WO2014185204A1 - 部品内蔵基板及び通信モジュール - Google Patents

部品内蔵基板及び通信モジュール Download PDF

Info

Publication number
WO2014185204A1
WO2014185204A1 PCT/JP2014/060577 JP2014060577W WO2014185204A1 WO 2014185204 A1 WO2014185204 A1 WO 2014185204A1 JP 2014060577 W JP2014060577 W JP 2014060577W WO 2014185204 A1 WO2014185204 A1 WO 2014185204A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
built
terminals
substrate
rfic
Prior art date
Application number
PCT/JP2014/060577
Other languages
English (en)
French (fr)
Inventor
多胡茂
若林祐貴
品川博史
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201490000446.8U priority Critical patent/CN205093051U/zh
Priority to JP2014533294A priority patent/JP5692473B1/ja
Publication of WO2014185204A1 publication Critical patent/WO2014185204A1/ja
Priority to US14/939,102 priority patent/US9629249B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10507Involving several components
    • H05K2201/10515Stacked components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/4617Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar single-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4632Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating thermoplastic or uncured resin sheets comprising printed circuits without added adhesive materials between the sheets

Definitions

  • the present invention relates to a component built-in substrate in which a plurality of components are built in a multilayer substrate and a communication module using the same.
  • Patent Document 1 describes a structure in which two ICs are built in a multilayer printed board formed by alternately laminating a plurality of insulating layers and conductor layers.
  • each IC is arranged in different layers of the multilayer printed board.
  • the electrodes (terminals) of each IC are routed to other internal circuits or to the outside via internal wiring formed in the multilayer printed board.
  • a component built-in substrate having two built-in components (ICs) like the multilayer printed board shown in Patent Document 1 when both external connection electrodes are on the mounting surface, they are arranged on the surface facing the mounting surface.
  • the internal wiring from the IC and the internal wiring from the IC arranged on the mounting surface side are concentrated on the mounting surface side.
  • the number of electrodes (terminals) in the IC increases, the number of internal wirings increases, and the internal wirings are more densely arranged on the mounting surface side, making it difficult to route the internal wirings.
  • an area corresponding to the space may be secured in the multilayer printed board, but the outer shape of the multilayer printed board becomes large.
  • an object of the present invention is to provide a component-embedded substrate and a communication module that do not increase in size even if a plurality of components are embedded.
  • the component-embedded substrate of the present invention includes a plurality of built-in components that are electrically connected to a multilayer substrate in which a plurality of resin films are laminated, and has a mounting electrode formed on one main surface.
  • the component-embedded substrate of the present invention is located in a layer close to the mounting electrode and includes a first built-in component including a terminal to be electrically connected, and the mounting electrode rather than the layer in which the first built-in component is located.
  • a second built-in component provided with terminals that are electrically connected to each other, and the resin film is made of a thermoplastic resin, and the number of terminals of the first built-in component is More than the number of terminals of the second built-in component, the area of the first built-in component is smaller than the area of the second built-in component in plan view.
  • the terminals of the first built-in component and the terminals of the second built-in component are electrically connected to the mounting electrodes via internal wirings. That is, most of the internal wiring from the first built-in component and the internal wiring from the second built-in component go to the mounting surface where the mounting electrode is provided. As a result, the internal wiring is concentrated on the mounting surface side of the multilayer substrate, and it is difficult to route the internal wiring. Since the number of terminals of the first built-in component is larger than the number of terminals of the second built-in component, the internal wiring is more difficult to route.
  • the first built-in component has a smaller area than the second built-in component and is disposed closer to the mounting surface than the second built-in component, so that a space for routing the internal wiring is mounted on the multilayer board. It can be secured on the surface side.
  • the component built-in substrate can be enlarged in the outer shape of the multilayer board to secure a space for routing the internal wiring, or the internal wiring can be divided into upper and lower layers.
  • the first built-in component and the second built-in component can be built without increasing the number of layers for detouring, that is, with the size remaining small.
  • a multilayer substrate is formed when a plurality of sheets containing a thermoplastic resin (for example, polyimide or liquid crystal polymer) are laminated and thermocompression bonded together.
  • a thermoplastic resin for example, polyimide or liquid crystal polymer
  • a conventional build-up method in which resin layers are laminated one by one as a build-up layer requires a certain amount of thickness for a base material that becomes a core layer.
  • the multilayer substrate stacking method of the present invention does not require a base material to be a core layer. As a result, the multilayer substrate can be reduced in thickness. Further, since the multilayer substrate of the present invention does not need to be laminated one by one, it is simpler than the conventional build-up method.
  • the first built-in component may overlap the second built-in component, or may all overlap the second built-in component.
  • the more the first built-in component and the second built-in component overlap the smaller the area of one main surface of the multilayer substrate can be reduced. Even in this case, since the area of the first built-in component is smaller than the area of the second built-in component, and the first built-in component is arranged closer to the mounting surface than the second built-in component, the space for routing the internal wiring The component-embedded substrate can be further downsized while ensuring the above.
  • terminal of the first built-in component and the terminal of the second built-in component may include those that are electrically connected to an interlayer connection conductor formed on the multilayer substrate.
  • the component-embedded substrate is thinner than when a layer coated with solder is provided.
  • the second built-in component may be less likely to radiate electromagnetic waves than the first built-in component.
  • the second built-in component arranged on the side facing the mounting surface serves as an electromagnetic shield, so that the electromagnetic waves are not easily radiated outside the component built-in substrate.
  • the first built-in component is an RFIC that processes a high-frequency signal
  • the second built-in component includes a component built-in substrate that is a secure IC having a security function
  • a communication module is obtained.
  • FIG. 3 is a top view, a cross-sectional view along AA, and a bottom view of the component-embedded substrate 1 according to the first embodiment.
  • FIG. 4 is a top view of the secure IC 11 and a top view of the RFIC 13. It is side surface sectional drawing of the state which decomposed
  • 1 is a circuit block diagram of a communication module 300 including a component built-in substrate 1 according to Embodiment 1.
  • the component-embedded substrate 1 according to the first embodiment will be described with reference to FIGS.
  • FIG. 1A is a top view of the component built-in substrate 1 according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along the line AA of the component built-in substrate 1.
  • FIG. 1C is a bottom view of the component built-in substrate 1. In FIG. 1C, only the mounting electrodes 17 that are essential for the description are shown.
  • FIG. 2A is a top view of the secure IC 11
  • FIG. 2B is a top view of the RFIC 13.
  • the surface in the + Z direction is the upper surface of the component-embedded substrate 1
  • the surface in the -Z direction is the lower surface.
  • the component-embedded substrate 1 is, for example, a rectangular parallelepiped, and has a width direction (+ X, ⁇ X direction in the drawing) and a depth direction (+ Y, ⁇ Y in the drawing). Is shorter in the height direction (in the + Z and -Z directions in the figure) than in the direction.
  • the actual component-embedded substrate 1 has an extremely low height (for example, 0.5 mm), but in FIG. 1B, it is exaggerated to be higher than the actual height for explanation.
  • the component built-in substrate 1 includes a multilayer substrate 10, a plurality of mounting electrodes 17, and a plurality of wirings 18.
  • the multilayer substrate 10 is a rectangular parallelepiped, and is formed by laminating insulating resin films 100 to 105 (details will be described later).
  • the plurality of mounting electrodes 17 are respectively provided on the lower surface of the multilayer substrate 10 as shown in FIG. 1 (B) and FIG. 1 (C).
  • the plurality of wirings 18 are respectively provided on the upper surface of the multilayer substrate 10.
  • the plurality of mounting electrodes 17 and the plurality of wirings 18 are each made of a conductive material (for example, a metal foil made of copper (Cu)).
  • the multilayer substrate 10 includes a secure IC 11, an RFIC 13, a plurality of interlayer connection conductors 15, and a plurality of conductor patterns 16 inside.
  • the secure IC 11 and the RFIC 13 each have a plate shape. As shown in FIGS. 2A and 2B, the secure IC 11 has a larger main surface area than the RFIC 13.
  • the RFIC 13 is arranged in a lower direction ( ⁇ Z direction) than the secure IC 11 as shown in FIG. That is, the RFIC 13 is arranged in a layer closer to the plurality of mounting electrodes 17 than the secure IC 11.
  • the RFIC 13 is mounted in the multilayer substrate 10 so that the main surface is covered with the secure IC 11 when viewed in plan.
  • the secure IC 11 includes a memory 110 (see FIG. 4).
  • the secure IC 11 is an IC having a security function and prevents cloning of authentication information stored in the internal memory 110.
  • the RFIC 13 is an IC having a function of modulating / demodulating a high frequency signal and controlling communication with the outside.
  • the secure IC 11 includes a terminal 12A and a terminal 12B on the upper surface (surface in the + Z direction).
  • the RFIC 13 includes terminals 14A to 14P on the upper surface (surface in the + Z direction). That is, the RFIC 13 includes more terminals than the secure IC 11.
  • the number of terminals of the secure IC 11 and the number of terminals of the RFIC 13 are not limited to the numbers of terminals illustrated in FIGS. 2A and 2B, respectively.
  • Each IC may be provided with a dummy terminal that is not connected to the internal wiring such as the interlayer connection conductor 15, but such a terminal is not included in the number of terminals of the present invention. .
  • the plurality of interlayer connection conductors 15 have substantially columnar shapes extending in the + Z and ⁇ Z directions, respectively.
  • Each of the plurality of interlayer connection conductors 15 is made of a conductive material (for example, a material containing tin (Sn) or silver (Ag) as a main component).
  • Each of the plurality of conductor patterns 16 has a flat film shape and is disposed so as to be parallel to the upper surface of the component-embedded substrate 1.
  • Each of the plurality of conductor patterns 16 is made of a conductive material (for example, a metal foil made of copper (Cu)). The plurality of conductor patterns 16 are electrically connected to the plurality of interlayer connection conductors 15, respectively.
  • the plurality of wirings 18 provided on the upper surface of the multilayer substrate 10 are also electrically connected to the plurality of interlayer connection conductors 15, respectively.
  • the plurality of mounting electrodes 17 are also electrically connected to the plurality of interlayer connection conductors 15, respectively.
  • the plurality of interlayer connection conductors 15, the plurality of conductor patterns 16, and the plurality of wirings 18 constitute a circuit that connects the secure IC 11 and the RFIC 13 to the plurality of mounting electrodes 17.
  • the terminals 12A and 12B provided on the upper surface of the secure IC 11 are electrically connected to a plurality of interlayer connection conductors 15 as shown in FIG.
  • the terminals 14A and 14B provided on the upper surface of the RFIC 13 are electrically connected to the plurality of interlayer connection conductors 15, respectively.
  • the terminals 14C to 14P of the RFIC 13 are also electrically connected to the plurality of interlayer connection conductors 15, respectively. That is, the number of terminals electrically connected to the plurality of mounting electrodes 17 in the RFIC 13 is larger than the number of terminals electrically connected to the plurality of mounting electrodes 17 in the secure IC 11.
  • the terminal 12A, the terminal 12B, and the terminals 14A to 14P may be electrically connected to each other via the interlayer connection conductor 15, the conductor pattern 16, and the wiring 18, but most of them are the interlayer connection conductor 15 and the conductor.
  • Each of the plurality of mounting electrodes 17 is electrically connected via the pattern 16 and the wiring 18.
  • the RFIC 13 has a smaller area than the secure IC 11 in plan view of the component-embedded substrate 1, and the RFIC 13 is disposed on the mounting surface side of the secure IC 11, so according to the difference in area between the secure IC 11 and the RFIC 13.
  • a space for routing the internal wiring can be secured on the mounting surface side of the multilayer substrate 10. Therefore, even if a plurality of ICs are built in the component built-in substrate 1, the plurality of ICs and the plurality of mounting electrodes 17 can be connected by appropriately drawing the internal wiring.
  • the RFIC 13 having a small outer shape is arranged on the mounting surface side, so that the component built-in substrate 1 can secure a space for routing the internal wiring. Therefore, without increasing the area of the layers of the multilayer substrate 10 or increasing the number of layers of the multilayer substrate 10 in order to bypass internal wiring to upper and lower layers, that is, an IC having a small size and a large number of terminals. Multiple components can be built in.
  • the RFIC 13 is entirely overlapped with the secure IC 11. For this reason, compared with the case where RFIC13 does not overlap with secure IC11, the area of the layer (XY plane) of multilayer substrate 10 may be smaller. That is, it is possible to further reduce the size of the component-embedded substrate 1 while securing a space for routing the internal wiring.
  • the routing of the internal wiring is further complicated. Specifically, the internal wiring must be routed outside the region other than the RFIC 13 in a plan view of the multilayer substrate 10. However, if the configuration of the present embodiment is used, the internal wiring can be appropriately routed even in such a mounting mode.
  • FIG. 3 is a side cross-sectional view of the component-embedded substrate 1 in an exploded state.
  • the multilayer substrate 10 is formed by laminating the insulating resin films 100 to 105.
  • the insulating resin films 100 to 105 are each made of a thermoplastic resin (for example, polyimide or liquid crystal polymer).
  • a copper film is applied to one side of the insulating resin films 100 to 105.
  • the plurality of wirings 18 and the plurality of conductor patterns 16 are formed by patterning each of the surfaces of the insulating resin films 100 to 105 to which the copper films are attached.
  • the plurality of interlayer connection conductors 15 are provided with holes penetrating the insulating resin films 100 to 105 from the surface opposite to the copper bonding surface of the insulating resin films 100 to 105, and the through holes are filled with a conductive paste. It is formed by solidifying.
  • the secure IC 11 is temporarily press-bonded to the lower surface (the surface in the ⁇ Z direction) of the insulating resin film 100.
  • the insulating resin film 101 is formed with a cavity 106 in which the secure IC 11 temporarily bonded to the insulating resin film 100 is stored.
  • the cavity 106 is formed by a hole that penetrates the insulating resin film 101.
  • the RFIC 13 is temporarily pressure-bonded to the lower surface (the surface in the ⁇ Z direction) of the insulating resin film 103.
  • the insulating resin film 104 is formed with a cavity 107 in which the RFIC 13 temporarily bonded to the insulating resin film 103 is stored.
  • the cavity 107 is formed by a hole that penetrates the insulating resin film 104.
  • the insulating resin films 100 to 105 are each thermocompression bonded after being laminated.
  • each of the insulating resin films 100 to 105 softens and flows, and fills the cavity 106 and the cavity 107.
  • the secure IC 11 and the RFIC 13 are fixed, and the multilayer substrate 10 is formed.
  • the conductive paste described above is solidified to form a plurality of interlayer connection conductors 15.
  • the conventional build-up method in which the resin layers are laminated one by one as the build-up layer requires a certain amount of thickness for the base material that becomes the core layer.
  • the method for laminating the multilayer substrate 10 does not require a base material to be a core layer.
  • the multilayer substrate 10 can be reduced in thickness.
  • the multilayer substrate 10 does not need to be laminated one by one, it is simpler than the build-up method.
  • the plurality of interlayer connection conductors 15 are solidified and joined to the terminals 12A, 12B, and 14A to 14P, respectively.
  • the plurality of interlayer connection conductors 15 are likely to be pressed. As a result, the plurality of interlayer connection conductors 15 are more strongly bonded to the terminal 12A, the terminal 12B, and the terminals 14A to 14P, respectively.
  • the plurality of interlayer connection conductors 15 are not only connected to the conductor pattern 16 and the wiring 18 but also to the terminal 12A, the terminal 12B, and the terminals 14A to 14P. Also join more strongly.
  • the RFIC 13 Since the RFIC 13 is covered with the secure IC 11 and the surface of the RFIC 13 with the terminals 14A to 14P (the surface in the + Z direction) and the lower surface of the secure IC 11 (the surface in the ⁇ Z direction) face each other in parallel, the RFIC 13
  • the terminals 14A to 14P are uniformly applied with the pressure during thermocompression bonding of the multilayer substrate 10. Therefore, the bonding reliability between the terminals 14A to 14P of the RFIC 13 and the plurality of interlayer connection conductors 15 can be improved.
  • the secure IC 11 having a larger area in plan view than the RFIC 13 is disposed so as to overlap with the plane (+ Z direction plane) where the terminals 14A to 14P of the RFIC 13 are located.
  • the joint reliability with the conductor 15 can be further improved.
  • interlayer connection conductor 15, the wiring 18, the conductor pattern 16, the terminal 12A, the terminal 12B, and the terminals 14A to 14P can be joined at the same time when the insulating resin films 100 to 105 are thermocompression bonded.
  • FIG. 4 is a circuit block diagram of the communication module 300 including the component built-in substrate 1.
  • the communication module 300 includes a component built-in substrate 1 and a mounting substrate 200.
  • the mounting substrate 200 is a mounting substrate that realizes an RF circuit, on which a circuit element group for realizing the RF circuit is mounted. Further, the component built-in substrate 1 is mounted on the mounting substrate 200.
  • the RFIC 13 is connected to the filter element 201 of the mounting substrate 200, and the secure IC 11 is connected to the RFIC 13.
  • the memory 110 is built in the secure IC 11 and is not directly read / written from other than the secure IC 11.
  • the RFIC 13 processes high-frequency signals, it is easier to radiate electromagnetic waves than the secure IC 11.
  • the electromagnetic wave radiated from the RFIC 13 in the + Z direction is electromagnetically shielded by the secure IC 11 arranged in the + Z direction from the RFIC 13 as shown in FIG. Hard to leak out of 1.
  • the secure IC 11 since the secure IC 11 has a larger area than the RFIC 13 and covers the RFIC 13 in a plan view of the component-embedded substrate 1, the secure IC 11 can perform electromagnetic shielding more effectively.
  • the component built-in substrate 1 includes the secure IC 11 and the RFIC 13, but a component that easily radiates electromagnetic waves is disposed near the plurality of mounting electrodes 17, and a component that does not easily radiate electromagnetic waves is disposed on the plurality of mounting electrodes 17. It may be a mode of being arranged far away. In this aspect, the electromagnetic wave hardly leaks to the outside on the side opposite to the mounting surface side of the component-embedded substrate 1.
  • the RFICs 13 are covered with the secure ICs 11. However, a part of the RFICs 13 may be overlapped.
  • the RFIC 13 and the secure IC 11 are used as the first built-in component and the second built-in component, respectively.
  • other built-in components can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 部品内蔵基板(1)は、熱可塑性樹脂からなる樹脂フィルムを複数積層した多層基板(10)の実装電極(17)に近い層に位置し、電気的に接続される端子を備える第1の内蔵部品(13)と、第1の内蔵部品(13)が位置する層よりも実装電極(17)から離れた層に位置し、電気的に接続される端子を備える第2の内蔵部品(11)と、を備え、第1の内蔵部品(13)の端子の数は、第2の内蔵部品(11)の端子の数より多い。第1の内蔵部品(13)及び第2の内蔵部品(11)からの内部配線の多くは実装電極(17)が備えられる実装面に向かう。しかしながら、第1の内蔵部品(13)は、平面視において第2の内蔵部品(11)より面積が小さく、第2の内蔵部品(11)よりも実装面側に配置されているので、内部配線を引き回すスペースを多層基板(10)の実装面側に確保することができる。

Description

部品内蔵基板及び通信モジュール
 この発明は、多層基板に複数の部品を内蔵してなる部品内蔵基板およびこれを用いた通信モジュールに関するものである。
 従来、電子機器の小型化を実現するために、基板内に複数の部品を実装する高密度実装が求められている。
 特許文献1には、複数の絶縁層と導体層とを交互に積層してなる多層プリント基板内に2つのICが内蔵された構造が記載されている。
 特許文献1に示す多層プリント基板において、2つのICは、多層プリント基板の異なる層に配置されている。各ICの電極(端子)は、多層プリント基板内に形成された内部配線を介して、内部の他の回路あるいは外部に引き回されている。
特開2009-117501号公報
 特許文献1に示す多層プリント基板のように、2つの内蔵部品(IC)を有する部品内蔵基板においては外部接続用の電極がともに実装面にある場合、実装面に対向する面側に配置されるICからの内部配線と、実装面側に配置されるICからの内部配線とが、実装面側に密集する。ICに電極(端子)が多ければ多いほど、内部配線は多くなって、実装面側はさらに内部配線が密集し、内部配線の引き回しは、より困難となる。
 内部配線のスペースを確保するためには、それに応じた領域を多層プリント基板内に確保すればよいが、多層プリント基板の外形形状が大きくなってしまう。
 そこで、この発明は、複数の部品を内蔵しても、大型化することがない部品内蔵基板及び通信モジュールを提供することを目的とする。
 本発明の部品内蔵基板は、樹脂フィルムが複数積層された多層基板に電気的に接続されている複数の内蔵部品が内蔵され、一主面に実装電極が形成されたものである。本発明の部品内蔵基板は、前記実装電極に近い層に位置し、電気的に接続される端子を備える第1の内蔵部品と、前記第1の内蔵部品が位置する層よりも前記実装電極から離れた層に位置し、電気的に接続される端子を備える第2の内蔵部品と、を備え、前記樹脂フィルムは、熱可塑性樹脂からなり、前記第1の内蔵部品の端子の数は、前記第2の内蔵部品の端子の数より多く、平面視において、前記第1の内蔵部品の面積は、前記第2の内蔵部品の面積より小さい。
 第1の内蔵部品の端子及び第2の内蔵部品の端子の多くは、それぞれ内部配線を介して実装電極に電気的に接続される。すなわち、第1の内蔵部品からの内部配線及び第2の内蔵部品からの内部配線の多くは、それぞれ実装電極が備えられる実装面に向かう。その結果、多層基板の実装面側に内部配線が密集し、内部配線の引き回しは困難となる。第1の内蔵部品の端子数が第2の内蔵部品の端子数より多いため、内部配線の引き回しはさらに困難となる。
 しかしながら、平面視において、第1の内蔵部品は、第2の内蔵部品より面積が小さく、第2の内蔵部品よりも実装面側に配置されているので、内部配線を引き回すスペースを多層基板の実装面側に確保することができる。
 以上のように、第1の内蔵部品の端子数が多くても、部品内蔵基板は、内部配線を引き回すスペースを確保するために多層基板の外形形状を大きくしたり、内部配線を上下の層に迂回させるために層数を多くしたりすることなく、すなわちサイズが小さいままで、第1の内蔵部品及び第2の内蔵部品を内蔵できる。
 また、熱可塑性樹脂(例えばポリイミド又は液晶ポリマ)を含む複数のシートを一括積層して加熱圧着すると多層基板が形成される。ビルドアップ層として1層ずつ樹脂層を積層する従来のビルドアップ工法は、コア層となる基材にある程度の厚みを必要とする。しかし、本発明の多層基板の積層方法は、従来のビルドアップ工法と異なり、コア層となる基材を必要としない。その結果、多層基板は、厚みを抑えることができる。また、本発明の多層基板の製造は、1層ずつ積層する必要がないため、従来のビルドアップ工法に比べて、より簡易である。
 また、平面視において、前記第1の内蔵部品は、前記第2の内蔵部品に重複してもよいし、すべて前記第2の内蔵部品に重複してもよい。
 平面視において、第1の内蔵部品と第2の内蔵部品とが重複すれば重複するほど、多層基板の一主面の面積を少なくすることができる。この場合でも、第1の内蔵部品の面積が第2の内蔵部品の面積より小さく、第1の内蔵部品が第2の内蔵部品よりも実装面側に配置されることから、内部配線を引き回すスペースを確保しつつ、部品内蔵基板をさらに小型化することができる。
 また、前記第1の内蔵部品の端子及び前記第2の内蔵部品の端子は、前記多層基板に形成された層間接続導体に電気的に接続されるものが含まれてもよい。
 内部配線と、第1の内蔵基板の端子及び第2の内蔵基板の端子とを電気的に接続するために、半田を塗布した層や半田バンプ等を別途設ける必要はない。その結果、部品内蔵基板は、半田を塗布した層等を設ける場合よりも薄型になる。
 また、前記第2の内蔵部品は、前記第1の内蔵部品に比べて電磁波を放射しにくいものであってもよい。
 第1の内蔵部品が電磁波を放射しても、実装面と対向する面側に配置された第2の内蔵部品が電磁シールドとなるため、当該電磁波は、部品内蔵基板の外に放射されにくい。
 また、前記第1の内蔵部品が高周波信号を処理するRFICであり、前記第2の内蔵部品がセキュリティ機能を備えたセキュアICである部品内蔵基板を構成要素として含むと通信モジュールとなる。
 この発明によれば、サイズを大きくすることなく、複数の部品を内蔵できる部品内蔵基板及び通信モジュールを実現することができる。
実施形態1に係る部品内蔵基板1の上面図、A-A断面図、及び下面図である。 セキュアIC11の上面図及びRFIC13の上面図である。 実施形態1に係る部品内蔵基板1を各層に分解した状態の側面断面図である。 実施形態1に係る部品内蔵基板1を含む通信モジュール300の回路ブロック図である。
 図1乃至図4を参照して、実施形態1に係る部品内蔵基板1について説明する。
 図1(A)は、実施形態1に係る部品内蔵基板1の上面図であり、図1(B)は、部品内蔵基板1のA-A断面図である。図1(C)は、部品内蔵基板1の下面図である。なお、図1(C)には、説明上必須の実装電極17のみを記載している。図2(A)は、セキュアIC11の上面図であり、図2(B)は、RFIC13の上面図である。図1(B)において、+Z方向の面を部品内蔵基板1の上面とし、-Z方向の面を下面とする。
 部品内蔵基板1は、図1(A)及び図1(C)に示すように、例えば直方体であり、幅方向(図中、+X、-X方向)及び奥行き方向(図中、+Y、-Y方向)に比べて、高さ方向(図中、+Z、-Z方向)に短い。なお、実際の部品内蔵基板1は、高さが極めて低い(例えば0.5mm)が、図1(B)においては、説明のために実際の高さよりも高く誇張して図示している。
 部品内蔵基板1は、多層基板10、複数の実装電極17、複数の配線18を備える。
 多層基板10は、直方体であり、絶縁性樹脂フィルム100~105(詳細は、後述する。)がそれぞれ積層されてなる。
 複数の実装電極17は、図1(B)及び図1(C)に示すように、それぞれ多層基板10の下面に備えられる。複数の配線18は、それぞれ多層基板10の上面に備えられる。複数の実装電極17及び複数の配線18は、それぞれ導電性材料(例えば銅(Cu)からなる金属箔)からなる。
 多層基板10は、セキュアIC11、RFIC13、複数の層間接続導体15、及び複数の導体パターン16を内部に備える。
 セキュアIC11及びRFIC13は、それぞれ板形状である。セキュアIC11は、図2(A)及び図2(B)に示すように、主面の面積がRFIC13より大きい。
 RFIC13は、図1(B)に示すように、セキュアIC11よりも下方向(-Z方向)に配置される。すなわち、RFIC13は、セキュアIC11よりも複数の実装電極17に近い層に配置されている。
 RFIC13は、図1(A)に示すように、平面視すると、主面全てがセキュアIC11に覆われているように、多層基板10内に実装されている。
 セキュアIC11には、メモリ110(図4を参照。)が内蔵されている。セキュアIC11は、セキュリティ機能を有するICであり、内部のメモリ110に記憶する認証用情報のクローニングを防止する。RFIC13は、高周波信号を変復調したり、外部との通信を制御したりする機能を有するICである。
 セキュアIC11は、図1(B)及び図2(A)に示すように、端子12A及び端子12Bを上面(+Z方向の面)に備える。RFIC13は、図1(B)及び図2(B)に示すように、端子14A~14Pを上面(+Z方向の面)に備える。すなわち、RFIC13は、セキュアIC11より多くの端子を備える。ただし、セキュアIC11の端子数及びRFIC13の端子数は、それぞれ図2(A)及び図2(B)に示す端子数に限らない。また、各ICには層間接続導体15などの内部配線に接続されないダミーとなる端子が設けられている場合もあるが、そのような端子は、本発明の端子の数には含めないものとする。
 複数の層間接続導体15は、それぞれ+Z、-Z方向に伸長する略柱形状である。複数の層間接続導体15は、それぞれ導電性材料(例えばスズ(Sn)や銀(Ag)を主成分として含む材料)からなる。複数の導体パターン16は、それぞれ平膜形状であり、部品内蔵基板1の上面に平行となるようにそれぞれ配置される。複数の導体パターン16は、それぞれ導電性材料(例えば銅(Cu)からなる金属箔)からなる。複数の導体パターン16は、それぞれ複数の層間接続導体15に電気的に接続されている。多層基板10の上面に備えられる複数の配線18も、それぞれ複数の層間接続導体15に電気的に接続されている。複数の実装電極17も、それぞれ複数の層間接続導体15に電気的に接続されている。これら、複数の層間接続導体15、複数の導体パターン16、及び複数の配線18によって、セキュアIC11及びRFIC13と、複数の実装電極17とを接続する回路が構成される。
 セキュアIC11の上面に備えられる端子12A及び端子12Bは、図1(B)に示すように、それぞれ複数の層間接続導体15に電気的に接続されている。RFIC13の上面に備えられる端子14A及び端子14Bは、それぞれ複数の層間接続導体15に電気的に接続されている。図1(B)で図示されていないが、RFIC13の端子14C~14Pも、それぞれ複数の層間接続導体15に電気的に接続されている。すなわち、RFIC13における複数の実装電極17にそれぞれ電気的に接続されている端子数は、セキュアIC11における複数の実装電極17にそれぞれ電気的に接続されている端子数よりも多い。
 端子12A、端子12B、及び端子14A~14Pは、層間接続導体15、導体パターン16、及び配線18を介して、互いに電気的に接続されているものもあるが、多くが層間接続導体15、導体パターン16、及び配線18を介して、それぞれ複数の実装電極17に電気的に接続されている。
 すなわち、層間接続導体15、及び導体パターン16からなる内部配線の多くは、それぞれに接続される複数の実装電極17が配置される多層基板10の下面に向かう。その結果、多層基板10の下面側に内部配線が多くなる。
 しかしながら、RFIC13は、部品内蔵基板1を平面視して、面積がセキュアIC11より小さく、RFIC13がセキュアIC11よりも実装面側に配置されているので、セキュアIC11とRFIC13との面積の差に応じて、内部配線を引き回すスペースを多層基板10の実装面側に確保することができる。したがって、部品内蔵基板1に複数のICを内蔵していても、適切に内部配線を引き回して、複数のICと複数の実装電極17とを接続することができる。
 さらに、本実施形態に示すように、RFIC13の端子数が多くても、外形形状の小さいRFIC13が実装面側に配置されることで、部品内蔵基板1は、内部配線を引き回すスペースを確保できる。したがって、多層基板10の層の面積を増やしたり、内部配線を上下の層に迂回させるために多層基板10の層の数を増やしたりすることなく、すなわちサイズが小さいままで端子数が多いICを含む複数の部品を内蔵できる。
 また、部品内蔵基板1を平面視して、RFIC13は、すべてセキュアIC11に重なっている。このため、RFIC13がセキュアIC11に重複しない場合に比べて、多層基板10の層(XY平面)の面積は、より小さくてもよい。すなわち、内部配線を引き回すスペースを確保しつつ、部品内蔵基板1のサイズをさらに小型化することができる。
 さらに、本願実施形態のように、RFIC13の端子14A~14Pが多層基板10の実装面側と反対側になるようにRFIC13が実装された場合、内部配線の引き回しがさらに複雑となる。具体的には、多層基板10を平面視して、RFIC13以外の領域以外に内部配線を引き回さなければならない。しかしながら、本実施形態の構成を用いれば、このような実装態様でも適切に内部配線を引き回すことができる。
 次に、図3を用いて部品内蔵基板1の製造方法の一部について説明する。図3は、部品内蔵基板1を各層に分解した状態の側面断面図である。
 上述の通り、多層基板10は、絶縁性樹脂フィルム100~105が積層されてなる。絶縁性樹脂フィルム100~105は、それぞれ熱可塑性樹脂(例えばポリイミドや液晶ポリマ)からなる。絶縁性樹脂フィルム100~105の片面は、銅膜が貼られている。
 複数の配線18、及び複数の導体パターン16は、絶縁性樹脂フィルム100~105の銅膜が貼られた面をそれぞれパターニング処理することにより形成される。複数の層間接続導体15は、絶縁性樹脂フィルム100~105の銅貼面と反対側の面から絶縁性樹脂フィルム100~105を貫通する孔を設け、当該貫通孔に導電性ペーストを充填して固化させることにより形成される。
 絶縁性樹脂フィルム100の下面(-Z方向の面)には、セキュアIC11が仮圧着されている。絶縁性樹脂フィルム101には、絶縁性樹脂フィルム100に仮圧着されたセキュアIC11が格納される空洞部106が形成されている。空洞部106は、絶縁性樹脂フィルム101を貫通する穴によって形成されている。
 絶縁性樹脂フィルム103の下面(-Z方向の面)には、RFIC13が仮圧着されている。絶縁性樹脂フィルム104には、絶縁性樹脂フィルム103に仮圧着されたRFIC13が格納される空洞部107が形成されている。空洞部107は、絶縁性樹脂フィルム104を貫通する穴によって形成されている。
 絶縁性樹脂フィルム100~105は、積層後にそれぞれ加熱圧着される。絶縁性樹脂フィルム100~105は、加熱圧着されると、それぞれ軟化して流動し、空洞部106及び空洞部107を埋める。その結果、セキュアIC11及びRFIC13は、固定され、多層基板10は形成される。この際、上述の導電性ペーストは、固化し、複数の層間接続導体15が形成される。
 ビルドアップ層として1層ずつ樹脂層を積層する従来のビルドアップ工法は、コア層となる基材にある程度の厚みを必要とする。しかし、上述の多層基板10の積層方法は、従来のビルドアップ工法と異なり、コア層となる基材を必要としない。その結果、多層基板10は、厚みを抑えることができる。また、多層基板10の製造は、1層ずつ積層する必要はないため、ビルドアップ工法に比べて、より簡易である。
 また、絶縁性樹脂フィルム100~105の加熱圧着時に、複数の層間接続導体15は、それぞれ固化して端子12A、端子12B、及び端子14A~14Pにそれぞれ接合される。絶縁性樹脂フィルム100~105が軟化して流動することにより、複数の層間接続導体15には圧着の圧力がかかりやすくなる。その結果、複数の層間接続導体15は、より強く端子12A、端子12B、及び端子14A~14Pにそれぞれ接合する。
 さらに、絶縁性樹脂フィルム100~105が軟化して流動することを利用して、複数の層間接続導体15は、12A、端子12B、及び端子14A~14Pだけでなく、導体パターン16及び配線18にも、より強くそれぞれ接合する。
 また、RFIC13がセキュアIC11に覆われ、RFIC13の端子14A~14Pのある面(+Z方向の面)とセキュアIC11の下面(-Z方向の面)とが互いに平行に対向しているため、RFIC13の端子14A~14Pには、多層基板10の加熱圧着時の圧力が均一に加わる。したがって、RFIC13の端子14A~14Pと複数の層間接続導体15との接合信頼性を向上できる。
 また、RFIC13の端子14A~14Pのある面(+Z方向の面)に、RFIC13よりも平面視した面積が大きなセキュアIC11が平面視で重なるように配置されている。これにより、加熱圧着時におけるRFIC13の端子14A~14Pのある面(+Z方向の面)とセキュアIC11との間の不均一な樹脂の流動が抑制され、RFIC13の端子14A~14Pと複数の層間接続導体15との接合信頼性をさらに向上できる。
 なお、セキュアIC11のように大きな内蔵部品と比較してRFIC13のような小さな内蔵部品は樹脂流動により動き易く傾きやすい傾向がある。また、RFIC13の端子14A~14Pのある面(+Z方向の面)側に、セキュアIC11における端子が存在しない平坦面が対向している。これにより、加熱圧着時におけるRFIC13の端子14A~14Pのある面(+Z方向の面)とセキュアIC11との間の不均一な樹脂の流動がより抑制される。
 以上のように、導体パターン16と、端子12A、端子12B、端子14A~14Pとを電気的に接続するために、半田を塗布した層や半田バンプ等を設ける必要がないため、部品内蔵基板1を薄型にできる。
 また、層間接続導体15と、配線18、導体パターン16、端子12A、端子12B、端子14A~14Pとの接合は、絶縁性樹脂フィルム100~105の加熱圧着時に同時に行うことができる。
 次に、実施形態1に係る部品内蔵基板1の実装例について図4を用いて説明する。図4は、部品内蔵基板1を含む通信モジュール300の回路ブロック図である。
 通信モジュール300は、部品内蔵基板1と実装基板200とを備える。実装基板200は、RF回路を実現する実装基板であり、RF回路を実現するための回路素子群が実装されている。また、実装基板200には、部品内蔵基板1が実装されている。
 RFIC13は、実装基板200のフィルタ素子201に接続され、セキュアIC11は、RFIC13に接続されている。メモリ110は、セキュアIC11に内蔵され、セキュアIC11以外から直接読み書きされない。
 RFIC13は、高周波信号を処理するため、セキュアIC11に比べて、電磁波を放射しやすい。しかしながら、RFIC13から+Z方向に放射された電磁波は、図1(B)に示すように、RFIC13から+Z方向に配置されたセキュアIC11によって電磁シールドされることにより、セキュアIC11を貫通しにくく部品内蔵基板1の外に漏れにくい。また、セキュアIC11は、RFIC13より面積が大きく、部品内蔵基板1の平面視において、RFIC13を覆っているため、より効果的に電磁シールドできる。
 なお、部品内蔵基板1は、セキュアIC11とRFIC13とを内蔵しているが、電磁波を放射しやすい部品を複数の実装電極17の近くに配置し、電磁波を放射しにくい部品を複数の実装電極17から遠くに配置する態様であっても構わない。この態様では、電磁波は、部品内蔵基板1の実装面側と反対側の外部に漏れにくい。
 また、部品内蔵基板1の平面視において、RFIC13は、すべてがセキュアIC11に覆われていたが、一部が重複される態様であってもかまわない。
 なお、本実施形態においては、第1の内蔵部品および第2の内蔵部品としてそれぞれRFIC13とセキュアIC11を用いたが、これ以外の内蔵部品を用いることもできる。
1…部品内蔵基板
10…多層基板
11…セキュアIC
13…RFIC
12A、12B、14A~14P…端子
15…層間接続導体
16…導体パターン
17…実装電極
18…配線
100~105…絶縁性樹脂フィルム
106、107…空洞部
110…メモリ
201…フィルタ素子
200…実装基板
300…通信モジュール

Claims (6)

  1.  樹脂フィルムが複数積層された多層基板に電気的に接続されている複数の内蔵部品が内蔵され、一主面に実装電極が形成された部品内蔵基板であって、
     前記実装電極に近い層に位置し、電気的に接続される端子を備える第1の内蔵部品と、
     前記第1の内蔵部品が位置する層よりも前記実装電極から離れた層に位置し、電気的に接続される端子を備える第2の内蔵部品と、を備え、
     前記樹脂フィルムは、熱可塑性樹脂からなり、
     前記第1の内蔵部品の端子の数は、前記第2の内蔵部品の端子の数より多く、
     平面視において、前記第1の内蔵部品の面積は、前記第2の内蔵部品の面積より小さい
     部品内蔵基板。
  2.  平面視において、前記第1の内蔵部品は、前記第2の内蔵部品に重複する
     請求項1に記載の部品内蔵基板。
  3.  平面視において、前記第1の内蔵部品は、すべて前記第2の内蔵部品に重複する
     請求項2に記載の部品内蔵基板。
  4.  前記第1の内蔵部品の端子及び前記第2の内蔵部品の端子は、前記多層基板に形成された層間接続導体に電気的に接続されるものを含む、
     請求項1乃至請求項3のいずれかに記載の部品内蔵基板。
  5.  前記第2の内蔵部品は、前記第1の内蔵部品に比べて電磁波を放射しにくい
     請求項2乃至請求項4のいずれかに記載の部品内蔵基板。
  6.  前記第1の内蔵部品は、高周波信号を処理するRFICであり、
     前記第2の内蔵部品は、セキュリティ機能を備えたセキュアICである
     請求項1乃至請求項5のいずれかに記載の部品内蔵基板を構成要素として含む
     通信モジュール。
PCT/JP2014/060577 2013-05-14 2014-04-14 部品内蔵基板及び通信モジュール WO2014185204A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201490000446.8U CN205093051U (zh) 2013-05-14 2014-04-14 部件内置基板以及通信模块
JP2014533294A JP5692473B1 (ja) 2013-05-14 2014-04-14 部品内蔵基板及び通信モジュール
US14/939,102 US9629249B2 (en) 2013-05-14 2015-11-12 Component-embedded substrate and communication module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013102054 2013-05-14
JP2013-102054 2013-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/939,102 Continuation US9629249B2 (en) 2013-05-14 2015-11-12 Component-embedded substrate and communication module

Publications (1)

Publication Number Publication Date
WO2014185204A1 true WO2014185204A1 (ja) 2014-11-20

Family

ID=51898185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060577 WO2014185204A1 (ja) 2013-05-14 2014-04-14 部品内蔵基板及び通信モジュール

Country Status (4)

Country Link
US (1) US9629249B2 (ja)
JP (1) JP5692473B1 (ja)
CN (1) CN205093051U (ja)
WO (1) WO2014185204A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149983A1 (ja) * 2016-03-01 2017-09-08 ソニー株式会社 半導体装置、電子モジュール、電子機器、および半導体装置の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7004004B2 (ja) * 2017-10-26 2022-01-21 株式会社村田製作所 多層基板、インターポーザおよび電子機器
KR102671975B1 (ko) * 2019-08-29 2024-06-05 삼성전기주식회사 전자부품 내장기판
KR20210076586A (ko) * 2019-12-16 2021-06-24 삼성전기주식회사 전자부품 내장기판

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319757A (ja) * 2003-04-16 2004-11-11 Denso Corp 多層配線基板及びその製造方法
US20050122698A1 (en) * 2002-06-27 2005-06-09 Via Technologies Inc. Module board having embedded chips and components and method of forming the same
JP2009076833A (ja) * 2007-09-18 2009-04-09 Samsung Electro-Mechanics Co Ltd 電子素子内蔵印刷回路基板及びその製造方法
JP2010212683A (ja) * 2009-03-06 2010-09-24 General Electric Co <Ge> スタック式ダイ埋め込み型チップビルドアップのためのシステム及び方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292366B1 (en) * 2000-06-26 2001-09-18 Intel Corporation Printed circuit board with embedded integrated circuit
US7485489B2 (en) * 2002-06-19 2009-02-03 Bjoersell Sten Electronics circuit manufacture
WO2006043474A1 (ja) * 2004-10-22 2006-04-27 Murata Manufacturing Co., Ltd. 複合多層基板及びその製造方法
KR100819278B1 (ko) * 2006-11-22 2008-04-02 삼성전자주식회사 인쇄회로 기판 및 그 제조 방법
KR20080076241A (ko) * 2007-02-15 2008-08-20 삼성전기주식회사 전자소자 내장 인쇄회로기판 및 그 제조방법
KR100856209B1 (ko) * 2007-05-04 2008-09-03 삼성전자주식회사 집적회로가 내장된 인쇄회로기판 및 그 제조방법
JP5181626B2 (ja) 2007-11-05 2013-04-10 株式会社安川電機 多層プリント基板およびインバータ装置
JP4876173B2 (ja) 2008-01-25 2012-02-15 イビデン株式会社 多層配線板およびその製造方法
KR100997199B1 (ko) * 2008-07-21 2010-11-29 삼성전기주식회사 전자소자 내장형 인쇄회로기판 제조방법
KR101015651B1 (ko) * 2008-12-05 2011-02-22 삼성전기주식회사 칩 내장 인쇄회로기판 및 그 제조방법
KR20110054348A (ko) * 2009-11-17 2011-05-25 삼성전기주식회사 전자소자 내장형 인쇄회로기판 및 그 제조방법
JP5273095B2 (ja) * 2010-05-24 2013-08-28 株式会社デンソー 半導体装置
US8238113B2 (en) * 2010-07-23 2012-08-07 Imbera Electronics Oy Electronic module with vertical connector between conductor patterns
WO2013062031A1 (ja) * 2011-10-26 2013-05-02 株式会社村田製作所 通信回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050122698A1 (en) * 2002-06-27 2005-06-09 Via Technologies Inc. Module board having embedded chips and components and method of forming the same
JP2004319757A (ja) * 2003-04-16 2004-11-11 Denso Corp 多層配線基板及びその製造方法
JP2009076833A (ja) * 2007-09-18 2009-04-09 Samsung Electro-Mechanics Co Ltd 電子素子内蔵印刷回路基板及びその製造方法
JP2010212683A (ja) * 2009-03-06 2010-09-24 General Electric Co <Ge> スタック式ダイ埋め込み型チップビルドアップのためのシステム及び方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149983A1 (ja) * 2016-03-01 2017-09-08 ソニー株式会社 半導体装置、電子モジュール、電子機器、および半導体装置の製造方法
JPWO2017149983A1 (ja) * 2016-03-01 2018-12-27 ソニー株式会社 半導体装置、電子モジュール、電子機器、および半導体装置の製造方法
US11355444B2 (en) 2016-03-01 2022-06-07 Sony Corporation Semiconductor device, electronic module, electronic apparatus each having stacked embedded active components in multilayer wiring board and method for producing the semiconductor device having the same
US11916021B2 (en) 2016-03-01 2024-02-27 Sony Group Corporation Semiconductor device, electronic module and electronic apparatus each having stacked embedded active components in a multilayer wiring board

Also Published As

Publication number Publication date
CN205093051U (zh) 2016-03-16
JPWO2014185204A1 (ja) 2017-02-23
JP5692473B1 (ja) 2015-04-01
US20160066428A1 (en) 2016-03-03
US9629249B2 (en) 2017-04-18

Similar Documents

Publication Publication Date Title
US9960512B2 (en) Flexible circuit board and device
JP5660263B1 (ja) 電子部品、電子部品の製造方法、および、回路基板
US10083887B2 (en) Chip component-embedded resin multilayer substrate and manufacturing method thereof
KR101155624B1 (ko) 임베디드 인쇄회로기판 및 제조방법
JP2014212141A (ja) 部品内蔵基板及びその製造方法並びに実装体
US11540393B2 (en) Multilayer substrate, multilayer substrate mounting structure, method of manufacturing multilayer substrate, and method of manufacturing electronic device
JP2019145760A (ja) インタポーザ及びこれを含むプリント回路基板
JP5692473B1 (ja) 部品内蔵基板及び通信モジュール
JP2005217348A (ja) 立体的電子回路装置およびその中継基板と中継枠
US9585256B2 (en) Component-embedded substrate and manufacturing method thereof
KR101555403B1 (ko) 배선기판
JP2005150443A (ja) 積層型半導体装置およびその製造方法
JP2019145766A (ja) プリント回路基板
KR102518174B1 (ko) 전자 소자 모듈
JP6717391B2 (ja) 多層基板および電子機器
US20210021038A1 (en) Communication module, electronic device, and communication module manufacturing method
JP2004206736A (ja) 半導体装置及びその製造方法
US10188000B2 (en) Component mounting board
JP6870751B2 (ja) インターポーザおよび電子機器
JP2012230954A (ja) プリント配線板及びプリント配線板の製造方法
JP2019145764A (ja) プリント回路基板
TWI777540B (zh) 天線模組及其製作方法和終端
US20230053211A1 (en) Multilayer board and method of manufacturing the same
JP6604496B1 (ja) 通信モジュール、電子機器、および通信モジュールの製造方法
WO2022215372A1 (ja) 電子回路モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201490000446.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014533294

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797224

Country of ref document: EP

Kind code of ref document: A1