WO2014171798A1 - 디스플레이용 투명전극 필름 제조방법 및 디스플레이용 투명전극 필름 - Google Patents

디스플레이용 투명전극 필름 제조방법 및 디스플레이용 투명전극 필름 Download PDF

Info

Publication number
WO2014171798A1
WO2014171798A1 PCT/KR2014/003438 KR2014003438W WO2014171798A1 WO 2014171798 A1 WO2014171798 A1 WO 2014171798A1 KR 2014003438 W KR2014003438 W KR 2014003438W WO 2014171798 A1 WO2014171798 A1 WO 2014171798A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electrode pattern
insulating layer
ink composition
release film
Prior art date
Application number
PCT/KR2014/003438
Other languages
English (en)
French (fr)
Other versions
WO2014171798A9 (ko
Inventor
정광춘
유지훈
성준기
한대상
Original Assignee
주식회사 잉크테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 잉크테크 filed Critical 주식회사 잉크테크
Priority to US14/785,281 priority Critical patent/US9832881B2/en
Priority to JP2016508903A priority patent/JP6574757B2/ja
Priority to CN201480034178.6A priority patent/CN105359226B/zh
Publication of WO2014171798A1 publication Critical patent/WO2014171798A1/ko
Publication of WO2014171798A9 publication Critical patent/WO2014171798A9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/103Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding or embedding conductive wires or strips
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/002Etching of the substrate by chemical or physical means by liquid chemical etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0055After-treatment, e.g. cleaning or desmearing of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/007Manufacture or processing of a substrate for a printed circuit board supported by a temporary or sacrificial carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination

Definitions

  • the present invention relates to a method for manufacturing a transparent electrode film for a display and a transparent electrode film for a display. More particularly, a conductive electrode composition is printed on a release film to form a fine electrode pattern, and the release film is removed to form a transparent electrode film.
  • the present invention relates to a transparent electrode film for a display which has excellent surface roughness and low resistance.
  • the electrode material for the display should not only exhibit a transparent and low resistance value, but also have high flexibility to be mechanically stable, and have a coefficient of thermal expansion similar to that of the substrate. Even if overheated or hot, there should be no short-circuit or change in surface resistance.
  • Oxides, carbon nanotubes (CNTs), graphene, polymer conductors, and metal nanowires are known as materials that can be used as transparent conductive materials.
  • ITO indium tin oxide
  • the method of forming and using a thin film layer in a typical manner is a commonly used method or a ceramic material, so the resistance to bending or warping of the substrate is low, so that cracks are easily formed and propagated, thereby deteriorating the characteristics of the electrode and replacement of tin dopant. Difficulty in activation and defects with amorphous has a problem of showing a high sheet resistance.
  • a transparent conductive film is manufactured using materials such as polyacetylene, polypyrrole, polyphenol, polyaniline, and PEDOT: PSS.
  • Most polymer conductors have low solubility, are difficult to process, and have an energy band gap of less than 3 eV. I have a problem.
  • the sheet resistance is high, so the sheet resistance is high for the actual transparent electrode.
  • most polymer conductors lack air stability, they are rapidly oxidized in the air, thereby degrading electrical conductivity.
  • an object of the present invention is to solve such a conventional problem, by printing a conductive ink composition on a release film to form a fine electrode pattern and removing the release film to form a transparent electrode film, excellent surface roughness
  • An object of the present invention is to provide a method for manufacturing a transparent electrode film for a display and a transparent electrode film for a display.
  • a conductive ink composition is printed on a release film to form a fine electrode pattern, and then a base layer is formed to provide a method of manufacturing a transparent electrode film for a display having excellent adhesion and low resistance and a transparent electrode film for a display.
  • a base layer is formed to provide a method of manufacturing a transparent electrode film for a display having excellent adhesion and low resistance and a transparent electrode film for a display.
  • the residue of the conductive ink composition which may occur in the non-fine electrode pattern region may be removed to form a low-resistance fine pattern that was difficult to implement in the prior art. It is an object of the present invention to provide an excellent method for manufacturing a transparent electrode film for display and a transparent electrode film for display.
  • an object of the present invention is to provide a method of manufacturing a hybrid transparent electrode film, in which electrical conductivity is remarkably improved by forming a conductive material on a fine electrode pattern after removing the release film.
  • a method of manufacturing a transparent electrode film for a display is an electrode pattern forming step of printing a fine electrode pattern using a conductive ink composition on a release film, the electrode pattern is formed
  • the release film may be formed by a release film preparation step of preparing a release film by applying a silicone-based or acrylic release agent on a heat-resistant film.
  • the conductive ink composition is preferably made of a conductive metal composition containing at least one of a metal complex compound, a metal precursor, a spherical metal particle, a metal plate, or a metal nanoparticle.
  • the micro-electrode pattern is printed on the surface of the release agent by gravure printing, flexographic printing, offset printing, reverse offset printing, dispensing, screen printing, rotary screen printing or inkjet printing.
  • the conventional printing method belonging to the technical field can be used.
  • the insulating layer may be formed by applying the insulating resin on the entire surface to fill the grooves between the fine electrode patterns.
  • the height of the insulating layer between the fine electrode patterns is preferably the same as or higher than the height of the fine electrode pattern.
  • the insulating resin may be applied two or more times to form two or more insulating layers.
  • the substrate may be laminated by thermal compression on the insulating layer, or may be laminated by adhesion with an adhesive.
  • the release film removing step it is preferable to further include a residual conductive ink composition processing step of removing the residual conductive ink composition remaining between the fine electrode pattern while printing the fine electrode pattern in the electrode pattern forming step,
  • the residual conductive ink composition treatment step may be removed by dissolving the residual conductive ink composition with an etchant and pushing out the dissolved residual conductive ink composition using a residue treatment member.
  • the residue treatment member is preferably a doctor blade, a wiper or a brush, and the removal method is not limited thereto.
  • the etching solution may be ammonium carbamate series, ammonium carbonate series, ammonium bicarbonate series, carboxylic acid series, lactone series, lactam series, cyclic acid anhydride series compounds, acid-base salt complexes, acid-base-alcohol complexes or mercapto And at least one of the class compounds and the oxidant.
  • a preferred embodiment of the present invention may further include a conductive material forming step of manufacturing a hybrid transparent electrode film by depositing or printing a conductive material on the fine electrode pattern from which the release film is removed, wherein the conductive material is ITO. , AZO, CNT, graphene or a conductive polymer.
  • a method of manufacturing a transparent electrode film for display the electrode pattern forming step of printing a fine electrode pattern by using a conductive ink composition on a release film, the insulating so as to fill the groove between the fine electrode pattern Insulating layer forming step of applying a resin to the entire surface to form an insulating layer, a base layer forming step of forming a base material layer by laminating a substrate on the insulating layer and a release film removal step of removing the release film It is done.
  • the height of the insulating layer of the groove between the fine electrode patterns is preferably the same as or higher than the height of the fine electrode pattern.
  • the method may further include a remaining conductive ink composition treatment step of removing the ink composition by pushing it out.
  • the conductive material forming step of manufacturing a hybrid transparent electrode film may be further performed by stacking a conductive material on the fine electrode pattern from which the release film is removed.
  • a method of manufacturing a transparent electrode film for display uses an electrode pattern forming step of printing a fine electrode pattern using a conductive ink composition on a release film, wherein the fine electrode pattern is formed on the release film.
  • processing the residual conductive ink composition to dissolve the residual conductive ink composition remaining between the fine electrode patterns with an etchant while printing the fine electrode pattern in the electrode pattern forming step, and to remove the remaining conductive ink composition by pushing the dissolved conductive ink composition.
  • the insulating resin is a heat or ultraviolet curable resin, but is not limited thereto.
  • the etching solution may be ammonium carbamate series, ammonium carbonate series, ammonium bicarbonate series, carboxylic acid series, lactone series, lactam series, cyclic acid anhydride series compounds, acid-base salt complexes, acid-base-alcohol complexes or mercapto It is preferred to include at least one of the class compounds and the oxidizing agent.
  • the dissolved residual conductive ink composition may be removed by one or more methods of a doctor blade, a wiper or a brush.
  • a method of manufacturing a transparent electrode film for a display includes an electrode pattern forming step of printing a fine electrode pattern using a conductive ink composition on a release film, and an insulating layer on the release film on which the electrode pattern is formed. Forming an insulating layer, forming a substrate layer by laminating a substrate on the insulating layer, forming a substrate layer, removing a release film to remove the release film, and printing the fine electrode pattern in the electrode pattern forming step. While the remaining conductive ink composition remaining between the fine electrode patterns is dissolved with an etching solution, and the remaining conductive ink composition is removed by pushing the dissolved residual conductive ink composition and the release film is removed on the fine electrode pattern. Deposition or printing of a conductive material to form a hybrid transparent electrode film And in that it comprises a conductive material forming step, characterized.
  • the release film is formed by a release film preparation step of preparing a release film by applying a silicone-based or acrylic release agent on a heat-resistant film, the type of release agent is not limited thereto.
  • the conductive material is preferably ITO, AZO, CNT, graphene or conductive polymer.
  • Transparent electrode film for display is an electrode pattern formed by printing a conductive ink composition on a release film in a fine electrode pattern; An insulating layer formed by coating an insulating resin on the release film on which the electrode pattern is formed; And a base layer laminated on the other side of the insulating layer opposite to one side of the insulating layer in contact with the release film, wherein the electrode pattern is positioned to be embedded in the insulating layer.
  • One surface may be exposed to the surface of one side of the insulating layer to be in contact with the release film.
  • the transparent electrode film for a display comprises an electrode pattern formed by printing a conductive ink composition on a release film as a fine electrode pattern; An insulating layer formed by coating an insulating resin on the entire surface of the micro electrode pattern so as to fill the grooves between the fine electrode patterns; And a base layer laminated on the other side of the insulating layer opposite to one side of the insulating layer in contact with the release film, wherein the electrode pattern is positioned to be embedded in the insulating layer.
  • One surface may be exposed to the surface of one side of the insulating layer to be in contact with the release film.
  • Transparent electrode film for a display is an electrode pattern formed by printing a conductive ink composition on a release film in a fine electrode pattern; An insulating layer formed by coating an insulating resin on the release film on which the fine electrode patterns are formed to cover the fine electrode patterns; And a base layer laminated on the other side of the insulating layer opposite to one side of the insulating layer in contact with the release film, wherein the electrode pattern is positioned to be embedded in the insulating layer.
  • one surface of the electrode pattern is exposed to the surface of the one side of the insulating layer and positioned in contact with the release film, and the remaining conductive ink composition remaining between the fine electrode patterns from which the release film is removed is dissolved with an etching solution. And the residual conductive ink composition can be removed by pushing the dissolved residual conductive ink composition.
  • Transparent electrode film for a display is an electrode pattern formed by printing a conductive ink composition on a release film in a fine electrode pattern; An insulating layer formed by coating an insulating resin on the release film on which the electrode pattern is formed; And a base layer laminated on the other side of the insulating layer opposite to one side of the insulating layer in contact with the release film, wherein the electrode pattern is positioned to be embedded in the insulating layer.
  • the conductive material may further include a conductive material formed on the fine electrode pattern from which the residual conductive ink composition has been removed by dissolving the same, and pushing out the dissolved conductive ink composition.
  • the conductive ink composition may be formed of a conductive metal composition including at least one of a metal complex compound, a metal precursor, a spherical metal particle, a metal plate, and a metal nanoparticle.
  • the insulating resin may be a heat or ultraviolet curable resin.
  • the etching solution may be ammonium carbamate series, ammonium carbonate series, ammonium bicarbonate series, carboxylic acid series, lactone series, lactam series, cyclic acid anhydride series compounds, acid-base salt complexes, acid-base-alcohol complexes or mercapto And at least one of the class compounds and the oxidant.
  • the conductive material may be ITO, AZO, CNT, graphene or conductive polymer.
  • the transparent electrode film for display may have a surface roughness Ra of 0.05 to 0.3 ⁇ m.
  • the transparent electrode film for a display may have a sheet resistance of 10 mPa / sq to 100 kPa / sq.
  • the transparent electrode film for display may have a transmittance of 60 to 99%.
  • the method for manufacturing a transparent electrode film for display and the transparent electrode film for display of the present invention has one or more of the following effects.
  • a transparent electrode film By manufacturing a transparent electrode film by printing a conductive ink composition on a release film using a release film to form a fine electrode pattern, the fine electrode pattern is exposed to a surface in a direction in which the release film is removed, so that contact between electrodes is prevented. It is possible to provide a method for producing a transparent electrode film for a display and a transparent electrode film for a display having excellent surface roughness.
  • the microelectrode pattern and the insulating layer are sequentially formed on the release film, and the base layer is formed by thermal compression or adhesion by an adhesive, a method of manufacturing a transparent electrode film for display with improved adhesion between the fine electrode pattern and the base layer. And a transparent electrode film for display.
  • a conductive material including a metal complex compound or a metal precursor may be used to simultaneously improve optical, electrical, and mechanical properties.
  • the transmittance and withstand voltage may be improved by dissolving and removing the fine residual metal composition generated on the insulating layer instead of the position where the fine electrode pattern is formed in the etching solution.
  • the hybrid projection electrode film in which a conductive material such as ITO or AZO is formed on the microelectrode pattern may be applied to a field requiring high conductivity and high reliability because of excellent interface characteristics between the two electrodes.
  • FIG. 1 is a flowchart sequentially showing a method of manufacturing a transparent electrode film for a display according to an embodiment of the present invention.
  • FIG. 2 is a flowchart sequentially showing a method of manufacturing a transparent electrode film for a display according to another embodiment of the present invention.
  • 3A to 3J are cross-sectional views sequentially illustrating a method of manufacturing a transparent electrode film for a display according to an embodiment of the present invention.
  • Figure 4 is a SEM image of the transparent electrode film prepared by Examples 1 to 5.
  • spatially relative terms below “, “ beneath “, “ lower”, “ above “, “ upper” It may be used to easily describe the correlation of components with other components. Spatially relative terms are to be understood as including terms in different directions of the component in use or operation in addition to the directions shown in the figures. For example, when flipping a component shown in the drawing, a component described as “below” or “beneath” of another component may be placed “above” the other component. Can be. Thus, the exemplary term “below” can encompass both an orientation of above and below. The components can be oriented in other directions as well, so that spatially relative terms can be interpreted according to the orientation.
  • each component is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size and area of each component does not necessarily reflect the actual size or area.
  • a release film preparing step (S10), an electrode pattern forming step (S20), an insulating layer forming step (S30), and a base layer forming step ( S40) and the release film removing step (S50) is made.
  • Release film preparation step (S10) is a step of preparing a release film coated with a release agent on a heat-resistant film, and preparing a release film to form a fine electrode pattern.
  • the release film may be used a release coat film to control the release force, wherein the release coat film can be prepared by applying a release agent on the heat-resistant film.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PE polyethylene
  • PE polyimide
  • PC polycarbonate
  • present invention is not limited thereto, and heat-resistant films of various materials known in the art may be used.
  • Silicone-based release agent is more effective because it has a heat-resistant property that does not occur severe shrinkage even in the thermal compression process and can easily control the release force, silicon-based release agent is preferred.
  • the release agent may also use various types of release agents known in the art, and in some cases, may be used in combination.
  • the method of applying the release agent on the heat resistant film may include a microgravure coating method, a gravure coating method, a slot die coating method, a reverse kiss or a rotary screen coating method, but is not limited thereto.
  • Electrode pattern forming step (S20) is a step of forming a fine electrode pattern using a conductive ink composition on a release film.
  • the conductive ink composition is printed on the surface in the direction in which the release agent of the release film is applied.
  • the conductive ink composition preferably uses a metal complex compound, a metal precursor, spherical metal particles, metal flakes, or metal nanoparticles, and may be used by mixing two or more kinds according to the material of the conductive material.
  • a metal complex compound or a metal precursor can be used.
  • the metal complex compound or metal precursor may be reduced to prepare nano-sized metal particles, which may be used as a mixture. By using this, it is possible to easily form a nano-sized fine electrode pattern that could not be formed in the prior art.
  • the metal precursor used in the present invention may be represented by the general formula M n X, where M is Ag, Au, Cu, Ni, Co, Pd, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, n is an integer from 1 to 10, X is oxygen, sulfur, halogen, cyano, cyanate , Carbonates, nitrates, nitrates, sulfates, phosphates, thiocyanates, chlorates, picchlorates, tetrafluorophorates, acetylacetonates, mercaptos, amides, alkoxides, carbolates and the like.
  • carboxylic acid metals such as zinc citrate, silver nitrate, copper cyanide, cobalt carbonate, chloride
  • metal compound such as platinum, gold acid, tetrabutoxy titanium, dimethoxyzirconium dichloride, aluminum isopropoxide, vanadium oxide, tantalum methoxide, bismuth acetate, dodecyl mercaptoated gold, indium acetylacetonate, etc. Can be selected together and used together.
  • Common methods for producing metal nanoparticles include physical and chemical methods for physically pulverizing metal lumps.
  • the chemical method is described by aerosol method for the injection of high-pressure gas to powder, pyrolysis method for pyrolysis using metal compound and gas reducing agent, heat evaporation of evaporation material to produce powder Evaporative condensation, sol-gel, hydrothermal synthesis, ultrasonic synthesis, microemulsion, liquid phase reduction, and the like.
  • the liquid phase reduction method using the dispersing agent and the reducing agent which is said to be easy to control the formation of nanoparticles and is considered to be the most economical, is used the most. .
  • the method for producing the nanoparticles by the liquid-phase reduction method is described in Korean Patent Application No. 2006-0074246 filed by the present applicant and the metal nanoparticles described in the patent application has the advantage that the particle size is uniform and the cohesion is minimized
  • the conductive ink containing the metal nanoparticles has an advantage of easily forming a uniform and dense thin film or fine pattern having high conductivity even when fired at a low temperature of 150 ° C. or less for a short time.
  • solvents such as, butanediol, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, reducing agents, surfactants, wetting agents, thixotropic agents, or leveling agents, thickeners, as necessary It may include additives such as.
  • the said binder resin is excellent in the adhesive force with various base materials.
  • the materials that can be used are organic polymer materials such as polypropylene, polycarbonate, polyacrylate, polymethyl methacrylate, cellulose acetate, polyvinyl chloride, polyurethane, polyester, alkyd resin, epoxy resin, feoxy resin, melamine resin , Phenol resins, phenol modified alkyd resins, epoxy modified alkyd resins, vinyl modified alkyd resins, silicone modified alkyd resins, acrylic melamine resins, polyisocyanate resins, epoxy ester resins, and the like. Do not.
  • a solvent may be required to form a uniform thin film.
  • the solvents that can be used include ethanol, isopropanol, alcohols such as butanol, ethylene glycol, glycols such as glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, Acetates such as carbitol acetate, ethyl carbitol acetate, methyl cersolve, butyl cellosolve, diethyl ether, tetrahydrofuran, ethers such as dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1- Ketones such as methyl-2-pyrrolidone, hexane, heptane, dodecane, paraffin oil, hydrocarbons such as mineral splits, aromatics such as benzene, toluene and xylene, and halogens such as chloroform, methylene chlor
  • the printing method of the conductive ink composition is preferably printed on the surface of the release agent by gravure printing, flexo printing, offset printing, reverse offset printing, dispensing, screen printing, rotary screen printing or inkjet printing. Do. In this case, the number of coatings may be repeated one or more times.
  • the insulating layer forming step (S30) is a step of forming an insulating layer on the release film on which the electrode pattern is formed in the electrode pattern forming step (S20).
  • the material which forms the said insulating layer is a composition containing heat or ultraviolet curable resin, and can mix and use a thermosetting resin and an ultraviolet curable resin.
  • the resin composition is not limited, but it is preferable to have excellent heat resistance and light transmittance.
  • the method for forming the insulating layer may be a known method, S-knife coating method, gravure coating method, flexographic coating method, screen coating method, rotary screen coating method, slot die or micro gravure
  • the coating method is preferred, but is not limited thereto.
  • the height of the insulating layer between the fine electrode patterns is equal to or higher than the height of the fine electrode pattern, and it is effective that the height of the fine electrode pattern is 0.1 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the insulating layer may be formed as a single layer, or two or more insulating layers may be formed by applying the curable resin two or more times on the release film on which the fine electrode pattern is formed.
  • Substrate layer forming step (S40) is a step of forming a substrate layer by laminating a substrate on the insulating layer formed in the insulating layer forming step (S30).
  • the substrate may be formed of a transparent material such as a plastic film or glass.
  • the plastic film may be polyimide (PI), polyethylene terephthalate (PET), polyethernaphthalate (PEN), polyethersulfone (PES), nylon (Nylon), polytetrafluoroethylene (PTFE), polyether ether Ketones (PEEK), polycarbonates (PC), or polyarylates (PAR) can be used.
  • PI polyimide
  • PET polyethylene terephthalate
  • PEN polyethernaphthalate
  • PES polyethersulfone
  • nylon ylon
  • PTFE polyether ether Ketones
  • PC polycarbonates
  • PAR polyarylates
  • a plastic film, a glass substrate, etc. can be used, It is not limited to this.
  • a thermal bonding method or an adhesive method using an adhesive may be used.
  • the substrate may be pressed and laminated at a temperature of 100 to 300 ° C, preferably 120 to 200 ° C, more preferably 140 to 175 ° C.
  • the insulating layer may be used by laminating the substrate in a non-stage semi-cured state.
  • the substrate is laminated by thermally compressing the substrate after the fine electrode pattern is printed, the adhesion is easier and the adhesion is superior than in the case of forming the electrode pattern on the substrate layer, thereby improving durability as a transparent electrode film.
  • Removing the release film (S50) is a step of manufacturing the final transparent electrode film by removing the release film.
  • the method further includes a step of processing the remaining conductive ink composition (S60) or forming the conductive material (S70). You may.
  • a conductive material forming step may be performed immediately without treating the conductive ink composition, or the transparent conductive electrode may be directly processed through the remaining conductive ink composition processing step. Can be used as a film.
  • both the conductive ink composition treatment step and the conductive material forming step may be sequentially applied.
  • Residual conductive ink composition treatment step (S60) is a step of removing the conductive ink composition remaining between the fine electrode pattern region, it is possible to improve the transmittance as a transparent electrode film by removing the residual conductive ink composition.
  • the conductive ink composition may remain in a region other than the position where the fine electrode pattern is formed.
  • the remaining conductive ink composition is present on the insulating layer, and the fine metal composition included in the remaining conductive ink composition degrades the transmittance of the transparent electrode film or causes problems with the breakdown voltage characteristics.
  • the conductive ink composition it is possible to significantly improve the characteristics of the transparent electrode.
  • an etching solution may be applied to the surface of the substrate, and the method of applying the etching solution may be performed by a conventional coating method.
  • the etching solution may be ammonium carbamate series, ammonium carbonate series, ammonium bicarbonate series, carboxylic acid series, lactone series, lactam series, cyclic acid anhydride series compounds, acid-base salt complexes, acid-base-alcohol complexes or mercapto ( It is preferred to include at least one of the mercapto series compounds and the oxidizing agent.
  • alcohols such as water, methanol, propanol, isopropanol, butanol and ethanol amine
  • Glycols such as ethylene glycol, glycerin, ethyl acetate, butyl acetate, acetates such as carbitol acetate, diethyl ether, tetrahydrofuran, ethers such as dioxane, methyl ethyl ketone, ketones such as acetone, hexane, Hydrocarbons such as heptane, aromatics such as benzene and toluene, and halogen-substituted solvents such as chloroform, methylene chloride and carbon tetrachloride, fluorine-based solvents such as perfluorocarbon, or a mixed solvent thereof may be
  • a pressurized state such as a pressure vessel
  • a low boiling point fluorine-based solvent or liquefied carbon dioxide may be used. It is not necessary to specifically limit the etching solution production method of the present invention. That is, any method known in the art may be used as long as it satisfies the object of the present invention.
  • an oxidizing agent for example, an oxidizing gas such as oxygen, ozone, hydrogen peroxide, Na 2 O 2 , KO 2 , NaBO 3 , (NH 4 ) S 2 O 8 , H 2 SO 5 , (CH 3 ) 3 Peroxides such as CO 2 H, (C 6 H 5 CO 2 ) 2, etc., HCO 3 H, CH 3 CO 3 H, CF 3 CO 3 H, C 6 H 5 CO 3 H, m-ClC 6 H 5 -CO 3 Peroxyacids such as H, nitric acid, sulfuric acid, iodine (I 2 ), Fe (NO 3 ) 3 , Fe 2 (SO 4 ) 3 , K 3 Fe (CN) 6 , (NH 4 ) 2 Fe (SO 4 ) 2 , Ce (NH 4 ) 4 (SO 4 ) 4 , NaIO 4 , KMnO 4 , K 2 CrO 4 and the like generally known oxidative inorganic acids or metals,
  • an oxidizing gas
  • the etchant may be desirable to impart hydrophilic properties to the etchant composition in order to effectively dissolve the conductive ink remaining on the surface of the insulating layer.
  • Ammonium carbamate-based compounds, ammonium carbonate-based compounds and ammonium bicarbonate-based compounds herein are described in detail in Korean Patent No. 0727466 of the present applicant, and the carboxylic acid-based compounds are benzoic acid, oleic acid, propionic acid, malonic acid, hexane Acids, octanoic acid, decanoic acid, neodecanoic acid, oxalic acid, citric acid, salicylic acid, stearic acid, acrylic acid, succinic acid, adipic acid, glycolic acid, isobutyric acid, ascorbic acid and the like can be used.
  • the carboxylic acid-based compounds are benzoic acid, oleic acid, propionic acid, malonic acid, hexane Acids, octanoic acid, decanoic acid, neodecanoic acid, oxalic acid, citric acid, salicylic acid, stearic acid
  • the lactone-based compounds include ⁇ -propiolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -thiobutyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, and ⁇ -Valerolactone, ⁇ -caprolactone, ⁇ -octanoic lactone, ⁇ -valerolactone, 1,6-dioxaspiro [4,4] nonane-2,7-dione, ⁇ -methylene- ⁇ -butyro Lactone, ⁇ -methylene- ⁇ -butyrolactone, ⁇ -caprolactone, lactide, glycolide, tetronic acid, 2 (5H) -huranone, ⁇ -hydroxy- ⁇ -butyrolactone, mevalonic lantone , 5,6-dihydro-2H-pyran-2-pyran-2-one, ⁇ -valerolactone, ⁇ -caprolactone,
  • Lactam-based compounds are 2-azetidon, 2-pinolidinone, 5-methoxy-2-pyrrolidinone, 5-methyl-2-pyrrolidinone, N -methylcaprolactam, 2-azacyclononnanone, N Acetyl caprolactam can be used.
  • cyclic acid anhydride itaconic anhydride, succinic anhydride, maleic anhydride, glutaric anhydride, octadecyl succinic anhydride, 2,2-dimethylsuccinic anhydride, 2-dodecene- 1-sequential anhydride, hexafluoroglutaric anhydride, 3,3-dimethylglutaric anhydride, 3-ethyl-3-methyl glutaric anhydride, 3,5-diacetyltetrahydro Pyran-2,4,6-trione, diglycolic anhydride and the like can be used.
  • Mercapto-based compounds include 1-methane siol, 1-ethanesilol, 2-butanesilol, 1-heptane siol, 1-octanesiol, 1-decane siol, 1-hexadecane siol, Acetic acid, 6-mercaptohexanoic acid, thiobenzoic acid, furfuryl mercaptan, cyclohexanecyol, 11-mercapto-1 undecanol, 2-mercaptoethanol, 3-mercapto-1-propanol, cyio Salicylic acid, 1-cyorlyserol, 2-naphthalenecyol, methyl 3-mercaptopropionate, ganmar mercapto propyltrimethoxysilane, and the like can be used.
  • the present invention is not limited thereto, and may be used as a single component or selected from the group consisting of two or more kinds of mixtures.
  • the etching rate of the etching composition is to adjust the deposition time of the etching solution during coating, or the oxidizing agent or ammonium carbamate-based, ammonium carbonate-based, ammonium bicarbonate-based, carboxylic acid-based, lactone-based, lactam-based, cyclic anhydride-based , Acid-base salt complex, acid-base-alcohol-based complex, it is preferable to control by controlling the concentration of the mercapto-based compound, it can be used repeatedly the etching process if necessary.
  • the etching solution containing an inorganic acid or a base it can be removed by washing with a separate water or organic solvent.
  • the remaining conductive ink composition dissolved by the etching solution can be removed by pushing out with the remaining physical force.
  • a doctor blade, a wiper, or a brush may be used. More preferably, a brush is used.
  • the brush can effectively prevent scratches and ink loss of the substrate surface by reducing physical force.
  • doctor blades wipers, and brushes may be used in combination.
  • the dissolved residual conductive ink composition may be pushed out to remove metal or organic materials, which are components of the conductive ink composition remaining on the surface between the fine electrode patterns on the insulating layer.
  • the conductive material forming step (S70) is a step of manufacturing a hybrid transparent electrode film by depositing or printing a conductive material on the fine electrode pattern from which the release film is removed.
  • This step can be added as needed for use with the internal electrodes of the device.
  • the conductive material forming step (S70) may be performed immediately after the release film is removed (S50), or may be performed in a process (S60) of removing the remaining conductive ink composition, and after removing the residual conductive ink composition, fine electrode patterns When the conductive material is formed on the substrate, a transparent electrode film having high reliability can be realized.
  • the conductive material that can be formed on the fine electrode pattern is preferably ITO, AZO, CNT, graphene or conductive polymer
  • the conductive polymer is PEDOT (Poly (3,4-Ethylenedioxythiophene)) or PSS: PEDOT (Poly (3 , 4-Ethylenedioxythiophene): Poly (4-Styrenesufonate)) can be used.
  • the conductive material may be formed by depositing and patterning or directly printing the fine pattern electrode, and the material of ITO or AZO is preferably vacuum deposited or inkized into a target form to be printed with a thin film coating composition.
  • Such a hybrid type transparent electrode film may be used in a field requiring high conductivity and requiring high reliability because of excellent interface characteristics between two electrodes.
  • the above step for the production of a transparent electrode film can be carried out in a continuous process of roll-to-roll, through which the production speed can be increased to increase the production efficiency.
  • 3A to 3J are cross-sectional views sequentially illustrating a method of manufacturing a transparent electrode film according to an embodiment of the present invention.
  • the heat resistant film 11 is prepared.
  • the heat resistant film 11 may be a film of various materials such as PEN, PET, PE, PL, PC.
  • FIG. 3B shows a release film 10 by applying the release agent 12 onto the heat resistant film 11.
  • the release film 10 may be in any form as long as it has a release force, but is preferably in the form of a release coat film in which heat resistance release force is controlled.
  • the release agent 12 is preferably a material having heat resistance characteristics that do not cause severe shrinkage even in the thermocompression bonding process. Is effective.
  • the fine electrode pattern 20 is formed on the release film 10.
  • the fine electrode pattern 20 is printed on the surface of the release agent 12 having excellent release force, and may be formed in a mesh form.
  • the conductive ink composition may use a metal complex compound or a metal precursor, which may include a gravure printing method, a flexo printing method, an offset printing method, a reverse offset printing method, a dispensing, a screen printing method, a rotary screen printing method, an inkjet printing method, or the like. May be used, but is not limited thereto.
  • Printing of the conductive ink composition is not limited to one time, and may be repeated a plurality of times in some cases.
  • the fine electrode pattern 20 is printed using the conductive ink composition, and when printing, the conductive ink composition may be left in a region other than the position where the fine electrode pattern 20 is formed. Processing may be added.
  • a heat or ultraviolet curable resin is applied to the surface of the release agent 12 on which the fine electrode patterns 20 are printed to form the insulating layer 30.
  • the height of the insulating layer 30 As the height of the insulating layer 30, as shown in the figure, it is effective to be formed higher than the height of the fine electrode pattern 20, it is preferable that the height of the fine electrode pattern is 0.1 ⁇ m or more, more preferably 1 ⁇ m or more. Do.
  • the base layer 40 is laminated on the insulating layer 30 as shown in FIG. 3E.
  • the base material of the base material layer 40 is not limited to a kind, and a transparent material such as a plastic film or glass may be used as the transparent electrode film.
  • the substrate is preferably thermally compressed to a temperature of 100 to 300 ° C. to laminate the substrate on the insulating layer 30.
  • a method of applying the adhesive onto the insulating layer 30 to adhere the substrate may also be used.
  • an adhesive having transparency
  • the polyvinyl alcohol adhesive, acrylic adhesive, vinyl acetate adhesive, urethane adhesive, polyester adhesive, polyolefin adhesive And polyvinyl alkyl ether adhesives may be used, and two or more kinds of adhesives may be mixed and used depending on the type of the substrate.
  • the thickness of the adhesive layer is not particularly limited and may be set to a conventional thickness in consideration of physical properties.
  • the release film 10 may be removed to prepare a transparent electrode film. This is shown in Figure 3f.
  • the release film 10 is separated from the insulating layer 30 on which the fine electrode patterns are formed.
  • FIGS. 3H, 3I, and 3J may be further performed.
  • the conductive ink composition when the conductive ink composition is printed to form the fine electrode pattern 20 as mentioned above, the conductive ink composition may be left at a position where the fine electrode pattern 20 is not formed, and the release film Since the conductive ink composition still remains on the insulating layer 30 after removing (10), a process of removing it may be further performed.
  • the metal material or the organic material may be removed in a region other than the location where the fine electrode pattern is formed.
  • the concentration or the deposition rate of the etching solution it is preferable to control the concentration or the deposition rate of the etching solution.
  • the method of pushing out the dissolved residual conductive ink composition may be pushed out by various physical forces, but the doctor blade 70 is used in the drawing. This may be done more than once, and several types of squeeze may be used in combination.
  • the breakdown voltage characteristic and the light transmittance can be improved.
  • a conductive material may be formed on the fine electrode pattern.
  • a conductive material such as ITO, AZO, NT, graphene, or a conductive polymer is directly printed on the insulating layer 30 on which the fine electrode patterns 20 are formed, and then etched as shown in FIG. 3J. By doing so, it is possible to form a transparent electrode film of a hybrid form.
  • the conductive material may be formed in the state of the transparent electrode film of FIG. 3G from which the release film 10 is removed.
  • the display element transparent electrode film comprises an electrode pattern formed by printing a conductive ink composition on a release film as a fine electrode pattern; An insulating layer formed by coating an insulating resin on the release film on which the electrode pattern is formed; And
  • the transparent electrode film for a display according to another embodiment of the present invention is formed by applying an insulating resin on the front surface of the electrode pattern formed by printing a conductive ink composition on a release film as a fine electrode pattern and filling the grooves between the fine electrode patterns.
  • a transparent electrode film for a display includes an electrode pattern formed by printing a conductive ink composition on a release film as a fine electrode pattern, and the fine electrode pattern is covered on the release film on which the fine electrode pattern is formed.
  • a transparent electrode film for a display comprising an insulating layer formed by applying an insulating resin so as to be formed thereon and a base layer laminated on the other side of the insulating layer opposite to one side of the insulating layer in contact with the release film. Is positioned to be embedded in the insulating layer, and one surface of the electrode pattern is exposed to the surface of one side of the insulating layer to be in contact with the release film, and remains between the fine electrode patterns from which the release film is removed. Dissolved residual conductive ink composition with an etchant and dissolving the remaining conductive ink composition Slide naemeurosseo may be formed by removing the remaining conductive ink composition.
  • the transparent electrode film for a display according to another embodiment of the present invention is an electrode pattern formed by printing a conductive ink composition on a release film as a fine electrode pattern, and an insulation formed by applying an insulating resin on the release film on which the electrode pattern is formed. layer; And a base layer laminated on the other side of the insulating layer opposite to one side of the insulating layer in contact with the release film, wherein the electrode pattern is positioned to be embedded in the insulating layer.
  • the conductive material may further include a conductive material formed on the fine electrode pattern from which the residual conductive ink composition has been removed by dissolving the same, and pushing out the dissolved conductive ink composition.
  • the conductive ink composition, the insulating resin, the etching solution and the conductive material are the same as described in the method of manufacturing a transparent electrode film for a display.
  • Surface roughness of the transparent electrode film for a display according to the embodiment of the present invention may be 0.05 to 0.3 ⁇ m, preferably 0.10 to 0.2 ⁇ m, most preferably 0.10 to 0.15 ⁇ m.
  • the sheet resistance of the transparent electrode film for display according to the present invention may be 10m ⁇ / sq to 100k ⁇ / sq, more preferably 10m ⁇ / sq to 10k ⁇ / sq, more preferably 3.0 to 18.5 ⁇ / sq It may be, and most preferably may be 3.0 to 10.5 dl / sq.
  • the transmittance of the transparent electrode film for a display according to the present invention may be 60 to 99%, more preferably 70 to 99%, most preferably 83 to 91%.
  • the microelectrode pattern was printed by reverse offset printing (Narae Nanotech Co., Ltd.) on a heat-resistant silicone release coat film (SKC, SG32) using a conductive metal composition (Inktech, TEC-PA-010), and then at 130 ° C. Drying for 20 minutes to form an electrode pattern of 3um line width.
  • a slot die coater Patent Co., Ltd.
  • coating a UV curable resin Minitatec, MIR-30 coating liquid to a dry thickness of 70 ⁇ m to form an insulating layer and 12um thick on the insulating layer
  • the PET film was thermally compressed by hot press at a temperature of 120 ° C.
  • Table 1 shows the results of sheet resistance, transmittance, haze, yellow index, and surface roughness of the manufactured product
  • FIG. 4 shows a scanning electron microscope (SEM) image. Surface roughness was measured by the surface roughness of the transparent electrode film formed by using the nano-system 3D measuring device NV-1000.
  • the microelectrode pattern was printed by reverse offset printing (Narae Nanotech Co., Ltd.) on a heat-resistant silicone release coat film (SKC, SG32) with a conductive ink composition (Inktech, TEC-PA-021), and then at 130 ° C. Drying for 20 minutes to form an electrode pattern of 3um line width.
  • the microelectrode pattern was printed by reverse offset printing (Narae Nanotech Co., Ltd.) on a heat-resistant silicone release coat film (SKC, SG32) using a conductive ink composition (Inktech, TEC-PSP-009), and then at 130 ° C. Drying for 20 minutes to form an electrode pattern of 3um line width.
  • the microelectrode pattern was printed by reverse offset printing (Narae Nanotech Co., Ltd.) on a heat-resistant silicone release coat film (SKC, SG32) using a conductive ink composition (Inktech, TEC-PSP-010), and then at 130 ° C. Drying for 20 minutes to form an electrode pattern of 3um line width.
  • the microelectrode pattern was printed by reverse offset printing (Narae Nanotech Co., Ltd.) on a heat-resistant silicone release coat film (SKC, SG32) using a conductive ink composition (Inktech, TEC-PA-010), and then at 130 ° C. Drying for 20 minutes to form an electrode pattern of 3um line width.
  • a slot die coater Patent Co., Ltd.
  • coating a UV curable resin Minitatec, MIR-30 coating liquid to a dry thickness of 70 ⁇ m to form an insulating layer and 12um thick on the insulating layer
  • the PET film was thermally pressed by hot press at a temperature of 120 ° C.
  • the etching solution was deposited for 10 seconds and then applied firstly by using a blade method, and the remaining conductive ink composition on the surface dissolved or dispersed in the etching solution was secondly pressed while pushing the doctor blade in the direction of the substrate. The residue metal material and organic material on the surface were removed to prepare a transparent electrode film.
  • the etching solution was prepared by adding 5 g of isobutyl carbamate, 83 g of isobutylamine, and 2 g of 95% solution of 2-amino-2-methyl-1-propanol, and then slowly adding 10 g of 30% hydrogen peroxide and stirring for 5 hours. .
  • Table 1 describes the results of sheet resistance, transmittance, haze, yellow index, and surface roughness of the manufactured product.
  • the microelectrode pattern was printed by reverse offset printing (Narae Nanotech Co., Ltd.) on a heat-resistant silicone release coat film (SKC, SG32) using a conductive ink composition (Inktech, TEC-PA-010), and then at 130 ° C. Drying for 20 minutes to form an electrode pattern of 3um line width.
  • a slot die coater Patent Co., Ltd.
  • coating a UV curable resin Minitatec, MIR-30 coating liquid to a dry thickness of 70 ⁇ m to form an insulating layer and 12um thick on the insulating layer
  • the PET film was thermally pressed by hot press at a temperature of 120 ° C.
  • the microelectrode pattern was printed by reverse offset printing (Narae Nanotech Co., Ltd.) on a heat-resistant silicone release coat film (SKC, SG32) using a conductive ink composition (Inktech, TEC-PA-010), and then at 130 ° C. Drying for 20 minutes to form an electrode pattern of 3um line width.
  • a slot die coater Patent Co., Ltd.
  • coating a UV curable resin Minitatec, MIR-30 coating liquid to a dry thickness of 70 ⁇ m to form an insulating layer and 12um thick on the insulating layer
  • the PET film was thermally pressed by hot press at a temperature of 120 ° C.
  • the etching solution was deposited for 10 seconds and then applied firstly by using a blade method, and the remaining conductive ink composition on the surface dissolved or dispersed in the etching solution was secondly pressed while pushing the doctor blade in the direction of the substrate. Residual metals and organics on the surface were removed. Thereafter, the imprint substrate filled with the metal material was dried at 120 ° C. for 5 minutes to prepare a transparent electrode film.
  • the etching solution was prepared by adding 5 g of isobutyl carbamate, 83 g of isobutylamine, and 2 g of 95% solution of 2-amino-2-methyl-1-propanol, and then slowly adding 10 g of 30% hydrogen peroxide and stirring for 5 hours. .
  • Table 1 describes the results of sheet resistance, transmittance, haze, and yellow index of the manufactured product.
  • the microelectrode pattern was printed by gravure offset printing (Mirae Nanotech Co., Ltd.) with a conductive ink composition (Inktech, TEC-PA-010), and then dried at 130 ° C. for 20 minutes to form a 30um line width.
  • the transparent electrode film of was formed. Table 1 below describes the results of sheet resistance, transmittance, haze, yellow index, and surface roughness of the manufactured product.
  • Example 1 Sheet resistance ( ⁇ / sq.) Transmittance (%) Haze (%) Yellow Index (%) Surface roughness (Ra) ( ⁇ m)
  • Example 1 3.3 87.2 2.18 1.9 0.10
  • Example 2 14.0 89.8 1.9 2.2 0.15
  • Example 3 12.6 85.7 2.4 2.4 0.10
  • Example 4 3.6 83.0 3.0 2.6 0.12
  • Example 5 18.4 90.2 1.8 1.4 0.11
  • Example 6 5.0 87.3 2.0 2.0 0.11
  • Example 8 3.1 89.3 1.82 1.4 - Comparative Example 1 20.1 81.2 5.9 3.5 3.0 Comparative Example 2 18.8 80.0 4.8 3.8 0.5
  • the transparent electrode film for display produced by the manufacturing method of the present invention is 20 ⁇ / sq.
  • the sheet resistance value is significantly lower than 10.38 ⁇ / sq.
  • the electrical conductivity is superior to that of forming the electrode pattern by conventional simple screen printing or gravure offset printing.
  • the transparent electrode film according to the embodiment can form an electrode having a very uniform surface roughness of about 0.10 ⁇ m surface roughness, whereas in the comparative example the surface roughness of 0.5 ⁇ m, 3.0 ⁇ m respectively formed a uniform surface This is difficult, and the contact degree between electrodes can be expected to fall remarkably.
  • FIG. 4 SEM images of the electrode patterns on the transparent electrode films of Examples 1 to 5 may be seen.
  • the method for manufacturing a transparent electrode film for display and the transparent electrode film for display according to the present invention expose the fine electrode pattern to the surface in the direction in which the release film is removed. It can be applied easily.

Abstract

본 발명은 디스플레이용 투명전극 필름 제조방법 및 디스플레이용 투명전극 필름에 관한 것으로, 이형필름 상에 전도성 잉크 조성물을 이용하여 미세 전극패턴을 인쇄하는 전극패턴 형성단계, 상기 전극패턴이 형성된 상기 이형필름 상에 절연성 수지를 도포하여 절연층을 형성하는 절연층 형성단계, 상기 절연층 상에 기재를 적층하여 기재층을 형성하는 기재층 형성단계 및 상기 이형필름을 제거하는 이형필름 제거단계를 포함하여 이루어질 수 있다.

Description

디스플레이용 투명전극 필름 제조방법 및 디스플레이용 투명전극 필름
본 발명은 디스플레이용 투명전극 필름의 제조방법 및 디스플레이용 투명전극 필름에 관한 것으로, 보다 상세하게는 이형필름 상에 전도성 잉크 조성물을 인쇄하여 미세 전극패턴을 형성하고 이형필름을 제거하여 투명전극 필름을 제조하여, 표면 조도가 우수하면서도 저저항 특성을 가지는 디스플레이용 투명전극 필름에 관한 것이다.
각종 가전기기와 통신기기가 디지털화되고 급속히 고성능화 됨에 따라 휴대 가능한 디스플레이의 구현이 절실히 요구되고 있다. 휴대 가능한 디스플레이를 구현하기 위해서는, 디스플레이용 전극재료는 투명하면서도 낮은 저항 값을 나타낼 뿐만 아니라, 기계적으로 안정 할 수 있도록 높은 유연성을 나타내어야 하고, 기판의 열 팽창 계수와 유사한 열 팽창 계수를 갖고 있어서 기기가 과열되거나 고온인 경우에도 단락되거나 면 저항의 변화가 크지 않아야 한다.
현재 투명 전도성 재료로 사용 가능한 소재로는 산화물, 카본나노튜브(Carbon Nanotube, CNT), 그래핀, 고분자 전도체, 금속 나노 와이어 등이 알려져 있으며, 그 중 인듐주석 산화물(Indium Tin Oxide, ITO)을 진공방식으로 박막층을 형성하여 사용하는 방법이 대표적으로 사용되는 방법이나 세라믹 재료이기 때문에 기판의 굽힘이나 휨에 대한 저항이 낮아 쉽게 크랙이 형성되고 전파되어 전극의 특성이 열화 되는 문제와 주석 도판트의 치환을 통한 활성화의 어려움과 비정질이 가지는 결함으로 높은 면저항을 나타내는 문제점을 가지고 있다. 뿐만 아니라 ITO의 주 재료인 인듐 가격이 평판디스플레이, 모바일기기, 터치패널 시장의 급격한 확장으로 지속적으로 상승하고 있고 제한된 매장량으로 인해 투명 전도성 필름의 원가 경쟁력에서 문제점으로 작용하고 있다. 따라서 앞으로 치열하게 전개될 디스플레이 기술 경쟁에서 우위를 선점하기 위해선 ITO 전극의 문제점을 해결 할 수 있는 대체 재료 개발이 매우 중요하다.
고분자 전도체의 경우 폴리아세틸렌, 폴리피롤, 폴리페놀, 폴리아닐린, PEDOT:PSS 등의 물질을 사용하여 투명 전도성 필름을 제작하게 되는데 대부분 고분자 전도체가 용해도가 낮고 공정이 까다로울 뿐만 아니라 에너지 밴드갭이 3eV 이하로 색을 띄는 문제점을 가지고 있다. 투과율을 높이기 위해 박막으로 코팅할 경우 면저항이 높아져서 실제 투명전극으로 사용하기엔 높은 면저항이 문제가 된다. 또한 대부분의 고분자 전도체는 대기 안정성이 부족하여 대기 중에서 급격히 산화되어 전기 전도성이 떨어지기 때문에 안정성 확보가 중요한 문제 중에 하나이다.
CNT, 그래핀, 금속 나노 와이어를 이용한 투명 전도성 필름에 대한 연구도 많이 이루어지고 있으나 저 저항의 투명전도성 필름으로 사용하기에는 아직 해결할 문제점이 있어 아직 실용화 수준에 도달하지 못한 상태이다.
최근 이러한 문제점을 해결하기 위한 새로운 방법으로 임프린팅 방법을 이용하여 미세한 음각의 홈을 형성 한 후 저 저항의 금속을 충전하는 방법들이 연구되어 지고 있으며, 이와 관련하여 UV경화성 수지를 미세 몰드로 가압한 후 임프린트하여 Ag페이스트를 충전하여 투명전도성 필름을 형성하는 방법이 있으나 Ag 패턴 막의 두께 조절이 어렵고 또한 패턴 막의 표면 조도 제어가 쉽지 않아 전극 간 접촉이 필요한 분야의 적용에 한계점이 있다.
이에, 전극 간의 접촉에 용이하게 사용할 수 있는 표면 조도가 우수한 미세전극 패턴이 형성된 투명전극을 제조하기 위한 연구가 필요하다.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 이형필름 상에 전도성 잉크 조성물을 인쇄하여 미세 전극패턴을 형성하고 이형필름을 제거하여 투명전극 필름을 형성하여, 표면 조도가 우수한 디스플레이용 투명전극 필름의 제조방법 및 디스플레이용 투명전극 필름을 제공함에 목적이 있다.
또한, 이형필름 상에 전도성 잉크 조성물을 인쇄하여 미세 전극패턴을 형성한 후 기재층을 형성하여 부착력이 우수하면서 저저항의 특성을 가지는 디스플레이용 투명전극 필름의 제조방법 및 디스플레이용 투명전극 필름을 제공함에 목적이 있다.
전도성 잉크 조성물을 금속 착제 화합물 또는 금속 전구체를 사용하여 저항을 낮추고 우수한 전기적 특성을 유지할 수 있는 디스플레이용 투명전극 필름의 제조방법 및 디스플레이용 투명전극 필름을 제공함에 목적이 있다.
전도성 잉크 조성물을 이용하여 미세 전극패턴을 인쇄하면서 미세 전극패턴영역이 아닌 영역에 발생할 수 있는 전도성 잉크 조성물의 잔여물을 제거하여 종래 기술로는 구현이 어려웠던 저 저항의 미세한 패턴을 형성할 수 있으며 투과율이 우수한 디스플레이용 투명전극 필름의 제조방법 및 디스플레이용 투명전극 필름을 제공함에 목적이 있다.
뿐만 아니라, 이형필름을 제거한 후에 미세 전극패턴 상에 전도성 물질을 형성하여 전기 전도성이 현저하게 향상된 하이브리드형 투명전극 필름의 제조방법을 제공함에 목적이 있다.
상기 과제를 달성하기 위하여, 본 발명의 일 실시예에 따른 디스플레이용 투명전극 필름의 제조방법은 이형필름 상에 전도성 잉크 조성물을 이용하여 미세 전극패턴을 인쇄하는 전극패턴 형성단계, 상기 전극패턴이 형성된 상기 이형필름 상에 절연성 수지를 도포하여 절연층을 형성하는 절연층 형성단계, 상기 절연층 상에 기재를 적층하여 기재층을 형성하는 기재층 형성단계 및 상기 이형필름을 제거하는 이형필름 제거단계를 포함하는 것을 특징으로 한다.
상기 이형필름은 내열성 필름 상에 실리콘계 또는 아크릴계 이형제를 도포하여 이형필름을 준비하는 이형필름 준비단계;에 의해 형성될 수 있다.
상기 전도성 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이트 또는 금속 나노입자 중 적어도 하나를 포함하는 전도성 금속 조성물로 이루어지는 것이 바람직하다.
상기 미세 전극패턴은 그라비아 프린팅법, 플렉소 프린팅법, 옵셋 프린팅법, 리버스 옵셋 프린팅법, 디스펜싱, 스크린 프린팅법, 로터리 스크린 프린팅법 또는 잉크젯 프린팅법으로 상기 이형제 표면 상에 인쇄되는 것을 특징으로 하며, 당해 기술 분야에 속하는 통상의 인쇄 방법을 사용할 수 있다.
상기 절연층 형성단계는, 상기 미세 전극패턴 사이의 홈이 충진되도록 상기 절연성 수지를 전면 도포하여 상기 절연층을 형성될 수 있다.
상기 미세 전극패턴 사이의 상기 절연층의 높이는 상기 미세 전극패턴의 높이와 동일하거나 높게 형성되는 것이 바람직하다.
상기 절연층 형성단계는, 상기 절연성 수지를 2회 이상 도포하여 2 이상의 절연층을 형성할 수 있다.
상기 기재는 상기 절연층 상에 열 압착에 의해 적층되거나, 접착제에 의한 접착에 의해 적층될 수 있다.
상기 이형필름 제거단계 후, 상기 전극패턴 형성단계에서 상기 미세 전극패턴을 인쇄하면서 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 제거하는 잔여 전도성 잉크 조성물 처리단계를 더 포함하는 것이 바람직하며, 상기 잔여 전도성 잉크 조성물 처리단계는, 상기 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 잔여물 처리부재를 이용하여 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 제거할 수 있다.
상기 잔여물 처리부재는 닥터 블레이드, 와이퍼 또는 브러쉬인 것이 바람직하며, 제거 방법은 이에 한정되지 않는다.
상기 에칭액은 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열 화합물, 산-염기 염복합체, 산-염기-알코올계 복합체 또는 머캡토 계열 화합물 중 적어도 하나 및 산화제를 포함할 수 있다.
본 발명의 바람직한 실시예는 상기 이형필름이 제거된 상기 미세 전극패턴 상에 전도성 물질을 증착 또는 프린팅하여 하이브리드형 투명전극 필름을 제조하는 전도성 물질 형성단계를 더 포함할 수 있으며, 상기 전도성 물질은 ITO, AZO, CNT, 그래핀 또는 전도성 고분자인 것을 특징으로 한다.
본 발명의 또 다른 일 실시예의 디스플레이용 투명전극 필름 제조방법은, 이형필름 상에 전도성 잉크 조성물을 이용하여 미세 전극패턴을 인쇄하는 전극패턴 형성단계, 상기 미세 전극패턴 사이의 홈이 충진되도록 상기 절연성 수지를 전면에 도포하여 절연층을 형성하는 절연층 형성단계, 상기 절연층 상에 기재를 적층하여 기재층을 형성하는 기재층 형성단계 및 상기 이형필름을 제거하는 이형필름 제거단계를 포함하는 것을 특징으로 한다.
상기 미세 전극패턴 사이 홈의 상기 절연층 높이는 상기 미세 전극패턴의 높이와 동일하거나 높게 형성되는 것이 바람직하다.
상기 이형필름 제거단계 후, 상기 전극패턴 형성단계에서 상기 미세 전극패턴을 인쇄하면서 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 잔여물 처리부재를 이용하여 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 제거하는 잔여 전도성 잉크 조성물 처리단계를 더 포함할 수 있다.
상기 이형필름이 제거된 상기 미세 전극패턴 상에 전도성 물질을 적층하여 하이브리드형 투명전극 필름을 제조하는 전도성 물질 형성단계를 더 수행할 수 있다.
본 발명의 또 다른 일 실시예의 디스플레이용 투명전극 필름 제조방법은, 이형필름 상에 전도성 잉크 조성물을 이용하여 미세 전극패턴을 인쇄하는 전극패턴 형성단계, 상기 미세 전극패턴이 형성된 상기 이형필름 상에 상기 미세 전극패턴이 덮여지도록 절연성 수지를 도포하여 절연층을 형성하는 절연층 형성단계, 상기 절연층 상에 기재를 적층하여 기재층을 형성하는 기재층 형성단계, 상기 이형필름을 제거하는 이형필름 제거단계 및 상기 전극패턴 형성단계에서 상기 미세 전극패턴을 인쇄하면서 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 제거하는 잔여 전도성 잉크 조성물 처리단계를 포함하는 것을 특징으로 한다.
상기 절연성 수지는 열 또는 자외선 경화성 수지이고, 이에 한정되지 않는다.
상기 에칭액은 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열 화합물, 산-염기 염복합체, 산-염기-알코올계 복합체 또는 머캡토 계열 화합물 중 적어도 하나 및 산화제를 포함하는 것이 바람직하다.
상기 잔여물 전도성 잉크 조성물 처리단계에서, 용해된 상기 잔여 전도성 잉크 조성물은 닥터 블레이드, 와이퍼 또는 브러쉬 중 1종 이상의 방법으로 제거될 수 있다.
본 발명의 또 다른 일 실시예의 디스플레이용 투명전극 필름 제조방법은, 이형필름 상에 전도성 잉크 조성물을 이용하여 미세 전극패턴을 인쇄하는 전극패턴 형성단계, 상기 전극패턴이 형성된 상기 이형필름 상에 절연층을 형성하는 절연층 형성단계, 상기 절연층 상에 기재를 적층하여 기재층을 형성하는 기재층 형성단계, 상기 이형필름을 제거하는 이형필름 제거단계, 상기 전극패턴 형성단계에서 상기 미세 전극패턴을 인쇄하면서 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 제거하는 잔여 전도성 잉크 조성물 처리단계 및 상기 이형필름이 제거된 상기 미세 전극패턴 상에 전도성 물질을 증착 또는 프린팅하여 하이브리드형 투명전극 필름을 제조하는 전도성 물질 형성단계를 포함하는 것을 특징으로 한다.
상기 이형필름은 내열성 필름 상에 실리콘계 또는 아크릴계 이형제를 도포하여 이형필름을 준비하는 이형필름 준비단계에 의해 형성되며, 이형제의 종류는 이에 한정되지 않는다.
상기 전도성 물질 형성단계에서, 상기 전도성 물질은 ITO, AZO, CNT, 그래핀 또는 전도성 고분자인 것이 바람직하다.
본 발명의 일 실시예에 의한 디스플레이용 투명전극 필름은 이형필름 상에 전도성 잉크 조성물을 미세 전극패턴으로 인쇄하여 형성된 전극패턴; 상기 전극패턴이 형성된 상기 이형필름 상에 절연성 수지를 도포하여 형성된 절연층; 및 상기 이형필름과 접한 상기 절연층의 일측면에 반대면인 상기 절연층의 타측면 상에 적층된 기재층을 포함하며, 상기 전극패턴은 상기 절연층 내부에 매입되게 위치하되, 상기 전극패턴의 일면은 상기 절연층의 상기 일측면 표면으로 노출되어 상기 이형필름과 접하게 위치되어 있을 수 있다.
본 발명의 다른 실시예에 의한 디스플레이용 투명전극 필름은 이형필름 상에 전도성 잉크 조성물을 미세 전극패턴으로 인쇄하여 형성된 전극패턴; 상기 미세 전극패턴 사이의 홈이 충진되도록 절연성 수지를 전면에 도포하여 형성된 절연층; 및 상기 이형필름과 접한 상기 절연층의 일측면에 반대면인 상기 절연층의 타측면 상에 적층된 기재층을 포함하며, 상기 전극패턴은 상기 절연층 내부에 매입되게 위치하되, 상기 전극패턴의 일면은 상기 절연층의 상기 일측면 표면으로 노출되어 상기 이형필름과 접하게 위치되어 있을 수 있다.
본 발명의 또 다른 실시예에 의한 디스플레이용 투명전극 필름은 이형필름 상에 전도성 잉크 조성물을 미세 전극패턴으로 인쇄하여 형성된 전극패턴; 상기 미세 전극패턴이 형성된 상기 이형필름 상에 상기 미세 전극패턴이 덮여지도록 절연성 수지를 도포하여 형성된 절연층; 및 상기 이형필름과 접한 상기 절연층의 일측면에 반대면인 상기 절연층의 타측면 상에 적층된 기재층을 포함하는 디스플레이용 투명전극 필름으로서, 상기 전극패턴은 상기 절연층 내부에 매입되게 위치하되, 상기 전극패턴의 일면은 상기 절연층의 상기 일측면 표면으로 노출되어 상기 이형필름과 접하게 위치되어 있고, 상기 이형필름이 제거된 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 잔여 전도성 잉크 조성물이 제거될 수 있다.
본 발명의 또 다른 실시예에 의한 디스플레이용 투명전극 필름은 이형필름 상에 전도성 잉크 조성물을 미세 전극패턴으로 인쇄하여 형성된 전극패턴; 상기 전극패턴이 형성된 상기 이형필름 상에 절연성 수지를 도포하여 형성된 절연층; 및 상기 이형필름과 접한 상기 절연층의 일측면에 반대면인 상기 절연층의 타측면 상에 적층된 기재층을 포함하는 디스플레이용 투명전극 필름으로서, 상기 전극패턴은 상기 절연층 내부에 매입되게 위치하되, 상기 전극패턴의 일면은 상기 절연층의 상기 일측면 표면으로 노출되어 상기 이형필름과 접하게 위치되어 있고, 상기 이형필름이 제거된 상태에서 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 잔여 전도성 잉크 조성물이 제거된 상기 미세 전극패턴 상에 형성한 전도성 물질을 더 포함할 수 있다.
상기 전도성 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이트 또는 금속 나노입자 중 적어도 하나를 포함하는 전도성 금속 조성물로 이루어질 수 있다.
상기 절연성 수지는 열 또는 자외선 경화성 수지일 수 있다.
상기 에칭액은 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열 화합물, 산-염기 염복합체, 산-염기-알코올계 복합체 또는 머캡토 계열 화합물 중 적어도 하나 및 산화제를 포함할 수 있다.
상기 전도성 물질은 ITO, AZO, CNT, 그래핀 또는 전도성 고분자일 수 있다.
상기 디스플레이용 투명 전극 필름은, 표면조도(Ra)가 0.05 내지 0.3㎛일 수 있다.
상기 디스플레이용 투명 전극 필름은, 면저항이 10mΩ/sq 내지 100kΩ/sq일 수 있다.
상기 디스플레이용 투명 전극 필름은, 투과율이 60 내지 99%일 수 있다.
본 발명의 디스플레이용 투명전극 필름의 제조방법 및 디스플레이용 투명전극 필름에 따르면 다음과 같은 효과가 하나 혹은 그 이상 있다.
이형필름을 이용하여 이형필름 상에 전도성 잉크 조성물을 인쇄하여 미세 전극패턴을 형성하는 방식으로 투명전극 필름을 제조함으로써, 이형필름이 제거된 방향의 면으로 미세 전극패턴이 노출되므로, 전극 간의 접촉이 용이하여 표면 조도가 우수한 디스플레이용 투명 전극 필름의 제조방법 및 디스플레이용 투명전극 필름이 제공할 수 있다.
이형필름 상에 미세 전극패턴과 절연층을 순차적으로 형성하고, 열 압착 또는 접착제에 의한 접착으로 기재층을 형성하게 되므로, 미세 전극패턴과 기재층과의 부착력이 향상된 디스플레이용 투명 전극 필름의 제조방법 및 디스플레이용 투명전극 필름을 제공할 수 있다.
미세 전극패턴을 구성하는 전도성 잉크 조성물로 금속 착제 화합물 또는 금속 전구체가 포함된 전도성 물질을 사용하여, 광학적, 전기적, 기계적 특성을 동시에 향상시킬 수 있다.
이형필름 제거 후에 미세 전극패턴이 형성된 위치가 아닌 절연층 상에 발생한 미세한 잔여 금속 조성물을 에칭용액에 용해시켜 제거함으로써 투과율 및 내전압을 향상시킬 수 있다.
미세전극 패턴 상에 ITO, AZO 등의 전도성 물질을 형성한 하이브리드형 투면전극 필름은 두 전극 간의 계면 특성이 우수하여 높은 전도도 및 고 신뢰성을 요구하는 분야에 적용할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 의한 디스플레이용 투명전극 필름을 제조하는 방법을 순차적으로 나타낸 순서도이다.
도 2는 본 발명의 다른 일 실시예에 의한 디스플레이용 투명전극 필름을 제조하는 방법을 순차적으로 나타낸 순서도이다.
도 3a 내지 도 3j는 본 발명의 일 실시예에 의한 디스플레이용 투명전극 필름을 제조하는 방법을 순차적으로 도시한 단면도들이다.
도 4는 실시예 1 내지 5에 의해 제조된 투명전극 필름의 SEM 이미지들이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성 요소들과 다른 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 구성요소의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)"또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.
도면에서 각 구성요소의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기와 면적은 실제크기나 면적을 전적으로 반영하는 것은 아니다.
이하, 본 발명의 실시예들에 의하여 디스플레이용 투명전극 패턴 제조방법을 설명하기 위한 도면들을 참고하여 본 발명에 대해 설명하도록 한다.
본 발명의 일 실시예에 의한 디스플레이용 투명전극 패턴 제조방법은 도 1과 같이, 이형필름 준비단계(S10), 전극패턴 형성단계(S20), 절연층 형성단계(S30), 기재층 형성단계(S40) 및 이형필름 제거단계(S50)를 포함하여 이루어진다.
이형필름 준비단계(S10)
이형필름 준비단계(S10)는 내열성 필름 상에 이형제가 도포된 이형필름 준비하며, 미세 전극패턴이 형성될 이형필름을 마련하는 단계이다.
상기 이형필름은 이형력을 조절한 이형 코트필름을 사용할 수 있으며, 여기서 이형 코트필름은 내열성 필름 상에 이형제가 도포하여 제조할 수 있다.
상기 내열성 필름으로는 폴리에틸렌나프탈레이트(Polyethylene Naphthalate, PEN), 폴리에틸렌테레프탈레이트(polyethylene terephthalate, PET), 폴리에틸렌(Polyethylene, PE), 폴리이미드(Polyimide, PI), 폴리카보네이트(Polycarbonate, PC)를 사용할 수 있으며, 이에 특별히 한정되는 것은 아니며 해당 분야에서 알려진 다양한 재질의 내열성 필름을 사용할 수도 있다.
상기 이형제는 실리콘계 또는 아크릴계 이형제를 사용하는 것이 바람직하다.
실리콘계 이형제는 열 압착 공정에서도 심한 수축이 발생하지 않는 내열 특성을 가지며 이형력을 쉽게 조절할 수 있는 장점이 있어 더 효과적이며, 실리콘계 이형제가 바람직하다.
이형제 역시 해당 분야에서 알려진 다양한 종류의 이형제를 사용할 수 있으며, 경우에 따라 이를 조합하여 사용할 수도 있다.
상기 이형제를 내열성 필름 상에 도포하는 방법은 마이크로그라비아 코팅법, 그라비아 코팅법, 슬롯 다이 코팅법, 리버스 키스 또는 로터리 스크린 코팅법을 사용할 수 있으며, 이에 한정되는 것은 아니다.
전극패턴 형성단계(S20)
전극패턴 형성단계(S20)는 이형필름 상에 전도성 잉크 조성물을 이용하여 미세 전극패턴을 형성하는 단계이다.
상기 이형필름의 이형제가 도포된 방향의 표면 상에 전도성 잉크 조성물을 인쇄한다.
전도성 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이크 또는 금속 나노입자를 사용하는 것이 바람직하며, 전도성 물질의 재료에 따라 2종 이상을 혼합하여 사용할 수 있다.
더 바람직하게는, 금속 착체 화합물 또는 금속 전구체를 사용할 수 있다. 또한 금속착체 화합물 또는 금속 전구체를 환원시켜 나노크기의 금속입자를 제조하여 혼합물로도 사용할 수 있다. 이를 사용하면 종래 기술로는 형성할 수 없었던 나노 크기의 미세 전극패턴을 용이하게 형성할 수 있다.
본 발명에 사용되는 금속 전구체는 일반식 MnX로 나타낼 수 있는데 여기서 M은 Ag, Au, Cu, Ni, Co, Pd, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi이고 n은 1내지 10의 정수이며, X는 산소, 황, 할로겐, 시아노, 시아네이트, 카보네이트, 니트레이트, 나이트레이트, 설페이트, 포스페이트, 티오시아네이트, 클로레이트, 피클로레이트, 테트라플포로 보레이트, 아세틸아세토네이트, 머캡토, 아미드, 알콕사이드, 카볼실레이트 등을 나타낸다. 구체적으로 예를들면, 초산 금, 옥살산 팔라듐, 2-에틸 헥산산은, 2-에틸 헥산산구리, 스테아린산 철, 포름산 니켈, 아연 시트레이트와 같은 카르복실산 금속, 질산은, 시안화 구리, 탄산 코발트, 염화백금, 염화금산, 테트라부톡시 티타늄, 디메톡시지르코늄 디클로라이드, 알루미늄 이소프로폭사이드, 바나듐 옥사이드, 탄탈륨 메톡사이드, 비스무스 아세테이트, 도데실 머캡토화 금, 인듐 아세틸아세토네이트와 같은 금속 화합물 등을 한 종류 이상 선택하여 함께 사용 가능하다.
일반적인 금속 나노입자 제조방법에는 물리적으로 금속 덩어리를 분쇄하여 제조하는 물리적인 방법과 화학적인 방법으로 제조하는 방법이 있다.
화학적인 방법을 좀 더 구체적으로 설명하면 고압의 가스를 분사하여 분말로 제조하는 에어로졸법, 금속 화합물과 기체 환원제를 사용하여 열분해로 분말을 제조하는 열분해법, 증발원료를 가열 증발시켜 분말을 제조하는 증발응축법, 졸겔법, 수열합성법, 초음파 합성법, 마이크로 에멀젼법, 액상 환원법 등이 있다.
나노입자의 형성제어가 용이하고 가장 경제성이 좋은 것으로 평가되고 있는 분산제와 환원제를 이용하여 제조하는 액상 환원법이 가장 많이 사용하고 있으나 본 발명에서는 나노입자를 형성 할 수 만 있다면 모든 방법을 사용 할 수 있다.
액상 환원법의 나노입자의 제조방법에 대한 구체적인 설명은 본 출원인이 출원한 대한민국 특허출원 제2006-0074246호에 기재되어 있고 상기 특허 출원에 기재된 금속 나노 입자는 입자의 크기가 균일하고 응집성이 최소화되는 장점이 있으며, 상기 금속 나노입자를 함유하는 전도성 잉크는 150℃ 이하의 낮은 온도에서, 짧은 시간에 소성하여도 높은 전도도를 갖는 균일하고 치밀한 박막 또는 미세 패턴 형성이 용이한 장점이 있다.
금속 전도성 물질 외에 필요에 따라서 용매, 안정제, 분산제, 바인더 수지(binder resin), 이형제, 환원제, 계면활성제(surfactant), 습윤제(wetting agent), 칙소제(thixotropic agent) 또는 레벨링(levelling)제, 증점제와 같은 첨가제 등을 포함 시킬 수 있다.
상기 바인더 수지는 다양한 기재와의 부착력이 우수한 것이 바람직하다. 이에 사용 가능한 물질은 유기고분자 물질로서 폴리프로필렌, 폴리 카보네이트, 폴리 아크릴레이트, 폴리메틸메타아크릴레이트, 셀룰로즈아세테이트, 폴리비닐클로라이드, 폴리우레탄, 폴리에스테르, 알키드 수지, 에폭시 수지, 페옥시 수지, 멜라민 수지, 페놀 수지, 페놀 변성 알키드 수지, 에폭시 변성 알키드 수지, 비닐 변성 알키드 수지, 실리콘 변성 알키드 수지, 아크릴 멜라민 수지, 폴리 이소시아네이트 수지, 에폭시 에스테르 수지 등을 예로 들 수 있으며 본 발명에 부합된다면 이에 한정되지는 않는다.
또한 균일한 박막으로 형성하기 위해 용매가 필요한 경우가 있는데 이때 사용할 수 있는 용매로는 에탄올, 이소프로판올, 부탄올 같은 알코올류, 에틸렌글리콜, 글리세린과 같은 글리콜류, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트와 같은 아세테이트류, 메틸세로솔브, 부틸셀로솔브, 디에틸에테르, 테트하히드로퓨란, 디옥산과 같은 에테르류, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈과 같은 케톤류, 헥산, 헵탄, 도데칸, 파라핀 오일, 미네랄 스프릿과 같은 탄화수소계, 벤젠, 톨루엔, 자일렌과 같은 방향족, 그리고 클로로포름이나 메틸렌클로라이드, 카본테트라클로라이드와 같은 할로겐 치환 용매, 아세토니트릴, 디메틸술폭사이드 또는 이들의 혼합용매 등을 사용할 수 있다. 그러나 용매의 종류가 이로 한정되는 것은 아니다.
전도성 잉크 조성물의 인쇄 방법은 그라비아 프린팅법, 플렉소 프린팅법, 옵셋 프린팅법, 리버스 옵셋 프린팅법, 디스펜싱, 스크린 프리팅법, 로터리 스크린 프린팅법 또는 잉크젯 프린팅법으로 상기 이형제 표면 상에 인쇄하는 것이 바람직하다. 이 때의 코팅 횟수는 1회 또는 그 이상 충진 횟수를 반복하여 사용할 수도 있다.
전도성 잉크 조성물의 금속 함량, 용매의 함량 및 휘발 온도, 점도, 칙소성의 특성에 따라 인쇄 특성의 차이가 발생하므로, 이는 각 방법에 적합하도록 전도성 잉크의 성분을 조절하여 조성물의 레올로지를 충진 방법에 최적화하는 것이 필요하다.
절연층 형성단계(S30)
절연층 형성단계(S30)는 상기 전극패턴 형성단계(S20)에서 전극패턴이 형성된 이형필름 상에 절연층을 형성하는 단계이다.
상기 절연층을 형성하는 물질은 열 또는 자외선 경화성 수지을 포함한 조성물인 것이 바람직하며, 열 경화성 수지와 자외선 경화성 수지를 혼합하여 사용할 수 있다.
다양한 가교 반응이 가능하다면 수지 조성에는 제한이 없으나, 내열성과 광 투과율이 우수한 특성을 지니는 것이 바람직하다.
상기 절연층을 형성하는 방법은 공지의 방법이 사용될 수 있으며, S-나이프(S-knife) 코팅법, 그라비아 코팅법, 플렉소 코팅법, 스크린 코팅법, 로터리 스크린 코팅법, 슬롯 다이 또는 마이크로 그라비아 코팅법이 바람직하며, 이에 한정되는 것은 아니다.
미세 전극패턴 사이의 절연층의 높이는 미세 전극패턴의 높이와 동일하거나 높게 형성되는 것이 바람직하며, 미세 전극패턴의 높이보다 0.1㎛이상, 더 바람직하게는 1㎛ 이상인 것이 효과적이다.
또한, 절연층은 단일층으로 형성될 수도 있고, 미세 전극패턴이 형성된 이형필름 상에 경화성 수지를 2회 이상 도포하여 2 이상의 절연층을 형성할 수도 있다.
기재층 형성단계(S40)
기재층 형성단계(S40)는 상기 절연층 형성단계(S30)에서 형성된 절연층 상에 기재를 적층하여 기재층을 형성하는 단계이다.
상기 기재의 종류는 특별히 한정되는 것은 아니다. 상기 기재는 투명한 재질, 예컨대 플라스틱 필름이나 글라스로 형성될 수 있다. 상기 플라스틱 필름으로는 폴리이미드(PI), 폴리에틸렌텔레프탈레이트(PET), 폴리에텔렌나프탈레이트(PEN), 폴리에테르술폰(PES), 나일론(Nylon), 폴리테트라플로우로에틸렌(PTFE), 폴리에테르에테르케톤(PEEK), 폴리카보네이트 (PC), 또는 폴리아릴레이트(PAR)가 사용될 수 있다. 이와 같이 플라스틱 필름이나 유리 기판 등을 사용 할 수 있으며, 이에 한정되지는 않는다.
상기 기재를 절연층 상에 형성하는 방법은 열 압착 또는 접착제에 의한 접착방법을 사용할 수 있다.
열 압착시에는, 상기 절연층 상에 상기 기재를 적층한 후에 100 내지 300℃, 바람직하게는 120 내지 200℃, 더 바람직하게는 140 내지 175℃의 온도 조건에서 압착하여 합지할 수 있다.
경우에 따라, 상기 절연층을 비-스테이지의 반경화 상태에서 상기 기재를 합지하여 사용할 수도 있다.
미세 전극패턴이 인쇄된 이후에 기재를 열 압착하여 기재층을 합지하므로, 기재층 상에 전극패턴을 형성하는 경우보다, 부착이 용이하고 부착력이 우수하여 투명전극 필름으로서의 내구성이 향상된다.
이형필름 제거단계(S50)
이형필름 제거단계(S50)는 이형필름을 제거하여 최종 투명전극 필름을 제조하는 단계이다.
이형필름을 제거하여 최종 투명전극 필름이 제조되나, 투명전극 필름의 신뢰성을 향상시키기 위하여, 도 2에서와 같이 잔여 전도성 잉크 조성물 처리단계(S60) 또는 전도성 물질 형성단계(S70)의 단계를 더 포함할 수도 있다.
이형필름을 제거한 후, 이형필름이 포함된 절연층 상에 전도성 잉크 조성물의 잔여물이 남아있지 않다면 전도성 잉크 조성물의 처리없이 바로 전도성 물질 형성단계를 실시하거나, 잔여 전도성 잉크 조성물 처리단계을 거쳐 바로 투명전극 필름으로 사용이 가능하다.
뿐만 아니라, 전도성 잉크 조성물 처리단계와 전도성 물질 형성단계 모두를 순차로 적용할 수 도 있다.
잔여 전도성 잉크 조성물 처리단계(S60)
잔여 전도성 잉크 조성물 처리단계(S60)는 미세 전극패턴 영역 사이에 남아있는 전도성 잉크 조성물을 제거하는 단계로, 잔여 전도성 잉크 조성물을 제거함으로써 투명전극 필름으로서의 투과율을 향상시킬 수 있다.
전극패턴 형성단계(S20)에서 이형제 표면 상에 전도성 잉크 조성물을 이용하여 미세 전극패턴을 인쇄하면서, 미세 전극패턴이 형성되는 위치가 아닌 영역에 전도성 잉크 조성물이 잔류하는 경우가 있다.
이형필름을 제거하고 나면, 잔여 전도성 잉크 조성물은 절연층 상에 존재하게 되고, 잔여 전도성 잉크 조성물에 포함된 미세 금속 조성물은 투명전극 필름의 투과율을 떨어뜨리거나 내전압 특성에 문제를 야기하게 되므로, 잔여 전도성 잉크 조성물을 제거하여 투명전극의 특성을 현저히 향상시킬 수 있다.
절연층 표면의 미세 전극패턴 사이에 남아있는 전도성 잉크 조성물을 용해시키기위하여, 에칭액을 기재 표면에 도포할 수 있으며, 에칭액의 도포 방법은 통상의 코팅법에 의해 수행될 수 있다.
에칭액은 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열 화합물, 산-염기 염복합체, 산-염기-알코올계 복합체 또는 머캡토(mercapto) 계열 화합물 중 적어도 하나 및 산화제를 포함하는 것이 바람직하다.
예를 들면, 산화제와 하나 이상의 상기의 화합물 및 이들의 혼합물을 상압 또는 가압상태에서 용매 없이 직접 반응시키거나, 용매를 사용하는 경우는 물, 메탄올, 프로판올, 이소프로판올, 부탄올, 에탄올 아민과 같은 알코올류, 에틸렌글리콜, 글리세린과 같은 글리콜류, 에틸아세테이트, 부틸 아세테이트, 카비톨아세테이트와 같은 아세테이트류, 디에틸에테르, 테트라히드로퓨란, 디옥산과 같은 에테르류, 메틸에틸케톤, 아세톤과 같은 케톤류, 헥산, 헵탄과 같은 탄화수소계, 벤젠, 톨루엔과 같은 방향족, 그리고 클로로포름이나 메틸렌클로라이드, 카본테트라클로라이드와 같은 할로겐 치환용매, 퍼플루오로카본과 같은 불소계 용매 또는 이들의 혼합용매 등을 사용 할 수 있다. 압력용기와 같은 가압상태에서는 저비점의 불소계 용제나 액화탄산가스 등도 사용가능하다. 본 발명의 에칭액 제조방법을 특별히 제한할 필요는 없다. 즉, 본 발명의 목적에 부합된다면 공지의 어떠한 방법을 사용하여도 무방하다.
상기 에칭액으로서, 산화제는 예를들면, 산소, 오존 등과 같은 산화성 기체, 과산화수소, Na2O2, KO2, NaBO3, (NH4)S2O8, H2SO5, (CH3)3CO2H, (C6H5CO2)2 등과 같은 과산화물, HCO3H, CH3CO3H, CF3CO3H, C6H5CO3H, m-ClC6H5-CO3H 등과 같은 과산소 산, 질산, 황산, 요오드(I2), Fe(NO3)3, Fe2(SO4)3, K3Fe(CN)6, (NH4)2Fe(SO4)2, Ce(NH4)4(SO4)4, NaIO4, KMnO4, K2CrO4 등과 같이 일반적으로 잘 알려진 산화성 무기산 또는 금속, 비금속화합물 등이 여기에 포함된다. 이러한 산화제를 사용할 때에는 단독 또는 최소한 하나 이상의 산화제를 혼합하여 사용해도 무방하다.
상기 에칭액은 절연층의 표면에 남은 전도성 잉크를 효과적으로 용해하기 위하여 에칭액 조성물에 친수 특성을 부여하는 것이 바람직할 수 있다. 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열, 산-염기 염복합체, 산-염기-알코올 계 복합체, 머캡토 계열 화합물의 탄소수를 조절하여 친수 특성의 정도를 조절 하는 것이 바람직하다.
여기서의 암모늄 카바메이트계 화합물, 암모늄 카보네이트계 화합물 및 암모늄바이카보네이트계 화합물은 본 출원인의 한국등록 제0727466호에 구체적으로 설명되어 있고 카르복실산 계열의 화합물은 벤조산, 올레산, 프로피온산, 말론산, 헥산산, 옥탄산, 데칸산, 네오데칸산, 옥살산, 시트르산, 살리실산, 스테아르산, 아크릴산, 숙신산, 아디프산, 글리콜산, 이소부티르산, 아스코빅 산 등이 사용 될 수 있다.
락톤 계열 화합물은 β-프로피오락톤, γ-프로피오락톤, γ-부티로락톤, γ-티오부티로락톤, α-메틸-γ-부티로락톤, β-메틸-γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, γ-옥타노익락톤, δ-발레로락톤, 1,6-디옥사스피로[4,4]노난-2,7-디온, α-메틸렌-γ-부티로락톤, γ-메틸렌-γ-부티로락톤, ε-카프로락톤, 락타이드, 글리콜라이드, 테트로닉산, 2(5H)-휴라논, β-히드록시-γ-부티로락톤, 메발로닉란톤, 5,6-디하이드로-2H-피란-2-피란-2-온, δ-발레로락톤, ε-카프로락톤, γ-카프로락톤, γ-옥타노익 락톤등이 사용 될 수 있다.
락탐계열 화합물은 2-아제티돈, 2-피놀리디논, 5-메톡시-2-피롤리디논, 5-메틸-2-피롤리디논, N-메틸카프로락탐, 2-아자시클로논나논, N-아세틸카프로락탐등이 사용 될 수 있다.
환상 산 무수물로서는 이타코닉 안하이드라이드, 석시닉안하이드라이드, 말레익안하이드라이드, 글루타릭안하이드라이드, 옥타데실석시닉안하이드라이드, 2,2-디메틸석시닉안하이드라이드, 2-도데켄-1-일석시닉안하이드라이드, 헥사프루오로글루타릭안하이드라이드, 3,3-디메틸글루타릭안하이드라이드, 3-에틸-3-메틸 글루타릭안하이드라이드, 3,5-디아세틸테트라하이드로피란-2,4,6-트리온, 디글리콜릭 안하이드라이드 등이 사용 될 수 있다.
머캡토 계열의 화합물은 1-메탄 사이올, 1-에탄사이올, 2-부탄사이올, 1-헵탄 사이올, 1-옥탄사이올, 1-데칸 사이올, 1-헥사 데칸 사이올, 사이오 아세트산, 6-머캡토헥산산, 사이오 벤조산, 푸르푸릴 머캡탄, 사이클로헥산사이올, 11-머캡토-1운데카놀, 2-머캡토에탄올, 3-머캡토-1-프로판올, 사이오살리실산, 1-사이오를리세롤, 2-나프탈렌사이올, 메틸 3-머캡토프로피오네이트, 간마 머캡토 프로필트리메톡시실란등이 사용 될 수 있다. 이에 한정되는 것은 아니며, 이들 중 단일성분으로 사용하여도 되고 2종 이상의 혼합물로 이루어지는 그룹 중에서 선택된 것이 될 수 있다.
상기 에칭조성물의 에칭 속도는 코팅시 에칭액의 침적 시간을 조절하거나, 에칭액의 산화제 또는 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열, 산-염기 염복합체, 산-염기-알코올계 복합체, 머캡토 계열 화합물의 농도를 조절하여 제어 하는 것이 바람직하고 필요시 에칭과정을 반복하여 사용 할 수 있다. 또한 무기 산이나 염기를 포함하는 에칭액의 경우, 별도의 물이나 유기용제로 세척하여 제거할 수 있다.
에칭액에 의해 용해된 잔여 전도성 잉크 조성물을 잔여 물리적인 힘으로 밀어내어 제거할 수 있다.
용해된 잔여 전도성 잉크 조성물을 밀어넣는 방법 또는 밀어넣는 처리부재의 제한은 없으나, 닥터 블레이드(doctor blade), 와이퍼(wafer) 또는 브러쉬(brush)를 이용할 수 있다. 더 바람직하게는 브러쉬를 이용한다. 브러쉬는 물리적인 힘을 감소시킴으로써 기재 표면의 긁힘, 잉크 유실을 효과적으로 방지할 수 있다.
이는 1회 이상 수행될 수 있으며, 다양한 방법, 특히, 닥터 블레이드, 와이퍼,브러쉬가 혼용되어 사용될 수도 있다.
잔여물 처리부재를 이용하여 용해된 잔여 전도성 잉크 조성물을 밀어내어, 절연층 상의 미세 전극패턴 사이 표면에 남아있는 전도성 잉크 조성물의 성분인 금속 물질 또는 유기 물질 등이 제거될 수 있다.
이 외에도, 용해된 잔여 전도성 잉크 조성물을 밀어내기 위한 방법으로, 별도의 진동 또는 요동, 에어를 이용할 수도 있다.
전도성 물질 형성단계(S70)
전도성 물질 형성단계(S70)는 이형필름이 제거된 미세 전극패턴 상에 전도성 물질을 증착하거나 프린팅하여 하이브리드형 투명전극 필름을 제조하는 단계이다.
본 단계는 소자의 내부 전극에 사용하기위하여 필요에 따라 추가될 수 있다.
또한 전도성 물질 형성단계(S70)는 이형필름이 제거되고나서(S50) 바로 실시할 수도 있고, 잔여 전도성 잉크 조성물를 제거하는 처리(S60)에 실시할 수도 있으며, 잔여 전도성 잉크 조성물을 제거한 후에 미세 전극패턴 상에 전도성 물질을 형성하게되면 신뢰성이 높은 투명전극 필름의 구현이 가능하다.
미세 전극패턴 상에 형성될 수 있는 전도성 물질은 ITO, AZO, CNT, 그래핀 또는 전도성 고분자인 것이 바람직하고, 전도성 고분자는 PEDOT(Poly(3,4-Ethylenedioxythiophene)) 또는 PSS:PEDOT(Poly(3,4-Ethylenedioxythiophene):Poly(4-Styrenesufonate))을 사용할 수 있다.
전도성 물질은 미세 패턴전극 위에 증착하여 패터닝하거나 직접 프린팅하여 형성할 수 있으며, ITO 또는 AZO의 재료는 타겟 형태로 진공 증착(sputtering)하거나 잉크화하여 박막 코팅 조성물로 프린팅하는 것이 바람직하다.
이러한 하이브리드 형태의 투명전극 필름은 두 전극 간의 계면 특성이 우수하여 높은 전도도가 필요하고 고 신뢰성을 요구하는 분야에 사용될 수 있다.
투명전극 필름의 제조를 위한 상기의 단계는 롤투롤(roll-to-roll)의 연속 공정으로 수행할 수 있으며, 이를 통하여 생산 속도가 증가되어 생산 효율을 증대시킬 수 있다.
이하에서는, 도 3을 참조하여 본 발명에 대해 구체적으로 설명한다.
도 3a 내지 도 3j는 본 발명의 일 실시예에 의한 투명전극 필름의 제조방법을 순차적으로 도식화한 단면도이다.
도 3a에서 보는 바와 같이, 내열성 필름(11)가 준비된다. 내열성 필름(11)은 PEN, PET, PE, PL, PC와 같은 다양한 재질의 필름이 사용가능하다.
도 3b은 내열성 필름(11) 상에 이형제(12)를 도포하여 이형필름(10)을 제조한다. 이형필름(10)은 이형력을 가지는 것이라면 어떠한 형태여도 무방하나, 내열성 이형력을 조절한 이형 코트필름 형태인 것이 바람직하다.
추후 기재층(40)을 열 압착과 같은 방식으로 합지하는 공정이 이어지므로, 이형제(12)는 열 압착 공정에서도 심한 수축이 발생하지 않는 내열 특성을 가지는 물질인 것이 바람직하며, 실리콘계 이형제를 사용하는 것이 효과적이다.
다음으로, 도 3c에서 보는 바와 같이 이형필름(10) 상에 미세 전극패턴(20)을 형성하게 된다.
이형필름(10)은 제거되는 대상이므로, 이형력이 우수한 이형제(12) 면 위에 미세 전극패턴(20)이 인쇄되고, 메쉬 형태로 형성될 수 있다.
전도성 잉크 조성물은 금속 착제 화합물 또는 금속 전구체를 사용할 수 있으며, 이는 그라비아 프린팅법, 플렉소 프린팅법, 옵셋 프린팅법, 리버스 옵셋 프린팅법, 디스펜싱, 스크린 프리팅법, 로터리 스크린 프린팅법 또는 잉크젯 프린팅법 등이 사용될 수 있으며, 이에 한정되지 않는다.
전도성 잉크 조성물의 인쇄는 1회에 한정되는 것은 아니며, 경우에 따라 복수 회 반복될 수 있다.
미세 전극패턴(20)은 전도성 잉크 조성물을 이용하여 인쇄가 되며, 인쇄시 전도성 잉크 조성물이 미세 전극패턴(20)이 형성되는 위치가 아닌 영역에 남게될 수 도 있어 추후 잔여 전도성 잉크 조성물(50)을 처리하는 단계가 추가될 수 있다.
이 후, 도 3d에서 보는 바와 같이, 미세 전극패턴(20)이 인쇄된 이형제(12) 표면에 열 또는 자외선 경화성 수지가 도포되어 절연층(30)을 형성한다.
절연층(30)의 높이는, 해당 도면에서 보는 바와 같이, 미세 전극패턴(20)의 높이보다 높게 형성되는 것이 효과적이고, 미세 전극패턴의 높이보다 0.1㎛이상, 더 바람직하게는 1㎛ 이상인 것이 바람직하다.
절연층(30)이 형성한 이후, 도 3e에서 보는 바와 같이 절연층(30) 상에 기재층(40)을 적층한다.
기재층(40)의 기재는 종류에 한정되지 않으며, 투명전극 필름으로 플라스틱 필름이나 글라스와 같은 투명한 재질을 사용할 수 있다.
기재는 100 내지 300℃의 온도로 열 압착하여 절연층(30) 상에 기재를 합지하는 것이 바람직하며, 접착제를 절연층(30) 상에 도포하여 기재를 접착하는 방법도 사용가능하다.
접착제를 사용하여 기재를 접착하는 경우에, 상기 접착제는 투명성이 있는 접착제를 사용하는 것이 바람직하고, 폴리비닐알코올계 접착제, 아크릴계 접착제, 비닐 아세테이트계 접착제, 우레탄계 접착제, 폴리에스테르계 접착제, 폴리올레핀계 접착제, 폴리비닐알킬에테르계 접착제를 사용할 수 있으며, 기재의 종류에 따라 접착제를 2종 이상 혼합하여 사용할 수 있다.
접착제층의 두께는 특별한 제한이 없으며, 물성을 고려한 통상의 두께로 설정될 수 있다.
기재를 합지한 후에, 이형필름(10)을 제거하여 투명전극 필름을 제조할 수 있다. 이는 도 3f에 도시되어 있다.
이형필름(10)의 이형제(12)의 이형력을 조절함으로써, 이형필름(10)이 미세 전극패턴이 형성된 절연층(30)으로부터 분리된다.
이로써, 도 3g에서 보는 바와 같이, 미세 전극패턴(20)이 외부에 노출되므로, 표면 조도가 우수한 디스플레이용 투명전극 필름이 구현가능하다.
투명전극 필름의 신뢰성을 향상시키고자, 도 3h, 3i, 3j에 도시된 공정을 추가 실시할 수 있다.
도 3h는, 상기에서 언급한 바와 같이 전도성 잉크 조성물을 인쇄하여 미세 전극패턴(20)을 형성할 때, 미세 전극패턴(20)이 형성되지 않는 위치에 전도성 잉크 조성물이 남게될 수 있으며, 이형필름(10)을 제거 후에 전도성 잉크 조성물이 절연층(30) 상에 여전히 남아 있으므로, 이를 제거하는 공정이 추가 실시될 수 있다.
잔여 전도성 잉크 조성물(50)을 에칭액으로 용해하여 이를 밀어냄으로써 미세 전극패턴이 형성되는 위치가 아닌 영역에 금속물질 또는 유기물질이 제거될 수 있다.
잔여 전도성 잉크 조성물(50)의 잔여량에 따라, 에칭액의 농도나 침적 속도를 제어하는 것이 바람직하다.
용해된 잔여 전도성 잉크 조성물을 밀어내는 방법은 다양한 물리적인 힘에 의해 밀어낼 수 있으나, 해당 도면에서는 닥터블레이트(70)를 사용하였다. 이는 1회 이상 실시될 수 있으며, 여러 종류의 스퀴즈가 혼용하여 사용될 수 있다.
잔여 전도성 잉크 조성물(50)을 제거함으로써, 내전압 특성 및 광 투과율을 향상시킬 수 있다.
이 후, 도 3i 및 도 3j에서 보는 바와 같이, 미세 전극패턴 상에 전도성 물질을 형성할 수 있다.
도 3i에서 보는 바와 같이, ITO, AZO, NT, 그래핀, 전도성 고분자와 같은 전도성 물질을 미세 전극패턴(20)이 형성된 절연층(30) 상에 직접 프린팅한 후에, 도 3j에서 보는 바와 같이 에칭하여 하이브리드 형태의 투명전극 필름을 형성할 수 있다.
이는 반드시 도 3h의 공정 후에 이루어져야 하는 것은 아니며, 이형필름(10)이 제거된 도 3g의 투명전극 필름의 상태에서 전도성 물질을 형성할 수 있음은 물론이다.
본 발명의 일 실시예에 의한 디스플레이요 투명전극 필름은 이형필름 상에 전도성 잉크 조성물을 미세 전극패턴으로 인쇄하여 형성된 전극패턴; 상기 전극패턴이 형성된 상기 이형필름 상에 절연성 수지를 도포하여 형성된 절연층; 및
상기 이형필름과 접한 상기 절연층의 일측면에 반대면인 상기 절연층의 타측면 상에 적층된 기재층을 포함하며, 상기 전극패턴은 상기 절연층 내부에 매입되게 위치하되, 상기 전극패턴의 일면은 상기 절연층의 상기 일측면 표면으로 노출되어 상기 이형필름과 접하게 위치되어 있을 수 있다.
본 발명의 다른 실시예에 의한 디스플레이용 투명전극 필름은 이형필름 상에 전도성 잉크 조성물을 미세 전극패턴으로 인쇄하여 형성된 전극패턴, 상기 미세 전극패턴 사이의 홈이 충진되도록 절연성 수지를 전면에 도포하여 형성된 절연층 및 상기 이형필름과 접한 상기 절연층의 일측면에 반대면인 상기 절연층의 타측면 상에 적층된 기재층을 포함하며, 상기 전극패턴은 상기 절연층 내부에 매입되게 위치하되, 상기 전극패턴의 일면은 상기 절연층의 상기 일측면 표면으로 노출되어 상기 이형필름과 접하게 위치되어 있을 수 있다.
본 발명의 또 다른 실시예에 의한 디스플레이용 투명전극 필름은 이형필름 상에 전도성 잉크 조성물을 미세 전극패턴으로 인쇄하여 형성된 전극패턴, 상기 미세 전극패턴이 형성된 상기 이형필름 상에 상기 미세 전극패턴이 덮여지도록 절연성 수지를 도포하여 형성된 절연층 및 상기 이형필름과 접한 상기 절연층의 일측면에 반대면인 상기 절연층의 타측면 상에 적층된 기재층을 포함하는 디스플레이용 투명전극 필름으로서, 상기 전극패턴은 상기 절연층 내부에 매입되게 위치하되, 상기 전극패턴의 일면은 상기 절연층의 상기 일측면 표면으로 노출되어 상기 이형필름과 접하게 위치되어 있고, 상기 이형필름이 제거된 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 잔여 전도성 잉크 조성물이 제거되어 형성될 수 있다.
본 발명의 또 다른 실시예에 의한 디스플레이용 투명전극 필름은 이형필름 상에 전도성 잉크 조성물을 미세 전극패턴으로 인쇄하여 형성된 전극패턴, 상기 전극패턴이 형성된 상기 이형필름 상에 절연성 수지를 도포하여 형성된 절연층; 및 상기 이형필름과 접한 상기 절연층의 일측면에 반대면인 상기 절연층의 타측면 상에 적층된 기재층을 포함하는 디스플레이용 투명전극 필름으로서, 상기 전극패턴은 상기 절연층 내부에 매입되게 위치하되, 상기 전극패턴의 일면은 상기 절연층의 상기 일측면 표면으로 노출되어 상기 이형필름과 접하게 위치되어 있고, 상기 이형필름이 제거된 상태에서 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 잔여 전도성 잉크 조성물이 제거된 상기 미세 전극패턴 상에 형성한 전도성 물질을 더 포함할 수 있다.
상기 전도성 잉크 조성물, 상기 절연성 수지, 상기 에칭액 및 상기 전도성 물질은 디스플레이용 투명전극 필름의 제조방법에서 설명한 바와 같다.
본 발명예에 의한 디스플레이용 투명전극 필름의 표면조도는 0.05 내지 0.3㎛일 수 있으며, 바람직하게는 0.10 내지 0.2㎛일 수 있으며, 가장 바람직하게는 0.10 내지 0.15㎛일 수 있다.
또한, 본 발명에 의한 디스플레이용 투명전극 필름의 면저항은 10mΩ/sq 내지 100kΩ/sq일 수 있으며, 더 바람직하게는 10mΩ/sq 내지 10kΩ/sq일 수 있으며, 더욱 바람직하게는 3.0 내지 18.5Ω/sq일 수 있으며, 가장 바람직하게는 3.0 내지 10.5Ω/sq일 수 있다.
또한, 본 발명에 의한 디스플레이용 투명전극 필름의 투과율은 60 내지 99%일 수 있으며, 더 바람직하게는 70 내지 99%일 수 있으며, 가장 바람직하게는 83 내지 91%일 수 있다.
이하에서는, 실시예를 통해 본 발명에 대해 구체적으로 설명한다. 본 발명의 범위는 실시예로 한정되지 않는다.
실시예 1
이형필름으로서 내열 실리콘 이형코트필름(SKC社, SG32) 위에, 전도성 금속 조성물 (잉크테크, TEC-PA-010)로 미세전극패턴을 리버스 옵셋 프린팅(나래나노텍社)으로 인쇄한 후, 130℃에서 20분간 건조하여 3um 선폭의 전극 패턴을 형성하였다. 슬롯다이코터(펙티브社)를 사용하여 전극패턴 상에, 자외선 경화형 수지 (미뉴타텍社, MIR-30) 코팅액을 건조 두께 70㎛로 코팅하여 절연층을 형성하고 절연층 상에 12um 두께의 PET 필름을 120℃의 온도에서 2분간 핫프레스(hot press)로 열 압착한 후, 이형코트필름을 제거하여, 투명전극 필름을 제조하였다. 하기의 표 1에 제조된 제품의 면저항, 투과율, 헤이즈, 옐로우인덱스(Yellow Index), 표면조도의 결과를 기재하고, 도 4에 SEM(Scanning Electron Microscope) 이미지를 나타내었다. 표면조도는 나노시스템社의 3차원 측정기인 NV-1000을 이용하여 형성된 투명전극 필름의 표면조도를 측정하였다.
실시예 2
이형필름으로서 내열 실리콘 이형코트필름(SKC社, SG32) 위에, 전도성 잉크 조성물 (잉크테크, TEC-IM-20)로 미세전극패턴을 리버스 옵셋 프린팅(나래나노텍社)으로 인쇄한 후, 130℃에서 20분간 건조하여 3um 선폭의 미세 전극패턴을 형성하였다. 슬롯다이코터(펙티브社)를 사용하여 전극패턴 상에, 자외선 경화형 수지 (미뉴타텍社, MRI-30) 코팅액을 건조 두께 70㎛로 코팅하여 절연층을 형성하고 절연층 상에 12um 두께의 PET 필름을 120℃의 온도에서 2분간 핫프레스(hot press)로 열 압착한 후, 이형필름을 제거하여, 투명전극 필름을 제조하였다. 하기의 표 1에 제조된 제품의 면저항, 투과율, 헤이즈, 옐로우인덱스, 표면조도의 결과를 기재하고, 도 4에 SEM 이미지를 나타내었다.
실시예 3
이형필름으로서 내열 실리콘 이형코트필름(SKC社, SG32) 위에, 전도성 잉크 조성물 (잉크테크, TEC-PA-021)로 미세전극패턴을 리버스 옵셋 프린팅(나래나노텍社)으로 인쇄한 후, 130℃에서 20분간 건조하여 3um 선폭의 전극 패턴을 형성하였다. 슬롯다이코터(펙티브社)를 사용하여 전극패턴 상에, 자외선 경화형 수지 (미뉴타텍社, MRI-30) 코팅액을 건조 두께 70㎛로 코팅하여 절연층을 형성하고 절연층 상에 12um 두께의 PET 필름을 120℃의 온도에서 2분간 핫프레스(hot press)로 열 압착한 후, 이형필름을 제거하여, 투명전극 필름을 제조하였다. 하기의 표 1에 제조된 제품의 면저항, 투과율, 헤이즈, 옐로우인덱스, 표면조도의 결과를 기재하고, 도 4에 SEM 이미지를 나타내었다.
실시예 4
이형필름으로서 내열 실리콘 이형코트필름(SKC社, SG32) 위에, 전도성 잉크 조성물 (잉크테크, TEC-PSP-009)로 미세전극패턴을 리버스 옵셋 프린팅(나래나노텍社)으로 인쇄한 후, 130℃에서 20분간 건조하여 3um 선폭의 전극 패턴을 형성하였다. 슬롯다이코터(펙티브社)를 사용하여 전극패턴 상에, 자외선 경화형 수지 (미뉴타텍社, MRI-30) 코팅액을 건조 두께 70㎛로 코팅하여 절연층을 형성하고 절연층 상에 12um 두께의 PET 필름을 120℃의 온도에서 2분간 핫프레스(hot press)로 열 압착한 후, 이형필름을 제거하여, 투명전극 필름을 제조하였다. 하기의 표 1에 제조된 제품의 면저항, 투과율, 헤이즈, 옐로우인덱스, 표면조도의 결과를 기재하고, 도 4에 SEM 이미지를 나타내었다.
실시예 5
이형필름으로서 내열 실리콘 이형코트필름(SKC社, SG32) 위에, 전도성 잉크 조성물 (잉크테크, TEC-PSP-010)로 미세전극패턴을 리버스 옵셋 프린팅(나래나노텍社)으로 인쇄한 후, 130℃에서 20분간 건조하여 3um 선폭의 전극 패턴을 형성하였다. 슬롯다이코터(펙티브社)를 사용하여 전극패턴 상에, 자외선 경화형 수지 (미뉴타텍社, MRI-30) 코팅액을 건조 두께 70㎛로 코팅하여 절연층을 형성하고 절연층 상에 12um 두께의 PET 필름을 120℃의 온도에서 2분간 핫프레스(hot press)로 열 압착한 후, 이형필름을 제거하여, 투명전극 필름을 제조하였다. 하기의 표 1에 제조된 제품의 면저항, 투과율, 헤이즈, 옐로우인덱스, 표면조도의 결과를 기재하고, 도 4에 SEM 이미지를 나타내었다.
실시예 6
이형필름으로서 내열 실리콘 이형코트필름(SKC社, SG32) 위에, 전도성 잉크 조성물 (잉크테크, TEC-PA-010)로 미세전극패턴을 리버스 옵셋 프린팅(나래나노텍社)으로 인쇄한 후, 130℃에서 20분간 건조하여 3um 선폭의 전극 패턴을 형성하였다. 슬롯다이코터(펙티브社)를 사용하여 전극패턴 상에, 자외선 경화형 수지 (미뉴타텍社, MIR-30) 코팅액을 건조 두께 70㎛로 코팅하여 절연층을 형성하고 절연층 상에 12um 두께의 PET 필름을 120℃의 온도에서 2분간 핫프레스(hot press)로 열 압착한 후, 이형코트필름을 제거하였다. 다음 단계로 에칭용액을 10초간 침적 시킨 후 블레이드 방식을 사용하여 1차로 도포하고, 상기 에칭용액에 용해되거나 분산되어 있는 표면의 잔여 전도성 잉크 조성물을 2차로 닥터 블레이드를 기재방향으로 압력을 가하며 밀어서 기재 표면의 잔유 금속물질 및 유기물질을 제거하여 투명전극 필름을 제조하였다.
여기서, 에칭용액은 이소부틸 카바메이트 5g, 이소부틸아민 83g, 2-아미노-2-메틸-1-프로판올 95% 용액 2g을 첨가한 후 30% 과산화수소 10g을 천천히 첨가한 뒤 5시간 교반하여 제조하였다.
하기의 표 1에 제조된 제품의 면저항, 투과율, 헤이즈, 옐로우인덱스, 표면조도의 결과를 기재하였다.
실시예 7
이형필름으로서 내열 실리콘 이형코트필름(SKC社, SG32) 위에, 전도성 잉크 조성물 (잉크테크, TEC-PA-010)로 미세전극패턴을 리버스 옵셋 프린팅(나래나노텍社)으로 인쇄한 후, 130℃에서 20분간 건조하여 3um 선폭의 전극 패턴을 형성하였다. 슬롯다이코터(펙티브社)를 사용하여 전극패턴 상에, 자외선 경화형 수지 (미뉴타텍社, MIR-30) 코팅액을 건조 두께 70㎛로 코팅하여 절연층을 형성하고 절연층 상에 12um 두께의 PET 필름을 120℃의 온도에서 2분간 핫프레스(hot press)로 열 압착한 후, 이형코트필름을 제거하였다. 다음 단계로 금속물질이 충진된 임프린트 기재를 120℃ 에서 5분간 건조하여 투명전극 필름을 형성하였다. 하기의 표 1에 제조된 제품의 면저항, 투과율, 헤이즈, 옐로우인덱스의 결과를 기재하였다.
실시예 8
이형필름으로서 내열 실리콘 이형코트필름(SKC社, SG32) 위에, 전도성 잉크 조성물 (잉크테크, TEC-PA-010)로 미세전극패턴을 리버스 옵셋 프린팅(나래나노텍社)으로 인쇄한 후, 130℃에서 20분간 건조하여 3um 선폭의 전극 패턴을 형성하였다. 슬롯다이코터(펙티브社)를 사용하여 전극패턴 상에, 자외선 경화형 수지 (미뉴타텍社, MIR-30) 코팅액을 건조 두께 70㎛로 코팅하여 절연층을 형성하고 절연층 상에 12um 두께의 PET 필름을 120℃의 온도에서 2분간 핫프레스(hot press)로 열 압착한 후, 이형코트필름을 제거하였다. 다음 단계로 에칭용액을 10초간 침적 시킨 후 블레이드 방식을 사용하여 1차로 도포하고, 상기 에칭용액에 용해되거나 분산되어 있는 표면의 잔여 전도성 잉크 조성물을 2차로 닥터 블레이드를 기재방향으로 압력을 가하며 밀어서 기재 표면의 잔유 금속물질 및 유기물질을 제거하였다. 이 후, 금속물질이 충진된 임프린트 기재를 120℃에서 5분간 건조하여 투명전극 필름을 제조하였다.
여기서, 에칭용액은 이소부틸 카바메이트 5g, 이소부틸아민 83g, 2-아미노-2-메틸-1-프로판올 95% 용액 2g을 첨가한 후 30% 과산화수소 10g을 천천히 첨가한 뒤 5시간 교반하여 제조하였다.
하기의 표 1에 제조된 제품의 면저항, 투과율, 헤이즈, 옐로우인덱스의 결과를 기재하였다.
비교예 1
PET 필름(SKC社, SH82) 위에, 전도성 잉크 조성물 (잉크테크, TEC-PA-010)로 미세전극패턴을 스테인레스 재질의 500메쉬 제판(삼본스크린)을 이용하여 스크린 인쇄(라인시스템社) 후, 130℃에서 20분간 건조하여 80um 선폭의 투명전극 필름을 형성하였다. 하기의 표 1에 제조된 제품의 면저항, 투과율, 헤이즈, 옐로우인덱스, 표면조도의 결과를 기재하였다.
비교예 2
PET 필름(SKC社, SH82) 위에, 전도성 잉크 조성물 (잉크테크, TEC-PA-010)로 미세전극패턴을 그라비아 옵셋 프린팅 (미래나노텍社) 으로 인쇄한 후, 130℃에서 20분간 건조하여 30um 선폭의 투명전극 필름을 형성하였다. 하기의 표 1에 제조된 제품의 면저항, 투과율, 헤이즈, 옐로우인덱스, 표면조도의 결과를 기재하였다.
표 1
면저항(Ω/sq.) 투과율(%) 헤이즈(%) 옐로우인덱스(%) 표면조도(Ra)(㎛)
실시예 1 3.3 87.2 2.18 1.9 0.10
실시예 2 14.0 89.8 1.9 2.2 0.15
실시예 3 12.6 85.7 2.4 2.4 0.10
실시예 4 3.6 83.0 3.0 2.6 0.12
실시예 5 18.4 90.2 1.8 1.4 0.11
실시예 6 5.0 87.3 2.0 2.0 0.11
실시예 7 3.5 88.7 1.8 2.0 -
실시예 8 3.1 89.3 1.82 1.4 -
비교예 1 20.1 81.2 5.9 3.5 3.0
비교예 2 18.8 80.0 4.8 3.8 0.5
상기 표 1에서 보는 바와 같이, 본 발명의 제조방법에 의해 제조된 디스플레이용 투명전극 필름은 20Ω/sq. 면저항을 가지는 비교예에 의한 투명전극 필름에 비하여, 현저히 낮은 평균 10.38Ω/sq.의 면저항 값을 가져, 종래의 단순한 스크린 프린팅 또는 그라비아 옵셋 프린팅으로 전극패턴을 형성하는 것에 비하여 전기전도도가 우수하다.
또한, 투과율이 약 88%정도로 높고, 헤이즈 값이 낮아 우수한 물성을 가지는 투명전극 필름이 구현됨을 알 수 있다.
특히, 실시예에 의한 투명전극 필름은 표면조도가 약 0.10㎛로 매우 균일한 표면조도를 갖는 전극을 형성할 수 있는데 반해, 비교예의 경우 표면조도가 각각 0.5㎛, 3.0㎛로 균일한 표면의 형성이 어려워, 전극 간의 접촉 정도가 현저히 떨어짐을 예상할 수 있다.
도 4에서 실시예 1 내지 5의 투명전극 필름 상 전극패턴의 SEM 이미지를 볼 수 있다.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가지는 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.
본 발명에 의한 디스플레이용 투명전극 필름 제조방법 및 디스플레이용 투명전극 필름은 이형필름이 제거된 방향의 면으로 미세 전극패턴이 노출되므로, 전극 간의 접촉이 용이하여 표면 조도가 우수하여 디스플레이용 투명전극에 용이하게 적용할 수 있다.

Claims (36)

  1. 이형필름 상에 전도성 잉크 조성물을 이용하여 미세 전극패턴을 인쇄하는 전극패턴 형성단계;
    상기 전극패턴이 형성된 상기 이형필름 상에 절연성 수지를 도포하여 절연층을 형성하는 절연층 형성단계;
    상기 절연층 상에 기재를 적층하여 기재층을 형성하는 기재층 형성단계; 및
    상기 이형필름을 제거하는 이형필름 제거단계;를 포함하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  2. 제 1항에 있어서,
    상기 이형필름은 내열성 필름 상에 실리콘계 또는 아크릴계 이형제를 도포하여 이형필름을 준비하는 이형필름 준비단계;에 의해 형성되는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  3. 제 1항에 있어서,
    상기 전도성 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이트 또는 금속 나노입자 중 적어도 하나를 포함하는 전도성 금속 조성물로 이루어지는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  4. 제 1항에 있어서,
    상기 미세 전극패턴은 그라비아 프린팅법, 플렉소 프린팅법, 옵셋 프린팅법, 리버스 옵셋 프린팅법, 디스펜싱, 스크린 프린팅법, 로터리 스크린 프린팅법 또는 잉크젯 프린팅법으로 상기 이형제 표면 상에 인쇄되는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  5. 제 1항에 있어서,
    상기 절연층 형성단계는, 상기 미세 전극패턴 사이의 홈이 충진되도록 상기 절연성 수지를 전면 도포하여 상기 절연층을 형성하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  6. 제 1항 내지 제 5항 중 어느 한 항에 있어서,
    상기 미세 전극패턴 사이의 상기 절연층의 높이는 상기 미세 전극패턴의 높이와 동일하거나 높게 형성되는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  7. 제 1항 내지 제 5항 중 어느 한 항에 있어서,
    상기 절연층 형성단계는, 상기 절연성 수지를 2회 이상 도포하여 2 이상의 절연층을 형성하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  8. 제 1항에 있어서,
    상기 기재는 상기 절연층 상에 열 압착에 의해 적층되거나, 접착제에 의한 접착에 의해 적층되는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  9. 제 1항에 있어서,
    상기 이형필름 제거단계 후, 상기 전극패턴 형성단계에서 상기 미세 전극패턴을 인쇄하면서 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 제거하는 잔여 전도성 잉크 조성물 처리단계;를 더 포함하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  10. 제 9항에 있어서,
    상기 잔여 전도성 잉크 조성물 처리단계는,
    상기 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 잔여물 처리부재를 이용하여 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 제거하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  11. 제 10항에 있어서,
    상기 에칭액은 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열 화합물, 산-염기 염복합체, 산-염기-알코올계 복합체 또는 머캡토 계열 화합물 중 적어도 하나 및 산화제를 포함하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  12. 제 10항 또는 제 11항에 있어서,
    상기 잔여물 처리부재는 닥터 블레이드, 와이퍼 또는 브러쉬인 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  13. 제 1항 내지 제 5항, 제 8항 내지 제 11항 중 어느 한 항에 있어서,
    상기 이형필름이 제거된 상기 미세 전극패턴 상에 전도성 물질을 증착 또는 프린팅하여 하이브리드형 투명전극 필름을 제조하는 전도성 물질 형성단계;를 더 포함하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  14. 제 13항에 있어서,
    상기 전도성 물질은 ITO, AZO, CNT, 그래핀 또는 전도성 고분자인 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  15. 이형필름 상에 전도성 잉크 조성물을 이용하여 미세 전극패턴을 인쇄하는 전극패턴 형성단계;
    상기 미세 전극패턴 사이의 홈이 충진되도록 상기 절연성 수지를 전면에 도포하여 절연층을 형성하는 절연층 형성단계;
    상기 절연층 상에 기재를 적층하여 기재층을 형성하는 기재층 형성단계; 및
    상기 이형필름을 제거하는 이형필름 제거단계;를 포함하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  16. 제 15항에 있어서,
    상기 미세 전극패턴 사이 홈의 상기 절연층 높이는 상기 미세 전극패턴의 높이와 동일하거나 높게 형성되는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  17. 제 15항에 있어서,
    상기 이형필름 제거단계 후, 상기 전극패턴 형성단계에서 상기 미세 전극패턴을 인쇄하면서 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 잔여물 처리부재를 이용하여 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 제거하는 잔여 전도성 잉크 조성물 처리단계;를 더 포함하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  18. 제 15항 내지 제 17항 중 어느 한 항에 있어서,
    상기 이형필름이 제거된 상기 미세 전극패턴 상에 전도성 물질을 적층하여 하이브리드형 투명전극 필름을 제조하는 전도성 물질 형성단계;를 더 포함하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  19. 이형필름 상에 전도성 잉크 조성물을 이용하여 미세 전극패턴을 인쇄하는 전극패턴 형성단계;
    상기 미세 전극패턴이 형성된 상기 이형필름 상에 상기 미세 전극패턴이 덮여지도록 절연성 수지를 도포하여 절연층을 형성하는 절연층 형성단계;
    상기 절연층 상에 기재를 적층하여 기재층을 형성하는 기재층 형성단계;
    상기 이형필름을 제거하는 이형필름 제거단계; 및
    상기 전극패턴 형성단계에서 상기 미세 전극패턴을 인쇄하면서 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 제거하는 잔여 전도성 잉크 조성물 처리단계;를 포함하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  20. 제 19항에 있어서,
    상기 절연성 수지는 열 또는 자외선 경화성 수지인 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  21. 제 19항에 있어서,
    상기 에칭액은 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열 화합물, 산-염기 염복합체, 산-염기-알코올계 복합체 또는 머캡토 계열 화합물 중 적어도 하나 및 산화제를 포함하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  22. 제19항 내지 제 21항 중 어느 한 항에 있어서,
    상기 잔여물 전도성 잉크 조성물 처리단계에서, 용해된 상기 잔여 전도성 잉크 조성물은 닥터 블레이드, 와이퍼 또는 브러쉬 중 1종 이상의 방법으로 제거되는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  23. 이형필름 상에 전도성 잉크 조성물을 이용하여 미세 전극패턴을 인쇄하는 전극패턴 형성단계;
    상기 전극패턴이 형성된 상기 이형필름 상에 절연층을 형성하는 절연층 형성단계;
    상기 절연층 상에 기재를 적층하여 기재층을 형성하는 기재층 형성단계;
    상기 이형필름을 제거하는 이형필름 제거단계;
    상기 전극패턴 형성단계에서 상기 미세 전극패턴을 인쇄하면서 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 제거하는 잔여 전도성 잉크 조성물 처리단계; 및
    상기 이형필름이 제거된 상기 미세 전극패턴 상에 전도성 물질을 증착 또는 프린팅하여 하이브리드형 투명전극 필름을 제조하는 전도성 물질 형성단계;를 포함하는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  24. 제 23항에 있어서,
    상기 이형필름은 내열성 필름 상에 실리콘계 또는 아크릴계 이형제를 도포하여 이형필름을 준비하는 이형필름 준비단계;에 의해 형성되는 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  25. 제 23항 또는 제 24항에 있어서,
    상기 전도성 물질 형성단계에서, 상기 전도성 물질은 ITO, AZO, CNT, 그래핀 또는 전도성 고분자인 것을 특징으로 하는 디스플레이용 투명전극 필름 제조방법.
  26. 이형필름 상에 전도성 잉크 조성물을 미세 전극패턴으로 인쇄하여 형성된 전극패턴;
    상기 전극패턴이 형성된 상기 이형필름 상에 절연성 수지를 도포하여 형성된 절연층; 및
    상기 이형필름과 접한 상기 절연층의 일측면에 반대면인 상기 절연층의 타측면 상에 적층된 기재층을 포함하며,
    상기 전극패턴은 상기 절연층 내부에 매입되게 위치하되, 상기 전극패턴의 일면은 상기 절연층의 상기 일측면 표면으로 노출되어 상기 이형필름과 접하게 위치되어 있는 디스플레이용 투명 전극 필름.
  27. 이형필름 상에 전도성 잉크 조성물을 미세 전극패턴으로 인쇄하여 형성된 전극패턴;
    상기 미세 전극패턴 사이의 홈이 충진되도록 절연성 수지를 전면에 도포하여 형성된 절연층; 및
    상기 이형필름과 접한 상기 절연층의 일측면에 반대면인 상기 절연층의 타측면 상에 적층된 기재층을 포함하며,
    상기 전극패턴은 상기 절연층 내부에 매입되게 위치하되, 상기 전극패턴의 일면은 상기 절연층의 상기 일측면 표면으로 노출되어 상기 이형필름과 접하게 위치되어 있는 디스플레이용 투명 전극 필름.
  28. 이형필름 상에 전도성 잉크 조성물을 미세 전극패턴으로 인쇄하여 형성된 전극패턴;
    상기 미세 전극패턴이 형성된 상기 이형필름 상에 상기 미세 전극패턴이 덮여지도록 절연성 수지를 도포하여 형성된 절연층; 및
    상기 이형필름과 접한 상기 절연층의 일측면에 반대면인 상기 절연층의 타측면 상에 적층된 기재층을 포함하는 디스플레이용 투명전극 필름으로서,
    상기 전극패턴은 상기 절연층 내부에 매입되게 위치하되, 상기 전극패턴의 일면은 상기 절연층의 상기 일측면 표면으로 노출되어 상기 이형필름과 접하게 위치되어 있고,
    상기 이형필름이 제거된 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 잔여 전도성 잉크 조성물이 제거된 디스플레이용 투명전극 필름.
  29. 이형필름 상에 전도성 잉크 조성물을 미세 전극패턴으로 인쇄하여 형성된 전극패턴;
    상기 전극패턴이 형성된 상기 이형필름 상에 절연성 수지를 도포하여 형성된 절연층; 및
    상기 이형필름과 접한 상기 절연층의 일측면에 반대면인 상기 절연층의 타측면 상에 적층된 기재층을 포함하는 디스플레이용 투명전극 필름으로서,
    상기 전극패턴은 상기 절연층 내부에 매입되게 위치하되, 상기 전극패턴의 일면은 상기 절연층의 상기 일측면 표면으로 노출되어 상기 이형필름과 접하게 위치되어 있고,
    상기 이형필름이 제거된 상태에서 상기 미세 전극패턴 사이에 남아있는 잔여 전도성 잉크 조성물을 에칭액으로 용해시키고, 용해된 상기 잔여 전도성 잉크 조성물을 밀어냄으로써 잔여 전도성 잉크 조성물이 제거된 상기 미세 전극패턴 상에 형성한 전도성 물질을 더 포함하는 디스플레이용 투명전극 필름.
  30. 제26항 내지 제29항 중 어느 한 항에 있어서,
    상기 전도성 잉크 조성물은 금속 착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이트 또는 금속 나노입자 중 적어도 하나를 포함하는 전도성 금속 조성물로 이루어지는 것을 특징으로 하는 디스플레이용 투명전극 필름.
  31. 제26항 내지 제29항 중 어느 한 항에 있어서,
    상기 절연성 수지는 열 또는 자외선 경화성 수지인 것을 특징으로 하는 디스플레이용 투명전극 필름.
  32. 제28항 또는 제29항에 있어서,
    상기 에칭액은 암모늄 카바메이트계열, 암모늄 카보네이트계열, 암모늄 바이카보네이트계열, 카르복실산 계열, 락톤 계열, 락탐 계열, 환상 산 무수물 계열 화합물, 산-염기 염복합체, 산-염기-알코올계 복합체 또는 머캡토 계열 화합물 중 적어도 하나 및 산화제를 포함하는 것을 특징으로 하는 디스플레이용 투명전극 필름.
  33. 제 29항에 있어서,
    상기 전도성 물질은 ITO, AZO, CNT, 그래핀 또는 전도성 고분자인 것을 특징으로 하는 디스플레이용 투명전극 필름.
  34. 제26항 내지 제29항 중 어느 한 항에 있어서,
    상기 디스플레이용 투명 전극 필름은, 표면조도(Ra)가 0.05 내지 0.3㎛인 것인 디스플레이용 투명 전극 필름.
  35. 제26항 내지 제29항 중 어느 한 항에 있어서,
    상기 디스플레이용 투명 전극 필름은, 면저항이 10mΩ/sq 내지 100kΩ/sq인 것인 디스플레이용 투명 전극 필름.
  36. 제26항 내지 제29항 중 어느 한 항에 있어서,
    상기 디스플레이용 투명 전극 필름은, 투과율이 60 내지 99%인 것인 디스플레이용 투명 전극 필름.
PCT/KR2014/003438 2013-04-19 2014-04-18 디스플레이용 투명전극 필름 제조방법 및 디스플레이용 투명전극 필름 WO2014171798A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/785,281 US9832881B2 (en) 2013-04-19 2014-04-18 Method of manufacturing transparent electrode film for display and transparent electrode film for display
JP2016508903A JP6574757B2 (ja) 2013-04-19 2014-04-18 ディスプレイ用透明電極フィルムの製造方法およびディスプレイ用透明電極フィルム
CN201480034178.6A CN105359226B (zh) 2013-04-19 2014-04-18 显示器用透明电极薄膜的制造方法及显示器用透明电极薄膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0043737 2013-04-19
KR20130043737 2013-04-19

Publications (2)

Publication Number Publication Date
WO2014171798A1 true WO2014171798A1 (ko) 2014-10-23
WO2014171798A9 WO2014171798A9 (ko) 2015-01-15

Family

ID=51731643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003438 WO2014171798A1 (ko) 2013-04-19 2014-04-18 디스플레이용 투명전극 필름 제조방법 및 디스플레이용 투명전극 필름

Country Status (5)

Country Link
US (1) US9832881B2 (ko)
JP (1) JP6574757B2 (ko)
KR (1) KR101688986B1 (ko)
CN (1) CN105359226B (ko)
WO (1) WO2014171798A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178103A (ja) * 2015-03-18 2016-10-06 株式会社Adeka エッチング液組成物及びエッチング方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI3091997T1 (sl) * 2014-01-10 2022-10-28 Bioverativ Therapeutics Inc. Himerni proteini faktorja VIII in njihova uporaba
US10580330B2 (en) * 2014-07-22 2020-03-03 Corning Incorporated Device for displaying a backlit image
KR101716960B1 (ko) * 2015-05-28 2017-03-16 세종대학교산학협력단 그래핀 보호를 위한 포장 장치, 그래핀 보호 포장 방법 및 그래핀 회수방법
KR101886779B1 (ko) * 2016-08-04 2018-08-08 연세대학교 산학협력단 고분자 필름을 이용한 유연 전극의 제조방법 및 이에 의해 제조된 유연전극
US10351715B2 (en) * 2017-03-30 2019-07-16 The United States Of America As Represented By The Secretary Of The Navy Synergistic metal polycarboxylate corrosion inhibitors
JP7172211B2 (ja) * 2017-07-28 2022-11-16 Tdk株式会社 導電性基板、電子装置及び表示装置
CN107993747B (zh) * 2017-11-23 2020-11-20 清华大学深圳研究生院 一种透明导电膜、导电结构及其制备方法
CN108538454A (zh) * 2018-03-13 2018-09-14 深圳市善柔科技有限公司 一种可在不同基底上贴合的透明导电膜及其制备方法
CN110544551B (zh) * 2018-05-29 2021-05-11 昇印光电(昆山)股份有限公司 导电膜及制备方法
CN112794981A (zh) * 2018-10-10 2021-05-14 刘鹏 一种乙烯基全氟聚乙二醇改性弹性聚氨酯及其应用
KR20200080052A (ko) * 2018-12-26 2020-07-06 엘지디스플레이 주식회사 발광 표시 장치
WO2023081265A1 (en) * 2021-11-04 2023-05-11 Nanotech Energy, Inc. Conductive dispersions with ultrathin graphene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775909B2 (ja) * 1990-09-28 1995-08-16 大日本印刷株式会社 アライメント転写方法
JP2004207015A (ja) * 2002-12-25 2004-07-22 Nec Kansai Ltd 電界発光灯及びその製造方法
KR20100109233A (ko) * 2009-03-31 2010-10-08 주식회사 잉크테크 박막 금속적층필름의 제조방법
KR20110000886A (ko) * 2009-06-29 2011-01-06 성낙훈 미세회로 필름기판 및 제조방법
KR20130037925A (ko) * 2011-10-07 2013-04-17 주식회사 엘지화학 유기전자소자용 기판

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481755A (en) 1987-09-24 1989-03-28 Toho Seiki Kk Paper piling mechanism
KR100712879B1 (ko) * 2005-04-06 2007-04-30 주식회사 잉크테크 에칭액 조성물
KR100741677B1 (ko) 2006-03-06 2007-07-23 삼성전기주식회사 임프린팅에 의한 기판의 제조방법
KR100798398B1 (ko) 2006-04-14 2008-01-28 한국기계연구원 나노소재기반 전도성 레지스트, 그의 제조방법 및나노소재기반 전도성레지스트를 이용한 전극패턴 형성방법
KR100922810B1 (ko) 2007-12-11 2009-10-21 주식회사 잉크테크 흑화 전도성 패턴의 제조방법
KR100946249B1 (ko) 2008-07-01 2010-03-08 이헌 고투과도를 갖는 투명 전도성 산화물 전극의 제조 방법
JP5341544B2 (ja) * 2009-02-09 2013-11-13 戸田工業株式会社 透明導電性基板、色素増感型太陽電池用透明導電性基板及び透明導電性基板の製造方法
KR20110100034A (ko) * 2010-03-03 2011-09-09 미래나노텍(주) 정전 용량 방식 터치 패널 및 그 제조방법
WO2011108869A2 (ko) * 2010-03-03 2011-09-09 미래나노텍 주식회사 정전 용량 방식 터치 패널 및 그 제조방법
JP5997758B2 (ja) * 2011-03-29 2016-09-28 エルジー ディスプレイ カンパニー リミテッド 有機電子装置の製造方法
US8865298B2 (en) * 2011-06-29 2014-10-21 Eastman Kodak Company Article with metal grid composite and methods of preparing
CN102522145B (zh) * 2011-12-02 2013-08-28 浙江科创新材料科技有限公司 一种纳米银透明电极材料及其制备方法
KR20130134520A (ko) * 2012-05-31 2013-12-10 한국전자통신연구원 직물형 다층 인쇄 회로 기판 및 이의 제조방법
US9921692B2 (en) * 2012-08-03 2018-03-20 Synaptics Incorporated Hinged input device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775909B2 (ja) * 1990-09-28 1995-08-16 大日本印刷株式会社 アライメント転写方法
JP2004207015A (ja) * 2002-12-25 2004-07-22 Nec Kansai Ltd 電界発光灯及びその製造方法
KR20100109233A (ko) * 2009-03-31 2010-10-08 주식회사 잉크테크 박막 금속적층필름의 제조방법
KR20110000886A (ko) * 2009-06-29 2011-01-06 성낙훈 미세회로 필름기판 및 제조방법
KR20130037925A (ko) * 2011-10-07 2013-04-17 주식회사 엘지화학 유기전자소자용 기판

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178103A (ja) * 2015-03-18 2016-10-06 株式会社Adeka エッチング液組成物及びエッチング方法

Also Published As

Publication number Publication date
US20160234943A1 (en) 2016-08-11
US9832881B2 (en) 2017-11-28
CN105359226B (zh) 2017-12-08
JP6574757B2 (ja) 2019-09-11
JP2016524268A (ja) 2016-08-12
CN105359226A (zh) 2016-02-24
KR20140127160A (ko) 2014-11-03
WO2014171798A9 (ko) 2015-01-15
KR101688986B1 (ko) 2016-12-23

Similar Documents

Publication Publication Date Title
WO2014171798A1 (ko) 디스플레이용 투명전극 필름 제조방법 및 디스플레이용 투명전극 필름
WO2014185755A1 (ko) 투명전극 필름의 제조방법
WO2014185756A1 (ko) 하이브리드 투명전극의 제조방법 및 하이브리드 투명전극
WO2014104846A1 (ko) 전도성 패턴의 형성방법, 전도성 필름, 전도성 패턴 및 투명 전도성 필름
WO2015050320A1 (ko) 광투과도가 우수한 전극, 이의 제조방법 및 이를 포함하는 전자소자
CN103140899B (zh) 透明导电膜的制造方法及通过该方法制造的透明导电膜
WO2013169087A1 (ko) 전도성 고분자 잉크 조성물 및 이를 포함하는 유기태양전지
WO2016108656A1 (ko) 투명 면상 발열체
TW200848480A (en) Conductive ink
JP5405391B2 (ja) 透明フレキシブルプリント配線板及びその製造方法
WO2014178639A1 (ko) 연성인쇄회로기판 및 그 제조 방법
WO2016148456A1 (ko) 3차원 나노 리플 구조의 금속산화물 박막, 이의 제조방법 및 이를 포함하는 유기태양전지
WO2016024823A1 (ko) 직교 패터닝 방법
WO2016167583A1 (ko) 그래핀의 도핑 방법, 그래핀 복합 전극의 제조 방법 및 이를 포함하는 그래핀 구조체
WO2019177223A1 (ko) 복수의 전도성 처리를 포함하는 고전도성 고분자 박막의 제조 방법
KR20120105376A (ko) 도전성 잉크 조성물, 이를 이용한 인쇄 방법 및 이에 의하여 제조된 도전성 패턴
WO2015152559A1 (ko) 저굴절 조성물, 이의 제조방법, 및 투명 도전성 필름
WO2016137282A1 (ko) 전도성 구조체 및 이의 제조방법
WO2014178640A1 (ko) 흑화 전도성 패턴의 형성방법 및 흑화 전도성 잉크 조성물
WO2017073956A1 (ko) 광소결용 잉크조성물 및 이의 제조방법
Kaydanova et al. Direct write contacts for solar cells
WO2014196809A1 (ko) 편광필름의 제조방법
WO2020060173A1 (ko) 소자의 제조방법
KR20090113487A (ko) 전도성 고분자를 이용한 유기전극의 제조방법
WO2017039339A1 (ko) 탄화불소 박막의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034178.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508903

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14785281

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14785295

Country of ref document: EP

Kind code of ref document: A1