中の記号a,b,c及びdで示す通りである。即ち、中心A及びその他の中心を結ぶ線分A-a、線分A-b、線分A-c及び線分A―dのいずれかに平行な方向が配列軸AXaである。
 図3は、本実施の形態に係るLED用パタンウェハ(1)における3回以上の対称性を有する凹凸構造Aの配列例を示す模式図である。例えば、LED用パタンウェハ(1)の凹凸構造Aのある面側を、走査型電子顕微鏡又は原子間力顕微鏡により観察することで、得ることができる。図3は、実質的に正六方に凹凸構造Aが配列している場合を示す。正六方配列は、6回対称配列である。即ち、任意にある軸を設定した際に、該軸を(360/n)°=(360/6)°回転させることで、別の対称軸に重なる。ここで、配列軸Aは、凹凸構造Aの凸部又は凹部の最近接方向である。図3において、例えば、Aにて示す中心を有する凸部(又は凹部、以下同様)に最近接する凸部の中心は、図3中の記号a,b,c,d,e及びfで示す通りである。即ち、中心A及びその他の中心を結ぶ線分A-a、線分A-b、線分A-c、線分A―d、線分A-e及び線分A-fのいずれかに平行な方向が配列軸AXaである。
 また、例えば、上記説明した4回対称配列において、互いに垂直な二軸上の凸部又は凹部の間隔が、周期的に(例えばサイン波に乗じて)変調される場合も4回対称の配列となる。また、上記説明した4回対称配列において、ある軸に対して60°刻みの軸上にのる凸部又は凹部の間隔が、周期的に(例えばサイン波に乗じて)変化する場合は、6回対称の配列となる。また、例えば、上記説明した6回対称配列において、互いに垂直な二軸上の凸部又は凹部の間隔が、周期的に(例えばサイン波に乗じて)変調される場合は、4回対称の配列となる。また、上記説明した6回対称配列において、ある軸に対して60°刻みの軸上にのる凸部又は凹部の間隔が、周期的に(例えばサイン波に乗じて)変化する場合も、6回対称の配列となる。
 上記説明したように、配列軸Aは1以上存在するが、既に説明した定義を適用することで、回転シフト角Θを求めることができる。
<結晶軸>
 次に、結晶軸について説明する。結晶軸は、LED用パタンウェハ(1)の主面に対して平行な面内における結晶格子の格子点の最近接の方向である。図4は、本実施の形態に係るLED用パタンウェハ(1)の主面内の結晶格子の結晶軸を説明するための模式図である。図4は、LED用ウェハの主面に平行な面内における結晶格子が正六方格子の場合を示し、格子交点部に印をつけ強調している。結晶軸は、格子点の最近接の方向である。例えば、図4中、記号Aにて示す交点に最近接する交点は、記号a,b,c,d,e及びfで示す通りである。即ち、交点Aと他の交点を結ぶ線分A-a、線分A-b、線分A-c、線分A―d、線分A-e及び線分A-fのいずれかに平行な方向が結晶軸である。LED用パタンウェハ(1)の主面に平行な面内に観察される結晶格子の配列は、例えば、六方配列、四方配列、六方配列がある一軸方向に延伸された配列、四方配列がある一軸方向に延伸された配列、六方配列が互いに直行する二軸それぞれの方向に延伸された配列、及び、四方配列が互いに直行する二軸それぞれの方向に延伸された配列が挙げられる。いずれの結晶格子配列の場合であっても、上記定義を適用することで、本明細書の結晶軸は定義される。例えば、LED用パタンウェハ(1)が単結晶サファイアであり、その主面がc面、m面、又はr面の場合、結晶軸はそれぞれa軸、c軸又はn軸となる。
<n回対称の配列>
 LED用パタンウェハ(1)上に設けられる凹凸構造Aは、実質的にn回対称の配列を有する。このため、LED用パタンウェハ(1)上に成膜される半導体層の初期成長段階に注目した場合、半導体層の核生成を均等に分散化すると共に、核成長の不均等性にバランスをとることができる。ここで、核成長の不均等性とは、核成長により半導体層が部分的に隆起することである。即ち、部分的に隆起する核成長段階の半導体層を分散化することができる。
 図5は、LED用パタンウェハ(1)の表面上に半導体層を成膜する際に核成長段階にて成膜を停止させた場合の表面観察像を示す模式図である。図5A及び図5B中、記号Xは、部分的に隆起する核成長段階の半導体層の位置を示す。図5Aは、本発明の実施の形態に係るLED用パタンウェハ(1)において、部分的に隆起する核成長段階の半導体層Xが分散している状態を模式的に表現している。一方、図5Bは、凹凸構造Aの配列の回転対称性の低いLED用パタンウェハ(1)において、部分的に隆起する核成長段階の半導体層Xに偏りのある場合を示している。本発明の実施の形態に係るLED用パタンウェハ(1)において、凹凸構造Aが実質的にn回対称性を有すことで、部分的に隆起する核成長段階の半導体層Xの分散性が大きくなる。これにより、成長する半導体層の合体(癒着)の生じる箇所も分散される。即ち、半導体層内部の応力集中点が分散すると共に、転位同士の衝突箇所も分散することとなる。よって、半導体層のクラックが抑制され、内部量子効率IQEが効果的に向上する。なお、本明細書のいうクラックとは、ナノオーダのクラックである。LED用パタンウェハ(1)の凹凸構造Aに対して、半導体層を成膜する場合に関し、半導体層の成長をファセット形成過程にて止めた場合を観察する。この時、ファセットが、例えば6角形に代表されるn角形の形状を有すとして、隣接するn角形の2つの凹部に注目した際に、n角形の凹部の辺と辺に直交する方向に入る亀裂が、本明細書に定義されるクラックである。
 既に説明したように回転シフト角Θは、LED用パタンウェハ(1)の結晶軸と、凹凸構造Aの配列軸Aと、のLED用パタンウェハ(1)の主面に平行な面内における回転方向に対するシフト量である。この回転シフト角Θは、0°<Θ≦(180/n)°を満たす。なお、「n」は、n回対称の配列をなす凹凸構造Aの回転対称次数であり、既に説明した通りである。例えば、6回対称の凹凸構造Aであれば、回転シフト角Θは、0°超30°以下となる。回転シフト角Θが前記範囲を満たすことで、半導体層の初期成長に大きく貢献する凹凸構造Aの凹部底部の大きさを、大きくすることができる。同時に、成長速度の早い半導体層の通過する凹凸構造Aの凸部の数を減少させることができる。このため、半導体層の初期成長性が良好になる。そして、形成されるファセットの辺と辺とが対向する際の、辺と辺の平行度が良好となり、クラックが抑制される。
<回転シフト角Θのより好ましい範囲>
 回転シフト角Θのより好ましい範囲は、以下のように考えることができる。まず、内部量子効率IQEの改善及びクラックの改善が効果的であり、成長する半導体層同士の合体頻度を大きくすると共に、合体箇所を分散させることが効果的である。更に、半導体層同士の合体前の段階を考えると、半導体層の核成長を良好にし、且つ、核成長性も良好に保つ必要がある。これらを実現するためには、半導体層の核の付着する凹凸構造Aの凹部の大きさを大きく、そして半導体層の成長する際に横切る凹凸構造Aの凸部の数を小さくすることが効果的と考えることができる。同時に、形成されるファセットの辺と辺との平行度を高めることが重要である。
 図6は、LED用パタンウェハ(1)上において半導体層を成長させた場合の、回転シフト角Θと、半導体層の成長に寄与する凹部底部の大きさ及び成長する半導体層の通過する凸部の密度と、の関係を示すグラフである。図6は、6回対称の凹凸構造Aに対して、回転シフト角Θの与える、半導体層の成長に寄与する凹部底部の大きさ(以下、単に凹部底部の大きさLともいう)、及び、成長する半導体層の通過する凸部の密度(以下、単に凸部の密度Dともいう)への影響を計算した結果を示している。図6の横軸は、回転シフト角Θを、左の縦軸は、凹部底部の大きさLを、そして右の縦軸は、凸部の密度Dをそれぞれ示している。また、黒丸(●)のプロットが、凹部底部の大きさLへの影響を、黒四角(■)のプロットが凸部の密度Dへの影響をそれぞれ表している。また、図6においては、凹部底部の大きさL及び凸部の密度Dは、いずれも回転シフト角Θが0°の場合を1として規格化している。
 図6より、回転シフト角Θが大きくなると、核の付着とその成長に有効な凹凸構造Aの凹部の大きさLが大きくなることがわかる。特に回転シフト角Θを大きくした場合に極大点のあることと、回転シフト角Θが最大になる場合であっても、回転シフト角Θが0°の場合よりも凹部の大きさLが大きいことがわかる。一方、回転シフト角Θが大きくなると、半導体層の成長及び成長する半導体層同士の合体に不利に機能する凸部の密度Dが減少することがわかる。特に回転シフト角Θを大きくした場合に極小点のあることと、回転シフト角Θが最大になる場合であっても、回転シフト角Θが0°の場合よりも凸部の密度Dが小さくなることがわかる。
 以上から、クラックを効果的に抑制すると共に、内部量子効率IQEを大きくするために、回転シフト角Θは1°以上であることが好ましく、3°以上であることがより好ましく、5°以上であることが最も好ましい。この場合、特に、凸部の密度Dが大きく減少することから、半導体層の成長性が安定化し、クラック抑制の効果が大きくなる。更に、回転シフト角Θは7.5°以上であることが好ましく、10°以上であることがより好ましく、14°以上であることが最も好ましい。この場合、上述のクラック抑制効果を保持しつつ、半導体層の核の付着及びその成長に効果的な凹凸構造Aの凹部の大きさを大きくできることから、内部量子効率IQEもより向上させることができる。一方で、回転シフト角Θが(180/n)°の場合、結晶軸と配列軸Aとのズレ量により変化可能な応力の方向変換量が極大になると共に、緩和される応力を、n回対称の凹凸構造Aにより、ベクトル的に回転接続させる効果が最も高まることから、応力緩和効果が一層高まり、これに伴って、反りの低減がより顕著になると考えられる。
 回転シフト角Θは、更に凹凸構造Aの凸部に対して以下の関係を満たすと、クラック抑制効果及び内部量子効率IQE向上効果がより大きくなる。凹凸構造Aの凸部底部の平均幅(φave)と平均間隔Paveと、の比率(φave/Pave)であるDuty(デューティ)を用いた時に、回転シフト角Θは、atan(Duty/2)°≦Θ≦(180/n)°の範囲を満たすことが好ましい。なお、凸部底部の平均幅(φave)、平均間隔(Pave)及びDutyについては、追って説明する。
 この場合、内部量子効率IQE改善の効果及び半導体層へのクラック抑制効果が共により大きくなる。回転シフト角Θが上記範囲を満たすことで、半導体層の初期成長に大きく貢献する凹部底部の大きさLを、LED用パタンウェハ(1)の面内において、半導体層の成長方向に略垂直な方向に大きくとることができるため、半導体層の成長速度の速い面の大きさが大きくなる。これにより、成長する半導体層同士の合体に注目した場合に、合体する半導体層同士の界面積が大きくなる。更に、半導体層の成長速度の速い面が横切る凹凸構造の凸部の数を減少させることができるため、成長する半導体層同士の合体性が良好となる。以上から、内部量子効率IQEがより向上し、半導体層に生じるクラックが効果的に抑制される。
 上記Dutyと回転シフト角Θと、の関係は以下のように考え、求められた。まず、内部量子効率IQEの改善及びクラックの改善に対しては、成長する半導体層同士の合体頻度を大きくすると共に、合体箇所を分散させることが効果的である。更に、半導体層同士の合体前の段階を考えると、半導体層の核成長を良好にし、且つ、核成長性も良好に保つ必要がある。これらを実現するためには、半導体層の核の付着する凹凸構造Aの凹部の大きさを大きく、そして半導体層の成長する際に横切る凹凸構造Aの凸部の数を小さくすることが効果的と考えることができる。
 図7は、LED用パタンウェハ(1)上において半導体層を成長させた場合の、Dutyと、半導体層の成長に寄与する凹部底部の大きさ及び成長する半導体層の通過する凸部の密度と、の関係を示すグラフである。図7は、凹凸構造Aが6回対称の場合を例にとり、Dutyの与える、凹部底部の大きさL、及び、凸部の密度Dへの影響を計算した結果である。図7の横軸はDutyを、左の縦軸は凹部底部の大きさLを、そして右の縦軸は凸部の密度Dをそれぞれ示す。また、黒丸(●)のプロットが、凹部底部の大きさLへの影響を、黒四角(■)のプロットが凸部の密度Dへの影響をそれぞれ表している。また、図7においては、凹部底部の大きさL及び凸部の密度Dは、いずれもDutyが0、即ち凹凸構造Aのない場合を1として規格化している。
 図7より、Dutyが大きくなると、核の付着とその成長に有効な凹凸構造Aの凹部の大きさLが大きくなることがわかる。一方、Dutyが大きくなると、半導体層の成長及び成長する半導体層同士の合体に不利に機能する凸部の密度Dが減少することがわかる。
 ここで、図6と図7とは、横軸のパラメータが異なるのみであり、凹部底部の大きさLへの影響及び凸部の密度Dへの影響に対する挙動は類似している。この関係から、図6及び図7の各横軸である回転シフト角ΘとDutyとの関係を求めると、回転シフト角Θ=atan(Duty/2)°と求められる。ここで、既に説明したように、Dutyが大きい程、半導体層の核の付着、成長、そして合体が効果的に生じることから、回転シフト角ΘはΘ≧atan(Duty/2)°として与えられる。
 即ち凹凸構造AのDutyを決定した場合、回転シフト角Θがある一定以上の値、且つ、(180/n)°以下の範囲であることで、上記説明したように半導体層の核の付着、成長、そして成長する半導体層同士の合体がより良好となることから、クラックを抑制した内部量子効率IQEの高いLED用エピタキシャルウェハを得ることができる。図8は、図6及び図7に示す回転シフト角ΘとDutyとの関係を示すグラフである。例えば、凹凸構造Aが6回対称の場合を例にとると、図8に斜線で示す範囲が、回転シフト角Θの最も好ましい範囲である。図8において、横軸がDuty、縦軸が回転シフト角Θである。図8中のプロットはatan(Duty/2)°であり、この曲線よりも縦軸方向に上の部分が回転シフト角Θの最も好ましい範囲である。
 なお、凹凸構造Aの凹部の底部の大きさLが小さくなりすぎる場合、半導体層の核生成が阻害されるため、半導体層の成長が阻害される。凹凸構造Aの凹部の底部の大きさは、平均間隔Pave及びDutyを使用し表現できる。また、凹凸構造Aの凹部の底部の大きさの下限値は、半導体層の核の大きさから概算することができる。より具体的には、LED用パタンウェハ(1)に対する後述する低温バッファー層成膜後のRAMP過程に関し、当該RAMP過程内にて再拡散する核の移動距離は、大凡80nmである。このことから、凹部底部の大きさLを80nm以上に設定することで、凸部の側面に付着する核を抑制することができ、結晶品位が向上する。以上から、Dutyの上限値が決定され、Duty≦1-(Y/Pave)と算出される。ここで、Y=50nmであることが好ましく、Y=80nmであることが最も好ましい。即ち、図9に示す曲線より下側に位置するDutyの範囲を満たすことが好ましい。図9は、本実施の形態に係るLED用パタンウェハ(1)の凹凸構造Aの平均間隔PaveとDutyとの関係を示すグラフ図である。図9において、横軸が凹凸構造Aの平均間隔Paveであり、縦軸がDutyである。図9中の、黒三角(▲)のプロットは、式Duty≦1-(Y/Pave)のYが50nmの好ましい場合であり、黒ダイヤ(◆)のプロットは、Yが80nmであり、より好ましい場合である。なお、上記説明したDutyの式に関し、Paveのディメンジョンはナノメートルである。
 図9に示した曲線以下の範囲を凹凸構造Aが満たすことで、既に説明したように半導体層の核生成が良好となる。ここで、回転シフト角Θを満たすことから、核成長が良好となり、成長する半導体層同士の合体頻度が高く、且つ合体する箇所を分散化することができるため、クラックの抑制された内部量子効率IQEの高い半導体層を得ることができる。
 以上説明した回転シフト角Θの効果の1つであるクラックについて、実際の検討結果を含め、より詳細に説明する。まず、LED用ウェハとして6インチφのC面サファイアウェハを使用した。このLED用ウェハの主面を、後述するナノ加工シート法を用いて、加工し、LED用パタンウェハ(1)を得た。ここで回転シフト角Θは、LED用ウェハのオリフラ(Orientation Flat)に対する法線を基準とし、ナノ加工シートを当該法線からα°傾けて貼り合わせることで制御した。換言すれば、α=Θである。また、貼り合わせの精度分解能は、1~2°であることから、回転シフト角Θについては、Θ±1°の誤差を含む。LED用パタンウェハ(1)の凹凸構造Aの配列は、正六方配列とした。即ち、凹凸構造Aは、6回対称配列である。また、凹凸構造Aの凸部頂部の形状を、LED用パタンウェハ(1)の断面に対する走査型電子顕微鏡観察より確認した。結果を図10に示した。図10Aは、本実施の形態に係る凹凸構造Aの凸部頂部の断面形状の一例を示す走査型電子顕微鏡写真である。図10Bは、図10Aの一部を表す模式図である。図10より、凸部頂部に平坦なテーブルトップはなく、僅かに上に凸の曲線が互いに交わるようにして、凸部頂部の断面形状を作っていることがわかる。
 作製したLED用パタンウェハ(1)に対して、低温バッファー層を10nm成膜した。続いて、後述する非ドープ第1半導体層として窒化ガリウムを成膜し、ファセットを形成させた。このファセット形成途中の状態にてチャンバーより取り出し、窒化ガリウム成膜面を走査型電子顕微鏡にて観察した。結果を図11に示した。図11は、本実施の形態に係る非ドープ第1半導体層の一例を示す走査型電子顕微鏡写真である。図11は2500倍の観察像である。図11より、複数のファセットが形成されていることと、窒化ガリウム層のつながりは、ランダムであることがわかる。ここで、図11の観察像内に観察されるクラックを拡大し抜き出した像を、図12に示した。図12Aは、クラックを示す走査型電子顕微鏡写真である。図12Bは、図12Aの一部を表す模式図である。図12より、成長する窒化ガリウムの6角形の開口部に注目した場合に、当該6角形の辺と辺とが対向する位置の窒化ガリウム層に、当該辺に垂直な方向に亀裂の生じていることがわかる。本明細書におけるクラックは、このようなナノスケールの亀裂を指している。
 走査型電子顕微鏡像よりクラックの数を測定し、定量化した結果、回転シフト角Θが、0°、2°、7.5°、15°、22.5°及び30°と変化するにつれて、クラック密度は、72×10個/cm、70×10個/cm、57×10個/cm、51×10個/cm、43×10個/cm、及び41×10個/cmと、変化した。即ち、回転シフト角Θが大きくなる程、クラック密度が低下していることがわかった。更に、この減少度合を比べると、回転シフト角Θが2°超の領域において、クラック密度の低下が顕著であることがわかった。これは、回転シフト角Θの制御が±1°程度あることと、1~2°という僅かな凹凸構造Aの回転は、窒化ガリウム成膜からみれば、その成膜制御の誤差に埋もれるためと考えられる。
 次に、クラックが低減することによる半導体層への影響を確認した。上記クラックの測定を行ったサンプルに対して、更に非ドープ第1半導体層を成膜し、窒化ガリウム層の表面を平坦化した。この状態にて、インプレーンのX線ロッキングカーブ法を適用し、ロッキングカーブを得、その半値幅(FWHM)を評価した。結果を、図13に示した。図13は、クラック密度とロッキングカーブの半値幅(FWHM)との関係を示すグラフである。図13に関し、横軸はクラック密度を、縦軸はロッキングカーブの半値幅(FWHM)である。図13より、クラック密度が、102×10個/cm、71×10個/cm、56×10個/cm、52×10個/cm、44×10個/cm、及び40×10個/cmと低下するにつれて、FWHMは、673、671、644、630、600、及び590へと減少することがわかる。特に、クラック密度が、70×10個/cm以下の領域において、FWHMの数値が効果的に減少することがわかった。即ち、クラック密度が減少する程に、特に、クラック密度が70×10個/cm以下になることで、半導体層の結晶均等性が向上していることがわかった。
 更に、上記ロッキングカーブの測定に用いたサンプルに対し、ドープ第1半導体層としてn型窒化ガリウム層を成膜した。このサンプルに対してカソードルミネッセンス(CL)評価を行った。ここでCLとは、電子線を照射することで生じる光を評価する手法であり、伝導帯の底付近より価電子帯の頂部付近への遷移に相当する評価となるため、結晶欠陥、キャリア濃度、応力、または不純物等の結晶情報を評価する手法である。結果を図14に示した。図14は、クラック密度とカソードルミネッセンス(CL)評価により得られた画像から求めた暗転密度との関係を示すグラフである。図14に関し、横軸はクラック密度を、縦軸はCLにより得られた画像から求めた暗転密度である。図14より、クラック密度が、102×10個/cm、71×10個/cm、52×10個/cm、44×10個/cm、及び40×10個/cmと低下するにつれて、CL暗転密度は、5.51×10/cm、5.52×10/cm、4.89×10/cm、4.44×10/cm、及び4.34×10/cmへと減少することがわかる。特に、クラック密度が、71×10個/cm以下の領域において、CL暗転密度の数値が効果的に減少することがわかった。換言すればクラック密度が71×10個/cm以下になることで、結晶品位が大きく向上することがわかった。
 以上より、回転シフト角Θを0°超、好ましくは、2°超にすることにより、クラック密度を効果的に低減できる。これにより、効果的に、非ドープ第1半導体層の結晶均等性が向上する。更には、ドープ第1半導体層の結晶品位を向上させることが可能となる。これらの結晶均等性及び結晶品位の向上は、内部量子効率IQEを向上させる因子であると共に、半導体発光素子の長期信頼性を向上させる因子とも考えられることから、回転シフト角Θによりクラック密度を制御することで、半導体発光素子の発光性能と長期信頼性を同時に改善できると推定される。
 なお、上記結果は、図15に示す凸部頂部の形状に対しても、数値の絶対値の大小の変化こそあれ、同様の傾向が得られた。図15は、本実施の形態に係る凹凸構造Aの凸部頂部の断面形状の例を示す走査型電子顕微鏡写真である。図15に示した走査型電子顕微鏡像は、LED用パタンウェハ(1)の断面に対する観察像である。図15より、検討に使用した凸部頂部の形状は、レンズ状のものから、僅かに上に凸部の曲線が互いに交わり頂部の断面形状を作るような形状まで含まれることがわかる。このことから、曲率半径0超の角部である凸部頂部を採用することで、上記説明した回転シフト角Θの効果を発現可能と考えられる。
 凹凸構造Aの凸部頂部は、曲率半径が0超の角部であることが重要であることを既に説明した。ここで、凹凸構造Aの凸部頂部に平坦部のある場合、言い換えれば、テーブルトップ構造である場合であっても、回転シフト角Θとの組み合わせにより、テーブルトップ構造のデメリットを抑止可能であることが示唆された。まず、テーブルトップ構造のデメリットとは、テーブルトップ上から成長した半導体層による転位を低減困難なことである。即ち、半導体層の転位密度を低減しづらく、内部量子効率IQEが低減する傾向にあることである。ここで、メカニズムは定かではないが、回転シフト角Θが10°超(180/n)°以下の範囲においては、テーブルトップによる内部量子効率IQEの低減量を小さくできる傾向にあることがわかった。即ち、内部量子効率IQEの低減程度は小さくなる。一方で、テーブルトップ構造の場合、発光光に対する光散乱性が、凸部の大きな体積により向上することから、光取り出し効率LEEをより向上させることができる。この結果、凸部頂部の形状がテーブルトップ形状であり、且つ、回転シフト角Θが10°超(180/n)°以下の凹凸構造Aを含むLED用パタンウェハ(1)を使用することで、高効率なLEDを製造可能であることがわかった。この効果は、回転シフト角が15°以上(180/n)°以下の領域でより顕著であった。また、テーブルトップの大きさとしては、20nm、50nm、100nm、300nm、及び500nmのものを試験したが、300nmと500nmの場合は、略同じ効率であり、100nm以下の範囲において、より性能が向上することがわかった。これは、低温バッファー層を成膜した後のRAMP過程における核の再拡散距離が80nm程度にあることに起因すると推定される。以上から、本明細書のいう曲率半径0超の角部については、テーブルトップの大きさが100nm以下の場合を含むとしても、矛盾しないことが示唆された。以上より、テーブルトップの大きさが100nm以下の場合を含む曲率半径が0超の角部により凹凸構造Aの凸部が構成されると共に、回転シフト角Θが10°超(180/n)°以下、好ましくは15°以上(180/n)°以下を満たすLED用パタンウェハ(1)を使用することで、高効率なLEDを容易に製造できる。
 以上より、凹凸構造Aの凸部頂部の形状と回転シフト角Θを制御することで、半導体層に対するクラックを低減可能である。そして、内部量子効率IQEを高め、半導体発光素子の発光特性を改善できる。更には、半導体発光素子の長期信頼性を改善できる。ここで、凹凸構造Aにより、LEDの他の大きな問題である光取り出し効率LEEをも向上させることができれば、LEDの外部量子効率EQEをより向上させることができる。LEDの光取り出し効率LEEが低くとどまっている理由は、屈折率の高い半導体層が屈折率の相対的に低い媒質により挟まれているためである。このような場合、屈折率の高い媒質中を光は導波する。この導波により、発光光はLEDの外部へと取り出される前に、吸収され熱となり消失する。即ち、光取り出し効率LEEを向上させるためには、導波する発光光のモードを乱す必要がある。ここで、発光光の進行方向を効果的に乱し、導波モードを崩し、光取り出し効率LEEを向上させることを考えると、Dutyは所定の値より大きい必要があることが分かった。これは3次元RCWA法と2次元FDTD法から計算された。即ち、Duty≧(3.47×10-8)Pave+Zを満たすことが好ましい。ここで、Zが0.5、0.6、及び0.65の順に凹凸構造Aによる光回折のモード数と回折強度が増加するために、導波モードを乱す効果が大きくなり、光取り出し効率LEEも向上する。即ち、図16に示す曲線より上側に位置するDutyの範囲を満たすことが好ましい。なお、光取り出し効率LEEをより向上させるためのDutyを決める上記式に関し、Paveのディメンジョンはナノメートルである。
 図16は、本実施の形態に係るLED用パタンウェハ(1)の凹凸構造Aの平均間隔PaveとDutyとの関係を示すグラフ図である。図16は、横軸が凹凸構造Aの平均間隔Paveであり、縦軸がDutyである。図16中の、黒三角(▲)のプロットは、式Duty≧(3.47×10-8)Pave+ZのZが0.5の好ましい場合であり、黒ダイヤ(◆)のプロットは、Zが0.6でありより好ましい場合であり、黒丸(●)のプロットは、Zが0.65であり、最も好ましい場合である。
 図16に示した曲線以上の範囲を凹凸構造Aが満たすことで、既に説明したように光回折の強度とモード数が増加し、光取り出し効率LEEが向上する。
 上述のように回転シフト角Θの範囲を満たすと共に、図17に示す平均間隔PaveとDutyとの関係を満たす凹凸構造Aであることで、クラックの抑制された内部量子効率IQEの高い半導体層を製造できるため、発光する効率そのものが向上する。また、同時に、効率的に発光した光は、改善した光取り出し効率LEEによりLEDの外部へと取り出されるため、外部量子効率EQEが大きくなる。即ち、外部量子効率EQEの高いLEDチップを欠陥効率低く製造することができる。また、LEDチップ内の半導体層のクラック密度も低減することから、寿命が長くなる。
 図17は、本実施の形態に係るLED用パタンウェハ(1)の凹凸構造Aの平均間隔PaveとDutyとの関係を示すグラフである。図17において、横軸が凹凸構造Aの平均間隔Paveであり、縦軸がDutyである。図17中、黒三角(▲)、黒ダイヤ(◆)及び黒丸(●)のプロットは光取り出し効率LEEの向上より決定した曲線であり、既に説明したDuty≧(3.47×10-8)Pave+Zにて表現される式のZが、それぞれ0.5,0.6及び0.65の場合である。一方で、星(アスタリスク)及び黒四角(■)のプロットは内部量子効率IQE及びクラックの観点から決定した曲線であり、既に説明したDuty≦1-(Y/Pave)にて表現される式のYが、それぞれ50nm及び80nmである。即ち、1-(Y/Pave)≧Duty≧(3.47×10-8)Pave+Zの範囲を満たす凹凸構造Aであると、上記説明した高効率且つ高寿命な半導体発光素子を欠陥効率低く製造できる効果を発現させることができる。
<凹凸構造A>
 次に、凹凸構造Aについて説明する。凹凸構造Aの凸部は、凸部頂部の曲率半径が0超の角部により構成される。ここで、曲率半径が0超の角部とは、凹凸構造Aの凸部の頂部上面が、曲面より構成されることを意味する。例えば、先端の丸まった円錐状体、レンズ状体、ドーム状体、コーン状体及び砲弾体が挙げられ、図15に示した形状を含む。
 このように、LED用パタンウェハ(1)の凹凸構造Aの凸部頂部が曲率半径0超の角部により構成されることで、内部量子効率IQEの改善とクラックの抑制を同時に実現できる。また、LED用パタンウェハ(1)の凹凸構造A上に半導体層を成膜する際に、凹凸構造Aの凹部底部から優先的に半導体層を成長させることができる。換言すれば、凹凸構造Aの凸部頂部上からの半導体層の成長を抑制できる。即ち、既に説明してきた、凹凸構造Aの凹部に対する半導体層の核の付着、成長、そして成長する半導体層の合体に対する初期条件を整えることができる。
 ここで、凹凸構造Aが、既に説明した回転シフト角Θを満たすことで、凹凸構造Aの凹部から優先的に半導体層を成長させると共に、成長する半導体層同士の合体を効果的に分散的に行うことができるため、転位は減少し、且つクラックを抑制できる。本効果は、図8を用い説明した回転シフト角ΘとDutyとの関係を満たすことで顕著になる。また、図9を用い説明したDutyと平均間隔Paveとの関係を満たすことでより顕著になる。更に、図16を用い説明した平均間隔PaveとDutyとの関係を満たすことで光取り出し効率LEEをも同時に向上させることができる。
 以上説明したように、回転シフト角Θの範囲を満たすと共に、凹凸構造Aの凸部頂部が曲率半径0超の角部より構成されることで、効果的に内部量子効率IQEを向上させると共に、クラックを抑制できる。
 上述の原理に基づく効果を良好に発現させ、内部量子効率IQEの改善とクラックの低減を共により良好にする観点から、凹凸構造Aの凸部は、凸部底部から凸部頂部へと向かうに従い径が小さくなると好ましい。これにより、特に凹凸構造Aの凸部の頂部近傍から半導体層に向けて生じる応力を低減することができる。即ち、成長する半導体層に対する凹凸構造Aから加えられる応力を低減できるため、半導体層内部に生じる残留応力を小さくすることができる。これにより、半導体層に対するクラックの抑制効果が大きくなる。
 また、凸部頂部と凹部底部とを繋ぐ凸部側面部は、2段階以上の傾斜角度を有すことが好ましく、傾斜が変わる点の曲率半径は0超であり、曲面を形成していることが好ましい。この場合、半導体層の安定成長面が凸部頂部に差し掛かる前に、半導体層に加わる応力に勾配を持たせ緩和できることから、クラック抑制の効果がより大きくなる。
 更に、凹凸構造Aは、複数の独立した凸部と連続した凹部により構成されると、上記効果をより一層発揮できるため好ましい。この場合、複数の独立した凹部と連続した凸部とで凹凸構造Aが構成される場合に比べ、相対的に凹部底部の大きさを大きくすることができる。即ち、既に説明した凹部底部からの半導体層の成長性をより良好にすることができるため、内部量子効率IQEを改善し、クラックを抑制できる。
 また、凹部底部には平坦面があることで、内部量子効率IQEを向上させる効果が一層高まる。これは、凹凸構造Aの凹部底部より成長する半導体層の成長初期状態を良好に保つことが可能となるためであり、凹凸構造Aによる転位分散性の効果をより発揮することが可能となる。
 凹凸構造(A)の平均間隔Paveは、内部量子効率IQEと光取り出し効率LEEとのバランスの観点から選択できるため、特に限定はなく、例えば、200nm、300nm、500nm、700nm、1200nm、1500nm、2500nm、及び5000nmの凹凸構造Aを有すLED用パタンウェハ(1)を製造し、上記説明した効果を確認できている。LEDの外部量子効率EQEを効果的に向上させるという観点に立つと、内部量子効率IQEを必ず向上させる必要がある。この観点から、平均間隔Paveは、50nm≦Pave≦1500nmを満たすことが好ましい。平均間隔Paveが1500nm以下であることで、凹凸構造Aの凹部の密度が向上することから、既に説明した成長する半導体層同士に合体頻度を大きくできる。即ち、半導体層中の転位が、その進行方向を変化させる頻度を向上できるため、転位の低減効果が大きくなり、これにより、内部量子効率IQEが効果的に向上する。一方で、平均間隔Paveが50nm以上であることにより、半導体層の初期成長に大きく貢献する凹凸構造Aの凹部底部の大きさを確保できる。これにより、凹凸構造Aの凹部底部における半導体層の核成長を良好に保つことができる。よって、凹凸構造Aの配列軸Aが回転シフト角Θだけ所定の範囲内にてシフトすることによる半導体層へのクラック抑制効果が大きくなる。特に、半導体層の核生成性と核成長性を良好に保つ観点から、平均間隔Paveは、100nm以上であることが好ましく、200nm以上であることがより好ましく、300nm以上であることが最も好ましい。
 また、凹凸構造Aの凹部の密度を向上させ、成長する半導体層同士の合体頻度を向上させると共に、合体箇所を分散化させ、効果的に内部量子効率IQEを向上させ、クラックを低減する観点から、1200nm以下であることが好ましく、1000nm以下であることがより好ましく、950nm以下であることが最も好ましい。なお、図9、図16、図17を参照して既に説明した、平均間隔PaveとDutyとの関係を満たすことで、クラック抑制の効果及び内部量子効率IQE改善の効果を発現すると共に、更に光取り出し効率LEEも向上させることができる。
<平均間隔(Pave)>
 平均間隔Paveは、以下の<<半導体発光素子>>にて説明する<凹凸構造の平均高さ(Have)>を求める際に使用したサンプルと略同様の箇所にて測定されるものとする。或いは、LED用パタンウェハ(1)に対して測定できる。凹凸構造Aの平均間隔Paveは、凹凸構造Aのn回対称の配列によらず、以下の定義に従い決定される。ある凸部A1の中心とこの凸部A1に最隣接する凸部B1の中心との間の距離PA1B1を、間隔Pと定義する。平均間隔(Pave)は、以下の定義に従い算出される。(1)任意の10個の凸部A1,A2,…A10を選択する。(2)凸部AMと凸部AM(1≦M≦10)に最隣接する凸部(BM)との間隔PAMBMを測定する。(3)凸部A1~凸部A10についても、(2)と同様に間隔Pを測定する。(4)間隔PA1B1~PA10B10の相加平均値を平均間隔(Pave)として定義する。なお、上記定義は凹凸構造Aのn回対称性によらない。即ち、複数の凸部が連続した凹部により隔離された場合であっても、複数の柵状体が複数の柵状体により隔離されたラインアンドスペース構造であっても、正n方配列が一軸或いは二軸方向に延伸された配列であっても同様である。なお、複数の凹部が連続した凸部により隔てられた構造の場合、上記凸部の中心を、凹部開口部の中心と読み替えることで、平均間隔(Pave)を定義することができる。また、柵状体の長さが非常に長く、走査型電子顕微鏡や原子間力顕微鏡観察によりその端部が観察不可能な場合、或いは端部のない場合は、これらの観察像内における凸部の中心を、上記凸部の中心として使用する。
<凸部の底部の平均幅(φave)>
 平均幅φaveは、以下の<<半導体発光素子>>にて説明する<凹凸構造の平均高さ(Have)>を求める際に使用したサンプルと略同様の箇所にて測定されるものとする。或いは、LED用パタンウェハ(1)に対して測定される。凹凸構造Aの平均幅φaveは、凹凸構造Aのn回対称の配列によらず、以下の定義に従い決定される。ある凸部A1の底部の輪郭形状において、輪郭の外周のある一点Xと、輪郭の外周の他の一点Yと、の距離XYが最大になる時の距離φA1を、凸部の底部の幅φと定義する。平均幅(φave)は、以下の定義に従い算出される。(1)任意の10個の凸部A1,A2…A10を選択する。(2)凸部AM(1≦M≦10)に対して凸部の底部の幅φAMを測定する。(3)凸部A1~凸部A10についても、(2)と同様に凸部の底部の幅φを測定する。(4)凸部の底部の幅φA1~φA10の相加平均値を平均幅(φave)として定義する。なお、凸部の底部の輪郭形状のアスペクト比が1.5以上の場合は、凸部の底部の幅φは、凸部の底部の輪郭形状の外周のある一点Xと、他の一点Yと、の最短距離として定義される。
<Duty>
 Dutyは、平均幅(φave)と平均間隔(Pave)との比率(φave/Pave)として定義される。
<凹凸構造Aの配置>
 本実施の形態に係るLED用パタンウェハ(1)は、上述の凹凸構造Aを、LED用パタンウェハ(1)の表面の一部又は全面に具備する。なお、凹凸構造Aの更に詳細な形状・配列や製造方法や材質については、以下の<<半導体発光素子>>内にて説明する。即ち、LED用パタンウェハ(1)の表面全面が上記説明した凹凸構造Aにより覆われても、LED用パタンウェハ(1)の表面の一部に凹凸構造Aが設けられてもよい。以下の説明においては、凹凸構造Aを凹凸構造Gと記載し、凹凸構造Aに該当しない凹凸構造を凹凸構造Bと記載する。
 LED用パタンウェハ(1)は、少なくとも一部に凹凸構造Gを有す。即ち、LED用パタンウェハ(1)の表面は凹凸構造Gにより全面が覆われても、一部が覆われても良い。ここで、凹凸構造Gにより覆われていない領域を「非G領域」と呼ぶ。ここで、非G領域は、凹凸構造B及び/又は平坦部より構成される。LED用パタンウェハ(1)の表面の一部に非G領域が設けられる場合であっても、凹凸構造Gで覆われた領域において、既に説明した効果を発現できるため、クラックの抑制された内部量子効率IQEの高い半導体層を成膜できる。更には、図16及び図17を参照し説明した平均間隔PaveとDutyとの関係を満たすことで、光取り出し効率LEEをも同時に改善できる。
 (α)LED用パタンウェハ(1)の表面に設けられる凹凸構造Gは、平均間隔Paveを用いた時に、10Pave×10Paveの面積を有す領域内に少なくとも設けられると、上記説明した効果を奏すため好ましい。即ち、LED用パタンウェハ(1)に対して少なくとも、10Pave×10Paveの領域内に凹凸構造Gが設けられればよい。即ち、例えば、走査型電子顕微鏡や原子間力顕微鏡を用いLED用パタンウェハ(1)の表面を観察した場合に、10Pave×10Paveの面積を有す領域内が凹凸構造Gにより構成されていればよい。特に、10Pave×10Paveの面積を有す領域内を満たす凹凸構造Gの総和により、以下に説明する凹凸構造Gの割合、又は大きさを満足することが好ましい。即ち、10Pave×10Paveの面積を有す範囲内が凹凸構造Gにより構成され、このような範囲を複数個設けることができる。特に、20Pave×20Pave以上、より好ましくは25Pave×25Pave以上を満たすことにより、凹凸構造Gによる半導体層の核の付着、核成長、そして成長する半導体層の合体の効果がより顕著になるため好ましい。この場合も、凹凸構造Gの総和により、以下に説明する凹凸構造Gの割合、又は大きさを満たすことが好ましい。更に、50Pave×50Pave以上、より好ましくは、75Pave×7PaveP以上の面積を有す領域が凹凸構造Gにより構成されることで、凹凸構造Gで覆われた領域に隣接する非G領域においても、半導体層の核の付着、核成長、そして成長する半導体層の合体が良好となり、クラックの抑制と内部量子効率IQEの改善効果が発現されるため好ましい。本効果は、100Pave×100Pave以上、150Pave×150Pave以上、そして450Pave×450Pave以上になるにつれ、より発揮される。これらの場合も、凹凸構造Gの総和により、以下に説明する凹凸構造Gの割合、又は大きさを満たすことが好ましい。
 (β)凹凸構造Gで覆われた領域の中に、非G領域を設ける場合、非G領域の割合は、凹凸構造Gに対して、1/5以下であることが好ましい。これにより、凹凸構造Gの効果を発揮できる。同様の効果をより発揮する観点から、1/10以下であることがより好ましく、1/25以下であることがより好ましく、1/50以下であることが最も好ましい。なお、1/100以下を満たすことにより、クラックの抑制と内部量子効率IQEの改善効果をより向上させることができる。特に、1/500以下、より好ましくは1/1000以下を満たすことにより、LED内部から出光する発光光の均等性が向上するため好ましい。同様の観点から、1/10000以下であることが好ましく、1/100000以下であることが好ましく、1/1000000以下であることが好ましい。なお、下限値は特に限定されず、小さい程、換言すれば0に漸近する程、凹凸構造Gの効果がより顕著になるため好ましい。
 (γ)LED用パタンウェハ(1)の表面に対する凹凸構造Gの割合は、LEDチップの外形及びその大きさにもよるが、0.002%以上であると、凹凸構造Gにおいて既に説明した効果を奏すことが可能となるため好ましい。特に、0.02%以上、より好ましくは0.2%以上の凹凸構造GをLED用パタンウェハ(1)が具備することにより、半導体層内の転位の分散性が向上することから、内部量子効率IQEの均等性が向上する。更に、成長する半導体層の合体箇所の分散性が向上することから、クラックの抑制効果が大きくなる。更に、2.3%以上、より好ましくは10%以上の凹凸構造GをLED用パタンウェハ(1)が含むことで、前記効果をいっそう発揮できる。また、20%以上の場合、LED用パタンウェハ(1)上に成膜される半導体層の面内均等性が向上することから、内部量子効率IQEの改善程度がLED用パタンウェハ(1)の面内において均等化するため、高効率なLEDチップを得る収率が向上する。本効果をより発揮する観点から、凹凸構造Gは、30%以上含まれることが好ましく、40%以上含まれることがより好ましく、50%以上含まれることが最も好ましい。また、凹凸構造Gを60%以上含む場合、非G領域に対する凹凸構造Gの効果の伝搬性が向上する。即ち、凹凸構造Gによる半導体層の核の付着、核成長、そして成長する半導体層の合体に対する効果を、非G領域へ、と伝搬することから、非G領域の内部量子効率IQEの向上程度が大きくなると共にクラック改善の効果も大きくなる。前記効果をより発揮する観点から、凹凸構造Gは、70%以上含まれることが好ましく、80%以上含まれることがより好ましく、90%以上含まれることが最も好ましい。なお、凹凸構造Gが98%以上含まれる場合、換言すればLED用パタンウェハ(1)の表面が凹凸構造Gにより略埋め尽くされる場合は、半導体層の成長性がLED用パタンウェハ(1)の面内において均等になることから、内部量子効率IQEの向上程度の均等化が促進される。即ち、LED用エピタキシャルウェハより製造される複数のLEDチップの特性分布曲線がよりシャープになる。
 (δ)LED用パタンウェハ(1)の表面に含まれる凹凸構造Gは、0.0025×10-6以上であることが好ましい。この範囲を満たすことにより、LEDチップの、発光出力が大きくなる。これは、LEDチップの大きさと外形にもよるが、LEDチップ内を導波する発光光と凹凸構造Gとの衝突確率から判断できる。また、この範囲を満たす場合、凹凸構造G上に成膜される半導体層の初期成長性が良好となる。即ち、半導体層の核生成と核成長の速度を凹凸構造Gにより低下させることができることから、転位が低減し、内部量子効率IQEが向上する。前記効果をより発揮する観点から、LED用パタンウェハ(1)の表面に含まれる凹凸構造Gは、0.01×10-6以上であることが好ましく、0.04×10-6以上であることがより好ましく、0.09×10-6以上であることが最も好ましい。更に、0.9×10-6以上であることにより、LED用パタンウェハ(1)上に成膜される半導体層の面内均等性が向上することから、クラックの抑制される割合が大きくなり、半導体発光素子を得る収率が向上する。前記効果をより発揮する観点から、9×10-6以上であることがより好ましく、90×10-6以上であることが最も好ましい。なお、900×10-6以上、より好ましくは、1.8×10-3以上であることで、非G領域に対する凹凸構造Gの効果の伝搬性が向上する。即ち、凹凸構造Gによる半導体層の核の付着、核の成長、そして成長する半導体層の合体を適度にできる効果を非G領域へ、と伝搬することから、非G領域の内部量子効率IQEの向上程度及びクラックの低減程度も大きくなる。特に、3.6×10-3以上、より好ましくは、7.5×10-3以上であることで、LED用パタンウェハ(1)の外縁部を使用した場合であっても、良好なLEDを得ることができる。以上説明した凹凸構造Gの大きさを満たす凹凸構造Gが、LED用パタンウェハ(1)の表面上に1以上設けられることで、高効率なLEDチップを収率高く製造することが可能なLED用基板を得ることができる。なお、上記説明した凹凸構造Gの大きさを満たす凹凸構造Gを複数個設けることもできる。この場合、少なくとも1つの凹凸構造Gが、上記大きさを満たす。特に、凹凸構造Gの個数に対して50%以上が上記大きさの範囲をみたすことが好ましく、100%が上記大きさの範囲をみたすことが最も好ましい。
 凹凸構造Gと非G領域との配置関係は上記内容を満たせば特に限定されないが、例えば、以下の関係が挙げられる。凹凸構造Gと非G領域との配置関係は、凹凸構造Gと非G領域を考えた場合、以下に説明する配置を挙げることができる。なお、凹凸構造Gは、上記説明したα、β、γ、δの1以上を満たす凹凸構造Gによる集合、即ち、凹凸構造G領域である。また、図18に示すように、凹凸構造G領域501内に非G領域502が設けられる場合、非G領域502は、上記βにて説明した割合を満たせば、その形状、規則性や非規則性は限定されない。図18は、本実施の形態に係るLED用パタンウェハ(1)における凹凸構造Gと非G領域との関係を示す説明図である。図18A及び図18Bにおいては、凹凸構造G領域501の中に、輪郭が不定形の非G領域502が複数配置されている。図18Cにおいては、凹凸構造G領域501の中に、格子状の非G領域502が設けられている。また、図18Dにおいては、凹凸構造G領域501の中に、略円形状の非G領域502が複数形成されている。
 凹凸構造G領域501により作られる輪郭形状は特に限定されない。即ち、凹凸構造G領域501と非G領域502との界面形状は限定されない。このため、例えば、凹凸構造G領域501と非G領域502との界面形状は、n角形(n≧3)、非n角形(n≧3)や、格子状、ライン状等が挙げられる。n角形は正n角形であっても、非正n角形であってもよい。
 図19は、本実施の形態に係るLED用パタンウェハ(1)における凹凸構造G領域により作られる輪郭形状を示す模式図である。例えば、4角形を代表させると、正4角形(正方形)、長方形、平行四辺形、台形、また、これらの4角形の対向する辺の1組以上が非平行な形状が挙げられる。更に、n角形(n≧3)において、nが4以上の場合は、図19Aから図19Dに示すような形状を含む。図19Aは4角形であり、図19Bは6角形であり、図19Cは8角形であり、図19Dは12角形である。非n角形は、曲率半径が0超の角部を含む構造、例えば、円、楕円、上記説明した上記n角形の角が丸みを帯びた形状(上記n角形の角の曲率半径が0超の形状)、又は丸みを帯びた角(曲率半径が0超の部位)を含む上記説明したn角形(n≧3)である。このため、例えば、図19Eから図19Hに例示する形状を含む。なお、非G領域の輪郭形状は、上記説明した凹凸構造Gの集合の輪郭形状に挙げた形状を採用できる。
 まず、凹凸構造G領域501が非G領域502により、囲まれる、又は挟まれる状態が挙げられる。図20は、本実施の形態に係るLED用パタンウェハ(1)を表面より観察した状態を示す平面模式図である。図20Aから図20Fでは、凹凸構造G領域501が非G領域502により囲まれている状態を示している。図20Aに示すように、LED用パタンウェハ(1)500の表面に凹凸構造G領域501が設けられ、その外側が非G領域502により構成されてもよい。この凹凸構造G領域501は、上記説明した比率を満たすことが好ましい。また、この凹凸構造G領域501は、既に説明した大きさを満たすことが好ましい。図20B又は図20Cのように、LED用パタンウェハ(1)500の表面に凹凸構造G領域501が互いに離間して複数個配置され、且つ、凹凸構造G領域501同士の間及び凹凸構造G領域501の外側が非G領域502により満たされていてもよい。この場合、凹凸構造Gの合計面積に対して、上記説明した比率を満たすことが好ましい。また、少なくとも1つの凹凸構造Gが既に説明した大きさを満たすことが好ましく、全ての凹凸構造Gが既に説明した大きさを満たすことがより好ましい。また、凹凸構造Gが複数個設けられる場合、凹凸構造G領域501は図20Cに示すように規則的に配置されても、図20Dに示すように非規則的に配置されてもよい。規則的な配置としては、四方配列、六方配列、これらの配列が一軸方向に延伸された配列、又は、これらの配列が二軸方向に延伸された配列等が挙げられる。更に、凹凸構造G領域501の輪郭形状は、図20Aから図20Dにおいては、円状に記載したが、図20Eに示すように不定形の形状を採用することもできる。例えば、凹凸構造G領域501の外形として、n角形(n≧3)、角の丸まったn角形(n≧3)、円、楕円、線状、星状、格子状等の形状を挙げることができる。また、図20Fに示したように、凹凸構造G領域501が非G領域502により囲まれ、その外周を凹凸構造G領域501が囲み、さらにその外周を非G領域502が囲むこともできる。なお、図20Aから図20Dにおいては、凹凸構造G領域501を円状に記載したが、凹凸構造G領域501により作られる輪郭形状は、図19を参照し説明した形状を採用できる。
 図21は、本実施の形態に係るLED用パタンウェハ(1)を表面より観察した状態を示す平面模式図である。図21は、凹凸構造G領域501が非G領域502により挟まれている場合を示している。図21A及び図21Bに示すように、LED用パタンウェハ(1)500の表面に凹凸構造G領域501が設けられ、その外側が非G領域502により構成されてもよい。この凹凸構造Gは、上記説明した比率を満たすことが好ましい。また、既に説明した大きさを満たすことが好ましい。図21Cのように、LED用パタンウェハ(1)500の表面に凹凸構造G領域501が互いに離間して複数個配置され、且つ、凹凸構造G領域501同士の間及び凹凸構造G領域501の外側が非G領域502により満たされていてもよい。この場合、凹凸構造Gの合計面積に対して、上記説明した比率を満たすことが好ましい。また、少なくとも1つの凹凸構造Gが既に説明した大きさを満たすことが好ましく、全ての凹凸構造Gが既に説明した大きさを満たすことがより好ましい。また、図21Dのように、凹凸構造G領域501が非G領域502を内包するように且つ連続的に設けられるような配置もできる。この場合、凹凸構造Gの面積に対して、上記説明した比率を満たすことが好ましい。また、凹凸構造Gが既に説明した大きさを満たすことが好ましい。また、凹凸構造G領域501と非G領域502との界面形状は直線状であっても、図21Eに示すように撓んでいてもよい。凹凸構造G領域501の形状としては、線状、格子状、網目状等が挙げられる。また、図21Fに示したように、凹凸構造G領域501が非G領域502により挟まれ、その外周を凹凸構造G領域501が挟み、さらにその外周を非G領域502が挟むこともできる。なお、図21においては、凹凸構造G領域501により作られる輪郭線を線状或いは略線状にて記載したが、図19を参照し説明した形状を採用できる。
 上記説明した凹凸構造G領域501が複数個設けられる場合においては、各凹凸構造G領域501と非G領域502との界面形状は、単一であっても、凹凸構造G領域501ごとに異なっていてもよい。
 また、上記説明した凹凸構造G領域501及び非G領域502との配置関係においては、凹凸構造G領域501が非G領域502に囲まれる場合と、凹凸構造G領域501が非G領域502に挟まれる場合と、を混在し得る。
 また、図20F及び図21Fに示すように、第1の凹凸構造G領域501(G1)の外側に非G領域502が設けられ、さらにその外側に第2の凹凸構造G領域501(G2)が設けられ、さらにその外側に非G領域502が設けられる場合、第2の凹凸構造G領域501(G2)は不連続であってもよい。
 非G領域は、凹凸構造Bにより構成されても、平坦部により構成されても、凹凸構造B及び平坦部により構成されてもよい。
 また、上記説明においては、LED用パタンウェハ(1)500の外形を全て長方形として描いているが、LED用パタンウェハ(1)500の外形はこれに限定されず円形、円の曲率を有す弧と直線を含む形状、n角形(n≧3)、非n角形(n≧3)や、格子状、ライン状等を採用できる。n角形は正n角形であっても、非正n角形であってもよい。例えば、4角形を代表させると、正4角形(正方形)、長方形、平行四辺形、台形、また、これらの4角形の対向する辺の1組以上が非平行な形状が挙げられる。更に、n角形(n≧3)において、nが4以上の場合は、図19Aから図19Dに示すような、形状を含む。図19Aは4角形であり、図19Bは6角形であり、図19Cは8角形であり、図19Dは12角形である。非n角形は、角のない構造、例えば、円、楕円、上記説明した上記n角形の角が丸みを帯びた形状(n角形の角の曲率半径が0超の形状)、又は丸みを帯びた角(曲率半径が0超の角部)を含む上記説明したn角形(n≧3)である。このため、例えば、図19Fから図19Hに例示する形状を含む。中でも、線対称の形状を採用することが好ましい。
<<LED用エピタキシャルウェハ>>
 次に、本実施の形態に係るLED用パタンウェハ(1)を使用したLED用エピタキシャルウェハについて説明する。
 図22は、本実施の形態に係るLED用エピタキシャルウェハの一例を示す断面概略図である。図22に示すように、LED用エピタキシャルウェハ100において、LED用パタンウェハ(1)10は、その表面に凹凸構造20を具備している。凹凸構造20は、上記説明した凹凸構造Aである。即ち、凹凸構造20の配列軸AとLED用パタンウェハ(1)10の結晶軸とは、上記説明した回転シフト角Θの関係を満たすと共に、凹凸構造20の凸部は上記説明した曲率半径が0超の角部により構成される。LED用パタンウェハ(1)10の凹凸構造20を含む表面上に半導体層である第1半導体層30、発光半導体層40及び第2半導体層50が順次積層されている。ここで、LED用エピタキシャルウェハ100より製造されるLEDチップにおいて、発光半導体層40にて発生した発光光は、第2半導体層50側又はLED用パタンウェハ(1)10から取り出される。更に、第1半導体層30と第2半導体層50とは互いに異なる半導体結晶により構成されている。ここで、第1半導体層30は、凹凸構造20を平坦化すると好ましい。この時、凹凸構造20が凹凸構造Aであることから、第1半導体層30の転位が低減され、且つクラックが抑制される。第1半導体層30が凹凸構造20を平坦化するように設けられることにより、第1半導体層30の半導体としての性能を、発光半導体層40及び第2半導体層50へ、と反映させることができるため、内部量子効率IQEが向上すると共に、クラックが抑制される。即ち、<<LED用パタンウェハ(1)>>にて説明した原理から、第1半導体層30の転位が低減する共にクラックを抑制でき、良好な結晶性を有す第1半導体層30の性能を、発光半導体層40及び第2半導体層50へと、順次反映させると共に、第2半導体層50を成膜した後においても、半導体層のクラック低減できる。
 また、第1半導体層30は、図23に示すように、非ドープ第1半導体層31とドープ第1半導体層32とから構成されてもよい。図23は、本実施の形態に係るLED用エピタキシャルウェハの他の例を示す断面概略図である。この場合、図23に示すように、LED用エピタキシャルウェハ200において、LED用パタンウェハ(1)10、非ドープ第1半導体層31及びドープ第1半導体層32の順に積層されると、内部量子効率IQEの改善とクラックの低減の効果に加え、LED用エピタキシャルウェハ200の製造時間短縮が可能となる。ここで、非ドープ第1半導体層31が凹凸構造20を平坦化するように設けられることにより、非ドープ第1半導体層31の半導体としての性能を、ドープ第1半導体層32、発光半導体層40及び第2半導体層50へ、と反映させることができるため、内部量子効率IQEが向上すると共にクラックが低減する。即ち、<<LED用パタンウェハ(1)>>にて説明した原理から、非ドープ第1半導体層31の結晶性を向上させることができ、良好な結晶性を有す非ドープ第1半導体層31の性能を、ドープ第1半導体層32、発光半導体層40及び第2半導体層50へと、順次反映させると共に、第2半導体層50を成膜した後においても、半導体層のクラックを低減できる。
 更に、第1半導体層30は、図24に示すように、バッファー層33を含むと好ましい。図24は、本実施の形態に係るLED用エピタキシャルウェハの他の例を示す断面概略図である。図24に示すように、LED用エピタキシャルウェハ300においては、凹凸構造20上にバッファー層33を設け、続いて、非ドープ第1半導体層31及びドープ第1半導体層32を順次積層することにより、第1半導体層30の結晶成長の初期条件である核生成及び核成長が良好となり、第1半導体層30の半導体としての性能が向上するため、内部量子効率IQE改善程度が向上する。ここでバッファー層33は、凹凸構造20を平坦化するように配置されてもよいが、バッファー層33の成長速度は遅いため、LED用エピタキシャルウェハ300の製造時間を短縮する観点から、バッファー層33上に設けられる非ドープ第1半導体層31により凹凸構造20を平坦化することが好ましい。非ドープ第1半導体層31が凹凸構造20を平坦化するように設けられることにより、非ドープ第1半導体層31の半導体としての性能を、ドープ第1半導体層32、発光半導体層40及び第2半導体層50へ、と反映させることができるため、内部量子効率IQEが向上すると共に、クラックが低減する。なお、図24において、バッファー層33は凹凸構造20の表面を覆うように配置されているが、凹凸構造20の表面に部分的に設けることもできる。特に、凹凸構造20の凹部底部に優先的にバッファー層33を設けることができる。この場合、凹凸構造20の凹部底部に対して優先的に核の付着を行うことができるため、続く、核成長性が良好となり、成長する半導体層同士の合体を良好に保つことができる。なお、本実施の形態に係るLED用パタンウェハ(1)10を使用する場合、良好に内部量子効率IQEを向上させることができるため、バッファー層33は設けなくともよい。
 図22から図24に示したLED用エピタキシャルウェハ100、200、300は、ダブルヘテロ構造の半導体層を適用した例であるが、第1半導体層30、発光半導体層40及び第2半導体層50の積層構造はこれに限定されるものではない。
 図25は、図22から図24に示したLED用エピタキシャルウェハより製造されるLEDチップの例を示す断面概略図である。図25に示すように、LEDチップ400において、第2半導体層50上に透明導電層60を、透明導電層60の表面にアノード電極70を、そして第1半導体層30表面にカソード電極80を、それぞれ設けることができる。透明導電層60、アノード電極70及びカソード電極80の配置は、LEDチップにより適宜最適化できるため限定されないが、一般的に、図25に例示するように設けられる。
 更に、図25に示すLEDチップ400においては、LED用パタンウェハ(1)10と第1半導体層30との間に凹凸構造20が設けられているが、図26に示すように、別の凹凸構造を更に設けることができる。図26は、本実施の形態に係るLEDチップの他の例を示す断面概略図である。図26に示すように、別に設けられる凹凸構造としては、以下のものが挙げられる。
 ・LED用パタンウェハ(1)10の発光半導体層40とは反対側の面上に設けられる凹凸構造601
 ・第2半導体層50と透明導電層60との間に設けられる凹凸構造602
 ・透明導電層60表面に設けられる凹凸構造603
 ・透明導電層60とアノード電極70との間に設けられる凹凸構造604
 ・第1半導体層30とカソード電極80との間に設けられる凹凸構造605
 ・アノード電極70の表面に設けられる凹凸構造606
 ・カソード電極80の表面に設けられる凹凸構造607
 ・第1半導体層30、発光半導体層40、第2半導体層50及びLED用パタンウェハ(1)10の側面に設けられる凹凸構造608
 凹凸構造20の他に、更に凹凸構造601~608の少なくともいずれか1つの凹凸構造を設けることにより、以下に説明する各凹凸構造601~608に応じた効果を発現することができる。
 凹凸構造601を設けることにより、光取り出し効率LEEが向上する。本実施の形態に係るLEDチップにおいては、内部量子効率IQEが向上する。即ち、LEDチップ内部において効果的にフォトンを生み出すことができる。このため、本実施の形態に係るLEDチップにおいては、凹凸構造601を設けることが好ましい。なお、凹凸構造601を設ける代わりに、LED用パタンウェハ(1)を例えばレーザリフトオフ法等により除去することでも、同様に光取り出し効率LEEが大きく向上する。
 凹凸構造602を設けることにより、光取り出し効率LEEを向上させることができるため、外部量子効率EQEが大きく改善する。更に、透明導電層60における電子の拡散性が向上するため、LEDチップの大きさを大きくすることができる。
 凹凸構造603を設けることにより、光取り出し効率LEEを向上させることができる。本実施の形態に係るLED用エピタキシャルウェハにおいては、内部量子効率IQEが向上する。即ち、LEDチップ内部において効果的にフォトンを生み出すことができる。このため、本実施の形態に係るLEDチップにおいては、凹凸構造603を設けることが好ましい。
 凹凸構造604を設けることにより、透明導電層60とアノード電極70と、の接触面積を大きくすることができるため、アノード電極70の剥離を抑制できる。更に、オーミック抵抗を減少させ、オーミックコンタクトを向上させることができるため、電子注入効率EIEを改善することができ、外部量子効率EQEを向上させることができる。本実施の形態に係るLED用エピタキシャルウェハにおいては、内部量子効率IQEが向上する。即ち、LEDチップ内部において効果的にフォトンを生み出すことができる。このため、本実施の形態に係るLEDチップにおいては、凹凸構造604を設けることが好ましい
 凹凸構造605を設けることにより、第1半導体層30とカソード電極80と、の接触面積が大きくなるため、カソード電極80の剥離を抑制することができる。
 凹凸構造606を設けることにより、アノード電極70に接続される配線の固定強度が向上するため剥離を抑制できる。
 凹凸構造607を設けることにより、カソード電極80の表面に設けられる配線の固定強度が向上するため剥離を抑制できる。
 凹凸構造608を設けることにより、第1半導体層30、発光半導体層40、第2半導体層50及びLED用パタンウェハ(1)10の側面より出光する発光光量を増加させることができるため、導波モードにて減衰消失する発光光割合を低減できる。このため、光取り出し効率LEEが向上し、外部量子効率EQEを大きくすることができる。
 以上説明したように、実施の形態に係るLED用パタンウェハ(1)10を使用することで、LED用エピタキシャルウェハの内部量子効率IQEを向上させると共に、LED用エピタキシャルウェハの反りを低減させることができる。このため、4インチφや6インチφといった大型のLED用ウェハを使用した場合であっても、反りの少ないLED用エピタキシャルウェハを製造し、不良率低くLEDチップを製造することが出来る。特に、6インチ以上の径を有すLED用パタンウェハ(1)を使用することで、LED用パタンウェハ(1)の厚みを薄くすることが可能となる。このため、環境適合性が向上すると共に、半導体層成膜時の熱制御性が改善されるため、LED用エピタキシャルウェハの半導体層の結晶性はより向上する。更に、既に説明したように、半導体層の厚みを薄くできるため、LED用エピタキシャルウェハの反りを効果的に抑制できる。更に、上記説明した凹凸構造601~608の少なくとも1つの凹凸構造を更に設けることで、凹凸構造601~608による効果を発現させることができる。特に、光取り出し効率LEEまでも改善し、高い外部量子効率を実現する観点から、凹凸構造601或いは凹凸構造603のいずれか一方を少なくとも設けると好ましい。また、電子注入効率EIEをも向上させる観点から、凹凸構造604を設けることが好ましい。
 また、上記図22から図24に例示されるLED用エピタキシャルウェハ100,200,300の、第2半導体層50の露出する表面上に電極を形成し、該電極の露出する表面上に支持基材を配置した積層体から、LED用パタンウェハ(1)10を除去してもよい。LED用パタンウェハ(1)10の除去は、レーザ光を利用したリフトオフや、LED用パタンウェハ(1)10の全溶解或いは部分溶解により達成できる。特に、LED用パタンウェハ(1)10としてシリコンウェハを採用する場合、溶解に寄る除去が、凹凸構造が設けられた面(以下、凹凸構造面という)の精度の観点から好ましい。このようにLED用パタンウェハ(1)10を除去することにより、内部量子効率IQEの改善を維持した状態で、光取り出し効率LEEをより一層向上させることができる。これは、LED用パタンウェハ(1)10と、第1半導体層30、発光半導体層40及び第2半導体層50と、の屈折率の差が大きいことによる。LED用パタンウェハ(1)10を除去することにより、第1半導体層30を出光面としたLEDエピタキシャルウェハをくみ上げることができる。
 続いて、LED用エピタキシャルウェハ100、200、300を構成する要素の説明に用いる語句について説明する。なお、以下の説明は、LEDチップ400,500についても適用される。
<凹凸構造の平均高さ(Have)>
 凹凸構造20の高さは、凹凸構造の凸部頂部と凹部底部との距離の相加平均値として与えられる。まず、LED用パタンウェハ(1)10の凹凸構造20面上に、LED用パタンウェハ(1)10の主面と平行な50μm×50μm角の領域をとる。なお、LED用パタンウェハ(1)10上に半導体層が成膜されたLED用エピタキシャルウェハの場合は、半導体層を除去し、LED用パタンウェハ(1)10の凹凸構造面を観察する。次に、該50μm×50μm角の領域を、互いに重ならない10μm×10μm角の領域にて25分割する。次に、25個存在する10μm×10μmの領域から任意に5つの領域を選択する。ここでは、選択された10μm×10μm角の領域を領域A、領域B、領域C、領域D及び領域Eとする。その後、領域Aをより高倍率に観察し、少なくとも100個の凸部が鮮明に観察されるまで拡大する。続いて、観察される凸部から任意に10個の凸部を選び出し、それぞれの凸部の高さhを求める。ここで、凸部の高さhは、走査型電子顕微鏡観察に傾斜(Tilt)を反映させた観察又は、原子間力顕微鏡観察より判断することができる。領域Aより測定された10個の凸部の相加平均高さをhaとする。領域B、領域C、領域D及び領域Eについても、領域Aと同様の操作を行い、hb、hc、hd及びheを求める。凹凸構造20の平均高さ(Have)は、(ha+hb+hc+hd+he)/5として与えられる。なお、上記説明は凹凸構造20が独立した複数の凸部より構成される場合の説明であるが、凹凸構造20が独立した複数の凹部より構成される場合は、上記説明の凸部を凹部と読み替えることで、凹凸構造20の高さhが定義される。また、LED用エピタキシャルウェハの場合は、以下に説明する半導体層の厚みに係る用語を先に算出し、その後、半導体層を除去し、凹凸構造20の平均高さ(Have)を求めるものとする。即ち、以下に説明する半導体層の厚みに係る情報と、上記説明した凹凸構造20の平均高さ(Have)と、は、同一サンプルの略同様の箇所にて測定されるものとする。また、既に説明した凹凸構造20の平均間隔Pave及び凹凸構造20の凸部の底部の平均幅(平均径)φaveは、凹凸構造の平均高さ(Have)を求めるのに使用したサンプルと同一サンプルであり、同じ測定箇所より求められる。
<距離Hbun>
 LED用パタンウェハ(1)10の発光半導体層40側の表面と、第1半導体層30の発光半導体層40側の表面と、の距離を距離Hbunと定義する。ここで、LED用パタンウェハ(1)10の発光半導体層40側の表面とは、凹凸構造20の平均凹部底部位置として定義する。また、第1半導体層30の発光半導体層40側の表面は、平均面として定義する。平均は相加平均であり、平均点数は10点とする。即ち、距離Hbunは、凹凸構造20の平均凹部底部位置を基準とした時の第1半導体層30の平均厚みである。なお、上記相加平均は、LED用エピタキシャルウェハの断面を観察し算出する。観察方法としては、透過型電子顕微鏡観察又は走査型電子顕微鏡観察を採用できる。また、観察範囲は、これらの観察において5個以上20個以下の凸部(又は凹部)が明瞭に観察できる範囲とする。
<距離Hbu>
 LED用パタンウェハ(1)10の発光半導体層40側の表面と、非ドープ第1半導体層31の発光半導体層40側の表面と、の距離を距離Hbuと定義する。ここで、LED用パタンウェハ(1)10の発光半導体層40側の表面とは、凹凸構造20の平均凹部底部位置として定義する。また、非ドープ第1半導体層31の発光半導体層40側の表面は、平均面として定義する。平均は相加平均であり、平均点数は10点とする。即ち、距離Hbuは、凹凸構造20の平均凹部底部位置を基準とした時の非ドープ第1半導体層31の平均厚みである。なお、上記相加平均は、LED用エピタキシャルウェハの断面を観察し算出する。観察方法としては、透過型電子顕微鏡観察又は走査型電子顕微鏡観察を採用できる。また、観察範囲は、これらの観察において5個以上20個以下の凸部(又は凹部)が明瞭に観察できる範囲とする。
 続いて、LED用エピタキシャルウェハ100(200、300、及びLEDチップ400、600を含む。以下同様)を構成する各要素について詳細に説明する。
<距離Hbunと平均高さ(Have)との比率(Hbun/Have)>
 距離Hbunと平均高さ(Have)との比率(Hbun/Have)は2≦Hbun/Have≦300を満たす。
 比率(Hbun/Have)は、凹凸構造20の平均高さ(Have)と第1半導体層30の平均厚みHbunと、の比率を意味しており、比率(Hbun/Have)が大きい程、第1半導体層30の平均厚みHbunが大きくなる。比率(Hbun/Have)が2以上であることにより、凹凸構造20による内部量子効率IQE改善の効果を発現することができるため好ましい。比率(Hbun/Have)が2以上であることにより、クラックの抑制された第1半導体層30による凹凸構造Aの平坦化程度が向上する。これにより、効果的に、第1半導体層30上に設けられる発光半導体層40及び第2半導体層50の成膜精度を向上させることが可能となる。このため、転位の少ない第1半導体層30の半導体としての性能を、発光半導体層40及び第2半導体層50へと、クラックを抑制した状態にて反映させることが可能となり、クラックが抑制され、且つ、内部量子効率IQEの高いLED用エピタキシャルウェハを得ることができる。さらに、比率(Hbun/Have)が3.5以上であることで、第1半導体層30の表面の平坦性が良好となり、これに伴い、発光半導体層40の膜厚均等性が向上することから、発光波長の面内均等性が向上する。これらの効果をより発揮する観点から、5.5以上であることがより好ましく、8.0以上であることが最も好ましい。特に、比率(Hbun/Have)が10以上であれば、凹凸構造20の凸部頂部の第1半導体層30の表面への影響をより小さくできることから、第1半導体層30の発光半導体層40側表面の平坦性をより良好にすることができる。即ち、内部量子効率IQE向上の効果が大きくなる。同様の観点から、比率(Hbun/Have)は、12以上であることが好ましく、14以上であることがより好ましく、16以上であることが最も好ましい。更に、第1半導体層30の、凹凸構造20の平均凸部頂部位置と発光半導体層40と、の間において、転位の衝突確率を増加させ、内部量子効率IQEをより高める観点から比率(Hbun/Have)は20以上がより好ましく、25以上が最も好ましい。一方で、比率(Hbun/Have)が300以下であることにより、LED用エピタキシャルウェハ100の反りを抑制することができるため、チップ化効率を向上させることができる。
 半導体層を成膜した後の反りに関する指標は一般的にBOWとして知られる。BOWは、LED用パタンウェハ(1)10の厚みに反比例すると共に、LED用パタンウェハ(1)10の大きさ(直径)及び半導体層の厚みの二乗に比例する。BOWが大きい程、LEDチップの製造は困難となり、LEDチップを製造する際のフォトリソグラフィ工程を考えると、BOWは1.5以下であることが好ましいとされる。ここで、BOWを小さくすることを考えれば、LED用パタンウェハ(1)10の厚みを大きくし、半導体層の厚みを薄くし、且つLED用パタンウェハ(1)10の大きさを小さくすればよい。しかしながら、LED用パタンウェハ(1)10の厚みを厚くする場合、LEDチップの製造コストが大きく嵩むと共に、半導体層を成膜する際のLED用パタンウェハ(1)10の熱挙動が変化することから、半導体層の成膜性が低下し、内部量子効率IQEが低下することがある。また、LED用パタンウェハ(1)10の大きさを小さくすることは、LEDチップの収率を大きく低下させる要因になる。即ち、半導体層の厚みを薄くすることでBOWを抑制できれば、その効果は大きいことがわかる。ここで、凹凸構造Aを使用することで、半導体層の成膜性が向上することを既に説明した。即ち、凹凸構造Aを具備するLED用パタンウェハ(1)10を使用することで、半導体層の厚みを薄くした場合であっても、転位を効果的に低減し、且つクラックを抑制することができるため、反りを低減できる。この観点から、比率(Hbun/Have)は200以下であることが好ましく、150以下であることがより好ましい。更に、半導体層の成膜時間を短くし、半導体層の使用量を低下させて、環境適合性を図る観点から、比率(Hbun/Have)は100以下であることがより好ましく、50以下であることが最も好ましい。以上から、比率(Hbun/Have)が所定の範囲を満たすことで、クラックの抑制された内部量子効率IQEの高い半導体層を成膜できると共に、半導体層を成膜したLED用パタンウェハ(1)10の反りを抑制できるために、高効率なLEDチップを生産効率高く製造できる。
<距離Hbuと平均高さ(Have)との比率(Hbu/Have)>
 距離Hbuと平均高さ(Have)と、の比率(Hbu/Have)は1.5≦Hbu/Have≦200を満たす。
 比率(Hbu/Have)は、凹凸構造20の平均高さ(Have)と、非ドープ第1半導体層31の平均厚みHbuと、の比率を意味しており、比率(Hbu/Have)が大きい程、非ドープ第1半導体層31の平均厚みHbuが大きくなる。比率(Hbu/Have)が1.5以上であることにより、非ドープ第1半導体層31による凹凸構造Aの平坦化程度がクラックを抑制した状態にて向上する。これにより、効果的に、非ドープ第1半導体層31上に設けられるドープ第1半導体層32、発光半導体層40及び第2半導体層50の成膜精度を向上させることが可能となる。このため、転位の少ない非ドープ第1半導体層31の結晶性を、ドープ第1半導体層32、発光半導体層40及び第2半導体層50へと、クラックを抑制した状態にて反映させることが可能となり、クラックが抑制され、且つ内部量子効率IQEの高いLED用エピタキシャルウェハを生産時間を短縮しながら得ることができる。更に、比率(Hbu/Have)が2.5以上であることで、非ドープ第1半導体層31による凹凸構造20の平坦化がより良好となり、これに伴い発光半導体層40の膜厚均等性が改善し、発光波長の面内均等性が良好となる。これらの効果をより発揮する観点から、3.5以上であることが最も好ましい。特に、比率(Hbu/Have)が4以上であれば、凹凸構造20の凸部頂部の非ドープ第1半導体層31の表面への影響をより小さくできることから、ドープ第1半導体層32の発光半導体層40側表面の平坦性をより良好にすることができる。即ち、内部量子効率IQE向上及びクラック抑制の効果が大きくなる。同様の観点から、比率(Hbu/Have)は、5以上であることが好ましく、8以上であることがより好ましく、10以上であることが最も好ましい。更に、非ドープ第1半導体層31の内部において、転位の衝突確率を増加させ、内部量子効率IQEをより高める観点から比率(Hbu/Have)は12以上がより好ましく、15以上が最も好ましい。一方で、比率(Hbu/Have)が200以下であることにより、LED用エピタキシャルウェハ100の反りを抑制することができる。これは、既に説明したBOWの観点から決定できる。同様の観点から、比率(Hbu/Have)は100以下であることが好ましく、50以下であることがより好ましい。更に、半導体層の使用量を低下すると共に、成膜時間を大きく短縮し、環境適合性を図る観点から、比率(Hbu/Have)は30以下であることが最も好ましい。以上から、比率(Hbu/Have)が所定の範囲を満たすことで、クラックの抑制された内部量子効率IQEの高い半導体層を成膜できると共に、半導体層を成膜したLED用パタンウェハ(1)10の反りを抑制できるために、高効率なLEDチップを生産効率高く製造できる。
<凹凸構造20>
 本実施の形態に係るLED用エピタキシャルウェハ100の凹凸構造20、即ち凹凸構造Aは、<<LED用パタンウェハ(1)>>にて説明した通り、実質的にn回対称の規則性を有す凹凸構造であると共に、凸部頂部が曲率半径0超の角部より構成されれば特に限定されない。中でも、図8を参照し説明したDutyと回転シフト角Θとの関係、及び図9を参照し説明した平均間隔PaveとDutyとの関係を満たすことで、クラック抑制効果と内部量子効率IQEの改善効果が大きくなる。更に、図16を参照し説明した平均間隔PaveとDutyとの関係を満たすことで、光取り出し効率LEEをも同時に向上させることができる。以下、凹凸構造20の更に、好ましい態様について説明する。
 凹凸構造20は、複数の独立した凸部と連続した凹部より構成されるドット状構造、複数の独立した凹部と連続した凸部より構成されるホール状構造、或いは独立した凸部と独立した凹部と、を共に含むハイブリッド構造をとることができる。中でも、ドット状構造が最も好ましい。これは、ドット状構造であることにより、既に説明したように半導体層の核の付着、そして成長が良好となり、クラックの抑制効果と内部量子効率IQE改善効果が大きくなるためである。ドット状構造、ホール状構造、或いはハイブリッド構造において、一つの凸部の底部の輪郭形状又は凹部の開口形状は、円状、楕円状、柵状、卍状、n角形(n≧3)、角部の曲率半径が0超の角部を有すn角形(n≧3)等を採用できる。中でも、円状、楕円状、柵状、角部の曲率半径が0超の角部を有す3角形であると、成長する半導体層に対して凹凸構造20より加えられる応力を低減できることから、クラック抑制の効果が大きくなる。特に、円状が最も好ましい。なお、円状は実質的な円状であり、多少の歪は考慮される。
 凹凸構造20の平均間隔Paveは、既に説明したように50nm≦Pave≦1500nmを満たすことで、クラックが抑制され、且つ内部量子効率IQEの高い半導体層を成膜できる。更に、LED用エピタキシャルウェハ、としてみた場合、平均間隔Paveが1500nm以下であることにより、上記説明した比率(Hbun/Have)或いは比率(Hbu/Have)の効果を好適に発現させることができる。これは、凹凸構造20から見た半導体層が大きくなるため、既に説明した原理に基づく比率(Hbun/Have)或いは比率(Hbu/Have)の効果が、凹凸構造20により乱されることのないためである。よって、内部量子効率IQE及びクラックを同時に改善できる。同様の原理から、1200nm以下であることが好ましく、1000nm以下であることがより好ましく、950nm以下であることが最も好ましい。なお、下限値については既に説明した通りである。
<凸部の形状>
 凹凸構造20を構成する凸部の形状は、既に説明したように半導体層の核の付着、成長、そして成長する半導体層の合体の観点から、凸部底部の径が凸部頂部の径よりも大きい構造であることが好ましく、凸部頂部と凹部底部と、を繋ぐ凸部側面部は2段階以上の傾斜角度を有すことがより好ましく、傾斜が変わる点の曲率半径は0超であり、曲面を形成していることが最も好ましい。特に、LED用エピタキシャルウェハとして考えた場合、凸部の形状を表すパラメータであるアスペクト比、即ち比率(Have/φave)は、0.1以上5.0以下であることが好ましい。まず、0.1以上であることにより発光半導体層より発生したフォトンから見た凸部の体積が大きくなることから、光取り出し効率LEEを向上させることができる。特に、アスペクト比が0.3以上であれば、発光光に対する光回折のモード数を増加させ散乱性を強くできるため好ましい。同様の観点から、アスペクト比は0.5以上であることがより好ましく、0.6以上であることが最も好ましい。一方で、アスペクト比が5.0以下であることにより、凸部側面の傾斜角度をなだらかにすることができる。これにより、LEDチップを得る際に発生するパーティクルを抑制できると考えられる。同様の効果と半導体層の成膜性、特にクラックを抑制する観点から、アスペクト比は3.0以下であることが好ましく、2.0以下であることがより好ましく、1.1以下であることが最も好ましい。
<凹部の底部>
 既に説明したように、半導体層の核の付着、成長、そして成長する半導体層の合体の観点から、凹部底部には平坦面があることが好ましい。特に、LED用エピタキシャルウェハとしてみた場合、凹凸構造20の凹部底部の有す平坦面(以下、「平坦面B」と呼ぶ)と、第1半導体層30の安定成長面に対してほぼ平行な面(以下、「平行安定成長面」と呼ぶ)と、が平行であることが好ましい。この場合、凹凸構造20の凹部近傍における第1半導体層30の成長性が良好になると共に、成長する半導体層同士の合体に基づく転位低減が大きくなり、第1半導体層30内の転位を効果的に凹凸構造20に応じ分散化することができるため、内部量子効率IQEが向上する。安定成長面とは、成長させる材料において成長速度の最も遅い面のことをさす。一般的には、安定成長面は成長の途中にファセット面として現れることが知られている。例えば、窒化ガリウム系化合物半導体の場合、M面に代表されるA軸に平行な平面が安定成長面となる。GaN系半導体層の安定成長面は、六方晶結晶のM面(1-100)、(01-10)、(-1010)であり、A軸に平行な平面の一つである。なお、成長条件によっては、GaN系半導体のM面以外の平面であるA軸を含む他の平面が安定成長面になる場合もある。
<バッファー層>
 バッファー層33の材質としては、AlGaN構造、AlN構造、AlInN構造、InGaN/GaN超格子構造、InGaN/GaN積層構造、或いはAlInGaN/InGaN/GaN積層構造等を採用することができる。また、バッファー層の成膜については、成膜温度を350℃~600℃の範囲にできる。これにより、狭い凹部底部からの成膜についても、均等性を向上させることができる。これらのバッファー層33を使用することにより、LED用ウェハと第1半導体層30と、の格子定数の差を効果的に減らすことが可能となり、第1半導体層30の成膜性及び結晶性を改善できる。また、バッファー層33の膜厚は、凹凸構造20の平均高さ(Have)に対して、1/5以下であることが望ましい。これは、RAMP過程におけるバッファー層33の再拡散と再結晶挙動に関し、凸部の側面部への核の付着を抑制する為である。この観点から、バッファー層33の膜厚は、凹凸構造20の平均高さ(Have)対して、1/10以下がより好ましく、1/20以下が最も好ましい。また、バッファー層33は、MOCVD(Metal Organic ChemicalVapor Deposition)法或いはスパッタリング法により成膜されることが好ましい。特に、バッファー層33の均等性が向上する点から、スパッタリング法を採用することがより好ましい。
<第1半導体層>
 第1半導体層30の材質は、以下に説明する非ドープ第1半導体層31及びドープ第1半導体層32より選択することができる。第1半導体層30の膜厚(Hbun)は、凹凸構造20を、クラックを抑制し平坦化すると共に、第1半導体層30内部の転位を低減し、発光半導体層40及び第2半導体層50へ、と半導体としての性能を反映させることで内部量子効率IQEを向上させる観点から、800nm以上であると好ましい。特に、凹凸構造20による転位低減の効果をより発揮する観点から、1500nm以上であることが好ましく、2000nm以上であることがより好ましい。更に、発光半導体層40及び第2半導体層50へ、と半導体としての性能を反映させ内部量子効率IQEを効果的に大きくする観点から、2500nm以上であることが好ましく、3000nm以上であることがより好ましく、4000nm以上であることが最も好ましい。一方、上限値は反り及び環境適合性の観点から100000nm以下であると好ましく、7500nm以下であることがより好ましく、6500nm以下であることが最も好ましい。
 ドープ第1半導体層32は、LEDの用途に適したn型半導体層として使用できるものであれば、特に制限はない。例えば、シリコン、ゲルマニウム等の元素半導体、又は、III-V族、II-VI族、VI-VI族等の化合物半導体に、適宜、種々の元素をドープしたものを適用できる。特に、n型GaN層であることが望ましい。n型GaN層としては、例えば、NHを3×10-2~4.2×10-2mol/min、トリメチルガリウム(TMGa)0.8×10-4~1.8×10-4mol/min)及びSiに代表されるn型ドーパントを含むシランガスを5.8×10-9~6.9×10-9mol/min供給し、形成することができる。ドープ第1半導体層32の膜厚は、発光半導体層40への電子注入性の観点から、800nm以上であると好ましく、1500nm以上であることがより好ましく、2000nm以上であることが最も好ましい。一方、上限値は、反りを低減する観点から、5000nm以下であることが好ましい。ドープ第1半導体層32の使用量を低減すると共に、LED用エピタキシャルウェハ200、300の製造時間を短縮する観点から、4300nm以下であることが好ましく、4000nm以下であることがより好ましく、3500nm以下であることが最も好ましい。
 非ドープ第1半導体層31は、ドープ第1半導体層32のn型半導体層としての性能に支障をきたさない範囲で適宜選択できる。例えば、シリコン、ゲルマニウム等の元素半導体、又は、III-V族、II-VI族、VI-VI族等の化合物半導体を適用できる。特に、アンドープ窒化物層であることが好ましい。アンドープ窒化物層としては、例えば、900℃~1500℃の成長温度で、バッファー層或いはLED用ウェハの上に、NHとTMGaを供給することで成膜できる。非ドープ第1半導体層31の膜厚(Hbu)は、凹凸構造20を平坦化する観点から、1000nm以上であることが好ましい。特に、非ドープ第1半導体層31の内部にて転位を効果的に低減する観点から1500nm以上であることが好ましく、2000nm以上であることがより好ましく、2500nm以上であることが最も好ましい。一方上限値は、LED用エピタキシャルウェハ100の反りを低減する観点から6000nm以下であることが好ましい。特に、LED用エピタキシャルウェハ200、300の製造時間を短縮する観点から、5000nm以下であることが好ましく、4000nm以下であることがより好ましく、3500nm以下であることが最も好ましい。
 なお、LED用パタンウェハ(1)10の凹凸構造20上に少なくとも非ドープ第1半導体層31及びドープ第1半導体層32が順次積層される場合、ドープ第1半導体層32上に更に他の非ドープ半導体層(2)を設け、その上に発光半導体層40を設けることもできる。この場合、他の非ドープ半導体層(2)としては、上記非ドープ第1半導体層31にて説明した材料を使用することができる。他の非ドープ半導体層(2)の膜厚は、LED用エピタキシャルウェハ200、300の発光性の観点から、10nm以上であることが好ましく、100nm以上であることがより好ましく、200nm以上であることが最も好ましい。一方上限値は、発光半導体層40内における正孔と電子の再結合の観点から、500nm以下であることが好ましく、400nm以下であることがより好ましく、350nm以下であることが最も好ましい。
<発光半導体層>
 発光半導体層40としては、半導体発光素子(例えば、LED)として発光特性を有するものであれば、特に限定されない。例えば、発光半導体層40として、AsP、GaP、AlGaAs、InGaN、GaN、AlGaN、ZnSe、AlHaInP、ZnO等の半導体層を適用できる。また、発光半導体層には、適宜、特性に応じて種々の元素をドープしてもよい。発光半導体層40は、単一または多重量子井戸構造の活性層である。例えば、600℃~850℃の成長温度で、窒素をキャリアガスとして使い、NH、TMGa、及びトリメチルインジウム(TMIn)を供給し、INGaN/GaNからなる活性層を、100Å~1250Åの厚さに成長させることができる。また、多重量子井戸構造の場合、1つの層を構成するInGaNに関し、In元素濃度を変化させることもできる。また、発光半導体層40と第2半導体層50と、の間に電子ブロック層を設けることができる。電子ブロック層は、例えば、p-AlGaNにて構成される。
<第2半導体層の材質>
 第2半導体層50としては、LEDの用途に適したp型半導体層として使用できるものであれば、特に制限はない。例えば、シリコン、ゲルマニウム等の元素半導体、及び、III-V族、II-VI族、VI-VI族等の化合物半導体に、適宜、種々の元素をドープしたものを適用できる。例えば、p型GaN層の場合、成長温度を900℃以上に上昇させ、TMGa及びCPMgを供給し、数百~数千Åの厚さに成膜することができる。
<LED用パタンウェハ(1)の材質>
 LED用パタンウェハ(1)10の材質は、LED用パタンウェハ(1)として使用できるものであれば特に制限はない。サファイア、シリコンカーバイド(SiC)、窒化シリコン(Si)、窒化ガリウム(GaN)、銅タングステン(W-Cu)、シリコン、酸化亜鉛、酸化マグネシウム、酸化マンガン、酸化ジルコニウム、酸化マンガン亜鉛鉄、酸化マグネシウムアルミニウム、ホウ化ジルコニウム、酸化ガリウム、酸化インジウム、酸化リチウムガリウム、酸化リチウムアルミニウム、酸化ネオジウムガリウム、酸化ランタンストロンチウムアルミニウムタンタル、酸化ストロンチウムチタン、酸化チタン、ハフニウム、タングステン、モリブデン、GaP、又はGaAs等の基板を用いることができる。なかでも第1半導体層30との格子マッチングの観点から、サファイア、GaN、GaP、GaAs、シリコンカーバイド、シリコン、スピネル(例えば、MgAlに代表される絶縁性基板)等を適用することが好ましい。更に、単体で用いてもよく、これらを用いたLED用ウェハ上に別のウェハを設けたヘテロ構造のウェハとしてもよい。例えば、LED用ウェハに、C面(0001)を主面とするサファイアウェハを用いることができる。この場合、GaN系半導体層の安定成長面であるM面は、サファイアウェハA面(11-20)、(1-210)、(-2110)に平行な面である。
 LED用パタンウェハ(1)10の大きさは特に限定されるものではないが、例えば、2インチφ、4インチφ、6インチφ、及び8インチφが挙げられる。これらは、円盤状であっても、オリフラのついた形状であってもよい。ここで、凹凸構造Aの効果を、半導体層の成膜現象からみて平均化し、良質なLED用エピタキシャルウェハを製造する観点から、及び、上記説明した効果のうち、LED用エピタキシャルウェハの反りの低減の効果を良好に発揮する観点から、4インチφ或いは6インチφであることが好ましい。
 また、LED用パタンウェハ(1)10は、少なくとも第1半導体層30を積層した後の工程において除去してもよい。LED用パタンウェハ(1)10を除去することにより、導波モードの乱し効果が大きくなるため、光取り出し効率LEEが大きく向上する。この場合、LEDの発光光の出光面は、発光半導体層40からみて第1半導体層30側であると好ましい。
<透明導電層>
 透明導電層60は、第2半導体層50上に設けられる。透明導電層60としては、例えば、透過性酸化膜であって、ITO(In-SnO)、ZnO、RuOx、TiOx、IrOx、SnOx、AZnO(ZnO-Al)、IZnO(In-ZnO)、GZO(ZnO-Ga)或いはInxOyのうち、少なくとも1つ以上で形成される。また、透明導電層60は、真空蒸着法、スパッタリング法、或いはCVD(Chemical Vapor Deposition)法により形成することができる。
<アノード電極>
 アノード電極70は、透明導電層60上に設けられる。アノード電極70としては、上述した透明導電層60に記載の透過性酸化膜又は透明金属を使用できる。透過性酸化膜を採用した場合、アノード電極70と透明導電層60と、の界面を消失させることもできる。また、透明金属としては、Ni、Co、Fe、Ti、Cu、Rh、Au、Ru、W、Zr、Mo、Ta、Pt及びこれらの酸化物或いは窒化物からなる群から選択される少なくとも一種を含む合金又は多層膜が挙げられる。特に、Niの上にAuが積層された多層膜が接着力の点から好ましい。また、例えば、Niの上にAuが、当該Auの上にRhOが積層された多層膜を採用することもできる。
<カソード電極>
 カソード電極80は、第2半導体層50側から第1半導体層30をエッチングして、露出した第1半導体層30表面に形成される。例えば、金、銀、チタン或いはクロム等の金属や金属酸化物を使用できる。特に、金属多層膜が好ましい。
<反射膜>
 LED用パタンウェハ(1)10の凹凸構造20と、反対の面上に、反射膜を形成できる。反射膜を形成することにより、凹凸構造20による光取り出し効率LEEをより大きくすることが可能となる。反射膜の反射率は、発光半導体層40の発光波長にて80%以上が好ましく、90%以上がより好ましく、91%以上が最も好ましい。例えば、誘電体多層膜を使用できる。誘電体多層膜とは、屈折率の異なる2以上の誘電体を交互に積層した多層膜である。例えば、ZrO、AlN、Nb、或いはTaとSiOと、をペア数3~8で積層できる。
<凹凸構造20の作製方法>
 以上、本実施の形態に係るLED用エピタキシャルウェハ100及びLED用パタンウェハ(1)10について説明した。次に、凹凸構造20の作製方法について説明する。
 転写法、フォトリソグラフィ法、熱リソグラフィ法、電子線描画法、干渉露光法、ナノ粒子をマスクとしたリソグラフィ法、自己組織化構造をマスクとしたリソグラフィ法等により製造することができる。特に、LED用パタンウェハ(1)10の凹凸構造20の加工精度や加工速度の観点から、転写法を採用すると好ましい。
 本明細書における転写法とは、表面に微細パタンを具備したモールドの、微細パタンをLED用ウェハ(凹凸構造20を作製する前のLED用パタンウェハ(1)10)に転写する工程を含む方法として定義する。即ち、モールドの微細パタンとLED用ウェハと、を転写材を介して貼合する工程と、モールドを剥離する工程と、を少なくとも含む方法である。この方法を採用することにより、容易に上記説明した回転シフト角Θを満たすことができる。より具体的に、転写法は2つに分類することができる。第1に、LED用ウェハに転写付与された転写材を永久剤として使用する場合である。この場合、LED用ウェハと凹凸構造20を構成する材料は異なることとなる。また、凹凸構造20は永久剤として残り、LED用エピタキシャルウェハ100として使用されることを特徴とする。この場合、第1半導体層30の成長性を担保するために、部分的にLED用ウェハの表面が露出する方法を採用すると好ましい。即ち、LED用ウェハの表面に対し転写材が部分的に配置され、部分的に配置された転写材が第1半導体層30の成長を阻害するマスクとして機能する状態である。LEDは、数万時間と長期に渡り使用することから、転写材を永久剤として使用する場合、転写材を構成する材料は、金属元素を含むと好ましい。特に、加水分解・重縮合反応を生じる金属アルコキシドや、金属アルコキシドの縮合体を原料に含むことにより、永久剤としての性能が向上するため好ましい。より好ましくは、蒸着やスパッタといった真空プロセスにより成膜されたSiOに代表されるマスク材料を転写付与する方法である。更には、LED用ウェハ上に部分的に転写法によりマスクを形成し、続いて蒸着やスパッタによりSiOに代表される無機物を成膜する。その後、転写法により作製したマスクを除去することで、無機物をLED用ウェハ上にパターニングすることもできる。或いは、LED用ウェハの主面に対して無機物の層を予め成膜し、当該無機物の層を、転写法にて加工することでも得ることができる。上述したようなLED用ウェハと凹凸構造20と、の材質が異なる場合、凹凸構造20としては、金属アルミニウム、アモルファス酸化アルミニウム、多結晶酸化アルミニウム、多結晶サファイア、珪素酸化物(SiO)、珪素窒化物(Si)、銀(Ag)、クロム(Cr)、ニッケル(Ni)、金(Au)、或いはプラチナ(Pt)のうち、何れか1又は2以上の混合物を採用することが最も好ましい。これにより、上記説明した、回転シフト角Θの効果を余すことなく発揮することができる。
 第2に、ナノインプリントリソグラフィ法が挙げられる。ナノインプリントリソグラフィ法は、モールドの微細パタンをLED用ウェハ上に転写する工程と、エッチングによりLED用ウェハを加工するためのマスクを設ける工程と、LED用ウェハをエッチングする工程と、を含む方法である。例えば、転写材を1種類用いる場合、まずLED用ウェハとモールドとを、転写材を介して貼合する。続いて、熱や光(UV)により転写材を硬化させ、モールドを剥離する。転写材から構成される凹凸構造に対して酸素アッシングに代表されるエッチングを行い、LED用ウェハを部分的に露出させる。その後、転写材をマスクとして、エッチングによりLED用ウェハを加工する。この際の加工方法としては、ドライエッチング及びウェットエッチングを採用できる。LED用パタンウェハ(1)10の凹凸構造20の高さhを高くしたい場合はドライエッチングが有用である。また、例えば転写材を2種類用いる場合、まずLED用ウェハ上に第1転写材層を成膜する。続いて、第1転写材層とモールドとを、第2転写材を介して貼合する。その後、熱や光(UV)により転写材を硬化させ、モールドを剥離する。第2転写材から構成される凹凸構造に対して酸素アッシングに代表されるエッチングを行い、第1転写材を部分的に露出させる。続いて、第2転写材層をマスクとして、第1転写材層をドライエッチングによりエッチングする。その後、転写材をマスクとして、エッチングによりLED用ウェハを加工する。この際の加工方法としては、ドライエッチング及びウェットエッチングを採用できる。凹凸構造20の高さhを高くしたい場合はドライエッチングが有用である。
 また、ナノインプリントリソグラフィ法として、以下に説明する残膜処理の不要なナノ加工シート法を採用することもできる。モールドの凹凸構造面上に、希釈したマスク層(2)材料を塗工し、溶剤を除去する。本操作により、モールドの凹部内部にマスク層(2)を配置できる。モールドの凹部内部にマスク層(2)を内包したモールドの、凹凸構造上に希釈したマスク層(1)材料を塗工し、溶剤を除去する。本操作により、モールドの凹部内部にマスク層(2)が充填され、凹凸構造及びマスク層(2)を充填且つ平坦化するようにマスク層(1)を成膜することができる。これにより、ナノ加工シートが製造される。続いて、ナノ加工シートのマスク層(1)をLED用ウェハにラミネーションする。続いて、UV光に代表されるエネルギー線を照射し、モールドを剥離する。得られたマスク層(2)/マスク層(1)/LED用ウェハに対し、マスク層(2)面側からドライエッチングを行い、LED用ウェハを部分的に露出させる。続いて、マスク層越しにエッチングを行うことで、LED用ウェハを加工し、LED用パタンウェハ(1)10を製造できる。特に、ナノ加工シート法を採用することで、凹凸構造の配列方向を、当該シートを貼り合わせる方向にて制御することができる。例えば、ナノ加工シートを繰り出し、巻き取る装置にセットする。次に、LED用ウェハをロードする。この時の、LED用ウェハのオリフラの位置を検知し、制御する。そして、ロードしたLED用ウェハにナノ加工シートを貼り合わせる。即ち、ナノ加工シートは、機械的に一定方向に貼り合わせられるが、貼り合わせる対象であるLED用ウェハの方向が制御されることで、回転シフト角Θを容易に制御できる。この際の、回転シフト角Θの分解能は±1°であった。
 以上説明したように、転写法を採用することで、モールドの微細パタンをLED用ウェハに反映させることができるため、良好なLED用パタンウェハ(1)10を得ることができる。
 ナノインプリントリソグラフィ法やナノ加工シート法に代表される転写法を適用することで、LED用ウェハの主面上に、凹凸構造20を加工形成するためのマスク層を、転写形成することができる。ここで、当該マスク層を使用し、凹凸構造20を製造する際の、ドライエッチング法について、説明する。特に、LED用ウェハ上に設けられるマスク層が、2層以上のマスク層の場合に有効となる。例えば、LED用ウェハの主面側から、有機レジスト/無機レジストの順番に積層され、当該有機レジスト及び無機レジストから構成される凹凸構造を表面に有するようなマスク層を使用する場合、以下に説明するドライエッチング法の効力が最大限に発現される。
 以下の説明においては、LED用ウェハの主面上に、LED用ウェハをドライエッチング加工し凹凸構造20を形成する為に使用するマスク層が配置された積層体のことを、エッチング被加工材と称す。このエッチング被加工材は、LED用ウェハ上に、パタン幅が5μm以下でアスペクト比0.1~5.0のパタンを有するマスク層を備えたエッチング被加工材であり、エッチング加工時に使用する載置部材上にエッチング被加工材が載置された際の全体の熱抵抗値が6.79×10-3(m・K/W)以下であることが好ましい。熱抵抗値は、部材の厚さを、部材を構成する材料の熱伝導率λで除した値である。
 この構成により、エッチング加工時に発生する熱によるマスク層に対するエッチングダメージが低減され、エッチングにより所望の凹凸構造20を有するLED用パタンウェハ(1)を製造することができる。また、このエッチング被加工材の構成要素である載置部材を搬送部材として使用することにより、ドライエッチング工程においてスループットを向上させることができる。
 エッチング被加工材は、載置部材の載置領域上に載置する。また、載置部材の載置領域上に直接エッチング被加工材を載置しても、伝熱シートのような他の部材を介してエッチング被加工材を載置しても良い。いずれにしても、全体の熱抵抗値が6.79×10-3(m・K/W)以下であることが重要である。ここで、全体の熱抵抗値とは、載置部材の載置領域上にエッチング被加工材を伝熱シートを介し配置した場合を例にとると、載置領域における載置部材の熱抵抗値、エッチング被加工材の熱抵抗値、及び載置領域における伝熱シートの熱抵抗値と、の和である。なお、伝熱シートは他の部材として読み替えることができる。また、伝熱シートに代表される他の部材を使用しない場合は、伝熱シートの熱抵抗値を0にすればよい。
 熱抵抗値は、部材の厚さを、部材を構成する材料の熱伝導率λで除した値である。すなわち、熱抵抗値R(m・K/W)は、部材の厚さd(m)/部材の熱伝導率λ(W/m・K)で計算される値である。全体の熱抵抗値がR≦6.79×10-3(m・K/W)となるようにエッチング被加工材を構成する部材や層の材料や厚さ、載置部材を構成する材料や厚さを調整する。換言すれば、全体の熱抵抗値Rの範囲を満たすような条件を適用して、ドライエッチングを行うことで、精度高くLED用パタンウェハ(1)を製造することができる。全体の熱抵抗値は、R≦3.04×10-3(m・K/W)以下であることがより好ましく、R≦1.21×10-3(m・K/W)以下であることがさらに好ましい。なお、全体の熱抵抗値Rの下限は0≦Rであることが好ましい。なお、熱抵抗値については、レーザーフラッシュ法により簡便に測定できる。
 載置部材の厚さdに関して、熱抵抗値の観点からは下限は無いが、載置部材の厚さdが小さすぎると、載置部材の搬送時等に破損してしまう可能性があるため、耐久性をもつような範囲、例えば0.001m以上を採用することが好ましい。また、熱抵抗値の観点から考えられる厚さdには上限値があるが、同時に搬送時の作業性やコスト面の観点から載置部材の厚さdは0.05m以下が好ましい。
 載置部材は、エッチング被加工材を載置する部材であり、エッチング被加工材を固定又は搬送するための搬送トレーとして使用することができる。載置部材を用いることにより、ドライエッチング装置の真空反応槽にエッチング被加工材を搬送する際にエッチング被加工材の位置ずれを低減することができ、また、複数のエッチング被加工材を同時に搬送することができるためスループットが高くなる。載置部材を構成する材料としては、例えばシリコン(Si)、アルミニウム(Al)、ステンレス等の金属材料、石英(SiO)、炭化シリコン(SiC)、窒化シリコン(SiN)、アルミナ(Al)、窒化アルミニウム(AlN)、ジルコニア酸化物(ZrO)、イットリア酸化物(Y)等のセラミックス、アルマイトで被覆したシリコンやアルミニウム、表面にセラミックスを溶射したシリコンやアルミニウム、樹脂材料で被覆したシリコンやアルミニウム等の金属材料が挙げられる。これら材料については、上記全体の熱抵抗値Rの条件を満たせば特に限定されないが、ドライエッチングガスに対して、堆積性の高い反応物が発生しないような材料を選ぶことが好ましい。より好ましい例を挙げると、シリコン(Si)、石英(SiO)やアルミニウム(Al)は載置部材の入手性及び加工性が高い点、炭化シリコン(SiC)、アルミナ(Al)、窒化アルミニウム(AlN)、ジルコニア酸化物(ZrO)、イットリア酸化物(Y)や、これらのうちいずれか1種以上で被覆された無機部材は特に堆積性の高い反応物が発生しづらい点で好ましい。なお、ここで使用される無機部材とは、具体的には、例えば、シリコン(Si)やアルミニウムのような加工性が高い金属材料である。このような無機部材に、炭化シリコン(SiC)等の堆積性の高い反応物が発生しないような材料を被覆することで、加工容易性及びドライエッチングへの対応性を両立することができる。また、この場合、窒化アルミニウム(AlN)等は、被覆時に100%が窒化アルミニウム(AlN)になるわけではなく、一部がアルミナ(Al2O3)等になり、被覆層は混合物になることがある。したがって、「これらのうちいずれか1種以上で被覆された」の記載には、このように、ある材料で被覆しようとしたときに、他の材料が混在する場合が含まれることを意味している。
 載置部材の形状としては、上記全体の熱抵抗値Rの条件を満たせば特に制限しないが、例えば、薄板円形状や薄板角形状等が挙げられる。載置部材の表面は平坦である必要はなく、エッチング被加工材を収容するための凹部(ザグリ、ポケット)が形成されていても良い。また、載置部材は、単一の材料で構成されている必要はなく、二種類以上の材料で構成されていても良い。さらに、載置部材は、単一構造物で形成される必要は無く、土台部分とエッチング被加工材の一部を覆うことでエッチング被加工材を固定する蓋のような二種類以上の構造物を組み合わせて構成されても良い。
 上記説明した熱抵抗値Rの範囲を満たすドライエッチング処理により、エッチングダメージを低減できる。これにより、精度の高い凹凸構造Aを有するLED用パタンウェハ(1)を製造できる。ここで、マスク層としては、既に説明したように2層以上のマスク層が好ましく、これについては、ナノ加工シート法或いは2層以上レジストに対するナノインプリント法により容易に作製できる。特に、ナノ加工シートを使用することで、精度の高い2層以上のマスク層を形成できる。
 例えば、転写法を適用し、LED用ウェハの主面上に2層レジストを得る。例えば、LED用ウェハに近い側から、有機レジスト/無機レジストの順番に成膜され、少なくとも無機レジストが凹凸構造を形成しているとする。この場合、まず、ナノインプリント法の場合は、無機レジストに存在する残膜及び有機レジストを部分的に除去する必要があり、ナノ加工シート法の場合は、有機レジストのみを部分的に除去すればよい。この工程を残膜除去工程という。残膜除去工程においては、例えば、Oガス、Hガス、Xeガス及びArガスの少なくとも1種を含むガスによる、反応性エッチングを使用することが好ましい。例えば、エッチング圧力として0.1Pa~5Paであると、加工精度が向上する。特に、Oガスのみ、或いはOガスにArガスを50体積%以下添加したガスを使用することで、加工精度が向上する。これにより、LED用ウェハ上に、アスペクト比の高い微細パタンマスクを形成できる。
 この微細パタンマスク形成工程においては、必ずしも載置部材を使用する必要はなく、前記全体の熱抵抗値Rの範囲となるように各部材の材料と形状を選択する必要もない。
 LED用パタンウェハ(1)の凹凸構造20の加工精度を向上させるエッチング方法は、LED用ウェハ上に、パタン幅5μm以下でアスペクト比0.1~5.0のパタンを有するマスク層を具備するエッチング被加工材を得、載置部材上にエッチング被加工材を載置し、全体の熱抵抗値Rが6.79×10-3(m・K/W)以下である状態で、マスク層をマスクとしてLED用ウェハ用をエッチングする。これにより、微細パタンマスクに対するエッチングダメージが抑制されるため、エッチング過程における、微細パタンマスクのエッチング均等性が保たれ、LED用パタンウェハ(1)の凹凸構造20の精度が向上する。
 LED用ウェハ用をエッチングするという観点から、塩素系ガスやフロン系ガスを用いたエッチングを行うことができる。LED用ウェハ用を反応性エッチングすることが容易なフロン系ガス(CxHzFy:x=1~4、y=1~8、z=0~3の範囲の整数)のうち、少なくとも1種を含む混合ガスを使用する。フロン系ガスとしては例えば、CF、CHF、C、C、C、C、CH、CHF等が挙げられる。さらに、LED用ウェハ用のエッチングレートを向上させるため、フロン系ガスにArガス、Oガス、及びXeガスを、ガス流量全体の50%以下混合したガスを使用する。フロン系ガスでは反応性エッチングすることが難しいLED用ウェハ用(難エッチング基材)や堆積性の高い反応物が発生してしまうLED用ウェハ用をエッチングする場合は、反応性エッチングすることが可能な塩素系ガスのうち少なくとも1種を含む混合ガスを使用する。塩素系ガスとしては、例えば、Cl、BCl、CCl、PCl、SiCl、HCl、CCl、CClF等が挙げられる。さらに難エッチング基材のエッチングレートを向上させるため、塩素系ガスにOガス、Arガス、又はOガスとArガスとの混合ガスを添加してもよい。
 エッチング時の圧力は反応性エッチングに寄与するイオン入射エネルギーが大きくなり、LED用ウェハ用のエッチングレートが向上するため、0.1Pa~20Paであることが好ましく、0.1Pa~10Paであることがより好ましい。
 また、フロン系ガス(CxHzFy:x=1~4、y=1~8、z=0~3の範囲の整数)のCとFの比率(y/x)の異なるフロン系ガス2種を混合し、LED用ウェハ用のエッチング側壁を保護するフロロカーボン膜の堆積量を増減させることで、LED用ウェハ用に作製される微細パタンのテーパー形状の角度を作り分けることができる。LED用ウェハ用に対するマスクの形状を、ドライエッチングによりより精密に制御する場合、F/C≧3のフロンガスと、F/C<3のフロンガスの流量の比率を、95sccm:5sccm~60sccm:40sccmとすることが好ましく、70sccm:30sccm~60sccm:40sccmであると、より好ましい。ガスの総流量が変化した場合においても、上記の流量の比率は変わらない。
 また、フロン系ガス及びArガスの混合ガスと、Oガス又はXeガスと、の混合ガスは、反応性エッチング成分とイオン入射成分が適量である場合に、LED用ウェハ用のエッチングレートが向上するという観点から、ガス流量の比率99sccm:1sccm~50sccm:50sccmが好ましく、より好ましくは、95sccm:5sccm~60sccm:40sccm、さらに好ましくは、90sccm:10sccm~70sccm:30sccmである。また、塩素系ガス及びArガスの混合ガスと、Oガス又はXeガスと、の混合ガスは、反応性エッチング成分とイオン入射成分が適量である場合に、LED用ウェハ用のエッチングレートが向上するという観点から、ガス流量の比率99sccm:1sccm~50sccm:50sccmが好ましく、より好ましくは、95sccm:5sccm~80sccm:20sccm、さらに好ましくは、90sccm:10sccm~70sccm:30sccmである。ガスの総流量が変化した場合においても、上記の流量の比率は変わらない。
 また、塩素系ガスを用いたLED用ウェハ用のエッチングにはBClガスのみ、又はBClガス及びClガスの混合ガスとArガス又はXeガスとの混合ガスを用いることが好ましい。これらの混合ガスは、反応性エッチング成分とイオン入射成分が適量である場合に、LED用ウェハ用のエッチングレートが向上するという観点から、ガス流量の比率99sccm:1sccm~50sccm:50sccmが好ましく、99sccm:1sccm~70sccm:30sccmがより好ましく、99sccm:1sccm~90sccm:10sccmがさらに好ましい。ガスの総流量が変化した場合においても、上記の流量の比率は変わらない。
 プラズマエッチングとしては、容量結合型RIE、誘導結合型RIE、誘導結合型RIE、又はイオン引き込み電圧を用いるRIEを用いることができる。例えば、CHFガスのみ、又はCF及びCをガス流量の比率90sccm:10sccm~60sccm:40sccmの間で混合したガスを用い、処理圧力を0.1~5Paの範囲で設定し、かつ、容量結合型RIE、又は、イオン引き込み電圧を用いるRIEを用いる。また、例えば、塩素系ガスを用いる場合はBClガスのみ、又はBClガスとClガスもしくはArガスとをガス流量の比率95sccm:5sccm~85sccm:15sccmの間で混合したガスを用い、処理圧力を0.1~10Paの範囲で設定し、かつ、容量結合型RIE、誘導結合型RIE、又は、イオン引き込み電圧を用いるRIEを用いる。
 さらに、例えば、塩素系ガスを用いる場合はBClガスのみ、又はBClガスとClガスもしくはArガスとをガス流量の比率95sccm:5sccm~70sccm:30sccmの間で混合したガスを用い、処理圧力を0.1Pa~10Paの範囲で設定し、かつ、容量結合型RIE、誘導結合型RIE、又は、イオン引き込み電圧を用いるRIEを用いる。また、エッチングに用いる混合ガスのガス総流量が変化した場合においても、上記の流量の比率は変わらない。
 このLED用ウェハ用のドライエッチング工程においては、前記全体の熱抵抗値Rの範囲となるエッチング被加工材の状態で、LED用ウェハ用に対してエッチングを行う。このようにしてLED用ウェハ用をドライエッチングすることにより、高いスループットを確保しながら、パタン幅は5μm以下であり、アスペクト比が0.1から5.0の範囲である微細パタンマスクをマスクとした場合でも、ドライエッチングダメージを低減して想定通りにLED用ウェハ用に凹凸構造を形成することができる。
 微細パタンマスク形成工程とLED用ウェハ用のドライエッチング工程は同装置で連続処理を行っても良い。この場合、微細パタンマスク形成工程においても載置部材を使用し、前記全体の熱抵抗値Rの範囲を満たすように各材料や形状を選択すればよい。
<<LED用エピタキシャルウェハの製造方法>>
 続いて、LED用エピタキシャルウェハ100の製造方法について説明する。本実施の形態に係るLED用エピタキシャルウェハ100は、LED用パタンウェハ(1)10の凹凸構造20上に、上記説明した比率(Hbun/Have)及び/又は比率(Hbu/Have)を満たすように第1半導体層30、発光半導体層40及び第2半導体層50を順次成膜することで製造することができる。特に、LED用パタンウェハ(1)10を準備する工程と、LED用パタンウェハ(1)10に対し光学測定を行う工程と、LED用パタンウェハ(1)10を使用しLED用エピタキシャルウェハ100を製造する工程と、をこの順に含むと好ましい。この場合、LED用パタンウェハ(1)10の精度を予め評価することができるため、内部量子効率IQEや光取り出し効率LEEの向上程度を事前に予測することが可能となる。光学測定としては、反射光をディテクトするものと透過光をディテクトするものの双方を採用できる。特に、汎用性の高い装置を転用できることから、透過光をディテクトする場合は、ヘーズ(HAZE)を測定することが好ましい。一方で、凹凸構造20の精度をより正確に判断する観点から、反射光をディテクトする方式が好ましい。この場合、凹凸構造Aの配列や大きさにより、正反射成分又は拡散反射成分のいずれを検知するかを適宜設定できる。正反射成分を利用することにより、凹凸構造20の輪郭形状の精度を評価することが可能となり、拡散反射成分を利用することにより、凹凸構造20の体積精度を評価することが可能となる。いずれを採用するかは、使用する凹凸構造20と目的により適宜選択することができる。また、拡散反射成分と正反射成分との比率や、(拡散反射成分―正反射成分)、(拡散反射成分―正反射成分)/正反射成分、(拡散反射成分―正反射成分)/拡散反射成分等を使用することもできる。上記光学測定においては、光源の波長を、凹凸構造20の平均間隔(Pave)より大きくすることで、凹凸構造20の不良を効果的に評価することもできる。
 以上説明したように、LED用パタンウェハ(1)を使用することで、回転シフト角Θ及び凸部頂部の形状の効果が発現されて、半導体層に対するクラックを良好に抑制できる。そして、内部量子効率IQEを効果的に改善できる。ここで、以下に説明するLED用パタンウェハ(2)を使用することにより、上記説明した効果を維持しつつ、更に、光取り出し効率LEEをより改善することができる。LED用パタンウェハ(2)は、LED用パタンウェハ(1)に足して更に別の凹凸構造Lを設けることを特徴とする。この凹凸構造Lにより、強い光散乱性を付与し、光取り出し効率LEEをより向上させることが可能となる。
 LED用パタンウェハ(2)に関し、凹凸構造Aは、LED用パタンウェハ(1)に記載の凹凸構造Aに相当する。換言すれば、LED用パタンウェハ(1)に対して、更なる凹凸構造として凹凸構造Lを付加したものがLED用パタンウェハ(2)である。このため、LED用パタンウェハ(1)に対する効果に加え、新たに付加した凹凸構造Lによる効果を発現することとなる。よって、クラックを効果的に抑制、半導体層の結晶品を大きく向上させること、内部量子効率IQEを向上させることに加え、光取り出し効率LEEを効果的に向上させることが可能となる。
 以下、LED用パタンウェハ(2)について、詳細に説明する。なお、既に説明したようにLED用パタンウェハ(2)は、LED用パタンウェハ(1)に対して、更なる凹凸構造Lを付加したものである。よって、以下の説明においては、この付加した凹凸構造Lの説明を主とする。この為、LED用パタンウェハ(2)の他の構成要件や、LED用パタンウェハ(2)を使用したLED用エピタキシャルウェハ、LED用パタンウェハ(2)を使用したLEDチップ、及びLED用パタンウェハ(2)の製造方法に対する詳細な説明は省略するが、これらについては、LED用パタンウェハ(1)のそれをそのまま適用可能とする。
 また、LED用パタンウェハ(1)の記載において説明した定義は、LED用パタンウェハ(2)においても適用される。
 本実施の形態に係るLED用パタンウェハ(2)は、主面に、実質的にn回対称の配列を有する凹凸構造Aと、前記凹凸構造Aとは異なる、実質的にm回対称の配列を有する凹凸構造Lと、を具備し、前記凹凸構造Aの少なくとも一部は、前記主面内におけるLED用パタンウェハ(2)結晶軸方向に対する前記凹凸構造Aの配列軸Aの回転シフト角Θが、0°<Θ≦(180/n)°を満たすことを特徴とする。換言すれば、本実施の形態に係るLED用パタンウェハ(2)は、LED用パタンウェハ(1)の凹凸構造Aのある面上に、凹凸構造Aとは異なる、実質的にm回対称の配列を有する凹凸構造Lを更に具備することを特徴とする。
 この構成によれば、LED用パタンウェハ(2)を使用したLED用エピタキシャルウェハの内部量子効率IQEを向上させると共に、LED用パタンウェハ(2)の凹凸構造を有する面(以下、凹凸構造面という)上に成膜される半導体層中のクラックを抑制できる。更に、LEDより効率よく発光した光をLEDの外部へと取り出すことができる。換言すれば、LED用パタンウェハ(1)にて説明した効果を発現すると共に、更に凹凸構造Lによる光取り出し効率LEEの向上を実現できる。
 まず、LED用パタンウェハの凹凸構造Aは、既に説明したLED用パタンウェハ(1)の凹凸構造Aであることから、同様の原理により、クラックを低減した半導体層を成膜することが可能となり、これにより高品位の半導体結晶を得ることができる。更に、LED用エピタキシャルウェハの内部量子効率IQEを改善できる。以下、凹凸構造Aの効果という記載をするが、これは、LED用パタンウェハ(1)の凹凸構造Aによる効果と同様の効果、と読み替えることができる。
 本実施の形態に係るLED用パタンウェハ(2)においては、前記凹凸構造Lは、第1の平均間隔(PL)を有する複数の凸部及び凹部で構成され、前記凹凸構造Aは、前記凹凸構造Lを構成する前記凸部及び前記凹部の少なくとも一方の表面上に設けられ、第2の平均間隔(PA)を有する複数の凸部及び凹部で構成されると共に、前記第1の平均間隔(PL)と前記第2の平均間隔(PA)との比率(PL/PA)は、1超2000以下であることが好ましい。ここで第2の平均間隔(PA)とは、LED用パタンウェハ(1)で説明した平均間隔(Pave)を指す。
 この構成によれば、凹凸構造Aの効果が、凹凸構造Lにより抑制されることを抑止しつつ、凹凸構造Aと凹凸構造Lとの発光光から見た差を大きくすることができる。即ち、LED用パタンウェハ(1)の機能を効果的に発現させ、同時に、更に光取り出し効率LEEを向上させることができる。この光取り出し効率LEEは、凹凸構造Lによる、大きな光学的散乱性の付与による。
 本実施の形態に係るLED用パタンウェハ(2)においては、前記凹凸構造Lを構成する複数の前記凸部は互いに離間していると共に、少なくとも前記凹凸構造Lを構成する複数の前記凹部の底部に前記凹凸構造Aを構成する前記凸部又は前記凹部が設けられていることが好ましい。
 この構成によれば、特に、凹凸構造Aの効果の発現が良好となる。凹凸構造Lの凹部に凹凸構造Aが設けられることで、凹凸構造Lの凹部の底部から優先的に半導体層を成長させることができる。ここで、該凹部の底部には凹凸構造Aが設けられていることから、既に説明した原理から、クラックの抑制と内部量子効率IQEの改善を効果的に実現できる。
 本実施の形態に係るLED用パタンウェハ(2)においては、前記凹凸構造Lを構成する複数の前記凹部は互いに離間していると共に、少なくとも前記凹凸構造Lを構成する複数の前記凸部の頂部に前記凹凸構造Aを構成する前記凸部又は前記凹部が設けられていることが好ましい。
 この構成によれば、特に光取り出し効率LEEを向上させることができる。平均間隔がより大きな凹凸構造Lの凸部の頂部に凹凸構造Aが設けられることで、凹凸構造Lの凸部頂部より成長する半導体層に対して、クラック抑制の効果と内部量子効率IQE改善の効果を発現できる。この場合、凹凸構造Lの凹部に半導体層の成膜されない空間を形成することが可能となる。この空間は半導体層から見て屈折率が非常に小さい。即ち、屈折率の差を大きくすることができるため、光学的散乱性が大きくなり、光取り出し効率LEEがより向上する。更に、LED用パタンウェハ(2)を除去することも容易となるため、LEDの種類によっては、レーザーリフトオフを好適に作用させることができる。
 本実施の形態に係るLED用パタンウェハ(2)においては、前記凹凸構造Aの、前記凹凸構造Lに対する被覆率が0%超100%未満であることが好ましい。
 この構成により、被覆率が0%超であることにより、上述した凹凸構造Aによる効果、即ち、クラックの抑制と内部量子効率IQEの改善を発揮できる。一方で、被覆率が100%未満であることで、半導体層の核の付着と成長性を良好に保つことができる。このため、半導体層の成長性が良好となり、クラックを抑制し、内部量子効率IQEの高い半導体層を成膜することができる。
 本実施の形態に係るLED用パタンウェハ(2)においては、前記凹凸構造Aは、第1の平均間隔(PA)を有する複数の凸部及び凹部で構成され、前記凹凸構造Lは、前記凹凸構造Aの表面上に前記凹凸構造Aが一部露出するように互いに離間して設けられ、第2の平均間隔(PL)を有する複数の凸部で構成されると共に、前記第1の平均間隔(PA)と前記第2の平均間隔(PL)との比率(PL/PA)は、1超2000以下であることが好ましい。ここで第1の平均間隔(PA)とは、LED用パタンウェハ(1)で説明した平均間隔(Pave)を指す。
 この構成によれば、凹凸構造Aの効果を発現すると共に、光取り出し効率LEEを向上させることができる。まず、LED用パタンウェハ(2)は、その表面に凹凸構造Aを有すと共に、凹凸構造Aは露出部を含むことから、既に説明した原理から、クラックが抑制され、内部量子効率IQEの高い半導体層を成膜可能となる。次に、凹凸構造Aの表面上に、凹凸構造Lが設けられる。この凹凸構造Lは凹凸構造Aに比べ、その平均間隔が大きい。よって、光学的散乱性が強くなる。即ち、クラックが抑制された半導体層を成膜できると共に、該半導体層の転位は低減されていることから、内部量子効率IQEが大きくなる。そして、高い内部量子効率IQEにより効果的に発光した光を、光学的散乱性によりLEDの外部へと取り出すことが可能となる。
 本実施の形態に係るLED用パタンウェハ(2)においては、前記凹凸構造Aの平均間隔(PA)は、50nm以上1500nm以下であることが好ましい。ここで平均間隔(PA)とは、LED用パタンウェハ(1)で説明した平均間隔(Pave)を指す。
 この構成によれば、LED用パタンウェハ(1)にて説明した原理より、凹凸構造Aによる効果が、より向上する。
 本実施の形態に係るLED用パタンウェハ(2)においては、前記凹凸構造Aの凸部底部の平均幅(φave)と前記平均間隔(PA)との比率であるDuty(φave/PA)を用いたときに、前記回転シフト角Θは、atan(Duty/2)°≦Θ≦(180/n)°の範囲を満たすことが好ましい。
 この構成によれば、LED用パタンウェハ(1)と同様の原理から、凹凸構造Aの効果がより顕著になる。よって、内部量子効率IQEがより向上し、半導体層に生じるクラックが効果的に抑制される。
 以下の説明において、凹凸構造A及び凹凸構造Lを同時に記載する場合、凹凸構造ALという表現を使用する。本実施の形態に係るLED用パタンウェハ(2)は、表面に凹凸構造ALを具備する。凹凸構造ALはLED用ウェハの一主面を加工されたものであっても、LED用ウェハの一主面上に別途設けられたものであってもよい。即ち、LED用ウェハを構成する材料と凹凸構造A及び/又は凹凸構造Lを構成する材料と、は同一であっても異なっていてもよい。ここで、凹凸構造Aは実質的にn回対称の配列を有すものであり、既に説明した回転シフト角Θが所定の範囲を示すと共に、その凸部頂部の形状は曲率半径が0超の角部である。なお、凸部頂部の形状については、LED用パタンウェハ(1)にて既に説明した通り、大きさが100nm以下のテーブルトップを含むこともできる。
 次に、凹凸構造Aの配列と凹凸構造Lの配列と、の関係について説明する。既に説明したように、凹凸構造Aは回転シフト角Θが所定範囲を満たすようにLED用ウェハ上に設けられる。ここで、凹凸構造Lの配列軸LのLED用パタンウェハに対する回転シフト角は特に限定されないが、以下の範囲を満たすことで、内部量子効率IQEとクラックの抑制効果をより向上させることができる。なお、以下の説明においては、凹凸構造Aの配列軸Aに対する回転シフト角ΘをΘAと表記し、凹凸構造Lの配列軸Lに対する回転シフト角ΘをΘLとして表記する。また、回転シフト角ΘLは、回転シフト角ΘAの定義説明における、凹凸構造Aを凹凸構造Lと、配列軸Aを配列軸Lと、それぞれ読み替えることで定義できる。
 回転シフト角ΘLと回転シフト角ΘAと、の差であるΔΘ(=|ΘL-ΘA|)は、0°≦ΔΘ≦(180/n)°の範囲を満たす。特に、0°≦ΔΘ≦atan(Duty/2)°を満たすことで、内部量子効率IQEとクラックの抑制の効果が一層大きくなる。なお、Dutyは、凹凸構造AのDutyである。これは、凹凸構造Aにより改善された半導体層の核の付着、成長、そして成長する半導体層の合体において、半導体層が成長する際の半導体層の作る面と凹凸構造Lの凸部の位置関係と、が適度になるためである。
 より具体的には、凹凸構造Lの配列軸Lと、半導体層の成長により形成されやすい面と、の作る角度が小さくなるため、成長する半導体層に対する凹凸構造Lより加わる応力を低減することができる。これにより、半導体層の成長性を良好に保つことができるため、成長する半導体層同士の合体が良好となり、転位が曲がり低減すると共に、クラックを抑制することができる。中でも、0°≦ΘL≦atan(Duty/2)°を満たすことで、前記効果が一層発揮されるため好ましい。特に、0°≦ΘL≦[atan(Duty/2)°]/2を満たすことで、成長する半導体層が通過する凹凸構造Lの凸部の密度が均等化するため、半導体層の成長の乱れを抑制することができるため好ましい。同様の効果から、最も好ましくは、0°≦ΘL≦[atan(Duty/2)°]/4を満たすことである。一方で、atan(Duty/2)°≦ΔΘ≦(180/n)°を満たすことで、LEDをチップ化する際に生じるパーティクル量を減少させることができると考えられる。これは、この範囲を満たす場合、LEDをチップ化する際の割断方向から見た時の、凹凸構造Lの凸部の数が減少するためである。中でも、atan(Duty/2)°≦ΘL≦(180/n)°を満たすことで、前記効果が一層発揮されるため好ましい。
 凹凸構造Aは実質的にn回対称の配列を有し、既に説明した回転シフト角ΘAを満たす。一方で、凹凸構造Lは実質的にm回対称の配列を有する。凹凸構造Lに対する回転シフト角ΘL及び、回転シフト角ΘAと回転シフト角ΘLと、の関係ΔΘは既に説明した通りである。また、凹凸構造Aの回転対称次数nと凹凸構造Lの回転対称次数mと、は同一であっても異なっていてもよい。即ち、例えば、凹凸構造Aの回転対称次数nと凹凸構造Lの回転対称次数と、の組み合わせを(n、m)と記載すれば、(6,6)、(6,4)、(6,2)、(4,6)、(4,4)、(4,2)、(2,6)、(2,4)又は(2,2)等が挙げられる。中でも、凹凸構造Aの機能と凹凸構造Lの機能をより良好に発現する観点から、(6,6)、(4,6)、(2,6)、(6,2)、(4,2)又は(2,2)であることが好ましく、(6,6)、(4,6)又は(2,6)であることが最も好ましい。
(凹凸構造L)
 次に凹凸構造Lについて説明する。凹凸構造Lの主たる機能は光取り出し効率LEEの向上である。そのため、LEDの発光光に対して、効果的に光学的散乱性(光散乱或いは光回折)現象又は反射現象を生じる構造であることが好ましく、以下に説明する凹凸構造Lを採用することができる。
 凹凸構造Lの平均間隔PLは、光学的散乱性(光回折又は光散乱)又は反射を効果的に発現させる観点から、凹凸構造Aの平均間隔PAよりも大きな範囲において、即ち、平均間隔PL>平均間隔PAを満たすと同時に、1000nm以上100μm以下であることが好ましい。特に、光回折性をより強く発現し、効果的に導波モードを乱し光取り出し効率LEEを向上させる観点から、平均間隔PLは1200nm以上であることが好ましく、1500nm以上であることがより好ましく、2000nm以上であることが最も好ましい。一方、上限値は凹凸構造Lの製造時間、半導体層の使用量の観点から50μm以下であることが好ましく、20μm以下であることがより好ましく、10μm以下であることが最も好ましい。
 凹凸構造Lの凸部頂部の幅は、凹凸構造Lの材質によらず、後述する図27A及び図27Bに示すように、凹凸構造Lの凸部703に凹凸構造Aが設けられる場合であれば、特に限定されない。これは、凹凸構造LとLED用ウェハ702との材質が異なる場合、LED用ウェハ702の露出する面より第1半導体層が成長するためである。一方、凹凸構造LとLED用ウェハ702との材質が同じ場合、凹凸構造Lの凸部703の頂部より発生する転位を、凹凸構造Aにより低減することが可能なためである。凹凸構造LとLED用ウェハ702との材質が同じ場合、凹凸構造Aの凹凸構造Lに対する配置によらず、内部量子効率IQE及び光取り出し効率LEEを向上させる観点から、凹凸構造Lの凸部頂部の幅と凹凸構造Lの凹部開口部の幅と、の比率(凸部頂部の幅/凹部開口部の幅)は、小さい程好ましく、実質的に0であると最も好ましい。即ち、凹凸構造Lの凸部頂部も、凹凸構造Aの凸部頂部同様に、曲率半径が0超の角部であることが最も好ましい。なお、LED用パタンウェハ(1)の検討結果から、曲率半径が0超の角部は、テーブルトップの大きさが100nm以下の場合を含むと考えることができる。なお、該比率が0であるとは、凸部頂部の幅が0nmであることを意味する。しかしながら、例えば、走査型電子顕微鏡により凸部頂部の幅を測定した場合であっても、0nmは正確には計測できない。よって、ここでの凸部頂部の幅は測定分解能以下の場合全てを含むものとする。比率(凸部頂部の幅/凹部開口部の幅)が3以下であると、半導体層の成膜性を良好に保つことができる。これは、凹凸構造Lの凸部703の頂部より成長する半導体の量を低減できることによる。更に、該比率が1以下であることにより、光取り出し効率LEEを向上させることができる。これはLED用パタンウェハ(2)710と半導体層により作られる凹凸構造Lの屈折率分布が、発光光からみて適切になるためである。上記説明した内部量子効率IQE及び光取り出し効率LEEを共に大きく向上させる観点から、当該比率は、0.4以下が好ましく、0.2以下がより好ましく、0.15以下がなお好ましい。
 また、凹凸構造LとLED用ウェハ702との材質が同じ場合、凹凸構造Lの凹部704の底部が平坦面を有すると、内部量子効率IQEを向上させると共に、半導体成膜装置間の差を小さくできるため好ましい。内部量子効率IQEを向上させるためには、半導体層内部の転位を分散化し、局所的及び巨視的な転位密度を減少させる必要がある。ここで、これらの物理現象の初期条件は、半導体層をCVD(Chemical Vapor Deposition)、VPE(Vapor Phase Epitaxy)、或いはスパッタにより成膜する際の核生成及び核成長である。凹凸構造Lの凹部704の底部に平坦面を有すことで、凹凸構造Lの凹部の底部に対する核生成を好適に生じさせることが可能となるため、半導体層の成長が安定化する。結果、内部量子効率IQEをより大きくすることができる。
 一方、凹凸構造LとLED用ウェハ702と、の材質が異なる場合、凹凸構造LはLED用ウェハ702上に部分的に設けられる、即ちLED用ウェハ702に露出する面があることで、第1半導体層の成長が実現する。よって、凹凸構造LとLED用ウェハ702との材質が異なる場合の凹凸構造Lは、LED用ウェハ702上に設けられた複数の凸部と凸部の設けられない露出したLED用ウェハ702より構成される。例えば、サファイア、SiC、窒化物半導体、Si又はスピネルをLED用ウェハ702とした時に、金属アルミニウム、アモルファス酸化アルミニウム、多結晶酸化アルミニウム、多結晶サファイア、珪素酸化物(SiO)、珪素窒化物(Si)、銀(Ag)、クロム(Cr)、ニッケル(Ni)、金(Au)、或いはプラチナ(Pt)のうち、何れか1又は2以上の混合物から構成される凸部703を設けることができる。
 凹凸構造Lの凸部底部の平均幅と平均間隔PLとの比率(凸部底部の平均幅/PL)で表される凹凸構造LのDutyは、光取り出し効率LEEを向上させる観点から、0.03以上0.83以下であると好ましい。0.03以上であることにより、凹凸構造Lの凸部の体積が大きくなり、光学的散乱性が向上する。同様の効果から、該比率は0.17以上であることがより好ましく、0.33以上であることが最も好ましい。一方、0.83以下であることにより、凹凸構造Lの凹部の底部の面積を大きくすることができるため、半導体層の核の付着、成長、そして成長する半導体層同士の合体を良好にすることができる。これにより、内部量子効率IQEを高めることができる。同様の効果から、当該比率は0.73以下がより好ましく、0.6以下であることが最も好ましい。
 凹凸構造Lのアスペクト比、即ち、凹凸構造Lの平均高さ/凹凸構造Lの凸部底部の平均幅が0.1以上であることにより、凹凸構造Lによる光学的散乱性による光取り出し効率LEEを向上させることができる。特に、光回折のモード数を増加させる観点から、0.3以上が好ましく、0.5以上がより好ましく、0.8以上が最も好ましい。一方、半導体層に対するクラックやボイドを抑制する観点から、アスペクト比は5以下であることが好ましい。更に、凹凸構造Lを作製する時間を短くでき、且つ、半導体の使用量を低減することができるため2以下がより好ましく、1.5以下が最も好ましい。
 凹凸構造Lの凸部703の高さHは、平均間隔PLの2倍以下であると、凹凸構造Lの作製にかかる時間、使用する半導体結晶量の観点から好ましい。特に、平均間隔PL以下の場合、凹凸構造Lの屈折率分布が、発光光からみて適切になるため、光取り出し効率LEEをより向上させることができる。この観点から、凹凸構造Lの高さHは、平均間隔PLの0.8倍以下がより好ましく、0.7倍以下が最も好ましい。
 次に、凹凸構造Aと凹凸構造Lと、の関係について、説明する。本発明のLED用パタンウェハ(2)は、既に説明した回転シフト角ΘAを満たす平均間隔PAを有す凹凸構造Aと、平均間隔PLを有する凹凸構造Lと、を具備し、平均間隔PLと平均間隔PAとは所定の比率範囲内にて異なる。
 ここで、平均間隔のより大きな、一方の凹凸構造Lが主に光取り出し効率LEE向上の機能を発現し、平均間隔のより小さな、他方の凹凸構造Aが主に内部量子効率IQE改善及びクラック抑制の機能を発現する。更に、それぞれの凹凸構造(L又はA)の機能を相乗させ互いに補完させるために、換言すれば内部量子効率IQEを改善しクラックを抑制する、一方の凹凸構造Aにより光取り出し効率LEEが低下することなく、光取り出し効率LEEを向上する他方の凹凸構造Lにより内部量子効率IQEが低下しクラックが発生することのないために、一方の凹凸構造(L又はA)の表面の少なくとも一部に他方の凹凸構造(A又はL)が設けられることを特徴とする。なお、回転シフト角ΘL及びΔΘについては、既に説明した通りである。
 図27は、本実施の形態に係るLED用パタンウェハ(2)の一例を示す断面概略図である。図27A及び図27Bに示すLED用パタンウェハ(2)710は、LED用ウェハ702の主面上に凹凸構造720が設けられており、凹凸構造720は、第1の凹凸構造(以下、凹凸構造Lと記す)と、第2の凹凸構造(以下、凹凸構造Aと記す)とで構成されている。凹凸構造Lは、互いに離間して設けられた凸部703(又は凹部704)と、隣接する凸部703(又は凹部704)の間を繋ぐ凹部704(又は凸部703)とで構成されている。複数の凸部703(又は凹部704)は平均間隔PLを有する。
 一方、凹凸構造Aは、凹凸構造Lを構成する凸部703及び凹部704の表面に設けられた複数の凸部705(又は凹部706)と、複数の凸部705(又は凹部706)の間を繋ぐ凹部706(又は凸部705)とで構成されている。複数の凸部705(又は凹部706)は平均間隔PAを有する。図27Aにおいては、複数の凸部703の頂部表面及び凹部704の底部に凹凸構造Aが設けられている。一方、図27Bにおいては、複数の独立した凹部704を繋ぐ凸部703の頂部上に凹凸構造Aが設けられている。なお、凹凸構造Aは、図27A、図27Bの例に限定されず、凸部703或いは凹部704の少なくともいずれか一方の表面上に設けられていればよい。
 なお、凹凸構造Aは既に説明した回転シフト角Θを満たす。また、既に説明した形状を満たすことが好ましい。また、凹凸構造Lの配列は、既に説明した回転シフト角ΘL又はΔΘを満たすことが好ましい。
 なお、凹凸構造Aは、凸部703と凹部704の底部とを繋ぐ凸部703の側面に設けることもできる。凸部703の側面に凹凸構造Aが設けられる場合、導波モードを乱す効果がいっそう強まると共に、乱された発光光の進行方向をよりLEDの厚み方向に変化させることが可能と考えられる。このため、LEDをパッケージ化する際の封止材の選定が容易となる。
(ケース1)
 特に、凹凸構造Lは、互いに離間した複数の凸部703から構成されると共に、少なくとも凹凸構造Lの凹部704の底部に凹凸構造Aが設けられることが好ましい。
 この場合、凹凸構造Lの凹部704の底部を起点として半導体層の成長を開始させることができる。特に、凹部704の底部に凹凸構造Aが設けられることで、既に説明した半導体層の核の付着、成長、そして成長する半導体層同士の合体が良好となることから、凹凸構造Aの近傍において半導体層の転位を抑制し、同時に、クラックを減少させることができる。また、凹凸構造Lが、複数の凸部703より構成されることから、凹部704の底部より成長する半導体層の凸部703近傍におけるクラックを抑制することができる。即ち、内部量子効率IQEを向上すると共に、LEDの信頼性を向上できる。また、以下に説明するように凹凸構造Lと凹凸構造Aと、は所定の平均間隔の関係を満たすことから、光学的散乱性が大きくなる。特に、少なくとも凹部704の底部に凹凸構造Aが設けられる構成であることから、導波モードを光散乱或いは光学的反射により乱すことが可能となり、導波モードが再度導波することを抑制できるため、光取り出し効率LEEが同時に向上する。
(ケース2)
 また、凹凸構造Lは、互いに離間した複数の凹部704から構成されると共に、少なくとも凹凸構造Lの凸部703の頂部に凹凸構造Aを構成する凸部705又は凹部706が設けられることが好ましい。
 この場合、凹凸構造Lの凸部703の頂部を起点として半導体層の成長を開始させることができる。特に、凸部703の頂部に凹凸構造Aが設けられることで、既に説明したように半導体層に対するクラックを抑制し、内部量子効率IQEを改善できる。この時、凸部703の頂部より成長する半導体層は、凹部704の底部より成長する半導体結晶に比べ、成長性が良好となる。このため、凸部703の頂部より成長した半導体層により凹部704の底部より成長した半導体層をブロックすることができる。よって、クラックを抑制し、内部量子効率IQEが効果的に向上する。また、半導体層の成長条件によっては、凹部704内に空隙を生成することも容易となる。この場合、LED用パタンウェハ(2)710を、例えばレーザーリフトオフにより除去する際の、除去精度が向上する。また、以下に説明するように凹凸構造Lと凹凸構造Aと、は所定の平均間隔の関係を満たすことから、光学的散乱性が大きくなる。特に、凹凸構造Lが複数の凹部704より構成されることから、体積変化がより大きくなるため、導波モードを乱す効果が大きくなり、光取り出し効率LEEが向上する。
 上記ケース1、ケース2として説明した本発明の実施の形態に係るLED用パタンウェハ(2)710においては、凹凸構造Aの、凹凸構造Lに対する被覆率が0%超100%未満であることが好ましい。
 この場合、凹凸構造Lの凸部703或いは凹部704に必ず凹凸構造Aが設けられることから、上記説明した原理より、内部量子効率IQEが効果的に向上すると共に、半導体層内部のクラックを抑制できる。一方で、凹凸構造Lの凸部703及び凹部704が全て凹凸構造Aにより埋められることがない。これにより、凹凸構造Lによる光取り出し効率LEEの向上効果を、凹凸構造Aにより低下させることを抑制できる。即ち、内部量子効率IQEと光取り出し効率LEEと、を同時に向上させる効果がいっそう高まる。
(ケース3)
 図27Cは、LED用パタンウェハ(2)の他の例を示す断面概略図である。LED用パタンウェハ(2)710は、LED用ウェハ702の主面上に凹凸構造720が設けられており、凹凸構造720は、第1の凹凸構造(以下、凹凸構造Aと記す)と、第2の凹凸構造(以下、凹凸構造Lと記す)とで構成されている。凹凸構造Aは、互いに離間して設けられた凸部705と、隣接する凸部705の間を繋ぐ凹部706とで構成されている。複数の凸部705は平均間隔PAを有する。
 一方、凹凸構造Lは、凹凸構造Aの表面上に凹凸構造Aが一部露出するように互いに離間して設けられ、凹凸構造Aを構成する凸部705及び凹部706の表面に設けられた複数の凸部703にて構成されている。複数の凸部703は平均間隔PLを有する。
 上記図27A、図27B及び図27Cを参照し説明したLED用パタンウェハ(2)710の凹凸構造Lの平均間隔PLと凹凸構造Aの平均間隔PAと、の比率は1超2000以下である。1超2000以下であることにより、クラックが抑制され、内部量子効率IQEの向上した半導体層を成膜できると共に、且つ光取り出し効率LEEを向上させることができる。特に、平均間隔PLと平均間隔PAとの差を大きくし、凹凸構造Aによる光取り出し効率LEEへの支障及び凹凸構造Lによる内部量子効率IQEへの支障を抑制する観点から、比率(PL/PA)は、1.1以上であることが好ましく、1.5以上であることがより好ましく、2.5以上であることがなお好ましい。更に、凹凸構造Aの加工分解能を向上させ、内部量子効率IQEをより向上させると共に、クラックを抑制する観点から、比率(PL/PA)は、5.5以上であることが好ましく、7.0以上であることがより好ましく、10以上であることが最も好ましい。一方、凹凸構造Aによる光学的散乱性(光回折又は光散乱)を向上させ、凹凸構造Aによる内部量子効率IQEの改善と、凹凸構造L及び凹凸構造Aによる光取り出し効率LEEの改善を実現する観点から、比率(PL/PA)は700以下であることが好ましく、300以下であることがより好ましく、100以下であることがなお好ましい。更に、凹凸構造Lより加わる半導体層への応力を低減させクラックをより抑制すると共に、凹凸構造Lの体積変化を大きくし、且つ、凹凸構造Aの密度を向上させると共に、凹凸構造L及び凹凸構造Aの加工精度を向上させる観点から、比率(PL/PA)は50以下であることが好ましく、40以下であることがより好ましく、30以下であることが最も好ましい。
 LED用パタンウェハ(2)を使用したLED用エピタキシャルウェハ及びLEDチップについては、LED用パタンウェハ(1)を使用した場合と同様の状態を採用できる。この場合において、LED用パタンウェハ(2)の凹凸構造Lと凹凸構造Aより構成される凹凸構造720は、LED用パタンウェハ(1)の凹凸構造20と読み替えることができる。
 LED用パタンウェハ(2)に関し、発光半導体層側の表面と発光半導体層の第1半導体層側の表面との距離(Hbun)と、凹凸構造Aの平均高さ(Have)と、の比率(Hbun/Have)は、LED用パタンウェハ(1)に記載の比率(Hbun/Have)に相当する。
 LED用パタンウェハ(2)に関し、LED用パタンウェハ(2)の発光半導体層側の表面と非ドープ第1半導体層のドープ第1半導体層側の表面との距離(Hbu)と、凹凸構造Aの平均高さ(Have)と、の比率(Hbu/Have)は、LED用パタンウェハ(1)に記載の比率(Hbu/Have)に相当する。
 凹凸構造ALの形状は、例えば、複数の柵状体が配列したラインアンドスペース構造、複数の柵状体が交差した格子構造、複数のドット(凸部、突起)状構造が配列したドット構造、複数のホール(凹部)状構造が配列したホール構造等を採用できる。ドット構造やホール構造は、例えば、円錐、円柱、四角錐、四角柱、六角錐、六角柱、n角錐(n≧3)、n角柱(n≧3)、カルデラ状、二重リング状及び多重リング状の構造が挙げられる。ここで、カルデラ状とは、大きい円錐の先端と中が空洞の小さい円錐の先端とを接触させ、その後に、小さい円錐を大きい円錐の中に押し込んだ形状のことをいい、ボルケーノ型ともいわれる。なお、これらの形状は底面の外径が歪んだ形状、n角形の底面の角部が0超の曲率半径を有し丸みを帯びた形状や、側面が湾曲した形状、頂部が0超の曲率半径を有す丸みを帯びた形状を含む。
 なお、ドット構造とは、複数の凸部が互いに独立して配置された構造である。即ち、各凸部は連続した凹部により隔てられる。なお、各凸部は連続した凹部により滑らかに接続されてもよい。一方、ホール構造とは、複数の凹部が互いに独立して配置された構造である。即ち、各凹部は連続した凸部により隔てられる。なお、各凹部は連続した凸部により滑らかに接続されてもよい。
 ドット構造を選定するか、或いはホール構造を選定するかは、LED用エピタキシャルウェハの製造に使用する装置や、LEDの用途により適宜選択できる。特にクラックの抑制と内部量子効率IQEの改善を優先する環境においては、凹凸構造Lはドット状構造であると好ましい。これは、平均間隔PLの大きな凹凸構造Lによっても、半導体層の横方向成長(Epitaxial Lateral Overgrowth)を誘発させる共に凸部頂部におけるクラックを抑制し、内部量子効率IQEを向上させることができるためである。一方で、光取り出し効率LEEを特に大きくしたい環境においては、凹凸構造ALはホール構造であることが好ましい。これは、ホール構造の場合、半導体層から見た屈折率の変化が光学的散乱性に対して適度となるためである。なお、凹凸構造Aと凹凸構造Lとの組み合わせ(凹凸構造L、凹凸構造A)は、(ドット構造、ドット構造)、(ホール構造、ホール構造)、(ドット構造、ホール構造)又は(ホール構造、ドット構造)のいずれであってもよい。
 続いて、凹凸構造720を構成する凹凸構造A及び凹凸構造Lについて説明する。
 図28は、本実施の形態に係るLED用パタンウェハ(2)の他の例を示す断面概略図であり、図27A及び図27Bを参照し説明した(ケース1)及び(ケース2)を含む場合である。図28Aから図28Cに示すように、LED用パタンウェハ(2)710の表面に体積変化の大きな凹凸構造Lが設けられ、凹凸構造Lを構成する凸部703及び凹部704の少なくとも一方の表面に構造密度の大きな凹凸構造Aが設けられる。このような構成をとることにより、凹凸構造Aにより内部量子効率IQEを向上させ、クラックを低減させることが可能となり、凹凸構造Lによる光学的散乱性(光回折又は光散乱)により光取り出し効率LEEを向上させることができる。図28Aから図28Cは、凹凸構造Aの凹凸構造Lに対する配置例を示している。
 特に、図28Aに示されるように、第1の凹凸構造Lは、互いに離間した複数の凸部703から構成されると共に、少なくとも第1の凹凸構造Lの凹部704の底部に第2の凹凸構造Aを構成する凸部705又は凹部706が設けられることが好ましい。
 この場合、(ケース1)及び(ケース2)にて既に説明したように、凹凸構造Lの凹部704の底部を起点として半導体層の成長を開始させることができるため、内部量子効率IQEが向上すると共に、クラックを抑制できる。また、LEDの信頼性を向上できる。また、既に説明したように、凹凸構造Lと凹凸構造Aと、は所定の平均間隔の関係を満たすことから、光学的散乱性が大きくなる。特に、少なくとも凹部704の底部に凹凸構造Aが設けられる構成であることから、導波モードを光散乱或いは光学的反射により乱すことが可能となり、導波モードが再度導波することを抑制できるため、光取り出し効率LEEが同時に向上する。
 又は、図28Bに示されるように、凹凸構造Lは、互いに離間した複数の凹部704から構成されると共に、少なくとも凹凸構造Lの凸部703の頂部に凹凸構造Aを構成する凸部705又は凹部706が設けられることが好ましい。
 この場合、既に(ケース1)及び(ケース2)にて説明したように、凹凸構造Lの凸部703の頂部を起点として半導体層の成長を開始させることができる。よって、凸部703の頂部より成長する半導体層の転位を効果的に減少させると共に、クラックを低減できる。更に、凹部704内に空隙を生成することも容易となることから、LED用パタンウェハ(2)710を、例えばレーザーリフトオフにより除去する際の、除去精度が向上する。また、凹凸構造Lと凹凸構造Aと、は所定の平均間隔の関係を満たすことから、光学的散乱性が大きくなる。特に、凹凸構造Lが複数の凹部704より構成されることから、体積変化がより大きくなるため、導波モードを乱す効果が大きくなり、光取り出し効率LEEが向上する。
 なお、図28Cに示されるような凹凸構造Lの凸部703及び凹部704の表面のいずれにも凹凸構造Aが設けられる場合、図28A及び図28Bを参照説明した効果を両立することが可能となる。
 上記説明したLED用パタンウェハ(2)710においては、凹凸構造Aの、凹凸構造Lに対する被覆率が0%超100%未満であることが好ましい。
 この場合、凹凸構造Lの凸部703或いは凹部704に必ず凹凸構造Aが設けられることから、上記説明した原理より、内部量子効率IQEが効果的に向上すると共に、クラックが低減される。一方で、凹凸構造Lの凸部703及び凹部704が全て凹凸構造Aにより埋められることがない。これにより、凹凸構造Lによる光取り出し効率LEEの向上効果を、凹凸構造Aにより低下させることを抑制できる。即ち、内部量子効率IQEと光取り出し効率LEEと、を同時に向上させると共に、クラックを抑制できる。
 特に、凹凸構造Lの表面のラフネスの増大を抑制し、凹凸構造Lによる、半導体層内部にて導波モードを形成する発光光の進行方向を乱す効果を向上させる観点から、被覆率は90%以下であることが好ましく、80%以下であることがより好ましく、50%以下であることが最も好ましい。また、凹凸構造Aによる内部量子効率IQEの向上効果を発揮させると共に、半導体層の使用量を低下させ、LEDの生産性を向上させる観点から、被覆率は、0.01%以上であることが好ましく、0.1%以上であることがより好ましく、0.15%以上であることが最も好ましい。なお、特に内部量子効率IQEをより向上させたい場合は、被覆率は上記最も広い範囲の中において、50%以上90%以下であることが好ましく、60%以上86%以下であることがより好ましく、70%以上84%以下であることが最も好ましい。これらの範囲を満たす場合、凹凸構造Aによる効果を最も効果的に発現することが可能となる。一方で、光取り出し効率LEEを特に向上させたい場合は、上記最も広い範囲の中において、0.1%以上30%以下の範囲であることが好ましく、0.1%以下以上10%以下の範囲であることがより好ましく、0.1%以上5%以下であることが最も好ましい。これらの範囲を満たすことで、導波モードを乱された発光光が再度導波モードを形成することを抑制できることから、光取り出し効率がより向上する。
 ここで、被覆率とは、凹凸構造Lの凸部703及び凹部704の表面に対する凹凸構造Aの凸部705又は凹部706の平面占有率である。即ち、ある凸部703を上面側より観察した場合の、凸部703と凸部703の輪郭の周囲を囲む凹部704と、の平面積をSとした場合、該観察像内における凹凸構造Aの凸部705又は凹部706の合計平面積をSiとすれば、被覆率は(Si/S)×100となる。
 図29は、本実施の形態に係るLED用パタンウェハ(2)における凹凸構造を示す模式図である。図29Aは、凹凸構造Lが複数の独立した凸部703より構成される場合、特に凹部704の底面に凹凸構造Aが設けられる場合を示す。或いは、凹凸構造Aの表面に、凹凸構造Aが部分的に露出するように凹凸構造Lが設けられた場合を示す。この例においては、凸部703の底部の輪郭形状及び凸部705の底部の輪郭形状は円形である。凸部703の頂部側より観察した平面像における凸部703と、凸部703の輪郭の周囲を囲む凹部704の面積をSとする。ここで、面積Sは、ある凸部703に隣接する他の凸部703の頂部中央部同士を結び作られる多角形841の面積である。面積S内に含まれる凹凸構造Aの凸部705の底部の輪郭により作られる面積の合計面積、又は、凹部706の開口部の合計面積を、Siとすれば、被覆率はSi/S×100として与えられる。なお、図29Aにおいては、凹凸構造Lの凹部底部にのみ凹凸構造Aが配置される場合を例示したが、既に説明したように凹凸構造Aの配置はこれに限定されない。同様に、図29Bは、凹凸構造Lが複数の独立した凹部704より構成される場合、特に凸部703の上面に凹凸構造Aが設けられる場合を示す。この例においては、凹部704の開口形状及び凸部703の底部の輪郭形状は円形である。凸部703の頂部側より観察した平面像における凹部704と、凹部704の輪郭の周囲を囲む凸部703の面積をSとする。ここで、面積Sは、ある凹部704に隣接する他の凹部704の開口部中央部同士を結び作られる多角形841の面積である。面積S内に含まれる凹凸構造Aの凸部705の底部の輪郭により作られる面積の合計面積、又は、凹部706の開口部の合計面積をSiとすれば、被覆率はSi/S×100として与えられる。なお、図29Bにおいては、凹凸構造Lの凸部703の頂部にのみ凹凸構造Aが配置される場合を例示したが、既に説明したように凹凸構造Aの配置はこれに限定されない。
 なお、図29Bに示すように凹凸構造Lの凸部703の頂部上面にのみ凹凸構造Aが設けられる場合、凸部703の頂部側より観察した際の、凸部703の頂部上面の面積をST、面積STを有す凸部703の頂部上面内に含まれる凹凸構造Aの平面積の合計をSiTとして、被覆率(SiT/ST×100)を求めることができる。なお、この被覆率を凸部703の頂部上面に対する被覆率Tと呼ぶ。
 同様に、図29Aに示すように凹凸構造Lの凹部704の底面にのみ凹凸構造Aが設けられる場合、凸部705の頂部側より観察した際の、凹部704の底面の面積をSB、面積SBを有す凹部704の底面内に含まれる凹凸構造Aの平面積の合計をSiBとして、被覆率(SiB/SB×100)を求めることができる。なお、この被覆率を凹部704の底面に対する被覆率Bと呼ぶ。
 凸部703の頂部上面に対する被覆率T及び凹部704の底面に対する被覆率Bは、1%以上90%以下であることが好ましい。特に、内部量子効率IQEを良好に高め、LEDの発光出力を向上させる観点から、凸部703の頂部上面に対する被覆率T及び凹部704の底面に対する被覆率Bは、3%以上60%以下であることが好ましく、5%以上55%以下であることがより好ましく、10%以上40%以下であることが最も好ましい。また、凹凸構造Lの凸部703の頂部、凸部703の側面及び凹部704の底部に凹凸構造Aが設けられる場合であっても、凹凸構造Lの凸部703の頂部上面に対する凹凸構造Aの被覆率或いは、凹凸構造Lの凹部704の底面に対する凹凸構造Aの被覆率は、上記凸部703の頂部上面に対する被覆率T或いは凹部704の底面に対する被覆率Bを満たすことが好ましい。
 なお、凹凸構造Lにおいて、LED用ウェハ702上に複数の凸部703を別途設けた場合、凹凸構造Lは、LED用ウェハ702の主面と複数の凸部703により構成される。この場合、複数の凸部703が凹凸構造Lの凸部に相当し、凸部703の間であってLED用ウェハ702の主面の露出する部分が凹凸構造Lの凹部704に相当する。
 一方、LED用ウェハ702が直接加工されることで凹凸構造Lが設けられた場合、凹凸構造LとLED用ウェハ702との材質は同一となる。
 図28Aは、凹凸構造Lが独立した複数の凸部703より構成されると共に、凹凸構造Lの凹部704の表面に凹凸構造Aが設けられる場合である。図28Bは、凹凸構造Lが独立した複数の凸部703より構成されると共に、凹凸構造Lの凸部703の表面に凹凸構造Aが設けられる場合である。図28Cは、凹凸構造Lが独立した複数の凸部703より構成されると共に、凹凸構造Lの凸部703及び凹部704の表面に凹凸構造Aが設けられる場合である。なお、図28Aから図28Cに関し、凹凸構造Lの凸部703の頂部の形状を丸みを帯びた形状に描いているが、凹凸構造Lの凸部703の頂部の形状は既に説明したように、テーブルトップ状の形状等にすることもできる。
 図28Aに示すように、凹凸構造Lの凹部704に凹凸構造Aが設けられることで内部量子効率IQEを良好に向上させることができる。更に、凹凸構造Lが独立した複数の凸部703より構成されることから、半導体層へのクラックを抑制効果が大きくなる。これは、凹凸構造Lの凹部704より半導体層の成長が開始するためである。即ち、凹凸構造Aにより半導体層の核の付着、成長、そして成長する半導体層同士の合体性が良好となり、この成長性が良好な半導体層が凹凸構造Lの凹部704より成長するため、凹凸構造Lの凹部704において、転位を低減することが可能となる。なお、図28Aにおいては、凸部703の側面部に凹凸構造Aを描いていないが、凸部703の側面に凹凸構造Aを設けることもできる。この場合、導波モードを乱す効果が一層強まると共に、乱された発光光の進行方向をよりLEDの厚み方向に変化させることが可能と考えられる。このため、LEDをパッケージ化する際の封止材の選定が容易となる。
 凹凸構造LがLED用ウェハ702と同じ材質から構成される場合、凹凸構造Lの凸部703の頂部より発生する転位を抑制するために、凹凸構造Lの凸部703の径は、底部から頂点へと向かって小さくなる構造であると好ましい。特に、凹凸構造Lの凸部703の頂部が凹凸構造Lの凸部703の側面部と連続してつながる構造、換言すれば凸部の頂部は曲率半径が0超の角部より構成される構造であると好ましい。凹凸構造Lは、円盤状、円錐状、n角柱(n≧3)状、n角錐状といった形状をとることができるが、中でも、第1半導体層の成長の均等性を向上させ、第1半導体層の内部に発生するクラックや転位をより低減する観点から、円錐状、円盤状、3角柱状、3角錐状、6角柱状及び6角錐状のいずれかであることが好ましい。なお、前記角錐の頂部は、曲率半径が0である角部であっても、曲率半径が0超の丸みを帯びた角部であってもよい。特に、角錐形状の場合、曲率半径が0超である角部を有すことで、半導体層の成長時に発生するクラックを抑制できることから、LEDの長期信頼性が向上する。特に、これらの形状において、凸部703の側面部の傾斜角度が1以上5以下の切り替わり点を有すことが好ましい。なお、1以上3以下であるとより好ましい。また、凸部703の側面部は直線状でなく、膨らみを有した形状であってもよい。
 一方、凹凸構造LとLED用ウェハ702とが異なる材料から構成される場合、凹凸構造Lの凸部703は、円錐状やn角錐状(n≧3)といった形状の他、円盤状やn角柱(n≧3)状といった、凸部703の底部を形成する面に対する凸部703の側面部の傾斜角度が実質的に直角である構造であってもよい。特に、第1半導体層の成長の均等性を向上させ、第1半導体層の内部に発生するクラックや転位を低減する観点から、円錐状、円盤状、3角柱状、3角錐状、6角柱状及び6角錐状のいずれかであることが好ましい。また、第1半導体層内に発生するクラックを抑制する観点から、凹凸構造Lの凸部703の径は、底部から頂点へと向かって小さくなる構造であると好ましい。特に、これらの形状において、凸部703の側面部の傾斜角度が1以上5以下の切り替わり点を有すことが好ましい。なお、1以上3以下であるとより好ましい。また、凸部703の側面部は直線状でなく、膨らみを有した形状であってもよい。なお、凹凸構造LとLED用ウェハ702とが異なる材料から構成される場合においては、凹凸構造Lの屈折率nLとLED用ウェハ702の屈折率nsと、の差分の絶対値|nL-ns|は0.1以上であることが好ましい。このような範囲を満たすことにより、半導体層から見た凹凸構造Lの光学的存在感を増加させることができる。即ち、光学的散乱性が増加するために、導波モードを乱す効果が大きくなる。更には、LEDの側面方向からの光取り出しや、或いは上面方向からの光取り出しの設計が容易となる。
 図28Bに示すように、凹凸構造Lの凸部703に凹凸構造Aが設けられることで、凹凸構造Lの凸部703の頂部に平坦面が存在する場合であっても、内部量子効率IQEを良好に向上させることができる。これは、凹凸構造Lの平坦面より半導体層の成長が開始するためである。即ち、凹凸構造Lの凸部703の頂部の平坦面上における半導体層の核の付着と成長を良好にし、更に、成長する半導体層同士の合体が良好となることから、クラックが抑制されると共に、転位の衝突が増加し、内部量子効率IQEが向上する。また、凹凸構造Lの凹部704の底部より成長する半導体層については、半導体層の横方向成長により転位を低減することが可能である。或いは、凹凸構造Lの凸部703の頂部より成長する半導体層により、凹凸構造Lの凹部704より成長する半導体層の成長を阻害することができる。よって、半導体層の転位密度は低下し、内部量子効率IQEを向上させることができる。この場合、半導体層の成長を促進させるために、凹凸構造Lの凹部704の底部は平坦面を有すことが好ましい。更に、凹凸構造Lの凸部703の頂部は底部よりも小さい構造であると好ましい。また、凹凸構造Aにより内部量子効率IQEを良好に保つ観点から、凹凸構造Aは複数の凸部705より構成されるドット構造であり、且つ、凹凸構造Aの凹部706の底部は平坦面を有すことが好ましい。更に、凹凸構造Aの凸部703の径が底部から頂点へ向かって小さくなる構造であると、転位分散化がより促進されるため好ましい。凹凸構造Lは、円盤状、円錐状、n角柱(n≧3)状、n角錐状といった形状をとることができるが、中でも、第1半導体層の成長の均等性を向上させ、第1半導体層内部に発生するクラックや転位を低減する観点から、円錐状、円盤状、3角柱状、3角錐状、6角柱状及び6角錐状のいずれかであることが好ましい。なお、前記角錐の頂部は、曲率半径が0である角部であっても、曲率半径が0超の丸みを帯びた角部であってもよい。特に、角錐形状の場合、曲率半径が0超である角部を有すことで、半導体層の成長時に発生するクラックを抑制できることから、LEDの長期信頼性が向上する。特に、これらの形状において、凸部703の側面部の傾斜角度が1以上5以下の切り替わり点を有すことが好ましい。なお、1以上3以下であるとより好ましい。また、凸部703の側面部は直線状でなく、膨らみを有した形状であってもよい。また、凹凸構造Lの凸部703頂部に凹凸構造Aが設けられる場合、LED用パタンウェハ(2)710を例えばレーザーリフトオフにより除去することが容易となることから、LEDの投入電力あたりの発光強度を増加させることができる。
 図28Cに示す構造により、上記説明した図28A及び図28Bの構造により発現される効果を組み合わせることが可能となる。
 図28においては、凹凸構造Lが複数の独立した凸部703より構成される場合を例示したが、凹凸構造Lは複数の独立した凹部704より構成されていても良い。
 図30は、本実施の形態に係るLED用パタンウェハ(2)の他の例を示す断面概略図である。図30Aは、凹凸構造Lが独立した複数の凹部704より構成されると共に、凹凸構造Lの凸部703の表面に凹凸構造Aが設けられる場合である。図30Bは、凹凸構造Lが独立した複数の凹部704より構成されると共に、凹凸構造Lの凹部704の表面に凹凸構造Aが設けられる場合である。図30Cは、凹凸構造Lが独立した複数の凹部704より構成されると共に、凹凸構造Lの凸部703及び凹部704の表面に凹凸構造Aが設けられる場合である。
 図30Aに示すように、凹凸構造Lの凸部703に凹凸構造Aが設けられることで内部量子効率IQEを良好に向上させることができる。更に、凹凸構造Lが独立した複数の凹部704より構成されることから、凹凸構造Lの凹部704の内部に空洞を形成することが容易となる。この場合、レーザーリフトオフによるLED用パタンウェハ(2)の除去精度が向上する。更に、空洞を形成する場合、半導体層と空洞と、の屈折率の差が非常に大きくなることから、光取り出し効率LEEの増加程度が急増する。これは、図30B又は図30Cに示す凹凸構造についても同様である。
 以上説明したように、凹凸構造Aの主たる機能は内部量子効率IQEの改善とクラックの抑制である。このため、凹凸構造Aの材質は、LED用ウェハ702を構成する材質と同一であると好ましい。一方、凹凸構造Lの主たる機能は光取り出し効率LEEの改善である。このため、凹凸構造Lの材質は、LED用ウェハ702と同一であっても異なっていてもよい。例えば、凹凸構造A及び凹凸構造Lのいずれもサファイア、SiC(炭化ケイ素)、窒化物半導体、Si(シリコン)又はスピネルから構成される場合や、凹凸構造Aがサファイア、SiC、窒化物半導体、Si又はスピネルから構成され、凹凸構造Lが金属アルミニウム、アモルファス酸化アルミニウム、多結晶酸化アルミニウム、多結晶サファイア、珪素酸化物(SiO)、珪素窒化物(Si)、銀(Ag)、クロム(Cr)、ニッケル(Ni)、金(Au)、或いはプラチナ(Pt)のうち、何れか1又は2以上の混合物から構成される場合が挙げられる。
 図27Cは、本実施の形態に係るLED用パタンウェハ(2)の他の例を示す断面模式図である。図27Cに示すように、LED用パタンウェハ(2)710の表面に構造密度の高い凹凸構造Aが設けられ、凹凸構造Aの表面の少なくとも一部の上に体積変化の大きな凹凸構造Lが設けられる。より具体的には、LED用ウェハ702の主面に、複数の凸部705及び凹部706で構成された凹凸構造Aが形成され、更に凹凸構造Aの表面が一部露出するように互いに離間して複数の凸部703が形成され、凹凸構造Lを構成している。
 このような構成により、凹凸構造Lを構成する凸部703の間に露出する凹凸構造Aによりクラックを改善し内部量子効率IQEを向上させることが可能となり、凹凸構造Lによる光学的散乱性(光回折又は光散乱)により光取り出し効率LEEを向上させることができる。
 図27Cに示すように、凹凸構造Aの表面の一部に凹凸構造Lが設けられることで内部量子効率IQEを向上し、且つ、光取り出し効率LEEを向上させることができる。これは、凹凸構造Aにより半導体層の核の付着、成長、そして成長する半導体層同士の合体を良好にできるため、転位の衝突が良好に生じ内部量子効率IQEが向上すると共に、該合体箇所を分散化できるため、クラックを抑制できるためである。更に、凹凸構造Lによる光学的散乱性により導波モードを乱すことができるためである。
 凹凸構造Lの材質とLED用ウェハ702の材質とが異なる場合、凹凸構造Lは、円盤状やn角柱(n≧3)状といった、凸部頂部の幅と凸部底部の幅と、が実質的に同様の構造であってもよい。特に、第1半導体層内に発生するクラックをより良好に抑制する観点から、凹凸構造Lの凸部頂部の幅は凹凸構造Lの凸部底部の幅よりも小さい構造であると好ましい。
 一方、凹凸構造LとLED用ウェハ702と、の材質が同じ場合、凹凸構造Lの凸部703の頂部より発生する転位を抑制するために、凹凸構造Lの凸部703の頂部はその底部よりも小さい構造であると好ましい。特に、凹凸構造Lの凸部703の頂部がその側面部と連続してつながる構造、換言すれば凸部頂部の幅が0に漸近する構造であると好ましい。なお、LED用パタンウェハ(1)における検討から、凸部頂部の幅が0に漸近するという表現は、テーブルトップの大きさが100nm以下の場合を含むとして解釈可能と考えることもできる。
 更に、凹凸構造Lによっても内部量子効率IQEをより向上させる観点から、凹凸構造Lは複数の凸部703より構成されるドット構造であると好ましい。これは、凸部703間に設けられる凹部704より成長する半導体層内部の転位を、横方向成長により低減することができるためである。同様の効果から、凹凸構造Lの凸部頂部の幅は凸部底部の幅よりも小さいと好ましい。
 一方、内部量子効率IQEをより向上させる観点から、凹凸構造Aは、複数の凸部705より構成されるドット構造であり、且つ、凹凸構造Aの凹部706の底部は平坦面を有すことが好ましい。更に、凹凸構造Aの凸部頂部の幅が凸部底部の幅よりも小さい構造であると、転位分散化がより促進されるため好ましい。
 以上説明したように、凹凸構造Aの主たる機能は内部量子効率IQEの改善である。このため、凹凸構造Aの材質は、LED用ウェハ702を構成する材質であると好ましい。一方、凹凸構造Lの主たる機能は光取り出し効率LEEの改善である。このため、凹凸構造Lの材質は、LED用ウェハ702と同様であっても異なっていてもよい。
 本実施の形態に係るLED用パタンウェハ(2)710を使用することで、既に説明した原理から、クラックが抑制され、且つ内部量子効率IQEの高い半導体層を得ることができる。更に、LEDチップにおいて、高い光取り出し効率LEEを奏す。即ち、効率的に発光すると共に、発光した光をLEDチップの外部へと効果的に取り出すと共に、LEDチップの信頼性を向上させることができる。このため、本実施の形態に係るLED用パタンウェハ(2)710を使用して製造されたLED素子は、発熱量が小さくなる。発熱量が小さくなることは、LED素子の長期安定性を向上させるばかりでなく、放熱対策に係る負荷(例えば、放熱部材を過大に設けること)を低減できることを意味する。
 LED用ウェハ702と凹凸構造との材質が異なる場合の凹凸構造を構成する材料としては、例えば、上記説明したLED用ウェハ702の材質や、金属アルミニウム、アモルファス酸化アルミニウム、多結晶酸化アルミニウム、多結晶サファイア、珪素酸化物(SiO)、珪素窒化物(Si)、銀(Ag)、クロム(Cr)、ニッケル(Ni)、金(Au)、或いはプラチナ(Pt)のうち、何れか1又は2以上の混合物を使用することができる。
<<LED用パタンウェハ(2)の製造方法>>
 次に、本発明の実施の形態に係るLED用パタンウェハ(2)710の製造方法について説明する。
 本実施の形態に係るLED用パタンウェハ(2)710は、上記説明した条件を満たした凹凸構造を具備すれば、その製造方法は限定されず、LED用パタンウェハ(1)と同様の製造方法により製造できる。
 LED用パタンウェハ(2)710の場合、凹凸構造Lを作製し、続いて凹凸構造Aを作製することで、凹凸構造720を製造することができる。凹凸構造Lの製造方法は2つに分類できる。
(1)LED用ウェハを直接加工し凹凸構造Lを設ける場合
 LED用ウェハ702を直接加工し凹凸構造Lを設ける方法としては、転写法、フォトリソグラフィ法、熱リソグラフィ法、電子線描画法、干渉露光法、ナノ粒子をマスクとしたリソグラフィ法、自己組織化構造をマスクとしたリソグラフィ法等により製造することができる。特に、LED用ウェハ702の凹凸構造の加工精度や加工速度の観点から、フォトリソグラフィ法又は転写法を採用すると好ましい。なお、エッチング方法はウェットエッチングでもドライエッチングでもよい。特に、凹凸構造Lの凸部の側面の面方位を精密に制御する場合は、ウェットエッチングであると好ましい。一方で、凹凸構造Lの形状の精密制御の観点からは、ドライエッチング法が好ましく、LED用パタンウェハ(1)にて説明したドライエッチング法を採用できる。転写法については、LED用パタンウェハ(1)にて説明した通りである。
(2)凹凸構造LをLED用ウェハ上に別途設ける場合
 凹凸構造LをLED用ウェハ702上に別途設ける方法としては、転写法、粒子を内包する薄膜をLED用ウェハ702上に成膜し、その後粒子間を満たすバインダーを除去する方法や、LED用ウェハ702上に成膜したレジストの一部を除去し、除去された部分に凹凸構造Lを構成する材料を満たし(例えば、蒸着やスパッタ法、電鋳法等)、最後にレジストを除去する方法や、LED用ウェハ702上に凹凸構造Lの材料を成膜し、成膜された凹凸構造Lの材料を直接加工する方法等が挙げられる。
 上記説明した方法により凹凸構造Lを作製し、続いて凹凸構造Aを作製することで凹凸構造720を製造できる。
 凹凸構造Aを凹凸構造L上に設ける方法としては、転写法、フォトリソグラフィ法、熱リソグラフィ法、電子線描画法、干渉露光法、ナノ粒子をマスクとしたリソグラフィ法、自己組織化構造をマスクとしたリソグラフィ法等が挙げられる。特に、LED用パタンウェハの凹凸構造の加工精度や加工速度の観点から、ナノ粒子をマスクとしたリソグラフィ法又は転写法を採用すると好ましい。転写法については後述する。
 また、凹凸構造Aを作製し、続いて凹凸構造Lを作製することでも、凹凸構造720を製造することができる。
 凹凸構造Aを設ける方法としては、転写法、フォトリソグラフィ法、熱リソグラフィ法、電子線描画法、干渉露光法、ナノ粒子をマスクとしたリソグラフィ法、自己組織化構造をマスクとしたリソグラフィ法等が挙げられる。特に、凹凸構造の加工精度や加工速度の観点から、ナノ粒子をマスクとしたリソグラフィ法又は転写法を採用すると好ましい。転写法については、LED用パタンウェハ(1)にて説明した通りである。
 凹凸構造Aを具備したLED用ウェハに対し、凹凸構造Lを作製することで凹凸構造720を製造できる。
 凹凸構造Aを更に加工することで、凹凸構造720を製造できる。凹凸構造Aの更なる加工方法としては、転写法、フォトリソグラフィ法、熱リソグラフィ法、電子線描画法、干渉露光法、ナノ粒子をマスクとしたリソグラフィ法、自己組織化構造をマスクとしたリソグラフィ法等により製造することができる。特に、LED用パタンウェハ(2)710の凹凸構造の加工精度や加工速度の観点から、フォトリソグラフィ法或いは、転写法を採用すると好ましい。転写法については、LED用パタンウェハ(1)にて説明した通りである。
 LED用ウェハ702に凹凸構造720を有する凹凸構造層を別途設ける場合、凹凸構造Aを作製し、続いて凹凸構造Lを作製することで、凹凸構造720を製造することができる。
 凹凸構造Aを設ける方法としては、転写法、フォトリソグラフィ法、熱リソグラフィ法、電子線描画法、干渉露光法、ナノ粒子をマスクとしたリソグラフィ法、自己組織化構造をマスクとしたリソグラフィ法等が挙げられる。特に、凹凸構造の加工精度や加工速度の観点から、ナノ粒子をマスクとしたリソグラフィ法又は、転写法を採用すると好ましい。転写法については,LED用パタンウェハ(1)にて説明した通りである。
 凹凸構造Aを具備したLED用ウェハに対し、別途凹凸構造Lを設けることでLED用パタンウェハ(2)710を製造できる。
 凹凸構造Lを別途設ける方法としては、例えば、転写法、粒子を内包する薄膜をLED用ウェハ702上に成膜し、その後粒子間を満たすバインダーを除去する方法が挙げられる。また、LED用ウェハ702上に成膜したレジストの一部を除去し、除去された部分に凹凸構造Lを構成する材料を満たし(例えば、蒸着やスパッタ法、電鋳法等)、最後にレジストを除去する方法が挙げられる。また、凹凸構造Lの材料を成膜し、成膜された凹凸構造Lの膜を直接加工する方法が挙げられる。
 以下、本発明の効果を確認するために行った実施例について説明する。
 以下の説明において使用する記号は、以下の意味を示す。
・DACHP…フッ素含有ウレタン(メタ)アクリレート(OPTOOL(登録商標) DAC HP(ダイキン工業社製))
・M350…トリメチロールプロパン(EO変性)トリアクリレート(東亞合成社製 M350)
・I.184…1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製 Irgacure(登録商標、以下同じ) 184)
・I.369…2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(BASF社製 Irgacure 369)
・TTB…チタニウム(IV)テトラブトキシドモノマー(和光純薬工業社製)
・SH710…フェニル変性シリコーン(東レ・ダウコーニング社製)
・3APTMS…3-アクリロキシプロピルトリメトキシシラン(KBM5103(信越シリコーン社製))
・MEK…メチルエチルケトン
・MIBK…メチルイソブチルケトン
・DR833…トリシクロデカンジメタノールジアクリレート(SR833(SARTOMER社製))
・SR368…トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレート(SR833(SARTOMER社製))
 LED用パタンウェハ(1)を作製し、LED用パタンウェハ(1)を使用して、LED用エピタキシャルウェハを作製し、内部量子効率IQE及びクラックを評価した。続いて、チップ化を行い、LEDの効率を比較した。
 以下の検討においては、LED用パタンウェハ(1)を作製するために、まず(1)円筒状マスターモールドを作製し、(2)円筒状マスターモールドに対して光転写法を適用し、リール状樹脂モールドを作製した。(3)その後、リール状樹脂モールドをナノ加工用フィルムへと加工した。続いて、(4)ナノ加工用フィルムを使用し、LED用パタンウェハ(1)を作製した。最後に、(5)LED用パタンウェハ(1)を使用し、LED用エピタキシャルウェハを作製し、性能を評価した。なお、凹凸構造Aは、(1)にて作製する円筒状マスターモールドの凹凸構造、(3)にて行う光転写法、(4)にて作製するナノ加工用フィルムにより制御した。
(1)円筒状マスターモールドの作製
 半導体レーザを用いた直接描画リソグラフィ法により円筒状石英ガラスの表面に、凹凸構造を形成した。まず円筒状石英ガラス表面上に、スパッタリング法によりレジスト層を成膜した。スパッタリング法は、ターゲット(レジスト層)として、3インチφのCuO(8atm%Si含有)を用いて、RF100Wの電力で実施し、20nmのレジスト層を成膜した。続いて、円筒状石英ガラスを回転させながら、波長405nmn半導体レーザを用い全面を露光した。その後、露光されたレジスト層に対し、波長405nmの半導体レーザを使用し、パルス露光を行った。なお、パルスパタンは正六方配列となるように設定した。次に、露光後のレジスト層を現像した。レジスト層の現像は、0.03wt%のグリシン水溶液を用いて、240秒間処理とした。次に、現像したレジスト層をマスクとし、ドライエッチングによるエッチング層(石英ガラス)のエッチングを行った。ドライエッチングは、エッチングガスとしてSFを用い、処理ガス圧1Pa、処理電力300Wの条件で実施した。最後に、表面に凹凸構造が付与された円筒状石英ガラスから、レジスト層残渣のみを、pH1の塩酸を用い剥離した。剥離時間は6分間とした。
 得られた円筒状石英ガラスの凹凸構造に対し、フッ素系離型剤であるデュラサーフ(登録商標、以下同じ)HD-1101Z(ハーベス社製)を塗布し、60℃で1時間加熱後、室温で24時間静置し固定化した。その後、デュラサーフHD-ZV(ハーベス社製)で3回洗浄し、円筒状マスターモールドを得た。
(2)リール状樹脂モールドの作製
 作製した円筒状マスターモールドを鋳型とし、光ナノインプリント法を適用し、連続的にリール状樹脂モールドG1を作製した。続いて、リール状樹脂モールドG1をテンプレートとして、光ナノインプリント法により、連続的にリール状樹脂モールドG2を得た。
 PETフィルムA-4100(東洋紡社製:幅300mm、厚さ100μm)の易接着面にマイクログラビアコーティング(廉井精機社製)により、塗布膜厚3μmになるように以下に示す材料1を塗布した。次いで、円筒状マスターモールドに対し、材料1が塗布されたPETフィルムをニップロールで押し付け、大気下、温度25℃、湿度60%で、ランプ中心下での積算露光量が1500mJ/cmとなるように、フュージョンUVシステムズ・ジャパン株式会社製UV露光装置(Hバルブ)を用いて紫外線を照射し、連続的に光硬化を実施し、表面に凹凸構造が転写されたリール状樹脂モールドG1(長さ200m、幅300mm)を得た。ここで、ニップロールの押圧により、PETフィルム上に設けられる材料1の硬化体の膜厚が1500nmになるように調整した。
 次に、リール状樹脂モールドG1をテンプレートとして見立て、光ナノインプリント法を適用し連続的に、リール状樹脂モールドG2を作製した。
 PETフィルムA-4100(東洋紡社製:幅300mm、厚さ100μm)の易接着面にマイクログラビアコーティング(廉井精機社製)により、材料1を塗布膜厚3μmになるように塗布した。次いで、リール状樹脂モールドG1の凹凸構造面に対し、材料1が塗布されたPETフィルムをニップロール(0.1MPa)で押し付け、大気下、温度25℃、湿度60%で、ランプ中心下での積算露光量が1200mJ/cmとなるように、フュージョンUVシステムズ・ジャパン株式会社製UV露光装置(Hバルブ)を用いて紫外線を照射し、連続的に光硬化を実施し、表面に凹凸構造が転写されたリール状樹脂モールドG2(長さ200m、幅300mm)を複数得た。
材料1…DACHP:M350:I.184:I.369=17.5g:100g:5.5g:2.0g
(3)ナノ加工用フィルムの作製
 リール状樹脂モールドG2の凹凸構造面に対して、下記材料2の希釈液を塗工した。続いて、材料2を凹凸構造内部に内包するリール状樹脂モールドG2の凹凸構造面上に、下記材料3の希釈液を塗工し、ナノ加工用フィルムを得た。
材料2…TTB:3APTMS:SH710:I.184:I.369=65.2g:34.8g:5.0g:1.9g:0.7g
材料3…Bindingpolymer:SR833:SR368:I.184:I.369=38g:11.5g:11.5g:1.47g:0.53g
Bindingpolymer…ベンジルメタクリレート80質量%、メタクリル酸20質量%の2元共重合体のメチルエチルケトン溶液(固形分50%、重量平均分子量29000)
 (2)リール状樹脂モールドの作製と同様の装置を使用し、PGME、アセトン、及びイソプロパノールの混合溶剤にて希釈した材料2を、リール状樹脂モールドG2の凹凸構造面上に直接塗工した。ここで、希釈濃度は、単位面積当たりの塗工原料(混合溶剤にて希釈した材料2)中に含まれる固形分量が、単位面積当たりの凹凸構造の体積よりも20%以上小さくなるように設定した。塗工後、105℃の送風乾燥炉内を5分間かけて通過させ、材料2を凹凸構造内部に内包するリール状樹脂モールドG2を巻き取り回収した。
 続いて、材料2を凹凸構造内部に内包するリール状樹脂モールドG2を巻き出すと共に、(2)リール状樹脂モールドの作製と同様の装置を使用し、PGME、MEK、MIBK及びアセトンの混合溶剤にて希釈した材料3を、凹凸構造面上に直接塗工した。ここで、希釈濃度は、凹凸構造内部に配置された材料2と塗工された材料3の界面と、材料3の表面と、の距離が400nm~800nmになるように設定した。塗工後、105℃の送風乾燥炉内を5分間かけて通過させ、材料3の表面に離型処理を施したPETフィルムから成るカバーフィルムを合わせ、巻き取り回収した。
(4)LED用パタンウェハ(1)10の製造
 LED用パタンウェハ(1)10としてはA面(11-20)にオリフラのあるC面(0001)の4インチφのサファイアウェハを使用した。
 サファイアウェハに対しUV-O処理を5分間行い、表面のパーティクルを除去すると共に、親水化した。続いて、ナノ加工用フィルムの材料3表面を、サファイアウェハに対して貼合した。ここで、リール状樹脂モールドG2の凹凸構造は複数の凹部が正六方配列した凹凸構造である。即ち、ナノ加工用フィルムは、6回対称の凹部配列を具備するリール状樹脂モールドG2を含む。ここで、サファイアウェハの結晶軸と、ナノ加工用フィルムの凹凸構造の配列軸Aと、を所定の回転シフト角Θの範囲内にて調整し、貼合をした。貼合は、回転シフト角Θを調整し、サファイアウェハを110℃に加温した状態で行った。続いて、高圧水銀灯光源を使用し、中心波長が365nmのUV-LED光源を使用し、積算光量が1200mJ/cmになるように、リール状樹脂モールドG2越しに光照射した。その後、リール状樹脂モールドG2を剥離した。
 得られた積層体(材料2/材料3/サファイアウェハからなる積層体)の材料2面側より酸素ガスを使用したエッチング(酸素アッシング)を行い、材料2をマスクとして見立て材料3をナノ加工し、サファイアウェハ表面を部分的に露出させた。酸素アッシングとしては、処理ガス圧1Pa、処理電力300Wの条件にて行った。続いて、材料2面側からBClガスとClガスの混合ガスを使用した反応性イオンエッチングを行い、サファイアウェハをナノ加工した。エッチングは、ICP:150W、BIAS:50W、圧力0.2Paにて実施し、反応性イオンエッチング装置(RIE-101iPH、サムコ株式会社製)を使用した。
 最後に、硫酸及び過酸化水素水を2:1の重量比にて混合した溶液にて洗浄し、凹凸構造20、即ち凹凸構造Aを表面に具備する、複数のサファイアウェハを得た。
 サファイアウェハ上に作製した凹凸構造Aの凸部頂部の形状は、反応性イオンエッチングの処理時間で調整した。即ち、材料3が完全に消失する前に反応性イオンエッチングを停止させることで、凸部頂部にテーブルトップのある形状を作製し、材料3が完全に消失するまで反応性イオンエッチングを行うことで、凸部頂部にテーブルトップがなく丸みを帯びた頂部を作製した。また、反応性イオンエッチングを過剰に行う、即ちオーバーエッチングを適用することで、凸部の底部の径(φ)を調整した。
(5)LED用エピタキシャルウェハの作製
 得られたLED用パタンウェハ(1)上に、バッファー層としてAlGa1-xN(0≦x≦1)の低温成長バッファー層を100Å成膜した。次に、非ドープ第1半導体層として、アンドープのGaNを成膜し、ドープ第1半導体層として、SiドープのGaNを成膜した。続いて、歪吸収層を設け、その後発光半導体層として、多重量子井戸の活性層(井戸層、障壁層=アンドープのInGaN、SiドープのGaN)をそれぞれの膜厚を(60Å、250Å)として井戸層が6層、障壁層が7層となるように交互に積層した。発光半導体層上に、第2半導体層として、エレクトロブロッキング層を含むようにMgドープのAlGaN、アンドープのGaN、MgドープのGaNを積層した。続いて、ITOを成膜し、エッチング加工した後に電極パッドを取り付けた。この状態で、プローバを用いてp電極パッドとn電極パッドの間に20mAの電流を流し発光出力を測定した。
 内部量子効率IQEはPL強度より決定した。内部量子効率IQEは、(単位時間に発光半導体層より発せられるフォトンの数/単位時間に半導体発光素子に注入される電子の数)により定義される。本実施例においては、上記内部量子効率IQEを評価する指標として、(300Kにて測定したPL強度/10Kにて測定したPL強度)を採用した。
 光取り出し効率LEEは、発光出力と内部量子効率IQEより計算して算出した。
 クラックは、半導体層の成膜をファセット形成過程にて止めた状態のLED用エピタキシャルウェハに対して、半導体層面側から、光学顕微鏡、原子間力顕微鏡、及び走査型電子顕微鏡を用いた観察を行い判断した。また、合わせて当該LED用エピタキシャルウェハを割断し、半導体層の断面に対する走査型電子顕微鏡観察を行い、クラックを評価した。
(実施例1、比較例1)
 実施例1及び比較例1においては、凸部頂部の形状の影響を調査した。凸部頂部の形状は走査型電子顕微鏡を用い観察した。凹凸構造Aは、正六方配列であった。即ち、6回対称配列であった。また、平均間隔Paveとしては、300nmと900nmの2種類を作製した。回転シフト角Θは30°とした。このもとで、凸部頂部が、丸みを帯びた角部である形状の場合(実施例1)と、テーブルトップのある場合(比較例1)と、を比較した。作製したサンプルを表1に記載した。なお、実施例1の凸部頂部の断面に対する形状は、コーン状であった。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、凸部頂部の形状が丸みを帯びた角部である場合(実施例1)、内部量子効率IQEが向上すると共に、クラックが低減していることがわかる。まず、内部量子効率IQEについては、凸部頂部の形状が丸みを帯びた角部である場合(実施例1)、透過型電子顕微鏡観察より、凹凸構造Aの凹部近傍において転位同士が衝突して消失していることが確認されたことから、転位密度が低減したためと考えられる。一方で、凸部頂部にテーブルトップのある場合(比較例1)、テーブルトップ上より転位が生成し、該転位が半導体層の厚み方向に成長していることが観察された。即ち、転位同士の衝突頻度は少なく、転位密度が高いことから、内部量子効率IQEの改善程度が低いと考えられる。次に、クラックについて、半導体層の成長を途中で止め、表面に対する走査型電子顕微鏡観察を用い詳細に観察したところ、凸部頂部に丸みのある場合(実施例1)は、凹凸構造Aの凹部より優先的に半導体層が成長し、成長した半導体層同士が良好に合体する様子が観察された。より具体的には、クラックとは、形成されたファセットによる6角形の開口部に注目した際に、ある開口部とそれに隣接する開口部において、互いに対向する辺に垂直な方向に走る亀裂の密度である。平均間隔Paveが300nm及び900nmの場合、クラック密度は、それぞれ、39×10/cm及び41×10/cmであった。一方で、凸部頂部にテーブルトップのある場合(比較例1)、凸部頂部上より成長する半導体層の影響で、凸部頂部と凸部の側面部とから構成される凸部の頂部の外縁部近傍に部分的にボイドが形成されることが観察された。このボイドをきっかけにクラックが発生したものと推定される。より具体的には、平均間隔Paveが300nm及び900nmの場合、クラック密度は、それぞれ、93×10/cm及び99×10/cmであった。
(実施例2、比較例2)
 実施例2及び比較例2においては、回転シフト角Θの影響を調査した。凹凸構造Aの配列は正六方配列、即ち6回対称の配列である。また、平均間隔Paveは全て300nm、凸部頂部の形状は全て丸みのある角部であり、実施例1の形状と同様とした。回転シフト角Θをパラメータとして、0°から10°刻みに30°まで変化させた。評価したサンプルを表2にまとめた。表2に記載のサンプルにおいては、内部量子効率IQEは、いずれのサンプルも略同じであり、約90%であった。
Figure JPOXMLDOC01-appb-T000002
 表2の評価項目のクラックは、回転シフト角Θが0°の場合(比較例2)を1として規格化した。より具体的には、回転シフト角Θが0°、10°、20°、及び30°と変化するにつれて、クラック密度は、81×10/cm、72×10/cm、58×10/cm及び53×10/cmであった。表2より、回転シフト角Θが大きくなると、クラックが低下することがわかる。これは、回転シフト角Θが大きくなることで、半導体層の凹凸構造Aの凹部の底部に対する核の付着性が良好になることと、成長する半導体層の通過する凸部の密度が低減されるためと考えられる。また、回転シフト角が大きい程、クラックが良好になるのは、凸部底部の径の影響と推定される。即ち、凸部底部の径も含めた成長する半導体層の通過する凸部密度を考えると、回転シフト角Θが約20°を超えたあたりから、該密度の低下が著しくなるためと考えられる。
 以上、実施例1及び実施例2より、凹凸構造Aの凸部頂部は丸みを帯びた角部であり、且つ回転シフト角Θが0°超の領域が好ましいことがわかった。既に別の検討として図13及び図14で記述したように、クラック密度は70×10個/cm以下の領域において、半導体層のFWHM及びCL暗転密度が効果的に改善されたことから、回転シフト角Θを0°超に設定し、同時に凸部頂部の形状を曲率半径が0超の角部にすることで、クラック抑制の効果により、半導体層の結晶品位が大きく向上すると考えることができる。なお、本実施例においては、回転シフト角Θの制御性は±1°である。回転シフト角Θが10°以上にてクラックの抑制がより効果的であった。特に、回転シフト角Θは、10°、20°、30°と大きくなるにつれクラック低減の効果が大きくなることがわかる。なお、最も好ましくは、Θは30°、即ち(180/n)°=(180/6)°の場合であった。なお、上記結果は、絶対値の差こそあれ、図15に示す形状を有すLED用パタンウェハ(1)に対しても、同様の傾向が観察された。このことから、曲率半径0超の角部を有す凸部頂部により構成される凹凸構造Aを含むLED用パタンウェハ(1)を使用することで、回転シフト角Θの効果を引き出し、クラックを効果的に抑制できることがわかった。
(実施例3)
 実施例3においては、平均間隔Paveのより好ましい範囲を調査した。LED用パタンウェハ(1)の凹凸構造Aは正六方配列(6回対称配列)、凸部頂部の形状は丸みを帯びた角部、凸部頂部断面形状はドーム状、そして回転シフト角Θは30°とした。パラメータは、平均間隔Paveであり、200nmから1800nmの範囲にて調整した。作製したサンプルを表3にまとめた。
Figure JPOXMLDOC01-appb-T000003
 表3より、平均間隔Paveが小さい程、内部量子効率IQEが向上することがわかった。これは、平均間隔Paveが小さい程、凹凸構造Aの密度が向上するため、半導体層の転位を分散化できるためと推定される。より具体的は、成長する半導体層同士の合体頻度を高くすると共に、合体箇所を分散化できるためと考えられる。特に、この現象は、凸部頂部の形状が丸みを帯びた角部であることで発現されることが確認されている。即ち、表3には未記載のテーブルトップのある凸部を作製した場合、該凸部頂部上に位置する半導体層内に転位が確認された。このため、内部量子効率IQEが低下する傾向にあった。
 なお、LEDの発光出力を評価したところ、平均間隔Paveが200nmの場合よりも平均間隔Paveが300nmの場合が大きかった。また、平均間隔Paveが1200nm及び1500nmの場合に比べ、平均間隔Paveが900nmの場合の方が発光出力が大きかった。更に、平均間隔Paveが900nmの場合に比べ、平均間隔Paveが300nmの場合の方が発光出力が大きかった。このように、内部量子効率IQEの大きさのみでLEDチップの性能が決定されないことがわかる。これは、光取り出し効率LEEの影響である。発光出光の大きな順に並べると、平均間隔Paveが、300nm、900nm、700nm、450nm、1200nm、200nm、1800nmであった。これは、平均間隔Paveが300nmの場合、光回折が非常に強く作用し、回折モード数は限定されるが、所定の方向への回折強度が大きいと考えられる。次に、平均間隔Paveが900nm及び700nmでは、回折モード強度は小さくなるが、回折モード数が大きく増加するためと考えられる。平均間隔が1000nmを超える場合、光散乱性が強くなりすぎるため、LEDチップ内部にて導波していた光が、その進行方向を一度乱され、再度導波する確率が起きくなるため、発光出力が低下すると考えられる。以上より、平均間隔Paveが小さい程、内部量子効率IQEが大きくなることがわかった。また、LED用エピタキシャルウェハとしては、平均間隔Paveが200nm~1200nmが好ましく、300nm~900nmがより好ましいことがわかった。
(実施例4)
 実施例4においては、凹凸構造AのDutyのより好ましい範囲を調査した。LED用パタンウェハ(1)の凹凸構造Aは正六方配列(6回対称配列)、凸部頂部の形状は丸みを帯びた角部、凸部頂部の断面形状はドーム状、そして回転シフト角Θは30°、平均間隔Paveは700nmとした。パラメータは、Dutyであり、0.29から0.93の範囲にて調整した。作製したサンプルを表4にまとめた。
Figure JPOXMLDOC01-appb-T000004
 表4より、Dutyが0.86と0.93の間で内部量子効率IQEが大きく変わっていることがわかる。これは、Dutyが0.93の場合、凹部の底部の大きさが、半導体層の安定な核の大きさよりも小さくなっているためと考えられる。即ち、核の付着と成長性が多少損なわれるため、転位低減の効果が低くなり、内部量子効率IQEが低下したものと推定される。一方で、Dutyが大きい程光取り出し効率LEEが向上することがわかる。これは、フォトンから見た凸部の体積が大きくなるため、光回折のモード数が増加するためと考えられる。なお、クラックについては、全てのサンプルで略同様であった。以上から、LED用エピタキシャルウェハとしてみた場合、凹凸構造AのDutyは、0.93未満であることが好ましいことがわかる。また、外部量子効率EQEをより大きくする観点から、0.57以上であることが好ましく、0.71以上であるとより好ましいことがわかった。なお、クラック密度については、40×10/cm~50×10/cmの間にあった。
(実施例5)
 実施例5においては、LED用エピタキシャルウェハの第1半導体層の厚みと凹凸構造Aの関係のより好ましい範囲を調査した。非ドープ第1半導体層の膜厚(Hbu)及びドープ第1半導体層の膜厚(Hbun)、そして凹凸構造Aの平均間隔(Pave)と平均高さ(Have)をパラメータとして、内部量子効率IQE、クラック、及びLED用エピタキシャルウェハの反りを評価した。
 検討結果を表5にまとめた。なお、表5に記載の用語の意味は以下の通りである。
・No.:サンプルの管理番号
・n:凹凸構造Aの配列次数(n回対称配列のn)
・Pave:凹凸構造Aの平均間隔(Pave)であり、ディメンジョンは「nm」
・Have:凹凸構造Aの平均高さ(Have)であり、ディメンジョンは「nm」
・Θ:回転シフト角Θであり、ディメンジョンは「°」
・Hbun:第1半導体層の膜厚であり、ディメンジョンは「nm」
・Hbu:非ドープ第1半導体層の膜厚であり、ディメンジョンは「nm」
・Hbun/Have:第1半導体層の膜厚と凹凸構造Aの平均高さ(Have)と、の比率であり無次元値
・Hbu/Have:非ドープ第1半導体層の膜厚と、凹凸構造Aの平均高さ(Have)と、の比率であり無次元値
・IQE:内部量子効率であり、ディメンジョンは「%」
・クラック:半導体層に生成したクラックであり、実施例1と同等の場合を〇、比較例1と同等の場合を×とした。
・反り:チップ化に支障をきたした場合を「×」、問題のなかった場合を「〇」として評価
・総合: IQE及び反りを考慮した総合評価
Figure JPOXMLDOC01-appb-T000005
 なお、表5に記載の比較例5は、凹凸構造を具備しない平坦なサファイアウェハを使用し、実施例1と同様に、LED用エピタキシャルウェハを製造した場合である。
 また、表5に記載のサンプルは、全て、凸部の形状が丸みを帯びた角部を具備するものである。また、Dutyは、0.7とした。
 表5より、以下のことがわかる。Hbun/Haveが6.0以上346.2以下の範囲において、内部量子効率IQEが凹凸構造を具備しない場合(比較例5)に比べ、1.17倍~1.7倍へ、と大きくなっていると共に、LED用エピタキシャルウェハの反りも抑制されている。この時のHbu/Haveは、3.3以上203.8以下である。また、Hbun/Haveが17.6以上72.5以下であれば、内部量子効率IQEの改善と反りの低減がより顕著になることがわかる。この時のHbu/Haveは、9.6以上42.5以下である。これは、Hbun/Haveが所定の値以上の範囲を満たすことから、凹凸構造Aにより第1半導体層内の転位を分散化し低減できていること、及び、Hbun/Haveが所定の値以下の範囲を満たすことから、第1半導体層の膜厚を薄くすることが可能となり反りを低減できているためと考えられる。No.12においては、Hbun/Haveが6.0、Hbu/Haveが3.3と小さな値となっている。このため、内部量子効率IQEの、凹凸構造のない場合(比較例5)と比べた向上率が僅かに低い。これは、第1半導体層内部における転位低減効果が僅かに弱いため、発光半導体層及び第2半導体層の半導体としての性能向上が限定されたためと考えることができる。また、No.1においては、Hbun/Haveが346.2、Hbu/Haveが203.8と大きな値であり、LED用エピタキシャルウェハの反りがチップ化に影響していることがわかる。以上より、Hbun/Haveが所定の範囲内にあることにより、内部量子効率IQEの改善と反りの低減をより良好に同時に改善できることがわかる。
(LED用パタンウェハ(2))
 以上、実施例1から実施例5では、LED用パタンウェハ(1)について説明した。以下の実施例においては、LED用パタンウェハ(1)に対して、更に別の凹凸構造Lを付加したLED用パタンウェハ(2)について説明する。
 以下の検討においては、上記実施例1から実施例5においてLED用パタンウェハ(1)を製造するために使用したナノ加工用フィルムを使用し、LED用ウェハ表面に凹凸構造Aを作製した。次に凹凸構造Lを更に設け、凹凸構造A及び凹凸構造Lを具備するLED用パタンウェハ(2)を得た。最後に、得られた凹凸構造を具備したLED用パタンウェハ(2)を使用し、LED用エピタキシャルウェハを作製し、その後チップ化を行い、性能を評価した。なお、凹凸構造Lは、フォトリソグラフィ法におけるマスク形状及びドライエッチング条件により制御した。実施例1と同様にして作製し、実施例1と同様に離型処理を行った。
 ナノ加工用フィルムを、上記実施例1から実施例5のLED用パタンウェハ(1)を製造したのと同様に使用し、LED用ウェハを加工した。LED用ウェハとしてはA面(11-20)にオリフラのあるC面(0001)サファイアウェハを使用した。なお、LED用ウェハの大きさは4インチφのものを使用した。
 サファイアウェハ上に作製した凹凸構造Aの凸部頂部の形状は、実施例1から実施例5のLED用パタンウェハ(1)と同様に制御した。
 凹凸構造Aの設けられたLED用ウェハ、即ちLED用パタンウェハ(1)を更に加工し、凹凸構造Lを作製した。LED用パタンウェハ(1)の凹凸構造A上に、フォトレジスト用のノボラック樹脂をスピンコート法により成膜し、120℃のホットプレート上でプリベークを行った。次にリソグラフィを行い、凹凸構造Lを作製した。ここで、フォトレジストをネガ現像し使用することで凹凸構造Lをドット形状とし、フォトレジストをポジ現像することで凹凸構造Lをホール構造とした。いずれの場合も、凹凸構造Lとして、凸部或いは凹部が正六方配列に並び、且つ、平均間隔PLが3.2μmになるようにした。
 得られたLED用パタンウェハ(2)を走査型電子顕微鏡により観察した。ドット状の凹凸構造Lは、以下のドット状体であった。
・平均間隔PLが3.2μmであり、正六方配列している。
・ドットの底部径は、2.4μmであり、底部形状は略円形。
・ドット間の凹部底部は平坦であった。
・ドット頂部には平坦面があり、ドットは円錐台形状。ドット頂部の平坦面は略円形であり、その直径は1.6μmであった。
・ドット頂部は略円形のテーブルトップであり、ドット頂部上にのみ凹凸構造Aが配置されていた。
 一方、ホール状の凹凸構造Lは、以下のホール状体であった。
・平均間隔PLが3.2μmであり、正六方配列している。
・ホールの開口部径は、1.5μmであり、開口形状は略円形。
・ホールの深さは、1.4μmである。
・ホール間の凸部頂部は平坦であり、この平坦面上にのみ凹凸構造Aが配置されていた。
・ホールの形状は底面が略円形の円錐であり、円錐の頂部は曲率半径が0超の角部であった。
 また、別の凹凸構造Lも作製した。まず、LED用パタンウェハ(1)の凹凸構造Aの上に、スピンオングラスをスピンコート法により成膜し、続いて焼結してSiOとした。この時、凹凸構造AはSiOにより平坦化されていることを確認した。次に、SiO上に、フォトレジスト用のノボラック樹脂をスピンコート法により成膜し、120℃のホットプレート上でプリベークを行った。次にリソグラフィを行い、SiOのみを加工し、凹凸構造Lを作製した。ここでは、フォトレジストをポジ現像し、凹凸構造Aの表面上に部分的に略円盤状のSiOを作製した。平均間隔PLは3.2μmとし、配列は正六方配列とした。
 得られたLED用パタンウェハ(2)を走査型電子顕微鏡により観察したSiOパタン(凹凸構造L)は、以下のドット状体であった。
・平均間隔PLが3.2μmであり、正六方配列している。
・ドットの底部径は、1.5μmであり、底部形状は略円形。
・ドット間の凹部底部には、凹凸構造Aが設けられていた。
 LED用パタンウェハ(2)上に、バッファー層としてAlGa1-xN(0≦x≦1)の低温成長バッファー層を100Å成膜した。次に、非ドープ第1半導体層として、アンドープのGaNを成膜し、ドープ第1半導体層として、SiドープのGaNを成膜した。続いて、歪吸収層を設け、その後発光半導体層として、多重量子井戸の活性層(井戸層、障壁層=アンドープのInGaN、SiドープのGaN)をそれぞれの膜厚を(60Å、250Å)として井戸層が6層、障壁層が7層となるように交互に積層した。発光半導体層上に、第2半導体層として、エレクトロブロッキング層を含むようにMgドープのAlGaN、アンドープのGaN、MgドープのGaNを積層した。続いて、ITOを成膜し、エッチング加工した後に電極パッドを取り付けた。この状態で、プローバを用いてp電極パッドとn電極パッドの間に20mAの電流を流し発光出力を測定した。
 内部量子効率IQEはPL強度より決定した。内部量子効率IQEは、(単位時間に発光半導体層より発せられるフォトンの数/単位時間にLEDに注入される電子の数)により定義される。本実施例においては、上記内部量子効率IQEを評価する指標として、(300Kにて測定したPL強度/10Kにて測定したPL強度)を採用した。
 光取り出し効率LEEは、発光出力と内部量子効率IQEより計算して算出した。
 クラックは、半導体層を成膜した後のLED用エピタキシャルウェハの半導体層面側から、光学顕微鏡、原子間力顕微鏡、及び走査型電子顕微鏡を用いた観察を行い判断した。また、合わせてLED用エピタキシャルウェハを割断し、半導体層の断面に対する走査型電子顕微鏡観察を行い、クラックを評価した。なお、クラックの評価については、ファセット形成途中にて半導体層の成膜を停止したものを使用した。
(実施例6、比較例6)
 実施例6においては、以下のことを調査した。
1.従来技術であるPatterned Sapphire Substrate(PSS)、即ち凹凸構造LのみのLED用パタンウェハと、凹凸構造A及び凹凸構造Lの双方を有するLED用パタンウェハ(2)と、の比較
2.凹凸構造Aの凸部頂部の形状の影響
3.ドット状の凹凸構造Lとホール状の凹凸構造Lと、の差
4.凹凸構造Lの凸部頂部上に凹凸構造Aが設けられる場合と、凹凸構造Lの凹部底部に凹凸構造Aが設けられる場合と、の差
 凹凸構造Aの凸部頂部の形状は走査型電子顕微鏡を用い観察した。凹凸構造Aは、正六方配列であった。即ち、6回対称配列であった。また、平均間隔PAは300nm、凸部底部の径は、220nmとした。回転シフト角Θは30°とした。このもとで、凸部頂部が、丸みを帯びた角部である形状の場合と、テーブルトップのある場合と、を反応性イオンエッチングの処理時間を変更しそれぞれ作製した。なお、丸みを帯びた角部である形状とは、凸部の断面形状を想定した時に、当該断面の輪郭が、僅かに上に凸に膨らんだ曲線同士が、凸部の頂部にて交差するような形状である。換言すれば、凸部の側面部は、僅かに上の膨らんだ形状である。また、比較例6のサンプルであるPSSは、凹凸構造Lのみを上記説明したフォトリソグラフィ法により作製した。作製したサンプルを表6に記載した。
 表6に記載の用語の意味は以下の通りである。
・n…凹凸構造Aの回転対称次数。
・PA…凹凸構造Aの平均間隔であり、ディメンジョンは「nm」。
・Θ…凹凸構造Aの回転シフト角Θであり、ディメンジョンは「°」。
・凸部頂部形状…凹凸構造Aの凸部の頂部の形状。テーブルトップ(100nm)は、凹凸構造Aの凸部の頂部の平坦面の径が100nmであることを意味する。
・m…凹凸構造Lの回転対称次数。
・PL…凹凸構造Lの平均間隔であり、ディメンジョンは「nm」。
・構造…上記説明した方法により凹凸構造Aを直接加工し凹凸構造Lを設けた場合において、凹凸構造Lがドット状の場合をdotと、凹凸構造Lがホール状の場合はhollと記載した。また、凹凸構造Aの表面上に別途、SiOから成る凹凸構造Lの凸部を設けた場合を、SiOと記載した。これらの用語は、実施例7から実施例9中でも使用しているが、同じ意味である。
・AonL…凹凸構造Lの凸部の頂部上面に凹凸構造Aが配置されている場合
・AinL…凹凸構造Lの凹部の底部に凹凸構造Aが配置されている場合
・PL/PA…平均間隔PLと平均間隔PAとの比率。
・IQE…内部量子効率であり、既に説明した方法にて算出した値。ディメンジョンは「%」。
・発光出力比…凹凸構造Lのみの場合(比較例6)を1として規格化した発光出力。
・クラック…光学顕微鏡により観察されるクラック。発光出力に異常をきたしたLEDチップが、10%以上の場合を△、5%以上10%未満の場合を〇、5%未満の場合を◎とした。
Figure JPOXMLDOC01-appb-T000006
 表6からわかるように、凹凸構造Lのみの場合(比較例6)に比べて、凹凸構造A及び凹凸構造Lの双方が設けられている場合、クラック、内部量子効率IQE、そして発光出光の全てが改善していることがわかる。これは、比較例6の場合、マイクロスケールの凹凸構造Lにより、光取り出し効率LEEを向上させることはできるが、凹凸構造Lの密度が小さいことから、内部量子効率IQEの改善ができないことによる。凹凸構造Aが設けられることで、透過型電子顕微鏡観察から、転位が消失し減少していることが確認された。即ち、凹凸構造Aの設けられる場合、凹凸構造Aの凹部より半導体層の成長を開始させることができる。これにより、転位が低減する。更に、転位の低減は、成長する半導体層同士の合体が原理であることから、凹凸構造Aにより該合体箇所を分散化することができている。これにより、半導体層への残留応力が低減し、クラックが抑制されたものと推定される。
 凹凸構造A及び凹凸構造Lの双方が設けられる場合、凹凸構造Aの凸部の頂部の形状が、凹凸構造L種よりも、強く影響することがわかる。凹凸構造Aの凸部の頂部の形状が丸みを帯びた角部である場合、内部量子効率IQEがより向上すると共に、クラックが低減していることがわかる。まず、内部量子効率IQEについては、凸部頂部の形状が丸みを帯びた角部である場合、透過型電子顕微鏡観察より、凹凸構造の凹部近傍において転位同士が衝突して消失する確率が高いことが確認された。走査型電子顕微鏡観察像より見積もったクラック密度は、凹凸構造Aの凸部の形状が丸みを帯びた角部の場合、51~57×10/cmであった。一方で、凹凸構造Aの凸部頂部にテーブルトップのある場合、テーブルトップ上より転位が生成し、該転位が半導体層の厚み方向に成長していることが観察された。また、半導体層の成長を途中で止め、表面に対する走査型電子顕微鏡観察を用い詳細に観察したところ、凸部頂部に丸みのある場合は、凹凸構造の凹部より優先的に半導体層が成長し、成長した半導体層同士が良好に合体する様子が観察された。走査型電子顕微鏡観察像より見積もったクラック密度は、82~89×10/cmであった。一方で、凸部頂部にテーブルトップのある場合、凸部頂部上より成長する半導体層の影響で、凸部頂部と凸部の側面部と、から構成される凸部の頂部の外縁部近傍に部分的にボイドが形成される頻度がやや高いことも観察された。即ち、転位同士の衝突頻度を高め、転位密度を効果的に低減させる観点から、凹凸構造Aの凸部頂部は、曲率半径が0超の角部であることが好ましいことがわかった。なお、これらの傾向については、図15に記載の凸部形状に対しても、類似の傾向として観察することができた。
 また、凹凸構造Lに対する凹凸構造Aの配置を比較すると、凹凸構造Lの凹部底部に凹凸構造Aが設けられる場合が、内部量子効率IQEの向上が最も大きいことがわかった。本検討においては、凹凸構造Aの表面上にSiOからなる凹凸構造Lの凸部を複数設けた。即ち、凹凸構造Lの凸部頂部から半導体層の成長は開始されない条件としている。このため、凹凸構造Lの凹部より優先的に半導体層を成長させることができる。ここで、凹凸構造Lの凹部底部には凹凸構造Aが設けられていることから、既に説明した現象に基づき、半導体層の転位が低減すると共に、クラックが抑制されたためと考えられる。
(実施例7、比較例7)
 実施例7においては、回転シフト角Θの影響を調査した。凹凸構造Aの配列は正六方配列、即ち6回対称の配列である。また、平均間隔PAは全て300nm、凸部頂部の形状は全て丸みのある角部、凸部底部の径は全て220nmとした。回転シフト角Θをパラメータとして、0°から10°刻み30°まで変化させた。また、凹凸構造Lは、ホール型(holl)とSiOの2種類をそれぞれ作製し評価した。ホール型の場合はAonL、SiOの場合はAinLとした。評価したサンプルを表7にまとめた。
Figure JPOXMLDOC01-appb-T000007
 表7に記載のサンプルにおいては、内部量子効率IQEは、凹凸構造Lがホール型の場合はいずれのサンプルにおいても略同じであり、約75%であった。また、凹凸構造LがSiOの場合はいずれのサンプルにおいても略同じであり、約85%であった。
 表7の評価項目のクラックは、回転シフト角Θが0°の場合を1として規格化し表記した。具体的な数値としては、凹凸構造Lがホール型の場合は、回転シフト角Θが0°、10°、20°そして30°へと変わるにつれて、クラック密度は、99×10/cm、87×10/cm、69×10/cmそして66×10/cmと変化した。一方で、凹凸構造LがSiOの場合は、81×10/cm、69×10/cm、56×10/cmそして54×10/cmと変化した。表7より、回転シフト角Θが大きくなると、クラック低下することがわかる。これは、LED用パタンウェハ(1)の凹凸構造Aの効果が、凹凸構造Lを設けた場合であっても、発揮されるためである。なお、これらの傾向については、図15に記載の凸部形状に対しても、類似の傾向として観察することができた。
 以上、実施例6及び実施例7より、凹凸構造A及び凹凸構造Lの双方を具備することで、内部量子効率IQE、光取り出し効率LEE、そしてクラックを改善できることがわかった。更に、凹凸構造Aの凸部頂部が丸みを帯びた角部であることにより、内部量子効率IQEの向上とクラックの抑制効果がより高くなることがわかった。また、回転シフト角Θが10°以上にてクラックが抑制された内部量子効率IQEの高い半導体層が成膜できていることがわかった。特に、回転シフト角Θは、10°、20°、30°と大きくなるにつれ反り低減の効果が大きくなることがわかる。なお、最も好ましくは、Θは30°、即ち(180/n)°=(180/6)°の場合であった。
(実施例8)
 実施例8においては、平均間隔PAと平均間隔PLとの比率のより好ましい範囲を調査した。LED用パタンウェハ(2)の凹凸構造Aは正六方配列(6回対称配列)、凸部頂部の形状は丸みを帯びた角部、そして回転シフト角Θは30°とした。パラメータは、平均間隔PL/平均間隔PAであり、平均間隔PLを固定して、平均間隔PAを動かすことで調整した。平均間隔PAは、200nmから1800nmの範囲にて調整した。また、凹凸構造Lは、平均間隔PLが3000nmのホール型(holl)、AonLを採用した。作製したサンプルを表8にまとめた。
Figure JPOXMLDOC01-appb-T000008
 表8より、比率(PL/PA)が大きい程、内部量子効率IQEが向上することがわかった。これは、比率(PL/PA)が大きい程、凹凸構造Aの効果を、凹凸構造Lを設けた場合であっても、より良好に発現できているためと考えられる。特に、比率(PL/PA)が大きいことは、凹凸構造Lから見た凹凸構造Aの存在感が減少することを意味する。即ち、CVDにより飛翔する半導体層からみた場合、まず凹凸構造Lが確認される。続いて、凹凸構造Lの表面に近づいた時に、初めて凹凸構造Aの存在を認識できる。裏を返せば、凹凸構造Lの大きな構造の影響を受けることなく、凹凸構造Aの表面にて良好な成長を遂げられることを意味している。実際に、半導体層の成長を途中で停止させ、走査型電子顕微鏡により成長具合を確認した結果、成長する半導体層同士の合体頻度が、比率(PL/PA)が大きい程高くすると共に、合体箇所を分散化できていることが確認された。特に、この現象は、凸部頂部の形状が丸みを帯びた角部であることでより良好に発現されることが確認されている。即ち、恣意的にテーブルトップのある凸部を作製した場合、該凸部頂部上に位置する半導体層内に転位が確認される頻度が増加した。このため、内部量子効率IQEが低下する傾向にあった。以上から、比率(PL/PA)は2.7超であることが好ましく、3.6以上であることがより好ましく、4.6以上であることが最も好ましいことがわかった。
 なお、LEDの発光出力を評価したところ、比率(PL/PA)が16.0の場合よりも比率(PL/PA)が10.7の場合が大きかった。また、比率(PL/PA)が2.7及び1.8の場合に比べ、比率(PL/PA)が3.6の場合の方が発光出力が大きかった。更に、比率(PL/PA)が3.6の場合に比べ、比率(PL/PA)が10.7の場合の方が発光出力が大きかった。このように、内部量子効率IQEの大きさのみでLEDの性能が決定されないことがわかる。これは、光取り出し効率LEEの影響である。発光出光の大きな順に並べると、比率(PL/PA)が、10.7、3.6、4.6、7.1、2.7、16.0、1.8であった。これは、比率(PL/PA)が10.7の場合、光回折が非常に強く作用し、回折モード数は限定されるが、所定の方向への回折強度が大きい他と考えられる。次に、比率(PL/PA)が3.6及び4.6では、回折モード強度は小さくなるが、回折モード数が大きく増加するためと考えられる。比率(PL/PA)が3.6を下回る場合、光散乱性が強くなりすぎるため、LED内部にて導波していた光が、その進行方向を一度乱され、再度導波する確率が起きくなるため、発光出力が低下すると考えられる。以上より、比率(PL/PA)が大きい程、内部量子効率IQEが大きくなることがわかった。また、LEDとしては、比率(PL/PA)が2.7~16.0が好ましく、3.6~10.7がより好ましいことがわかった。なお、凹凸構造LがSiOの場合についても同様の検討を行ったところ、実施例8同様の傾向が観察された。
(実施例9)
 実施例9においては、凹凸構造AのDutyのより好ましい範囲を調査した。LED用パタンウェハ(2)の凹凸構造Aは正六方配列(6回対称配列)、凸部頂部の形状は丸みを帯びた角部、そして回転シフト角Θは30°、平均間隔PAは300nmとした。パラメータは、Dutyであり、0.17から0.96の範囲にて調整した。また、凹凸構造Lとしては、ホール型(holl)を作製した。作製したサンプルを表9にまとめた。
Figure JPOXMLDOC01-appb-T000009
 表9より、Dutyが0.73と0.96との間で内部量子効率IQEが大きく変わっていることがわかる。これは、Dutyが0.96の場合、凹凸構造Aの凹部の底部の大きさが、半導体層の安定な核の大きさよりも小さくなっているためと考えられる。即ち、核の付着と成長性が多少損なわれるため、転位低減の効果が低くなり、内部量子効率IQEが低下したものと推定される。一方で、Dutyが大きい程光取り出し効率LEEが向上することがわかる。即ち、凹凸構造Aの基本機能である、クラックの抑制と内部量子効率IQEの改善に加えて、Dutyの調整により光取り出し効率LEE改善の機能を付加できることがわかる。これは、フォトンから見た凸部の体積が大きくなるため、光回折のモード数が増加するためと考えられる。なお、クラックについては、全てのサンプルで略同様であり、49~52×10/cmの範囲であった。以上から、LEDとしてみた場合、凹凸構造AのDutyは、0.96未満であることが好ましいことがわかる。また、外部量子効率EQEをより大きくする観点から、0.53以上であることが好ましく、0.63以上であるとより好ましいことがわかった。なお、凹凸構造LがSiOの場合についても同様の検討を行ったところ、実施例9同様の傾向が観察された。
 本発明は、LEDに適用することができ、特に、青色LED、紫外LED、白色LEDに適用されるGaN系半導体発光素子に好適に適用することが可能である。
 本出願は、2013年5月31日出願の特願2013-116025、及び、2013年5月31日出願の特願2013-116024に基づく。これらの内容は全てここに含めておく。

Claims (15)

  1.  主面の少なくとも一部に実質的にn回対称の配列を有する凹凸構造Aを具備し、
     前記凹凸構造Aの少なくとも一部は、前記主面内におけるLED用パタンウェハ結晶軸方向に対する前記凹凸構造Aの配列軸Aの回転シフト角Θが、0°<Θ≦(180/n)°を満たすと共に、
     前記凹凸構造Aの凸部頂部は、曲率半径が0超の角部であること
     を特徴とするLED用パタンウェハ。
  2.  前記凹凸構造Aとは異なる、実質的にm回対称の配列を有する凹凸構造Lを更に具備することを特徴とする請求項1記載のLED用パタンウェハ。
  3.  前記凹凸構造Lは、第1の平均間隔(PL)を有する複数の凸部及び凹部で構成され、前記凹凸構造Aは、前記凹凸構造Lを構成する前記凸部及び前記凹部の少なくとも一方の表面上に設けられ、第2の平均間隔(PA)を有する複数の凸部及び凹部で構成されると共に、前記第1の平均間隔(PL)と前記第2の平均間隔(PA)との比率(PL/PA)は、1超2000以下であることを特徴とする請求項2記載のLED用パタンウェハ。
  4.  前記凹凸構造Lを構成する複数の前記凸部は互いに離間していると共に、少なくとも前記凹凸構造Lを構成する複数の前記凹部の底部に前記凹凸構造Aを構成する複数の前記凸部又は前記凹部が設けられていることを特徴とする請求項3記載のLED用パタンウェハ。
  5.  前記凹凸構造Lを構成する複数の前記凹部は互いに離間していると共に、少なくとも前記凹凸構造Lを構成する複数の前記凸部の頂部に前記凹凸構造Aを構成する複数の前記凸部又は前記凹部が設けられることを特徴とする請求項3記載のLED用パタンウェハ。
  6.  前記凹凸構造Aの、前記凹凸構造Lに対する被覆率が0%超100%未満であることを特徴とする請求項3から請求項5のいずれかに記載のLED用パタンウェハ。
  7.  前記凹凸構造Aは、第1の平均間隔(PA)を有する複数の凸部及び凹部で構成され、前記凹凸構造Lは、前記凹凸構造Aの表面上に前記凹凸構造Aが一部露出するように互いに離間して設けられ、第2の平均間隔(PL)を有する複数の凸部で構成されると共に、前記第1の平均間隔(PA)と前記第2の平均間隔(PL)との比率(PL/PA)は、1超2000以下であることを特徴とする請求項2記載のLED用パタンウェハ。
  8.  前記凹凸構造Aの平均間隔Paveは、50nm≦Pave≦1500nmを満たすことを特徴とする請求項1又は請求項2記載のLED用パタンウェハ。
  9.  前記凹凸構造Aの凸部底部の平均幅(φave)と前記平均間隔Paveとの比率であるDuty(φave/Pave)を用いたときに、前記回転シフト角Θは、atan(Duty/2)°≦Θ≦(180/n)°の範囲を満たすことを特徴とする請求項1又は請求項2記載のLED用パタンウェハ。
  10.  前記LED用パタンウェハが、サファイアウェハ、シリコンウェハ、シリコンカーバイドウェハ又は窒化ガリウム系ウェハであることを特徴とする請求項1から請求項9のいずれかに記載のLED用パタンウェハ。
  11.  請求項1から請求項10のいずれかに記載のLED用パタンウェハの前記凹凸構造Aが設けられた前記主面上に少なくとも第1半導体層、発光半導体層及び第2半導体層がこの順に積層されたことを特徴とするLED用エピタキシャルウェハ。
  12.  前記LED用パタンウェハの前記発光半導体層側の表面と前記発光半導体層の前記第1半導体層側の表面との距離(Hbun)と、前記凹凸構造Aの平均高さ(Have)と、の比率(Hbun/Have)が、2≦Hbun/Have≦300を満たすことを特徴とする請求項11記載のLED用エピタキシャルウェハ。
  13.  前記第1半導体層が前記LED用パタンウェハ側より順次積層された非ドープ第1半導体層及びドープ第1半導体層を含み、前記LED用パタンウェハの前記発光半導体層側の表面と前記非ドープ第1半導体層の前記ドープ第1半導体層側の表面との距離(Hbu)と、前記凹凸構造Aの平均高さ(Have)と、の比率(Hbu/Have)が、1.5≦Hbu/Have≦200を満たすことを特徴とする請求項11記載のLED用エピタキシャルウェハ。
  14.  請求項1から請求項10のいずれかに記載のLED用パタンウェハを準備する工程と、
     準備した前記LED用パタンウェハを光学検査する工程と、
     光学検査した前記LED用パタンウェハを使用して請求項11から請求項13のいずれかに記載のLED用エピタキシャルウェハを製造する工程と、
     を含むことを特徴とするLED用エピタキシャルウェハの製造方法。
  15.  前記LED用パタンウェハを準備する工程は、表面に微細パタンを具備するモールドを使用した転写法により前記回転シフト角Θを満足するように行われることを特徴とする請求項14記載のLED用エピタキシャルウェハの製造方法。
PCT/JP2014/064153 2013-05-31 2014-05-28 Led用パタンウェハ、led用エピタキシャルウェハ及びled用エピタキシャルウェハの製造方法 WO2014192821A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015519907A JP6049875B2 (ja) 2013-05-31 2014-05-28 Led用パタンウェハ、及びled用エピタキシャルウェハ
CN201480031293.8A CN105247693B (zh) 2013-05-31 2014-05-28 Led用图案晶片、led用外延片以及led用外延片的制造方法
EP14803459.8A EP3007237B1 (en) 2013-05-31 2014-05-28 Pattern wafer for a light emitting diode and epitaxial wafer for a light emitting diode
KR1020157033021A KR101843627B1 (ko) 2013-05-31 2014-05-28 Led용 패턴 웨이퍼, led용 에피택셜 웨이퍼 및 led용 에피택셜 웨이퍼의 제조 방법
BR112015029641A BR112015029641A2 (pt) 2013-05-31 2014-05-28 wafer padrão para leds, wafer epitaxial para leds e método de fabricação de wafer epitaxial para leds
US14/894,480 US9660141B2 (en) 2013-05-31 2014-05-28 Pattern wafer for LEDs, epitaxial wafer for LEDs and method of manufacturing the epitaxial wafer for LEDs

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013116025 2013-05-31
JP2013-116025 2013-05-31
JP2013116024 2013-05-31
JP2013-116024 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014192821A1 true WO2014192821A1 (ja) 2014-12-04

Family

ID=51988844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064153 WO2014192821A1 (ja) 2013-05-31 2014-05-28 Led用パタンウェハ、led用エピタキシャルウェハ及びled用エピタキシャルウェハの製造方法

Country Status (8)

Country Link
US (1) US9660141B2 (ja)
EP (1) EP3007237B1 (ja)
JP (1) JP6049875B2 (ja)
KR (1) KR101843627B1 (ja)
CN (1) CN105247693B (ja)
BR (1) BR112015029641A2 (ja)
TW (1) TWI528585B (ja)
WO (1) WO2014192821A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026639A (ja) * 2013-07-24 2015-02-05 パナソニック株式会社 GaN層の素子分離方法
CN108028299A (zh) * 2015-09-30 2018-05-11 旭化成株式会社 光学基材、半导体发光元件用基板及半导体发光元件
US9978903B2 (en) 2015-11-26 2018-05-22 Nichia Corporation Light-emitting element and method for producing the same
WO2020054792A1 (ja) * 2018-09-14 2020-03-19 王子ホールディングス株式会社 突状構造体、基板、その製造方法、及び発光素子

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012769B2 (en) * 2013-03-06 2018-07-03 Element Six Technologies Limited Synthetic diamond optical elements
JP6375890B2 (ja) 2014-11-18 2018-08-22 日亜化学工業株式会社 窒化物半導体素子及びその製造方法
JPWO2016185645A1 (ja) * 2015-05-21 2018-03-15 パナソニック株式会社 窒化物半導体装置
JP6531729B2 (ja) * 2016-07-19 2019-06-19 株式会社Sumco シリコン試料の炭素濃度評価方法、シリコンウェーハ製造工程の評価方法、シリコンウェーハの製造方法およびシリコン単結晶インゴットの製造方法
KR102582649B1 (ko) 2018-02-12 2023-09-25 삼성디스플레이 주식회사 표시 장치
US11181668B2 (en) * 2018-07-13 2021-11-23 University Of Notre Dame Du Lac High contrast gradient index lens antennas
US11331767B2 (en) * 2019-02-01 2022-05-17 Micron Technology, Inc. Pads for chemical mechanical planarization tools, chemical mechanical planarization tools, and related methods
JP2022043881A (ja) 2020-09-04 2022-03-16 株式会社小松製作所 作業機械
KR102537068B1 (ko) * 2020-11-27 2023-05-26 서울대학교산학협력단 사파이어 나노 멤브레인 상에서 산화갈륨층을 포함하는 기판의 제조방법
US20220367753A1 (en) * 2021-05-17 2022-11-17 Seoul Viosys Co., Ltd. Uv light emitting diode

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238687A (ja) * 1998-02-20 1999-08-31 Ricoh Co Ltd 半導体基板および半導体発光素子
JP2005064492A (ja) * 2003-07-28 2005-03-10 Kyocera Corp 単結晶サファイア基板とその製造方法及び半導体発光素子
JP2007281140A (ja) * 2006-04-05 2007-10-25 Hamamatsu Photonics Kk 化合物半導体基板、その製造方法及び半導体デバイス
JP2009200514A (ja) 2001-07-24 2009-09-03 Nichia Corp 半導体発光素子
JP2010518615A (ja) * 2007-02-09 2010-05-27 ナノガン リミテッド 半導体デバイスの製造方法及び半導体デバイス
JP2011060917A (ja) * 2009-09-08 2011-03-24 Rohm Co Ltd 半導体発光素子
JP2011077265A (ja) * 2009-09-30 2011-04-14 Toyoda Gosei Co Ltd Iii族窒化物半導体の製造方法
JP2013055289A (ja) * 2011-09-06 2013-03-21 Rohm Co Ltd 発光素子および発光素子パッケージ
JP2013179368A (ja) * 2011-08-09 2013-09-09 Panasonic Corp 窒化物半導体層成長用構造、積層構造、窒化物系半導体素子および光源ならびにこれらの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006130721A2 (en) 2005-06-02 2006-12-07 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
JP2012124257A (ja) 2010-12-07 2012-06-28 Toshiba Corp 半導体発光素子及びその製造方法
WO2012083578A1 (zh) * 2010-12-22 2012-06-28 青岛理工大学 整片晶圆纳米压印的装置和方法.
US8963165B2 (en) 2010-12-29 2015-02-24 Sharp Kabushiki Kaisha Nitride semiconductor structure, nitride semiconductor light emitting element, nitride semiconductor transistor element, method of manufacturing nitride semiconductor structure, and method of manufacturing nitride semiconductor element
US8686433B2 (en) * 2011-09-01 2014-04-01 Rohm Co., Ltd. Light emitting device and light emitting device package
JP2013084832A (ja) * 2011-10-12 2013-05-09 Sharp Corp 窒化物半導体構造の製造方法
JP2013120829A (ja) * 2011-12-07 2013-06-17 Sharp Corp 窒化物半導体紫外発光素子
JPWO2014136393A1 (ja) * 2013-03-08 2017-02-09 国立大学法人山口大学 加工基板及びそれを用いた半導体装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238687A (ja) * 1998-02-20 1999-08-31 Ricoh Co Ltd 半導体基板および半導体発光素子
JP2009200514A (ja) 2001-07-24 2009-09-03 Nichia Corp 半導体発光素子
JP2005064492A (ja) * 2003-07-28 2005-03-10 Kyocera Corp 単結晶サファイア基板とその製造方法及び半導体発光素子
JP2007281140A (ja) * 2006-04-05 2007-10-25 Hamamatsu Photonics Kk 化合物半導体基板、その製造方法及び半導体デバイス
JP2010518615A (ja) * 2007-02-09 2010-05-27 ナノガン リミテッド 半導体デバイスの製造方法及び半導体デバイス
JP2011060917A (ja) * 2009-09-08 2011-03-24 Rohm Co Ltd 半導体発光素子
JP2011077265A (ja) * 2009-09-30 2011-04-14 Toyoda Gosei Co Ltd Iii族窒化物半導体の製造方法
JP2013179368A (ja) * 2011-08-09 2013-09-09 Panasonic Corp 窒化物半導体層成長用構造、積層構造、窒化物系半導体素子および光源ならびにこれらの製造方法
JP2013055289A (ja) * 2011-09-06 2013-03-21 Rohm Co Ltd 発光素子および発光素子パッケージ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE PHOTO. TECH. LETT., vol. 20, 2008, pages 13
J. APPL. PHYS., vol. 103, 2008, pages 014314

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026639A (ja) * 2013-07-24 2015-02-05 パナソニック株式会社 GaN層の素子分離方法
CN108028299A (zh) * 2015-09-30 2018-05-11 旭化成株式会社 光学基材、半导体发光元件用基板及半导体发光元件
JPWO2017057529A1 (ja) * 2015-09-30 2018-07-12 旭化成株式会社 光学基材、半導体発光素子用基板、及び半導体発光素子
EP3358632A4 (en) * 2015-09-30 2018-10-03 Asahi Kasei Kabushiki Kaisha Optical substrate, substrate for semiconductor light emitting element, and semiconductor light emitting element
US9978903B2 (en) 2015-11-26 2018-05-22 Nichia Corporation Light-emitting element and method for producing the same
US10134944B2 (en) 2015-11-26 2018-11-20 Nichia Corporation Light-emitting element and method for producing the same
WO2020054792A1 (ja) * 2018-09-14 2020-03-19 王子ホールディングス株式会社 突状構造体、基板、その製造方法、及び発光素子
JPWO2020054792A1 (ja) * 2018-09-14 2021-08-30 王子ホールディングス株式会社 突状構造体、基板、その製造方法、及び発光素子
JP7238897B2 (ja) 2018-09-14 2023-03-14 王子ホールディングス株式会社 突状構造体、発光素子用基板、その製造方法、及び発光素子

Also Published As

Publication number Publication date
JP6049875B2 (ja) 2016-12-21
BR112015029641A2 (pt) 2017-07-25
KR101843627B1 (ko) 2018-03-29
KR20160002973A (ko) 2016-01-08
EP3007237A4 (en) 2016-04-27
EP3007237A1 (en) 2016-04-13
CN105247693A (zh) 2016-01-13
US9660141B2 (en) 2017-05-23
EP3007237B1 (en) 2017-08-02
US20160149079A1 (en) 2016-05-26
CN105247693B (zh) 2018-04-20
TWI528585B (zh) 2016-04-01
TW201507201A (zh) 2015-02-16
JPWO2014192821A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6049875B2 (ja) Led用パタンウェハ、及びled用エピタキシャルウェハ
KR101763460B1 (ko) 광학 기판, 반도체 발광 소자 및 반도체 발광 소자의 제조 방법
TWI514618B (zh) An optical substrate, a semiconductor light emitting element, and a method of manufacturing the same
TWI620345B (zh) 光學基材、半導體發光元件用基板、及半導體發光元件
JP2014195069A (ja) 半導体発光素子及びその製造方法並びに光学基材
JP2016111354A (ja) Led用半導体テンプレート基板、及び、それを用いたled素子
JP2016012684A (ja) 半導体発光素子
JP2017073511A (ja) 半導体発光素子
JP2019145629A (ja) 半導体発光素子
JP2019125649A (ja) 半導体発光素子用基材及び半導体発光素子
JP2018142632A (ja) 半導体発光素子用基材及び半導体発光素子
JP2019153620A (ja) 半導体発光素子
JP2019153759A (ja) 半導体発光素子用基材及び半導体発光素子
KR20110096990A (ko) 반도체 소자의 패턴 형성방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519907

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157033021

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14894480

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015029641

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014803459

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014803459

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112015029641

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151126