WO2014192595A1 - ねじ装置 - Google Patents

ねじ装置 Download PDF

Info

Publication number
WO2014192595A1
WO2014192595A1 PCT/JP2014/063365 JP2014063365W WO2014192595A1 WO 2014192595 A1 WO2014192595 A1 WO 2014192595A1 JP 2014063365 W JP2014063365 W JP 2014063365W WO 2014192595 A1 WO2014192595 A1 WO 2014192595A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
ball
rolling element
path
nut
Prior art date
Application number
PCT/JP2014/063365
Other languages
English (en)
French (fr)
Inventor
敦士 鈴木
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Priority to DE112014002636.0T priority Critical patent/DE112014002636T5/de
Priority to US14/890,657 priority patent/US9568078B2/en
Priority to CN201480030731.9A priority patent/CN105247245B/zh
Publication of WO2014192595A1 publication Critical patent/WO2014192595A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • F16H25/2214Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls with elements for guiding the circulating balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • F16H25/2214Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls with elements for guiding the circulating balls
    • F16H25/2219Axially mounted end-deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts

Definitions

  • the present invention relates to a screw device in which a rolling element is interposed between a screw shaft and a nut so as to be able to roll and the rolling element circulates.
  • Threading devices such as ball screws and roller screws include screw shafts, nuts, balls interposed between the screw shafts and nuts, rolling elements such as rollers, and circulation parts that circulate the rolling elements infinitely.
  • the screw device has a feature that light motion can be obtained by rolling motion of a rolling element, and is widely used as a mechanical element that converts rotational motion into linear motion or converts linear motion into rotational motion.
  • a spiral rolling element rolling groove is formed on the outer peripheral surface of the screw shaft.
  • a spiral load rolling element rolling groove facing the rolling element rolling groove of the screw shaft is formed on the inner peripheral surface of the nut.
  • a large number of rolling elements are arranged so as to be able to roll in the spiral rolling rolling element rolling path between the rolling element rolling groove of the screw shaft and the loaded rolling element rolling groove of the nut.
  • the nut is provided with a circulating component for circulating the rolling elements.
  • a return path that connects one end and the other end of the spiral loaded rolling element rolling groove is formed in the circulating component.
  • a straight return path is arranged in a tangential direction of the spiral load rolling element rolling path at the boundary between the spiral loaded rolling element rolling path and the return path. That is, when viewed from the axial direction of the nut, it is common to arrange a straight return path in the tangential direction of the circular load rolling element rolling path.
  • the rolling elements move along a spiral loaded rolling element rolling path while receiving a load. And it leaves a load rolling-element rolling path, enters into a straight return path, and moves on a straight return path.
  • the rolling element moves in a spiral path, so that centrifugal force acts on the rolling element.
  • the rolling element moves along a linear track, so that centrifugal force does not act on the rolling element. For this reason, a change of centrifugal force abruptly occurs in the rolling elements that shift from the load rolling element rolling path to the return path or from the return path to the load rolling element rolling path.
  • the rolling element receives a load and moves along the spiral trajectory with its position determined.
  • the rolling element since the rolling element moves along the return path having a larger inner diameter than the diameter of the rolling element when entering the return path, the rolling element can freely move in the return path (there is play around the rolling element) ) To move. Due to this, the center of the rolling element is shifted between the rolling element that has hit the inner wall surface of the return path and the rolling element that has entered the rolling element rolling path. For this reason, a sudden change in the position of the rolling element occurs at the boundary between the return path and the load rolling element rolling path, and when the rolling element clogs, the trajectory of the rolling element in the return path becomes zigzag. .
  • the present invention provides a screw device that can smooth the movement of a rolling element by suppressing a sudden force change or position change from occurring on the rolling element at the boundary between a loaded rolling element rolling path and a return path. The purpose is to provide.
  • the present invention provides a screw shaft having a spiral rolling element rolling groove on the outer peripheral surface, and a spiral load rolling element rolling groove facing the rolling element rolling groove on the inner peripheral surface.
  • a nut having a return path connecting one end and the other end of a spiral load rolling element rolling path between the rolling element rolling groove of the screw shaft and the load rolling element rolling groove of the nut; and the load
  • the return path has a track center line of the rolling elements in the return path Is larger than the radius of curvature of the track center line of the rolling element in the loaded rolling element rolling path, and the radius of curvature of the track center line of the rolling element in the return path gradually increases as the distance from the load rolling element rolling path increases.
  • the radius of curvature increases gradually or gradually. Parts wherein the is provided.
  • the radius of curvature of the track center line of the return path gradually or stepwise increases as the distance from the rolling element rolling path increases, so that the rolling element is loaded from the return path while increasing the acting centrifugal force. It enters into the rolling element rolling path and goes out from the loaded rolling element rolling path to the return path while reducing the acting centrifugal force. For this reason, it can suppress that the centrifugal force which acts on a rolling element before and behind the boundary of a return path and a load rolling element rolling path changes rapidly.
  • the track center line of the rolling element is bent in the return path, centrifugal force acts on the rolling element that moves along the return path.
  • the rolling element moves along the return path while being pressed against the outer periphery of the return path by centrifugal force. For this reason, it becomes easy to align rolling elements on a return path, and it can suppress that a sudden change of a position occurs in rolling elements before and behind a boundary.
  • the track center line of the rolling element is bent in the return path, even when the rolling element is clogged, the force that presses the rolling element toward the outer periphery of the return path is applied to the rolling element, and the rolling elements are aligned in the return path. It becomes easy.
  • FIG. 4A The perspective view of the screw device of this embodiment
  • FIG. 4B is a perspective view of the nut body viewed from the opposite direction to FIG.
  • FIG. 7 (a) (b) shows the conventional tangential scoop, FIG.7 (c). Indicates the curvature radius change of this embodiment
  • FIG. 8A and FIG. 8B show conventional tangential scooping
  • FIG. 8C and FIG. 8D compare the rotation of the ball between the conventional tangential scooping and the radius of curvature change according to the present embodiment. Indicates the curvature radius change of this embodiment
  • FIG. 1 is a side view of the screw device
  • FIG. 2 is a perspective view of the screw device
  • FIG. 3 is a front view of the screw device viewed from the axial direction.
  • the screw device includes a screw shaft 1, a nut 2 in which an opening 2a through which the screw shaft 1 passes is formed, and a plurality of balls 4 as rolling elements interposed between the screw shaft 1 and the nut 2 so as to be capable of rolling motion. .
  • a ball rolling groove 1 a as a spiral rolling element rolling groove is formed on the outer peripheral surface of the screw shaft 1.
  • the ball rolling groove 1a has a certain lead. In this embodiment, a single ball rolling groove 1a is shown, but the number of the ball rolling grooves 1a can be two or three.
  • the cross-sectional shape of the ball rolling groove 1a is formed in a Gothic arch groove shape combining two arcs.
  • the ball 4 contacts the ball rolling groove 1a of the screw shaft 1 at two points.
  • the screw shaft 1 is made of steel.
  • the surface of the ball rolling groove 1a is subjected to heat treatment and grinding using a grindstone so that the ball 4 rolls smoothly.
  • a loaded ball rolling groove 2 b is formed as a spiral loaded rolling element rolling groove facing the ball rolling groove 1 a of the screw shaft 1.
  • the number of leads and strips of the loaded ball rolling groove 2b is equal to the number of leads and strips of the ball rolling groove 1a.
  • the cross-sectional shape of the load ball rolling groove 2b is also formed in a Gothic arch groove shape combining two arcs.
  • the ball 4 contacts the load ball rolling groove 2b of the nut 2 at two points.
  • the nut 2 (excluding circulating parts) is made of steel.
  • the surface of the loaded ball rolling groove 2b is subjected to heat treatment and grinding using a grindstone so that the ball 4 rolls smoothly.
  • a spiral loaded ball rolling path 3 is formed as a loaded rolling element rolling path.
  • the clearance between the load ball rolling groove 2 b of the nut 2 and the ball rolling groove 1 a of the screw shaft 1 is smaller than the diameter of the ball 4, and the ball 4 is formed between the nut 2 and the screw shaft 1 in the load ball rolling path 3. Receiving compression load between.
  • a return path 5 that connects one end and the other end of the spiral load ball rolling path 3 is formed.
  • a plurality of balls 4 are arranged on the load ball rolling path 3 and the return path 5.
  • a spacer (not shown) may be interposed between the balls 4.
  • the ball 4 rolls while receiving a load between the ball rolling groove 1 a of the screw shaft 1 and the loaded ball rolling groove 2 b of the nut 2, and the center line of the ball 4 spirals. Become.
  • the center line of the ball 4 deviates from the spiral.
  • the inner diameter of the return path 5 (excluding the return path 5 immediately after exiting the loaded ball rolling path 3 as will be described later) is larger than the outer diameter of the ball 4, and the ball 4 can receive a load in the return path 5. Instead, it is pushed by the subsequent ball 4 to move.
  • the ball 4 rolls along the loaded ball rolling path 3 while receiving a load.
  • the ball 4 that has rolled to one end of the loaded ball rolling groove 2b of the nut 2 enters the return path 5 and is released from the load. After moving along the return path 5, the ball 4 returns to the other end of the loaded ball rolling groove 2b.
  • the nut 2 includes a nut main body 21 in which the load ball rolling groove 2b is formed, and circulation parts 22 that are attached to both ends of the nut main body 21 in the axial direction.
  • the nut body 21 is formed with a through hole 21a extending in the axial direction.
  • a direction change path 12 is formed in the circulation component 22 attached to the nut body 21.
  • the nut body 21 is formed with an outer peripheral side 13b of the curvature radius changing portion 13 by extending the load ball rolling groove 2b.
  • the outer peripheral side 13b of the curvature radius changing portion 13 is shown by hatching for easy understanding (the outer peripheral side 13b of the curvature radius changing portion 13 is shown as a separate body from the nut main body 21; The outer peripheral side 13b of the portion 13 is integral with the nut body 21).
  • the direction change path 12 of the circulation component 22 is connected to the through hole 21 a and the curvature radius changing portion 13.
  • the through hole 21 a of the nut body 21, the direction changing path 12 of the circulating component 22, and the curvature radius changing portion 13 constitute the return path 5.
  • the return path 5 is provided with a radius-of-curvature changing portion 13 continuously to the load ball rolling path 3.
  • the track center line 3a of the ball 4 in the loaded ball rolling path 3 is indicated by a one-dot chain line, and the track center line 13a of the ball 4 in the curvature radius changing portion 13 is indicated by a bold line.
  • the radius of curvature of the track center line 13 a of the ball 4 is equal to or greater than the radius of curvature of the track center line 3 a of the ball 4 in the loaded ball rolling path 3 and the distance from the loaded ball rolling path 3 increases ( In other words, the radius of curvature of the track center line 13a of the ball 4 increases gradually or stepwise as it approaches the direction change path 12.
  • the track center line 13 a of the ball 4 is shifted outward from the track center line 3 a of the ball 4 in the loaded ball rolling path 3.
  • the center of curvature of the track center line 13a of the ball 4 is located on the screw shaft 1 side.
  • the tangential direction of the track center line 13a of the curvature radius changing portion 13 and the tangential direction of the track center line 3a of the load ball rolling path 3 coincide. That is, the track center line 13a of the curvature radius changing portion 13 is a curve having a lead. Moreover, in this connection location P1, the radius of curvature of the track center line 13a of the curvature radius changing portion 13 is equal to the radius of curvature of the track center line 3a of the load ball rolling path 3 or larger than the radius of curvature of the track center line 3a. As shown in FIG.
  • the direction changing path 12 of the circulating component 22 as viewed from the axial direction of the nut 2 is formed linearly.
  • the radius of curvature of the track center line 13a of the radius-of-curvature changing portion 13 becomes infinite at the connection point P2 between the circulation component 22 and the direction change path 12.
  • the length of the radius-of-curvature changing portion 13 (the length of the track center line 13a from P1 to P2) is at least twice the ball diameter.
  • P1 exists on a horizontal line that crosses the center of the nut 2 in the height direction, but approaches the circulating component 22 according to the trajectory of the trajectory centerline 13a of the curvature radius changing portion 13. It can also be separated from the circulating component 22.
  • the ball 4 moves along the outer peripheral side 13 b of the curvature radius changing portion 13 formed on the nut 2.
  • the track center line 13 a of the ball 4 in the curvature radius changing portion 13 coincides with the locus of the center of the ball 4 moving along the outer peripheral side 13 b of the curvature radius changing portion 13 of the nut 2.
  • the ball 4 moves while being sandwiched between the loaded ball rolling groove 2 b of the nut 2 and the ball rolling groove 1 a of the screw shaft 1.
  • the track center line 3a of the ball 4 coincides with the center line of the loaded ball rolling path 3 and is circular.
  • the radius of curvature of the track center line 3a of the ball 4 in the loaded ball rolling path 3 is 1 ⁇ 2 of BCD (Ball CircleCDiameter).
  • the orbit center line 13a of the ball 4 is a relaxation curve or a composite curve in which a plurality of arcs having different radii of curvature are combined.
  • the relaxation curve is a curve used on an expressway or the like, and is a curve whose curvature continuously changes in proportion to the curve length. The relaxation curve will be described later.
  • the compound curve is a curve obtained by combining two or more arcs such as radius R1 and radius R2 (which has a relation of R1 ⁇ R2).
  • the outer peripheral side 13 b of the curvature radius changing portion 13 is formed on the nut 2.
  • a portion 13C2 close to the load ball rolling path 3 on the inner peripheral side 13C of the curvature radius changing portion 13 is formed by the outer peripheral surface of the screw shaft 1, and a portion 13C1 away from the load ball rolling path 3 is formed in the circulating component 22.
  • the outer peripheral side 13b of the curvature radius changing portion 13 is continuous with the load ball rolling groove 2b of the nut 2, and the ball 4 immediately after entering the outer peripheral side 13b of the curvature radius changing portion 13 from the load ball rolling groove 2b is also present.
  • the load acts in the same manner as the ball 4 in the loaded ball rolling groove 2b.
  • the ball 4 moving on the outer peripheral side 13b of the curvature radius changing portion 13 is gradually released from the load as it moves away from the loaded ball rolling groove 2b.
  • the ball is completely released from the load in the middle of the curvature radius changing portion 13 (in the present embodiment, in the middle of the portion 13C2 close to the loaded ball rolling path 3) and enters the circulation component 22 in an unloaded state.
  • FIG. 4A shows a perspective view of the nut body 21 viewed from the same direction as FIG. 2, and FIG. 4B shows a perspective view of the nut body 21 viewed from the opposite direction to FIG.
  • a recess 31 in which the circulating component 22 is mounted is formed on the end surface of the nut body 21 in the axial direction.
  • the recess 31 is connected to the through hole 21a.
  • the direction changing path 12 of the circulating component 22 is connected to the through hole 21a.
  • the outer peripheral side 13 b of the curvature radius changing portion 13 is formed by extending the load ball rolling groove 2 b.
  • the cross-sectional shape of the outer peripheral side 13b of the curvature radius changing portion 13 is formed into a Gothic arch groove shape combining two arcs.
  • the ball 4 contacts the outer peripheral side 13b of the curvature radius changing portion 13 of the nut 2 at two points.
  • the concave portion 31 is also connected to the outer peripheral side 13 b of the curvature radius changing portion 13, and when the circulating component 22 is attached to the concave portion 31, the direction changing path 12 of the circulating component 22 is connected to the outer peripheral side 13 b of the curvature radius changing portion 13.
  • FIG. 5 shows a perspective view of the circulation component 22.
  • the circulating component 22 includes a main body portion 32 that is fitted in the concave portion 31 of the nut main body 21, and an extension portion 33 that is in contact with the inner peripheral surface of the nut 2.
  • a direction changing path 12 is formed in the main body portion 32.
  • the cross-sectional shape of the direction change path 12 is a circle having a radius larger than the radius of the ball 4.
  • the extension portion 33 is formed thin by removing the lower portion of the main body portion 32.
  • the extension portion 33 is formed with an inner peripheral side 13 c 1 of the curvature radius changing portion 13.
  • the cross-sectional shape of the inner peripheral side 13 c 1 of the curvature radius changing portion 13 is a semicircle having a radius larger than the radius of the ball 4.
  • the extension portion 33 constitutes the curvature radius changing portion 13 having a closed cross section in cooperation with the outer peripheral side 13b of the curvature radius changing portion 13 of the nut 2.
  • a scooping portion 34 that scoops up the ball 4 is formed at the tip of the extension portion 33.
  • the ball 4 is held in the circulating component 22 by the scooping portion 34.
  • the outer peripheral side 13b of the curvature radius changing portion 13 of the nut 2 extends beyond the scooping portion 34 of the circulating component 22 (see FIG. 3).
  • FIG. 6 is an explanatory diagram showing a relaxation curve (clothoid curve).
  • the relaxation curve from the start point P 0 to the end point P 1 can be expressed by the following four parameters.
  • h Length of the curve from the start point P 0 to the end point P 1 ⁇ 0 : Tangent angle at the start point P 0 ⁇ v : Increment of arc of tangent angle ⁇ u : Increment of clothoid of tangent angle
  • the unit of the three angles is radian in the following formula.
  • the point P on the relaxation curve can be obtained by Equation 1 using the dimensionless displacement S as a variable when the y-axis is the imaginary axis (j-axis).
  • is the tangential direction of the curve at point P
  • S is the value obtained by dividing the length s of the curve from start point P 0 to point P by h.
  • Curvature c v of the curve is determined by the number 2.
  • the reduction ratio that is, the curvature change rate c u is obtained by Equation 3.
  • the curvature change rate c u is a constant value. That is, the relaxation curve is a curve in which the curvature changes linearly (in a linear expression) with respect to the length of the curve, and by using this, a smooth curve in which the curvature changes continuously can be obtained.
  • the manufacturing method of the outer peripheral side 13b of the curvature radius changing portion 13 is as follows.
  • the loaded ball rolling groove 2b of the nut 2 is ground by applying a small-diameter grindstone to the loaded ball rolling groove 2b of the nut 2 and rotating the grindstone.
  • the grinding wheel is moved in the axial direction of the nut 2 while rotating the nut 2.
  • the spiral load ball rolling groove 2b can be ground. If the grindstone is further moved in the radial direction of the nut 2 along the relaxation curve after grinding the load ball rolling groove 2b of the nut 2, the outer peripheral side 13b of the curvature radius changing portion 13 can be ground.
  • FIG. 7 shows a comparison of the centrifugal force Pc acting on the ball 4 between the conventional tangential direction wrinkle and the curvature radius change wrinkle of the present embodiment.
  • 7 (a) and 7 (b) show a conventional tangential scoop
  • FIG. 7 (c) shows a curvature radius scoop of the present embodiment.
  • FIG. 7A in the case of conventional tangential scooping, the track center line 3a of the ball 4 in the loaded ball rolling path 3 is a spiral, and the track center line 41a of the ball 4 in the return path 41 is a straight line. Become.
  • the ball 4 travels in a spiral tangential direction from the loaded ball rolling path 3 to the return path 41.
  • a constant centrifugal force Pc acts on the ball 4 moving on the loaded ball rolling path 3.
  • the centrifugal force does not act on the ball 4 moving on the return path 41. For this reason, the centrifugal force acting on the ball 4 moving from the load ball rolling path 3 to the return path 41 or the ball 4 moving from the return path 41 to the load ball rolling path 3 changes abruptly.
  • the ball 4 moves along the spiral trajectory in a state where the position is determined, whereas when entering the return path 41, it is larger than the ball diameter. Since the ball 4 moves in the cylinder, the ball 4 can freely move and move in the return path 41. For this reason, there is a shift in the center of the ball 4 between the state where it hits the cylindrical wall of the return path 41 and the position determined by the loaded ball rolling path 3, and there is a sudden change in the position of the ball 4 at the boundary 42. Arise. When the ball 4 is clogged, the track center line 41a of the ball 4 in the return path 41 becomes zigzag and the track center line 41a is not continuous.
  • the radius of curvature of the track center line 13a of the radius-of-curvature changing portion 13 gradually changes, so that the acting centrifugal force The ball 4 enters the load ball rolling path 3 from the return path 5 while increasing, and the centrifugal force acting decreases from the load ball rolling path 3 to the return path 5. For this reason, it can suppress that the centrifugal force which acts on the ball
  • the outer peripheral side 13b of the curvature radius changing portion 13 of the return path 5 is formed by extending the load ball rolling groove 2b of the nut 2, the ball is also formed at the boundary 43 between the load ball rolling path 3 and the return path 5.
  • 4 orbit centerlines 3a and 13a are continuous, and the ball 4 smoothly moves on the boundary 43.
  • the track center line 13a of the ball 4 is bent in the return path 5, a centrifugal force acts on the ball 4 moving on the return path 5. Since the balls 4 move along the return path 5 while being pressed against the outer peripheral side 13b of the return path 5 by the centrifugal force, the balls 4 are easily aligned in the return path 5. Even when the ball 4 is clogged, the force that presses the ball 4 against the outer peripheral side 13 b of the return path 5 works, and the balls 4 are easily aligned in the return path 5.
  • FIG. 8 is a comparison of the rotation of the ball 4 between the conventional tangential direction and the curvature radius change according to the present embodiment.
  • 8 (a) and 8 (b) show the conventional tangential direction scooping
  • FIGS. 8 (c) and 8 (d) show the curvature radius scooping of this embodiment.
  • FIG. 8A in the case of conventional tangential scooping, when the screw shaft 1 is rotated counterclockwise, the ball 4 moves along the spiral trajectory while rotating clockwise in the load ball rolling path 3. However, the ball 4 does not rotate in the cylindrical return path 41.
  • FIG. 8 (b) when entering the loaded ball rolling path 3 from the return path 41, the ball 4 suddenly rotates from a state where it does not rotate, and the rotation state of the ball 4 changes abruptly. .
  • the screw device according to the present embodiment further provides the following effects.
  • the curvature radius changing portion 13 can be easily manufactured.
  • the ball 4 can be rotated with the rotation of the screw shaft 1.
  • the remaining portion 13C1 on the inner peripheral side of the curvature radius changing portion 13 is formed in the circulating component 22 to prevent excessive play around the ball 4 even if the curvature radius of the curvature radius changing portion 13 is increased. it can.
  • the load ball rolling groove 2b of the nut body 21 and the cross-sectional shape of the outer peripheral side 13b of the curvature radius changing portion 13 into a Gothic arch groove shape that contacts the ball 4 at two points, the load ball rolling path 3 And the contact point of the ball before and after the boundary 43 of the return path 5 can be matched.
  • the relaxation curve having a lead on the track center line of the radius of curvature change portion (that is, the tangential direction of the track center line of the radius of curvature change portion and the load at the connection point between the radius of curvature change portion and the load ball rolling path).
  • the tangential direction of the track center line of the ball rolling path is perfectly matched), but if the load ball rolling path and the curvature radius change part can be smoothly connected, the track center line of the curvature radius change part has a lead.
  • There may be no relaxation curve (for example, the orbital center line of the radius-of-curvature changing portion is arranged in a plane perpendicular to the axis of the nut).
  • the outer peripheral side of the curvature radius changing portion is formed by extending the load ball rolling groove of the nut body
  • the outer peripheral side of the curvature radius changing portion can also be formed in the circulating part.
  • the nut circulation structure is an end deflector type (a system in which a circulation part in which a through hole is formed in the nut body and direction change paths 12 are formed at both ends in the axial direction of the nut body) is described.
  • the nut circulation structure may be a return pipe type (a system in which a return pipe having a return path formed in the nut body is mounted).
  • the cross-sectional shape of the load ball rolling groove of the nut main body and the cross-sectional shape of the outer peripheral side of the curvature radius changing portion is formed into a Gothic arch groove shape composed of two arcs.
  • the shape can also be formed into a circular arc groove shape consisting of a single arc.
  • rollers can be used as rolling elements.

Abstract

 ねじ装置の螺旋の負荷転動体転走路と戻し路との境界で転動体に急激な力の変化又は位置の変化が起こるのを抑えることにより、転動体の動きをスムーズにすることができるねじ装置を提供する。 ねじ装置の戻し路(5)に、ナット(2)の軸線方向から見たとき、戻し路(5)における転動体(4)の軌道中心線(13a)の曲率半径が負荷転動体転走路(3)における転動体の軌道中心線(3a)の曲率半径以上であり、かつ負荷転動体転走路(3)から離れるにしたがって戻し路(5)における転動体(4)の軌道中心線(13a)の曲率半径が徐々に又は段階的に大きくなる曲率半径変化部(13)を設ける。

Description

ねじ装置
 本発明は、ねじ軸とナットとの間に転がり運動可能に転動体を介在させ、転動体が循環するようにしたねじ装置に関する。
 ボールねじ、ローラねじ等のねじ装置は、ねじ軸、ナット、ねじ軸とナットとの間に介在されるボール、ローラ等の転動体、及び転動体を無限循環させる循環部品を備える。ねじ装置は、転動体の転がり運動によって軽快な動きが得られるという特徴を持ち、回転運動を直線運動に変換し、又は直線運動を回転運動に変換する機械要素として広く用いられている。
 ねじ軸の外周面には、螺旋の転動体転走溝が形成される。ナットの内周面には、ねじ軸の転動体転走溝に対向する螺旋の負荷転動体転走溝が形成される。ねじ軸の転動体転走溝とナットの負荷転動体転走溝との間の螺旋の負荷転動体転走路には多数の転動体が転がり運動可能に配列される。ナットには、転動体を循環させるための循環部品が設けられる。循環部品には、螺旋の負荷転動体転走溝の一端と他端を繋げる戻し路が形成される。ナットに対してねじ軸を相対的に回転させると、転動体が負荷転動体転走路を転がり運動する。ナットの負荷転動体転走溝の一端まで転がり運動した転動体は、循環部品の戻し路を経由して再び負荷転動体転走溝の他端に戻る。
 螺旋の負荷転動体転走路と戻し路との境界において、直線的な戻し路が螺旋の負荷転動体転走路の接線方向に配置されるのが一般的である。すなわち、ナットの軸線方向から見たとき、直線的な戻し路を円形の負荷転動体転走路の接線方向に配置するのが一般的である。転動体は負荷を受けながら螺旋の負荷転動体転走路を移動する。そして、負荷転動体転走路を出て直線的な戻し路に入り、直線的な戻し路を移動する。
特開2012-112432号公報
 負荷転動体転走路においては、転動体は螺旋軌道を移動するので、転動体には遠心力が作用する。しかし、戻し路においては、転動体は直線軌道を移動するので、転動体には遠心力は作用しない。このため、負荷転動体転走路から戻し路へ又は戻し路から負荷転動体転走路へ移行する転動体に急激に遠心力の変化が起こる。
 また、負荷転動体転走路においては、転動体は荷重を受けており、その位置が決められた状態で螺旋軌道に沿って移動する。これに対し、戻し路に入ると転動体は転動体の径よりも内径が大きな戻し路を移動するので、転動体は戻し路の中を自由に動ける状態(転動体の周囲に遊びがある状態)で移動する。これが原因で、戻し路の内壁面に当たった転動体と負荷転動体転走路に入った転動体とで、転動体の中心のずれが生ずる。このため、戻し路と負荷転動体転走路の境界で転動体の急激な位置の変化が生じたり、また転動体のつまりが発生した場合、戻し路内の転動体の軌道がジグザグになったりする。
 以上のように、従来のねじ装置にあっては、負荷転動体転走路と戻し路の境界で転動体に急激な力の変化又は位置の変化が起こるという課題がある。そこで本発明は、負荷転動体転走路と戻し路の境界で転動体に急激な力の変化又は位置の変化が起こるのを抑えることにより、転動体の動きをスムーズにすることができるねじ装置を提供することを目的とする。
 上記課題を解決するために、本発明は、外周面に螺旋の転動体転走溝を有するねじ軸と、内周面に前記転動体転走溝に対向する螺旋の負荷転動体転走溝を有するナットと、前記ねじ軸の前記転動体転走溝と前記ナットの前記負荷転動体転走溝との間の螺旋の負荷転動体転走路の一端と他端を接続する戻し路と、前記負荷転動体転走路及び前記戻し路に配列される複数の転動体と、を備えるねじ装置において、前記ナットの軸線方向から見たとき、前記戻し路には、前記戻し路における転動体の軌道中心線の曲率半径が前記負荷転動体転走路における転動体の軌道中心線の曲率半径以上であり、かつ前記負荷転動体転走路から離れるにしたがって前記戻し路における転動体の軌道中心線の曲率半径が徐々に又は段階的に大きくなる曲率半径変化部が設けられることを特徴とする。
 本発明によれば、負荷転動体転走路から離れるにしたがって戻し路の軌道中心線の曲率半径が徐々に又は段階的に大きくなるので、作用する遠心力が増加しながら転動体が戻し路から負荷転動体転走路に入り、作用する遠心力が減少しながら負荷転動体転走路から戻し路へと出ていく。このため、戻し路と負荷転動体転走路の境界の前後で転動体に作用する遠心力が急激に変化するのを抑えることができる。
 また、戻し路において転動体の軌道中心線が曲がっていることから、戻し路を移動する転動体に遠心力が働く。遠心力によって転動体は戻し路の外周側に押しつけられながら戻し路を移動する。このため、戻し路で転動体が整列し易くなり、境界の前後で転動体に急激な位置の変化が起こるのを抑えることができる。さらに、戻し路において転動体の軌道中心線が曲がっていることから、転動体が詰まった場合でも転動体に転動体を戻し路の外周側に押しつける力が働き、戻し路で転動体が整列し易くなる。
本発明の一実施形態のねじ装置の側面図 本実施形態のねじ装置の斜視図 本実施形態のねじ装置の正面図(ナットの軸線方向からみた図) 本実施形態のナット本体の斜視図(図4(a)は図2と同方向から見たナット本体の斜視図を示し、図4(b)は図2と反対方向から見たナット本体の斜視図を示す) 本実施形態の循環部品の斜視図 緩和曲線を示す図 従来の接線方向掬いと本実施形態の曲率半径変化掬いとで、ボールに作用する遠心力を比較した図(図7(a)(b)は従来の接線方向掬いを示し、図7(c)は本実施形態の曲率半径変化掬いを示す) 従来の接線方向掬いと本実施形態の曲率半径変化掬いとで、ボールの自転を比較した図(図8(a)(b)は従来の接線方向掬いを示し、図8(c)(d)は本実施形態の曲率半径変化掬いを示す)
 以下、添付図面を参照して、本発明の一実施形態のねじ装置を説明する。図1ないし図3は本実施形態のねじ装置を示す。図1はねじ装置の側面図、図2はねじ装置の斜視図、図3はねじ装置の軸線方向からみた正面図を示す。ねじ装置は、ねじ軸1、ねじ軸1が貫通する開口部2aが形成されるナット2、ねじ軸1とナット2との間に転がり運動可能に介在する複数の転動体としてのボール4を備える。
 ねじ軸1の外周面には螺旋の転動体転走溝としてのボール転走溝1aが形成される。ボール転走溝1aは一定のリードを持つ。この実施形態では、一条のボール転走溝1aが示されているが、ボール転走溝1aの条数は二条、三条等とすることができる。ボール転走溝1aの断面形状は二つの円弧を組み合わせたゴシックアーチ溝形状に形成される。ボール4はねじ軸1のボール転走溝1aに二点で接触する。一般的にねじ軸1は鋼製である。ボール4が円滑に転がるようにボール転走溝1aの表面には熱処理及び砥石を用いた研削加工が施される。
 ナット2の内周面には、ねじ軸1のボール転走溝1aに対向する螺旋の負荷転動体転走溝としての負荷ボール転走溝2bが形成される。負荷ボール転走溝2bのリード及び条数はボール転走溝1aのリード及び条数と等しい。負荷ボール転走溝2bの断面形状も二つの円弧を組み合わせたゴシックアーチ溝形状に形成される。ボール4はナット2の負荷ボール転走溝2bに二点で接触する。一般的にナット2(循環部品を除く)は鋼製である。ボール4が円滑に転がるように負荷ボール転走溝2bの表面には熱処理及び砥石を用いた研削加工が施される。
 ナット2の負荷ボール転走溝2bとねじ軸1のボール転走溝1aとの間に負荷転動体転走路としての螺旋の負荷ボール転走路3が形成される。ナット2の負荷ボール転走溝2bとねじ軸1のボール転走溝1aとの間のすきまはボール4の径よりも小さく、負荷ボール転走路3ではボール4はナット2とねじ軸1との間で圧縮の荷重を受ける。
 ナット2には、螺旋の負荷ボール転走路3の一端と他端を繋げる戻し路5が形成される。負荷ボール転走路3及び戻し路5には複数のボール4が配列される。ボール4間にはスペーサ(図示せず)が介在されることもある。負荷ボール転走路3では、ボール4はねじ軸1のボール転走溝1aとナット2の負荷ボール転走溝2bとの間で負荷を受けながら転がり運動し、ボール4の軌道中心線は螺旋になる。一方、戻し路5では、ボール4の軌道中心線が螺旋から外れる。戻し路5(ただし、後述するように負荷ボール転走路3から出た直後の戻し路5は除く)の内径はボール4の外径よりも大きく、戻し路5ではボール4は荷重を受けることがなく、後続のボール4に押されて移動する。ねじ軸1に対してナット2を相対的に回転させると、ボール4は荷重を受けながら負荷ボール転走路3を転がり運動する。ナット2の負荷ボール転走溝2bの一端まで転がったボール4は、戻し路5に入って荷重から開放され、戻し路5を移動した後、負荷ボール転走溝2bの他端に戻る。
 ナット2は、負荷ボール転走溝2bが形成されるナット本体21と、ナット本体21の軸線方向の両端部に装着される循環部品22と、を備える。ナット本体21には、軸線方向に伸びる貫通孔21aが形成される。ナット本体21に装着される循環部品22には、方向転換路12が形成される。ナット本体21には、負荷ボール転走溝2bを延長して曲率半径変化部13の外周側13bが形成される。図1に曲率半径変化部13の外周側13bを分かり易くするために斜線で示す(曲率半径変化部13の外周側13bはナット本体21と別体のように示されているが、曲率半径変化部13の外周側13bはナット本体21と一体である)。循環部品22の方向転換路12は貫通孔21a及び曲率半径変化部13に繋がる。ナット本体21の貫通孔21a、循環部品22の方向転換路12、及び曲率半径変化部13が戻し路5を構成する。
 図3に示すように、ナット2の軸線方向から見たとき、戻し路5には、負荷ボール転走路3に連続して曲率半径変化部13が設けられる。負荷ボール転走路3におけるボール4の軌道中心線3aを一点鎖線で示し、曲率半径変化部13におけるボール4の軌道中心線13aを太線で示す。曲率半径変化部13においては、ボール4の軌道中心線13aの曲率半径が負荷ボール転走路3におけるボール4の軌道中心線3aの曲率半径以上であり、かつ負荷ボール転走路3に離れるにしたがって(言い換えれば方向転換路12に近づくにしたがって)ボール4の軌道中心線13aの曲率半径が除々に又は段階的に大きくなる。曲率半径変化部13においては、ボール4の軌道中心線13aは負荷ボール転走路3におけるボール4の軌道中心線3aから外側にずれている。ボール4の軌道中心線13aの曲率中心はねじ軸1側に位置する。曲率半径変化部13と負荷ボール転走路3との接続箇所P1では、曲率半径変化部13の軌道中心線13aの接線方向と負荷ボール転走路3の軌道中心線3aの接線方向が一致する。すなわち、曲率半径変化部13の軌道中心線13aはリードを持った曲線である。また、この接続箇所P1では、曲率半径変化部13の軌道中心線13aの曲率半径は負荷ボール転走路3の軌道中心線3aの曲率半径に等しいか又は軌道中心線3aの曲率半径よりも大きい。図3に示すように、ナット2の軸線方向から見た循環部品22の方向転換路12は直線的に形成される。循環部品22の方向転換路12との接続箇所P2で曲率半径変化部13の軌道中心線13aの曲率半径は無限大になる。曲率半径変化部13の長さ(P1からP2までの軌道中心線13aの長さ)はボール直径の二倍以上である。なお、本実施形態においては、P1はナット2の高さ方向中央を横切る水平線上に存在しているが、曲率半径変化部13の軌道中心線13aの軌跡に応じて、循環部品22に近づけることもできるし、循環部品22から離すこともできる。
 曲率半径変化部13においては、ボール4がナット2に形成される曲率半径変化部13の外周側13bに沿って移動する。このため、曲率半径変化部13におけるボール4の軌道中心線13aは、ナット2の曲率半径変化部13の外周側13bに沿って移動するボール4の中心の軌跡に一致する。一方、負荷ボール転走路3においては、ボール4がナット2の負荷ボール転走溝2bとねじ軸1のボール転走溝1aとの間に挟まれながら移動する。ボール4の軌道中心線3aは負荷ボール転走路3の中心線に一致し、円形である。負荷ボール転走路3におけるボール4の軌道中心線3aの曲率半径はBCD(BallCircle Diameter)の1/2である。
 ボール4の軌道中心線13aは、緩和曲線、又は互いに異なる曲率半径を持つ複数の円弧を組み合わせた複合曲線である。緩和曲線は高速道路などで用いられる曲線であり、曲線長に比例して曲率が連続的に変化する曲線である。緩和曲線については後述する。複合曲線は例えば半径R1、半径R2(R1<R2の関係がある)等の二以上の円弧を組み合わせた曲線である。
 上記のように曲率半径変化部13の外周側13bはナット2に形成される。曲率半径変化部13の内周側13Cの、負荷ボール転走路3に近い部分13C2がねじ軸1の外周面で構成され、負荷ボール転走路3から離れた部分13C1が循環部品22に形成される。曲率半径変化部13の外周側13bはナット2の負荷ボール転走溝2bに連続しており、負荷ボール転走溝2bから曲率半径変化部13の外周側13bに入った直後のボール4にも負荷ボール転走溝2bに入っているボール4と同様に荷重が作用する。曲率半径変化部13の外周側13bを移動するボール4は負荷ボール転走溝2bから離れるにしたがって徐々に荷重から開放される。ボールは曲率半径変化部13の途中(この実施形態では、負荷ボール転走路3に近い部分13C2の途中)から完全に荷重から開放されて、無負荷の状態で循環部品22に入る。
 図4(a)は図2と同方向から見たナット本体21の斜視図を示し、図4(b)は図2と反対方向から見たナット本体21の斜視図を示す。ナット本体21の軸線方向の端面には、循環部品22が装着される凹部31が形成される。この凹部31は貫通孔21aに繋がっている。循環部品22を凹部31に装着すると循環部品22の方向転換路12が貫通孔21aに繋がる。ナット本体21の内周面には、負荷ボール転走溝2bを延長して曲率半径変化部13の外周側13bが形成される。曲率半径変化部13の外周側13bの断面形状は二つの円弧を組み合わせたゴシックアーチ溝形状に形成される。ボール4はナット2の曲率半径変化部13の外周側13bに二点で接触する。凹部31は曲率半径変化部13の外周側13bにも繋がっていて、循環部品22を凹部31に装着すると循環部品22の方向転換路12が曲率半径変化部13の外周側13bに繋がる。
 図5は循環部品22の斜視図を示す。循環部品22はナット本体21の凹部31に嵌め込まれる本体部32と、ナット2の内周面に接する延長部33と、を備える。本体部32には方向転換路12が形成される。方向転換路12の断面形状はボール4の半径よりも大きな半径の円である。延長部33は本体部32の下部を除去して薄く形成される。延長部33には曲率半径変化部13の内周側13c1が形成される。曲率半径変化部13の内周側13c1の断面形状はボール4の半径よりも大きな半径の半円である。延長部33はナット2の曲率半径変化部13の外周側13bと協働して閉断面の曲率半径変化部13を構成する。延長部33の先端にはボール4を掬い上げる掬い部34が形成される。ボール4は掬い部34で循環部品22に抱え込まれる。ナット2の曲率半径変化部13の外周側13bは循環部品22の掬い部34を超えて奥まで延びている(図3参照)。
 緩和曲線は以下のとおりである。図6は緩和曲線(クロソイド曲線)を示す説明図である。図6において,始点Pから終点Pまでの緩和曲線は,次に示す4つのパラメータで表すことができる。
 h :始点Pから終点Pまでの曲線の長さ
 φ:始点Pにおける接線角
 φ:接線角の円弧分増分
 φ:接線角のクロソイド分増分。
 ここで、3つの角度の単位は以下の式中にあってはラジアンである。
 この緩和曲線上の点Pはy軸を虚軸(j軸)にとるとき、無次元変位Sを変数として、数1により求められる。
Figure JPOXMLDOC01-appb-M000001

 
 ここで、φは点Pにおける曲線の接線方向、Sは始点Pから点Pまでの曲線の長さsをhで割った値である。この曲線の曲率cは数2により求められる。
Figure JPOXMLDOC01-appb-M000002
 縮率、すなわち曲率の変化率cは数3により求められる。
Figure JPOXMLDOC01-appb-M000003
 上記数3から曲率の変化率cは一定値となる。すなわち、緩和曲線は、曲率が曲線の長さに対して線形に(一次式で)変化する曲線であり、これを用いることによって曲率が連続的に変化する滑らかな曲線を得ることができる。
 曲率半径変化部13の外周側13bの製造方法は以下のとおりである。ナット2の負荷ボール転走溝2bは、ナット2の負荷ボール転走溝2bに小径の砥石を当て、砥石を回転させることで研削加工される。このとき、ナット2を回転させながら研削砥石をナット2の軸線方向に移動させる。これにより、螺旋の負荷ボール転走溝2bを研削加工することができる。ナット2の負荷ボール転走溝2bを研削した後、砥石を緩和曲線に沿ってナット2の半径方向にさらに移動させれば、曲率半径変化部13の外周側13bを研削加工することができる。実際には研削加工を容易にするため、ナット2の周方向の位置とナット2の半径方向における砥石の位置との関係を予め数値化しておき、数値にしたがって砥石を半径方向に移動させることになる。
 以上に本実施形態のねじ装置の構造を説明した。以下に図面を参照して本実施形態のねじ装置の効果を説明する。図7は、従来の接線方向掬いと本実施形態の曲率半径変化掬いとで、ボール4に作用する遠心力Pcを比較したものである。図7(a)及び図7(b)は従来の接線方向掬いを示し、図7(c)は本実施形態の曲率半径変化掬いを示す。図7(a)に示すように、従来の接線方向掬いの場合、負荷ボール転走路3におけるボール4の軌道中心線3aが螺旋であり、戻し路41におけるボール4の軌道中心線41aが直線になる。負荷ボール転走路3から戻し路41へボール4は螺旋の接線方向に進む。この場合、負荷ボール転走路3を移動するボール4には一定の遠心力Pcが作用する。しかし、戻し路41を移動するボール4には遠心力が作用しない。このため、負荷ボール転走路3から戻し路41に移行するボール4、又は戻し路41から負荷ボール転走路3に移行するボール4に作用する遠心力が急激に変化する。
 また、図7(b)に示すように、負荷ボール転走路3ではボール4は位置が決められた状態で螺旋軌道に沿って移動するのに対し、戻し路41に入るとボール径よりも大きい円筒内を移動することから、ボール4が戻し路41内を自由に動いて移動できるようになる。このため、戻し路41の円筒の壁に当たった状態と負荷ボール転走路3で位置が決められた状態とでボール4の中心にずれがあり、境界42で急激なボール4の位置の変化が生じる。ボール4の詰まりが発生した場合、戻し路41のボール4の軌道中心線41aがジグザグになり、軌道中心線41aが連続しなくなる。
 これに対して、本実施形態の曲率半径変化掬いの場合、図7(c)に示すように、曲率半径変化部13の軌道中心線13aの曲率半径が徐々に変化するので、作用する遠心力が増加しながらボール4が戻し路5から負荷ボール転走路3に入り、作用する遠心力が減少しながら負荷ボール転走路3から戻し路5へと出ていく。このため、戻し路5と負荷ボール転走路3の境界43の前後でボール4に作用する遠心力が急激に変化するのを抑えることができる。
 また、ナット2の負荷ボール転走溝2bを延長して戻し路5の曲率半径変化部13の外周側13bを形成しているので、負荷ボール転走路3と戻し路5との境界43でもボール4の軌道中心線3a,13aは連続し、ボール4が円滑に境界43を移動する。さらに、戻し路5においてボール4の軌道中心線13aが曲がっていることから、戻し路5を移動するボール4に遠心力が働く。遠心力によってボール4は戻し路5の外周側13bに押しつけられながら戻し路5を移動するので、戻し路5でボール4が整列し易くなる。ボール4が詰まった場合でも、ボール4を戻し路5の外周側13bに押しつける力が働き、戻し路5でボール4が整列し易くなる。
 図8は、従来の接線方向掬いと本実施形態の曲率半径変化掬いとで、ボール4の自転を比較したものである。図8(a)(b)は従来の接線方向掬いを示し、図8(c)(d)は本実施形態の曲率半径変化掬いを示す。図8(a)に示すように、従来の接線方向掬いの場合、ねじ軸1を反時計方向に回転させると負荷ボール転走路3においてボール4が時計方向に自転しながら螺旋軌道を移動する。しかし、円筒の戻し路41においてはボール4が自転することはない。図8(b)に示すように、戻し路41から負荷ボール転走路3に入るときもボール4が自転していない状態から急に自転する状態になり、ボール4の自転状態が急激に変化する。
 これに対し、本実施形態の曲率半径変化掬いの場合、図8(c)に示すように、負荷ボール転走路3から戻し路5に出るとき、ボール4が曲率半径変化部13の外周側13bに沿って時計方向に自転する。また、図8(d)に示すように、戻し路5から負荷ボール転走路3に入るとき、ボール4が曲率半径変化部13の外周側13bに沿って反時計方向に自転する。このため、負荷ボール転走路3と戻し路5との境界43でボール4の自転状態が急激に変化するのを防止でき、スムーズにボール4が境界43を移動する。ねじ装置を高速回転させれば、ボール4に作用する遠心力、ボール4を整列させる力、ボール4を自転させる力がより強くなるので、よりボール4の動きがスムーズになる。
 本実施形態のねじ装置によればさらに以下の効果を奏する。ナット本体21の負荷ボール転走溝2bを延長して曲率半径変化部13の外周側13bを形成することで、曲率半径変化部13を製造し易くなる。
 曲率半径変化部13の内周側の少なくとも一部をねじ軸1の外周面に形成することで、ねじ軸1の回転に伴ってボール4を自転させることができる。
 曲率半径変化部13の内周側の残りの部分13C1を循環部品22に形成することで、曲率半径変化部13の曲率半径を大きくしてもボール4の周囲の遊びが過大になるのを防止できる。
 ナット本体21の負荷ボール転走溝2bの断面形状及び曲率半径変化部13の外周側13bの断面形状をボール4に二点で接触するゴシックアーチ溝形状に形成することで、負荷ボール転走路3と戻し路5の境界43の前後でボールの接触点を一致させることができる。
 なお、本発明は上記実施形態に具現化されるのに限られることはなく、本発明の要旨を変更しない範囲でさまざまな実施形態に具現化可能である。
 上記実施形態では、曲率半径変化部の軌道中心線をリードを持つ緩和曲線(すなわち、曲率半径変化部と負荷ボール転走路との接続箇所において、曲率半径変化部の軌道中心線の接線方向と負荷ボール転走路の軌道中心線の接線方向とを完全に一致させている)が、負荷ボール転走路と曲率半径変化部をなめらかに繋ぐことができれば、曲率半径変化部の軌道中心線をリードを持たない緩和曲線(例えば、曲率半径変化部の軌道中心線がナットの軸線に直交する平面内に配置される)にすることもできる。ただし、本発明の効果を最大限得るには、リードがある事が望ましい。 
 上記実施形態では、曲率半径変化部の外周側をナット本体の負荷ボール転走溝を延長して形成した例を説明したが、曲率半径変化部の外周側を循環部品に形成することもできる。
 上記実施形態では、ナットの循環構造がエンドデフレクタ式(ナット本体に貫通孔を形成し、ナット本体の軸線方向の両端部に方向転換路12が形成された循環部品を装着した方式)を説明したが、ナットの循環構造はリターンパイプ式(ナット本体に戻し路が形成されたリターンパイプを装着した方式)にすることもできる。
 上記実施形態では、ナット本体の負荷ボール転走溝の断面形状、及び曲率半径変化部の外周側の断面形状を二つの円弧からなるゴシックアーチ溝形状に形成する例を説明したが、これらの断面形状を単一の円弧からなるサーキュラーアーク溝形状に形成することもできる。
 転動体としてはボールの他にローラを用いることができる。
 本明細書は、2013年5月31日出願の特願2013-114802に基づく。この内容はすべてここに含めておく。
1…ねじ軸,1a…ボール転走溝(転動体転走溝),2…ナット,2b…負荷ボール転走溝(負荷転動体転走溝),3…負荷ボール転走路,3a…負荷ボール転走路におけるボールの軌道中心線,4…ボール(転動体),5…戻し路,13…曲率半径変化部,13a…曲率半径変化部におけるボールの軌道中心線,13b…曲率半径変化部の外周側,13c…曲率半径変化部の内周側,13c1…曲率半径変化部の内周側の残りの部分,13c2…曲率半径変化部の内周側の一部,21…ナット本体,22…循環部品

Claims (6)

  1.  外周面に螺旋の転動体転走溝を有するねじ軸と、
     内周面に前記転動体転走溝に対向する螺旋の負荷転動体転走溝を有するナットと、
     前記ねじ軸の前記転動体転走溝と前記ナットの前記負荷転動体転走溝との間の螺旋の負荷転動体転走路の一端と他端を接続する戻し路と、
     前記負荷転動体転走路及び前記戻し路に配列される複数の転動体と、を備えるねじ装置において、
     前記ナットの軸線方向から見たとき、
     前記戻し路には、前記戻し路における転動体の軌道中心線の曲率半径が前記負荷転動体転走路における転動体の軌道中心線の曲率半径以上であり、かつ前記負荷転動体転走路から離れるにしたがって前記戻し路における転動体の軌道中心線の曲率半径が徐々に又は段階的に大きくなる曲率半径変化部が設けられることを特徴とするねじ装置。
  2.  前記ナットは、
     前記負荷転動体転走溝が形成されるナット本体と、
     前記ナット本体に装着され、前記戻し路の少なくとも一部が形成される循環部品と、を備え、
     前記曲率半径変化部の外周側は、前記ナット本体に前記ナット本体の前記負荷転動体転走溝を延長して形成されることを特徴とする請求項1に記載のねじ装置。
  3.  前記曲率半径変化部の内周側の少なくとも一部は、前記ねじ軸の外周面で構成されることを特徴とする請求項2に記載のねじ装置。
  4.  前記曲率半径変化部の内周側の残りの部分は、前記循環部品に形成されることを特徴とする請求項3に記載のねじ装置。
  5.  前記ナット本体の前記負荷転動体転走溝の断面形状、及び前記曲率半径変化部の外周側の断面形状は、前記転動体としてのボールに二点で接触するゴシックアーチ溝形状に形成されることを特徴とする請求項1又は2に記載のねじ装置。
  6.  前記曲率半径変化部の軌道中心線は、緩和曲線又は互いに異なる曲率半径を持つ複数の円弧を組み合わせた複合曲線であることを特徴とする請求項1又は2に記載のねじ装置。
PCT/JP2014/063365 2013-05-31 2014-05-20 ねじ装置 WO2014192595A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014002636.0T DE112014002636T5 (de) 2013-05-31 2014-05-20 Gewindevorrichtung
US14/890,657 US9568078B2 (en) 2013-05-31 2014-05-20 Screw device
CN201480030731.9A CN105247245B (zh) 2013-05-31 2014-05-20 丝杠装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-114802 2013-05-31
JP2013114802A JP6244108B2 (ja) 2013-05-31 2013-05-31 ねじ装置

Publications (1)

Publication Number Publication Date
WO2014192595A1 true WO2014192595A1 (ja) 2014-12-04

Family

ID=51988628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063365 WO2014192595A1 (ja) 2013-05-31 2014-05-20 ねじ装置

Country Status (6)

Country Link
US (1) US9568078B2 (ja)
JP (1) JP6244108B2 (ja)
CN (2) CN107630996B (ja)
DE (1) DE112014002636T5 (ja)
TW (1) TWI615566B (ja)
WO (1) WO2014192595A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114022A1 (ja) * 2015-01-16 2016-07-21 日立オートモティブシステムズ株式会社 パワーステアリング装置
US10371239B2 (en) 2015-01-16 2019-08-06 Hitachi Automotive Systems, Ltd. Power steering device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161315A (ja) * 2014-02-26 2015-09-07 株式会社ショーワ ボールねじおよび操舵装置
DE102015214859B4 (de) * 2015-08-04 2017-12-14 Schaeffler Technologies AG & Co. KG Kugelgewindetrieb
JP6381703B2 (ja) * 2017-02-23 2018-08-29 Thk株式会社 ねじ装置
JP6559817B1 (ja) * 2018-02-08 2019-08-14 Thk株式会社 転動体ねじ装置
JP6947342B1 (ja) * 2020-04-02 2021-10-13 日本精工株式会社 ボールねじ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506963A (ja) * 1973-05-26 1975-01-24
JP2001141019A (ja) * 1999-09-03 2001-05-25 Nsk Ltd ボールねじ装置
JP2010025129A (ja) * 2008-07-15 2010-02-04 Thk Co Ltd ボールねじ
JP2010025301A (ja) * 2008-07-24 2010-02-04 Jtekt Corp ボールねじ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10042610B4 (de) * 1999-09-03 2005-01-13 Nsk Ltd. "Kugelumlaufspindelvorrichtung"
US6675669B2 (en) * 2000-08-23 2004-01-13 Nsk Ltd. Ball screw apparatus
JP2002181155A (ja) * 2000-12-14 2002-06-26 Nsk Ltd ボールねじ
JP2003074663A (ja) * 2001-09-05 2003-03-12 Nsk Ltd ボールねじ
JP2004019905A (ja) * 2002-06-20 2004-01-22 Nsk Ltd 直動装置
DE102004023353A1 (de) * 2004-05-12 2005-12-08 Ina-Schaeffler Kg Kugelgewindetrieb
JP2006046530A (ja) * 2004-08-05 2006-02-16 Nsk Ltd ボールねじ装置
JP5252279B2 (ja) * 2008-08-21 2013-07-31 Smc株式会社 ボールねじ機構
CN101676576B (zh) * 2008-09-16 2012-03-07 上银科技股份有限公司 滚珠螺杆模块及其使用的循环装置
US20100139433A1 (en) * 2008-12-07 2010-06-10 Yan-Yu Chen Ball screw with a circulation member
US20110303036A1 (en) * 2009-01-06 2011-12-15 Hiwin Technologies Corp. Ball return device for ball screw device
JP2012112432A (ja) 2010-11-24 2012-06-14 Nsk Ltd リターンチューブ及びその製造方法、並びにボールねじ
DE202011000240U1 (de) * 2011-02-01 2011-06-01 Hiwin Technologies Corp. Kugelumlaufspindel mit einem Rücklaufelement
FR2980254B1 (fr) * 2011-09-21 2014-05-23 Skf Ab Systeme de vis a billes muni d'un moyen de retenue d'un element de deviation des billes
DE102012213856B4 (de) * 2012-05-10 2019-08-08 Schaeffler Technologies AG & Co. KG Spindelmutter für einen Kugelgewindetrieb und Elektromechanischer Bremskraftverstärker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506963A (ja) * 1973-05-26 1975-01-24
JP2001141019A (ja) * 1999-09-03 2001-05-25 Nsk Ltd ボールねじ装置
JP2010025129A (ja) * 2008-07-15 2010-02-04 Thk Co Ltd ボールねじ
JP2010025301A (ja) * 2008-07-24 2010-02-04 Jtekt Corp ボールねじ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114022A1 (ja) * 2015-01-16 2016-07-21 日立オートモティブシステムズ株式会社 パワーステアリング装置
JPWO2016114022A1 (ja) * 2015-01-16 2017-08-24 日立オートモティブシステムズ株式会社 パワーステアリング装置
US10309502B2 (en) 2015-01-16 2019-06-04 Hitachi Automotive Systems, Ltd. Power steering device
US10371239B2 (en) 2015-01-16 2019-08-06 Hitachi Automotive Systems, Ltd. Power steering device

Also Published As

Publication number Publication date
CN107630996B (zh) 2020-10-09
CN105247245A (zh) 2016-01-13
US20160091066A1 (en) 2016-03-31
TW201508194A (zh) 2015-03-01
CN105247245B (zh) 2017-12-12
CN107630996A (zh) 2018-01-26
JP2014234834A (ja) 2014-12-15
DE112014002636T5 (de) 2016-03-03
US9568078B2 (en) 2017-02-14
JP6244108B2 (ja) 2017-12-06
TWI615566B (zh) 2018-02-21

Similar Documents

Publication Publication Date Title
WO2014192595A1 (ja) ねじ装置
JP5255503B2 (ja) 転動体ねじ装置
CN101517270B (zh) 转动体螺杆装置
JP5132547B2 (ja) ボールねじ装置
JP5341893B2 (ja) ねじ装置
JP6559199B2 (ja) ねじ装置
JP6187109B2 (ja) ボールねじ
WO2015045983A1 (ja) ボールねじ用ねじ軸の螺旋溝研削用砥石および螺旋溝形成方法
WO2007126025A1 (ja) ローラねじ及びローラねじの無負荷ローラ戻し通路の設計方法
JP2008157374A (ja) ボールねじ機構
JP5004312B2 (ja) 駒式ボールねじ
JP4744089B2 (ja) 駒式ボールねじ
JP4244610B2 (ja) ボールねじ装置および該装置の製造方法
JP6400860B2 (ja) 完全な転がり接触を有するねじおよびナットタイプのリニア駆動機構
JP6221482B2 (ja) ボール螺子装置及びこれを備えた電動パワーステアリング装置
JP2004068882A (ja) ころねじ装置
JP2006242252A (ja) ボールねじ機構
JP2003239967A (ja) 直動装置
JP2007051655A5 (ja)
JP2004068866A (ja) ボールねじ装置
JP2004316660A (ja) ボールねじ装置
JP2011157047A (ja) ステアリング装置のタイロッド構造
JP2009024720A (ja) ボールねじ
JP2004144267A (ja) ボールねじ
JPWO2006082934A1 (ja) ウォームギヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14890657

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002636

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803823

Country of ref document: EP

Kind code of ref document: A1