WO2014192766A1 - ゴム強化熱可塑性樹脂組成物及び樹脂成形品 - Google Patents

ゴム強化熱可塑性樹脂組成物及び樹脂成形品 Download PDF

Info

Publication number
WO2014192766A1
WO2014192766A1 PCT/JP2014/064018 JP2014064018W WO2014192766A1 WO 2014192766 A1 WO2014192766 A1 WO 2014192766A1 JP 2014064018 W JP2014064018 W JP 2014064018W WO 2014192766 A1 WO2014192766 A1 WO 2014192766A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
rubber
resin composition
reinforced thermoplastic
thermoplastic resin
Prior art date
Application number
PCT/JP2014/064018
Other languages
English (en)
French (fr)
Inventor
眞彰 岡田
篤史 橋本
義明 高田
Original Assignee
日本エイアンドエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エイアンドエル株式会社 filed Critical 日本エイアンドエル株式会社
Priority to JP2015519882A priority Critical patent/JP6454272B2/ja
Priority to KR1020157034757A priority patent/KR102340688B1/ko
Priority to CN201480028161.XA priority patent/CN105264012B/zh
Publication of WO2014192766A1 publication Critical patent/WO2014192766A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a rubber-reinforced thermoplastic resin composition and a molded product thereof.
  • styrenic resins have a good balance of molding processability and mechanical properties, and are excellent in electrical insulation, so they have been used in a wide range of fields such as the electrical / electronic equipment field and OA equipment field. Yes.
  • the shape of molded products has become increasingly complex.
  • a weld line is generated in a complicated shape portion or a portion provided with an opening. The generation of the weld line not only causes the appearance defect but also causes a problem in terms of the strength of the product.
  • the product may be fully or partially painted.
  • the coating process has a problem that the production yield is likely to decrease due to poor coating.
  • the design can be colored with a vivid color or deep color, or have a metallic or pearly appearance, etc., with as little coating as possible. Resins that easily impart properties are desired.
  • the weld line becomes inconspicuous by raising the mold temperature for the purpose of eliminating the weld line, but because the molten resin is insufficiently cooled, the mold release performance is poor and the mold is removed. Molding defects are likely to occur.
  • As a countermeasure in such a case there is a method of increasing the cooling and solidifying time of the molten resin, but there is a problem that the molding cycle becomes long and is not practical.
  • the object of the present invention is that, in a conventional molding machine and mold, it is excellent in releasability even if the mold temperature is increased for the purpose of eliminating the weld line, and the occurrence of molding defects due to cavitation is reduced.
  • An object of the present invention is to provide a rubber-reinforced thermoplastic resin composition and a molded product thereof.
  • the present invention is capable of copolymerizing an aromatic vinyl monomer, a vinyl cyanide monomer, a (meth) acrylic acid ester monomer and other copolymer in the presence of the rubber-like polymer (a).
  • a graft copolymer (A) obtained by graft copolymerization of at least one monomer (b) selected from the group consisting of monomers has a dispersed phase as an aromatic vinyl monomer
  • vinyl cyanide Copolymer (B) obtained by copolymerizing at least one monomer (b) selected from the group consisting of a monomer, a (meth) acrylic acid ester monomer, and other copolymerizable monomers Is a rubber-reinforced thermoplastic resin composition constituting a continuous phase, a viscosity ( ⁇ 1) at a shear rate of 1 ⁇ 10 1 / sec and a shear rate of 1 ⁇ 10 3 / sec in a capillary rheometer having a tube diameter of 1 mm ⁇
  • the rubber-reinforced thermoplastic resin composition of the present invention has a short cooling and solidification time of the molten resin even in the case of obtaining a molded product by increasing the mold temperature for the purpose of eliminating the weld line in the conventional molding machine and mold, Excellent releasability.
  • FIG. 1 is a view showing a molded product to be evaluated for releasability.
  • the rubber-reinforced thermoplastic resin composition according to the present invention comprises an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth) acrylate monomer in the presence of the rubber-like polymer (a). And a graft copolymer (A) obtained by graft polymerization of at least one monomer (b) selected from the group consisting of other copolymerizable monomers, the dispersed phase is converted into an aromatic vinyl monomer.
  • the copolymer (B) is a rubber-reinforced thermoplastic resin composition constituting a continuous phase.
  • the monomer (b) component (Ab component) constituting the graft copolymer (A) includes an aromatic vinyl monomer, a vinyl cyanide monomer, a (meth) acrylate ester monomer, and It contains at least one selected from the group consisting of other copolymerizable monomers, but when other copolymerizable monomers are included, aromatic vinyl monomers and vinyl cyanide monomers are included. It is used in combination with at least one of a monomer and a (meth) acrylic acid ester monomer. That is, the Ab component includes at least one monomer selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth) acrylic acid ester monomer, and if necessary. And other monomers copolymerizable with the monomer.
  • the Ab component may contain two or more monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth) acrylic acid ester monomers. preferable.
  • the monomer (b) component (Bb component) constituting the copolymer (B) is an aromatic vinyl monomer, a vinyl cyanide monomer, or a (meth) acrylic acid ester monomer. And at least one selected from the group consisting of other copolymerizable monomers, but when other copolymerizable monomers are included, aromatic vinyl monomers, vinyl cyanide monomers It is used in combination with at least one of a monomer and a (meth) acrylic acid ester monomer. That is, the Bb component includes at least one monomer selected from the group consisting of an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth) acrylate monomer, and if necessary. And other monomers copolymerizable with the monomer. Further, the Bb component may contain two or more monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth) acrylic acid ester monomers. preferable.
  • constituting the dispersed phase means forming a phase dispersed in the rubber-reinforced thermoplastic resin composition
  • constituting the continuous phase means continuous in the rubber-reinforced thermoplastic resin composition. It means to form the phase that is.
  • the rubbery polymer (a) used in the graft copolymer (A) used in the present invention is not particularly limited, but polybutadiene rubber, styrene-butadiene rubber (SBR), styrene-butadiene-styrene (SBS).
  • Block copolymer styrene- (ethylene-butadiene) -styrene (SEBS) block copolymer, acrylonitrile-butadiene rubber (NBR), diene rubber such as butyl acrylate-butadiene, butyl acrylate rubber, butadiene-butyl acrylate rubber, acrylic acid 2 -Acrylic rubber such as ethylhexyl-butyl acrylate rubber, 2-ethylhexyl methacrylate-butyl acrylate rubber, stearyl acrylate-butyl acrylate rubber, polyorganosiloxane-butyl acrylate composite rubber, ethylene Propylene rubbers, ethylene - propylene - polyolefin rubber polymer such as diene rubber, silicone rubber polymers such as polyorganosiloxane rubber and the like, which can be used singly or in combination.
  • the weight average particle diameter of the rubber-like polymer (a) is not particularly limited, but is preferably 0.05 to 2.0 ⁇ m, and preferably 0.1 to 1.0 ⁇ m from the viewpoint of physical property balance and color developability. It is more preferable.
  • aromatic vinyl monomer used in the graft copolymer (A) examples include styrene, ⁇ -methyl styrene, p-methyl styrene, t-butyl styrene, dimethyl styrene, and the like. Can be used. Styrene is particularly preferable as the aromatic vinyl monomer.
  • Examples of the vinyl cyanide monomer used in the graft copolymer (A) include acrylonitrile, methacrylonitrile, ethacrylonitrile, and fumaronitrile, and one or more of them can be used.
  • acrylonitrile is particularly preferable.
  • Examples of the (meth) acrylic acid ester monomer used in the graft copolymer (A) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl.
  • phenyl (meth) acrylate 4-t-butylphenyl (meth) acrylate, bromophenyl (meth) acrylate, dibromophenyl (meth) acrylate, 2,4,6-tribromophenyl (meth) acrylate, monochlorophenyl ( A meth) acrylate, a dichlorophenyl (meth) acrylate, a trichlorophenyl (meth) acrylate, etc. can be illustrated and can be used 1 type or 2 or more types.
  • the (meth) acrylic acid ester monomer methyl methacrylate is particularly preferable.
  • Examples of other copolymerizable monomers used in the graft copolymer (A) include maleimide monomers (eg, N-phenylmaleimide, N-cyclohexylmaleimide, etc.), unsaturated carboxylic acids, The anhydrides (for example, acrylic acid, methacrylic acid, maleic anhydride, etc.), amide monomers (for example, acrylamide, methacrylamide, etc.) and the like can be used. They can be used in combination.
  • maleimide monomers eg, N-phenylmaleimide, N-cyclohexylmaleimide, etc.
  • unsaturated carboxylic acids unsaturated carboxylic acids
  • the anhydrides for example, acrylic acid, methacrylic acid, maleic anhydride, etc.
  • amide monomers for example, acrylamide, methacrylamide, etc.
  • the polymerization method of the graft copolymer (A) is not particularly limited, and can be produced by a known polymerization method such as emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, or a combination thereof.
  • the graft ratio of the graft copolymer (A) is preferably 20 to 150% by mass, more preferably 30 to 130% by mass, from the viewpoint of balance of physical properties such as impact resistance, fluidity, and color developability.
  • the graft ratio is obtained by forming the acetone-insoluble matter of the graft copolymer (A) into a film and using an infrared spectroscopic analysis device (device name: Spectrum One Perkin Elmer) from the infrared absorption spectrum. It can be calculated by identifying the weight ratio.
  • the reduced viscosity of the acetone-soluble portion of the graft copolymer (A) is preferably 0.2 to 1.5 dl / g. 3 to 1.0 dl / g is more preferable.
  • the reduced viscosity is obtained by drying the acetone-soluble component, dissolving it in N, N-dimethylformamide to obtain a solution having a concentration of 0.4 g / 100 cc, and then flowing down at 30 ° C. using a Cannon Fenceke type viscosity tube. Can be determined by measuring.
  • the content of the total volatile substance at 230 ° C. of the graft copolymer (A) is preferably 0.3 to 2.0% by mass, and 0.4 to 1.6% by mass. Is more preferable.
  • the total volatile substance content at 230 ° C. is obtained from the chromatograph obtained by dissolving the graft copolymer (A) in N, N-dimethylformamide and then injecting the solution into gas chromatography. Can do.
  • the copolymer (B) used in the present invention comprises an aromatic vinyl monomer, a vinyl cyanide monomer, a (meth) acrylic acid ester monomer, and other copolymerizable monomers. Although it is a copolymer obtained by copolymerizing at least one monomer selected from the group comprising, the monomers used are described as examples used in the graft copolymer (A). The thing similar to a monomer can be used.
  • the reduced viscosity of the copolymer (B) that is soluble in acetone is preferably 0.02 to 0.15 dl / g, preferably 0.04 to 0.1 dl / g. g is more preferable.
  • the reduced viscosity is determined in the same manner as described above.
  • the total volatile substance content at 230 ° C. of the copolymer (B) is preferably 0.1 to 1.2% by mass, and preferably 0.2 to 1.0% by mass. More preferred.
  • the content of total volatile substances at 230 ° C. is obtained in the same manner as described above.
  • the rubber-reinforced thermoplastic resin composition of the present invention is composed of a graft copolymer (A) that is a dispersed phase and a copolymer (B) that is a continuous phase.
  • a rubber-like polymer (a) is 100 mass of rubber-reinforced thermoplastic resin compositions.
  • the content is preferably 5 to 25 parts by mass, more preferably 7 to 20 parts by mass.
  • the content of the monomer (b) component (Ab component) constituting the graft copolymer (A) is preferably 2 to 60 parts by mass with respect to 100 parts by mass of the rubber-reinforced thermoplastic resin composition. More preferred is 3 to 47 parts by mass.
  • the content of the monomer (b) component (Bb component) constituting the copolymer (B) is preferably 15 to 93 parts by mass with respect to 100 parts by mass of the rubber-reinforced thermoplastic resin composition. More preferably, it is 33 to 90 parts by mass.
  • the rubber-reinforced thermoplastic resin composition of the present invention has a viscosity ( ⁇ 1) at a shear rate of 1 ⁇ 10 1 / sec and a viscosity ( ⁇ 2) at a shear rate of 1 ⁇ 10 3 / sec in a capillary rheometer having a tube diameter of 1 mm ⁇ . And the viscosity ratio ( ⁇ 1 / ⁇ 2) must be 10 or less.
  • the temperature at which the viscosity is measured can set the molding temperature of the rubber-reinforced thermoplastic resin composition.
  • the viscosity ratio is preferably 10 or less, and more preferably 9.5 or less.
  • the viscosity ratio ( ⁇ 1 / ⁇ 2) is preferably 10 or less at a temperature of 210 ° C., a temperature of 230 ° C., or a temperature of 250 ° C. More preferably, it is 5 or less.
  • Volatile substances are generic names for volatile organic substances (VOC) remaining in the resin, and are aromatic hydrocarbons, aliphatic hydrocarbons, cyclic alkanes, terpenes, alcohols, ketones, halogenated hydrocarbons, esters.
  • a monomer group remaining in the resin is referred to as a residual monomer
  • an oligomer group is referred to as a residual oligomer.
  • the residual monomer include solvents and monomers used for polymerization of toluene, ethylbenzene, 1-methylethylbenzene, 1-methylpropylbenzene, styrene, ⁇ -methylstyrene, acrylonitrile, and the like.
  • Examples of the residual oligomer include dimers and 3 obtained from monomers used in polymerization, such as styrene dimer, styrene trimer, ⁇ -methylstyrene dimer, styrene-acrylonitrile dimer, and styrene-acrylonitrile trimer. A monomer is mentioned.
  • the monomer composition and its addition method are used when each copolymer is polymerized. , Split addition method, continuous addition method, etc.), polymerization temperature (constant temperature polymerization, intermediate temperature rising polymerization, etc.), aging temperature and aging time after polymerization, and further, polymerization catalyst species, addition amount thereof and addition method (collective) Addition method, divided addition method, continuous addition method, etc.), etc., and when the resin composition is kneaded or pelletized, the deaeration process in the extruder or the like is increased, or the vacuum level of deaeration is increased. It is preferable to raise.
  • the total volatile substance content at 230 ° C. of the rubber-reinforced thermoplastic resin composition is preferably 0.2 to 1.2% by mass, more preferably 0.25 to 1.0% by mass. preferable.
  • the content of total volatile substances at 230 ° C. is obtained in the same manner as described above.
  • the rubber-reinforced thermoplastic resin composition of the present invention may contain various additives as necessary, for example, known antioxidants, light stabilizers, lubricants, plasticizers, antistatic agents, colorants, flame retardants, matting agents, A filler, glass fiber, etc. can be added suitably.
  • the rubber-reinforced thermoplastic resin composition of the present invention can be used alone, but can also be used by mixing with other thermoplastic resins as necessary.
  • other thermoplastic resins include acrylic resins such as polymethyl methacrylate, polycarbonate resins, polybutylene terephthalate resins, polyethylene terephthalate resins, polyamide resins, and polylactic acid resins.
  • the rubber-reinforced thermoplastic resin composition of the present invention can be obtained by mixing the above-described components.
  • well-known kneading apparatuses such as an extruder, a roll, a Banbury mixer, a kneader, can be used, for example.
  • the molded product of the present invention can be obtained by molding the rubber-reinforced thermoplastic resin composition of the present invention by a known molding method such as extrusion molding, injection molding, blow molding and press molding.
  • ⁇ Test example> 1.0 part of Sumiplast Black HB (manufactured by Sumitomo Chemical Co., Ltd.) was mixed as a colorant with respect to the graft copolymer (A) and copolymer (B) having the composition ratio shown in Table 1. Using a vented 50 mm single-screw extruder (manufactured by ON Machinery), the mixture was melt-mixed at a cylinder temperature of 210 ° C. and pelletized to obtain black colored pellets.
  • each component shown in Table 1 is as follows.
  • Rubber-like polymer (a) 93 parts of 1,3-butadiene, 7 parts of styrene, 0.5 parts of n-dodecyl mercaptan, 0.24 of potassium persulfate in a pressure vessel 1 part, 1.5 parts of sodium rosinate, 0.1 part of sodium hydroxide and 150 parts of deionized water were reacted at 70 ° C. for 15 hours, and then cooled to complete the reaction, whereby a rubbery polymer was obtained.
  • (A-1) was obtained.
  • the obtained rubbery polymer (a-1) was dyed with osmium tetroxide (OsO 4 ), dried, and photographed with a transmission electron microscope.
  • OsO 4 osmium tetroxide
  • Rubbery polymer (a-2) The rubbery polymer (a-1) obtained above was used to subject the rubber particles to a cohesive enlargement treatment. 270 parts of a rubber-like polymer (a-1) was added to a stirring tank and 0.09 part of a 10% aqueous sodium dodecylbenzenesulfonate solution was stirred for 10 minutes, and then 0.8 part of a 5% aqueous phosphoric acid solution was added over 10 minutes. Added over time. Thereafter, 1 part of a 10% aqueous potassium hydroxide solution was added to obtain a rubbery polymer (a-2). The obtained rubbery polymer (a-2) was measured by the above-mentioned method. As a result, the weight average particle size was 0.25 ⁇ m.
  • Graft copolymer (A) In a reactor purged with nitrogen, 48 parts (solid content) of a rubber-like polymer (a-2), 140 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, 0.001 part of ferrous sulfate, sodium formaldehydesulfoxy After adding 0.3 parts of the rate and heating to 60 ° C., a mixture of 39 parts of styrene, 13 parts of acrylonitrile, 0.6 part of t-dodecyl mercaptan and 0.2 part of cumene hydroperoxide and 1.5 parts of potassium oleate And a mixture of 15 parts of water was added continuously over 4 hours. After completion of the addition, polymerization was further performed at 60 ° C. for 2 hours. Thereafter, the graft copolymer (A) was obtained by salting out, dehydrating and drying.
  • a certain amount of the graft copolymer (A) was put into acetone and shaken for 2 hours with a shaker to immerse the graft copolymer. This solution was centrifuged at 15,000 rpm for 30 minutes using a centrifuge, and then dried at room temperature for a whole day and night by vacuum drying to obtain an acetone insoluble matter. The obtained acetone insoluble matter was formed into a film, and the weight ratio of styrene-butadiene rubber, styrene and acrylonitrile was identified from the infrared absorption spectrum using an infrared spectroscopic analyzer (apparatus name: Spectrum One Perkin Elmer). The graft ratio was calculated from the weight ratio of each component.
  • the acetone-soluble matter obtained above is dried and then dissolved in N, N-dimethylformamide to obtain a solution having a concentration of 0.4 g / 100 cc.
  • the reduced viscosity was determined by measuring the time.
  • the graft ratio of the obtained graft copolymer (A) and the reduced viscosity of the acetone-soluble component were 40% and 0.39 dl / g, respectively.
  • the graft copolymer (A) was dissolved in N, N-dimethylformamide, the solution was injected into gas chromatography, and the content of total volatile substances at 230 ° C. was measured from the obtained chromatograph. The total volatile content was 0.52%.
  • Copolymer (B) AS resin (B-1): Monomer comprising 66.2 parts by weight of styrene, 22.1 parts by weight of acrylonitrile, 11.7 parts by weight of ethylbenzene, 0.20 parts by weight of t-dodecyl mercaptan, and 0.1 parts by weight of perbutyl peroxide in a nitrogen-substituted reactor. The body mixture was continuously fed to carry out the polymerization at 95 ° C. The polymerization liquid was guided from the reactor to a separation and recovery step comprising a preheater and a vacuum tank, and after recovery and extrusion, a copolymer AS resin (B-1) was obtained.
  • the reduced viscosity of the obtained copolymer (B-1) and the content of total volatile substances at 230 ° C. was 0.66 dl / g, and the total volatile substances contained The amount was 0.46%.
  • AS resin (B-2) Monomer comprising 66.2 parts by weight of styrene, 22.1 parts by weight of acrylonitrile, 11.7 parts by weight of ethylbenzene, 0.40 parts by weight of t-dodecyl mercaptan, and 0.1 parts by weight of perbutyl peroxide in a nitrogen-substituted reactor.
  • the body mixture was continuously fed to carry out the polymerization at 95 ° C.
  • the polymerization liquid was led from the reactor to a separation and recovery step comprising a preheater and a vacuum tank, and after recovery and extrusion, a copolymer AS resin (B-2) was obtained.
  • the reduced viscosity of the obtained copolymer (B-2) and the content of the total volatile substance at 230 ° C. was 0.50 dl / g and the total volatile substance content was The amount was 0.51%.
  • AS resin (B-3) Monomer comprising 66.2 parts by weight of styrene, 22.1 parts by weight of acrylonitrile, 11.7 parts by weight of ethylbenzene, 0.55 parts by weight of t-dodecyl mercaptan, and 0.1 parts by weight of perbutyl peroxide in a nitrogen-substituted reactor.
  • the body mixture was continuously fed to carry out the polymerization at 95 ° C.
  • the polymerization liquid was guided from the reactor to a separation and recovery step comprising a preheater and a vacuum tank, and after recovery and extrusion, a copolymer AS resin (B-3) was obtained.
  • the reduced viscosity of the obtained copolymer (B-3) and the content of total volatile substances at 230 ° C. was 0.45 dl / g, and the total volatile substances contained The amount was 0.75%.
  • AS resin (B-4) A monomer mixture consisting of 66.2 parts by weight of styrene, 22.1 parts by weight of acrylonitrile, 11.7 parts by weight of ethylbenzene, and 0.20 parts by weight of t-dodecyl mercaptan was continuously fed to the nitrogen-substituted reactor, Polymerization was carried out at 140 ° C. The polymerization liquid was guided from the reactor to a separation and recovery step comprising a preheater and a vacuum tank, and after recovery and extrusion, a copolymer AS resin (B-4) was obtained. As a result of measuring the reduced viscosity of the obtained copolymer (B-4) and the total volatile substance content at 230 ° C. by the above method, the reduced viscosity was 0.66 dl / g and the total volatile substance content was The amount was 1.25%.
  • AS resin (B-5) A monomer mixture consisting of 66.2 parts by weight of styrene, 22.1 parts by weight of acrylonitrile, 11.7 parts by weight of ethylbenzene, and 0.40 parts by weight of t-dodecyl mercaptan was continuously fed to the reactor substituted with nitrogen, Polymerization was carried out at 140 ° C. The polymerization liquid was led from the reactor to a separation and recovery step consisting of a preheater and a vacuum tank, and after recovery and extrusion, a copolymer AS resin (B-5) was obtained. As a result of measuring the reduced viscosity of the obtained copolymer (B-5) and the total volatile substance content at 230 ° C. by the above method, the reduced viscosity was 0.50 dl / g and the total volatile substance content was The amount was 1.46%.
  • AS resin (B-6) A monomer mixture consisting of 66.2 parts by weight of styrene, 22.1 parts by weight of acrylonitrile, 11.7 parts by weight of ethylbenzene, and 0.55 parts by weight of t-dodecyl mercaptan was continuously fed to the reactor purged with nitrogen, Polymerization was carried out at 140 ° C. The polymerization liquid was led from the reactor to a separation and recovery step consisting of a preheater and a vacuum tank, and after recovery and extrusion, a copolymer AS resin (B-6) was obtained. As a result of measuring the reduced viscosity of the obtained copolymer (B-6) and the total volatile substance content at 230 ° C. by the above method, the reduced viscosity was 0.45 dl / g and the total volatile substance content was The amount was 1.65%.
  • Molding was performed using J-150EP manufactured by Nippon Steel Works as a releasable injection molding machine, and a mold of a box-shaped product having a product part size of 150 mm ⁇ 100 mm ⁇ 48 mm as a mold.
  • the molded body shown in FIG. The molded body has a thickness of 3 mm, and has three gate portions of site 1, site 2, and site 3, and each site has a shape of 1 mm ⁇ .
  • part 5 are site
  • the mold temperature when the mold temperature was 70 ° C., the weld line was visually recognized in all samples, but when the mold temperature was 75 ° C., the weld line was hardly visually observed. It was. Therefore, the mold temperature was set to 75 ° C.
  • the rubber-reinforced thermoplastic resin compositions of Examples 1 to 3 are excellent in releasability because the cooling and solidification time is short even when the mold temperature is increased for the purpose of eliminating the weld line. .
  • the rubber-reinforced thermoplastic resin composition of the present invention is excellent in releasability and shorter cooling and solidification time, particularly when molding at a higher mold temperature for the purpose of eliminating the weld line in conventional molding machines and molds.
  • molding defects do not occur due to mold removal, and it can be used in a wide range of fields including the electric / electronic equipment field and the OA equipment field, and is very useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

 ゴム状重合体(a)の存在下に芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)をグラフト共重合して得られるグラフト共重合体(A)が分散相を、芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)を共重合させた共重合体(B)が連続相を構成するゴム強化熱可塑性樹脂組成物であって、1mmφの管径のキャピラリーレオメーターでの剪断速度1×10/secの粘度(η1)と、剪断速度1×10/secの粘度(η2)との粘度比(η1/η2)が、10以下であることを特徴とするゴム強化熱可塑性樹脂組成物。

Description

ゴム強化熱可塑性樹脂組成物及び樹脂成形品
 本発明は、ゴム強化熱可塑性樹脂組成物、及びその成形品に関するものである。
 従来より、スチレン系樹脂は、良好な成形加工性と機械的特性バランスを有し、電気絶縁性に優れていることから、電気・電子機器分野、OA機器分野などの広範な分野で用いられている。近年、ますます成形品の形状が複雑になってきた。そして、複雑な形状部分や開口が設けられた部分にはウエルドラインが発生する。ウエルドラインの発生は、外観不良が発生するだけでなく、製品の強度面からも問題となる。
 これらのウエルドラインを覆う目的で、製品に全塗装又は部分塗装を施す場合がある。しかしながら、塗装処理は塗装不良による生産の歩留まり低下を生じやすいという問題点がある。また、近年のVOC排出抑制の流れから、できるだけ塗装処理を施すことなく、鮮やかな色又は深みのある色に着色したり、金属調又はパール調の外観を持たせること等ができるように、意匠性を付与しやすい樹脂が望まれている。
 ウエルドライン改良の成形技術としては、金型のキャビティ表面の温度を繰り返し上下させるヒートサイクル成形法などの技術が提案されている(例えば、下記特許文献1及び2を参照)。しかしながら、新たな設備が必要となり製造コストの低減といった観点からは好ましくない。
特開2001-18229号公報 特開2001-269978号公報
 従来の成形機、金型において、ウエルドラインを消す目的で金型温度を高くすることでウエルドラインは目立たなくなるが、溶融樹脂の冷却が不十分になるため、離型性が劣りキャビ取られによる成形不良が発生しやすくなる。このような場合の対応策として、溶融樹脂の冷却固化時間を長くする手法が挙げられるが、成形サイクルが長くなって実用的でないという問題がある。
 本発明の目的は、従来の成形機、金型において、ウエルドラインを消す目的で金型温度を高くしても離型性に優れ、キャビ取られによる成形不良の発生が少なくなることを特徴とするゴム強化熱可塑性樹脂組成物、及びその成形品を提供することにある。
 本発明者らは、従来技術の問題点を解決するために鋭意検討した結果、キャピラリーレオメーターで測定した粘度比が特定領域となるゴム強化熱可塑性樹脂組成物が上記目的を達成できることを見出し、本発明に到達した。
 すなわち、本発明は、ゴム状重合体(a)の存在下に芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)をグラフト共重合して得られるグラフト共重合体(A)が分散相を、芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)を共重合させた共重合体(B)が連続相を構成するゴム強化熱可塑性樹脂組成物であって、1mmφの管径のキャピラリーレオメーターでの剪断速度1×10/secの粘度(η1)と、剪断速度1×10/secの粘度(η2)との粘度比(η1/η2)が、10以下であることを特徴とするゴム強化熱可塑性樹脂組成物、及びその成形品に関する。
 本発明のゴム強化熱可塑性樹脂組成物は、従来の成形機、金型において、ウエルドラインを消す目的で金型温度を高くして成形品を得る場合でも、溶融樹脂の冷却固化時間が短く、離型性に優れる。
図1は、離型性を評価する成形品を示す図である。
 以下、本発明を詳しく説明する。
 本発明に係るゴム強化熱可塑性樹脂組成物は、ゴム状重合体(a)の存在下に芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)をグラフト重合して得られるグラフト共重合体(A)が分散相を、芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)を共重合させた共重合体(B)が連続相を構成するゴム強化熱可塑性樹脂組成物である。
 グラフト共重合体(A)を構成する単量体(b)成分(Ab成分)は、芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種を含むものであるが、その他の共重合可能な単量体が含まれる場合は、芳香族ビニル系単量体、シアン化ビニル系単量体、及び(メタ)アクリル酸エステル系単量体のうちの少なくとも一種と併用される。すなわち、Ab成分は、芳香族ビニル系単量体、シアン化ビニル系単量体、及び(メタ)アクリル酸エステル系単量体からなる群より選ばれる少なくとも一種の単量体と、必要に応じて、前記単量体と共重合可能なその他の単量体とを含むことができる。また、Ab成分は、芳香族ビニル系単量体、シアン化ビニル系単量体、及び(メタ)アクリル酸エステル系単量体からなる群より選ばれる2種以上の単量体を含むことが好ましい。
 また、共重合体(B)を構成する単量体(b)成分(Bb成分)は、芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種を含むものであるが、その他の共重合可能な単量体が含まれる場合は、芳香族ビニル系単量体、シアン化ビニル系単量体、及び(メタ)アクリル酸エステル系単量体のうちの少なくとも一種と併用される。すなわち、Bb成分は、芳香族ビニル系単量体、シアン化ビニル系単量体、及び(メタ)アクリル酸エステル系単量体からなる群より選ばれる少なくとも一種の単量体と、必要に応じて、前記単量体と共重合可能なその他の単量体とを含むことができる。また、Bb成分は、芳香族ビニル系単量体、シアン化ビニル系単量体、及び(メタ)アクリル酸エステル系単量体からなる群より選ばれる2種以上の単量体を含むことが好ましい。
 本発明において、分散相を構成するとは、ゴム強化熱可塑性樹脂組成物中に分散している相を形成することを意味し、連続相を構成するとは、ゴム強化熱可塑性樹脂組成物中に連続している相を形成することを意味する。
 本発明に使用されるグラフト共重合体(A)に用いられるゴム状重合体(a)としては、特に制限はないが、ポリブタジエンゴム、スチレン-ブタジエンゴム(SBR)、スチレン-ブタジエン-スチレン(SBS)ブロックコポリマー、スチレン-(エチレン-ブタジエン)-スチレン(SEBS)ブロックコポリマー、アクリロニトリル-ブタジエンゴム(NBR)、ブチルアクリレート-ブタジエン等のジエン系ゴム、アクリル酸ブチルゴム、ブタジエン-アクリル酸ブチルゴム、アクリル酸2-エチルヘキシル-アクリル酸ブチルゴム、メタクリル酸2-エチルヘキシル-アクリル酸ブチルゴム、アクリル酸ステアリル-アクリル酸ブチルゴム、ポリオルガノシロキサン-アクリル酸ブチル複合ゴム等のアクリル系ゴム、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム等のポリオレフィン系ゴム重合体、ポリオルガノシロキサン系ゴム等のシリコン系ゴム重合体が挙げられ、これらは1種又は2種以上用いることができる。特に、ポリブタジエンゴム、及びスチレン-ブタジエンゴムのうちの1種又は2種以上を用いることが好ましい。
 ゴム状重合体(a)の重量平均粒子径に特に制限はないが、物性バランス及び発色性の観点から、0.05~2.0μmであることが好ましく、0.1~1.0μmであることがより好ましい。
 グラフト共重合体(A)に用いられる芳香族ビニル系単量体としては、スチレン、α-メチルスチレン、p-メチルスチレン、t-ブチルスチレン及びジメチルスチレン等を例示でき、1種又は2種以上用いることができる。芳香族ビニル系単量体として、特にスチレンが好ましい。
 グラフト共重合体(A)に用いられるシアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フマロニトリル等を例示でき、1種又は2種以上用いることができる。シアン化ビニル系単量体として、特にアクリロニトリルが好ましい。
 グラフト共重合体(A)に用いられる(メタ)アクリル酸エステル系単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシルアクリレート、フェニル(メタ)アクリレート、4-t-ブチルフェニル(メタ)アクリレート、ブロモフェニル(メタ)アクリレート、ジブロモフェニル(メタ)アクリレート、2,4,6-トリブロモフェニル(メタ)アクリレート、モノクロルフェニル(メタ)アクリレート、ジクロルフェニル(メタ)アクリレート、トリクロルフェニル(メタ)アクリレート等を例示でき、1種又は2種以上用いることができる。(メタ)アクリル酸エステル系単量体として、特にメチルメタアクリレートが好ましい。
 グラフト共重合体(A)に用いられる、その他の共重合可能な単量体としては、例えば、マレイミド系単量体(例えば、N-フェニルマレイミド、N-シクロヘキシルマレイミド等)、不飽和カルボン酸またはその無水物(例えば、アクリル酸、メタクリル酸及びマレイン酸無水物等)、及びアミド系単量体(例えば、アクリルアミド及びメタクリルアミド等)等を使用することができ、それぞれ1種又は2種以上を組み合わせて用いることができる。
 グラフト共重合体(A)の重合方法については特に制限はなく、公知の重合方法、例えば乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができる。
 グラフト共重合体(A)のグラフト率は、耐衝撃性、流動性、発色性などの物性バランスの点で、20~150質量%が好ましく、30~130質量%がより好ましい。なお、グラフト率は、グラフト共重合体(A)のアセトン不溶分をフィルム化して赤外分光分析装置(装置名:Spectrum One Perkin Elmer社製)を用いて、赤外吸収スペクトルから単量体の重量比率を同定することにより算出することができる。
 また、耐衝撃性、流動性、発色性などの物性バランスの点で、グラフト共重合体(A)のアセトン可溶分の還元粘度が、0.2~1.5dl/gが好ましく、0.3~1.0dl/gがより好ましい。なお、還元粘度は、アセトン可溶分を乾燥後、N,N-ジメチルホルムアミドに溶解し、0.4g/100ccの濃度の溶液としたのち、キャノンフェンスケ型粘度管を用い30℃の流下時間を測定することにより求めることができる。
 また、離型性の点で、グラフト共重合体(A)の230℃における総揮発性物質の含有量は、0.3~2.0質量%が好ましく、0.4~1.6質量%がより好ましい。なお、230℃における総揮発性物質の含有量は、グラフト共重合体(A)をN,N-ジメチルホルムアミドに溶解後、該溶液をガスクロマトグラフィーに注入し、得られたクロマトグラフより求めることができる。
 本発明に使用される共重合体(B)は芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体を含む群より選ばれる少なくとも1種の単量体を共重合することで得られる共重合体であるが、用いられる単量体はグラフト共重合体(A)で用いられる例として述べられている各単量体と同様のものを用いることが出来る。
 共重合体(B)の重合方法については特に制限はなく、公知の乳化重合、懸濁重合、塊状重合、溶液重合又はこれらの組み合わせにより製造することができる。
 耐衝撃性、流動性などの物性バランスの点で、共重合体(B)のアセトン可溶分の還元粘度が、0.02~0.15dl/gが好ましく、0.04~0.1dl/gがより好ましい。なお、還元粘度は上記と同様にして求められる。
 また、離型性の点で、共重合体(B)の230℃における総揮発性物質の含有量は、0.1~1.2質量%が好ましく、0.2~1.0質量%がより好ましい。なお、230℃における総揮発性物質の含有量は上記と同様にして求められる。
 本発明のゴム強化熱可塑性樹脂組成物は、分散相であるグラフト共重合体(A)と連続相である共重合体(B)から構成される。ゴム強化熱可塑性樹脂組成物中に存在するゴム状重合体(a)の含有量に特に制限はないが、物性バランスの観点からゴム状重合体(a)はゴム強化熱可塑性樹脂組成物100質量部中に5~25質量部含まれていることが好ましく、7~20質量部含まれていることがより好ましい。グラフト共重合体(A)を構成する単量体(b)成分(Ab成分)の含有量は、ゴム強化熱可塑性樹脂組成物100質量部に対し、2~60質量部であることが好ましく、3~47質量部であることがより好ましい。また、共重合体(B)を構成する単量体(b)成分(Bb成分)の含有量は、ゴム強化熱可塑性樹脂組成物100質量部に対し、15~93質量部であることが好ましく、33~90質量部であることがより好ましい。
 本発明のゴム強化熱可塑性樹脂組成物は、1mmφの管径のキャピラリーレオメーターでの剪断速度1×10/secの粘度(η1)と、剪断速度1×10/secの粘度(η2)との粘度比(η1/η2)が10以下である必要がある。粘度を測定する温度は、ゴム強化熱可塑性樹脂組成物の成型温度を設定することができる。粘度比が10を超えると、従来の成形機、金型において、ウエルドラインを消す目的で金型温度を高くした場合、離型性が劣り、溶融樹脂の冷却固化時間が同じであるとキャビ取られによる成形不良が発生する。離型性の観点から、粘度比は10以下であることが好ましく、9.5以下であることがより好ましい。本発明においては、ゴム強化熱可塑性樹脂組成物の成形温度の観点から、温度210℃、温度230℃、又は温度250℃において粘度比(η1/η2)が10以下であることが好ましく、9.5以下であることがより好ましい。
 ゴム強化熱可塑性樹脂組成物の粘度比を10以下とする手法に特に制限はないが、例として、ゴム強化熱可塑性樹脂組成物の揮発性物質の含有量を低減する手法が挙げられる。揮発性物質とは、樹脂中に残留する揮発性有機物質(VOC)の総称のことで、芳香族炭化水素、脂肪族炭化水素、環状アルカン、テルペン類、アルコール、ケトン、ハロゲン化炭化水素、エステル等の分子量が200未満のモノマー群、および当該樹脂組成物を重合するために用いた各単量体の二量体や三量体等から構成される、重量平均分子量が200~1000のオリゴマー群が例示される。以後、樹脂中に残留するモノマー群を残留モノマー、オリゴマー群を残留オリゴマーと呼称する。残留モノマーとしては、例えば、トルエン、エチルベンゼン、1-メチルエチルベンゼン、1-メチルプロピルベンゼン、スチレン、α-メチルスチレン、アクリロニトリル等の重合の際に用いた溶剤や単量体が挙げられる。また、残留オリゴマーとしては、例えば、スチレンダイマー、スチレントリマー、α-メチルスチレンダイマー、スチレン-アクリロニトリルダイマー及びスチレン-アクリロニトリルトリマー等の、重合の際に用いた単量体から得られる2量体及び3量体が挙げられる。
 上記に述べている、揮発性物質の含有量(残留モノマーや残留オリゴマー)を該樹脂組成物から取り除くためには、各共重合体を重合する時に単量体組成及びその添加方法(一括添加方法、分割添加方法、連続添加方法など)、重合温度(温度一定重合、途中昇温重合など)、重合後の熟成温度および熟成時間、さらには、重合触媒種並びにその添加量及びその添加方法(一括添加方法、分割添加方法、連続添加方法など)等を適宜調整すること、また、該樹脂組成物の混練時やペレット化時に、押し出し機などにおける脱気工程を増やしたり、脱気の真空度を上げることを行うことが好ましい。
 離型性の点で、ゴム強化熱可塑性樹脂組成物の230℃における総揮発性物質の含有量は、0.2~1.2質量%が好ましく、0.25~1.0質量%がより好ましい。なお、230℃における総揮発性物質の含有量は上記と同様にして求められる。
 本発明のゴム強化熱可塑性樹脂組成物は、必要に応じて各種添加剤、例えば公知の酸化防止剤、光安定剤、滑剤、可塑剤、帯電防止剤、着色剤、難燃剤、艶消し剤、充填剤、ガラス繊維等を適宜添加することができる。
 本発明のゴム強化熱可塑性樹脂組成物は単独で使用できるが、必要に応じて他の熱可塑性樹脂と混合して使用することもできる。このような他の熱可塑性樹脂として、例えば、ポリメチルメタクリレートなどのアクリル系樹脂、ポリカーボネート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ポリ乳酸樹脂等が例示できる。
 本発明のゴム強化熱可塑性樹脂組成物は、上述の成分を混合することで得ることができる。混合するために、例えば、押出し機、ロール、バンバリーミキサー、ニーダー等の公知の混練装置を用いることができる。
 本発明の成形品は、本発明のゴム強化熱可塑性樹脂組成物を、公知の成形方法、例えば押出成型、射出成形、ブロー成形及びプレス成形等、によって成形することで得られる。
 以下に実施例を示して本発明を具体的に説明するが、本発明はこれらによって何ら制限されるものではない。なお、実施例中にて示す「部」および「%」は質量に基づくものである。
<試験例>
 表1に示す組成割合のグラフト共重合体(A)及び共重合体(B)に対して、着色剤としてSumiplast Black HB(住友化学株式会社製)を1.0部混合した。ベント付50mm単軸押出機(オーエヌ機械製)を用い、シリンダー温度210℃にて溶融混合し、ペレット化することによって、黒色に着色されたペレットを得た。なお、表1で示す各成分は以下の通りである。
ゴム状重合体(a)の製造
 ゴム状重合体(a-1):耐圧容器に、1,3-ブタジエン93部、スチレン7部、n-ドデシルメルカプタン0.5部、過硫酸カリウム0.24部、ロジン酸ナトリウム1.5部、水酸化ナトリウム0.1部及び脱イオン水150部を仕込み、70℃で15時間反応させた後、冷却して反応を終了させることで、ゴム状重合体(a-1)を得た。得られたゴム状重合体(a-1)を、四酸化オスミウム(OsO)で染色し、乾燥後に透過型電子顕微鏡で写真撮影をした。画像解析処理装置(装置名:旭化成(株)製 IP-1000PC)を用いて1000個のゴム粒子の面積を計測し、その円相当径(直径)を求め、ゴム状重合体(a-1)の重量平均粒子径を算出した。重量平均粒子径は0.10μmであった。
 ゴム状重合体(a-2):上記で得られたゴム状重合体(a-1)を用いてゴム粒子の凝集肥大化処理を行った。撹拌槽にゴム状重合体(a-1)270部、10%ドデシルベンゼンスルホン酸ナトリウム水溶液0.09部を添加して10分間撹拌した後、5%リン酸水溶液0.8部を10分間に亘り添加した。その後、10%水酸化カリウム水溶液1部を添加することで、ゴム状重合体(a-2)を得た。得られたゴム状重合体(a-2)を上述の方法で測定した結果、重量平均粒子径は0.25μmであった。
グラフト共重合体(A)
 窒素置換した反応器にゴム状重合体(a-2)48部(固形分)、水140部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.3部を入れ、60℃に加熱後、スチレン39部、アクリロニトリル13部、t-ドデシルメルカプタン0.6部及びキュメンハイドロパーオキサイド0.2部からなる混合物とオレイン酸カリウム1.5部及び水15部からなる混合物を4時間に亘り連続的に添加した。添加終了後さらに60℃で2時間重合した。その後、塩析・脱水・乾燥することでグラフト共重合体(A)を得た。
 グラフト共重合体(A)の一定量をアセトン中に投入し、振とう機で2時間振とうし、グラフト共重合体を浸漬させた。遠心分離器を用いて、この溶液を15,000rpmで30分間、遠心分離した後に、真空乾燥により常温で一昼夜乾燥し、アセトン不溶分を得た。得られたアセトン不溶分をフィルム化して赤外分光分析装置(装置名:Spectrum One Perkin Elmer社製)を用いて、赤外吸収スペクトルからスチレン-ブタジエンゴム、スチレン、アクリロニトリルの重量比率を同定した。各成分の重量比率からグラフト率を算出した。
 また、上記で得られたアセトン可溶分を乾燥後、N,N-ジメチルホルムアミドに溶解し、0.4g/100ccの濃度の溶液としたのち、キャノンフェンスケ型粘度管を用い30℃の流下時間を測定することにより還元粘度を求めた。
 得られたグラフト共重合体(A)のグラフト率及びアセトン可溶分の還元粘度はそれぞれ40%及び0.39dl/gであった。
 グラフト共重合体(A)、をN,N-ジメチルホルムアミドに溶解後、該溶液をガスクロマトグラフィーに注入し、得られたクロマトグラフより、230℃における総揮発性物質の含有量を測定した結果、総揮発性物質の含有量は0.52%であった。
共重合体(B)
AS樹脂(B-1): 
 窒素置換した反応器にスチレン66.2重量部、アクリロニトリル22.1重量部、エチルベンゼン11.7重量部、t-ドデシルメルカプタン0.20重量部、パーブチルパーオキサイド0.1重量部からなる単量体混合物を連続的に供給して、95℃で重合を行なった。反応器より重合液を予熱器と真空槽より成る分離回収工程に導き、回収、押出後、共重合体AS樹脂(B-1)を得た。上述の方法により、得られた共重合体(B-1)の還元粘度と230℃における総揮発性物質の含有量を測定した結果、還元粘度は0.66dl/g、総揮発性物質の含有量は0.46%であった。
AS樹脂(B-2):
 窒素置換した反応器にスチレン66.2重量部、アクリロニトリル22.1重量部、エチルベンゼン11.7重量部、t-ドデシルメルカプタン0.40重量部、パーブチルパーオキサイド0.1重量部からなる単量体混合物を連続的に供給して、95℃で重合を行なった。反応器より重合液を予熱器と真空槽より成る分離回収工程に導き、回収、押出後、共重合体AS樹脂(B-2)を得た。上述の方法により、得られた共重合体(B-2)の還元粘度と230℃における総揮発性物質の含有量を測定した結果、還元粘度は0.50dl/g、総揮発性物質の含有量は0.51%であった。
AS樹脂(B-3):
 窒素置換した反応器にスチレン66.2重量部、アクリロニトリル22.1重量部、エチルベンゼン11.7重量部、t-ドデシルメルカプタン0.55重量部、パーブチルパーオキサイド0.1重量部からなる単量体混合物を連続的に供給して、95℃で重合を行なった。反応器より重合液を予熱器と真空槽より成る分離回収工程に導き、回収、押出後、共重合体AS樹脂(B-3)を得た。上述の方法により、得られた共重合体(B-3)の還元粘度と230℃における総揮発性物質の含有量を測定した結果、還元粘度は0.45dl/g、総揮発性物質の含有量は0.75%であった。
AS樹脂(B-4):
 窒素置換した反応器にスチレン66.2重量部、アクリロニトリル22.1重量部、エチルベンゼン11.7重量部、t-ドデシルメルカプタン0.20重量部からなる単量体混合物を連続的に供給して、140℃で重合を行なった。反応器より重合液を予熱器と真空槽より成る分離回収工程に導き、回収、押出後、共重合体AS樹脂(B-4)を得た。上述の方法により、得られた共重合体(B-4)の還元粘度と230℃における総揮発性物質の含有量を測定した結果、還元粘度は0.66dl/g、総揮発性物質の含有量は1.25%であった。
AS樹脂(B-5):
 窒素置換した反応器にスチレン66.2重量部、アクリロニトリル22.1重量部、エチルベンゼン11.7重量部、t-ドデシルメルカプタン0.40重量部からなる単量体混合物を連続的に供給して、140℃で重合を行なった。反応器より重合液を予熱器と真空槽より成る分離回収工程に導き、回収、押出後、共重合体AS樹脂(B-5)を得た。上述の方法により、得られた共重合体(B-5)の還元粘度と230℃における総揮発性物質の含有量を測定した結果、還元粘度は0.50dl/g、総揮発性物質の含有量は1.46%であった。
AS樹脂(B-6):
 窒素置換した反応器にスチレン66.2重量部、アクリロニトリル22.1重量部、エチルベンゼン11.7重量部、t-ドデシルメルカプタン0.55重量部からなる単量体混合物を連続的に供給して、140℃で重合を行なった。反応器より重合液を予熱器と真空槽より成る分離回収工程に導き、回収、押出後、共重合体AS樹脂(B-6)を得た。上述の方法により、得られた共重合体(B-6)の還元粘度と230℃における総揮発性物質の含有量を測定した結果、還元粘度は0.45dl/g、総揮発性物質の含有量は1.65%であった。
<試験例>
 各実施例及び比較例で得られた着色ペレットを用いて、以下の評価に供した。その結果を表1にそれぞれ示す。
(1)総揮発性物質の含有量測定
 各実施例及び比較例で得られた着色ペレットをN,N-ジメチルホルムアミドに溶解後、該溶液をガスクロマトグラフィーに注入し、得られたクロマトグラフより、230℃における総揮発性物質の含有量を測定した。
(2)キャピラリー粘度の測定
 Malvern社製 キャピラリーレオメータ(RH7-D)を用い、D/L=1mm/16mmのキャピラリーを使い測定した。バレル温度は測定樹脂の成形温度230℃に設定した。剪断速度1×10/secの粘度(η1)と、剪断速度1×10/secの粘度(η2)を測定し、その粘度比(η1/η2)を得た。
(3)離型性
 射出成形機として、日本製鋼所製J-150EP、金型として、製品部寸法が150mm×100mm×48mmの箱状成形品の金型を用いて成形を実施し、図1に示す成形体を得た。成形体は、厚みが3mmであり、部位1、部位2及び部位3の3箇所のゲート部を有し、それぞれの部位は1mmφの形状である。部位4及び部位5は成形体に突き出しピン(エジェクターピン)が当たる部位である。部位4及び部位5において、表面の凹凸が目視で認められる場合は冷却固化時間を延長し、表面の凹凸が目視でほとんど認められない場合の冷却固化時間を記録した。表1には、n=3のうち、最も短い冷却固化時間を記載した。この冷却固化時間が短いほど、離型性が良好であることを示している。
~成形条件~
シリンダー温度設定:230℃
金型温度設定:75℃
射出圧力:120kg/cm
射出速度:10%
射出時間:5秒
金型:箱状成形品
 上記金型温度を設定するにあたり、金型温度が70℃の場合、いずれのサンプルもウエルドラインが目視で認められたが、金型温度が75℃の場合、ウエルドラインは目視でほとんど認められなかった。そのため、金型温度は75℃に設定した。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、実施例1~3のゴム強化熱可塑性樹脂組成物は、ウエルドラインを消す目的で金型温度を高くしても冷却固化時間が短く、離型性に優れることが分かる。
 表1に示すように、ゴム強化熱可塑性樹脂組成物の粘度比が10を越える比較例1、2及び3では冷却固化時間が長く必要であるため、離型性に劣っていることがわかる。
 本発明のゴム強化熱可塑性樹脂組成物は、特に従来の成形機、金型において、ウエルドラインを消す目的で金型温度を高くして成形する場合、離型性に優れ、より短い冷却固化時間でもキャビ取られによる成形不良が発生せず、電気・電子機器分野、OA機器分野などをはじめとした広範な分野で利用することが可能であり、非常に有用である。

Claims (3)

  1. ゴム状重合体(a)の存在下に芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)をグラフト共重合して得られるグラフト共重合体(A)が分散相を、芳香族ビニル系単量体、シアン化ビニル系単量体、(メタ)アクリル酸エステル系単量体及びその他の共重合可能な単量体からなる群より選ばれる少なくとも一種の単量体(b)を共重合させた共重合体(B)が連続相を構成するゴム強化熱可塑性樹脂組成物であって、1mmφの管径のキャピラリーレオメーターでの剪断速度1×10/secの粘度(η1)と、剪断速度1×10/secの粘度(η2)との粘度比(η1/η2)が、10以下であることを特徴とするゴム強化熱可塑性樹脂組成物。
  2. 前記ゴム状重合体(a)がジエン系ゴムである、請求項1に記載のゴム強化熱可塑性樹脂組成物。
  3. 請求項1又は2に記載のゴム強化熱可塑性樹脂組成物から得られた樹脂成形品。
PCT/JP2014/064018 2013-05-28 2014-05-27 ゴム強化熱可塑性樹脂組成物及び樹脂成形品 WO2014192766A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015519882A JP6454272B2 (ja) 2013-05-28 2014-05-27 ゴム強化熱可塑性樹脂組成物及び樹脂成形品
KR1020157034757A KR102340688B1 (ko) 2013-05-28 2014-05-27 고무 강화 열가소성 수지 조성물 및 수지 성형품
CN201480028161.XA CN105264012B (zh) 2013-05-28 2014-05-27 橡胶强化热塑性树脂组合物及树脂成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013111568 2013-05-28
JP2013-111568 2013-05-28

Publications (1)

Publication Number Publication Date
WO2014192766A1 true WO2014192766A1 (ja) 2014-12-04

Family

ID=51988794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064018 WO2014192766A1 (ja) 2013-05-28 2014-05-27 ゴム強化熱可塑性樹脂組成物及び樹脂成形品

Country Status (4)

Country Link
JP (1) JP6454272B2 (ja)
KR (1) KR102340688B1 (ja)
CN (1) CN105264012B (ja)
WO (1) WO2014192766A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006429B2 (en) 2018-09-21 2024-06-11 Lg Chem, Ltd. Thermoplastic resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220961A1 (ja) * 2017-06-01 2018-12-06 東レ株式会社 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、成形品及び成形品の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470351A (en) * 1977-10-26 1979-06-06 Bayer Ag Thermoplastics molding composition
JPH08245855A (ja) * 1996-03-11 1996-09-24 Asahi Chem Ind Co Ltd 耐熱性に優れたブロー成形用樹脂組成物
JPH1077384A (ja) * 1996-09-03 1998-03-24 Mitsubishi Rayon Co Ltd 耐熱性、耐衝撃性に優れた熱可塑性樹脂組成物
JPH10279754A (ja) * 1997-04-01 1998-10-20 Bayer Ag 減少した堆積物生成を有するグラフトポリマー成形組成物
WO2004041678A1 (ja) * 2002-11-06 2004-05-21 Fuji Bakelite Co., Ltd. クリーンルーム用容器
JP2005320466A (ja) * 2004-05-11 2005-11-17 Techno Polymer Co Ltd 成形材料及び成形品
JP2011132426A (ja) * 2009-12-25 2011-07-07 Toray Ind Inc ゴム強化熱可塑性樹脂組成物の製造方法
JP2012184301A (ja) * 2011-03-04 2012-09-27 Nippon A&L Inc 耐光性に優れた発泡成形用熱可塑性樹脂組成物及びその発泡成形品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3977565B2 (ja) 1999-05-06 2007-09-19 小野産業株式会社 合成樹脂成形用金型並びに金型温度調整装置及び金型温度調整方法
JP4570723B2 (ja) 2000-03-24 2010-10-27 小野産業株式会社 熱可塑性樹脂成形物の製造方法および熱可塑性樹脂成形物
KR100789597B1 (ko) * 2001-03-28 2007-12-27 테크노 폴리머 가부시키가이샤 고무 강화 열가소성 수지 및 고무 강화 열가소성 수지조성물
JP5805066B2 (ja) * 2010-03-05 2015-11-04 日本エイアンドエル株式会社 車両用ランプハウジング用熱可塑性樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470351A (en) * 1977-10-26 1979-06-06 Bayer Ag Thermoplastics molding composition
JPH08245855A (ja) * 1996-03-11 1996-09-24 Asahi Chem Ind Co Ltd 耐熱性に優れたブロー成形用樹脂組成物
JPH1077384A (ja) * 1996-09-03 1998-03-24 Mitsubishi Rayon Co Ltd 耐熱性、耐衝撃性に優れた熱可塑性樹脂組成物
JPH10279754A (ja) * 1997-04-01 1998-10-20 Bayer Ag 減少した堆積物生成を有するグラフトポリマー成形組成物
WO2004041678A1 (ja) * 2002-11-06 2004-05-21 Fuji Bakelite Co., Ltd. クリーンルーム用容器
JP2005320466A (ja) * 2004-05-11 2005-11-17 Techno Polymer Co Ltd 成形材料及び成形品
JP2011132426A (ja) * 2009-12-25 2011-07-07 Toray Ind Inc ゴム強化熱可塑性樹脂組成物の製造方法
JP2012184301A (ja) * 2011-03-04 2012-09-27 Nippon A&L Inc 耐光性に優れた発泡成形用熱可塑性樹脂組成物及びその発泡成形品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006429B2 (en) 2018-09-21 2024-06-11 Lg Chem, Ltd. Thermoplastic resin composition

Also Published As

Publication number Publication date
CN105264012A (zh) 2016-01-20
JPWO2014192766A1 (ja) 2017-02-23
JP6454272B2 (ja) 2019-01-16
CN105264012B (zh) 2021-02-19
KR20160013898A (ko) 2016-02-05
KR102340688B1 (ko) 2021-12-16

Similar Documents

Publication Publication Date Title
CN107075214B (zh) 热塑性树脂组合物以及使用该组合物的模制品
JP6261957B2 (ja) 熱可塑性樹脂組成物からなる漆黒部品及び自動車内装部品
KR20150067743A (ko) 내화학성이 우수한 열가소성 수지 조성물 및 이로부터 제조된 성형품
US6071992A (en) Flame-retardant thermoplastic resin composition
JP3682229B2 (ja) 共重合体、熱可塑性樹脂組成物およびその製造方法
JP6978412B2 (ja) ゴム変性ビニル系グラフト共重合体及びそれを含む熱可塑性樹脂組成物
KR101965170B1 (ko) 열가소성 수지 조성물, 그 제조 방법 및 그 성형품
JP2017536423A (ja) 熱可塑性樹脂組成物及びこれを適用した成形品
JP6454272B2 (ja) ゴム強化熱可塑性樹脂組成物及び樹脂成形品
JP5851142B2 (ja) ゴム強化熱可塑性樹脂組成物
JP5950627B2 (ja) ゴム強化熱可塑性樹脂組成物及び樹脂成形品
JP5453511B2 (ja) グラフト共重合体、熱可塑性樹脂組成物及びグラフト共重合体の製造方法
JP2005298776A (ja) 耐熱付与材、それを用いた樹脂組成物
JP7267679B2 (ja) 熱可塑性樹脂組成物及びその成形品
TWI449740B (zh) Rubber modified styrene resin and molded article produced therefrom
WO2022202557A1 (ja) 熱可塑性樹脂組成物およびその製造方法
JP6341593B2 (ja) グラフト共重合体の製造方法、および熱可塑性樹脂組成物の製造方法
JP2012158623A (ja) 熱可塑性樹脂組成物
JP6376020B2 (ja) 熱可塑性樹脂組成物およびその成形品
JP6317713B2 (ja) 熱可塑性樹脂組成物
JP2005193507A (ja) 耐薬品性に優れた透明射出成形部品
JP2005248125A (ja) 初期着色性に優れた耐光性透明樹脂組成物および透明製品
TW202110989A (zh) 透明熱可塑性樹脂組成物、其製造方法及成形品、暨成形品之製造方法
TW202428752A (zh) 熱塑性樹脂組成物
JP2014015561A (ja) グラフト共重合体、熱可塑性樹脂組成物及びグラフト共重合体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480028161.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519882

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157034757

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201508761

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14804155

Country of ref document: EP

Kind code of ref document: A1