WO2014185756A1 - 하이브리드 투명전극의 제조방법 및 하이브리드 투명전극 - Google Patents

하이브리드 투명전극의 제조방법 및 하이브리드 투명전극 Download PDF

Info

Publication number
WO2014185756A1
WO2014185756A1 PCT/KR2014/004432 KR2014004432W WO2014185756A1 WO 2014185756 A1 WO2014185756 A1 WO 2014185756A1 KR 2014004432 W KR2014004432 W KR 2014004432W WO 2014185756 A1 WO2014185756 A1 WO 2014185756A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink composition
conductive
filling
transparent electrode
groove
Prior art date
Application number
PCT/KR2014/004432
Other languages
English (en)
French (fr)
Inventor
정광춘
이인숙
유지훈
성준기
한대상
Original Assignee
주식회사 잉크테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 잉크테크 filed Critical 주식회사 잉크테크
Priority to JP2016513883A priority Critical patent/JP6313429B2/ja
Priority to US14/891,448 priority patent/US9524046B2/en
Priority to CN201480039218.6A priority patent/CN105393314B/zh
Publication of WO2014185756A1 publication Critical patent/WO2014185756A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/32Filling or coating with impervious material
    • H01B13/322Filling or coating with impervious material the material being a liquid, jelly-like or viscous substance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a method for manufacturing a hybrid transparent electrode and a hybrid transparent electrode, and more particularly, to a method for manufacturing a hybrid transparent electrode in which a conductive layer is formed on a metal fine electrode pattern.
  • the metal pattern formed by forming a fine pattern on the substrate and filling the metal conductive ink is very useful in the resistance characteristics of the technology for manufacturing a transparent electrode essential to the touch panel.
  • a metal-based transparent electrode (TCF) has been developed to improve optical and electrical properties by coating metal nanowires or various types of metal structures on a base film.
  • electrode surfaces formed from these materials are not suitable for other display processes, including OLEDs, which require surface flatness of tens of nanoscales, and energy barriers due to differences in work functions from organic materials formed on the electrodes. barriers can be high.
  • the transparent electrodes for touch panels and displays have commercialized oxide transparent electrodes including indium tin oxide (ITO), but the reserves are limited, and there is a lack of flexibility due to the characteristics of the oxide and the resistance characteristics are not as good as metals. It is impossible to use it as a large-area flexible display.
  • ITO indium tin oxide
  • an object of the present invention is to solve the conventional problems, and to provide a method of manufacturing a hybrid transparent electrode of a double layer by hybridizing a conductive metal ink composition having mechanical and electrical properties and an oxide electrode having excellent surface properties. There is this.
  • the residue of the conductive metal ink composition that may occur in the non-fine electrode pattern region may be removed to form a low-resistance fine pattern that was difficult to implement in the prior art. And to provide a method for producing a hybrid transparent electrode excellent in transmittance.
  • the mechanical properties can be improved, and the hybrid transparent electrode can improve the surface and mechanical properties by introducing a polymer layer between the oxide electrodes by maximizing the conductive ink filling in the metal electrode pattern. It is an object to provide a manufacturing method.
  • the manufacturing method according to an embodiment of the hybrid transparent electrode of the present invention, the ink composition filling step of filling the groove of the substrate having a groove with the conductive metal ink composition, the conductive metal ink composition Filling the grooves and filling the grooves with the remaining conductive metal ink composition remaining on the surface of the base to fill the grooves to form an electrode pattern and a conductive layer containing a conductive material on the electrode pattern It characterized in that it comprises a conductive layer forming step of forming a.
  • the conductive metal ink composition may include at least one of a metal complex compound, a metal precursor, spherical metal particles, metal flakes, nano particles, or nanowires.
  • the ink composition filling step may include an inkjet method, a flat screen method, a spin coating method, a bar coater method, a roll coating method, a flow coating method, a doctor blade, a dispensing, a gravure printing method, or a flexographic printing method. It is desirable to be filled.
  • the residual ink composition filling step may be performed by dissolving the residual conductive metal ink composition remaining on the surface with an etching solution while the conductive ink composition is filled in the grooves in the ink composition filling step. It can be filled in the groove.
  • the etchant is applied to the surface of the substrate to dissolve the residual conductive metal ink composition.
  • the etching solution may be applied by a flat screen method, a spin coating method, a roll coating method, a flow coating method, a doctor blade, a gravure printing method, or a flexographic printing method.
  • the etching solution may be ammonium carbamate series, ammonium carbonate series, ammonium bicarbonate series, carboxylic acid series, lactone series, lactam series, cyclic acid anhydride series compounds, acid-base salt complexes, acid-base-alcohol complexes or mercapto And at least one of the class compounds and the oxidant.
  • the residual conductive metal ink composition is filled in the groove by pushing the residual conductive metal ink composition dissolved by the etching solution into the groove.
  • the residual conductive metal ink composition dissolved by the etching solution is pushed into the groove using a doctor blade or a brush.
  • the conductive material may be a metal oxide, CNT, graphene or a conductive polymer.
  • the conductive layer is formed by depositing or printing the conductive material.
  • the thickness of the conductive layer is preferably 0.5 to 2.0 times the height of the groove, but is not limited thereto.
  • a method of manufacturing a hybrid transparent electrode wherein a substrate having a groove is formed on a surface thereof, and a substrate surface treatment step of plasma treating the surface of the substrate with hydrophobicity, wherein the groove is filled with a conductive metal ink composition Filling the ink composition so as to fill the groove, and filling the groove with the residual conductive metal ink composition remaining on the surface while filling the groove to fill the groove to form an electrode pattern and a conductive material on the electrode pattern. It characterized in that it comprises a conductive layer forming step of forming the included conductive layer.
  • the conductive metal ink composition may include at least one of a metal complex compound, a metal precursor, spherical metal particles, metal flakes, nano particles, or nanowires.
  • the filling of the residual ink composition may include filling the grooves with the residual conductive metal ink composition dissolved by dissolving the residual conductive metal ink composition remaining on the surface with an etchant while the grooves are filled in the ink composition filling step. It features.
  • the residual conductive metal ink composition may be filled in the groove by pushing the residual conductive metal ink composition dissolved by the etching solution into the groove using a doctor blade or a brush.
  • the conductive layer is formed by depositing or printing a metal oxide, CNT, graphene or a conductive polymer.
  • a method of manufacturing a hybrid transparent electrode comprising: a first ink composition filling step of providing a substrate having a groove formed on a surface thereof and filling the groove with a conductive metal ink composition;
  • the conductive metal ink composition may include at least one of a metal complex compound, a metal precursor, spherical metal particles, metal flakes, nano particles, or nanowires.
  • the metal precursor is M n X, where M is Ag, Au, Cu, Ni, Co, Pd, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb or Bi, n is an integer from 1 to 10, X is oxygen, sulfur, halogen, cyano, cyanate, carbonate, nitrate, Preference is given to one of nitrate, sulfate, phosphate, thiocyanate, chlorate, picchlorate, tetrafloporoborate, acetylacetonate, mercapto, amide, alkoxide or carboxylate.
  • the conductive layer may be formed by depositing or printing the conductive material.
  • the conductive layer is characterized in that formed in a thickness of 10 to 500nm.
  • a method of manufacturing a hybrid transparent electrode wherein a substrate is provided with a groove formed on a surface thereof, and an ink composition filling step of filling the groove with a conductive metal ink composition, wherein the groove is filled with the surface.
  • the baking step of firing the electrode pattern in the atmosphere of 50 to 200 °C and conductive on the electrode pattern It characterized in that it comprises a conductive layer forming step of forming a conductive layer containing a material.
  • the remaining ink composition filling step may be repeated two or more times.
  • the filling of the residual ink composition may include filling the grooves with the residual conductive metal ink composition dissolved by dissolving the residual conductive metal ink composition remaining on the surface with an etchant while the grooves are filled in the ink composition filling step. desirable.
  • the etchant may be applied to the entire surface of the substrate by a flat screen method, a spin coating method, a roll coating method, a flow coating method, a doctor blade, a gravure printing method, or a flexo printing method to dissolve the residual conductive metal ink composition.
  • the hybrid transparent electrode of the present invention comprises a base portion grooved in the form of a mesh, the groove is a metal mesh electrode filled with a conductive metal ink composition, a metal oxide layer formed on the metal mesh electrode It features.
  • the conductive metal ink composition may include at least one of a metal complex compound, a metal precursor, spherical metal particles, metal flakes, nano particles, or nanowires.
  • the metal oxide layer preferably includes tin oxide, indium tin oxide, antimony tin oxide, indium gallium oxide, indium zinc oxide, or zinc oxide.
  • the present invention forms an electrode pattern with a conductive metal ink composition, and forms a conductive layer made of a conductive material on the electrode pattern to produce a hybrid type transparent electrode, which has excellent electrical conductivity and transmittance, and thus is optimized for transparent electrodes. Can be provided.
  • a conductive material including a metal complex compound or a metal precursor may be used to simultaneously improve optical, electrical, and mechanical properties.
  • the flatness of the electrode surface may be improved by dissolving and removing the fine residual metal composition inevitably generated while filling the conductive metal ink composition in order to form the electrode pattern, and the transmittance and withstand voltage may be improved.
  • the filling rate of the conductive metal ink composition on the electrode surface can be significantly improved without damaging the substrate surface and the filling electrode.
  • FIG. 1 is a flowchart sequentially showing an embodiment of a method of manufacturing a hybrid transparent electrode according to the present invention.
  • FIG. 2 is a cross-sectional view sequentially showing another embodiment of a method of manufacturing a hybrid transparent electrode according to the present invention.
  • 3 is a graph showing the sheet resistance of the hybrid transparent electrode according to the thickness of the conductive layer.
  • FIG. 5 is a graph illustrating haze of the hybrid transparent electrode according to the thickness of the conductive layer.
  • FIG. 6 is a graph showing surface roughness Ra of the hybrid transparent electrode according to the thickness of the conductive layer.
  • FIG. 7 is a graph showing the bendability of the hybrid transparent electrode according to the thickness of the conductive layer.
  • each component is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size and area of each component does not necessarily reflect the actual size or area.
  • Method of manufacturing a hybrid transparent electrode comprises an ink composition filling step (S10), a residual ink composition filling step (S20) and a conductive layer forming step (S30) as shown in FIG.
  • Filling the ink composition (S10) is a step of filling a conductive metal ink composition in the groove of the substrate having a groove, and fills the conductive material in the groove of the intaglio.
  • the surface of the substrate may be hydrophobicized before the grooves are formed.
  • Such hydrophobic treatment of the surface of the substrate may be enabled by plasma treatment of the upper surface of the substrate.
  • the substrate may be formed of a transparent material such as a plastic film or glass.
  • the plastic film may be polyimide (PI), polyethylene terephthalate (PET), polyethernaphthalate (PEN), polyethersulfone (PES), nylon (Nylon), polytetrafluoroethylene (PTFE), polyether ether Ketones (PEEK), polycarbonates (PC), or polyarylates (PAR) can be used. It may be provided with an opaque material. For example, a metal plate having an insulated surface may be used, or an opaque plastic film, an opaque glass, or an opaque glass fiber material may be applied. Thus, a plastic film, a glass substrate, etc. can be used, It is not limited to this.
  • the method of forming a groove in the substrate may be formed by a method commonly used in the industry, and preferably, a method of imprinting a UV curable resin or a thermosetting resin into a mold by an imprinting process, and etching the substrate directly with a laser. It can be selected and used according to the size of the fine line width to be implemented by using a method of forming and using, a method of forming using a photolithography method.
  • the conductive metal ink composition may use a metal complex compound, a metal precursor, spherical metal particles, metal flakes, nano particles, or nano wires, and may be used by mixing two or more kinds according to the material of the conductive material.
  • Metal complex compounds or metal precursors may be used to improve fillability in the fine grooves.
  • the metal complex compound or metal precursor may be reduced to prepare nano-sized metal particles, which may be used as a mixture. Using this, it is possible to easily form a nano-conductive fine pattern that could not be formed in the prior art.
  • the metal precursor used in the present invention may be represented by the general formula M n X, where M is Ag, Au, Cu, Ni, Co, Pd, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, n is an integer from 1 to 10, X is oxygen, sulfur, halogen, cyano, cyanate , Carbonates, nitrates, nitrates, sulfates, phosphates, thiocyanates, chlorates, picchlorates, tetrafluorophorates, acetylacetonates, mercapto, amides, alkoxides, carbolates and the like.
  • carboxylic acid metals such as zinc citrate, silver nitrate, copper cyanide, cobalt carbonate, chloride
  • metal compound such as platinum, gold acid, tetrabutoxy titanium, dimethoxyzirconium dichloride, aluminum isopropoxide, vanadium oxide, tantalum methoxide, bismuth acetate, dodecyl mercaptoated gold, indium acetylacetonate, etc. Can be selected and used together.
  • Typical metal nanoparticle manufacturing methods include a physical method of physically pulverizing a metal mass and a method of manufacturing using a chemical reaction.
  • the chemical method is described by aerosol method for the injection of high-pressure gas to powder, pyrolysis method for pyrolysis using metal compound and gas reducing agent, heat evaporation of evaporation material to produce powder Evaporative condensation, sol-gel, hydrothermal synthesis, ultrasonic synthesis, microemulsion, liquid phase reduction, and the like.
  • the liquid phase reduction method using the dispersing agent and the reducing agent which is said to be easy to control the formation of nanoparticles and is considered to be the most economical, is used the most. .
  • the method for producing the nanoparticles by the liquid-phase reduction method is described in Korean Patent Application No. 2006-0074246 filed by the present applicant and the metal nanoparticles described in the patent application has the advantage that the particle size is uniform and the cohesion is minimized
  • the conductive ink containing the metal nanoparticles has an advantage of easily forming a uniform and dense thin film or fine pattern having high conductivity even when fired at a low temperature of 150 ° C. or less for a short time.
  • solvents such as solvents, stabilizers, dispersants, binder resins, release agents, reducing agents, surfactants, wetting agents, thixotropic agents or leveling agents, thickeners and Such additives may be included.
  • the said binder resin is excellent in the adhesive force with various base materials.
  • Usable organic binders include polypropylene, polycarbonate, polyacrylate, polymethylmethacrylate, cellulose acetate, polyvinylchloride, polyurethane, polyester, alkyd resins, epoxy resins, feoxy resins, melamines. Resins, phenolic resins, phenol-modified alkyd resins, epoxy-modified alkyd resins, vinyl-modified alkyd resins, silicone-modified alkyd resins, acrylic melamine resins, polyisocyanate resins, epoxy ester resins, and the like. Does not.
  • the silver (Ag) complex compound or nanoparticles may be used even when there is no binder, it is not limited to the above.
  • a solvent may be required to form a uniform thin film
  • solvents that may be used include ethanol, isopropanol, butanol, hexanol, alcohols, ethylene glycol, glycols such as glycerin, ethyl acetate, butyl acetate, and methoxy.
  • Acetates such as propyl acetate, carbitol acetate, ethyl carbitol acetate, methyl cersolve, butyl cellosolve, ethers such as diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide Ketones such as 1-methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin oil, hydrocarbons such as mineral splits, aromatics such as benzene, toluene and xylene, and chloroform, methylene chloride, carbon tetrachloride Halogen substituted solvents such as acetonitrile, dimethyl sulfoxide or a mixed solvent thereof It can be used. However, the type of solvent is not limited thereto.
  • the method of filling the grooves of the base material with the conductive metal ink composition is not limited, but the inkjet method, the flat screen method, the spin coating method, the bar coater method, A roll coating method, a flow coating method, a doctor blade, a dispensing, a gravure printing method, or a flexography printing method are preferable.
  • the number of fillings at this time may be used repeatedly one or more times.
  • the filling properties may vary depending on the respective filling methods, but it is necessary to optimize the rheology of the composition by adjusting the components of the conductive metal ink composition to be suitable for each filling method.
  • the thickness of the conductive pattern formed by the above method is preferably the same or lower than the pattern depth of the intaglio, but is not limited thereto.
  • the thickness of the conductive pattern may be thicker than the depth of the intaglio pattern, thereby increasing the contact force with the upper circuit. Specifically, it is preferably 10 ⁇ m or less, more preferably 0.1 ⁇ m or more and 5 ⁇ m or less. The thickness of the conductive pattern needs to be adjusted according to the line width, required resistance, and post-treatment conditions.
  • the ink composition filling step (S10) after filling the conductive metal ink composition into the groove of the substrate, it is preferable to perform a drying step.
  • the drying of the conductive pattern may be 22 to 600 ° C, more preferably 80 to 400 ° C. It is not necessarily limited to the temperature range, it may be preferable to proceed in a temperature range that the substrate is not deformed according to the type of the substrate.
  • the ink composition filling step (S10) may be repeated two or more times, and the number of implementations may be appropriately adjusted according to the width, height of the groove, or the performance of the conductive metal ink composition.
  • Residual ink composition filling step (S20) is a step of additionally filling the groove by processing the remaining conductive metal ink composition remaining on the surface while the conductive metal ink composition is filled in the groove in the ink composition filling step (S10), Patterns can be formed.
  • the residual conductive metal ink composition is preferably dissolved in an etching solution so as to be filled in the grooves.
  • the conductive metal ink composition is inevitably left on the surface of the substrate while being filled with the conductive metal ink composition, and then dissolved with an etching solution to guide the groove into the groove.
  • the etching mechanism of the conductive metal ink composition may be achieved by repeatedly swelling and dissolving an oxidant to form a metal oxide by dissolving the metal surface and dissolving the metal oxide.
  • an etching solution may be applied to the substrate surface.
  • the coating method of the etching solution can be carried out by a conventional coating method.
  • the etching solution may be ammonium carbamate series, ammonium carbonate series, ammonium bicarbonate series, carboxylic acid series, lactone series, lactam series, cyclic acid anhydride series compounds, acid-base salt complexes, acid-base-alcohol complexes or mercapto ( It is preferred to include at least one of the mercapto series compounds and the oxidizing agent.
  • alcohols such as water, methanol, propanol, isopropanol, butanol and ethanol amine
  • Glycols such as ethylene glycol, glycerin, ethyl acetate, butyl acetate, acetates such as carbitol acetate, diethyl ether, tetrahydrofuran, ethers such as dioxane, methyl ethyl ketone, ketones such as acetone, hexane, Hydrocarbons such as heptane, aromatics such as benzene and toluene, and halogen-substituted solvents such as chloroform, methylene chloride and carbon tetrachloride, fluorine-based solvents such as perfluorocarbon, or a mixed solvent thereof may be
  • a pressurized state such as a pressure vessel
  • a low boiling point fluorine-based solvent or liquefied carbon dioxide may be used. It is not necessary to specifically limit the etching solution production method of the present invention. That is, any method known in the art may be used as long as it satisfies the object of the present invention.
  • an oxidizing agent for example, an oxidizing gas such as oxygen, ozone, hydrogen peroxide, Na 2 O 2 , KO 2 , NaBO 3 , (NH 4 ) S 2 O 8 , H 2 SO 5 , (CH 3 ) 3 Peroxides such as CO 2 H, (C 6 H 5 CO 2 ) 2, etc., HCO 3 H, CH 3 CO 3 H, CF 3 CO 3 H, C 6 H 5 CO 3 H, m-ClC 6 H 5 -CO 3 Peroxyacids such as H, nitric acid, sulfuric acid, iodine (I 2 ), Fe (NO 3 ) 3 , Fe 2 (SO 4 ) 3 , K 3 Fe (CN) 6 , (NH 4 ) 2 Fe (SO 4 ) 2 , Ce (NH 4 ) 4 (SO 4 ) 4 , NaIO 4 , KMnO 4 , K 2 CrO 4 and the like generally known oxidative inorganic acids or metals,
  • an oxidizing gas
  • the etchant may be desirable to impart hydrophilic properties to the etchant composition in order to effectively dissolve the conductive ink remaining on the surface of the substrate without filling the groove of the substrate and to increase the refilling into the micro grooves.
  • Ammonium carbamate-based compounds, ammonium carbonate-based compounds and ammonium bicarbonate-based compounds herein are described in detail in Korean Patent No. 0727466 of the present applicant, and the carboxylic acid-based compounds are benzoic acid, oleic acid, propionic acid, malonic acid, hexane Acids, octanoic acid, decanoic acid, neodecanoic acid, oxalic acid, citric acid, salicylic acid, stearic acid, acrylic acid, succinic acid, adipic acid, glycolic acid, isobutyric acid, ascorbic acid and the like can be used.
  • the carboxylic acid-based compounds are benzoic acid, oleic acid, propionic acid, malonic acid, hexane Acids, octanoic acid, decanoic acid, neodecanoic acid, oxalic acid, citric acid, salicylic acid, stearic acid
  • the lactone-based compounds include ⁇ -propiolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -thiobutyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, and ⁇ -Valerolactone, ⁇ -caprolactone, ⁇ -octanoic lactone, ⁇ -valerolactone, 1,6-dioxaspiro [4,4] nonane-2,7-dione, ⁇ -methylene- ⁇ -butyro Lactone, ⁇ -methylene- ⁇ -butyrolactone, ⁇ -caprolactone, lactide, glycolide, tetronic acid, 2 (5H) -huranone, ⁇ -hydroxy- ⁇ -butyrolactone, mevalonic lantone , 5,6-dihydro-2H-pyran-2-pyran-2-one, ⁇ -valerolactone, ⁇ -caprolactone,
  • Lactam-based compounds are 2-azetidon, 2-pinolidinone, 5-methoxy-2-pyrrolidinone, 5-methyl-2-pyrrolidinone, N -methylcaprolactam, 2-azacyclononnanone, N Acetyl caprolactam may be used.
  • cyclic acid anhydride itaconic anhydride, succinic anhydride, maleic anhydride, glutaric anhydride, octadecyl succinic anhydride, 2,2-dimethylsuccinic anhydride, 2-dodecene- 1-sequential anhydride, hexafluoroglutaric anhydride, 3,3-dimethylglutaric anhydride, 3-ethyl-3-methyl glutaric anhydride, 3,5-diacetyltetrahydro Pyran-2,4,6-trione, diglycolic anhydride and the like can be used.
  • Mercapto-based compounds include 1-methane siol, 1-ethanesilol, 2-butanesilol, 1-heptane siol, 1-octanesiol, 1-decane siol, 1-hexadecane siol, Acetic acid, 6-mercaptohexanoic acid, thiobenzoic acid, furfuryl mercaptan, cyclohexanecyol, 11-mercapto-1 undecanol, 2-mercaptoethanol, 3-mercapto-1-propanol, cyio Salicylic acid, 1-cyorlyserol, 2-naphthalenecyol, methyl 3-mercaptopropionate, ganmar mercapto propyltrimethoxysilane, and the like can be used.
  • the present invention is not limited thereto, and may be used as a single component or selected from the group consisting of two or more kinds of mixtures.
  • the etching rate of the etching composition is to adjust the deposition time of the etching solution during coating, or the oxidizing agent or ammonium carbamate-based, ammonium carbonate-based, ammonium bicarbonate-based, carboxylic acid-based, lactone-based, lactam-based, cyclic anhydride-based , Acid-base salt complex, acid-base-alcohol-based complex, it is preferable to control by controlling the concentration of the mercapto-based compound, it can be used repeatedly the etching process if necessary.
  • the etching solution containing an inorganic acid or a base it can be removed by washing with a separate water or organic solvent.
  • the cleaning process may be further included to insert the conductive ink on the surface of the substrate into the groove.
  • the re-dissolution and filling rate of the residual conductive metal ink composition can be adjusted according to the ratio of the oxidant and etching liquid composition.
  • the residual conductive metal ink composition is dissolved in an etching solution, the residual conductive metal ink composition is guided into the grooves so as to fill the grooves of the substrate with the dissolved residual conductive ink composition.
  • the method of inducing the residual conductive metal ink composition into the grooves is preferably to be pushed into the grooves by a physical force to be filled.
  • a doctor blade or a brush may be used. More preferably, a brush is used.
  • the brush can effectively prevent scratches and ink loss of the substrate surface by reducing physical force.
  • the electrode surface can improve the filling rate without damaging the substrate surface and the filling electrode.
  • filling may be performed one or more times, and various methods may be used in combination, in particular, a doctor blade and a brush.
  • the conductive metal ink composition is filled in the grooves of the substrate, and at the same time, metal or organic substances, which are components of the conductive metal ink composition remaining on the surface of the substrate, are removed. Can be.
  • the drying of the conductive pattern may be 22 to 600 ° C, more preferably 80 to 400 ° C. It is not necessarily limited to the temperature range, it may be preferable to proceed in a temperature range that the substrate is not deformed according to the type of the substrate.
  • the etchant is volatilized, so that the grooves form a single layer pattern made of one material of the conductive metal ink composition.
  • the electrode pattern can be formed and there is no limitation in the form of the electrode pattern, but preferably a mesh (mesh) or honeycomb form, more preferably may be a mesh form.
  • the unnecessary conductive metal ink composition remaining on the surface of the substrate is removed with an etching solution to improve optical properties and at the same time, the flatness of the electrode surface is refilled into the grooves. Can be improved.
  • the filling of the residual ink composition (S20) may be performed two or more times to finely control the filling degree of the conductive metal ink composition in the groove.
  • Another embodiment of the electrode pattern forming method of the present invention is provided with a substrate having a groove formed on the surface, the first ink composition filling step of filling the groove is filled with a conductive metal ink composition, the groove is filled on the surface Filling the remaining conductive metal ink composition remaining in the groove to fill the grooves to form an electrode pattern, Filling the second ink composition to fill the grooves with the conductive metal ink composition and Filling the grooves
  • the electrode pattern may be formed through the filling of the second residual ink composition filling the residual conductive metal ink composition remaining on the surface so as to fill the groove while the filling is performed.
  • the firing step may be performed, respectively.
  • the fine electrode pattern of low resistance may be formed. Formation is possible.
  • the conductive layer forming step (S30) is a step of manufacturing a hybrid transparent electrode by forming a conductive layer containing a conductive material on the electrode pattern.
  • the conductive layer forming step (S30) may be carried out after the ink composition filling step (S10), or if the conductive material is formed on the electrode pattern after removing the remaining conductive metal ink composition, a highly reliable transparent electrode film can be realized. .
  • the conductive material that can be formed on the electrode pattern is preferably a metal oxide, CNT, graphene or conductive polymer.
  • Metal oxides include tin oxide, indium tin oxide (ITO), antimony tin oxide (ATO), indium gallium oxide (IGO), and indium zinc oxide , IZO) or zinc oxide
  • the conductive polymer may be PEDOT (Poly (3,4-Ethylenedioxythiophene)) or PSS: PEDOT (Poly (3,4-Ethylenedioxythiophene): Poly (4-Styrenesufonate)) Can be used.
  • the conductive material may be formed by depositing and patterning or directly printing on the electrode pattern, and the material of the metal oxide is preferably printed by a thin film coating composition by vacuum deposition or noming to a target form.
  • the thickness of the conductive layer is preferably 0.5 to 2.0 times, more preferably 0.8 to 1.5 times the height of the groove.
  • the thickness of the conductive layer is effectively 10 to 500 nm, more preferably less than 150 nm. If the thickness of the conductive layer is less than 10 nm, there is a slight effect on the improvement of the optical properties, the surface roughness is not easy to contact between the electrodes, and if the thickness of the conductive layer exceeds 150 nm, the flexibility of the transparent electrode is significantly reduced Difficulty in application to various product lines.
  • Such a hybrid type transparent electrode film may be used in a field requiring high conductivity and requiring high reliability because of excellent interface characteristics between two electrodes.
  • FIG. 2 is a cross-sectional view sequentially illustrating an embodiment of a method for manufacturing a hybrid transparent electrode of the present invention.
  • a film 2 is formed on the substrate 1, and a groove 3 having a rectangular side cross section is formed in the film 2.
  • the shape of the groove 3 is not necessarily limited to a quadrangle, and grooves of various shapes may be mixed and formed.
  • the groove 3 may have a depth smaller than the thickness of the film 2.
  • the film 2 may hydrophobicly treat the upper surface before the groove 3 is formed. Thereby, the process of the conductive metal ink composition mentioned later can be made easier.
  • This hydrophobic treatment on the top surface can be made possible by, for example, plasma treatment of the top surface of the film.
  • the conductive metal ink composition 6 is filled in the groove 3.
  • the squeeze in this figure, uses the doctor blade 7 to push the face of the film 2 so that the conductive metal ink composition 6 is filled in the groove 2.
  • the method of applying the conductive metal ink composition 6 is not limited to the use of the doctor blade 7, but may be an inkjet method, a flat screen method, a spin coating method, a bar coater method, a roll coating method, a flow coating method, Doctor blades, dispensing, gravure printing or flexo printing can be used.
  • Application of the conductive metal ink composition is not limited to one time, and may be repeated a plurality of times in some cases.
  • the conductive metal ink composition 4 filled in the grooves 3 in this manner may be equal to or less than the depth of the grooves.
  • the etching solution 8 is applied onto the film 2.
  • the etchant 8 dissolves the remaining conductive metal ink composition 5 on the surface of the film 2, which is filled and inevitably generated in the conductive metal ink composition 6 in FIG. 2B.
  • the etching solution 6 may be made hydrophilic in order to easily fill the groove 3 with the remaining conductive metal ink composition 5 later.
  • ammonium carbamate series, ammonium carbonate series, ammonium bicarbonate series, carboxylic acid series, lactone series, lactam series, cyclic acid anhydride series compounds, acid-base salt complexes, acid-base-alcohol complexes or mercaptos It is effective to include family compounds.
  • the degree of hydrophilicity can be controlled by adjusting the carbon number.
  • the coating method of the etching solution 6 is a method commonly used in the industry, but a roll coating, flow coating, gravure printing, or flexo printing method is preferable.
  • the dissolved residual conductive metal ink composition is pushed into the groove 3.
  • squeeze can be used, and the brush 9 is used in the drawing. This may be done more than once, and several types of squeeze may be used in combination.
  • the conductive metal ink composition 6 can be more easily filled in the grooves 3.
  • the dissolved residual conductive metal ink composition When the dissolved residual conductive metal ink composition is filled in the grooves 3 by the brush 9, as shown in FIG. 2E, the dissolved residual conductive metal ink composition is transferred to the conductive metal ink composition 4 of FIG. 2B. Stacked on.
  • the dissolved residual conductive metal ink composition contains an etchant and there is a distinction of layers. Subsequently, the etching solution is removed through drying or firing, thereby forming a single-layer conductive pattern made of one kind of ink composition as shown in FIG.
  • a hybrid type A transparent electrode can be formed.
  • the conductive hybrid ink of Preparation Example 1 was applied to the non-conductive pattern film, and the metal blade was filled into the pattern groove, and the ink was applied once again after the blading, and the blading was repeated five times. 1 minute firing at Then, the etching solution of Preparation Example 2 was applied on the packed film, excess ink was removed using a brush, and then baked at 120 ° C. for 1 minute to fill the film with conductive ink to form an electrode pattern. A 30 nm thick ITO was deposited on the electrode pattern by using a sputter.
  • the conductive hybrid ink of Preparation Example 1 was applied to the non-conductive pattern film, and the metal blade was filled into the pattern groove, and the ink was applied once again after the blading, and the blading was repeated five times. 1 minute firing at Then, the etching solution of Preparation Example 2 was applied on the packed film, excess ink was removed using a brush, and then baked at 120 ° C. for 1 minute to fill the film with conductive ink to form an electrode pattern. ITO having a thickness of 40 nm was deposited on the electrode pattern by using a sputter.
  • the conductive hybrid ink of Preparation Example 1 was applied to the non-conductive pattern film, and the metal blade was filled into the pattern groove, and the ink was applied once again after the blading, and the blading was repeated five times. 1 minute firing at Then, the etching solution of Preparation Example 2 was applied on the packed film, excess ink was removed using a brush, and then baked at 120 ° C. for 1 minute to fill the film with conductive ink to form an electrode pattern. Sputter was used to deposit 70 nm in thickness of ITO on the electrode pattern.
  • the conductive hybrid ink of Preparation Example 1 was applied to the non-conductive pattern film, and the metal blade was filled into the pattern groove, and the ink was applied once again after the blading, and the blading was repeated five times. 1 minute firing at Then, the etching solution of Preparation Example 2 was applied on the packed film, excess ink was removed using a brush, and then baked at 120 ° C. for 1 minute to fill the film with conductive ink to form an electrode pattern. ITO having a thickness of 100 nm was deposited on the electrode pattern by using a sputter.
  • the conductive hybrid ink of Preparation Example 1 was applied to the non-conductive pattern film, and the metal blade was filled into the pattern groove, and the ink was applied once again after the blading, and the blading was repeated five times. 1 minute firing at Then, the etching solution of Preparation Example 2 was applied on the packed film, excess ink was removed using a brush, and then baked at 120 ° C. for 1 minute to fill the film with conductive ink to form an electrode pattern. Sputter was used to deposit 150 nm thick ITO on the electrode pattern.
  • the conductive hybrid ink of Preparation Example 1 was applied to the non-conductive pattern film, and the metal blade was filled into the pattern groove, and the ink was applied once again after the blading, and the blading was repeated five times. 1 minute firing at Then, the etching solution of Preparation Example 2 was applied on the packed film, excess ink was removed using a brush, and then baked at 120 ° C. for 1 minute to fill the film with conductive ink to form an electrode pattern.
  • the conductive hybrid ink of Preparation Example 1 was applied to the non-conductive pattern film, and the metal blade was filled into the pattern groove, and the ink was applied once again after the blading, and the blading was repeated five times. 1 minute firing at Subsequently, the film was baked at 120 ° C. for 1 minute without etching to fill the film with conductive ink to form an electrode pattern. ITO having a thickness of 100 nm was deposited on the electrode pattern by using a sputter.
  • Example 1 Sheet resistance ( ⁇ / ⁇ ) Transmittance (%) Haze (%) Surface Roughness (nm)
  • Example 2 7.8 77.3 1.80 58
  • Example 3 6.0 73.7 1.52 30
  • Example 4 5.5 78.7 1.39 28
  • Example 5 3.9 81.3 1.62 35 Comparative Example 1 47 88.3 1.40 100
  • the hybrid transparent electrode manufactured by the manufacturing method of the present invention had a significantly lower sheet resistance than the electrode pattern without the conductive layer (Comparative Example 1), and it was found that the electrical conductivity was excellent.
  • the transmittance and haze are slightly lower than that of Comparative Example 1 of the embodiment, but the transparent electrode film may be implemented without problems in terms of transmittance and haze.
  • the transparent electrode film according to the embodiment can form an electrode having a very uniform surface roughness with a surface roughness of at least 28nm, whereas in Comparative Example 1 it is difficult to form a surface with a uniform surface roughness of 100nm, The degree of contact between the livers could be expected to drop significantly.
  • Example 4 sheet resistance, transmittance, haze, and surface roughness (Ra) of Example 4 and Comparative Example 2 were measured and described.
  • Ra surface roughness
  • Table 3 shows the sheet resistance, transmittance, haze, and surface roughness (Ra) before and after etching before the deposition of ITO in Example 4 in order to examine the effect of etching by the etching solution in the hybrid transparent electrode, and the etching of each evaluation item.
  • the change rate before and after was described together.
  • Table 4 is to determine the bendability of the hybrid transparent electrode of the present invention, using a bending tester with a diameter of 10mm hybrid transparent electrode of the embodiment was measured the efficiency reduction rate (%) compared to the initial efficiency after 3000 bending tests.
  • the performance stability was higher than that of the conventional hybrid electrode.
  • the transparent electrode of the present invention can be easily applied to a flexible display having excellent durability due to its excellent mechanical properties and bending characteristics.
  • 3 to 7 are graphs measuring sheet resistance, transmittance, haze, surface roughness, and bending property according to the thickness of the conductive layer.
  • ITO was used as the conductive material of the conductive layer.
  • FIG. 8 is a SEM image of a cross-sectional view of a hybrid transparent electrode manufactured by Examples and Comparative Examples.
  • FIG. 8 is a SEM image of a cross-sectional view of a hybrid transparent electrode manufactured by Examples and Comparative Examples.
  • the hybrid transparent electrode of the present invention it is possible to provide a hybrid transparent electrode in which a conductive layer is formed on a metal fine electrode pattern, which has excellent surface characteristics and excellent electrical characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)
  • Liquid Crystal (AREA)
  • Weting (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 하이브리드 투명전극의 제조방법 및 하이브리드 투명전극에 관한 것으로, 홈을 갖는 기재의 상기 홈에 전도성 금속 잉크 조성물이 채워지도록 충진하는 잉크 조성물 충진단계, 상기 전도성 금속 잉크 조성물이 상기 홈에 충진되면서 상기 기재의 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 잔류 잉크 조성물 충진단계 및 상기 전극 패턴 상에 전도성 물질이 포함된 전도층을 형성하는 전도층 형성단계를 포함하는 것을 특징으로 한다.

Description

하이브리드 투명전극의 제조방법 및 하이브리드 투명전극
본 발명은 하이브리드 투명전극의 제조방법 및 하이브리드 투명전극에 관한 것으로, 보다 상세하게는 금속 미세 전극 패턴 상에 전도층을 형성한 하이브리드 형태의 투명전극의 제조방법에 관한 것이다.
최근 전자제품의 경박 단소화 추세로 디스플레이 또는 트랜지스터 등의 전자 소자들은 공통적으로 고밀도, 고집적의 형태로 제작될 것이 요구됨에 따라 전극 또는 배선(metallization)용에 사용할 수 있는 미세한 금속 패턴을 형성하는 기술이 주목되고 있다.
특히, 터치패널에 필수적인 투명전극을 제작하는 기술 중, 기재 상에 미세한 패턴을 형성하고 금속 전도성 잉크를 충진하여 형성되는 금속 패턴은 저항 특성에 있어서 매우 유용하다. 또한 기재필름에 금속 나노와이어나 다양한 형태의 금속 구조체를 코팅하여 광학적 특성 및 전기적 특성을 향상시킨 금속기반 투명전극(TCF)도 개발되고 있다.
그러나 이러한 소재로 형성된 전극 표면은 수십 나노 레벨의 표면 평탄도를 요구하는 OLED를 비롯한 기타 디스플레이 공정에 적합하지 않으며, 전극 위에 형성되는 유기물질과의 일 함수(Work function) 차이로 인해 에너지 베리어(energy barrier)가 높아질 수 있다.
현재, 터치패널 및 디스플레이용 투명전극에는 산화인듐주석(Indium Tin Oxide, ITO)를 비롯한 산화물 투명전극이 상용화되어 있지만, 매장량은 한계가 있으며, 산화물의 특성상 유연함이 부족하고 저항 특성이 금속만큼 우수하지 못해 대면적 플렉시블 디스플레이로 사용하는 데는 무리가 있다.
최근 대면적 플렉시블 디스플레이에 대한 니즈가 증가하는 시점에서 저항특성이 우수하고, 유연하며 유기물질과의 적합성이 뛰어나면서도 표면 평탄도가 우수한 전극소재의 개발이 시급하다.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 기계적·전기적 특성을 지닌 전도성 금속 잉크 조성물과 표면 특성이 우수한 산화물 전극을 하이브리드하여 이중층의 하이브리드 투명전극의 제조방법을 제공함에 목적이 있다.
전도성 금속 잉크 조성물을 금속 착제 화합물 또는 금속 전구체를 사용하여 저항을 낮추고 우수한 전기적 특성을 유지할 수 있는 하이브리드 투명전극의 제조방법을 제공함에 목적이 있다.
전도성 금속 잉크 조성물을 이용하여 미세 전극패턴을 인쇄하면서 미세 전극패턴영역이 아닌 영역에 발생할 수 있는 전도성 금속 잉크 조성물의 잔여물을 제거하여 종래 기술로는 구현이 어려웠던 저 저항의 미세한 패턴을 형성할 수 있으며 투과율이 우수한 하이브리드 투명전극의 제조방법을 제공함에 목적이 있다.
전도층의 두께를 조절하여 기계적 특성을 개선시킬 수 있으며, 금속 전극 패턴 내의 전도성 잉크 충진을 최대화하여 산화물 전극 사이에 폴리머층을 사이에 도입하여 표면 특성 및 기계적 특성을 향상시킬 수 있는 하이브리드 투명전극의 제조방법을 제공함에 목적이 있다.
상기 과제를 달성하기 위하여, 본 발명의 하이브리드 투명전극의 일 실시예에 따른 제조방법은, 홈을 갖는 기재의 상기 홈에 전도성 금속 잉크 조성물이 채워지도록 충진하는 잉크 조성물 충진단계, 상기 전도성 금속 잉크 조성물이 상기 홈에 충진되면서 상기 기재의 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 잔류 잉크 조성물 충진단계 및 상기 전극 패턴 상에 전도성 물질이 포함된 전도층을 형성하는 전도층 형성단계를 포함하는 것을 특징으로 한다.
상기 전도성 금속 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이크, 나노 입자 또는 나노와이어 중 적어도 하나를 포함할 수 있다.
상기 잉크 조성물 충진단계는, 잉크젯 방법, 평판 스크린법, 스핀 코팅법, 바 코터법, 롤 코팅법, 플로우 코팅법, 닥터 블레이드, 디스펜싱, 그라비아 프린팅법 또는 플렉소 프린팅법으로 상기 전도성 금속 잉크 조성물이 채워지는 것이 바람직하다.
상기 잔류 잉크 조성물 충진단계는 상기 잉크 조성물 충진단계에서 상기 전도성 잉크 조성물이 상기 홈에 충진되면서 상기 표면 상에 남아있는 상기 잔류 전도성 금속 잉크 조성물을 에칭액으로 용해시켜, 용해된 상기 잔류 전도성 금속 잉크 조성물이 상기 홈에 채워질 수 있다.
상기 에칭액은 상기 기재 표면에 도포되어 상기 잔류 전도성 금속 잉크 조성물을 용해시키는 것을 특징으로 한다.
상기 에칭액은 평판 스크린법, 스핀 코팅법, 롤 코팅법, 플로우 코팅법, 닥터 블레이드, 그라비아 프린팅법 또는 플렉소 프린팅법으로 도포될 수 있다.
상기 에칭액은 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열 화합물, 산-염기 염복합체, 산-염기-알코올계 복합체 또는 머캡토 계열 화합물 중 적어도 하나 및 산화제를 포함할 수 있다.
상기 에칭액에 의해 용해된 상기 잔류 전도성 금속 잉크 조성물을 상기 홈으로 밀어넣음으로써, 상기 홈에 상기 잔류 전도성 금속 잉크 조성물이 채워지는 것을 특징으로 한다.
상기 에칭액에 의해 용해된 상기 잔류 전도성 금속 잉크 조성물은 닥터 블레이드 또는 브러쉬를 이용하여 상기 홈으로 밀어넣는 것이 바람직하다.
상기 전도성 물질은 금속 산화물, CNT, 그래핀 또는 전도성 고분자일 수 있다.
상기 전도층은 상기 전도성 물질을 증착 또는 프린팅하여 형성되는 것을 특징으로 한다.
상기 전도층의 두께는 상기 홈의 높이 대비 0.5 내지 2.0배인 것이 바람직하고, 이에 한정되지 않는다.
본 발명의 하이브리드 투명전극의 다른 실시예에 따른 제조방법은, 표면에 홈이 형성된 기재가 마련되고, 상기 기재의 표면을 소수성으로 플라즈마 처리하는 기재 표면 처리단계, 상기 홈이 전도성 금속 잉크 조성물로 채워지도록 충진하는 잉크 조성물 충진단계, 상기 홈이 충진되면서 상기 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 잔류 잉크 조성물 충진단계 및 상기 전극 패턴 상에 전도성 물질이 포함된 전도층을 형성하는 전도층 형성단계를 포함하는 것을 특징으로 한다.
상기 전도성 금속 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이크, 나노 입자 또는 나노와이어 중 적어도 하나를 포함할 수 있다.
상기 잔류 잉크 조성물 충진단계는 상기 잉크 조성물 충진단계에서 상기 홈이 충진되면서 상기 표면 상에 남아있는 상기 잔류 전도성 금속 잉크 조성물을 에칭액으로 용해시켜 용해된 상기 잔류 전도성 금속 잉크 조성물이 상기 홈에 채워지는 것을 특징으로 한다.
상기 에칭액에 의해 용해된 상기 잔류 전도성 금속 잉크 조성물을 닥터 블레이드 또는 브러쉬를 이용하여 상기 홈으로 밀어넣음으로써, 상기 홈에 상기 잔류 전도성 금속 잉크 조성물이 채워질 수 있다.
상기 전도층은 금속 산화물, CNT, 그래핀 또는 전도성 고분자를 증착 또는 프린팅하여 형성되는 것을 특징으로 한다.
본 발명의 하이브리드 투명전극의 다른 실시예에 따른 제조방법은, 표면에 홈이 형성된 기재가 마련되고, 상기 홈이 전도성 금속 잉크 조성물로 채워지도록 충진하는 제 1 잉크 조성물 충진단계;
상기 홈이 충진되면서 상기 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 제 1 잔류 잉크 조성물 충진단계;
상기 홈이 전도성 금속 잉크 조성물로 채워지도록 충진하는 제 2 잉크 조성물 충진단계, 상기 홈이 충진되면서 상기 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 제 2 잔류 잉크 조성물 충진단계 및 상기 전극 패턴 상에 전도성 물질이 포함된 전도층을 형성하는 전도층 형성단계를 포함하는 것을 특징으로 한다.
상기 전도성 금속 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이크, 나노 입자 또는 나노와이어 중 적어도 하나를 포함할 수 있다.
상기 금속 전구체는 MnX이고, 여기서 M은 Ag, Au, Cu, Ni, Co, Pd, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb 또는 Bi 중 하나이고 n은 1내지 10의 정수이며, X는 산소, 황, 할로겐, 시아노, 시아네이트, 카보네이트, 니트레이트, 나이트레이트, 설페이트, 포스페이트, 티오시아네이트, 클로레이트, 피클로레이트, 테트라플포로 보레이트, 아세틸아세토네이트, 머캡토, 아미드, 알콕사이드 또는 카복시레이트 중 하나인 것이 바람직하다.
상기 전도층은 상기 전도성 물질을 증착 또는 프린팅하여 형성될 수 있다.
상기 전도층는 10 내지 500nm의 두께로 형성되는 것을 특징으로 한다.
본 발명의 하이브리드 투명전극의 다른 실시예에 따른 제조방법은, 표면에 홈이 형성된 기재가 마련되고, 상기 홈이 전도성 금속 잉크 조성물로 채워지도록 충진하는 잉크 조성물 충진단계, 상기 홈이 충진되면서 상기 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 잔류 잉크 조성물 충진단계, 상기 전극 패턴을 50 내지 200℃의 분위기에서 소성하는 소성단계 및 상기 전극 패턴 상에 전도성 물질이 포함된 전도층을 형성하는 전도층 형성단계를 포함하는 것을 특징으로 한다.
상기 잔류 잉크 조성물 충진단계를 2회 이상 반복하여 실시할 수 있다.
상기 잔류 잉크 조성물 충진단계는 상기 잉크 조성물 충진단계에서 상기 홈이 충진되면서 상기 표면 상에 남아있는 상기 잔류 전도성 금속 잉크 조성물을 에칭액으로 용해시켜 용해된 상기 잔류 전도성 금속 잉크 조성물이 상기 홈에 채워지는 것이 바람직하다.
상기 에칭액은 평판 스크린법, 스핀 코팅법, 롤 코팅법, 플로우 코팅법, 닥터 블레이드, 그라비아 프린팅법 또는 플렉소 프린팅법으로 상기 기재 표면 전면에 도포되어 잔류 전도성 금속 잉크 조성물을 용해시킬 수 있다.
상기 과제를 달성하기 위하여, 본 발명의 하이브리드 투명전극은 메쉬 형태로 홈이 형성된 기재부, 상기 홈이 전도성 금속 잉크 조성물로 채워진 금속 메시 전극, 상기 금속 메시 전극 상에 형성된 금속산화물층을 포함하는 것을 특징으로 한다.
상기 전도성 금속 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이크, 나노 입자 또는 나노와이어 중 적어도 하나를 포함할 수 있다.
상기 금속산화물층은 산화주석, 산화인듐주석, 산화안티몬주석, 산화인듐갈륨,산화인듐아연 또는 산화아연을 포함하는 것이 바람직하다.
본 발명은 전도성 금속 잉크 조성물로 전극 패턴을 형성하고, 전극 패턴 상에 전도성 물질로 이루어진 전도층을 형성하여 하이브리드 형태의 투명전극을 제조함으로써, 전기전도도, 투과율이 우수하여 투명전극에 최적화된 투명전극을 제공할 수 있다.
특히, 두 전극 간의 계면 특성이 우수하여 높은 전도도 및 고 신뢰성을 요구하는 분야에 적용할 수 있다.
뿐만 아니라, 종래의 하이브리드 투명전극에 비하여 향상된 유연성으로 플렉시블 디스플레이에 적용이 용이하다.
미세 전극패턴을 구성하는 전도성 잉크 조성물로 금속 착제 화합물 또는 금속 전구체가 포함된 전도성 물질을 사용하여, 광학적, 전기적, 기계적 특성을 동시에 향상시킬 수 있다.
전극 패턴을 형성하기 위하여 전도성 금속 잉크 조성물을 충진하면서 불가피하게 발생한 미세한 잔여 금속 조성물을 에칭용액에 용해시켜 제거함으로써 전극 표면의 평탄도를 개선할 수 있으며, 투과율 및 내전압을 향상시킬 수 있다.
블레이드 또는 브러쉬를 사용하여 기재 표면에 남아있는 전도성 금속 잉크 조성물을 처리함으로써 기재 표면과 충진 전극을 손상시키지 않고 전극 표면의 전도성 금속 잉크 조성물의 충진율을 현저하게 향상시킬 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명에 의한 하이브리드 투명전극을 제조하는 방법의 일 실시예를 순차적으로 나타낸 순서도이다.
도 2는 본 발명에 의한 하이브리드 투명전극을 제조하는 방법의 다른 실시예를 순차적으로 도시한 단면도들이다.
도 3은 전도층의 두께에 따른 하이브리드 투명전극의 면저항을 도시한 그래프이다.
도 4는 전도층의 두께에 따른 하이브리드 투명전극의 투과율을 도시한 그래프이다.
도 5는 전도층의 두께에 따른 하이브리드 투명전극의 헤이즈(Haze)를 도시한 그래프이다.
도 6은 전도층의 두께에 따른 하이브리드 투명전극의 표면조도(Ra)를 도시한 그래프이다.
도 7은 전도층의 두께에 따른 하이브리드 투명전극의 굽힘성을 도시한 그래프이다.
도 8은 실시예 및 비교예의 투명전극 단면도의 SEM 이미지이다.
(부호의 설명)
1: 기재
2: 막
3: 홈
4, 6: 전도성 금속 잉크 조성물
5: 잔류 전도성 금속 잉크 조성물
7: 닥터 블레이드
8: 에칭액
9: 브러쉬
10: 용해된 잔류 전도성 금속 잉크 조성물
11: 전도층
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.
도면에서 각 구성요소의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기와 면적은 실제크기나 면적을 전적으로 반영하는 것은 아니다.
이하, 본 발명의 실시예들에 의하여 하이브리드 투명전극의 제조방법을 설명기 위한 도면들을 참고하여 본 발명에 대해 설명하도록 한다.
본 발명의 일 실시예에 의한 하이브리드 투명전극의 제조방법은 도 1과 같이, 잉크 조성물 충진단계(S10), 잔류 잉크 조성물 충진단계(S20) 및 전도층 형성단계(S30)를 포함하여 이루어진다.
잉크 조성물 충진단계(S10)
잉크 조성물 충진단계(S10)는 홈을 갖는 기재의 상기 홈에 전도성 금속 잉크 조성물을 채우는 단계로, 음각의 홈에 전도성을 가지는 물질을 충진한다.
전도성 금속 잉크 조성물을 이용하여 전도성 패턴을 형성하기 전에, 추가로 기재의 상면을 표면 처리하는 것이 바람직하다.
상기 기재의 표면은 홈이 형성되기 전에 소수성 처리할 수 있다.
이에 따라, 후술하는 전도성 금속 잉크 조성물의 처리를 보다 용이하게 할 수 있다. 이러한 상기 기재 표면의 소수성 처리는 기재의 상면을 플라즈마 처리함으로써 가능해질 수 있다.
상기 기재의 종류는 특별히 한정되는 것은 아니다. 상기 기재는 투명한 재질, 예컨대 플라스틱 필름이나 글라스로 형성될 수 있다. 상기 플라스틱 필름으로는 폴리이미드(PI), 폴리에틸렌텔레프탈레이트(PET), 폴리에텔렌나프탈레이트(PEN), 폴리에테르술폰(PES), 나일론(Nylon), 폴리테트라플로우로에틸렌(PTFE), 폴리에테르에테르케톤(PEEK), 폴리카보네이트 (PC), 또는 폴리아릴레이트(PAR)가 사용될 수 있다. 불투명한 재질로 구비될 수도 있다. 예컨대 표면이 절연 처리된 금속제 플레이트가 사용되거나, 불투명한 플라스틱 필름, 불투명한 글라스 또는 불투명한 유리 섬유재가 적용될 수 있다. 이와 같이 플라스틱 필름이나 유리 기판 등을 사용 할 수 있으며, 이에 한정되지는 않는다.
상기 기재에 홈을 형성하는 방법은 업계에서 통상적으로 사용하는 방법으로 형성할 수 있으며, 바람직하게는 임프린팅 공정으로 UV경화수지 또는 열경화성 수지를 몰드로 임프린트하여 형성하는 방법, 레이저로 직접 기재를 식각하여 형성하여 사용하는 방법, 포토리소그라피 방식을 사용하여 형성하는 방법 등을 이용하여 구현하고자하는 미세선폭의 크기에 맞추어 선택하여 사용할 수 있다.
전도성 금속 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이크, 나노 입자 또는 나노 와이어를 사용할 수 있으며, 전도성 물질의 재료에 따라 2종 이상을 혼합하여 사용할 수 있다.
미세 홈에 충진성을 향상시키기 위하여 금속 착체 화합물 또는 금속 전구체를 사용할 수 있다. 또한 금속착체 화합물 또는 금속 전구체를 환원시켜 나노크기의 금속입자를 제조하여 혼합물로도 사용할 수 있다. 이를 사용하면 종래 기술로는 형성할 수 없었던 나노 크기의 미세 전도성 패턴을 용이하게 형성할 수 있다.
본 발명에 사용되는 금속 전구체는 일반식 MnX로 나타낼 수 있는데 여기서 M은 Ag, Au, Cu, Ni, Co, Pd, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi이고 n은 1내지 10의 정수이며, X는 산소, 황, 할로겐, 시아노, 시아네이트, 카보네이트, 니트레이트, 나이트레이트, 설페이트, 포스페이트, 티오시아네이트, 클로레이트, 피클로레이트, 테트라플포로 보레이트, 아세틸아세토네이트, 머캡토, 아미드, 알콕사이드, 카볼실레이트 등을 나타낸다.
구체적으로 예를들면, 초산 금, 옥살산 팔라듐, 2-에틸 헥산산은, 2-에틸 헥산산구리, 스테아린산 철, 포름산 니켈, 아연 시트레이트와 같은 카르복실산 금속, 질산은, 시안화 구리, 탄산 코발트, 염화백금, 염화금산, 테트라부톡시 티타늄, 디메톡시지르코늄 디클로라이드, 알루미늄 이소프로폭사이드, 바나듐 옥사이드, 탄탈륨 메톡사이드, 비스무스 아세테이트, 도데실 머캡토화 금, 인듐 아세틸아세토네이트와 같은 금속 화합물 등을 한 종류 이상 선택하여 함께 사용 가능하다.
일반적인 금속 나노입자 제조방법에는 물리적으로 금속 덩어리를 미세하게 분쇄하여 제조하는 물리적인 방법과 화학적인 반응을 이용하여 제조하는 방법이 있다. 화학적인 방법을 좀 더 구체적으로 설명하면 고압의 가스를 분사하여 분말로 제조하는 에어로졸법, 금속 화합물과 기체 환원제를 사용하여 열분해로 분말을 제조하는 열분해법, 증발원료를 가열 증발시켜 분말을 제조하는 증발응축법, 졸겔법, 수열합성법, 초음파 합성법, 마이크로 에멀젼법, 액상 환원법 등이 있다.
나노입자의 형성제어가 용이하고 가장 경제성이 좋은 것으로 평가되고 있는 분산제와 환원제를 이용하여 제조하는 액상 환원법이 가장 많이 사용하고 있으나 본 발명에서는 나노입자를 형성 할 수 만 있다면 모든 방법을 사용 할 수 있다.
액상 환원법의 나노입자의 제조방법에 대한 구체적인 설명은 본 출원인이 출원한 대한민국 특허출원 제2006-0074246호에 기재되어 있고 상기 특허 출원에 기재된 금속 나노 입자는 입자의 크기가 균일하고 응집성이 최소화되는 장점이 있으며, 상기 금속 나노입자를 함유하는 전도성 잉크는 150℃ 이하의 낮은 온도에서, 짧은 시간에 소성하여도 높은 전도도를 갖는 균일하고 치밀한 박막 또는 미세 패턴 형성이 용이한 장점이 있다.
이들 혼합물 이외에 필요에 따라서 용매, 안정제, 분산제, 바인더 수지(binder resin), 이형제, 환원제, 계면활성제(surfactant), 습윤제(wetting agent), 칙소제(thixotropic agent) 또는 레벨링(levelling)제, 증점제와 같은 첨가제 등을 포함 시킬 수 있다.
상기 바인더 수지는 다양한 기재와의 부착력이 우수한 것이 바람직하다. 바인더로 사용 가능한 물질은 유기고분자 물질로서 폴리프로필렌, 폴리 카보네이트, 폴리 아크릴레이트, 폴리메틸메타아크릴레이트, 셀룰로즈아세테이트, 폴리비닐클로라이드, 폴리우레탄, 폴리에스테르, 알키드 수지, 에폭시 수지, 페옥시 수지, 멜라민 수지, 페놀 수지, 페놀 변성 알키드 수지, 에폭시 변성 알키드 수지, 비닐 변성 알키드 수지, 실리콘 변성 알키드 수지, 아크릴 멜라민 수지, 폴리 이소시아네이트 수지, 에폭시 에스테르 수지 등을 예로 들 수 있으며 본 발명에 부합된다면 이에 한정되지는 않는다.
상기 잉크 조성물 충진단계(S10)에서 사용되는 전도성 금속 잉크 조성물에 있어서, 은(Ag) 착체 화합물이나 나노입자의 경우는 바인더가 없는 경우에도 사용가능할 수 있으므로, 전술한 내용으로 한정되는 것은 아니다.
또한 균일한 박막으로 형성하기 위해 용매가 필요한 경우가 있는데 이때 사용할 수 있는 용매로는 에탄올, 이소프로판올, 부탄올, 헥산올 같은 알코올류, 에틸렌글리콜, 글리세린과 같은 글리콜류, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트와 같은 아세테이트류, 메틸세로솔브, 부틸셀로솔브, 디에틸에테르, 테트하히드로퓨란, 디옥산과 같은 에테르류, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈과 같은 케톤류, 헥산, 헵탄, 도데칸, 파라핀 오일, 미네랄 스프릿과 같은 탄화수소계, 벤젠, 톨루엔, 자일렌과 같은 방향족, 그리고 클로로포름이나 메틸렌클로라이드, 카본테트라클로라이드와 같은 할로겐 치환 용매, 아세토니트릴, 디메틸술폭사이드 또는 이들의 혼합용매 등을 사용할 수 있다. 그러나 용매의 종류가 이로 한정되는 것은 아니다.
상기 잉크 조성물 충진단계(S10)에서, 전도성 금속 잉크 조성물을 기재의 홈에 채우는 방법은 제한이 없으나, 잉크젯(inkjet) 방법, 평판 스크린법, 스핀(spin) 코팅법, 바(bar) 코터법, 롤(roll) 코팅법, 플로우(flow) 코팅법, 닥터 블레이드(doctor blade), 디스펜싱(dispensing), 그라비아(Gravure) 프린팅법 또는 플렉소(flexography) 프린팅법이 바람직하다.
이 때의 충진 횟수는 1회 또는 그 이상 충진 횟수를 반복하여 사용할 수도 있다. 상기 각각의 충진 방법에 따라 충진 특성이 차이를 보일 수 있으나 이는 각 충진 방법에 적합하도록 전도성 금속 잉크 조성물의 성분을 조절하여 조성물의 레올로지를 충진 방법에 최적화하는 것이 필요하다.
상기의 방법에 의해 형성된 전도성 패턴의 두께는 음각의 패턴 깊이보다 동일하거나 낮은 것이 바람직하지만 이에 한정되는 것은 아니다.
후처리 공정조건에 따라서는 전도성 패턴의 두께가 음각 패턴의 깊이보다 두꺼워서 상부 회로와의 접촉력을 높이는 것이 좋을 수 있다. 구체적으로 설명하면, 10㎛ 이하, 보다 좋게는 0.1㎛ 이상 5㎛이하가 바람직하다. 전도성 패턴의 두께는 구현하고자 하는 선폭, 요구 저항 및 후처리 조건에 따라 두께조절이 필요하다.
상기 잉크 조성물 충진단계(S10)에서, 전도성 금속 잉크 조성물을 기재의 홈에 채운 후, 건조단계를 실시하는 것이 바람직하다.
전도성 패턴의 건조는 22 내지 600℃일 수 있으며, 더 바람직하게는 80 내지 400℃인 것이 효과적이다. 상기 온도 범위로 반드시 한정되는 것은 아니며, 기재의 종류에 따라 기재가 변형되지 않는 온도 범위에서 진행되는 것이 바람직할 수 있다.
상기 잉크 조성물 충진단계(S10)는 2회 이상 반복하여 실시할 수 있으며, 홈의 폭, 높이 또는 전도성 금속 잉크 조성물의 성능에 따라 실시 횟수는 적절하게 조절할 수 있다.
잔류 잉크 조성물 충진단계(S20)
잔류 잉크 조성물 충진단계(S20)는 상기 잉크 조성물 충진단계(S10)에서 전도성 금속 잉크 조성물이 홈에 채워지면서 표면 상에 남아있는 잔류된 전도성 금속 잉크 조성물을 처리하여 홈에 추가 충진하는 단계로, 전극 패턴을 형성할 수 있다.
잔류 전도성 금속 잉크 조성물은, 에칭액으로 용해시켜 상기 홈에 채워지도록 하는 것이 바람직하다.
상기 잉크 조성물 충진단계(S10)에서 전도성 금속 잉크 조성물이 채워지면서 불가피하게 상기 기재 표면에 남게되는 전도성 금속 잉크 조성물을 홈으로 유도하기 위하여 에칭액으로 용해시킨다.
전도성 금속 잉크 조성물의 에칭 메커니즘은 일반적으로 산화제가 금속표면을 산화시켜 금속 산화물을 형성하고, 이를 용해시키는 화합물로 용해시키는 과정과 팽윤과정을 반복하여 이루어질 수 있다.
기재 표면에 잔류하고 있는 전도성 금속 잉크 조성물을 용해시키기위하여, 에칭액을 기재 표면에 도포할 수 있다. 에칭액의 도포 방법은 통상의 코팅법에 의해 수행될 수 있다.
에칭액은 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열 화합물, 산-염기 염복합체, 산-염기-알코올계 복합체 또는 머캡토(mercapto) 계열 화합물 중 적어도 하나 및 산화제를 포함하는 것이 바람직하다.
예를 들면, 산화제와 하나 이상의 상기의 화합물 및 이들의 혼합물을 상압 또는 가압상태에서 용매 없이 직접 반응시키거나, 용매를 사용하는 경우는 물, 메탄올, 프로판올, 이소프로판올, 부탄올, 에탄올 아민과 같은 알코올류, 에틸렌글리콜, 글리세린과 같은 글리콜류, 에틸아세테이트, 부틸 아세테이트, 카비톨아세테이트와 같은 아세테이트류, 디에틸에테르, 테트라히드로퓨란, 디옥산과 같은 에테르류, 메틸에틸케톤, 아세톤과 같은 케톤류, 헥산, 헵탄과 같은 탄화수소계, 벤젠, 톨루엔과 같은 방향족, 그리고 클로로포름이나 메틸렌클로라이드, 카본테트라클로라이드와 같은 할로겐 치환용매, 퍼플루오로카본과 같은 불소계 용매 또는 이들의 혼합용매 등을 사용 할 수 있다. 압력용기와 같은 가압상태에서는 저비점의 불소계 용제나 액화탄산가스 등도 사용가능하다. 본 발명의 에칭액 제조방법을 특별히 제한할 필요는 없다. 즉, 본 발명의 목적에 부합된다면 공지의 어떠한 방법을 사용하여도 무방하다.
상기 에칭액으로서, 산화제는 예를들면, 산소, 오존 등과 같은 산화성 기체, 과산화수소, Na2O2, KO2, NaBO3, (NH4)S2O8, H2SO5, (CH3)3CO2H, (C6H5CO2)2 등과 같은 과산화물, HCO3H, CH3CO3H, CF3CO3H, C6H5CO3H, m-ClC6H5-CO3H 등과 같은 과산소 산, 질산, 황산, 요오드(I2), Fe(NO3)3, Fe2(SO4)3, K3Fe(CN)6, (NH4)2Fe(SO4)2, Ce(NH4)4(SO4)4, NaIO4, KMnO4, K2CrO4 등과 같이 일반적으로 잘 알려진 산화성 무기산 또는 금속, 비금속화합물 등이 여기에 포함된다. 이러한 산화제를 사용할 때에는 단독 또는 최소한 하나 이상의 산화제를 혼합하여 사용해도 무방하다.
상기 에칭액은 기재의 홈으로 충진되지않고 기재의 표면에 남은 전도성 잉크를 효과적으로 용해하고 미세홈으로 재 충진성을 높이기 위하여 에칭액 조성물에 친수 특성을 부여하는 것이 바람직할 수 있다. 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열, 산-염기 염복합체, 산-염기-알코올 계 복합체, 머캡토 계열 화합물의 탄소수를 조절하여 친수 특성의 정도를 조절 하는 것이 바람직하다.
여기서의 암모늄 카바메이트계 화합물, 암모늄 카보네이트계 화합물 및 암모늄바이카보네이트계 화합물은 본 출원인의 한국등록 제0727466호에 구체적으로 설명되어 있고 카르복실산 계열의 화합물은 벤조산, 올레산, 프로피온산, 말론산, 헥산산, 옥탄산, 데칸산, 네오데칸산, 옥살산, 시트르산, 살리실산, 스테아르산, 아크릴산, 숙신산, 아디프산, 글리콜산, 이소부티르산, 아스코빅 산 등이 사용 될 수 있다.
락톤 계열 화합물은 β-프로피오락톤, γ-프로피오락톤, γ-부티로락톤, γ-티오부티로락톤, α-메틸-γ-부티로락톤, β-메틸-γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, γ-옥타노익락톤, δ-발레로락톤, 1,6-디옥사스피로[4,4]노난-2,7-디온, α-메틸렌-γ-부티로락톤, γ-메틸렌-γ-부티로락톤, ε-카프로락톤, 락타이드, 글리콜라이드, 테트로닉산, 2(5H)-휴라논, β-히드록시-γ-부티로락톤, 메발로닉란톤, 5,6-디하이드로-2H-피란-2-피란-2-온, δ-발레로락톤, ε-카프로락톤, γ-카프로락톤, γ-옥타노익 락톤 등이 사용 될 수 있다.
락탐계열 화합물은 2-아제티돈, 2-피놀리디논, 5-메톡시-2-피롤리디논, 5-메틸-2-피롤리디논, N-메틸카프로락탐, 2-아자시클로논나논, N-아세틸카프로락탐 등이 사용 될 수 있다.
환상 산 무수물로서는 이타코닉 안하이드라이드, 석시닉안하이드라이드, 말레익안하이드라이드, 글루타릭안하이드라이드, 옥타데실석시닉안하이드라이드, 2,2-디메틸석시닉안하이드라이드, 2-도데켄-1-일석시닉안하이드라이드, 헥사프루오로글루타릭안하이드라이드, 3,3-디메틸글루타릭안하이드라이드, 3-에틸-3-메틸 글루타릭안하이드라이드, 3,5-디아세틸테트라하이드로피란-2,4,6-트리온, 디글리콜릭 안하이드라이드 등이 사용 될 수 있다.
머캡토 계열의 화합물은 1-메탄 사이올, 1-에탄사이올, 2-부탄사이올, 1-헵탄 사이올, 1-옥탄사이올, 1-데칸 사이올, 1-헥사 데칸 사이올, 사이오 아세트산, 6-머캡토헥산산, 사이오 벤조산, 푸르푸릴 머캡탄, 사이클로헥산사이올, 11-머캡토-1운데카놀, 2-머캡토에탄올, 3-머캡토-1-프로판올, 사이오살리실산, 1-사이오를리세롤, 2-나프탈렌사이올, 메틸 3-머캡토프로피오네이트, 간마 머캡토 프로필트리메톡시실란등이 사용 될 수 있다. 이에 한정되는 것은 아니며, 이들 중 단일성분으로 사용하여도 되고 2종 이상의 혼합물로 이루어지는 그룹 중에서 선택된 것이 될 수 있다.
상기 에칭조성물의 에칭 속도는 코팅시 에칭액의 침적 시간을 조절하거나, 에칭액의 산화제 또는 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열, 산-염기 염복합체, 산-염기-알코올계 복합체, 머캡토 계열 화합물의 농도를 조절하여 제어 하는 것이 바람직하고 필요시 에칭과정을 반복하여 사용 할 수 있다. 또한 무기 산이나 염기를 포함하는 에칭액의 경우, 별도의 물이나 유기용제로 세척하여 제거할 수 있다. 예컨대 세정공정을 한번 더 포함하여 기재 표면의 전도성 잉크를 홈으로 넣을 수도 있다.
잔류 전도성 금속 잉크 조성물의 재 용해 및 충진율은 상기의 산화제 및 에칭액 조성물의 비율에 따라 조절할 수 있다.
잔류 전도성 금속 잉크 조성물을 에칭액으로 용해시킨 후, 용해된 상기 잔류 전도성 잉크 조성물을 기재의 홈에 채워넣도록, 상기 잔류 전도성 금속 잉크 조성물을 홈으로 유도한다.
잔류 전도성 금속 잉크 조성물을 홈으로 유도하는 방법은, 물리적인 힘으로 상기 홈에 밀어넣어 채워지게 하는 것이 바람직하다.
용해된 잔류 전도성 금속 잉크 조성물을 밀어넣는 방법 또는 밀어넣는 처리부재의 제한은 없으나, 닥터 블레이드 또는 브러쉬를 이용할 수 있다. 더 바람직하게는 브러쉬를 이용한다. 브러쉬는 물리적인 힘을 감소시킴으로써 기재 표면의 긁힘, 잉크 유실을 효과적으로 방지할 수 있다.
즉, 상기 기재 표면과 충진 전극을 손상시키지 않고 전극 표면이 충진율을 향상시킬 수 있다.
또한, 충진은 1회 이상 수행될 수 있으며, 다양한 방법, 특히, 닥터 블레이드와 브러쉬가 혼용되어 사용될 수도 있다.
닥터 블레이드 또는 브러쉬를 이용하여 용해된 잔류 전도성 금속 잉크 조성물을 밀어넣으면서, 기재의 홈에 전도성 금속 잉크 조성물이 채워지는 동시에 기재 표면에 남아있는 전도성 금속 잉크 조성물의 성분인 금속 물질 또는 유기 물질 등이 제거될 수 있다.
이 외에도, 용해된 잔류 전도성 금속 잉크 조성물을 홈에 채우기 위하여, 별도의 진동 또는 요동, 에어를 이용할 수도 있고, 경우에 따라 이를 동시에 사용할 수 있다.
상기 잔류 잉크 조성물 충진단계(S20)에서, 기재 표면의 용해된 잔류 전도성 금속 잉크 조성물을 처리한 후, 건조단계를 실시하는 것이 바람직하다. 전도성 패턴의 건조는 22 내지 600℃일 수 있으며, 더 바람직하게는 80 내지 400℃인 것이 효과적이다. 상기 온도 범위로 반드시 한정되는 것은 아니며, 기재의 종류에 따라 기재가 변형되지 않는 온도 범위에서 진행되는 것이 바람직할 수 있다.
홈에 채워진 용해된 잔류 전도성 금속 잉크 조성물에서 에칭액은 휘발되어,홈은 전도성 금속 잉크 조성물의 하나의 물질로 이루어진 단일층의 패턴이 형성된다.
상기의 단계를 통해, 전극 패턴이 형성될 수 있으며 전극 패턴의 형태에는 제한이 없으나 메쉬(mesh) 또는 허니컴 형태인 것이 바람직하며, 더 바람직하게는 메쉬 형태일 수 있다.
상기 잔류 잉크 조성물 충진단계(S20)를 통해 상기 기재 표면에 잔류하는 불필요한 전도성 금속 잉크 조성물을 에칭액으로 제거하여 광학적 특성을 향상시킴과 동시에 잔류 전도성 금속 잉크 조성물을 홈에 재충진함으로써 전극 표면의 평탄도를 개선할 수 있다.
상기 잔류 잉크 조성물 충진단계(S20)는 2회 이상 실시하여 홈 내의 전도성 금속 잉크 조성물의 충진 정도를 미세하게 조절할 수 있다.
본 발명의 전극 패턴 형성방법의 또 다른 실시예는 표면에 홈이 형성된 기재가 마련되고, 상기 홈이 전도성 금속 잉크 조성물로 채워지도록 충진하는 제 1 잉크 조성물 충진단계, 상기 홈이 충진되면서 상기 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 제 1 잔류 잉크 조성물 충진단계, 상기 홈이 전도성 금속 잉크 조성물로 채워지도록 충진하는 제 2 잉크 조성물 충진단계 및 상기 홈이 충진되면서 상기 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 제 2 잔류 잉크 조성물 충진단계를 통해 전극 패턴을 형성할 수 있다.
상기의 잉크 조성물 충진단계와 잔류 잉크 조성물의 충진단계 이후 각각 소성단계를 실시할 수 있으며, 전도성 금속 잉크 조성물의 충진과 잔류 전도성 금속 잉크 조성물의 충진의 반복 실시를 통해, 저저항의 미세한 전극 패턴의 형성이 가능해진다.
전도층 형성단계(S30)
전도층 형성단계(S30)는 전극 패턴 상에 전도성 물질이 포함된 전도층을 형성하여 하이브리드형 투명전극을 제조하는 단계이다.
전도층 형성단계(S30)는 잉크 조성물 충진단계(S10) 후에 실시할 수도 있고, 잔여 전도성 금속 잉크 조성물을 제거한 후에 전극 패턴 상에 전도성 물질을 형성하게되면 신뢰성이 높은 투명전극 필름의 구현이 가능하다.
전극 패턴 상에 형성될 수 있는 전도성 물질은 금속 산화물, CNT, 그래핀 또는 전도성 고분자인 것이 바람직하다.
금속 산화물은 산화주석(Tin Oxide), 산화인듐주석(Indium Tin Oxide, ITO), 산화안티몬주석(Antimony Tin Oxide, ATO), 산화인듐갈륨(Indium Gallium Oxide, IGO), 산화인듐아연(Indium Zinc Oxide, IZO) 또는 산화아연(Zinc Oxide)을 사용할 수 있으며, 전도성 고분자는 PEDOT(Poly(3,4-Ethylenedioxythiophene)) 또는 PSS:PEDOT(Poly(3,4-Ethylenedioxythiophene):Poly(4-Styrenesufonate))을 사용할 수 있다.
전도성 물질은 전극 패턴 위에 증착하여 패터닝하거나 직접 프린팅하여 형성할 수 있으며, 금속 산화물의 재료는 타겟 형태로 진공 증착(sputtering)하거나 잉크화하여 박막 코팅 조성물로 프린팅하는 것이 바람직하다.
상기 전도층의 두께는 상기 홈의 높이에 비하여 0.5 내지 2.0배인 것이 바람직하고, 더 바람직하게는 0.8 내지 1.5배인 것이 효과적이다.
구체적으로 전도층의 두께는 10 내지 500nm인 것이 효과적이고, 더 바람직하게는 150nm 미만인 것이 효과적이다. 전도층의 두께가 10nm 미만인 경우에는 광학적 특성의 향상에 미미한 효과가 있으며 표면 조도가 떨어져 전극 간의 접촉을 용이하게 할 수 없고, 전도층의 두께가 150nm를 초과하는 경우에는 투명전극의 유연성이 현저히 떨어져 다양한 제품군으로의 응용에 어려움이 있다.
이러한 하이브리드 형태의 투명전극 필름은 두 전극 간의 계면 특성이 우수하여 높은 전도도가 필요하고 고 신뢰성을 요구하는 분야에 사용될 수 있다.
이하에서는, 도 2를 참조하여 본 발명에 대해 구체적으로 설명한다.
도 2는 본 발명의 하이브리드 투명전극의 제조방법의 일 실시예를 순차적으로 도식화한 단면도이다.
도 2(a)에서 보는 바와 같이, 기재(1) 상에 막(2)이 형성되고, 상기 막(2)에 측단면이 사각형인 홈(3)이 형성되어 있다. 홈(3)의 형태는 반드시 사각형으로 한정되는 것은 아니며, 다양한 형태의 홈이 혼합 형성될 수도 있다. 상기 홈(3)은 그 깊이가 상기 막(2)의 두께보다 작도록 할 수 있다.
상기 막(2)은 상기 홈(3)이 형성되기 전에 그 상면을 소수성 처리할 수 있다. 이에 따라 후술하는 전도성 금속 잉크 조성물의 처리를 보다 용이하도록 할 수 있다. 이러한 상면에 대한 소수성 처리는 예컨대 막의 상면을 플라즈마 처리함으로써 가능해질 수 있다.
도 2(b)에서, 막(2) 상에 전도성 금속 잉크 조성물(6)을 도포한 후, 상기 전도성 금속 잉크 조성물(6)을 상기 홈(3)에 채운다. 스퀴즈, 해당 도면에서는 닥터 블레이드(7)를 이용하여 막(2)의 면을 밀어 전도성 금속 잉크 조성물(6)이 홈(2)에 채워지도록 한다.
상기 전도성 금속 잉크 조성물(6)을 도포하는 방법으로, 닥터 블레이드(7)를 이용하는 것에 한정되는 것은 아니며, 잉크젯 방법, 평판 스크린법, 스핀 코팅법, 바 코터법, 롤 코팅법, 플로우 코팅법, 닥터 블레이드, 디스펜싱, 그라비아 프린팅법 또는 플렉소 프린팅법 등이 사용될 수 있다. 전도성 금속 잉크 조성물의 도포는 1회에 한정되는 것은 아니며, 경우에 따라 복수 회 반복될 수 있다.
상기 방법으로 홈(3)에 채워진 전도성 금속 잉크 조성물(4)은 홈의 깊이와 동일하거나 이보다 낮을 수 있다.
다음으로, 도 2(c)에서 보는 바와 같이, 막(2) 상에 에칭액(8)이 도포된다. 에칭액(8)은 도 2b에서 전도성 금속 잉크 조성물(6)이 채워지고 불가피하게 발생하는 막(2) 표면 상의 잔류 전도성 금속 잉크 조성물(5)을 용해시킨다.
상기 에칭액(6)은 추후 잔류 전도성 금속 잉크 조성물(5)을 홈(3)에 용이하게 채우기 위하여, 친수성을 갖도록 할 수 있다. 바람직하게, 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열 화합물, 산-염기 염복합체, 산-염기-알코올계 복합체 또는 머캡토 계열 화합물을 포함하는 것이 효과적이다. 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열의 화합물을 포함하는 경우에는 탄소수를 조절하여 친수성의 정도를 제어할 수 있다.
에칭액(6)의 도포방법은 업계에서 통상 사용되는 방법에 의하나, 롤 코팅, 플로우 코팅, 그라비아 프린팅 또는 플렉소 프린팅방법이 바람직하다.
이후, 도 2(d)에서 볼 수 있듯이, 용해된 잔류 전도성 금속 잉크 조성물을 상기 홈(3)에 밀어넣는다. 이를 위하여, 스퀴즈를 사용할 수 있으며, 해당 도면에서는 브러쉬(9)를 사용하였다. 이는 1회 이상 실시될 수 있으며, 여러 종류의 스퀴즈가 혼용하여 사용될 수 있다.
이 때, 막(2)의 표면이 소수성 처리되어 있는 경우, 더욱 용이하게 전도성 금속 잉크 조성물(6)을 홈(3)에 채워넣을 수 있다.
용해된 잔류 전도성 금속 잉크 조성물이 브러쉬(9)에 의해 홈(3)에 채워지면, 도 2(e)에서 보는 바와 같이, 용해된 잔류 전도성 금속 잉크 조성물이 도 2b의 전도성 금속 잉크 조성물(4) 상에 적층된다.
도 2(e)에서, 용해된 잔류 전도성 금속 잉크 조성물은 에칭액을 포함하고 있어 층의 구별이 있다. 추후 건조 또는 소성을 거쳐 에칭액은 제거되어, 도 2(f)에서 보는 바와 같이 한 종류의 잉크 조성물로 이루어진 단일층의 전도성 패턴이 형성된다.
도 2(g)에서 보는 바와 같이, ITO, AZO, CNT, 그래핀, 전도성 고분자와 같은 전도성 물질을 미세 전극패턴(4)이 형성된 절연층(11) 상에 증착 또는 프린팅한 후에, 하이브리드 형태의 투명전극을 형성할 수 있다.
이하에서는, 실시예를 통해 본 발명에 대해 구체적으로 설명한다. 본 발명의 범위는 실시예로 한정되지 않는다.
[제조예]
제조예 1
코팅 잉크(잉크테크 제조) 1.57 g에 전도성 페이스트(잉크테크 제조) 27.98 g와 테르피네올(terpineol) 0.45g 혼합하여 페이스트 믹서(대화테크)를 이용하여 6분간 1000rpm으로 교반하여 전도성 금속 잉크 조성물을 제조하였다.
제조예 2
이소부틸 카바메이트 10.0 g, 이소부틸아민 85.5 g. 2-아미노-2-메틸-1프로판올 95퍼센트 용액 2.0 g을 첨가한 후 과산화수소 2.5 g을 천천히 첨가한 뒤 5시간 교반하여 에칭액을 제조하였다.
[실시예]
실시예 1
비전도성 패턴 필름에 제조예 1의 전도성 하이브리드 잉크를 도포하고, 메탈블레이드로 패턴 홈 안에 충진하는 방법으로, 한번 블레이딩한 후 다시 잉크를 도포하고, 블레이딩을 총 5번 반복한 후 120℃ 온도에서 1분 소성한다. 그 다음 충진 된 필름 위에 제조예 2의 에칭액을 도포하고 브러쉬를 사용하여 여분의 잉크 제거하고, 120℃ 온도에서 1분 소성하여 상기 필름에 전도성 잉크를 충진하여 전극 패턴을 형성하였다. 상기 전극 패턴 상에 스퍼터를 이용하여 두께 30nm의 ITO를 증착하였다.
실시예 2
비전도성 패턴 필름에 제조예 1의 전도성 하이브리드 잉크를 도포하고, 메탈블레이드로 패턴 홈 안에 충진하는 방법으로, 한번 블레이딩한 후 다시 잉크를 도포하고, 블레이딩을 총 5번 반복한 후 120℃ 온도에서 1분 소성한다. 그 다음 충진 된 필름 위에 제조예 2의 에칭액을 도포하고 브러쉬를 사용하여 여분의 잉크 제거하고, 120℃ 온도에서 1분 소성하여 상기 필름에 전도성 잉크를 충진하여 전극 패턴을 형성하였다. 상기 전극 패턴 상에 스퍼터를 이용하여 두께 40nm의 ITO를 증착하였다.
실시예 3
비전도성 패턴 필름에 제조예 1의 전도성 하이브리드 잉크를 도포하고, 메탈블레이드로 패턴 홈 안에 충진하는 방법으로, 한번 블레이딩한 후 다시 잉크를 도포하고, 블레이딩을 총 5번 반복한 후 120℃ 온도에서 1분 소성한다. 그 다음 충진 된 필름 위에 제조예 2의 에칭액을 도포하고 브러쉬를 사용하여 여분의 잉크 제거하고, 120℃ 온도에서 1분 소성하여 상기 필름에 전도성 잉크를 충진하여 전극 패턴을 형성하였다. 전극 패턴 상에 스퍼터를 이용하여 두께 70nm의 ITO를 증착하였다.
실시예 4
비전도성 패턴 필름에 제조예 1의 전도성 하이브리드 잉크를 도포하고, 메탈블레이드로 패턴 홈 안에 충진하는 방법으로, 한번 블레이딩한 후 다시 잉크를 도포하고, 블레이딩을 총 5번 반복한 후 120℃ 온도에서 1분 소성한다. 그 다음 충진 된 필름 위에 제조예 2의 에칭액을 도포하고 브러쉬를 사용하여 여분의 잉크 제거하고, 120℃ 온도에서 1분 소성하여 상기 필름에 전도성 잉크를 충진하여 전극 패턴을 형성하였다. 상기 전극 패턴 상에 스퍼터를 이용하여 두께 100nm의 ITO를 증착하였다.
실시예 5
비전도성 패턴 필름에 제조예 1의 전도성 하이브리드 잉크를 도포하고, 메탈블레이드로 패턴 홈 안에 충진하는 방법으로, 한번 블레이딩한 후 다시 잉크를 도포하고, 블레이딩을 총 5번 반복한 후 120℃ 온도에서 1분 소성한다. 그 다음 충진 된 필름 위에 제조예 2의 에칭액을 도포하고 브러쉬를 사용하여 여분의 잉크 제거하고, 120℃ 온도에서 1분 소성하여 상기 필름에 전도성 잉크를 충진하여 전극 패턴을 형성하였다. 상기 전극 패턴 상에 스퍼터를 이용하여 두께 150nm의 ITO를 증착하였다.
[비교예]
비교예 1
비전도성 패턴 필름에 제조예 1의 전도성 하이브리드 잉크를 도포하고, 메탈블레이드로 패턴 홈 안에 충진하는 방법으로, 한번 블레이딩한 후 다시 잉크를 도포하고, 블레이딩을 총 5번 반복한 후 120℃ 온도에서 1분 소성한다. 그 다음 충진 된 필름 위에 제조예 2의 에칭액을 도포하고 브러쉬를 사용하여 여분의 잉크 제거하고, 120℃ 온도에서 1분 소성하여 상기 필름에 전도성 잉크를 충진하여 전극 패턴을 형성하였다.
비교예 2
비전도성 패턴 필름에 제조예 1의 전도성 하이브리드 잉크를 도포하고, 메탈블레이드로 패턴 홈 안에 충진하는 방법으로, 한번 블레이딩한 후 다시 잉크를 도포하고, 블레이딩을 총 5번 반복한 후 120℃ 온도에서 1분 소성한다. 그 다음 에칭없이, 120℃ 온도에서 1분 소성하여 상기 필름에 전도성 잉크를 충진하여 전극 패턴을 형성하였다. 상기 전극 패턴 상에 스퍼터를 이용하여 두께 100nm의 ITO를 증착하였다.
하기 표 1에는 실시예 1 내지 5 및 비교예 1의 면저항, 투과율, 헤이즈, 표면조도(Ra)를 측정하여 기재하였다.
표 1
면저항(Ω/□) 투과율(%) 헤이즈(%) 표면조도(nm)
실시예 1 8.1 79.6 1.71 64
실시예 2 7.8 77.3 1.80 58
실시예 3 6.0 73.7 1.52 30
실시예 4 5.5 78.7 1.39 28
실시예 5 3.9 81.3 1.62 35
비교예 1 47 88.3 1.40 100
상기 표 1에서 보는 바와 같이 본 발명의 제조방법에 의해 제조된 하이브리드 투명전극은 전도층이 없는 전극 패턴(비교예 1)에 비하여 현저히 낮은 면저항을 가져, 전기전도도가 우수함을 알 수 있었다.
또한, 실시예의 비교예 1에 비하여 투과율과 헤이즈는 다소 떨어지나 투명전극용 필름으로 투과율과 헤이즈 값으로 문제가 없이 투명전극을 구현할 수 있다.
특히, 실시예에 의한 투명전극 필름은 표면조도가 최소 28nm로 매우 균일한 표면저도를 갖는 전극을 형성할 수 있는데 반해, 비교예 1의 경우 표면조도가 100nm로 균일한 표면의 형성이 어려워, 전극 간의 접촉 정도가 현저히 떨어짐을 예상할 수 있었다.
하기 표 2에는 실시예 4 및 비교예 2의 면저항, 투과율, 헤이즈, 표면조도(Ra)를 측정하여 기재하였다. 각 평가 항목에 대하여 ITO를 증착하기 전과 증착한 후의 데이터를 별도로 측정하였으며, ITO 증착 전·후의 변화율을 함께 기재하였다.
표 2
면저항 (Ω/□) 투과율 (%) 헤이즈 (%) 표면조도 (nm)
ITO 증착 변화율(%) ITO 증착 변화율(%) ITO 증착 변화율(%) ITO 증착 변화율(%)
실시예 4 34 5.5 -84 89.2 78.7 -12 1.40 1.39 -0.7 47 28 -40
비교예 2 3.8 1.7 -55 0.2 0.3 50 11.11 10.00 -10 22.9 18.0 -21
하기 표 3은 하이브리드 투명 전극에서 에칭액에 의한 에칭을 효과를 알아보기 위하여, 실시예 4에서 ITO 증착하기 전에 에칭 전·후의 면저항, 투과율, 헤이즈, 표면조도(Ra)를 측정하였으며 각 평가항목의 에칭 전·후의 변화율을 함께 기재하였다.
표 3
면저항 (Ω/□) 투과율 (%) 헤이즈 (%) 표면조도 (nm)
에칭 변화율(%) 에칭 변화율(%) 에칭 변화율(%) 에칭 변화율(%)
실시예 4 3.8 31 715 0.2 88.8 44300 11.11 1.48 -87 23 48 109
하기 표 4는 본 발명의 하이브리드 투명전극의 굽힘성을 알아보고자, 실시예의 하이브리드 투명전극을 직경이 10mm인 벤딩테스트기를 이용하여 3000회 벤딩 테스트 후의 초기효율 대비 효율 감소율(%)을 측정하였다.
표 4
굽힘성(bending property)(Ω, 3000회, 10mm)
전(R0) 후(R) [(R- R0)/ R0]x100 (%)
실시예 1 6.3 8.0 27
실시예 2 6.6 9.2 39
실시예 3 6.7 18.6 178
실시예 4 4.9 18.5 194
실시예 5 4.0 14.6 268
실시예에 의해 제조된 투명전극에 벤딩 테스트를 시행하였을 때 기존의 하이브리드 전극에 비하여 성능 안정성을 보였다.
즉, 본 발명의 투명전극은 기계적 물성 및 벤딩 특성이 우수하여 내구성을 가지는 플렉서블 디스플레이에도 적용이 용이하다.
도 3 내지 7은 전도층의 두께에 따른 면저항, 투과율, 헤이즈, 표면조도, 굽힘성(bending property)를 측정한 그래프이다. 해당 그래프에서는 전도층의 전도성 물질로 ITO를 사용하였다.
도 8은 실시예 및 비교예에 의해 제조된 하이브리드 투명전극의 단면도를 촬영한 SEM 이미지이다.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가지는 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.
본 발명의 하이브리드 투명전극에 의하면 표면 특성이 우수하고 전기적 특성이 우수한, 금속 미세 전극 패턴 상에 전도층을 형성한 하이브리드 형태의 투명전극을 제공할 수 있다.

Claims (29)

  1. 홈을 갖는 기재의 상기 홈에 전도성 금속 잉크 조성물이 채워지도록 충진하는 잉크 조성물 충진단계;
    상기 전도성 금속 잉크 조성물이 상기 홈에 충진되면서 상기 기재의 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 잔류 잉크 조성물 충진단계; 및
    상기 전극 패턴 상에 전도성 물질이 포함된 전도층을 형성하는 전도층 형성단계;를 포함하는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  2. 제 1항에 있어서,
    상기 전도성 금속 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이크, 나노 입자 또는 나노와이어 중 적어도 하나를 포함하는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  3. 제 1항에 있어서,
    상기 잉크 조성물 충진단계는, 잉크젯 방법, 평판 스크린법, 스핀 코팅법, 바 코터법, 롤 코팅법, 플로우 코팅법, 닥터 블레이드, 디스펜싱, 그라비아 프린팅법 또는 플렉소 프린팅법으로 상기 전도성 금속 잉크 조성물이 채워지는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  4. 제 1항에 있어서,
    상기 잔류 잉크 조성물 충진단계는 상기 잉크 조성물 충진단계에서 상기 전도성 잉크 조성물이 상기 홈에 충진되면서 상기 표면 상에 남아있는 상기 잔류 전도성 금속 잉크 조성물을 에칭액으로 용해시켜, 용해된 상기 잔류 전도성 금속 잉크 조성물이 상기 홈에 채워지는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  5. 제 4항에 있어서,
    상기 에칭액은 상기 기재 표면에 도포되어 상기 잔류 전도성 금속 잉크 조성물을 용해시키는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  6. 제 5항에 있어서,
    상기 에칭액은 평판 스크린법, 스핀 코팅법, 롤 코팅법, 플로우 코팅법, 닥터 블레이드, 그라비아 프린팅법 또는 플렉소 프린팅법으로 도포되는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  7. 제 4항에 있어서,
    상기 에칭액은 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열 화합물, 산-염기 염복합체, 산-염기-알코올계 복합체 또는 머캡토 계열 화합물 중 적어도 하나 및 산화제를 포함하는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  8. 제 4항에 있어서,
    상기 에칭액에 의해 용해된 상기 잔류 전도성 금속 잉크 조성물을 상기 홈으로 밀어넣음으로써, 상기 홈에 상기 잔류 전도성 금속 잉크 조성물이 채워지는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  9. 제 4항에 있어서,
    상기 에칭액에 의해 용해된 상기 잔류 전도성 금속 잉크 조성물은 닥터 블레이드 또는 브러쉬를 이용하여 상기 홈으로 밀어넣는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  10. 제 1항에 있어서,
    상기 전도성 물질은 금속 산화물, CNT, 그래핀 또는 전도성 고분자인 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  11. 제 1항에 있어서,
    상기 전도층은 상기 전도성 물질을 증착 또는 프린팅하여 형성되는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  12. 제 1항에 있어서,
    상기 전도층의 두께는 상기 홈의 높이 대비 0.5 내지 2.0배인 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  13. 표면에 홈이 형성된 기재가 마련되고, 상기 기재의 표면을 소수성으로 플라즈마 처리하는 기재 표면 처리단계;
    상기 홈이 전도성 금속 잉크 조성물로 채워지도록 충진하는 잉크 조성물 충진단계;
    상기 홈이 충진되면서 상기 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 잔류 잉크 조성물 충진단계; 및
    상기 전극 패턴 상에 전도성 물질이 포함된 전도층을 형성하는 전도층 형성단계;를 포함하는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  14. 제 13항에 있어서,
    상기 전도성 금속 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이크, 나노 입자 또는 나노와이어 중 적어도 하나를 포함하는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  15. 제 13항에 있어서,
    상기 잔류 잉크 조성물 충진단계는 상기 잉크 조성물 충진단계에서 상기 홈이 충진되면서 상기 표면 상에 남아있는 상기 잔류 전도성 금속 잉크 조성물을 에칭액으로 용해시켜 용해된 상기 잔류 전도성 금속 잉크 조성물이 상기 홈에 채워지는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  16. 제 15항에 있어서,
    상기 에칭액에 의해 용해된 상기 잔류 전도성 금속 잉크 조성물을 닥터 블레이드 또는 브러쉬를 이용하여 상기 홈으로 밀어넣음으로써, 상기 홈에 상기 잔류 전도성 금속 잉크 조성물이 채워지는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  17. 제 13항에 있어서,
    상기 전도층은 금속 산화물, CNT, 그래핀 또는 전도성 고분자를 증착 또는 프린팅하여 형성되는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  18. 표면에 홈이 형성된 기재가 마련되고, 상기 홈이 전도성 금속 잉크 조성물로 채워지도록 충진하는 제 1 잉크 조성물 충진단계;
    상기 홈이 충진되면서 상기 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 제 1 잔류 잉크 조성물 충진단계;
    상기 홈이 전도성 금속 잉크 조성물로 채워지도록 충진하는 제 2 잉크 조성물 충진단계;
    상기 홈이 충진되면서 상기 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 제 2 잔류 잉크 조성물 충진단계; 및
    상기 전극 패턴 상에 전도성 물질이 포함된 전도층을 형성하는 전도층 형성단계;를 포함하는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  19. 제 18항에 있어서,
    상기 전도성 금속 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이크, 나노 입자 또는 나노와이어 중 적어도 하나를 포함하는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  20. 제 19항에 있어서,
    상기 금속 전구체는 MnX이고,
    여기서 M은 Ag, Au, Cu, Ni, Co, Pd, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb 또는 Bi 중 하나이고 n은 1내지 10의 정수이며, X는 산소, 황, 할로겐, 시아노, 시아네이트, 카보네이트, 니트레이트, 나이트레이트, 설페이트, 포스페이트, 티오시아네이트, 클로레이트, 피클로레이트, 테트라플포로 보레이트, 아세틸아세토네이트, 머캡토, 아미드, 알콕사이드 또는 카복시레이트 중 하나인 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  21. 제 18항에 있어서,
    상기 전도층은 상기 전도성 물질을 증착 또는 프린팅하여 형성되는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  22. 제 18항에 있어서,
    상기 전도층는 10 내지 500nm의 두께로 형성되는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  23. 표면에 홈이 형성된 기재가 마련되고, 상기 홈이 전도성 금속 잉크 조성물로 채워지도록 충진하는 잉크 조성물 충진단계;
    상기 홈이 충진되면서 상기 표면 상에 남아있는 잔류 전도성 금속 잉크 조성물을 상기 홈에 채워지도록 충진하여 전극 패턴을 형성하는 잔류 잉크 조성물 충진단계;
    상기 전극 패턴을 50 내지 200℃의 분위기에서 소성하는 소성단계; 및
    상기 전극 패턴 상에 전도성 물질이 포함된 전도층을 형성하는 전도층 형성단계;를 포함하는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  24. 제 23항에 있어서,
    상기 잔류 잉크 조성물 충진단계를 2회 이상 반복하여 실시하는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  25. 제 23항에 있어서,
    상기 잔류 잉크 조성물 충진단계는 상기 잉크 조성물 충진단계에서 상기 홈이 충진되면서 상기 표면 상에 남아있는 상기 잔류 전도성 금속 잉크 조성물을 에칭액으로 용해시켜 용해된 상기 잔류 전도성 금속 잉크 조성물이 상기 홈에 채워지는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  26. 제 25항에 있어서,
    상기 에칭액은 평판 스크린법, 스핀 코팅법, 롤 코팅법, 플로우 코팅법, 닥터 블레이드, 그라비아 프린팅법 또는 플렉소 프린팅법으로 상기 기재 표면 전면에 도포되어 잔류 전도성 금속 잉크 조성물을 용해시키는 것을 특징으로 하는 하이브리드 투명전극의 제조방법.
  27. 메쉬 형태로 홈이 형성된 기재부;
    상기 홈이 전도성 금속 잉크 조성물로 채워진 금속 메시 전극;
    상기 금속 메시 전극 상에 형성된 금속산화물층;을 포함하는 것을 특징으로 하는 하이브리드 투명전극.
  28. 제 27항에 있어서,
    상기 전도성 금속 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이크, 나노 입자 또는 나노와이어 중 적어도 하나를 포함하는 것을 특징으로 하는 하이브리드 투명전극.
  29. 제 27항에 있어서,
    상기 금속산화물층은 산화주석, 산화인듐주석, 산화안티몬주석, 산화인듐갈륨, 산화인듐아연 또는 산화아연을 포함하는 것을 특징으로 하는 하이브리드 투명전극.
PCT/KR2014/004432 2013-05-16 2014-05-16 하이브리드 투명전극의 제조방법 및 하이브리드 투명전극 WO2014185756A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016513883A JP6313429B2 (ja) 2013-05-16 2014-05-16 ハイブリッド透明電極の製造方法
US14/891,448 US9524046B2 (en) 2013-05-16 2014-05-16 Method for manufacturing hybrid transparent electrode and hybrid transparent electrode
CN201480039218.6A CN105393314B (zh) 2013-05-16 2014-05-16 混合型透明电极的制造方法及混合型透明电极

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130056030 2013-05-16
KR10-2013-0056030 2013-05-16

Publications (1)

Publication Number Publication Date
WO2014185756A1 true WO2014185756A1 (ko) 2014-11-20

Family

ID=51898651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004432 WO2014185756A1 (ko) 2013-05-16 2014-05-16 하이브리드 투명전극의 제조방법 및 하이브리드 투명전극

Country Status (5)

Country Link
US (1) US9524046B2 (ko)
JP (1) JP6313429B2 (ko)
KR (1) KR101668326B1 (ko)
CN (1) CN105393314B (ko)
WO (1) WO2014185756A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105623136A (zh) * 2016-03-17 2016-06-01 中国科学院深圳先进技术研究院 一种聚合物导电复合材料及其制备方法
WO2017047909A1 (ja) * 2015-09-17 2017-03-23 株式会社カネカ 導電性複合材料及びその製造方法{conductive composite material and manufacturing method thereof}
JP2017076187A (ja) * 2015-10-13 2017-04-20 大日本印刷株式会社 金属パターン基板の製造方法、金属パターン基板、及び、タッチ位置検出機能付き表示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100922810B1 (ko) * 2007-12-11 2009-10-21 주식회사 잉크테크 흑화 전도성 패턴의 제조방법
GB201409101D0 (en) * 2014-05-22 2014-07-02 Cambridge Display Tech Ltd Method
KR101636064B1 (ko) * 2015-02-23 2016-07-06 (주)뉴옵틱스 터치패널용 센서시트
JP6496775B2 (ja) * 2017-05-18 2019-04-03 田中貴金属工業株式会社 金属配線を備える導電基板、及び、該導電基板の製造方法
JP6983633B2 (ja) 2017-11-24 2021-12-17 浜松ホトニクス株式会社 ウェハの検査方法、及びウェハ
CN108878370A (zh) * 2018-06-27 2018-11-23 深圳市华星光电技术有限公司 一种透明导电电极及其制备方法、显示装置
JP7120890B2 (ja) * 2018-11-16 2022-08-17 田中貴金属工業株式会社 金属配線を備える導電基板及び該導電基板の製造方法、並びに金属配線形成用の金属インク
CN110162220B (zh) * 2019-05-28 2022-10-18 业成科技(成都)有限公司 触控装置及其制作方法
CN114435458A (zh) * 2022-01-27 2022-05-06 廊坊市金色时光科技发展有限公司 一种传感器垫及其制作方法
KR102710204B1 (ko) 2022-07-08 2024-09-25 전북대학교산학협력단 비이송식, 이송식 및 혼성식 모드 운전이 가능한 역극성 공동형 플라즈마 토치
CN116301442A (zh) * 2023-05-24 2023-06-23 浙江大华技术股份有限公司 银纳米线触控电极单元及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420032B1 (en) * 1999-03-17 2002-07-16 General Electric Company Adhesion layer for metal oxide UV filters
JP2007243192A (ja) * 2006-03-10 2007-09-20 Seiko Epson Corp 電子装置の製造方法及びエンボス加工具
JP2008277202A (ja) * 2007-05-03 2008-11-13 Aitesu:Kk 多層基板およびその製造方法
KR20120064648A (ko) * 2009-09-14 2012-06-19 파나소닉 주식회사 표시 패널 장치 및 표시 패널 장치의 제조 방법
KR20130021170A (ko) * 2011-08-22 2013-03-05 전자부품연구원 2층 구조의 하이브리드 투명 전극 및 그 제조 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3642110B2 (ja) * 1996-06-11 2005-04-27 松下電器産業株式会社 電子部品の製造方法
WO2004112151A2 (en) * 2003-06-12 2004-12-23 Patterning Technologies Limited Transparent conducting structures and methods of production thereof
KR100667958B1 (ko) 2005-04-14 2007-01-11 주식회사 잉크테크 은 잉크 조성물
KR101210986B1 (ko) 2009-03-19 2012-12-11 주식회사 엘지화학 백라이트 유닛용 집광 필름
KR20110100034A (ko) 2010-03-03 2011-09-09 미래나노텍(주) 정전 용량 방식 터치 패널 및 그 제조방법
KR101051448B1 (ko) * 2010-10-26 2011-07-22 한국기계연구원 인쇄기반 금속 배선을 이용한 투명전극 제조 방법 및 그 투명전극
EP2506330A1 (en) * 2011-04-01 2012-10-03 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Apparatus and method for providing an embedded structure and for providing an electro-optical device including the same
US9164630B2 (en) * 2012-09-26 2015-10-20 Eastman Kodak Company Display apparatus with pixel-aligned ground mesh
KR101555015B1 (ko) * 2012-12-28 2015-09-22 주식회사 잉크테크 전도성 패턴의 형성방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420032B1 (en) * 1999-03-17 2002-07-16 General Electric Company Adhesion layer for metal oxide UV filters
JP2007243192A (ja) * 2006-03-10 2007-09-20 Seiko Epson Corp 電子装置の製造方法及びエンボス加工具
JP2008277202A (ja) * 2007-05-03 2008-11-13 Aitesu:Kk 多層基板およびその製造方法
KR20120064648A (ko) * 2009-09-14 2012-06-19 파나소닉 주식회사 표시 패널 장치 및 표시 패널 장치의 제조 방법
KR20130021170A (ko) * 2011-08-22 2013-03-05 전자부품연구원 2층 구조의 하이브리드 투명 전극 및 그 제조 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047909A1 (ja) * 2015-09-17 2017-03-23 株式会社カネカ 導電性複合材料及びその製造方法{conductive composite material and manufacturing method thereof}
JP2017076187A (ja) * 2015-10-13 2017-04-20 大日本印刷株式会社 金属パターン基板の製造方法、金属パターン基板、及び、タッチ位置検出機能付き表示装置
CN105623136A (zh) * 2016-03-17 2016-06-01 中国科学院深圳先进技术研究院 一种聚合物导电复合材料及其制备方法
CN105623136B (zh) * 2016-03-17 2018-06-19 中国科学院深圳先进技术研究院 一种聚合物导电复合材料及其制备方法

Also Published As

Publication number Publication date
CN105393314A (zh) 2016-03-09
JP2016527659A (ja) 2016-09-08
US9524046B2 (en) 2016-12-20
KR20140136386A (ko) 2014-11-28
US20160132141A1 (en) 2016-05-12
JP6313429B2 (ja) 2018-04-18
KR101668326B1 (ko) 2016-10-25
CN105393314B (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2014185756A1 (ko) 하이브리드 투명전극의 제조방법 및 하이브리드 투명전극
WO2014171798A1 (ko) 디스플레이용 투명전극 필름 제조방법 및 디스플레이용 투명전극 필름
WO2014185755A1 (ko) 투명전극 필름의 제조방법
WO2014104846A1 (ko) 전도성 패턴의 형성방법, 전도성 필름, 전도성 패턴 및 투명 전도성 필름
KR101417254B1 (ko) 도전성 잉크 조성물, 이를 이용한 인쇄 방법 및 이에 의하여 제조된 도전성 패턴
US5403616A (en) Method for forming patterned transparent conducting film
JP5612767B2 (ja) 透明導電膜の製造方法およびそれにより製造された透明導電膜
WO2014126448A1 (ko) 정렬된 산화물 반도체 와이어 패턴의 제조방법 및 이를 이용한 전자소자
WO2013169087A1 (ko) 전도성 고분자 잉크 조성물 및 이를 포함하는 유기태양전지
Kwon et al. Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering
WO2014204265A1 (ko) 전도성 잉크 조성물, 이를 포함하는 투명 전도성 필름 및 투명 전도성 필름의 제조방법
WO2016024823A1 (ko) 직교 패터닝 방법
KR20130092857A (ko) 레이저 에칭을 이용한 패턴 형성 방법
WO2014178640A1 (ko) 흑화 전도성 패턴의 형성방법 및 흑화 전도성 잉크 조성물
WO2016148456A1 (ko) 3차원 나노 리플 구조의 금속산화물 박막, 이의 제조방법 및 이를 포함하는 유기태양전지
WO2019177223A1 (ko) 복수의 전도성 처리를 포함하는 고전도성 고분자 박막의 제조 방법
WO2017073956A1 (ko) 광소결용 잉크조성물 및 이의 제조방법
WO2016052878A1 (ko) 복합광원을 이용한 금속 나노와이어와 그래핀 옥사이드 기반의 투명전극 및 이의 제조방법
WO2014196809A1 (ko) 편광필름의 제조방법
WO2013022136A1 (ko) 초고밀도 미세 회로 패턴 형성이 가능한 전극용 광 경화 잉크젯 잉크의 제조 방법
WO2020060173A1 (ko) 소자의 제조방법
WO2017039339A1 (ko) 탄화불소 박막의 제조방법
KR101468759B1 (ko) 도전성 피막의 제조방법, 및 이를 위한 프라이머 조성물
US20240357742A1 (en) Printed product, preparation method therefor, and use thereof
KR20090112894A (ko) 유기 전극용 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480039218.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14891448

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14798665

Country of ref document: EP

Kind code of ref document: A1