WO2014188828A1 - 酸化ビスマス系レーザーマーキング用添加剤 - Google Patents

酸化ビスマス系レーザーマーキング用添加剤 Download PDF

Info

Publication number
WO2014188828A1
WO2014188828A1 PCT/JP2014/060897 JP2014060897W WO2014188828A1 WO 2014188828 A1 WO2014188828 A1 WO 2014188828A1 JP 2014060897 W JP2014060897 W JP 2014060897W WO 2014188828 A1 WO2014188828 A1 WO 2014188828A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser marking
additive
ink
laser
resin
Prior art date
Application number
PCT/JP2014/060897
Other languages
English (en)
French (fr)
Inventor
達郎 的田
鈴木 滋
岳人 新地
明 石河
Original Assignee
東罐マテリアル・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東罐マテリアル・テクノロジー株式会社 filed Critical 東罐マテリアル・テクノロジー株式会社
Priority to EP14801793.2A priority Critical patent/EP3000553B1/en
Priority to CN201480029134.4A priority patent/CN105246638B/zh
Priority to JP2015518159A priority patent/JP6421117B2/ja
Priority to US14/892,577 priority patent/US9637651B2/en
Publication of WO2014188828A1 publication Critical patent/WO2014188828A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the present invention relates to a bismuth oxide-based laser marking additive for enabling marking by laser irradiation and a method for producing the same, a laser-markable molded article, paint, and ink containing the additive. It consists of a coating layer formed on a base material with a paint, an ink film layer formed on the base material with the ink, a printed matter formed on the base material with the ink, or the ink film layer and a surface protective layer. More specifically, the present invention relates to a laser marking product obtained by irradiating the coating layer, the ink film layer, the printed material or the multilayer body with a laser.
  • Laser marking is a marking method in which letters, numbers, trademarks, barcodes, etc. are printed or images are directly applied to a substrate using laser light.
  • marking system with laser light (1) Since it is a non-contact marking method, marking can be performed at high speed on a substrate of any shape. (2) Since no ink is used, the marking has excellent wear resistance, is difficult to tamper with, and has no significant environmental load because it does not volatilize organic solvents or the like.
  • a CO 2 laser, a YAG laser, a YVO 4 laser, a green laser, or the like is used.
  • a YAG laser is mainly preferably used.
  • Patent Document 1 discloses that mixed oxide particles of tin and antimony having a particle size of 10 to 70 nm are added to a molding material (base material) as an additive for laser marking.
  • the principle of marking is that when the particles in the resin molding absorb YAG laser light, it is converted into heat, and the part surrounding the additive is carbonized to form a contrast with the non-irradiated part. .
  • Patent Document 2 discloses a thermoplastic plastic containing a pigment obtained by coating tin dioxide doped with antimony, arsenic, bismuth, copper, gallium, germanium or an oxide thereof on a flaky substrate such as mica flakes or SiO 2 flakes. It is described that laser marking is possible.
  • the quality of marking greatly depends on the ease of carbonization of the resin and the shape of the resin composition to be marked. That is, when the base resin is hard to be carbonized, a marking having good visibility cannot be obtained, and when marking a thin resin molded product like a paint or a film, Since the thickness of the resin to be carbonized is insufficient, the laser beam penetrates the irradiated part due to heat, or when printing is performed with weak laser output so that it does not penetrate, the blackness is insufficient and good visibility There arises a problem that a marking having a mark cannot be obtained.
  • Patent Document 3 describes that a polymer substance to which copper hydroxide monophosphate or molybdenum oxide is added can be laser-marked, and when the above-mentioned additive is changed into a colored product by laser light, marking is performed. Are listed. Thus, when the additive itself is changed into a colored product by laser light, the above problem may be avoided. However, fine printing cannot be performed, and the blackness of printing is not satisfactory.
  • Patent Document 4 and Patent Document 5 describe that a resin composition and ink containing bismuth oxide can be marked black by irradiation with laser light.
  • Patent Document 6 the present inventors have found that a complex oxide composed of copper and molybdenum is changed to a color tone with high blackness by irradiation with laser light.
  • This composite oxide absorbs laser light well, and at the same time, the particles themselves change color from light yellow to black. Therefore, resin moldings containing this as an additive provide laser marking with excellent marking blackness and print definition. enable.
  • the composite oxide has an undesirable problem that the oxide itself exhibits a yellow color, which slightly colors the resin molding itself.
  • Patent Document 7 a composite hydroxide composed of copper and molybdenum is changed to a color tone with high blackness and printing fineness by irradiation with laser light, and has less resin colorability. ing.
  • the composite hydroxide is excellent in printing fineness, particularly when laser marking is applied to an ink film having a small film thickness of 5 ⁇ m or less, marking properties such as blackness and contrast of the marking are not good. Has undesirable problems.
  • an object of the present invention is to provide a molded article containing a laser marking additive, a paint or ink, a coating layer formed on a base material with a paint, and an ink formed on the base material with the ink.
  • Film layer, printed matter formed on a substrate with the above ink, or a multilayer body composed of the above ink film layer and a surface protective layer does not cause undesired coloring, and enables oxidation with excellent blackness and contrast.
  • the object is to provide an additive for bismuth-based laser marking.
  • Another object of the present invention is to provide a method for producing an additive for bismuth oxide laser marking having excellent characteristics as described above.
  • Still another object of the present invention is to provide a molded article, paint or ink, coating layer, ink film layer, printed matter or multilayer body containing the additive for bismuth oxide laser marking having excellent characteristics as described above. It is to be.
  • the present inventors have found that the special bismuth oxide-based oxide described in detail below has surprisingly excellent suitability as an additive for laser marking, that is, a substrate. It has been found that it does not depend on the type and shape of the resin, does not cause undesirable coloring even when added as much as necessary to the resin composition, and enables marking with excellent blackness with excellent fineness.
  • the present invention has been completed.
  • the additive for laser marking according to the present invention is characterized by comprising bismuth oxide containing oxygen defects.
  • the bismuth oxide is preferably oxygen-deficient bismuth oxide represented by the following general formula.
  • X in the above formula represents the amount of oxygen defects, and is 0.01 or more and 0.3 or less, preferably 0.01 or more and 0.2 or less, more preferably 0.01 or more and 0.00. 1 or less. Further, x may be 0.02 or more and 0.2 or less, preferably 0.03 or more and 0.1 or less, more preferably 0.04 or more and 0.1 or less.
  • the oxygen defect amount x in the above formula is the ratio of the peak area attributed to 1s electrons of oxygen bonded to bismuth to the peak area attributed to 4f electrons of bismuth obtained by X-ray photoelectron spectroscopy. (O 1s / Bi 4f ) is calculated from the following formula (1).
  • the additive for laser marking according to the present invention has an absorptivity of 20 to 80% at a wavelength of 1064 nm calculated by the following formula (2) from the diffuse reflectance in the ultraviolet visible near infrared reflection spectrum.
  • Absorptivity 100 ⁇ diffuse reflectance (%) (2)
  • the additive for laser marking according to the present invention has an absorptance of 20 to 80% at a wavelength of 532 nm calculated by the above formula (2) from the diffuse reflectance in the ultraviolet-visible near-infrared reflectance spectrum.
  • the additive for laser marking according to the present invention mixes bismuth oxide or a bismuth compound that becomes an oxide by applying heat and metal aluminum in a ratio of 0.001 to 20% by weight of the latter with respect to the former in a dry or wet manner. It can be suitably produced by a method including a step and a step of heating the obtained mixture at 60 to 400 ° C. under reduced pressure lower than atmospheric pressure by 0.05 MPa or more.
  • the present invention also provides a laser-markable molded article, paint, and ink containing the laser marking additive, and further a coating layer formed on the substrate with the paint, and the ink on the substrate.
  • Laser light used for laser marking may be a CO 2 laser, a YAG laser, a YVO 4 laser, and a green laser, and the wavelength may be 532 to 10600 nm.
  • a YAG laser having a wavelength center of 1064 nm or a green laser having a wavelength center of 532 nm is preferable.
  • the additive for laser marking according to the present invention enables higher-definition marking as the particle diameter is smaller.
  • the average particle diameter D50 of the additive is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the additive for laser marking according to the present invention has an absorptivity at a wavelength of 1064 nm calculated from the diffuse reflectance in the ultraviolet-visible near-infrared reflectance spectrum, preferably 20 to 80%, preferably 30 to 70%, more preferably 40 to 60%. belongs to.
  • the absorptance at 1064 nm which is the wavelength center of the YAG laser, increases, and the marking characteristics are improved. If the absorptance is less than 20%, the blackness of the marking is insufficient, and if it exceeds 80%, the base material changes color from dark gray to black.
  • the additive for laser marking according to the present invention has an absorptance of 20 to 80%, preferably 30 to 80%, more preferably 40 to 70% at a wavelength of 532 nm calculated from the diffuse reflectance in the ultraviolet-visible near-infrared reflectance spectrum. belongs to.
  • the absorptance at 532 nm which is the wavelength center of the green laser, increases, and the marking characteristics are improved. If the absorptance is less than 20%, the blackness of the marking is insufficient, and if it exceeds 80%, the base material changes color from dark gray to black.
  • the laser marking additives reported so far there are those having a high absorption rate at a wavelength of 1064 nm or 532 nm in the ultraviolet-visible absorption spectrum.
  • examples thereof include particles of mixed oxides of tin and antimony described in Patent Document 1, antimony trioxide, and the like, but these do not exhibit good marking characteristics.
  • the feature of the present invention is that a predetermined amount of oxygen vacancies is introduced into bismuth trioxide, and thereby the color developability to black due to laser light irradiation of the additive itself is remarkably improved.
  • the additive according to the present invention contains oxygen defects in the structure of bismuth oxide, the color developability of the additive itself to black during laser irradiation is greatly improved, and thus exhibits excellent laser marking characteristics.
  • bismuth oxide has been studied as a photocatalyst, and in such technical fields, there are cases where the sensitivity of the photocatalyst to ultraviolet light or visible light is increased by introducing oxygen defects or impurities into the photocatalyst. (Japanese Unexamined Patent Application Publication Nos. 2005-156588 and 2006-150155).
  • the photocatalyst generates OH radicals by the photoelectron effect and effectively acts on the decomposition of the organic matter, and the photocatalyst itself does not cause any chemical change by light. Therefore, the present invention in which bismuth oxide itself is colored black by laser light cannot be easily deduced from the prior art relating to photocatalysts.
  • the present inventors have introduced an oxygen defect into the structure of bismuth oxide, which is an additive for laser marking, and originally absorbs laser light, so that the additive itself becomes black by laser light.
  • the additive according to the present invention can impart excellent laser marking characteristics to various forms of resin compositions, such as molded articles, paints, and inks. .
  • a preferred method for producing this additive is to mix bismuth oxide or a bismuth compound that becomes an oxide by applying heat and a reducing agent in a predetermined ratio, and mix the resulting mixture dry or wet. And a step of heating the obtained mixture at 60 to 400 ° C. under reduced pressure lower than atmospheric pressure by 0.05 MPa or more.
  • the “predetermined ratio” is necessary for obtaining oxygen-deficient bismuth oxide represented by the general formula, Bi 2 O (3-x) (where 0.01 ⁇ x ⁇ 0.3).
  • the ratio of the raw material bismuth compound and the reducing agent is mixed, and the preferable ratio of the reducing agent to the raw material bismuth compound is 0.001 to 20% by weight, more preferably 0.01 to 10% by weight, still more preferably 0. 1 to 5% by weight.
  • Bismuth oxide, bismuth hydroxide and the like that do not generate harmful gas in the subsequent heating step are preferred.
  • Any known reducing agent can be used as long as it is a known reducing agent, but those having a strong reducing power are good.
  • sodium borohydride and metallic aluminum are preferably used.
  • a general-purpose mixer may be used.
  • a Henschel mixer, a super mixer, a ribocorn, a nauter mixer, a turbulizer, a cyclomix, a spiral pin mixer, a Ladige mixer and the like are preferably used.
  • the solvent used at the time of wet mixing is not particularly limited, it is desirable to use water as a solvent when the above-described sodium borohydride or metal aluminum is used as a reducing agent. This is because hydrogen is generated during mixing and the reduction reaction can be further promoted.
  • the obtained mixture or the slurry containing the mixture is heated at 60 ° C. or more, usually 60 to 400 ° C. under a reduced pressure of 0.05 MPa or more, preferably 0.06 Mpa to 0.1 Mpa lower than atmospheric pressure. .
  • the bismuth oxide is reduced by the preceding mixing step to introduce oxygen vacancies, and the subsequent heating step introduces more oxygen vacancies under reduced pressure without oxidizing the oxygen vacancies.
  • the heating condition is, for example, 60 ° C. for 24 hours or longer, preferably 70 ° C. to 180 ° C. for 24 hours or longer, more preferably 190 ° C. to 400 ° C. for 24 hours or longer.
  • the drying temperature is higher than 400 ° C., the amount of oxygen defects introduced becomes excessive, the powder color is dark gray to black, and the base material is also changed to such a color, and the marking visibility is not good.
  • the additive for laser marking according to the present invention is subjected to a surface treatment using a known surface treatment material such as a silane coupling material, fatty acid, silicone, and polyol in order to improve dispersion in a resin or the like. Also good.
  • a known surface treatment material such as a silane coupling material, fatty acid, silicone, and polyol
  • a typical example of a material for producing a molded product is a synthetic resin, but the material may be glass or ceramic that does not require a high processing temperature to cause deterioration.
  • the kind of the synthetic resin is not particularly limited, and may be a thermoplastic resin or a thermosetting resin.
  • thermoplastic resins include polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, acrylonitrile butadiene styrene, polyacryl methacrylate, polyamide, polyacetal, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, Examples thereof include polyphenylene sulfide, polysulfone, polyimide, a mixture thereof, and a copolymer based on these.
  • thermosetting resins examples include phenolic resins, epoxy resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, polyurethanes, thermosetting polyimides, and mixtures thereof.
  • the molding material may be a silicon skeleton polymer such as silicone.
  • the shape and size of the molded product may be arbitrary. Examples thereof include members such as plates, bars, films, and thin films, containers, packages, electronic parts, cards, and coatings.
  • the optimum amount of additive in the laser marking molding depends on the type of molding material and the shape of the molding. Therefore, the optimum addition amount is determined each time depending on the use conditions, but sufficient laser marking performance can be obtained from the addition amount of about 0.01% by weight at the minimum.
  • the additive amount of the laser marking additive of the present invention is added to impart high laser marking performance to the molded product. To ensure the necessary laser marking performance.
  • the addition amount is up to about 30% by weight, and the addition amount may be further increased within a range that does not affect other physical properties such as moldability.
  • the proportion of the additive in the molded product for laser marking is preferably 1 to 25% by weight, more preferably 5 to 30% by weight.
  • the additive for laser marking according to the present invention can be added to a molding material in the form of a combination with an inorganic or organic pigment and a dye for the purpose of coloring a molded product.
  • inorganic pigments examples include white pigments such as titanium oxide, zinc oxide, antimony oxide, and zinc sulfide; extender pigments such as magnesium oxide and calcium oxide; iron oxide, ultramarine blue, bitumen, carbon black; titanium yellow, cobalt blue, etc. Color pigments such as complex oxide pigments; high luster pigments such as mica pigments coated with bismuth oxychloride, titanium oxide and the like.
  • organic pigments examples include azo, azomethine, methine, anthraquinone, phthalocyanine, perylene, thioindigo, quinacridone, and quinophthalone pigment.
  • the dye examples include anthraquinone series, azo dye metal complexes, and fluorescent dyes such as coumarin, naphthalimide, xanthene, and thiazine.
  • additives commonly used in resin processing such as light stabilizers, antioxidants, flame retardants, and glass fibers may be used in combination depending on the application. Furthermore, it can be used in combination with known additives such as an ultraviolet absorber, an antistatic agent, and an electromagnetic wave shielding additive.
  • the paint may be either water-based or solvent-based paint, and the resin constituting the paint is alkyd resin, acrylic resin, amino resin, polyurethane resin, epoxy resin, silicone resin, fluorine resin, acrylic silicone resin, unsaturated Synthetic resins such as polyester resin, ultraviolet curable resin, phenol resin, and vinyl chloride resin may be used. Paints mainly composed of natural resins such as pine resin, shellac, ester gum, tar pitch, and lacquer can also be used.
  • the proportion of the additive in the laser marking paint is 0.1 to 90% by weight, preferably 1 to 60% by weight, more preferably 5 to 50% by weight.
  • the additive for laser marking according to the present invention can be added to a molding material in the form of a combination with inorganic or organic pigments and dyes for the purpose of coloring paints.
  • inorganic pigments examples include white pigments such as titanium oxide, zinc oxide, antimony oxide, and zinc sulfide; extender pigments such as magnesium oxide and calcium oxide; iron oxide, ultramarine blue, bitumen, carbon black; titanium yellow, cobalt blue, etc. Color pigments such as complex oxide pigments; high luster pigments such as mica pigments coated with bismuth oxychloride, titanium oxide and the like.
  • organic pigments examples include azo, azomethine, methine, anthraquinone, phthalocyanine, perylene, thioindigo, quinacridone, and quinophthalone pigment.
  • the dye examples include anthraquinone series, azo dye metal complexes, and fluorescent dyes such as coumarin, naphthalimide, xanthene, and thiazine.
  • additives commonly used in paints such as solvents, dispersants, fillers, aggregates, thickeners, flow control agents, leveling agents, curing agents, crosslinking agents, and UV absorbers should be used in combination according to the application. Is also possible.
  • the ink for laser marking according to the present invention is characterized by containing 0.1 to 90% by weight of an additive for laser marking containing bismuth oxide having oxygen defects.
  • This ink changes its color to a color with high blackness when irradiated with a laser. If the content of the additive for laser marking in the ink is too small, a color tone with high blackness cannot be obtained by laser irradiation, and if it is too large, the durability of the formed ink film layer is deteriorated. Absent.
  • the ratio of the additive in the laser marking ink is 0.1 to 90% by weight, preferably 1 to 60% by weight, more preferably 5 to 50% by weight.
  • the laser marking ink according to the present invention is obtained by coating the laser marking additive on a substrate selected from the group consisting of mica flakes, mica flakes coated with a metal oxide, SiO 2 flakes and glass fillers, or It may be mixed with the substrate.
  • the laser marking ink according to the present invention may contain at least one selected from the group consisting of inorganic or organic pigments, dyes, resins, organic solvents, reactive monomer compounds, and stabilizers.
  • the amount of pigment, dye, resin, organic solvent, reactive monomer compound and / or stabilizer in the laser marking ink is preferably 1 to 30% by weight.
  • inorganic pigments examples include white pigments such as titanium oxide, zinc oxide, antimony oxide, and zinc sulfide; extender pigments such as magnesium oxide and calcium oxide; iron oxide, ultramarine blue, bitumen, carbon black; titanium yellow, cobalt blue, etc. Color pigments such as complex oxide pigments; high luster pigments such as mica pigments coated with bismuth oxychloride, titanium oxide and the like.
  • organic pigments examples include azo, azomethine, methine, anthraquinone, phthalocyanine, perylene, thioindigo, quinacridone, and quinophthalone pigment.
  • the dye examples include anthraquinone series, azo dye metal complexes, and fluorescent dyes such as coumarin, naphthalimide, xanthene, and thiazine.
  • Examples of the resin included in the laser marking ink according to the present invention include urethane resin, acrylic resin, polyacetal resin, polyamide resin, polyimide resin, polyester resin, polyvinyl chloride resin, polyolefin resin, polycarbonate resin, polystyrene resin, polysulfone resin, and the like.
  • Thermosetting resins such as thermoplastic resins, epoxy resins, diallyl phthalate resins, silicone resins, phenol resins, unsaturated polyester resins, melamine resins, urea resins, copolymers thereof, etc. may be used. In view of good adhesion, urethane resin or acrylic resin is preferable.
  • the laser marking ink according to the present invention usually takes a form dissolved in an organic solvent.
  • a known solvent for ink can be used.
  • reactive monomer compounds include N-vinylpyrrolidone, dipropylene glycol diacrylate, tripropylene glycol diacrylate, butanediol diacrylate, hexanediol diacrylate, trimethylolpropane triacrylate, ethoxylated trimethylolpropane triacrylate, Glycerol propoxytriacrylate, pentaerythritol triacrylate, dipropylene glycol dimethacrylate, tripropylene glycol dimethacrylate, butanediol dimethacrylate, hexanediol dimethacrylate, trimethylolpropane trimethacrylate, di (3-methacryloxy-2- Hydroxypropyl ether), bisphenol A di (2 methacrylate) Oxyethyl ether), di-bisphenol A - (3- acryloxy-2-hydroxypropyl ether) and di (2-acryloxyethyl ether of bisphenol A), and the like
  • Stabilizers prevent the decomposition and discoloration of pigments and resins.
  • examples include benzophenone, benzotriazole, cyanoacrylate, benzoate, formamidine, hindered amine compounds, aminobenzoic acid, aminobenzoic acid.
  • examples include ultraviolet absorbers such as acid esters and antioxidants.
  • the laser marking ink according to the present invention is a base for flood coating ink, flexographic / gravure ink, UV curable offset printing ink, conventional offset printing ink, etc. by adding the organic solvent, reactive monomer compound, stabilizer and the like. It can be used as a coating solution.
  • a sand mill, a bead mill, an attritor or the like can be used for dispersing the laser marking additive in the ink. All components may be mixed and then dispersed, but the pigment may be dispersed in advance using a known disperser such as a dissolver, homomixer, ball mill, roll mill, stone mill, or ultrasonic disperser. good.
  • a known disperser such as a dissolver, homomixer, ball mill, roll mill, stone mill, or ultrasonic disperser. good.
  • a surface treatment may be applied to improve the dispersibility of the laser marking additive.
  • a dispersant In dispersing the laser marking additive in the ink, a dispersant, a surface treatment agent, a sensitizer for improving laser characteristics, and the like may be added.
  • known additives such as a light stabilizer, a flame retardant, glass fiber, an antistatic agent, and an electromagnetic wave shielding additive may be used in combination depending on the application.
  • the present invention provides an ink film layer for laser marking formed by coating the above-described laser marking ink on at least one side of a substrate, and for laser marking formed by printing on at least one side of a substrate with the above-described laser marking ink.
  • a multilayer body for laser marking comprising a printed matter, an ink film layer made of the above laser marking ink provided on a substrate, and a transparent surface protective layer provided on the ink film layer.
  • the base material of the multilayer body for laser marking may be made of a plastic film, paper, metal foil, glass, ceramics, wood or the like.
  • the kind of the synthetic resin constituting the plastic film is not particularly limited, and may be a thermoplastic resin, a thermosetting resin, or a UV / EB curable resin.
  • thermoplastic resins include polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, acrylonitrile butadiene styrene, polyacryl methacrylate, polyamide, nylon, polyacetal, polycarbonate, polybutylene terephthalate, polyethylene Examples thereof include terephthalate, polyphenylene sulfide, polysulfone, polyimide, polyamide, a mixture thereof, and a copolymer based on these.
  • thermosetting resins include phenolic resins, epoxy resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, polyurethanes, thermosetting polyimides, and mixtures thereof.
  • the thickness of the plastic film is not particularly limited. For example, it is preferably 12 to 40 ⁇ m for PET and 20 to 50 ⁇ m for OPP.
  • paper art paper, coated paper, high-quality paper, Japanese paper, synthetic paper, etc. can be used.
  • aluminum foil one having a thickness suitable for printing, for example, one having a thickness of 5 to 150 ⁇ m can be used.
  • the shape and size of the substrate may be arbitrary. Examples thereof include members, containers, packages, electronic parts, cards, and coating compositions.
  • the thickness of the transparent surface protective layer constituting the multilayer body for laser marking is not particularly limited, but is preferably 1 ⁇ m or more, particularly preferably 10 ⁇ m or more.
  • the surface protective layer is usually formed by a method of applying and drying a coating liquid to be a surface protective layer on an ink film layer made of laser marking ink.
  • the surface protective layer is formed on the ink film layer.
  • the coating solution is applied, dried, and then formed by curing by ultraviolet irradiation or the like, or the film to be the surface protective layer is bonded directly or via an adhesive layer on the ink film layer.
  • a binder resin of the coating liquid for example, water-soluble cellulose, methylcellulose, methoxycellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinyl alcohol, polyacrylamide, polyacrylic acid, casein, Gelatin, styrene / maleic anhydride copolymer salt, isobutylene / maleic anhydride copolymer salt, polyacrylic acid ester, polyurethane resin, acrylic / styrene resin and the like can be mentioned.
  • water-soluble cellulose for example, water-soluble cellulose, methylcellulose, methoxycellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinyl alcohol, polyacrylamide, polyacrylic acid, casein, Gelatin, styrene / maleic anhydride copolymer salt, isobutylene / maleic anhydride copolymer salt, polyacrylic acid ester, polyurethane resin, acrylic / styrene resin and the like can be mentioned.
  • Solvent type resins include styrene / maleic acid, acrylic / styrene resin, polystyrene, polyester, polycarbonate, epoxy resin, polyurethane resin, polybutyral resin, polyacrylate ester, styrene / butadiene copolymer, styrene / butadiene / acrylic acid copolymer Examples include polymers and polyvinyl acetate.
  • a curing agent can be used in combination for the purpose of improving the film strength, heat resistance, water resistance, solvent resistance and the like of the surface protective layer.
  • a monomer having one or more ethylenically unsaturated bonds, a prepolymer oligomer, or the like is used.
  • monomers that can be used in the present invention include N-vinylpyrrolidone, acrylonitrile, styrene, acrylamide, 2-ethylhexyl acrylate, 2-hydroxy (meth) acrylate, 2-hydroxypropyl (meth) acrylate, tetrahydrofurfuryl acrylate, phenoxyethyl.
  • Tetrafunctional monomers such as trifunctional monomers, pentaerythritol polypropoxytetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate Other 5 dipentaerythritol penta (meth) acrylate as a functional or more monomers, dipentaerythritol hexa (meth) acrylate.
  • monomers, prepolymers, and oligomers are used as the radiation curable composition, it is preferable to use trifunctional or higher functional monomers, prepolymers, and oligomers within a range of 20 to 95% by weight.
  • the film density and film strength of the surface protective layer are low, and the smoothness of the printed surface may be lowered in some cases, and the physical properties such as water resistance, oil resistance, and wear resistance will also be reduced.
  • the surface protective layer becomes too hard, and when the printed matter is bent, the surface protective layer is easily peeled off.
  • a photopolymerization initiator and, if necessary, a sensitizer are required.
  • photopolymerization initiators acetophenone, benzophenone, thioxanthone, benzoin, benzoin methyl ether, etc.
  • Amine compounds such as tri-n-butylphosphine, Michler's ketone and the like can be used.
  • curing can be performed without using the above-mentioned photopolymerization initiator, sensitizer and the like.
  • the film When a film is used for the surface protective layer, the film is directly laminated on the surface protective layer, or a laminated film obtained by previously laminating the film and the adhesive layer is bonded to the ink film layer.
  • the present invention further includes a molded article containing the laser marking additive, a coating layer formed on the substrate with the paint, an ink film layer formed on the substrate with the ink, and a substrate coated with the ink.
  • the present invention also provides a printed matter obtained by printing on a laser beam or a laser marking product obtained by marking the multilayer body by laser irradiation.
  • the laser is preferably YAG having a wavelength center of 1064 nm or a green laser having a wavelength center of 532 nm.
  • the laser irradiation conditions are appropriately selected depending on the printing method, printing conditions, the type of substrate, and the like.
  • the additive for laser marking according to the present invention is composed of bismuth oxide containing oxygen defects, and the color of the compound is either white or very light gray.
  • Moldings containing additives for laser marking, paints and inks, coating layers formed on a substrate with the above-mentioned paints, ink film layers formed on the substrate with the above-mentioned inks, and on the substrate with the above-mentioned inks A printed matter obtained by printing or a multilayer body composed of the ink film layer and the surface protective layer does not cause undesirable coloring. Furthermore, by applying laser marking to molded products, coating layers, ink film layers, printed materials, and multilayer bodies, it is possible to obtain laser marking products with superior blackness and contrast compared to those made of bismuth oxide without oxygen defects. it can.
  • Synthesis example of oxygen defect-containing bismuth oxide Synthesis example 1 200 g of commercially available bismuth oxide Bi 2 O 3 and 0.02 g of metallic aluminum were added to 1000 mL of distilled water, and the whole was stirred with a dissolver for 3 hours. After filtering the obtained suspension, the residue was dried at 60 ° C. for 48 hours under a reduced pressure of 0.1 MPa to obtain a powder.
  • Synthesis example 2 200 g of commercially available bismuth oxide Bi 2 O 3 and 0.2 g of metallic aluminum were added to 1000 mL of distilled water, and the mixture was stirred for 3 hours with a dissolver. The obtained suspension was filtered, and the residue was dried at 150 ° C. for 24 hours under a reduced pressure of 0.1 MPa to obtain a powder.
  • Synthesis example 3 200 g of commercially available bismuth oxide Bi 2 O 3 and 2.0 g of metallic aluminum were added to 1000 mL of distilled water, and the mixture was stirred for 3 hours with a dissolver. The obtained suspension was filtered, and the residue was dried at 150 ° C. for 24 hours under a reduced pressure of 0.1 MPa to obtain a powder.
  • Synthesis example 4 200 g of commercially available bismuth oxide Bi 2 O 3 and 2.0 g of metallic aluminum were added to 1000 mL of distilled water, and the mixture was stirred for 3 hours with a dissolver. After filtering the obtained suspension, the residue was dried at 200 ° C. for 24 hours under a reduced pressure of 0.1 MPa to obtain a powder.
  • Synthesis example 5 200 g of commercially available bismuth oxide Bi 2 O 3 and 2.0 g of metallic aluminum were added to 1000 mL of distilled water, and the mixture was stirred for 3 hours with a dissolver. After the obtained suspension was filtered, the residue was dried at 250 ° C. for 24 hours under a reduced pressure of 0.1 MPa to obtain a powder.
  • Synthesis Example 6 200 g of commercially available bismuth oxide Bi 2 O 3 and 0.002 g of metal aluminum were added to 1000 mL of distilled water, and the mixture was stirred for 3 hours with a dissolver. The obtained suspension was filtered and then dried at 120 ° C. for 24 hours under a reduced pressure of 0.1 MPa to obtain a powder.
  • Synthesis example 7 200 g of commercially available bismuth oxide Bi 2 O 3 and 1.0 g of metallic aluminum were added to 1000 mL of distilled water, and the mixture was stirred for 3 hours with a dissolver. The obtained suspension was filtered, and then dried at 150 ° C. for 24 hours under a reduced pressure of 0.1 MPa to obtain a powder.
  • Synthesis example 8 In 1000 mL of distilled water, 200 g of commercially available bismuth oxide Bi 2 O 3 was added, 5.0 g of metal aluminum was slowly added over 5 minutes while stirring with a dissolver, and the mixture was further stirred for 3 hours. The obtained suspension was filtered, and then dried at 150 ° C. for 24 hours under a reduced pressure of 0.1 MPa to obtain a powder.
  • Synthesis Example 9 200 g of commercially available bismuth oxide Bi 2 O 3 was added to 1000 mL of distilled water, 10.0 g of metallic aluminum was slowly added over 10 minutes while stirring with a dissolver, and the mixture was further stirred for 3 hours. The obtained suspension was filtered, and then dried at 150 ° C. for 24 hours under a reduced pressure of 0.1 MPa to obtain a powder.
  • Synthesis Example 10 200 g of commercially available bismuth oxide Bi 2 O 3 was added to 1000 mL of distilled water, and 20.0 g of metal aluminum was slowly added over 20 minutes while stirring with a dissolver, and further stirred for 3 hours. The obtained suspension was filtered, and then dried at 150 ° C. for 24 hours under a reduced pressure of 0.1 MPa to obtain a powder.
  • Synthesis Example 11 200 g of commercially available bismuth oxide Bi 2 O 3 was added to 1000 mL of distilled water, 40.0 g of metallic aluminum was slowly added over 30 minutes while stirring with a dissolver, and the mixture was further stirred for 3 hours. The obtained suspension was filtered, and then dried at 150 ° C. for 24 hours under a reduced pressure of 0.1 MPa to obtain a powder.
  • Comparative Synthesis Example 6 A commercially available tin dioxide (primary particle size: 20 nm) powder doped with antimony was prepared.
  • Table 1 shows the ratio (% by weight) of metallic aluminum to commercially available bismuth oxide used as a raw material in Synthesis Examples 1 to 11 and Comparative Synthesis Examples 1 to 3.
  • the diffuse reflectance was measured using an integrating sphere unit in an UV-visible near-infrared spectrophotometer ("V-570" manufactured by JASCO Corporation).
  • O 1s / Bi 4f was measured using a scanning X-ray photoelectron spectrometer (“Quantum 2000” manufactured by ULVAC-PHI).
  • the obtained molded body was irradiated with a YAG laser (manufactured by NEC Corporation, SL475K) to discolor the molded body.
  • the laser irradiation conditions were an input current of 11 A, a feed rate of 1000 mm / second, and a Q-sw frequency of 7 kHz.
  • the discolored portion was measured with a colorimeter (Dainipei Chemical Co., Ltd., COLORCOM C).
  • the powders obtained in Synthesis Examples 1 to 11 have an oxygen defect amount x in the range of 0.01 ⁇ x ⁇ 0. 0 as compared with the powders obtained in Comparative Synthesis Examples 1 to 4.
  • 3 is bismuth oxide containing oxygen defects, and has high absorption at wavelengths of 1064 nm and 532 nm in the ultraviolet-visible absorption spectrum, and the powder itself has high color developability.
  • the powder of Comparative Synthesis Example 1 has a lower absorptance at wavelengths of 1064 nm and 532 nm in the ultraviolet-visible absorption spectrum and the amount of oxygen defects is less than that of the powders obtained in Synthesis Examples 1-11. It is less than 01, and it can be seen that the color developability of the powder itself is low.
  • the powder of Comparative Synthesis Example 2 Compared with the powder obtained in Synthesis Example 1, the powder of Comparative Synthesis Example 2 has similar absorption rates at wavelengths of 1064 nm and 532 nm in the UV-visible absorption spectrum, but the oxygen defect amount is 0.01. It can be seen that the color developability of the powder itself is low.
  • the powder of Comparative Synthesis Example 3 has a higher absorption rate ⁇ 1 at a wavelength of 1064 nm and an absorption rate ⁇ 2 at 532 nm in the ultraviolet-visible absorption spectrum than the powders obtained in Synthesis Examples 1 to 11, and It can be seen that the color of the body itself is good, but the oxygen defect amount x is larger than 0.3.
  • the powders of Comparative Synthesis Examples 5 to 6 showed higher absorption rates at wavelengths of 1064 nm and 532 nm in the ultraviolet-visible absorption spectrum as compared with the powders obtained in Synthesis Examples 1 to 11, respectively. It can be seen that the color developability of the powder itself is very low.
  • Example 1 The oxygen-deficient bismuth oxide powder obtained in Synthesis Example 1 was added as an additive to 0.025 PHR (parts by weight of the additive relative to 100 parts by weight of the resin) in a high-density polyethylene resin and dispersed for 10 minutes by a paint shaker. The obtained composition was dried at 70 ° C. for 3 hours, and then an injection molding machine (“JSW, J505A11” manufactured by Nippon Steel Works) was used to produce a plate-like molded product having a molding temperature of 200 ° C. and a thickness of 3 mm. .
  • JSW injection molding machine
  • Examples 2 to 11 A plate-like molded product was produced in the same manner as in Example 1 except that the oxygen-deficient bismuth oxide powder obtained in Synthesis Examples 2 to 11 was used as an additive.
  • Comparative Examples 1-6 A plate-like molded product was produced in the same manner as in Example 1 except that the powders of Comparative Synthesis Examples 1 to 6 were used as additives.
  • a YAG laser (“SL475K” manufactured by NEC Corporation) was irradiated on the plate-shaped molded plate, and the molded plate was changed to black and printed.
  • the laser irradiation conditions were an input current of 20 A, a feed rate of 500 mm / second, and a Q-sw frequency of 5 kHz.
  • the discolored portion was measured with a spectrophotometer (“Karacom C” manufactured by Dainichi Seika Kogyo Co., Ltd.), and the blackness calculated from the L * value at that time was evaluated according to the following criteria.
  • Blackness of printing Blackness of printing when irradiated with laser (expressed as an index where the blackness of Example 1 is 100)
  • X Almost imprintable (less than 20 for blackness 100 of Example 1)
  • delta Blackness defect (20 or more and less than 80 with respect to the blackness 100 of Example 1)
  • Blackness is good (80 to less than 90 with respect to the blackness of 100 in Example 1)
  • A Blackness is very good (90 or more with respect to blackness 100 of Example 1).
  • Print fineness Print fineness when irradiated with laser (visual evaluation) ⁇ : Almost imprintable ⁇ : Faint printing ⁇ : Good printing, A: Delicate printing.
  • the powder obtained in Comparative Synthesis Example 2 has an absorption rate ⁇ 1 at a wavelength of 1064 nm in the UV-visible absorption spectrum, which is as high as that of the powder of Synthesis Example 1.
  • the laser marking characteristics of the plate-like molded product of Comparative Example 2 produced using the above are not good compared with those of Example 1. This is because even if the absorption factor ⁇ 1 of the laser marking additive, that is, bismuth oxide is high, if the oxygen defect is not introduced into the structure, the color developability of the powder itself at the time of laser irradiation is not improved. It is done.
  • the plate-like molded product of Comparative Example 3 showed good printing blackness and printing fineness. However, this shows that the resin colorability is poor, that is, the plate-like molded product is colored dark gray, so that the printing visibility is not good, and as a result, the laser marking characteristic is not good.
  • the reason why the plate-like molded products of Examples 1 to 11 show excellent laser marking characteristics is that the powder itself during the oxygen irradiation of oxygen-deficient bismuth oxide of Synthesis Examples 1 to 11 is irradiated. It can be seen that this is because the color developability to black is remarkably improved.
  • Example 12 Add the oxygen-deficient bismuth oxide powder and titanium oxide obtained in Synthesis Example 1 to the acrylic resin in the following proportions, add glass beads, and disperse the whole with a paint shaker for 120 minutes to obtain an acrylic coating composition. Obtained.
  • Acrylic resin 90 parts Oxygen-deficient bismuth oxide powder (Synthesis Example 1) 5 parts Titanium oxide 5 parts This coating composition was applied onto art paper with an applicator to form an acrylic coating layer having a thickness of 5 ⁇ m.
  • Examples 13 to 16 An acrylic coating layer was formed in the same manner as in Example 12, except that the oxygen-deficient bismuth oxide powder obtained in Synthesis Examples 2 to 5 was used as an additive to obtain an acrylic coating composition.
  • Example 17 Add the oxygen-deficient bismuth oxide powder and titanium oxide obtained in Synthesis Example 2 to the acrylic resin in the following proportions, add glass beads, and disperse the whole with a paint shaker for 120 minutes to obtain an acrylic coating composition. Obtained.
  • Acrylic resin 99 parts Oxygen defect type bismuth oxide powder (Synthesis example 2) 0.5 part Titanium oxide 0.5 part
  • the coating composition was developed on art paper with an applicator and dried at room temperature. This operation was repeated 5 times to form an acrylic coating layer having a thickness of 750 ⁇ m.
  • Example 18 Add the oxygen-deficient bismuth oxide powder and titanium oxide obtained in Synthesis Example 2 to the acrylic resin in the following proportions, add glass beads, and disperse the whole with a paint shaker for 120 minutes to obtain an acrylic coating composition. Obtained.
  • Acrylic resin 98 parts
  • Oxygen-deficient bismuth oxide powder (Synthesis example 2) 1.0 part Titanium oxide 1.0 part
  • the coating composition was applied onto art paper with an applicator and dried at room temperature. This operation was repeated three times to form an acrylic coating layer having a thickness of 450 ⁇ m.
  • Example 19 Add the oxygen-deficient bismuth oxide powder and titanium oxide obtained in Synthesis Example 2 to the acrylic resin in the following proportions, add glass beads, and disperse the whole with a paint shaker for 120 minutes to obtain an acrylic coating composition. Obtained.
  • Example 20 Add the oxygen-deficient bismuth oxide powder and titanium oxide obtained in Synthesis Example 2 to the acrylic resin in the following proportions, add glass beads, and disperse the whole with a paint shaker for 120 minutes to obtain an acrylic coating composition. Obtained.
  • Acrylic resin 20 parts Oxygen-deficient bismuth oxide powder (Synthesis example 2) 40 parts Titanium oxide 40 parts This coating composition was applied onto art paper with an applicator and dried at room temperature to form an acrylic coating layer having a thickness of 5 ⁇ m.
  • Example 21 Add the oxygen-deficient bismuth oxide powder and titanium oxide obtained in Synthesis Example 2 to the acrylic resin in the following proportions, add glass beads, and disperse the whole with a paint shaker for 120 minutes to obtain an acrylic coating composition. Obtained.
  • Acrylic resin 10 parts Oxygen defect type bismuth oxide powder (Synthesis example 2) 90 parts Titanium oxide 10 parts This coating composition was applied onto art paper with an applicator and dried at room temperature to form an acrylic coating layer having a thickness of 5 ⁇ m.
  • Comparative Example 7 An acrylic coating layer was formed in the same manner as in Example 12 except that the oxygen-deficient bismuth oxide powder of Comparative Synthesis Example 2 (oxygen defect amount x: less than 0.01) was used as an additive.
  • Comparative Example 8 An acrylic coating layer was formed in the same manner as in Example 12 except that the bismuth oxide powder of Comparative Synthesis Example 4 was used as an additive.
  • the acrylic coating layer was irradiated with a YAG laser ("SL475K" manufactured by NEC Corporation) to change the color of the acrylic coating layer.
  • the laser irradiation conditions were an input current of 10 A, a feed rate of 1000 mm / second, and a Q-sw frequency of 5 kHz.
  • the evaluation criteria are as follows.
  • Example 25 Using the oxygen-deficient bismuth oxide obtained in Synthesis Example 1 as an additive, the following components were blended, glass beads were added, and each component was dispersed with a paint conditioner for 120 minutes to prepare a urethane-based ink.
  • Example 30 Using the oxygen-deficient bismuth oxide obtained in Synthesis Example 3 as an additive, the following components were blended, glass beads were added, and each component was dispersed with a paint conditioner for 120 minutes to prepare a urethane-based ink.
  • Example 31 Using the oxygen-deficient bismuth oxide obtained in Synthesis Example 3 as an additive, the following components were blended, glass beads were added, and each component was dispersed with a paint conditioner for 120 minutes to prepare a urethane-based ink.
  • Example 32 Using the oxygen-deficient bismuth oxide obtained in Synthesis Example 3 as an additive, the following components were blended, glass beads were added, and each component was dispersed with a paint conditioner for 120 minutes to prepare a urethane-based ink.
  • Example 33 Using the oxygen-deficient bismuth oxide obtained in Synthesis Example 3 as an additive, the following components were blended, glass beads were added, and each component was dispersed with a paint conditioner for 120 minutes to prepare a urethane-based ink.
  • Example 34 Using the oxygen-deficient bismuth oxide obtained in Synthesis Example 2 as an additive, the following components were blended, glass beads were added, and each component was dispersed with a paint conditioner for 120 minutes to prepare a urethane-based ink.
  • Example 35 Using the oxygen-deficient bismuth oxide obtained in Synthesis Example 2 as an additive, the following components were blended, glass beads were added, and each component was dispersed with a paint conditioner for 120 minutes to prepare a urethane-based ink.
  • Example 36 Using the oxygen-deficient bismuth oxide obtained in Synthesis Example 3 as an additive, the following components were blended, glass beads were added, and each component was dispersed with a paint conditioner for 120 minutes to prepare a urethane-based ink.
  • Example 37-39 Using the ink prepared in Example 27, an ink film layer was produced on the substrate described in Table 4 in the same manner as in Example 25.
  • the ink film layer obtained in Examples 25 to 39 was irradiated with a YAG laser to change the color of the ink film layer.
  • the laser irradiation conditions were an input current of 10 A, a laser output of 10%, a feed rate of 1000 mm / second, and a Q-sw frequency of 5 kHz.
  • the discolored portion was measured with a spectrophotometer (Daiichi Seika Kogyo Co., Ltd., Karakom C), and the laser marking characteristics were evaluated according to the following criteria. The evaluation results are shown in Table 4.
  • Example 40 A varnish for lithographic ink (“SOV322” manufactured by Showa Varnish Co., Ltd.) was applied to the upper surface of the ink film layer prepared in Example 27 using a bar coater (RD S Laboratory Coating Rod, ROD No. 3). It dried at 100 degreeC and formed the protective layer on the ink membrane
  • the multilayer body which consists of an ink membrane
  • Examples 41-43 A lithographic ink varnish was applied to the upper surface of the ink film layer produced in Examples 37 to 39 with a bar coater and dried at 100 ° C. to form a protective layer on the upper surface of the ink film layer.
  • the multilayer body which consists of an ink membrane
  • the laser irradiation conditions were an input current of 11 A, a feed rate of 1000 mm / second, and a Q-sw frequency of 7 kHz.
  • the evaluation results are shown in Table 4.
  • Comparative Example 9 Preparation of an ink film layer and evaluation of laser marking characteristics were carried out in the same manner as in Example 25 except that the oxygen-deficient bismuth oxide (oxygen defect amount x: less than 0.01) of Comparative Synthesis Example 2 was used as an additive. went. The evaluation results are shown in Table 4.
  • Comparative Example 10 An ink film layer was prepared and laser marking characteristics were evaluated in the same manner as in Example 25 except that bismuth oxide of Comparative Synthesis Example 4 was used as an additive. The evaluation results are shown in Table 4.
  • Table 4 shows the parts by weight of bismuth oxide, the parts by weight of the color pigment, the type of base material, the presence or absence of a protective layer, the resin colorability, etc. used in Examples 25 to 43 and Comparative Examples 9 to 10.
  • the following criteria indicate the degree of coloration of the resin when the ink film layer is produced (the reference is white).
  • very dark white
  • deeply colored white
  • lightly colored white
  • A Almost white.
  • the ink film layers obtained in Examples 25 to 39 and the multilayer bodies obtained in Examples 40 to 43 are excellent in laser marking characteristics with a YAG laser, and the base material is art paper or PET film. It can be seen that good laser marking characteristics are exhibited in any case of aluminum foil and glass.
  • Example 44 Using the oxygen-deficient bismuth oxide obtained in Synthesis Example 3 as an additive, the following components were blended, glass beads were added, and each component was dispersed with a paint conditioner for 120 minutes to prepare a urethane-based ink.
  • the laser marking characteristics of the obtained printed film were evaluated.
  • the laser irradiation conditions were an input current of 10 A, a feed rate of 1000 mm / second, and a Q-sw frequency of 7 kHz.
  • the evaluation results are shown in Table 5.
  • Example 45 On the printing surface of the gravure printing film produced in Example 44, a two-component polyurethane adhesive was applied to a thickness of 3 ⁇ m, and a 60 ⁇ m polyethylene film was superposed on this coating surface using a commercially available laminator. A laminate film was prepared.
  • the laser marking characteristics of this film were evaluated according to the same evaluation criteria as in Example 44.
  • the laser irradiation conditions were an input current of 16 A, a feed rate of 1000 mm / second, and a Q-sw frequency of 7 kHz.
  • the evaluation results are shown in Table 5.
  • Example 46 Using the oxygen-deficient bismuth oxide obtained in Synthesis Example 3 as an additive, a rosin-modified phenolic resin-based printing ink was prepared by passing the following blending components three times with three rolls.
  • Rosin-modified phenolic varnish 46.0 parts Pigment dispersant (DiSPERBYK-180) 1.0 part Oxygen-deficient bismuth oxide (Synthesis Example 3) 20.0 parts Titanium oxide 30.0 parts Cobalt naphthenate 0.50 parts Naphthenic acid Manganese 0.50 parts Ultraviolet absorber (TINUVIN 111FDL) 2.0 parts 30 cc of the obtained printing ink was placed on the blanket part of a simple offset printing machine (RI tester) made of plate copper, blanket and pressed copper, and offset printing was performed on the art paper so that the thickness after drying was 5 ⁇ m. The ink was dried at 100 ° C. for 5 minutes to obtain an offset printed matter.
  • Pigment dispersant DiSPERBYK-180
  • Oxygen-deficient bismuth oxide Synthesis Example 3
  • Titanium oxide 30.0 parts
  • Cobalt naphthenate 0.50 parts
  • the laser marking characteristics of this offset printed matter were evaluated according to the same evaluation criteria as in Example 44.
  • the laser irradiation conditions were an input current of 10 A, a feed rate of 1000 mm / second, and a Q-sw frequency of 7 kHz.
  • the evaluation results are shown in Table 5.
  • Example 47 On the offset printed matter produced in Example 46, an aqueous varnish was applied with a roll coater so as to have a thickness of 3 ⁇ m, and the laser marking characteristics were evaluated according to the same evaluation criteria as in Example 44.
  • the laser irradiation conditions were an input current of 15 A, a feed rate of 1000 mm / second, and a Q-sw frequency of 7 kHz.
  • the evaluation results are shown in Table 5.
  • Table 5 shows the parts by weight of bismuth oxide, the parts by weight of the coloring pigment, the type of base material, the presence or absence of a protective layer, and the resin colorability used in Examples 44 to 47.
  • Resin colorability Degree of coloration of the resin when the ink film layer was prepared (standard was white) ⁇ Very darkly colored white, ⁇ deeply colored white, ⁇ Lightly colored white, ⁇ Almost white
  • the oxygen-deficient bismuth oxide according to the present invention can impart laser marking characteristics with blackness without causing undesirable coloring in the resin composition regardless of the type and shape of the resin used. I understand that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Laser Beam Processing (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明は、一般式 Bi(3-x) (ただし、xは0.01以上で且つ0.3以下であり、xは、X線光電子分光法により得られるビスマスの4f電子に帰属されるピークの面積に対する、ビスマスと結合している酸素の1s電子に帰属されるピークの面積の比(O1s/Bi4f)から、x = 3 - O1s/Bi4f × 2に従って算出される酸素欠陥量を示す)で表される酸素欠陥型酸化ビスマスからなる酸化ビスマス系レーザーマーキング用添加剤であって、使用する樹脂の種類や形状に関係なく、樹脂組成物に望ましくない着色を起こさず、且つ黒度とコントラストに優れたマーキングを可能にする。

Description

酸化ビスマス系レーザーマーキング用添加剤
 本発明は、レーザー照射によりマーキングを可能にするための酸化ビスマス系レーザーマーキング用添加剤および同添加剤の製造方法に関し、同添加剤を含むレーザーマーキング可能な成形物、塗料、インクに関し、さらに上記塗料で基材上に形成してなる塗工層、上記インクで基材上に形成したインク皮膜層、上記インクで基材上に形成してなる印刷物もしくは上記インク皮膜層と表面保護層からなる多層体に関し、さらには上記塗工層、インク皮膜層、印刷物もしくは多層体にレーザーを照射してなるレーザーマーキング製品に関する。
 レーザーマーキングは、レーザー光を利用して基材に直接、文字、数字、商標、バーコード等の印字や、或いは画像を施すマーキング方法である。
 レーザー光によるマーキングシステムには、
(1)非接触のマーキング方法であるため、任意の形状の基材に高速でマーキングを行うことができる、
(2)インクを使用しない為、マーキングが耐摩耗性に優れ、改ざんが困難であり、また有機溶剤等の揮発がないため低環境負荷である、という大きな特徴がある。
 そのため、現在多くの産業において、マーキングは従来のインクシステムからレーザーマーキングシステムに移行している。
 レーザーマーキングにはCOレーザー、YAGレーザー、YVOレーザー、グリーンレーザー等が使用されるが、精細な印字を可能にするため、主にはYAGレーザーが好適に使用される。
 しかしながら、ほとんどの主要な樹脂成形材料はレーザー光(典型的にはYAGによる波長1064nmの近赤外光)の吸収が乏しい。その為、視認性や精細度において十分な品質のマーキングが得られない場合が多く、全く印字できない樹脂も少なくはない。このことはレーザーマーキングを適用する上で、大きな制約となる。
 樹脂成形材料におけるレーザーマーキングの視認性を改善する為の公知技術としては、同材料にレーザー光を吸収する種々の添加剤を配合することが知られている。
 例えば、特許文献1には、粒径10~70nmの錫およびアンチモンの混合酸化物の粒子をレーザーマーキング用添加剤として成形材料(基材)に添加することが開示されている。
 マーキングの原理は、樹脂成形物中の上記粒子がYAGレーザー光を吸収すると、これが熱に変換され、添加剤を取り囲む部分が炭化することでレーザー非照射部分とのコントラストを形成するというものである。
 特許文献2には、雲母薄片やSiOフレーク等の薄片状基質に、アンチモン、砒素、ビスマス、銅、ガリウム、ゲルマニウムまたはそれらの酸化物をドープした二酸化錫を被覆した顔料を含む熱可塑性プラスチックが、レーザーマーキング可能であると記載されている。
 しかしながら、これらの文献の手法は、添加剤がレーザー光を吸収して熱に変換、周辺の樹脂を炭化させることで作用するものである。
 従ってマーキングの品質は樹脂の炭化しやすさやマーキング対象である樹脂組成物の形状に大きく依存する。即ち、基材樹脂が炭化しにくいものである場合には、良好な視認性を有するマーキングが得られず、また、塗料やフィルムのように薄膜状の樹脂成形物にマーキングを施す場合には、炭化させるべき樹脂の厚みが不足する為、レーザー光が熱により照射部分を貫通してしまうか、貫通させない為に弱いレーザー出力で印字を施した場合には、黒度が不足し良好な視認性を有するマーキングが得られない問題が生じる。
 特許文献3には、水酸化銅一燐酸塩または酸化モリブデンを添加した高分子物質がレーザーマーキング可能であると記載され、レーザー光により上記添加剤が有色の生成物に変わることでマーキングを施すと記載されている。このように添加剤そのものがレーザー光により有色の生成物に変化する場合、上記の問題点は回避しうる可能性がある。しかしながら精細な印字はできず、印字の黒度も満足なレベルではない。
 特許文献4および特許文献5には、酸化ビスマスを含有する樹脂組成物およびインクがレーザー光の照射により黒色にマーキング可能であると記載されている。
 しかしながら、これら特許文献に記載の添加剤を含む樹脂成形物にレーザーマーキングを適用した場合、視認性改善の効果はある程度認められるものの、マーキングの黒さやコントラストといったマーキング性は、なお満足されるものではない。
 一方、本発明者らは、特許文献6に記載のように、銅とモリブデンからなる複合酸化物がレーザー光の照射により黒度の高い色調に変色することを見出した。この複合酸化物はレーザー光を良く吸収すると同時に、粒子自身も淡黄色から黒色に変色する為、これを添加剤として含む樹脂成形物はマーキングの黒度、印字精細性が共に優れたレーザーマーキングを可能にする。しかしながら該複合酸化物は酸化物自体が黄色を呈しているため、樹脂成形物そのものを若干着色してしまうという、望ましくない問題点を抱える。
 本発明者らは、さらには特許文献7において、銅とモリブデンからなる複合水酸化物がレーザー光の照射により黒度および印字精細性の高い色調に変色し、且つ樹脂着色性が少ないことを見出している。しかしながら、該複合水酸化物は、印字精細性には優れているものの、特に5μm以下の膜厚の小さいインク皮膜にレーザーマーキングを適用した場合、マーキングの黒さやコントラストといったマーキング性が良くないという、望ましくない問題点を抱える。
特表2007-512215号公報 特表平10-500149号公報 特許第2947878号公報 特許第2873249号公報 特開2012-131885号公報 特許第4582387号公報 特許第5028213号公報
 本発明の目的は、上記問題点に鑑み、レーザーマーキング用添加剤を含む成形物、塗料やインク、塗料で基材上に形成してなる塗工層、上記インクで基材上に形成したインク皮膜層、上記インクで基材上に形成してなる印刷物もしくは上記インク皮膜層と表面保護層からなる多層体が望ましくない着色を起こさず、且つ黒度とコントラストに優れたマーキングを可能にする酸化ビスマス系レーザーマーキング用添加剤を提供することにある。
 本発明の別の目的は、上記のように優れた特性を具備する酸化ビスマス系レーザーマーキング用添加剤の製造方法を提供することにある。
 本発明のさらに別の目的は、上記のように優れた特性を具備する酸化ビスマス系レーザーマーキング用添加剤を含む成形物、塗料やインク、塗工層、インク皮膜層、印刷物もしくは多層体を提供することである。
 本発明者らは、これらの目的を達成すべく鋭意検討を重ねた結果、下記に詳細する特殊な酸化ビスマス系酸化物が、レーザーマーキング用添加剤として驚くべき優れた適性を有すること、即ち基板樹脂の種類や形状に依存せず、樹脂組成物に必要なだけ添加しても望ましくない着色を起こさず、且つ精細性に優れた非常に黒度のあるマーキングを可能にすること、を見出し、本発明を完成するに至った。
 本発明によるレーザーマーキング用添加剤は、酸素欠陥を含む酸化ビスマスからなることを特徴とするものである。
 上記酸化ビスマスは、好ましくは、下記一般式で表される酸素欠陥型酸化ビスマスである。
    Bi(3-x)
   (ただし、0.01≦x≦0.3)
 上記式中のxは、酸素欠陥量を表しており、0.01以上で且つ0.3以下、好ましくは0.01以上で且つ0.2以下、より好ましくは0.01以上で且つ0.1以下である。また、xは0.02以上で且つ0.2以下、好ましくは0.03以上で且つ0.1以下、より好ましくは0.04以上で且つ0.1以下であってもよい。
 上記式中の酸素欠陥量xは、X線光電子分光法により得られるビスマスの4f電子に帰属されるピークの面積に対する、ビスマスと結合している酸素の1s電子に帰属されるピークの面積の比(O1s/Bi4f)として、下記式(1)より算出されるものである。
  x=3-O1s/Bi4f×2・・・・・(1)
 すなわち、上記式(1)中のO1s/Bi4fの範囲が1.35≦O1s/Bi4f≦1.495の場合、酸素欠陥量xの範囲は0.01≦x≦0.3であり、O1s/Bi4fの範囲が1.45≦O1s/Bi4f≦1.495の場合、酸素欠陥量xの範囲は、0.01≦x≦0.1である。
 本発明によるレーザーマーキング用添加剤は、紫外可視近赤外反射スペクトルにおける拡散反射率から、下記式(2)によって算出される波長1064nmにおける吸収率が20~80%のものである。
吸収率=100-拡散反射率(%)・・・・・(2)
 本発明によるレーザーマーキング用添加剤は、紫外可視近赤外反射スペクトルにおける拡散反射率から、上記式(2)によって算出される波長532nmにおける吸収率が20~80%のものである。
 本発明によるレーザーマーキング用添加剤は、酸化ビスマス、あるいは熱を加えることにより酸化物となるビスマス化合物と、金属アルミニウムとを前者に対する後者の割合0.001~20重量%で乾式または湿式で混合する工程と、得られた混合物を大気圧より0.05MPa以上低い減圧下にて60~400℃で加熱する工程を含む方法により好適に製造することができる。
 本発明はまた、上記レーザーマーキング用添加剤を含むレーザーマーキング可能な成形物、塗料、インクを提供し、さらに上記塗料で基材上に形成してなる塗工層、上記インクで基材上に形成したインク皮膜層、上記インクで基材上に形成してなる印刷物もしくは上記インク皮膜層と表面保護層からなる多層体を提供し、さらには上記塗工層、インク皮膜層、印刷物もしくは多層体にレーザーを照射してなるレーザーマーキング製品を提供する。
 レーザーマーキングに用いるレーザー光は、COレーザー、YAGレーザー、YVOレーザー、グリーンレーザーであってよく、波長は532~10600nmであってよい。特に波長中心が1064nmであるYAGレーザーもしくは波長中心が532nmであるグリーンレーザーが好ましい。
 以下、本発明をさらに詳しく説明する。
 一般式、Bi(3-x)(ただし、0.01≦x≦0.3)
で表される酸素欠陥型酸化ビスマスにおいて、式中の酸素欠陥量xが0.01より小さいと、添加剤自体のレーザー光照射による黒色への発色性が悪く、マーキング特性が良くない。また、式中の酸素欠陥量xが0.3より大きいと、得られた粉体は濃い灰色を呈して基材を着色するためマーキングの視認性が悪くなり、添加剤として実用上使用不可である。
 本発明によるレーザーマーキング用添加剤は、その粒子径が小さい程、より高精細なマーキングを可能にする。該添加剤の平均粒子径D50は好ましくは10μm以下、より好ましくは1μm以下である。
 本発明によるレーザーマーキング用添加剤は、紫外可視近赤外反射スペクトルにおける拡散反射率から算出される波長1064nmにおける吸収率が20~80%、好ましくは30~70%、より好ましくは40~60%のものである。
 上記酸化ビスマス中の酸素欠陥量が多い程、YAGレーザーの波長中心である1064nmにおける吸収率が高くなり、マーキング特性が向上する。吸収率が20%未満であるとマーキングの黒さが不十分であり、80%を超えると基材が濃い灰色~黒色に変色するので、いずれも実用上好ましくない。
 本発明によるレーザーマーキング用添加剤は、紫外可視近赤外反射スペクトルにおける拡散反射率から算出される波長532nmにおける吸収率が20~80%、好ましくは30~80%、より好ましくは40~70%のものである。
 上記酸化ビスマス中の酸素欠陥量が多い程、グリーンレーザーの波長中心である532nmにおける吸収率が高くなり、マーキング特性が向上する。吸収率が20%未満であるとマーキングの黒さが不十分であり、80%を超えると基材が濃い灰色~黒色に変色するので、いずれも実用上好ましくない。
 また、これまで報告されているレーザーマーキング用添加剤においても、紫外可視吸収スペクトルにおける波長1064nmもしくは532nmにおける吸収率が高いものは存在する。例えば、特許文献1記載の錫およびアンチモンの混合酸化物の粒子や、三酸化アンチモン等が挙げられるが、これらは良好なマーキング特性を示さない。
これは、錫およびアンチモンの混合酸化物の粒子、三酸化アンチモン等は、レーザー光を吸収し、添加剤周辺の樹脂成分を炭化させる能力は有しているものの、レーザー照射時の添加剤自体の黒色への発色性が極めて悪い為であり、印字黒度等のマーキング特性が良くない結果となる場合が多い。
 一方、特許文献4或いは5として前述した通り、酸化ビスマス、即ち、Biそのものもレーザーマーキング用添加剤として使用可能であることが記載されているが、比較例に示した通り印字性能は十分に高いとは言い難い。
 本発明の特徴は三酸化ビスマスに所定量の酸素欠陥を導入し、それにより添加剤自体のレーザー光照射による黒色への発色性を飛躍的に高めた点にある。その結果、本発明による添加剤は酸化ビスマスの構造内に酸素欠陥を含むことにより、レーザー照射時の添加剤自体の黒色への発色性が大きく向上する為、優れたレーザーマーキング特性を示す。
 また、酸化ビスマスは光触媒としての検討もなされており、かかる技術分野においては光触媒に酸素欠陥や不純物を導入することで、光触媒の紫外光或いは可視光に対する感度が高くなるケースがあるとされている(特開2005-156588号公報、特開2006-150155号公報)。
 しかしながら、光触媒は、光電子効果によってOHラジカルを発生させ、これを有機物の分解に有効に作用させるものであり、光触媒そのものは光によって何ら化学変化を生じるものではない。従ってレーザー光によって酸化ビスマス自体が黒色に発色する本発明は、光触媒に関する従来技術から容易に推考できるものではない。
 このように、本発明者らは、レーザーマーキング用添加剤である、もともとレーザー光の吸収がある酸化ビスマスの構造内にさらに酸素欠陥を導入することにより、添加剤そのもののレーザー光による黒色への発色性を著しく向上させることに成功し、その結果、本発明による添加剤は、様々な形態の樹脂組成物、例えば成形体、塗料、インク等に優れたレーザーマーキング特性を付与できることを明らかにした。
 次に、本発明によるレーザーマーキング用添加剤の製造方法について、説明をする。
 この添加剤を製造する好ましい方法は、酸化ビスマス、あるいは熱を加えることにより酸化物となるビスマス化合物と、還元剤とを所定の割合で配合し、得られた配合物を乾式または湿式で混合する工程と、得られた混合物を大気圧より0.05MPa以上低い減圧下にて60~400℃で加熱する工程を含む。
 ここで、「所定の割合」とは、一般式、Bi(3-x)(ただし、0.01≦x≦0.3)で表される酸素欠陥型酸化ビスマスを得るのに必要な原料ビスマス化合物と還元剤の混合時の割合であり、原料ビスマス化合物に対する還元剤の好ましい割合は、0.001~20重量%であり、より好ましくは0.01~10重量%、さらに好ましくは0.1~5重量%である。
 熱を加えることにより酸化物となるビスマス化合物の例としては、オキシ塩化ビスマス、硝酸ビスマス、水酸化ビスマス等が挙げられる。後の加熱工程において有害なガスが発生しない酸化ビスマスや水酸化ビスマス等が好ましい。
 還元剤としては、公知のものであれば何でも使用することが出来るが、還元力の強いものが良く、例えば、水素化ホウ素ナトリウム、金属アルミニウムが好ましく用いられる。
 乾式混合には、汎用の混合機を使用すればよく、例えば、ヘンシェルミキサー、スーパーミキサー、リボコーン、ナウターミキサー、タービュライザー、サイクロミックス、スパイラルピンミキサー、レーディゲミキサー等が好ましく用いられる。
 湿式混合時に用いる溶媒は、特に限定しないが、上述の水素化ホウ素ナトリウム、金属アルミニウムを還元剤として用いる場合には、溶媒として水を使用することが望ましい。混合中に水素が発生し、還元反応をより促進できるからである。
 次いで、得られた混合物、もしくは該混合物を含むスラリーを、大気圧より0.05MPa以上、好ましくは0.06Mpa~0.1Mpa低い減圧下にて、60℃以上、通常60~400℃で加熱する。
 前段の混合工程によって酸化ビスマスが還元されに酸素欠陥が導入され、後段の加熱工程によって、酸素欠陥が酸化されることなく減圧条件下に酸素欠陥がいっそう導入される。
 加熱条件は、例えば60℃で24時間以上、好ましくは70℃~180℃の範囲で24時間以上、より好ましくは190℃~400℃の範囲で24時間以上である。前段の混合工程で酸化ビスマスに十分な酸素欠陥が導入されていないものを上記減圧下で60~300℃程度で加熱することにより、該酸化ビスマスの還元をさらに進めて十分な酸素欠陥を導入することができる。
 乾燥温度が400℃より高くなると、酸素欠陥の導入量が多くなりすぎ、粉体色が濃い灰色~黒色を呈するため基材もこのような色に変色し、またマーキングの視認性も良くない。
 本発明によりレーザーマーキング用の添加剤は、樹脂などへの分散を良くする為に、例えばシランカップリング材や脂肪酸、シリコーン、およびポリオール等の既知の表面処理材を用いて、表面処理を施しても良い。
 次に、本発明によるレーザーマーキング用添加剤を含むレーザーマーキング可能な成形物について、説明をする。
 成形物を作製するための材料の代表例は合成樹脂であるが、材料は劣化を生じるほどの高い加工温度を必要としないガラスやセラミックスでもよい。
 合成樹脂の種類は特に限定されず、熱可塑性樹脂でも熱硬化性樹脂でもよい。
 熱可塑性樹脂の例としては、ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、アクリロニトリルブタジエンスチレン、ポリアクリルメタクリレート、ポリアミド、ポリアセタール、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンスルファイド、ポリスルホン、ポリイミド、およびこれらの混合物およびこれらをベースとした共重合体等が挙げられる。
 熱硬化性樹脂の例としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミドおよびこれらの混合物が挙げられる。
 成形材料はシリコーン等の珪素骨格ポリマーであってもよい。
 成形物の形状および大きさは、任意であってよい。例えば板、棒、フィルム、薄膜のような部材や容器、包装品、電子部品、カードおよびコーティング物等が挙げられる。
 レーザーマーキング用成形物中の添加剤の最適な量は、成形材料の種類や成形物の形状により異なる。その為、最適な添加量は使用条件によりその都度決定されるが、最小で0.01重量%程度の添加量から十分なレーザーマーキング性能が得られる。マーキングの黒度をさらに向上させたい場合や、成形物の形状がフィルムや薄膜である場合には、成形物に高いレーザーマーキング性能を付与するために、本発明のレーザーマーキング用添加剤の添加量を増やして必要なレーザーマーキング性能を確保する。目安としては、添加量は最大でも30重量%程度までであり、成形性等のその他の諸物性に影響がでない範囲で添加量をさらに増やしても良い。レーザーマーキング用成形物中の添加剤の割合は、好ましくは1~25重量%、より好ましくは5~30重量%である。
 本発明によるレーザーマーキング用添加剤は、成形物への着色を目的として、無機ないしは有機顔料および染料との併用の形態で成形材料に添加することができる。
 無機顔料の例としては、酸化チタン、酸化亜鉛、酸化アンチモン、硫化亜鉛等の白色顔料;酸化マグネシウム、酸化カルシウム等の体質顔料;酸化鉄、群青、紺青、カーボンブラック;チタンイエローやコバルトブルー等の複合酸化物顔料等の着色顔料;オキシ塩化ビスマス、酸化チタン等で被覆された雲母顔料のような高輝性顔料が挙げられる。
 有機顔料の例としては、アゾ、アゾメチン、メチン、アントラキノン、フタロシアニン、ペリレン、チオインジゴ、キナクリドン、およびキノフタロン顔料等が挙げられる。
 染料の例としては、アントラキノン系、アゾ染料の金属錯体、更にクマリン、ナフタルイミド、キサンテン、チアジン等の蛍光染料が挙げられる。
 また、光安定剤や酸化防止剤、難燃化剤、ガラス繊維など樹脂の加工に汎用されている添加剤を用途に応じ併用しても良い。さらに紫外線吸収剤、帯電防止剤、電磁波遮断用添加剤等の既知の添加剤との併用も可能である。
 次に、本発明によるレーザーマーキング用添加剤を含むレーザーマーキング可能な塗料について、説明をする。
 塗料は、水系または溶媒系塗料のいずれであっても良く、塗料を構成する樹脂は、アルキド樹脂、アクリル樹脂、アミノ樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコン樹脂、フッ素樹脂、アクリルシリコン樹脂、不飽和ポリエステル樹脂、紫外線硬化樹脂、フェノール樹脂、塩化ビニル樹脂などの合成樹脂でもよい。松脂、セラック、エステルガム、タールピッチ、漆など天然の樹脂を主体とする塗料も使用できる。
 レーザーマーキング用塗料中の添加剤の割合は0.1~90重量%、好ましくは1~60重量%、より好ましくは5~50重量%である。
 本発明によるレーザーマーキング用添加剤は、塗料への着色を目的とした、無機ないしは有機顔料および染料との併用の形態で成形材料に添加することができる。
 無機顔料の例としては、酸化チタン、酸化亜鉛、酸化アンチモン、硫化亜鉛等の白色顔料;酸化マグネシウム、酸化カルシウム等の体質顔料;酸化鉄、群青、紺青、カーボンブラック;チタンイエローやコバルトブルー等の複合酸化物顔料等の着色顔料;オキシ塩化ビスマス、酸化チタン等で被覆された雲母顔料のような高輝性顔料が挙げられる。
 有機顔料の例としては、アゾ、アゾメチン、メチン、アントラキノン、フタロシアニン、ペリレン、チオインジゴ、キナクリドン、およびキノフタロン顔料等が挙げられる。
 染料の例としては、アントラキノン系、アゾ染料の金属錯体、更にクマリン、ナフタルイミド、キサンテン、チアジン等の蛍光染料が挙げられる。
 また、溶剤、分散剤、充填剤、骨材、増粘剤、フローコントロール剤、レベリング剤、硬化剤、架橋剤、紫外線吸収剤等の塗料に汎用されている添加剤を用途に応じ併用することも可能である。
 次に、本発明によるレーザーマーキング用添加剤を含むレーザーマーキング可能なインクについて、説明をする。
 本発明によるレーザーマーキング用インクは、酸素欠陥を有する酸化ビスマスを含むレーザーマーキング用添加剤を0.1~90重量%含有することを特徴とする。このインクは、レーザーを照射することにより黒色度が高い色調に変色する。インク中のレーザーマーキング用添加剤の含量は、少なすぎるとレーザー照射により黒色度が高い色調が得られず、多すぎると、形成したインク皮膜層の耐久性が劣化する為、いずれの場合も好ましくない。
 レーザーマーキング用インク中の添加剤の割合は0.1~90重量%、好ましくは1~60重量%、より好ましくは5~50重量%である。
 本発明によるレーザーマーキング用インクは、該レーザーマーキング用添加剤を、雲母薄片、金属酸化物で被覆された雲母薄片、SiOフレークおよびガラスフィラーからなる群から選ばれた基質に被覆せしめたものまたは該基質と混合したものであってもよい。
 本発明によるレーザーマーキング用インクは、無機もしくは有機顔料、染料、樹脂、有機溶剤、反応性モノマー化合物および安定剤からなる群から選ばれる少なくとも1つを含んで良い。レーザーマーキング用インク中の顔料、染料、樹脂、有機溶剤、反応性モノマー化合物および/または安定剤の量は、1~30重量%であることが好ましい。
 無機顔料の例としては、酸化チタン、酸化亜鉛、酸化アンチモン、硫化亜鉛等の白色顔料;酸化マグネシウム、酸化カルシウム等の体質顔料;酸化鉄、群青、紺青、カーボンブラック;チタンイエローやコバルトブルー等の複合酸化物顔料等の着色顔料;オキシ塩化ビスマス、酸化チタン等で被覆された雲母顔料のような高輝性顔料が挙げられる。
 有機顔料の例としては、アゾ、アゾメチン、メチン、アントラキノン、フタロシアニン、ペリレン、チオインジゴ、キナクリドン、およびキノフタロン顔料等が挙げられる。
 染料の例としては、アントラキノン系、アゾ染料の金属錯体、更にクマリン、ナフタルイミド、キサンテン、チアジン等の蛍光染料が挙げられる。
 本発明によるレーザーマーキング用インクに含められる樹脂としては、ウレタン系樹脂、アクリル樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリスルホン樹脂等の熱可塑性樹脂、エポキシ樹脂、ジアリルフタレート樹脂、シリコン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、メラミン樹脂、ユリア樹脂等の熱硬化性樹脂、これらの共重合体等が用いられてよい、基材への密着性が良い点でウレタン系樹脂またはアクリル樹脂が好ましい。
 本発明によるレーザーマーキング用インクは、通常は、有機溶剤に溶解した形態をとる。
 有機溶剤は、インク用の公知の溶剤を用いることができ、例えば、メチルエチルケトン、メチルイソブチルケトン、1-メトキシー2-プロパノール、トルエン、キシレン、シクロヘキサン、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸nプロピル、酢酸nブチル、酢酸イソブチル、メタノール、エタノール、nプロピルアルコール、イソプロピルアルコール、nブチルアルコール、イソブチルアルコール、第2ブチルアルコール、アセトン、メチルエチルケトン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート等が挙げられる。
 反応性モノマー化合物の例としては、N-ビニルピロリドン、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ブタンジオールジアクリレート、ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、グリセロールプロポキシトリアクリレート、ペンタエリトリトールトリアクリレート、ジプロピレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、ブタンジオールジメタクリレート、ヘキサンジオールジメタクリレート、トリメチロールプロパントリメタクリレート、ビスフェノールAのジ(3-メタクリルオキシ-2-ヒドロキシプロピルエーテル)、ビスフェノールAのジ(2メタクリルオキシエチルエーテル)、ビスフェノールAのジ-(3-アクリルオキシ-2-ヒドロキシプロピルエーテル)およびビスフェノールAのジ(2-アクリルオキシエチルエーテル)等が挙げられる。
 安定剤は、顔料や樹脂の分解や変色を防ぐものであり、その例としては、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、ベンゾエート系、ホルムアミジン系、ヒンダードアミン系化合物、アミノ安息香酸、アミノ安息香酸エステル等の紫外線吸収剤や酸化防止剤が挙げられる。
 本発明によるレーザーマーキング用インクは、上記有機溶媒、反応性モノマー化合物、安定剤等を加えることにより、フラッドコーティング用インク、フレキソ/グラビアインク、UV硬化オフセット印刷インク、従来のオフセット印刷インク等のベース塗工液として使用することが可能である。
 インク中へのレーザーマーキング用添加剤の分散には、サンドミル、ビーズミル、アトライター等が利用できる。すべての成分を混合してから分散してもよいが、ディゾルバー、ホモミキサー、ボールミル、ロールミル、石臼式ミル、超音波分散機等の既知の分散機を用いて予め顔料を分散させておいても良い。
 また、レーザーマーキング用添加剤の分散性をよくするために表面処理を施してもよい。
 インク中へのレーザーマーキング用添加剤の分散に際し、分散剤、表面処理剤、レーザー特性向上のための増感剤等を添加してもよい。また、用途に応じて、光安定剤、難燃化剤、ガラス繊維、帯電防止剤、電磁波遮断用添加剤等の既知の添加剤を併用してもよい。
 本発明は、上述したレーザーマーキング用インクを基材の少なくとも片面に塗工して成るレーザーマーキング用インク皮膜層、上述したレーザーマーキング用インクで基材の少なくとも片面に印刷を施して成るレーザーマーキング用印刷物、および、基材上に設けられた上記レーザーマーキング用インクからなるインク皮膜層と該インク皮膜層の上に設けられた透明な表面保護層とからなるレーザーマーキング用多層体を提供する。
 次に、上記レーザーマーキング用多層体について説明をする。
 レーザーマーキング用多層体の基材は、プラスチックフィルム、紙、金属箔、ガラス、セラミックス、木材等からなるものであって良い。プラスチックフィルムを構成する合成樹脂の種類は特に限定されず、熱可塑性樹脂でも熱硬化性樹脂もしくは、UV/EB硬化系の樹脂でもよい。熱可塑性樹脂の例としては、ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、アクリロニトリルブタジエンスチレン、ポリアクリルメタクリレート、ポリアミド、ナイロン、ポリアセタール、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンスルファイド、ポリスルホン、ポリイミド、ポリアミド、およびこれらの混合物およびこれらをベースとした共重合体等が挙げられる。熱硬化性樹脂の例としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミドおよびこれらの混合物等が挙げられる。プラスチックフィルムの厚みは特に限定されないが、例えばPETでは12~40μm、OPPでは20~50μmが好ましい。
 紙としては、アート紙、コート紙、上質紙、和紙、合成紙等が使用できる。アルミ箔としては、印刷に適した厚さのもの、例えば厚みが5~150μmのものが使用できる。
 基材の形状および大きさは、任意であってよい。例えば部材や容器、包装品、電子部品、カードおよびコーティング組成物等が一例として挙げられる。
 レーザーマーキング用多層体を構成する透明な表面保護層の厚みは特に限定されないが、好ましくは1μm以上、特に好ましくは10μm以上である。
 該表面保護層は、通常は、レーザーマーキング用インクからなるインク皮膜層の上に表面保護層となる塗工液を塗布、乾燥する方法により形成されるが、インク皮膜層上に、表面保護層となる塗工液を塗布、乾燥し、さらに紫外線照射などによる硬化で形成する方法や、インク皮膜層上に表面保護層となるフィルムを直接或いは接着剤層を介して貼り合わせる方法などで形成することもできる。
 表面保護層を塗工液から形成する場合、塗工液のバインダー樹脂として、例えば水溶性の、セルロース、メチルセルロース、メトキシセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸、カゼイン、ゼラチン、スチレン/無水マレイン酸共重合体塩、イソブチレン/無水マレイン酸共重合体塩、ポリアクリル酸エステル、ポリウレタン樹脂、アクリル/スチレン樹脂等が挙げられる。溶剤型樹脂としてはスチレン/マレイン酸、アクリル/スチレン樹脂、ポリスチレン、ポリエステル、ポリカーボネイト、エポキシ樹脂、ポリウレタン樹脂、ポリブチラール樹脂、ポリアクリル酸エステル、スチレン/ブタジエン共重合体、スチレン/ブタジエン/アクリル酸共重合体、ポリ酢酸ビニル等がある。塗工液には、表面保護層の膜強度、耐熱性、耐水性、耐溶剤性等の向上を目的に硬化剤を併用することができる。
 表面保護層として放射線硬化型の層を設ける場合、エチレン性不飽和結合を一つ以上有するモノマー、プレポリマーオリゴマー等を用いる。本発明に使用可能なモノマーとしては、N-ビニルピロリドン、アクリロニトリル、スチレン、アクリルアミド、2-エチルヘキシルアクリレート、2-ヒドロキシ(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、テトラヒドロフルフリルアクリレート、フェノキシエチルアクリレート、ノニルフェノキシエチルアクリレート、ブトキシエチル(メタ)アクリレート、2-ヒドロキシー3-フェノキシプロピルアクリレート、シクロヘキシル(メタ)アクリレート、N,N-ジメチルアミノ(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレートエチル、3-フェノキシプロピルアクリレート、2-メトキシエチル(メタ)アクリレート等の単官能モノマー、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、テトラエチレングリコールジアクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート等の2官能モノマー、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の3官能モノマー、ペンタエリスリトールポリプロポキシテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の4官能モノマー、その他5官能以上のモノマーとしてジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等がある。放射線硬化型組成物としてモノマー、プレポリマー、オリゴマーを用いる場合3官能以上のモノマー、プレポリマー、オリゴマーは20~95重量%の範囲内で使用することが好ましい。20重量%以下では表面保護層の膜密度、膜強度が低く、場合によっては印字面の平滑性が低下したり、耐水性、耐油性、耐摩耗性等の物性も低下する。95重量%以上の場合、表面保護層が硬くなり過ぎ印字物を折れ曲げた時、表面保護層の剥離が起こりやすくなる。放射線硬化型組成物には、紫外線で硬化させる場合、光重合開始剤、必要に応じて増感剤が必要となる。光重合開始剤としては、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン系、ベンゾインメチルエーテル系等、増感剤としてはN-メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン、P-ジメチルアミノ安息香酸イソアミルエステル等のアミン系化合物、トリーn-ブチルホスフイン、ミヒラーケトン等を使用することができる。電子線硬化の場合上記の光重合開始剤、増感剤等が使用しなくても硬化させることが可能である。
 表面保護層にフィルムを用いる場合、表面保護層にフィルムを直接ラミネートするか、またはフィルムと接着剤層を前もって積層した積層フィルムをインク皮膜層に貼り合わせる。
 本発明はさらに、上記レーザーマーキング用添加剤を含む成形物、上記塗料で基材上に形成してなる塗工層、上記インクで基材上に形成したインク皮膜層、上記インクで基材上に印刷してなる印刷物、または、上記多層体にレーザー照射によりマーキングを施してなるレーザーマーキング製品をも提供する。
 レーザーは、波長中心が1064nmであるYAGもしくは波長中心が532nmであるグリーンレーザーが好ましい。レーザー照射条件は、印刷方法、印刷条件、基材の種類等により適宜選択される。
 本発明によるレーザーマーキング用添加剤は、酸素欠陥を含む酸化ビスマスからなるものであり、該化合物の色はいずれも白色か非常に薄い灰色であるので、後述の実施例によって実証されているように、レーザーマーキング用添加剤を含む成形物、塗料やインク、上記塗料で基材上に形成してなる塗工層、上記インクで基材上に形成したインク皮膜層、上記インクで基材上に印刷してなる印刷物、または、上記インク皮膜層と表面保護層からなる多層体が望ましくない着色を生じることがない。さらに成形物、塗工層、インク皮膜層、印刷物、多層体にレーザーマーキングを施すことにより、酸素欠陥を含まない酸化ビスマスからなるものに比べ、黒さとコントラストに優れたレーザーマーキング製品を得ることができる。
 本発明を下記の実施例によりさらに詳細に説明する。以下文中の「部」は特に断りのない限り重量基準である。
(酸素欠陥含有酸化ビスマスの合成例)
合成例1
 蒸留水1000mLに市販品酸化ビスマスBiを200gと金属アルミニウム0.02g投入し、全体をディゾルバーにて3時間攪拌した。得られた懸濁液をろ過した後、残渣を0.1MPaの減圧下にて、60℃で48時間乾燥させ、粉体を得た。
合成例2
 蒸留水1000mLに市販品酸化ビスマスBiを200gと金属アルミニウム0.2g投入し、ディゾルバーにて3時間攪拌した。得られた懸濁液をろ過した後、残渣を0.1MPaの減圧下にて、150℃で24時間乾燥させ、粉体を得た。
合成例3
 蒸留水1000mLに市販品酸化ビスマスBiを200gと金属アルミニウム2.0g投入し、ディゾルバーにて3時間攪拌した。得られた懸濁液をろ過した後、残渣を0.1MPaの減圧下にて、150℃で24時間乾燥させ、粉体を得た。
合成例4
 蒸留水1000mLに市販品酸化ビスマスBiを200gと金属アルミニウム2.0g投入し、ディゾルバーにて3時間攪拌した。得られた懸濁液をろ過した後、残渣を0.1MPaの減圧下にて、200℃で24時間乾燥させ、粉体を得た。
合成例5
 蒸留水1000mLに市販品酸化ビスマスBiを200gと金属アルミニウム2.0g投入し、ディゾルバーにて3時間攪拌した。得られた懸濁液をろ過した後、残渣を0.1MPaの減圧下にて、250℃で24時間乾燥させ、粉体を得た。
合成例6
蒸留水1000mLに市販品酸化ビスマスBiを200gと金属アルミニウム0.002g投入し、ディゾルバーにて3時間攪拌した。得られた懸濁液をろ過した後、0.1MPaの減圧下にて、120℃で24時間乾燥を行い、粉体を得た。
合成例7
蒸留水1000mLに市販品酸化ビスマスBiを200gと金属アルミニウム1.0g投入し、ディゾルバーにて3時間攪拌した。得られた懸濁液をろ過した後、0.1MPaの減圧下にて、150℃で24時間乾燥を行い、粉体を得た。
合成例8
蒸留水1000mLに市販品酸化ヒ゛スマスBiを200g投入し、ディゾルバーにて攪拌しながら金属アルミニウム5.0gを5分間かけてゆっくり投入し、更に3時間攪拌した。得られた懸濁液をろ過した後、0.1MPaの減圧下にて、150℃で24時間乾燥を行い、粉体を得た。
合成例9
蒸留水1000mLに市販品酸化ビスマスBiを200g投入し、ディゾルバーにて攪拌しながら金属アルミニウム10.0gを10分間かけてゆっくり投入し、更に3時間攪拌した。得られた懸濁液をろ過した後、0.1MPaの減圧下にて、150℃で24時間乾燥を行い、粉体を得た。
合成例10
蒸留水1000mLに市販品酸化ビスマスBiを200g投入し、ディゾルバーにて攪拌しながら金属アルミニウム20.0gを20分間かけてゆっくり投入し、更に3時間攪拌した。得られた懸濁液をろ過した後、0.1MPaの減圧下にて、150℃で24時間乾燥を行い、粉体を得た。
合成例11
蒸留水1000mLに市販品酸化ビスマスBiを200g投入し、ディゾルバーにて攪拌しながら金属アルミニウム40.0gを30分間かけてゆっくり投入し、更に3時間攪拌した。得られた懸濁液をろ過した後、0.1MPaの減圧下にて、150℃で24時間乾燥を行い、粉体を得た。
比較合成例1
 蒸留水1000mLに市販品酸化ビスマスBiを200gと金属アルミニウム0.01g投入し、ディゾルバーにて3時間攪拌した。得られた懸濁液をろ過した後、残渣を0.04MPaの減圧下にて、60℃で48時間乾燥させ、酸化ビスマス粉体を得た。
比較合成例2
 蒸留水1000mLに市販品酸化ビスマスBiを200gと金属アルミニウム0.02g投入し、ディゾルバーにて3時間攪拌した。得られた懸濁液をろ過した後、残渣を0.04MPaの減圧下にて、60℃で24時間乾燥させ、酸化ビスマス粉体を得た。
比較合成例3
 蒸留水1000mLに市販品酸化ビスマスBiを200g投入し、ディゾルバーにて攪拌しながら金属アルミニウム10.0gを10分間かけてゆっくり投入し、更に3時間攪拌した。得られた懸濁液をろ過した後、0.1MPaの減圧下にて、280℃で72時間乾燥を行い、粉体を得た。
比較合成例4
 市販の酸化ビスマスBi粉体(平均粒子径:3μm)を用意した。
比較合成例5
 市販の三酸化アンチモン粉体を用意した。
比較合成例6
 市販のアンチモンをドープした二酸化錫(一次粒子径:20nm)粉体を用意した。
 合成例1~11、比較合成例1~3の、原料として使用した市販品酸化ビスマスに対する金属アルミニウムの割合(重量%)を、表1に示す。
酸化ビスマスの分析試験
 合成例1~11、比較合成例1~6で得られた各粉体について、下記の方法で、紫外可視近赤外反射スペクトルにおける波長1064nmにおける吸収率α1、波長532nmにおける吸収率α2、およびX線光電子分光法によるO1s/Bi4f、酸素欠陥量xを求めた。得られた値を表1に示す。
 紫外可視近赤外反射スペクトルの測定については、紫外可視近赤外分光光度計(日本分光株式会社製「V―570」)において、積分球ユニットを用い、拡散反射率を測定した。測定条件は以下の通りとした:
 レスポンス:Fast
 バンド幅:2.0nm
 測定波長範囲:200nm~2500nm
 走査速度:400nm/min
 得られた結果から、式:吸収率=100-拡散反射率(%)に従って、波長1064nmにおける吸収率および波長532nmにおける吸収率を算出した。
 O1s/Bi4fは、走査型X線光電子分光装置(アルバック・ファイ社製「Quantum 2000」)を使用して、測定した。
また、得られたO1s/Bi4fから、以下式(1)より酸素欠陥量xを求めた。得られた値を表1に示す。
  X=3-O1s/Bi4f×2 ・・・(1)

粉体自体の発色性の評価
 合成例1~11、比較合成例1~6で得られた各粉体について、下記の方法で、粉体自身の発色性の評価を行った。評価結果を表1に示す。
 粉体をスチール製容器(直径35mm、深さ10mm)に盛った後、容器ごとプレス機(前川試験機製作所社製、TYPE M)で15tf、10秒間プレスし、成形体を作製した。
得られた成形体をYAGレーザー(日本電気社製、SL475K)で照射し、成形体を変色させた。レーザー照射条件は入力電流11A、送り速度1000mm/秒、Q-sw周波数7kHzであった。変色部分を測色機(大日精化社製、COLORCOM C)により測色した。
 粉体自身の発色性:粉体自体にレーザーを照射したときの黒色印字性能を下記の基準で評価した。
 ×:印字不可、
 △:印字かすれ、
 ○:印字良、
 ◎:鮮明な印字
Figure JPOXMLDOC01-appb-T000001
 表1より、合成例1~11で得られた粉体は、比較合成例1~4で得られた粉体と比較して、酸素欠陥量xの範囲が、0.01≦x≦0.3である、酸素欠陥を含んだ酸化ビスマスであり、紫外可視吸収スペクトルにおける波長1064nmと532nmでの吸収率が高く、且つ粉体自体の発色性も高いことが分かる。
 また、酸素欠陥量xの範囲が、0.01≦x≦0.3である、酸素欠陥を含んだ酸化ビスマスを得るには、原料である市販品酸化ビスマスと金属アルミニウムとを、前者に対する後者の割合0.001~20重量%で混合することが必要であることが分かる。
 一方、比較合成例1の粉体は、合成例1~11で得られた粉体と比較して、紫外可視吸収スペクトルにおける波長1064nmと532nmでの吸収率が低く、且つ酸素欠陥量が0.01未満であり、粉体自体の発色性も低いことが分かる。
 比較合成例2の粉体は、合成例1で得られた粉体と比較して、紫外可視吸収スペクトルにおける波長1064nmと532nmでの吸収率は同程度であるものの、酸素欠陥量が0.01未満であり、粉体自体の発色性も低いことが分かる。
 また、比較合成例3の粉体は、合成例1~11で得られた粉体と比較して紫外可視吸収スペクトルにおける波長1064nmでの吸収率α1と532nmでの吸収率α2は高く、且つ粉体自体の発色性も良好であるが、酸素欠陥量xが0.3より大きいことが分かる。
 さらに、比較合成例5~6の粉体は、合成例1~11で得られた粉体と比較して、いずれも紫外可視吸収スペクトルにおける波長1064nmと532nmで高い吸収率を示しているものの、粉体自体の発色性は非常に低いことが分かる。
添加剤含有製品の製造および評価
実施例1
 合成例1で得られた酸素欠陥型酸化ビスマス粉体を添加剤として高密度ポリエチレン樹脂に0.025PHR(樹脂100重量部に対する添加剤の重量部数)添加し、ペイントシェーカーにより10分間分散させた。得られた組成物を70℃で3時間乾燥させた後、射出成形機(日本製鋼所社製「JSW、J505A11」)を使用し、成形温度200℃で厚み3mmの板状成形物を作製した。
実施例2~11
 合成例2~11で得られた酸素欠陥型酸化ビスマス粉体を添加剤として使用した以外、実施例1と同様の方法で板状成形物を作製した。
比較例1~6
 比較合成例1~6の各粉体を添加剤として使用した以外、実施例1と同様の方法で板状成形物を作製した。
成形物の評価試験
 実施例1~11、比較例1~6で得られた板状成形物について、下記の方法で、樹脂への着色性およびレーザーマーキング特性を評価した。得られた結果を表2にまとめて示す。
(1)樹脂着色性
 板状成形物における樹脂への着色性を下記基準で目視にて評価した。
  ×:濃い灰色~黒色の着色、
  △:薄い灰色、
  ○:ほとんど着色なし。
(2)レーザーマーキング特性
 板状成形板にYAGレーザー(日本電気社製「SL475K」)を照射し、同成形板を黒色に変色させて印字した。レーザー照射条件は、入力電流20A、送り速度500mm/秒、Q―sw周波数5kHzであった。
 変色部分を分光光度計(大日精化工業社製「カラコムC」)により測色し、その際のL*値より算出した黒度を以下の基準で評価した。
 印字黒度:レーザーを照射した際の印字黒度(実施例1の黒度を100とする指数で表記した)
  ×:ほぼ印字不可(実施例1の黒度100に対して20未満)、
  △:黒度不良(実施例1の黒度100に対して20以上80未満)、
  ○:黒度良(実施例1の黒度100に対して80以上90未満)、
  ◎:黒度非常に良(実施例1の黒度100に対して90以上)。
 印字精細性:レーザーを照射した際の印字繊細性(目視での評価)
  ×:ほぼ印字不可、
  △:印字かすれ、
  ○:印字良、
  ◎:繊細な印字。
Figure JPOXMLDOC01-appb-T000002
 表2から、合成例1~11の酸素欠陥型酸化ビスマスを用いて作製した実施例1~11の板状成形物の樹脂着色性、レーザーマーキング特性は、いずれも良好であることがわかる。
 比較例1の板状成形物のレーザーマーキング特性が良くない理由は、表1に示すように、比較合成例1で得られた粉体に含まれる酸素欠陥量xが0.01未満と小さく、粉体自体の発色性が低いことに起因する。
 また、比較合成例2で得られた粉体は、表1から分かるように、紫外可視吸収スペクトルにおける波長1064nmの吸収率α1が、合成例1の粉体と同等に高いにも拘わらず、それを用いて作製した比較例2の板状成形物のレーザーマーキング特性は、表2から分かるように、実施例1のものと比較して良くない。これは、レーザーマーキング用添加剤、すなわち酸化ビスマスの吸収率α1が高くても、その構造内に酸素欠陥が導入されていなければ、レーザー照射時の粉体自体の発色性が向上しない為と考えられる。
 比較例3の板状成形物は、良好な印字黒度、印字精細性を示した。しかしながら、これは、樹脂着色性が悪い、すなわち板状成形物を濃いグレーに着色してしまっている為、印字の視認性が良くなく、結果としてレーザーマーキング特性が良くないことが分かる。
 さらに、表1記載の比較合成例5~6で得られた粉体は、表1から分かるように、吸収率α1が高いにも拘わらず、それらを用いて作製した比較例5~6の板状成形物のレーザーマーキング特性は、実施例1~11と比較して良くない。この結果は、表1に示すように、比較合成例5~6において粉体自体の発色性が非常に低いことに起因していることは明らかである。
 以上、表1および表2より、実施例1~11の板状成形物が優れたレーザーマーキング特性を示す理由は、合成例1~11の酸素欠陥型酸化ビスマスのレーザー照射時の粉体自体の黒色への発色性が著しく向上している為であることがわかる。
実施例12
 アクリル樹脂に、合成例1で得られた酸素欠陥型酸化ビスマス粉体および酸化チタンを以下の割合で添加し、ガラスビーズを入れて全体をペイントシェーカーにより120分間分散させ、アクリル系塗料組成物を得た。
 アクリル樹脂                        90部
 酸素欠陥型酸化ビスマス粉体(合成例1)            5部
 酸化チタン                          5部
 この塗料組成物をアート紙上にアプリケーターで塗布し、厚み5μmのアクリル系塗工層を形成した。
実施例13~16
 合成例2~5で得られた酸素欠陥型酸化ビスマス粉体を添加剤として使用してアクリル系塗料組成物を得た以外、実施例12と同様の方法でアクリル系塗工層を形成した。
実施例17
 アクリル樹脂に、合成例2で得られた酸素欠陥型酸化ビスマス粉体および酸化チタンを以下の割合で添加し、ガラスビーズを入れて全体をペイントシェーカーにより120分間分散させ、アクリル系塗料組成物を得た。
 アクリル樹脂                       99部
 酸素欠陥型酸化ビスマス粉体(合成例2)         0.5部
 酸化チタン                       0.5部

 この塗料組成物をアート紙上にアプリケーターにて展色し、室温で乾燥させた。この操作を5回繰り返し、厚み750μmのアクリル系塗工層を形成した。
実施例18
 アクリル樹脂に、合成例2で得られた酸素欠陥型酸化ビスマス粉体および酸化チタンを以下の割合で添加し、ガラスビーズを入れて全体をペイントシェーカーにより120分間分散させ、アクリル系塗料組成物を得た。
 アクリル樹脂                       98部
 酸素欠陥型酸化ビスマス粉体(合成例2)         1.0部
 酸化チタン                       1.0部

 この塗料組成物をアート紙上にアプリケーターにて塗布し、室温で乾燥させた。この操作を3回繰り返し、厚み450μmのアクリル系塗工層を形成した。
実施例19
 アクリル樹脂に、合成例2で得られた酸素欠陥型酸化ビスマス粉体および酸化チタンを以下の割合で添加し、ガラスビーズを入れて全体をペイントシェーカーにより120分間分散させ、アクリル系塗料組成物を得た。
 アクリル樹脂                       80部
 酸素欠陥型酸化ビスマス粉体(合成例2)          10部
 酸化チタン                        10部

 この塗料組成物をアート紙上にアプリケーターにて塗布し、室温で乾燥させ、厚み5μmのアクリル系塗工層を形成した。
実施例20
 アクリル樹脂に、合成例2で得られた酸素欠陥型酸化ビスマス粉体および酸化チタンを以下の割合で添加し、ガラスビーズを入れて全体をペイントシェーカーにより120分間分散させ、アクリル系塗料組成物を得た。
 アクリル樹脂                       20部
 酸素欠陥型酸化ビスマス粉体(合成例2)          40部
 酸化チタン                        40部

 この塗料組成物をアート紙上にアプリケーターにて塗布し、室温で乾燥させ、厚み5μmのアクリル系塗工層を形成した。
実施例21
 アクリル樹脂に、合成例2で得られた酸素欠陥型酸化ビスマス粉体および酸化チタンを以下の割合で添加し、ガラスビーズを入れて全体をペイントシェーカーにより120分間分散させ、アクリル系塗料組成物を得た。
 アクリル樹脂                       10部
 酸素欠陥型酸化ビスマス粉体(合成例2)          90部
 酸化チタン                        10部

 この塗料組成物をアート紙上にアプリケーターにて塗布し、室温で乾燥させ、厚み5μmのアクリル系塗工層を形成した。
実施例22~24
 実施例13にて調製したアクリル系塗料組成物を使用し、表3に記載する基材上に、実施例12と同様の方法でアクリル系塗工層を形成した。
比較例7
 比較合成例2の酸素欠陥型酸化ビスマス粉体(酸素欠陥量x:0.01未満)を添加剤として使用した以外、実施例12と同様の方法でアクリル系塗工層を形成した。
比較例8
 比較合成例4の酸化ビスマス粉体を添加剤として使用した以外、実施例12と同様の方法でアクリル系塗工層を形成した。
アクリル系塗工層の評価試験
 実施例12~24、比較例7~8で得られたアクリル系塗工層について、下記に示す方法にて、樹脂着色性およびレーザーマーキング特性を評価した。得られた評価結果を、使用したビスマス化合物の重量部、着色顔料の重量部、基材の種類と共に表3にまとめて示す。
(1)樹脂着色性
 アクリル系塗工層を作製した時のアクリル樹脂への着色度合い(基準を白色とした)を下記基準で目視にて評価した。
 ×:非常に濃く着色された白色、
 △:濃く着色された白色、
 ○:薄く着色された白色、
 ◎:ほぼ白色
 
(2)レーザーマーキング特性
 アクリル系塗工層にYAGレーザー(日本電気社製「SL475K」)を照射し、アクリル系塗工層を変色させた。レーザー照射条件は、入力電流10A、送り速度1000mm/秒、Q―sw周波数5kHzであった。評価基準は下記の通りである。
  ×:ほぼ印字不可
  △:黒度不良
  ○:黒度良
Figure JPOXMLDOC01-appb-T000003
 表3から、実施例12~24で得られたアクリル系塗工層の樹脂着色性、レーザーマーキング特性は、いずれも良好であることがわかる。
実施例25
 合成例1で得られた酸素欠陥型酸化ビスマスを添加剤として用いて、下記成分を配合しガラスビーズを入れてペイントコンディショナーで120分かけて各成分を分散させ、ウレタン系インクを調製した。
 トルエン                       20.5部
 メチルエチルケトン                  16.5部
 ウレタン系ワニス                   33.0部
 酸素欠陥型酸化ビスマス(合成例1)          20.0部
 酸化チタン                      10.0部

 得られたウレタン系インクをアート紙上にアプリケーターにて展色し、50℃で乾燥し、厚み4μmのインク皮膜層を形成した。
実施例26~29
 合成例2~5で得られた酸素欠陥型酸化ビスマスを添加剤として用いて、実施例25と同様にして厚み4μmのインク皮膜層を作製した。
実施例30
 合成例3で得られた酸素欠陥型酸化ビスマスを添加剤として用いて、下記成分を配合しガラスビーズを入れてペイントコンディショナーで120分かけて各成分を分散させ、ウレタン系インクを調製した。
 トルエン                       36.5部
 メチルエチルケトン                  20.9部
 ウレタン系ワニス                   41.8部
 酸素欠陥型酸化ビスマス(合成例3)           0.5部
 酸化チタン                       0.3部

 得られたウレタン系インクを、アート紙上にアプリケーターにて展色し、50℃で乾燥した。この操作を4回繰り返し、厚み750μmのインク皮膜層を得た。
実施例31
 合成例3で得られた酸素欠陥型酸化ビスマスを添加剤として用いて、下記成分を配合しガラスビーズを入れてペイントコンディショナーで120分かけて各成分を分散させ、ウレタン系インクを調製した。
 トルエン                       34.3部
 メチルエチルケトン                  21.4部
 ウレタン系ワニス                   42.8部
 酸素欠陥型酸化ビスマス(合成例3)           1.0部
 酸化チタン                       0.5部

 得られたウレタン系インクを、アート紙上にアプリケーターにて展色し、50℃で乾燥した。この操作を3回繰り返し、厚み550μmのインク皮膜層を得た。
実施例32
 合成例3で得られた酸素欠陥型酸化ビスマスを添加剤として用いて、下記成分を配合しガラスビーズを入れてペイントコンディショナーで120分かけて各成分を分散させ、ウレタン系インクを調製した。
 トルエン                       29.4部
 メチルエチルケトン                  18.5部
 ウレタン系ワニス                   37.1部
 酸素欠陥型酸化ビスマス(合成例3)          10.0部
 酸化チタン                       5.0部

 得られたウレタン系インクを、アート紙上にアプリケーターにて展色し、50℃で乾燥し、厚み150μmのインク皮膜層を得た。
実施例33
 合成例3で得られた酸素欠陥型酸化ビスマスを添加剤として用いて、下記成分を配合しガラスビーズを入れてペイントコンディショナーで120分かけて各成分を分散させ、ウレタン系インクを調製した。
 トルエン                        7.9部
 メチルエチルケトン                   7.4部
 ウレタン系ワニス                   24.7部
 酸素欠陥型酸化ビスマス(合成例3)          40.0部
 酸化チタン                      20.0部

 その後、実施例25と同様の方法で厚み4μmのインク皮膜層を作製した。
実施例34
 合成例2で得られた酸素欠陥型酸化ビスマスを添加剤として用いて、下記成分を配合しガラスビーズを入れてペイントコンディショナーで120分かけて各成分を分散させ、ウレタン系インクを調製した。
 トルエン                        7.5部
 メチルエチルケトン                   4.1部
 ウレタン系ワニス                   16.4部
 酸素欠陥型酸化ビスマス(合成例2)          59.8部
 酸化チタン                      12.0部

 その後、実施例25と同様の方法で厚み4μmのインク皮膜層を作製した。
実施例35
 合成例2で得られた酸素欠陥型酸化ビスマスを添加剤として用いて、下記成分を配合しガラスビーズを入れてペイントコンディショナーで120分かけて各成分を分散させ、ウレタン系インクを調製した。
 トルエン                        2.2部
 メチルエチルケトン                   1.6部
 ウレタン系ワニス                    8.2部
 酸素欠陥型酸化ビスマス(合成例2)          80.0部
 酸化チタン                       8.0部

 その後、実施例25と同様の方法で厚み4μmのインク皮膜層を作製した。
実施例36
 合成例3で得られた酸素欠陥型酸化ビスマスを添加剤として用いて、下記成分を配合しガラスビーズを入れてペイントコンディショナーで120分かけて各成分を分散させ、ウレタン系インクを調製した。
 トルエン                       21.4部
 メチルエチルケトン                  18.2部
 アクリル系ワニス                   33.4部
 酸素欠陥型酸化ビスマス(合成例3)          18.0部
 酸化チタン                       9.0部

 その後、実施例25と同様の方法で厚み4μmのインク皮膜層を作製した。
実施例37~39
 実施例27にて調製したインクを使用し、表4に記載する基材上に、実施例25と同様にインク皮膜層を作製した。

インク皮膜層の評価試験
 実施例25~39で得られたインク皮膜層に、YAGレーザーを照射し、インク皮膜層を変色させた。レーザー照射条件は、入力電流10A、レーザー出力10%、送り速度1000mm/秒、Q―sw周波数5kHzであった。
 変色部分を分光光度計(大日精化工業社製、カラコムC)により測色し、以下基準でレーザーマーキング特性を評価した。評価結果を表4に示す。
 ×:印字不可、
 △:印字かすれ、
 ○:印字良、
 ◎:鮮明な印字

実施例40
 実施例27にて作製したインク皮膜層上面に、平版インク用ワニス(昭和ワニス社製「SOV322」)をバーコータ(R.D.Sラボラトリー・コーティング・ロッド、ROD No.3)にて塗布し、100℃で乾燥させ、インク皮膜層上面に保護層を形成した。このようにして、インク皮膜層と保護層からなる多層体を作製し、実施例25と同様の評価基準で多層体のレーザーマーキング特性を評価した。レーザー照射条件は、入力電流11A、送り速度1000mm/秒、Q―sw周波数7kHzであった。評価結果を表4に示す。
実施例41~43
 実施例37~39にて作製したインク皮膜層上面に、平版インク用ワニスをバーコータにて塗布し、100℃で乾燥させ、インク皮膜層上面に保護層を形成した。このようにして、インク皮膜層と保護層からなる多層体を作製し、実施例25と同様の評価基準で多層体のレーザーマーキング特性を評価した。レーザー照射条件は、入力電流11A、送り速度1000mm/秒、Q―sw周波数7kHzであった。評価結果を表4に示す。
比較例9
 比較合成例2の酸素欠陥型酸化ビスマス(酸素欠陥量x:0.01未満)を添加剤として使用した以外、実施例25と同様の方法で、インク皮膜層の作製およびレーザーマーキング特性の評価を行った。評価結果を表4に示す。
比較例10
 比較合成例4の酸化ビスマスを添加剤として使用した以外、実施例25と同様の方法で、インク皮膜層の作製およびレーザーマーキング特性の評価を行った。評価結果を表4に示す。
 表4に、実施例25~43、比較例9~10で用いた、酸化ビスマスの重量部、着色顔料の重量部、基材の種類、保護層の有無、樹脂着色性等を示す。
 樹脂着色性についてはインク皮膜層を作製した時の樹脂への着色度合い(基準を白色とした)を下記の基準で示す。
 ×:非常濃く着色された白色、
 △:濃く着色された白色、
 ○:薄く着色された白色、
 ◎:ほぼ白色。
Figure JPOXMLDOC01-appb-T000004
 表4から、実施例25~39で得られたインク皮膜層および実施例40~43で得られた多層体は、YAGレーザーによるレーザーマーキング特性に優れており、且つ基材がアート紙、PETフィルム、アルミニウム箔、ガラスのいずれの場合であっても、良好なレーザーマーキング特性を示すことが分かる。
実施例44
 合成例3で得られた酸素欠陥型酸化ビスマスを添加剤として用いて、下記成分を配合し、ガラスビーズを入れてペイントコンディショナーで120分かけて各成分を分散させ、ウレタン系インクを調製した。
 トルエン                       18.0部
 酢酸エチル                      20.0部
 ウレタン系ワニス                   30.0部
 酸素欠陥型酸化ビスマス(合成例3)          20.0部
 酸化チタン                      10.0部
  紫外線吸収剤(TINUVIN 111FDL)     2.0部

 得られた印刷インクを用いて、版深35μmのグラビアプレートを備えた簡易グラビア印刷機により、両表面コロナ処理した延伸ポリプロピレンフィルム(OPPフィルム)の片面に、乾燥後の厚みが3μmになるように、グラビア印刷を施して、インクを50℃で乾燥し、グラビア印刷フィルムを得た。
 得られた印刷フィルムのレーザーマーキング特性を評価した。レーザー照射条件は、入力電流10A、送り速度1000mm/秒、Q―sw周波数7kHzであった。評価結果を表5に示す。
 評価基準は下記の通りである。
 ×:印字不可、
 △:印字かすれ、
 ○:印字良、
 ◎:鮮明な印字

実施例45
 実施例44にて作製したグラビア印刷フィルムの印刷面上に、2液型ポリウレタン系接着剤をその厚みが3μmになるように塗布し、この塗布面に市販のラミネーターにより60μmのポリエチレンフィルムを重ね合わせ、ラミネートフィルムを作製した。
 このフィルムについて、実施例44と同様の評価基準でレーザーマーキング特性を評価した。レーザー照射条件は、入力電流16A、送り速度1000mm/秒、Q―sw周波数7kHzであった。評価結果を表5に示す。
実施例46
 合成例3で得られた酸素欠陥型酸化ビスマスを添加剤として用いて、下記の配合成分を三本ロールで三回パスすることで、ロジン変性フェノール樹脂系印刷インクを調製した。
 
 ロジン変性フェノール系ワニス            46.0部
 顔料分散剤(DiSPERBYK-180)       1.0部
 酸素欠陥型酸化ビスマス(合成例3)         20.0部
 酸化チタン                     30.0部
 ナフテン酸コバルト                 0.50部
 ナフテン酸マンガン                 0.50部
 紫外線吸収剤(TINUVIN 111FDL)     2.0部

 得られた印刷インク30ccを、版銅、ブランケットおよび圧銅からなる簡易なオフセット印刷機(RIテスター)のブランケット部に載せ、アート紙上に、乾燥後の厚みが5μmになるよう、オフセット印刷を施して、インクを100℃で5分間乾燥し、オフセット印刷物を得た。
 このオフセット印刷物のレーザーマーキング特性を、実施例44と同様の評価基準で評価した。レーザー照射条件は、入力電流10A、送り速度1000mm/秒、Q―sw周波数7kHzであった。評価結果を表5に示す。
実施例47
 実施例46にて作製したオフセット印刷物上に、水性ニスを厚みが3μmになるようにロールコータで塗布し、実施例44と同様の評価基準でレーザーマーキング特性を評価した。
 レーザー照射条件は、入力電流15A、送り速度1000mm/秒、Q―sw周波数7kHzであった。評価結果を表5に示す。
 表5に、実施例44~47に用いた、酸化ビスマスの重量部、着色顔料の重量部、基材の種類、保護層の有無、樹脂着色性を記載する。
 樹脂着色性:インク皮膜層を作製した時の樹脂への着色度合い(基準を白色とした)
 ×非常に濃く着色された白色、
 △濃く着色された白色、
 ○薄く着色された白色、
 ◎ほぼ白色
Figure JPOXMLDOC01-appb-T000005
 表5の結果より、実施例44~47により得られたグラビア印刷フィルム、オフセット印刷物は、いずれも樹脂着色性、レーザーマーキング特性が良好であることがわかる。
 以上、実施例1~47の結果より、酸素欠陥型酸化ビスマスを含有した成形物、塗工層、インク皮膜、印刷物および多層体は、樹脂着色性、レーザーマーキング特性がいずれも良好なものであることがわかる。
 すなわち、本発明による酸素欠陥型酸化ビスマスは、使用する樹脂の種類や形状に関係なく、樹脂組成物に望ましくない着色を起こさず、且つ黒度のあるレーザーマーキング特性を付与することが可能であることがわかる。

Claims (21)

  1. 一般式 Bi(3-x)
     (ただし、xは0.01以上で且つ0.3以下である)
    で表される酸素欠陥型酸化ビスマスからなることを特徴とするレーザーマーキング用添加剤。
     [上記一般式中、xは、X線光電子分光法により得られるビスマスの4f電子に帰属されるピークの面積に対する、ビスマスと結合している酸素の1s電子に帰属されるピークの面積の比(O1s/Bi4f)から、下記式(1)
     x=3-O1s/Bi4f×2・・・・・(1)
    に従って算出される酸素欠陥量を示す。]
  2.  xが0.01以上で且つ0.1以下である、請求項1に記載のレーザーマーキング用添加剤。
  3.  紫外可視近赤外反射スペクトルにおける拡散反射率から下記式(2)によって算出される波長1064nmにおける吸収率α1が20~80%である、請求項1または2に記載のレーザーマーキング用添加剤。
      吸収率 =100-拡散反射率(%)・・・・・(2)
  4.  紫外可視近赤外反射スペクトルにおける拡散反射率から下記式(2)によって算出される波長532nmにおける吸収率α2が20~80%である、請求項1または2に記載のレーザーマーキング用添加剤。
      吸収率 =100-拡散反射率(%)・・・・・(2)
  5.  酸化ビスマス、あるいは熱を加えることにより酸化物となるビスマス化合物と、金属アルミニウムとを前者に対する後者の割合0.001~20重量%で乾式または湿式で混合する工程と、得られた混合物を大気圧より0.05MPa以上低い減圧下にて60~400℃で加熱する工程を含む方法で得られたことを特徴とする、請求項1~4のいずれかに記載のレーザーマーキング用添加剤。
  6.  酸化ビスマス、あるいは熱を加えることにより酸化物となるビスマス化合物に対する金属アルミニウムの割合が0.1~5重量%であることを特徴とする請求項5に記載のレーザーマーキング用添加剤。
  7.  請求項1~6のいずれかに記載のレーザーマーキング用添加剤を0.01~30重量%含有することを特徴とするレーザーマーキング用成形物。
  8.  請求項1~6のいずれかに記載のレーザーマーキング用添加剤を0.1~90重量%含有することを特徴とするレーザーマーキング用塗料。
  9.  請求項1~6のいずれかに記載のレーザーマーキング用添加剤を基材の少なくとも片面に塗工して成ることを特徴とするレーザーマーキング用塗工層。
  10.  請求項1~6のいずれかに記載のレーザーマーキング用添加剤を0.1~90重量%含有することを特徴とするレーザーマーキング用インク。
  11.  請求項1~6のいずれかに記載のレーザーマーキング用添加剤を、雲母薄片、金属酸化物で被覆された雲母薄片、SiOフレークおよびガラスフィラーからなる群から選ばれた基質に被覆せしめるか、または該基質と混合して成ることを特徴とする請求項10に記載のレーザーマーキング用インク。
  12.  無機もしくは有機顔料、染料、樹脂、有機溶剤、反応性モノマー化合物および安定剤からなる群から選ばれる少なくとも1つを含むことを特徴とする請求項10または11に記載のレーザーマーキング用インク。
  13.  樹脂がウレタン系樹脂またはアクリル樹脂であることを特徴とする請求項10~12に記載のレーザーマーキング用インク。
  14.  請求項10~13のいずれかに記載のレーザーマーキング用インクを、基材の少なくとも片面に塗工して成ることを特徴とするレーザーマーキング用インク皮膜層。
  15.  基材が、プラスチックフィルム、紙、金属箔またはガラスからなることを特徴とする請求項14に記載のレーザーマーキング用インク皮膜層。
  16.  請求項10~13のいずれかに記載のレーザーマーキング用インクで、基材の少なくとも片面に印刷を施して成ることを特徴とするレーザーマーキング用印刷物。
  17.  基材が、プラスチックフィルム、紙、金属箔またはガラスからなることを特徴とする請求項16に記載のレーザーマーキング用印刷物。
  18.  基材上に設けられた請求項10~13のいずれかに記載のレーザーマーキング用インクからなるインク皮膜層と、該インク皮膜層の上に設けられた透明な表面保護層とからなることを特徴とするレーザーマーキング用多層体。
  19.  基材が、プラスチックフィルム、紙、金属箔またはガラスからなることを特徴とする請求項18に記載のレーザーマーキング用多層体。
  20.  請求項7に記載のレーザーマーキング用成形物、請求項9に記載のレーザーマーキング用塗工層、請求項14もしくは15に記載のレーザーマーキング用インク皮膜層、請求項16もしくは17に記載のレーザーマーキング用印刷物もしくは請求項18もしくは19に記載のレーザーマーキング用多層体にレーザー照射によりマーキングを施してなることを特徴とするレーザーマーキング製品。
  21.  レーザーが、波長中心が1064nmであるYAGレーザーもしくは波長中心が532nmであるグリーンレーザーであることを特徴とする請求項20に記載のレーザーマーキング製品。
PCT/JP2014/060897 2013-05-20 2014-04-17 酸化ビスマス系レーザーマーキング用添加剤 WO2014188828A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14801793.2A EP3000553B1 (en) 2013-05-20 2014-04-17 Use of bismuth oxide-based additive for laser marking
CN201480029134.4A CN105246638B (zh) 2013-05-20 2014-04-17 氧化铋类激光标记用添加剂
JP2015518159A JP6421117B2 (ja) 2013-05-20 2014-04-17 酸化ビスマス系レーザーマーキング用添加剤
US14/892,577 US9637651B2 (en) 2013-05-20 2014-04-17 Bismuth oxide-based addictive for laser marking

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013106232 2013-05-20
JP2013-106232 2013-05-20

Publications (1)

Publication Number Publication Date
WO2014188828A1 true WO2014188828A1 (ja) 2014-11-27

Family

ID=51933392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060897 WO2014188828A1 (ja) 2013-05-20 2014-04-17 酸化ビスマス系レーザーマーキング用添加剤

Country Status (5)

Country Link
US (1) US9637651B2 (ja)
EP (1) EP3000553B1 (ja)
JP (1) JP6421117B2 (ja)
CN (1) CN105246638B (ja)
WO (1) WO2014188828A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016120671A (ja) * 2014-12-25 2016-07-07 大日本印刷株式会社 レーザ印字用多層フィルム
JP6292429B1 (ja) * 2017-08-21 2018-03-14 東洋インキScホールディングス株式会社 粘着剤および粘着シート
WO2018101123A1 (ja) * 2016-12-01 2018-06-07 Dicグラフィックス株式会社 レーザーマーキング用インキ組成物
JP2019052256A (ja) * 2017-09-15 2019-04-04 リンテック株式会社 粘着フィルム
KR20190117020A (ko) * 2017-02-20 2019-10-15 클라리언트 플라스틱스 앤드 코팅즈 리미티드 써모플라스틱 화합물을 레이저 마킹하기 위한 안티몬 비함유 조성물
WO2021079868A1 (ja) 2019-10-25 2021-04-29 東洋紡株式会社 レーザー印字可能なフィルムおよびそれを用いた包装体
WO2021215348A1 (ja) 2020-04-24 2021-10-28 東洋紡株式会社 レーザー印字された表示材料およびそれを用いた包装体
WO2022080211A1 (ja) 2020-10-12 2022-04-21 東洋紡株式会社 レーザー印字された表示体および包装体
KR20220119075A (ko) 2019-12-20 2022-08-26 도요보 가부시키가이샤 레이저 인자 가능한 필름 및 그것을 사용한 포장체
WO2022196397A1 (ja) 2021-03-17 2022-09-22 東洋紡株式会社 レーザー印字された積層表示体

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013016932A1 (de) * 2013-10-11 2015-04-30 Merck Patent Gmbh Pigmente
DE102014000359A1 (de) * 2014-01-16 2015-07-30 Merck Patent Gmbh Pigmente
CN108864806A (zh) * 2018-07-13 2018-11-23 新东方油墨有限公司 一种液态感光阻焊激光标记油墨及其制造和使用方法
CN110947107A (zh) * 2018-09-26 2020-04-03 西安大医集团有限公司 验证模体及验证方法
CN109868008A (zh) * 2019-03-25 2019-06-11 刘应良 一种激光标记油墨
EP3904112A1 (en) 2020-04-29 2021-11-03 Fa-Tech Diagnostics Italia S.R.L. Process for the inscription of glass microscope slides and glass microscope slides obtained thereby
CN114058176B (zh) * 2021-08-24 2023-05-02 广东思汗新材料有限公司 一种激光打标耐老化尼龙玻纤增强阻燃复合材料

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10500149A (ja) 1994-05-05 1998-01-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング レーザーマーク可能なプラスチック
JP2873249B2 (ja) 1990-11-28 1999-03-24 日本ペルノックス株式会社 レーザー光線の照射で黒色にマーキング可能な樹脂組成物
JP2947878B2 (ja) 1989-05-27 1999-09-13 ヒユールス・アクチエンゲゼルシヤフト レザー光線で標識付け及び/又は記載可能な高分子物質からなる成形材料、半製品及び完成部材
US6503310B1 (en) * 1999-06-22 2003-01-07 Dmc2 Degussa Metals Catalysts Cerdec Ag Laser marking compositions and method
JP2005156588A (ja) 2003-11-20 2005-06-16 Seiko Epson Corp 膜パターンの形成方法、機能性パターンとその形成方法、電気光学装置、及び電子機器
JP2006150155A (ja) 2004-11-25 2006-06-15 Seiko Epson Corp 液滴吐出ヘッドおよび液滴吐出ヘッドの製造方法、液滴吐出装置
WO2006065611A1 (en) * 2004-12-14 2006-06-22 Polyone Corporation Use of bismuth oxides for laser markings in thermoplastic polyurethane compounds
US20070029294A1 (en) * 2005-08-02 2007-02-08 Qinyun Peng Method for laser-marking and an article marked by such method
JP2007512215A (ja) 2003-11-07 2007-05-17 エンゲルハード・コーポレーシヨン 可視性が低いレーザーでマーキングを行うための添加物(ナノサイズのアンチモン−錫酸化物(ato)粒子を含んで成るレーザーでマーキングを行うための添加物)
JP2010089997A (ja) * 2008-10-08 2010-04-22 Nikon Corp 光学ガラス部材のマーキング形成方法及びマーキング付光学ガラス部材
JP2010095396A (ja) * 2008-10-15 2010-04-30 Tokan Material Technology Co Ltd レーザーマーキング用酸化ビスマス系添加剤およびその製造方法
WO2010105735A1 (de) * 2009-03-18 2010-09-23 Merck Patent Gmbh Pigment zur lasermarkierung
JP4582387B2 (ja) 2003-08-29 2010-11-17 東罐マテリアル・テクノロジー株式会社 レーザーマーキング用材料
JP2012131885A (ja) 2010-12-21 2012-07-12 Tokyo Printing Ink Mfg Co Ltd レーザー記録用インキ組成物、記録用積層体および記録体
JP5028213B2 (ja) 2007-10-24 2012-09-19 東罐マテリアル・テクノロジー株式会社 レーザーマーキング用添加剤
JP2013509459A (ja) * 2009-10-29 2013-03-14 ディーエスエム アイピー アセッツ ビー.ブイ. レーザーマーキング用添加剤

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424019A (en) * 1987-07-21 1989-01-26 Nat Inst Res Inorganic Mat Bismuth-holmium oxide of general formula bi2-2xho2xo3 (x=0.205-0.245), having hexagonal layer structure, its production and oxygen ion conductor consisting the same
US5080718A (en) * 1989-02-23 1992-01-14 Engelhard Corporation Inorganic pigments of the empirical formula Ax By Cz
US6503316B1 (en) * 2000-09-22 2003-01-07 Dmc2 Degussa Metals Catalysts Cerdec Ag Bismuth-containing laser markable compositions and methods of making and using same
DE102004050557B4 (de) * 2004-10-15 2010-08-12 Ticona Gmbh Lasermarkierbare Formmassen und daraus erhältliche Produkte und Verfahren zur Lasermarkierung
JP2009083152A (ja) 2007-09-27 2009-04-23 Spinet Inc 光記録媒体
EP2050720A1 (de) * 2007-10-16 2009-04-22 Mondi Business Paper Services AG Laser- und thermisch beschreibbare Oberflächenbeschichtung für Materialien
EP2080789B1 (en) * 2007-12-17 2011-03-30 Merck Patent GmbH Filler pigments
CN101565204B (zh) * 2009-05-27 2010-10-27 北京科技大学 一种高比表面积多孔氧化铋粉体的制备方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2947878B2 (ja) 1989-05-27 1999-09-13 ヒユールス・アクチエンゲゼルシヤフト レザー光線で標識付け及び/又は記載可能な高分子物質からなる成形材料、半製品及び完成部材
JP2873249B2 (ja) 1990-11-28 1999-03-24 日本ペルノックス株式会社 レーザー光線の照射で黒色にマーキング可能な樹脂組成物
JPH10500149A (ja) 1994-05-05 1998-01-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング レーザーマーク可能なプラスチック
US6503310B1 (en) * 1999-06-22 2003-01-07 Dmc2 Degussa Metals Catalysts Cerdec Ag Laser marking compositions and method
JP4582387B2 (ja) 2003-08-29 2010-11-17 東罐マテリアル・テクノロジー株式会社 レーザーマーキング用材料
JP2007512215A (ja) 2003-11-07 2007-05-17 エンゲルハード・コーポレーシヨン 可視性が低いレーザーでマーキングを行うための添加物(ナノサイズのアンチモン−錫酸化物(ato)粒子を含んで成るレーザーでマーキングを行うための添加物)
JP2005156588A (ja) 2003-11-20 2005-06-16 Seiko Epson Corp 膜パターンの形成方法、機能性パターンとその形成方法、電気光学装置、及び電子機器
JP2006150155A (ja) 2004-11-25 2006-06-15 Seiko Epson Corp 液滴吐出ヘッドおよび液滴吐出ヘッドの製造方法、液滴吐出装置
WO2006065611A1 (en) * 2004-12-14 2006-06-22 Polyone Corporation Use of bismuth oxides for laser markings in thermoplastic polyurethane compounds
US20070029294A1 (en) * 2005-08-02 2007-02-08 Qinyun Peng Method for laser-marking and an article marked by such method
JP5028213B2 (ja) 2007-10-24 2012-09-19 東罐マテリアル・テクノロジー株式会社 レーザーマーキング用添加剤
JP2010089997A (ja) * 2008-10-08 2010-04-22 Nikon Corp 光学ガラス部材のマーキング形成方法及びマーキング付光学ガラス部材
JP2010095396A (ja) * 2008-10-15 2010-04-30 Tokan Material Technology Co Ltd レーザーマーキング用酸化ビスマス系添加剤およびその製造方法
WO2010105735A1 (de) * 2009-03-18 2010-09-23 Merck Patent Gmbh Pigment zur lasermarkierung
JP2013509459A (ja) * 2009-10-29 2013-03-14 ディーエスエム アイピー アセッツ ビー.ブイ. レーザーマーキング用添加剤
JP2012131885A (ja) 2010-12-21 2012-07-12 Tokyo Printing Ink Mfg Co Ltd レーザー記録用インキ組成物、記録用積層体および記録体

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016120671A (ja) * 2014-12-25 2016-07-07 大日本印刷株式会社 レーザ印字用多層フィルム
WO2018101123A1 (ja) * 2016-12-01 2018-06-07 Dicグラフィックス株式会社 レーザーマーキング用インキ組成物
JPWO2018101123A1 (ja) * 2016-12-01 2018-11-29 Dicグラフィックス株式会社 レーザーマーキング用インキ組成物
JP7219714B2 (ja) 2017-02-20 2023-02-08 アヴィエント スウィッツァランド ゲーエムベーハー レーザーマーキング用熱可塑性化合物のためのアンチモン不含組成物
KR20190117020A (ko) * 2017-02-20 2019-10-15 클라리언트 플라스틱스 앤드 코팅즈 리미티드 써모플라스틱 화합물을 레이저 마킹하기 위한 안티몬 비함유 조성물
JP2020508370A (ja) * 2017-02-20 2020-03-19 クラリアント・プラスティクス・アンド・コーティングス・リミテッド レーザーマーキング用熱可塑性化合物のためのアンチモン不含組成物
US11780255B2 (en) 2017-02-20 2023-10-10 Clariant Plastics & Coatings Ltd Antimony free composition for laser marking thermoplastic compounds
KR102501334B1 (ko) * 2017-02-20 2023-02-21 애비언트 스위칠랜드 게엠베하 써모플라스틱 화합물을 레이저 마킹하기 위한 안티몬 비함유 조성물
JP6292429B1 (ja) * 2017-08-21 2018-03-14 東洋インキScホールディングス株式会社 粘着剤および粘着シート
JP2019035048A (ja) * 2017-08-21 2019-03-07 東洋インキScホールディングス株式会社 粘着剤および粘着シート
JP2019052256A (ja) * 2017-09-15 2019-04-04 リンテック株式会社 粘着フィルム
KR20220086602A (ko) 2019-10-25 2022-06-23 도요보 가부시키가이샤 레이저 인자 가능한 필름 및 그것을 사용한 포장체
WO2021079868A1 (ja) 2019-10-25 2021-04-29 東洋紡株式会社 レーザー印字可能なフィルムおよびそれを用いた包装体
US11919280B2 (en) 2019-10-25 2024-03-05 Toyobo Co., Ltd. Laser-printable film and packaging in which same is used
KR20220119075A (ko) 2019-12-20 2022-08-26 도요보 가부시키가이샤 레이저 인자 가능한 필름 및 그것을 사용한 포장체
KR20230004574A (ko) 2020-04-24 2023-01-06 도요보 가부시키가이샤 레이저 인자된 표시재료 및 그것을 사용한 포장체
WO2021215348A1 (ja) 2020-04-24 2021-10-28 東洋紡株式会社 レーザー印字された表示材料およびそれを用いた包装体
WO2022080211A1 (ja) 2020-10-12 2022-04-21 東洋紡株式会社 レーザー印字された表示体および包装体
KR20230084475A (ko) 2020-10-12 2023-06-13 도요보 가부시키가이샤 레이저 인자된 표시체 및 포장체
WO2022196397A1 (ja) 2021-03-17 2022-09-22 東洋紡株式会社 レーザー印字された積層表示体
KR20230157359A (ko) 2021-03-17 2023-11-16 도요보 가부시키가이샤 레이저 인자된 적층 표시체

Also Published As

Publication number Publication date
EP3000553B1 (en) 2019-10-02
CN105246638B (zh) 2017-01-25
JP6421117B2 (ja) 2018-11-07
EP3000553A4 (en) 2017-02-01
US9637651B2 (en) 2017-05-02
US20160168399A1 (en) 2016-06-16
JPWO2014188828A1 (ja) 2017-02-23
CN105246638A (zh) 2016-01-13
EP3000553A1 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6421117B2 (ja) 酸化ビスマス系レーザーマーキング用添加剤
AU2018307393B2 (en) Infrared absorbing fine particle dispersion powder, dispersion liquid containing infrared absorbing fine particle dispersion powder, ink containing infrared absorbing fine particle dispersion powder, anti-counterfeit ink, and printed matter for anti-counterfeiting
US9045619B2 (en) Laser-sensitive coating composition
TWI351423B (en) Composite transparencies
JP5227733B2 (ja) レーザーマーキング用酸化ビスマス系添加剤およびその製造方法
JP6870181B2 (ja) 機械可読酸化乾燥磁性凹版インク
EP3004252B1 (de) Verwendung von modifizierten effektpigmenten in strahlenhärtbaren beschichtungszusammensetzungen
CN110168022B (zh) 黑色异吲哚啉酮颜料和着色剂
JP7358785B2 (ja) 偽造防止インク用組成物、偽造防止インク、偽造防止用印刷物
EP3252112B1 (en) Near-infrared ray absorbing microparticle dispersion solution, production method thereof, counterfeit-preventing ink composition using said near-infrared ray absorbing microparticle dispersion solution, and anti-counterfeit printed matter using said near-infrared ray absorbing microparticles
US11807766B2 (en) Anti-counterfeit ink composition, anti-counterfeit ink, anti-counterfeit printed matter, and method for producing the anti-counterfeit ink composition
US20200115570A1 (en) Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
JPWO2014091949A1 (ja) レーザーマーキング用インク
JP2019203068A (ja) 耐擦過性レーザーマーキング用インク組成物
TW201518426A (zh) 紅外線吸收性凹版印刷墨

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518159

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014801793

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14892577

Country of ref document: US