WO2014185061A1 - センサー搭載装置 - Google Patents

センサー搭載装置 Download PDF

Info

Publication number
WO2014185061A1
WO2014185061A1 PCT/JP2014/002525 JP2014002525W WO2014185061A1 WO 2014185061 A1 WO2014185061 A1 WO 2014185061A1 JP 2014002525 W JP2014002525 W JP 2014002525W WO 2014185061 A1 WO2014185061 A1 WO 2014185061A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
sensor
temperature
information
unit
Prior art date
Application number
PCT/JP2014/002525
Other languages
English (en)
French (fr)
Inventor
式井 愼一
弘一 楠亀
ナワット シラワン
達男 伊藤
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to CN201480001821.5A priority Critical patent/CN104428601B/zh
Priority to US14/414,191 priority patent/US9841202B2/en
Priority to JP2015512943A priority patent/JP5785349B2/ja
Publication of WO2014185061A1 publication Critical patent/WO2014185061A1/ja
Priority to US15/782,361 priority patent/US10371402B2/en
Priority to US16/446,839 priority patent/US11808478B2/en
Priority to US18/375,692 priority patent/US20240027093A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/66Sleep mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to an apparatus equipped with a sensor such as a temperature sensor.
  • the temperature sensor mounted on the air conditioning apparatus measures the temperature of the wind sucked by the air conditioning apparatus, and the wind blown out from the air conditioning apparatus based on the measured wind temperature. There is control to adjust the temperature in the room by changing the strength of the vehicle.
  • the body movement of a person at bedtime is detected from information obtained by a two-dimensional infrared sensor mounted on an air conditioning apparatus, and the sleep state is determined, whereby the room is further finely divided. It is considered to perform air conditioning control of
  • the sensor in the conventional air conditioner, if the device is not powered on, that is, the device is not operating (stopped), the sensor also does not operate. Therefore, since the sensor does not operate after the user himself turns off the air conditioner or after the timer is turned off, the indoor air conditioning control can not be performed. .
  • a device equipped with the sensor of the present disclosure includes: a power supply unit that generates a power supply to the device; a sensor that acquires information on the periphery of the device; and a first control unit that gives an instruction based on the information acquired by the sensor , And a second control unit that controls the apparatus according to an instruction of the first control unit, the power supply unit supplies power directly to the sensor and the first control unit, and the second control unit receives the first control unit. Power is supplied from the power supply unit through a switch unit whose on / off state is controlled by the control unit.
  • the operation of the device can be started as needed. Thereby, the convenience, the comfort, etc. of the user can be improved.
  • FIG. 1 is a schematic view of a room equipped with a device.
  • FIG. 2 is a diagram showing the configuration of the air-conditioning apparatus 100 according to the first embodiment.
  • FIG. 3 is a flowchart illustrating device control performed by the air conditioning device 100.
  • FIG. 4 is a schematic view for explaining a specific example 1 using the air conditioning apparatus 100.
  • FIG. 5 is a schematic view for explaining a specific example 2 using the air conditioning apparatus 100.
  • FIG. 6 is a flowchart for explaining Example 3 using the air conditioner 100.
  • FIG. 7 is a view showing the configuration of the air conditioning apparatus 200 according to the second embodiment.
  • FIG. 8A is a view for explaining a specific example 1 using the air conditioning apparatus 200.
  • FIG. 8B is a view for explaining a specific example 2 using the air conditioning apparatus 200.
  • FIG. 8C is a view for explaining a specific example 3 using the air conditioning apparatus 200.
  • FIG. 8D is a view for explaining a specific example 4 using the air conditioning apparatus 200.
  • FIG. 9 is a view for explaining an example of handling of data measured by the sensor 120.
  • FIG. 10 is a diagram for explaining a general physiological phenomenon of a person during sleep.
  • FIG. 11 is a diagram showing an example of estimating a human's thermal sensation.
  • FIG. 12 is a diagram showing another example of estimating a human's thermal sensation.
  • FIG. 13 is a view for explaining a specific example using the air conditioning apparatus 300 in the third embodiment.
  • FIG. 10 is a diagram for explaining a general physiological phenomenon of a person during sleep.
  • FIG. 11 is a diagram showing an example of estimating a human's thermal sensation.
  • FIG. 12 is a diagram showing another example of estimating a human's
  • FIG. 14 is a diagram for explaining a configuration example of the temperature sensor 121.
  • FIG. 15 is a view showing an example of data acquired by the temperature sensor 121.
  • FIG. 16 is a diagram for explaining a configuration example of the temperature sensor 122.
  • FIG. 17 is a view showing the configuration of another air conditioning apparatus 301 according to the third embodiment.
  • FIG. 18 is a view for explaining an example of louver control realized by the air-conditioning apparatus 301.
  • FIG. 19 is a diagram for explaining an example of compressor control realized by the air conditioning apparatus 301.
  • FIG. 20A is a diagram showing a configuration of the air conditioning apparatus 400 according to the fourth embodiment.
  • FIG. 20B is a diagram showing the configuration of another air conditioning apparatus 401 according to the fourth embodiment.
  • FIG. 21 is a view for explaining the configuration of a display device 500 according to the fifth embodiment.
  • FIG. 22 is a diagram showing the configuration of a conventional air conditioner 1000. As shown in FIG.
  • FIG. 1 is a view schematically showing the inside of a room provided with the apparatus 10.
  • the apparatus 10 illustrated in FIG. 1 is an air conditioner equipped with a sensor 12, and is attached to a wall of a room.
  • a person (user) 51 is assumed to go to bed in the bedding 53 composed of the comforter 53a and the comforter 53b.
  • the person who is going to bed will be referred to as a person 51 going to bed.
  • the block diagram of the conventional air conditioning apparatus 1000 used as the apparatus 10 in the condition of FIG. 1 mentioned above is shown in FIG.
  • the conventional air conditioning apparatus 1000 shown in FIG. 22 includes a power supply unit 1100, a sensor 1200, a first control unit 1300, a switch unit 1400, a second control unit 150, an operation unit 160, and a device function unit 170.
  • the device function unit 170 includes a louver 171, a compressor 172, a fan 173, and the like.
  • the power supply unit 1100 externally receives a first power supply (for example, AC 100 V), and generates a second power supply (for example, DC 12 V) necessary for the apparatus.
  • the second power source generated by the power source unit 1100 is supplied to the switch unit 1400 (and also to the operation unit 160 as needed).
  • the switch unit 1400 is configured to be able to switch the on / off state based on the control of the operation unit 160, and outputs the second power source input from the power supply unit 1100 to the configuration of the subsequent stage when in the on state.
  • the configuration of the latter stage where the switch unit 1400 outputs the second power is the sensor 1200, the first control unit 1300, and the second control unit 150.
  • the sensor 1200 corresponds to the sensor 12 of FIG. 1 and is, for example, a temperature sensor that acquires information (measures data) related to the temperature in the room.
  • a temperature sensor that acquires information (measures data) related to the temperature in the room.
  • the information (measured data) acquired by the sensor 1200 is output to the first control unit 1300.
  • the first control unit 1300 extracts a feature amount from the information acquired by the sensor 1200.
  • the feature amount includes, for example, the presence or absence of a person in the room, the position where the person is present, the temperature of the face of the person, and the like.
  • the first control unit 1300 determines in which direction (from the position of the person) the wind should be directed, and to what extent the temperature should be blown out (from the face temperature etc.), etc. I can understand the control I need for my room now.
  • the control content grasped by the first control unit 1300 is output to the second control unit 150.
  • the second control unit 150 is connected to the device function unit 170, and based on the control content received from the first control unit 1300, the wind direction by the louver 171, the wind temperature by the compressor 172, and the air volume by the fan 173. Adjust each one.
  • the second control unit 150 can also adjust the wind direction, the wind temperature, and the air volume based on the control content instructed from the operation unit 160 in the same manner.
  • the switch unit 1400 is switched to the OFF state by a signal from the timer, so that the entire air conditioning apparatus 1000 stops including the movement of the sensor 1200. become.
  • the air conditioning apparatus 1000 After the air conditioning apparatus 1000 stops, it is expected that the temperature in the room will rise in the summer, and the temperature in the room will fall in the winter. However, the air conditioner 1000 can not detect a temperature change in the room because the sensor 1200 is stopped. For this reason, it is possible that the sleeping person 51 can not sleep comfortably and in the worst case wake up. Although it is conceivable to set the on timer to automatically start the operation of the air conditioner 1000, it can be operated only after the time set before going to bed, so the temperature of the room changes unpredictably. It is impossible to respond appropriately.
  • the sensor 1200 and the first control unit 1300 do not operate and the function of using the sensor 1200 unless the power of the apparatus body is turned on, that is, the switch unit 1400 is not turned on. There was a problem that you could not use
  • An apparatus equipped with a sensor according to an aspect of the present disclosure based on the invention includes an instruction based on a power supply unit that generates a power supply to the apparatus, a sensor that acquires information around the apparatus, and information acquired by the sensor. And a second control unit that controls the apparatus according to an instruction of the first control unit, and the sensor and the first control unit are directly supplied with power from the power supply unit, and the second control unit Power is supplied to the control unit from the power supply unit via the switch unit whose on / off state is controlled by the first control unit.
  • the sensor may also include at least one of a temperature sensor and a humidity sensor. According to this aspect, the sensor and the first control unit can be operated even while the device is stopped.
  • the first control unit switches the switch unit to the on state and instructs the second control unit when the sensor acquires information for which the operation of the device is requested by the sensor when the switch unit is in the off state. Can be given. According to this one aspect, it is possible to start the operation of the device as needed through the first control unit. Thereby, the convenience, the comfort, etc. of the user can be improved.
  • the first control unit instructs the first controller based on the information based on the information on the new device periphery. If this is not given to the control unit 2, the consumption reduction of the device can be reduced.
  • the first control unit can transmit an instruction based on the information acquired by the sensor to the outside of the device. Furthermore, the first control unit can remotely control another device that has received the instruction by transmitting the instruction based on the information acquired by the sensor to the outside of the device.
  • another device other than the present device can be easily controlled.
  • the first control unit does not transmit outside the device if information on a new device periphery that is not different from the information on the device periphery acquired previously in the sensor is acquired, the first control unit It can reduce consumption reduction.
  • the senor can acquire information on the periphery of the device at predetermined time intervals.
  • the time interval for the sensor to acquire information on the device periphery It is also possible to change the processing interval of information around the new device or to change it. This can reduce the consumption reduction of the device.
  • the first control unit can estimate the behavior of a person or the state of a bed during sleep from information on the vicinity of the device acquired by the sensor.
  • the first control unit instructs the second control unit to, for example, send / stop wind, direction, strength, temperature, and humidity. At least one can be controlled.
  • the first control unit can control, for example, selection of content to be displayed on the display unit by giving an instruction to the second control unit.
  • the first control unit can remotely control at least one of wind delivery / stop, direction, intensity, temperature, and humidity with respect to another device having an air conditioning function. It is also possible to remotely control at least one of lighting on / off and dimming with respect to another device having a lighting function, or to start cleaning / for another device having a cleaning function. It is also possible to remotely control at least one of stop, place, and time, and start / stop of freezing and / or freezing, and temperature of at least one of another device having freezing and / or refrigeration function. Can be remotely controlled. According to this other aspect, various other devices can be easily remotely controlled.
  • FIG. 2 is a diagram showing the configuration of the air-conditioning apparatus 100 according to the first embodiment of the present disclosure, which is used as the device 10 in the situation of FIG. 1 described above.
  • the air conditioning apparatus 100 illustrated in FIG. 2 includes a power supply unit 110, a sensor 120, a first control unit 130, a switch unit 140, a second control unit 150, an operation unit 160, and a device function unit 170.
  • the device function unit 170 includes a louver 171, a compressor 172, a fan 173, and the like.
  • the configuration of the device function unit 170 is an example, and other configurations may be included or some configurations may be missing.
  • the power supply unit 110 externally receives a first power supply (for example, AC 100 V), and generates a second power supply (for example, DC 12 V) necessary for the apparatus.
  • the second power source generated by the power source unit 110 is supplied to the sensor 120, the first control unit 130, and the switch unit 140 (and also to the operation unit 160 as needed).
  • the switch unit 140 is configured to be able to switch the on / off state based on the control of the operation unit 160, and outputs the second power source input from the power supply unit 110 to the configuration of the subsequent stage when in the on state.
  • the switch unit 140 may be a mechanical switch or an electrical switch, and may be controlled by hardware or software.
  • the configuration of the latter stage in which the switch unit 140 outputs the second power is the second control unit 150.
  • the operation unit 160 is a wireless or wired operation terminal, and is typically a remote controller (remote control).
  • the operation unit 160 is a concept including a timer function that can switch the on / off state of the switch unit 140 at an arbitrary set time.
  • the switch unit 140 has a reception function.
  • the sensor 120 is, for example, a temperature sensor, and acquires information on the temperature in the room (measures data).
  • a temperature sensor a thermal image sensor capable of measuring a temperature distribution two-dimensionally is suitable.
  • the information (measured data) acquired by the sensor 120 is output to the first control unit 130.
  • the first control unit 130 extracts a feature amount from the information acquired by the sensor 120.
  • the feature amount includes, for example, the presence or absence of a person in the room, the position where the person is present, the temperature of the face of the person, and the like.
  • the first control unit 130 is, for example, in which direction the wind should be directed (from the position of the person), and what temperature the wind should be blown out (from the face temperature etc.) Understand the controls needed for your room.
  • the control content grasped by the first control unit 130 is output to the second control unit 150.
  • the first control unit 130 has a function of switching the on / off state of the switch unit 140 so that the control content output to the second control unit 150 is executed.
  • the second control unit 150 and the device function unit 170 are as described above.
  • the first control unit 130 and the second control unit 150 are not particularly limited as long as they can execute arithmetic processing such as a microcomputer or the device control function, for example, and even if both control units have the same configuration Good.
  • the configuration of the air-conditioning apparatus 100 according to the first embodiment described above differs from the configuration of the conventional air-conditioning apparatus 1000 in the following points.
  • power to the sensor 120 and the first control unit 130 is directly supplied from the power supply unit 110 without passing through the switch unit 140.
  • the first control unit 130 has a function of switching the on / off state of the switch unit 140.
  • FIG. 3 is a flowchart illustrating device control performed by the air conditioning device 100 in the first embodiment.
  • the sensor 120 and the first control unit 130 since the power supply to the sensor 120 and the first control unit 130 is directly supplied from the power supply unit 110 without the switch unit 140, the sensor 120 and the first control unit 130 always operate. That is, even if the second control unit 150 is not operating with the switch unit 140 turned off, that is, even when the air-conditioning apparatus 100 has stopped functioning, the sensor 120 monitors the room to monitor the temperature (distribution Information is obtained (step S31). Then, even when the air-conditioning apparatus 100 has stopped functioning, the information acquired by the sensor 120 is sent to the first control unit 130, and the first control unit 130 extracts the feature amount from the information. A process is performed to extract and determine whether control of the device is necessary (step S32).
  • the monitoring operation of the sensor 120 may be performed continuously or may be performed discretely at predetermined time intervals.
  • the act of the first control unit 130 receiving information from the sensor 120 may be performed continuously or may be performed discretely at predetermined time intervals.
  • the state of the switch unit 140 can be controlled whenever necessary. That is, even if the second control unit 150 is not operating with the switch unit 140 turned off, that is, even when the air conditioner 100 has stopped functioning, the switch unit 140 is switched to the on state to perform air conditioning
  • the device 100 can be operated (steps S33 and S34). Therefore, the temperature inside the room is constantly monitored, and when it becomes necessary to control the device based on the feature value (step S32: Yes), the air conditioner 100 is operated immediately to adjust the temperature inside the room optimally. (Step S35).
  • step S36 and S37 the switch unit 140 can be switched to the off state to stop the air conditioner 100. Therefore, if the room temperature is constantly monitored and control of the apparatus based on the feature amount becomes unnecessary (step S32: No), the air conditioner 100 can be immediately stopped.
  • the determined control content is The louver 171, the compressor 172, and the fan 173 can be appropriately controlled by outputting to the second control unit 150.
  • the ambient temperature of the sleeper 51 can be suppressed to a predetermined temperature or less, so that the sleeper 51 can continue to sleep comfortably.
  • the temperature (distribution) in the room is monitored to detect the temperature of the face
  • the temperature of the hand or foot may be detected.
  • the air volume, the air direction, and the air temperature of the air conditioner 100 may be controlled from the temperature of the hand or foot, or the operation / stop state of the device may be controlled.
  • the sleeping person 51 is cold
  • the temperature of the hands and feet is significantly reduced. Therefore, even when the person is cold, comfortable indoor conditions can be provided by measuring the temperature of the hands and feet. .
  • the first control unit 130 can determine whether the sleeper 51 has entered the sleep state from the extracted amount of body movement. Therefore, for example, when the sleep state of the sleeping person 51 is detected, it is also possible to control so as not to make an operation sound such as "beep" emitted when the air conditioning apparatus 100 starts or stops until waking up. By such control, a comfortable environment can be maintained without disturbing the sleep of the sleeper 51. Similarly, when the sleep state is determined, the generation of noise is suppressed by making the operation of the compressor 172 modest and the operation of the louver 171 and the fan 173 modest, and the sleep of the sleeping person 51 Maintain a comfortable environment without disturbing
  • control may be performed to raise the ambient temperature of the occupant 54.
  • a humidity sensor is also attached as the sensor 120, the humidity is You may control including it.
  • the control implemented by the sensor 120 and the first control unit 130 is not limited to this specific example.
  • the detection of a person by the sensor 120 may be used as a trigger to operate the air conditioning apparatus 100, or other changes may be used as a trigger to operate the air conditioning apparatus 100.
  • the air conditioner 100 can be stopped by judging that there is no one in the room in the sensor 120 and the first control unit 130. In this case, since the sensor 120 and the first control unit 130 continue to operate even after the stop, the operation can be automatically started when someone enters the room next time.
  • a humidity sensor may be used as the sensor 120, or both of the temperature sensor and the humidity sensor may be used.
  • the degree of human comfort is greatly influenced by humidity. For example, if the environment is 30 ° C., it becomes extremely unpleasant if the humidity is 60% or more, but if it is about 40%, even if the temperature is high It is known to feel comfortable. Therefore, the humidity is detected using the humidity sensor, and the comfortable condition is determined by the first control unit 130 as in the case of the temperature sensor, and the louver 171, the compressor 172, and the fan are transmitted via the second control unit 150. By controlling 173 and the like, a comfortable environment can be created as well. Of course, by mounting both the temperature sensor and the humidity sensor, it is possible to create a more precise comfortable environment.
  • the target to be controlled in the air conditioning apparatus 100 has been described as the air volume, the air direction, and the air temperature, any one or all of them may be used, and other than this may be used. You may include an object.
  • FIG. 6 is a flowchart in which a procedure (steps S61 to S64) for controlling power consumption is added to the flowchart of FIG.
  • the first control unit 130 When the first control unit 130 newly receives information (data) from the sensor 120 (step S31), the first control unit 130 compares the newly received information with the information previously received from the sensor 120 (step S61). When it is determined that there is no difference between the two information (step S62: Yes), the first control unit 130 reduces the frequency of acquiring information (measuring data) with respect to the sensor 120, or The power consumption reduction operation is performed to reduce the capability (resolution or range) or to increase the interval at which the information received from the sensor 120 is processed by itself (step S63). On the other hand, when it is determined that there is a difference between the two information (Step S62: No), the first control unit 130 performs the normal operation (Step S64). At this time, if the power consumption reduction operation has already been performed, the operation returns to the normal operation. By this control, power consumption can be appropriately reduced in the air-conditioning apparatus 100 in the embodiment.
  • FIGS. 7 and 8A to 8D The configuration and control of the air conditioner 200 according to the second embodiment will be described with reference to FIGS. 7 and 8A to 8D.
  • the structure of the air conditioning apparatus 200 in 2nd Embodiment is shown in FIG. 8A to 8D are diagrams for respectively explaining specific examples 1 to 4 in which the air conditioning apparatus 200 is used.
  • the air conditioning apparatus 200 includes a power supply unit 110, a sensor 120, a first control unit 230, a switch unit 140, a second control unit 150, an operation unit 160, and an apparatus function unit 170.
  • the first control unit 230 includes a transmission processing unit 231.
  • the air-conditioning apparatus 200 according to the second embodiment differs from the air-conditioning apparatus 100 according to the first embodiment in that the air-conditioning apparatus 200 according to the second embodiment includes a first control unit 230 including a transmission processing unit 231.
  • the configuration other than the first control unit 230 is the same as the configuration of the air conditioner 100, and thus the description thereof is omitted.
  • the first control unit 230 extracts the feature amount from the information acquired by the sensor 120.
  • the feature amount includes, for example, the presence or absence of a person in the room, the position where the person is present, the temperature of the face of the person, and the like. With such a feature amount, the first control unit 230 determines the direction to which the wind should be directed (from the position of the person), and to what extent the temperature should be directed (from the face temperature etc.), etc. I can understand the control I need for my room now.
  • the control content grasped by the first control unit 230 is output to the second control unit 150, and is transmitted to the outside through the transmission processing unit 231 as necessary.
  • the transmission processing unit 231 includes, for example, a transmitter that emits a radio wave, a controller that controls the transmitter, and the like.
  • FIG. 8A is a view schematically showing the inside of a room provided with the air conditioning apparatus 200, the router 281, and the fan with receiver 282.
  • the fan with receiver 282 has a function of receiving and interpreting and executing a control signal transmitted by the first control unit 230 of the air conditioning apparatus 200 via the transmission processing unit 231. This control signal is transmitted and received via, for example, the router 281.
  • the fan with receiver 282 has an index function unit 283 that generates an index signal that can be detected by the sensor 120 of the air-conditioning apparatus 200 to recognize its own presence.
  • an infrared LED that generates infrared light that can be sensed by the sensor 120 as the index function unit 283 can be mounted on the fan with receiver 282, and the infrared light can be blinked in a predetermined cycle to be an index signal.
  • a heating element that generates heat that can be sensed by the sensor 120 as the index function unit 283 can be mounted on the fan with receiver 282, and the heating element can generate heat at a predetermined temperature to be an index signal.
  • the sensor 120 detects the presence of the fan with receiver 282 based on the index signal in addition to the ambient temperature in the room, the presence of the sleeper 51, the face temperature, the amount of body movement and the like. be able to.
  • the air conditioning apparatus 200 can perform air conditioning including the fan with receiver 282. That is, when the first control unit 230 determines that the fan with receiver 282 is to be controlled, it transmits a control signal for driving the fan with receiver 282 via the transmission processing unit 231 and the router 281. Can. At that time, as the control signal to be transmitted, it is conceivable to transmit contents relating to the direction, strength, presence or absence of swing, etc. of the wind generated by the fan with receiver 282.
  • the receiver-equipped fan 282 that has received the control signal operates by adjusting the wind direction, strength, swing and the like based on the content of the control signal.
  • the sleeper 51 when the face temperature of the sleeper 51 exceeds 35 ° C. in summer, the sleeper 51 is likely to feel uncomfortable. This can be predicted from the fact that the temperature of the face when sleeping comfortably in autumn, spring, etc. is about 33 to 34 ° C. On the other hand, it is known that skin temperatures other than the face during sleep do not fluctuate regardless of the season. Therefore, when the face temperature exceeds 35 ° C., it is possible to sleep more comfortably by performing control to lower only the temperature around the face by 1 to 2 ° C. while keeping the temperature other than the face constant. it can.
  • the air conditioning apparatus 200 is often installed at a position approximately 2 to 3 m away from the sleeper 51, and it may be difficult to apply the wind from the air conditioning apparatus 200 only to the face of the sleeper 51. is there.
  • wind can be applied only to the area around the face of the sleeper 51. By doing this, the temperature of the face of the sleeper 51 can be lowered without lowering the temperature of the body of the sleeper 51 more than necessary, so that extremely comfortable sleep can be provided.
  • only the fan with a receiver 282 may be operated while the air conditioning apparatus 200 is stopped. By doing this, it is possible to realize air conditioning with reduced power consumption while maintaining comfort.
  • the receiver-equipped fan 282 is described as an example of the external device connected to the air conditioning apparatus 200 here, it is of course not limited to this, and any external device having an air conditioning function is the same. Needless to say, it has an effect. Moreover, even if it is an external apparatus which does not have an air conditioning function, the following effects can be exhibited.
  • FIG. 8B is a view schematically showing the inside of a room provided with the air conditioning apparatus 200, the router 281, and the light with receiver 284.
  • the receiver-mounted illumination 284 has a function of receiving and interpreting and executing a control signal transmitted by the first control unit 230 of the air-conditioning apparatus 200 via the transmission processing unit 231. This control signal is transmitted and received via, for example, the router 281.
  • the receiver-mounted illumination 284 generates an index function unit 283 that generates an index signal that can be detected by the sensor 120 of the air-conditioning apparatus 200 to recognize its own presence, similarly to the receiver-mounted fan 282 described above. Have.
  • the sensor 120 detects the presence of the illumination with receiver 284 by the index signal in addition to the ambient temperature in the room, the presence of the sleeper 51, the face temperature, and the amount of body movement. It can be detected.
  • the air-conditioning apparatus 200 can control turning on / off of the illumination.
  • the first control unit 230 drives the lighting with receiver 284 via the transmission processing unit 231 and the router 281 when it is determined that the sleeping person 51 has been awakened from the extracted feature amount such as the body movement amount. Control signals, i.e. lighting signals can be transmitted.
  • the receiver-equipped illumination 284 that has received the illumination signal can automatically illuminate the illumination according to the wake-up timing of the sleeper 51. As a result, the sleeper 51 does not have to look for the switch position of the light in the dark in the room, and the convenience is improved.
  • the illumination of the living room, the corridor or the toilet may be controlled. Also, it may be considered to control the air conditioning of the toilet and the temperature of the toilet seat.
  • the body movement amount of the sleeper 51 was detected and controlled was demonstrated in this specific example, you may control by another method.
  • the temperature during sleep usually decreases gradually from the onset of sleep and takes a rhythm that rises 1-2 hours before waking up.
  • the amount of body movement during sleep is increased before waking up than during sleep onset. Therefore, the body temperature information and the body movement information may be extracted by the first control unit 230, and the wake-up time may be assumed therefrom. In that case, it is also possible to promote gentle awakening by gradually raising the brightness of the receiver-equipped illumination 284 little by little before the expected wake-up time.
  • the gesture of the sleeper 51 it is also possible to make it cooperate with the lighting with a receiver 284 by the gesture of the sleeper 51.
  • the first control unit 230 is set in advance that the gesture of stretching the arm and swinging large is a signal to turn on / off the light with a receiver 284, the user may go to bed without searching for the light when the room is dark. It becomes possible for the person 51 to brighten the room by stretching the arm and swinging it greatly.
  • the gesture here is an example, and for example, both hands may be used, bending and stretching may be performed, and the means is not limited here.
  • the sleeping person 51 is, for example, an infant and becomes urine at night, a local temperature drop can be seen in a short time. If such an event is detected by the first control unit 230, the receiver-equipped illumination 284 is turned on to urge the sleeping person 51 to wake up, thereby preventing a decrease in body temperature and a cold due to continuing to sleep. it can. Of course, by raising the air temperature of the air conditioner 200, it is possible to prevent a drop in body temperature and a cold. In addition, when lighting with a receiver is installed also in the bedroom of the parent, the lighting may be turned on to notify the night urine of the sleeping person 51, and an alarm with a receiver (not shown) is shown in the bedroom of the parent.
  • FIG. 8C is a view schematically showing the inside of a room provided with the air conditioning apparatus 200, the router 281, and the lighting with receiver 284 as in FIG. 8B, but two sleeping persons 51 and 55 It is different.
  • the first control unit 230 detects that there are two sleeping persons. At this time, for example, when the sleeper 51 wakes up, the first control unit 230 knows that the sleeper 51 wakes up but the sleeper 55 is still sleeping. Therefore, by setting the first control unit 230 to turn on the brightness with a signal transmitted to the light with receiver 284, the sleep of the sleeper 55 is not disturbed, and the convenience of the sleeper 51 is achieved. The effect is that it is possible to secure
  • the illumination with receiver 284 is dimly lit and the extraction is similarly performed from the first control unit 230.
  • control may be performed to turn off the light with receiver 284 when it is determined that the amount of body movement has decreased and, for example, deep sleep has been reached.
  • it lights up automatically, and when you wake up you won't have a dark room (it feels dark and scary).
  • the brightness control of the illumination may be determined by the first control unit 230 of the air conditioner 200, and the body movement amount extracted by the first control unit 230 may be determined by the illumination 284 with the receiver. It may be received, and the brightness may be determined and controlled in the receiver-mounted illumination 284.
  • other control methods may be used, and the method is not limited.
  • FIG. 8D is a view schematically showing the inside of a room provided with the air conditioning apparatus 200, the router 281, and the vacuum cleaner 285 with a receiver.
  • the receiver-equipped cleaner 285 has a function of receiving, interpreting, and executing the control signal transmitted by the first control unit 230 of the air-conditioning apparatus 200 via the transmission processing unit 231. This control signal is transmitted and received via, for example, the router 281.
  • the receiver-equipped vacuum cleaner 285 generates an index function unit that generates an index signal that can be detected by the sensor 120 of the air-conditioning apparatus 200 to recognize its own presence. It has 283.
  • the sensor 120 is not only the ambient temperature in the room, the presence of the sleeping person 51, the face temperature, the amount of body movement, etc., but the presence of the vacuum cleaner 285 with a receiver according to the index signal. Can be detected.
  • the air conditioning apparatus 200 can control the operation / stop of the vacuum cleaner.
  • the first control unit 230 determines that the sleeping person 51 has entered the sleep state from the extracted feature amount such as the body movement amount
  • the receiver-equipped vacuum cleaner with the receiver is via the transmission processing unit 231 and the router 281.
  • a control signal for driving the 285, that is, a start signal can be transmitted.
  • the receiver-equipped vacuum cleaner 285 that has received the start signal can start cleaning in accordance with the sleep timing of the sleeper 51. Thereby, the sleeping person 51 can clean the room while sleeping, and the convenience is improved.
  • the position of the sleeper 51 can be detected from the temperature distribution detected by the sensor 120, and the first control unit 230 cleans the vacuum cleaner 285 with a receiver based on the detected position information of the sleeper 51. It can define the scope.
  • the sleep depth may be estimated from body movement or the like, and the operation of the receiver-equipped vacuum cleaner 285 may be controlled based on the estimated sleep depth. For example, by operating the receiver-equipped vacuum cleaner 285 at the timing when the sleep depth is deep, the room can be cleaned without disturbing the sleep of the sleeper 51.
  • the receiver-equipped vacuum cleaner placed in another room may be controlled instead of the room in which the sleeper 51 is sleeping.
  • the control signal transmitted by the first control unit 230 via the transmission processing unit 231 is received via the router 281.
  • the fan with receiver 282, the illumination with receiver 284, the receiver The example which the vacuum cleaner 285 receives was demonstrated.
  • the control signal may be received directly from the transmission processing unit 231 without passing through the router 281.
  • various devices provided with a receiver can be applied to the objects to be controlled by the air-conditioning apparatus 200.
  • the object which the air conditioning apparatus 200 controls is not limited to the apparatus in the same room.
  • control of other devices Or, it may be used for other applications such as statistical survey and failure prediction.
  • control may be performed such that the refrigerator is operated with the operation of the compressor being suppressed. Since this makes the sound of the refrigerator quiet, the sleeper 51 can obtain a deeper sleep.
  • FIG. 9 is an example of transition of the face temperature of the sleeping person 51, which is data measured by the sensor 120 and extracted by the first control unit 230.
  • the horizontal axis indicates time
  • the vertical axis indicates face temperature.
  • the measurement time interval of the sensor 120 is p1 (seconds), and it can be seen that the face temperature is plotted every p1 (seconds).
  • the first control unit 230 extracts the face temperature based on the information obtained from the sensor 120 every p1 (seconds), and the transmission processing unit 231 transmits a control signal every p1 (seconds). .
  • the temperature during sleep gradually decreases from the early sleep to the morning, but no significant change is observed. Therefore, most control signals transmitted during sleep are likely to be control signals of the same data.
  • control is performed using the immediately preceding control signal. If such a fan with a receiver 282 can be set, the first control unit 230 may be set if the face temperature extracted by the sensor 120 and the first control unit 230 is the same as the face temperature before p1 (seconds). Can stop sending the control signal.
  • the timing at which the control signal is actually transmitted from the transmission processing unit 231 of the air conditioning apparatus 200 is the timing at the initial stage of measurement and the face temperature is f1 (° C.) T1 seconds after transition to t2, t2 seconds after face temperature transition to f2 (.degree. C.), and t3 seconds after face temperature transition to f3 (.degree. C.).
  • the measurement time interval of the sensor 120 extracts the face temperature every p1 (seconds) at the initial stage of measurement, but the face temperature extracted at the time intervals of p1 (seconds) is If the temperature is the same for two consecutive times, the face temperature is extracted by changing the measurement interval from p1 (seconds) to p2 (seconds) longer than that.
  • control is performed using the immediately preceding control signal.
  • a fan with a receiver 282 can be set, if several face temperatures extracted at intervals of p1 (seconds) by the sensor 120 and the first control unit 230 are continuously the same temperature, the first The interval at which the control unit 230 of the control unit 230 transmits control signals is increased (thinning out).
  • the number of transmissions of the extra control signal from the transmission processing unit 231 is reduced, and the consumption for driving of the transmission processing unit 231, transmission / reception by the router 281, and reception of the control signal by the fan with receiver 282 etc.
  • the effect is that power can be reduced.
  • FIG. 9B it has been described that the measurement interval of the sensor 120 is changed from p1 (seconds) to p2 (seconds).
  • the timing of extracting the face temperature in the first control unit 230 may be changed to p2 (seconds), or the timing of transmitting the control signal from the transmission processing unit 231 May be changed to p2 (seconds), but the means is not limited here.
  • the method of FIG. 9 (a) may be combined with the method of FIG. 9 (b).
  • the air conditioning apparatus 100 and 200 equipped with the thermal image sensor has been described taking sleep as an example.
  • what kind of control is specifically performed in the air-conditioning apparatus 100 and 200 equipped with a thermal image sensor will be described to obtain a more comfortable sleep.
  • FIG. Fig. 10 (a) shows the time course of sleep depth
  • Fig. 10 (b) shows the time course of body temperature and body surface temperature during sleep
  • Fig. 10 (c) shows the time course of body movement.
  • the data shown in FIG. 10 is an example of a typical person, and these waveforms are different depending on individual differences, the surrounding environment, and the like.
  • FIG. 10 (a) Sleep is divided into two types: REM (Rapid Eye Movement) sleep in which the eyeballs move rapidly and non-REM sleep without eye movement, and non-REM sleep is 1-4 depending on the depth of sleep. There are stages. Although the sleep stage 4 is the deepest and the brain is also asleep, it is said that REM sleep is a state in which the body is asleep but the brain is active. As shown in FIG. 10 (a), REM sleep and non-REM sleep appear alternately during sleep. Immediately after sleep onset, non-REM sleep appears first, and then REM sleep appears. It is generally accepted that this cycle is about 90 minutes, and it is generally said that this cycle appears 4-5 times during one night. The period of about 90 minutes is also called ultra dian rhythm.
  • REM Rapid Eye Movement
  • body surface temperature fluctuation during sleep will be described with reference to FIG. Because the metabolic rate decreases during sleep, core body temperature (solid line) tends to decrease from before sleep, generally rising to awakening after falling to the lowest temperature in the middle to late sleep.
  • the forehead skin temperature (dotted line) is a body surface temperature but is a site relatively near the deep body temperature and less susceptible to the influence of the environmental temperature, and tends to show a substantially constant temperature after settling in a steady state during sleep. It is in.
  • the nose skin temperature corresponds to the peripheral part and is susceptible to the environmental temperature.
  • the skin temperature of the peripheral part is susceptible to the influence of the environmental temperature because the activity of the autonomic nervous system becomes unstable during REM sleep, as in the case of the nasal skin temperature in FIG. 10 (b). It is known that the body surface temperature may fluctuate near REM sleep depending on the environmental temperature. In addition, halfway awakening to be awakened temporarily during sleep is considered to have a high frequency of occurrence at the timing of REM sleep and relatively shallow sleep of about 1 to 2 sleep depths before and after that, and the indoor environment in this period is comfortable. It is believed that keeping leads to a reduction in the awakening frequency, and hence to an increase in comfortable sleep.
  • the peripheral skin temperature is lower than the core body temperature.
  • the temperature drops to a predetermined temperature, it can be estimated that the person feels cold.
  • the heat diffusion in the body is promoted by increasing the amount of blood flow toward the peripheral part, and in that case relative to cold.
  • Peripheral skin temperature will rise. That is, by monitoring the peripheral skin temperature such as the nose skin temperature, the human's thermal sensation can be estimated.
  • a comfortable sleeping environment can be maintained at all times by adjusting the environmental temperature with an air conditioner or the like so that the peripheral skin temperature falls within a predetermined temperature range.
  • the body surface temperature is easily influenced by the environmental temperature during REM sleep, so the variation of the body surface temperature corresponding to the peripheral site such as the nose at this timing is By adjusting the ambient temperature with the air conditioner so as to be smaller, it is possible to reduce the frequency of halfway awakening and to provide a more comfortable sleep environment.
  • the nose skin temperature is shown as an example as the peripheral skin temperature here, of course, other sites may be used, and there are cheeks, backs, palms, etc., and the measurement site is not limited.
  • FIG. 11 shows a graph in which forehead skin temperature is subtracted from nose skin temperature. As described above, it can be seen that the temperature difference between the nose and forehead rises as the sleep becomes shallow, and that a peak is reached near the REM sleep timing. By adjusting the ambient temperature with the air conditioner so as to reduce this periodic temperature fluctuation, it is considered possible to reduce the frequency of halfway awakening and provide a more comfortable sleep environment.
  • the forehead portion is used as a portion close to the deep body temperature in the above description, any other portion may be used as long as it reflects the deep body temperature.
  • a blood vessel portion may be used.
  • it is possible to estimate the thermal sensation by comparing the blood vessel site and the non-blood vessel site. For example, as shown in FIG. 12, the temperature of the blood vessel site 306 of the hand and the temperature of the non-blood vessel site 307 in the vicinity may be measured to obtain a difference. By doing this, the thermal sensation can be estimated from the temperature of the nearby part with less individual differences, and there is also an effect that the measurement can be easily performed.
  • FIG. 13 is a schematic diagram showing how the skin temperature of the sleeping person 51 is measured by the sensor 120 mounted on the air-conditioning apparatus 300 in the third embodiment.
  • the sensor 120 may be, for example, a temperature sensor 121 shown in FIG.
  • the temperature sensor 121 shown in FIG. 14 includes an infrared detection element array 121b provided with an infrared detection element 121e, a shaft 121d holding the infrared detection element array 121b, a substrate 121a holding the axis 121d, and an infrared detection element 121e. It consists of a lens 121f for forming a thermal image and an axis 121c.
  • the shaft 121c can rotate in the left-right direction on the paper surface, and the shaft 121d can rotate in the vertical direction on the paper surface.
  • the lens 121 f is fixed to the infrared detection element array 121 b by a member not shown. In this state, it is possible to form a wide thermal image from the top, bottom, left, and right directions by rotating the axis 121 c and the axis 121 d.
  • the lens 121 f in order to form an image of far infrared rays, generally, germanium, silicon or the like capable of transmitting the far infrared rays is used for the lens 121 f.
  • the material of the lens 121f may be high density polyethylene if it is a resin material, and it is not limited as long as it is a glass material that transmits far infrared rays.
  • the temperature sensor 121 capable of scanning such a wide angle, it is possible to detect where a person is present by scanning the room as wide as the angle ⁇ 1 at the beginning of operation as shown in FIG. it can. An example of the image obtained at this time is shown in FIG.
  • human skin temperature is, for example, about 33 ° C.
  • the position of the sleeping person can be grasped, and by tracing the operation from the time of entering the room, even if it is a heating element such as a television it is distinguished if it is stationary. Is possible.
  • the temperature sensor 121 can improve the sensitivity per formed pixel, enabling high-speed scanning. The position can be detected.
  • the temperature near the face of the sleeper 51 will be detected in detail.
  • the temperature in the vicinity of the face of the sleeping person 51 is detected by scanning the room at a narrow angle ⁇ 2 as shown in FIG.
  • An example of the thermal image near the face is shown in FIG.
  • the temperature of the forehead is the highest among the skin temperatures of the face, and the temperature of the nose or cheek is the lowest. Therefore, for example, the position of the face is extracted and cut out, and the temperature (A2 in the figure) of the lowest temperature is detected as the forehead part in the temperature of the central part as the nose (A1 in the figure). I don't care.
  • the position of the cheek may be identified from the contour of the face and the forehead position. Thus, the forehead temperature, nose temperature, cheek temperature and the like of the sleeper 51 can be detected.
  • the temperature sensor 120 may be the temperature sensor 122 shown in FIG.
  • the temperature sensor 122 includes a substrate 122a, an infrared detection element array 122b in which infrared detection elements 122e are arranged in a two-dimensional matrix, and a lens 122f and a lens 122g which constitute the zoom lens 122h.
  • the infrared detection element array 122b is attached to the substrate 122a, and the zoom lens 122h is held on the substrate 122a by a member (not shown).
  • the lenses 122 f and 122 g can be slid in a direction parallel to the optical axis by mechanical components (not shown).
  • mechanical components not shown.
  • a wide-angle image as shown in FIG. 15A can be taken.
  • attaching the shaft 122 c and the shaft 122 d to the temperature sensor 122 in the same manner as the temperature sensor 121 it is possible to acquire a telephoto image of an arbitrary position.
  • the infrared detection element array 122b in FIG. 16 has 10 pixels ⁇ 10 pixels, but this is merely an example, and the number of pixels can be arbitrarily determined.
  • the image shown in FIG. 15 is also merely an example, and does not correspond to the number of pixels of the infrared detection elements of the temperature sensors 121 and 122.
  • FIG. 17 is a diagram showing the configuration of the air-conditioning apparatus 301 according to the third embodiment, in which the air-conditioning apparatus 100 and 200 are further developed to detect the skin temperature with high temperature accuracy.
  • the air-conditioning apparatus 301 includes a power supply unit 110, a sensor 120, a first control unit 130, a switch unit 140, a second control unit 350, an operation unit 160, and an apparatus function unit 370.
  • the air-conditioning apparatus 301 in the third embodiment differs from the air-conditioning apparatus 100 in the first embodiment in that the second control unit 350 and the device function unit 370 perform characteristic control.
  • the configuration other than the second control unit 350 and the device function unit 370 is the same as the configuration of the air conditioning device 100, and thus the description thereof is omitted.
  • the device function unit 370 feeds back the state of the louver 171 to the second control unit 350. Specifically, the device function unit 370 notifies the second control unit 350 of the direction in which the louver 171 is directed (the direction in which the wind is blown). The second control unit 350 notifies the sensor 120 of the direction in which the louver 171 is notified from the device function unit 370. With such a configuration, the sensor 120 can be operated in accordance with the position of the louver 171.
  • FIG. 18 shows an example in which the air conditioner 301 is used.
  • the temperature distribution of the face of the sleeper 51 is measured by the sensor 120 at a timing when the wind blown from the louver 171 does not directly hit the sleeper 51.
  • the temperature may be measured by the sensor 120 in synchronization with the timing when the direction of the louver 171 is directed in a predetermined direction at the timing when the wind does not directly hit the sleeper 51. By doing so, even if the wind blown out from the louver 171 hits the sleeper 51 indirectly indirectly, the temperature is measured under the same conditions each time, so that the measurement variation can be reduced.
  • the air volume of the fan 173 is reduced via the second control unit 350. I don't care. As a result, even if the wind blown out from the louver 171 indirectly hits the sleeper 51, the measurement variation can be reduced.
  • whether or not a person entered the duvet may be determined from the amount of movement as shown in FIG. The amount of body movement in the case of entering the duvet is smaller than that in the case of waking up, so it can be regarded as being in the duvet when the amount of body movement becomes a certain value or less.
  • the compressor 172 is operated, for example, when it is determined by the second control unit 350 that the temperature set by the sensor 120 deviates by a predetermined temperature or more from, for example, FIG.
  • temperature control width ⁇ T1 0.6 ° C.
  • the control temperature width ⁇ T2 0.2. And may be controlled to be smaller than that during normal driving. As a result, the temperature of the sleeper 51 can be precisely controlled even in the vicinity of REM sleep, so that more comfortable sleep can be provided.
  • the temperature control range here is an example to the last, and it does not limit.
  • the timing at which the operation of the compressor 172 is turned on / off may be synchronized with the timing of REM sleep / non-REM sleep obtained from the result of processing by the first control unit 130. By doing this, you can get a more comfortable sleep.
  • the timing of REM sleep / non-REM sleep may be determined from the amount of body movement extracted from the thermal image by the first control unit 130, or may be determined from the temperature fluctuation cycle of the peripheral part such as the nose part. It does not matter and does not limit the means.
  • FIG. 20A is a diagram showing the configuration of the air-conditioning apparatus 400 according to the fourth embodiment, including the first control unit 430 including the transmission processing unit 231 and the reception processing unit 232 in the configuration.
  • the reception processing unit 232 includes, for example, a receiver that receives a radio wave, a controller that controls the receiver, and the like.
  • information can be obtained from another device via the reception processing unit 232.
  • the sleeper uses a mat type sensor for detecting body movement laid under the mattress 53b, a wristwatch type sensor equipped with an acceleration sensor fitted to the arm of the sleeper 51, etc.
  • the air conditioner 400 can obtain a signal regarding the state of 51.
  • the air conditioning apparatus 400 may control the device function unit 170 based on the information acquired from another device. By this, the detection accuracy can be further improved, and a more comfortable environment can be provided.
  • FIG. 20A shows the configuration in which the reception processing unit 232 is included in the first control unit 430, as shown by the air conditioning apparatus 401 in FIG. 20B, the reception processing unit 232 is a first control unit.
  • a configuration independent of 430 may be used. According to this configuration, in addition to the control by the first control unit 430, the second control unit 150 can be controlled based on the information acquired from another device.
  • the display device 500 includes a power supply unit 110, a sensor 120, a first control unit 130, a switch unit 140, a second control unit 150, an operation unit 160, and an apparatus function unit 570.
  • the device function unit 570 includes a tuner 571 and a speaker 572 and the like.
  • the configuration of the device function unit 570 is an example, and other configurations may be included or some configurations may be missing.
  • the power supply to the sensor 120 and the first control unit 130 is not via the switch unit 140. It is supplied directly from the power supply unit 110, and even while the switch unit 140 is turned off, the temperature distribution in the room can be continuously measured.
  • the display device 500 in the fifth embodiment differs from the air conditioner 100 in the first embodiment only in the device functional unit 570 to be controlled, and the basic control concept is the same.
  • the configuration other than the device function unit 570 is the same as the configuration of the air conditioning device 100, and thus the description thereof is omitted.
  • the second control unit 150 is connected to the device function unit 570, selects the display content by the tuner 571 based on the control content received from the first control unit 130, and adjusts the volume by the speaker 572. Can. For example, when the viewer 56 comes to the front of the display device 500 as shown in FIG. 21A while the display device 500 is stopped, the first control unit 130 is controlled by the information (data) obtained from the sensor 120. Extracts the existence of a person. Accordingly, the first control unit 130 switches the switch unit 140 to the on state, activates the display device 500, and displays an image. Thereby, the viewer 56 can view an image without operating the operation unit 160 such as a remote control.
  • the first control unit 130 can estimate the age of the viewer 56 from, for example, the size of the face based on the information (image) obtained from the sensor 120. Furthermore, the first control unit 130 may recommend a program by displaying a program in the age group on the screen from the estimated age.
  • the first control unit 130 extracts the position of the viewer 56 based on the information obtained from the sensor 120, the following control is possible. If the display device 500 is a device equipped with left and right stereo speakers, the first control unit 130 controls the second control unit 150 to balance the left and right speakers based on the extracted position of the viewer 56. Can be adjusted. This makes it possible to provide a sound that is always full of sense, regardless of where the viewer 56 views.
  • the first control unit 130 controls the second control unit 150 to move the screen in the direction of the viewer 56. It can be turned. As a result, the visibility of the display device 500 by the viewer 56 is not impaired.
  • the present display device 500 does not include the transmission processing unit and the reception processing unit, but as described in the second and third embodiments, the display device 500 further includes the transmission processing unit 231 and the reception processing unit 232. It does not matter to communicate with the device. Also, as in the second embodiment, it may be linked with a blower with a receiver, a lighting device, a cleaning appliance, etc., or may be linked with other devices, and the combination thereof is limited. Absent.
  • the instruction (control) of the switch unit 140 and the second control unit 150 by the first control unit 130 and the switch unit by the operation unit 160 There may be a case where the instruction (control) of 140 and the second control unit 150 competes or contradicts.
  • a rule to give priority to any instruction is given to the device, or a “sensor mode” that performs control automatically and a “user mode” that performs control manually (such as operation with a remote control or timer) It can cope by providing and making a user switch.
  • the first control unit 130 and the second control unit 150 are described as being separate configurations.
  • the first control unit 130 and the second control unit 150 only have to be functionally independent, for example, the power supply system is independently made semiconductor in one IC chip, etc. It does not have to be physically independent.
  • connection form of the component shown in said each embodiment or a component, etc. are an example, and do not limit this invention. That is, without departing from the spirit of the present invention, it is possible to expand the component and the connection form thereof to another device, or add various modifications to the component and the connection form thereof, and combine them. Needless to say, you can. Also, the essential components of the present invention are limited by the independent claims that show the top level concept. Therefore, among the components described in the embodiment, components not described in the independent claim are not essential but are described as an example of the embodiment.
  • the sensor mounting device of the present invention has a simple configuration, it is possible to significantly improve the convenience of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Radiation Pyrometers (AREA)
  • Selective Calling Equipment (AREA)

Abstract

 本開示のセンサー搭載装置(100)は、装置に供給する電源を生成する電源部(110)と、装置周辺の情報を取得するセンサー(120)と、センサー(120)が取得した情報に基づいて指示を与える第1の制御部(130)と、第1の制御部(130)の指示に従って装置を制御する第2の制御部(150)とを備える。センサー(120)及び第1の制御部(130)へは、電源部(110)から電源が直接供給される。第2の制御部(150)へは、第1の制御部(130)によってオンオフ状態が制御されるスイッチ部(140)を介して、電源部(110)から電源が供給される。

Description

センサー搭載装置
 本開示は、温度センサー等のセンサーを搭載した装置に関する。
 近年、空気調和機器、冷凍冷蔵機器、照明機器、掃除機器、及びディスプレイ機器等の様々な装置において、装置に搭載された各種センサーで変動する周囲環境をセンシングし、センシングによって得られた情報やデータに基づいて装置を制御することが行われている。このような制御を行うことで、より快適な生活環境をユーザに提供する工夫がなされている。
 例えば、空気調和機器においてよく知られた例として、空気調和機器に搭載された温度センサーにより空気調和機器が吸い込む風の温度を測定し、測定された風の温度に基づいて空気調和機器から吹き出す風の強さ等を変更することで、室内の温度を調整する制御がある。さらには、例えば特許文献1のように、空気調和機器に搭載された二次元赤外線センサーで得られた情報から就寝時の人の体動を検出し、睡眠状態を判定することで、さらに細かく室内の空調制御を行うことが考えられている。
特開2010-133692号公報
 しかしながら、従来の空気調和機器では、機器の電源が入っていない、つまり機器が動作していない(停止している)と、センサーも動作しない。よって、ユーザ自らが空気調和機器の電源を切った後やタイマー駆動で空気調和機器の電源が切られた後等には、センサーが動作しなくなるため、室内の空調制御を行うことができなかった。
 本開示では、上記課題を解決した、センサーが搭載された装置を説明する。
 本開示のセンサーが搭載された装置は、装置に供給する電源を生成する電源部と、装置周辺の情報を取得するセンサーと、センサーが取得した情報に基づいて指示を与える第1の制御部と、第1の制御部の指示に従って装置を制御する第2の制御部とを備え、センサー及び第1の制御部へは電源部から電源が直接供給され、第2の制御部へは第1の制御部によってオンオフ状態が制御されるスイッチ部を介して電源部から電源が供給されることを特徴とする。
 上記開示のセンサーが搭載された装置によれば、装置が停止している間もセンサーが動作しているので、必要に応じて装置の動作を開始することができる。これにより、ユーザの利便性や快適性等を向上させることができる。
図1は、装置が備え付けられた室内の模式図である。 図2は、第1の実施形態に係る空気調和機器100の構成を示す図である。 図3は、空気調和機器100が行う機器制御を説明するフローチャートである。 図4は、空気調和機器100を用いた具体例1を説明する模式図である。 図5は、空気調和機器100を用いた具体例2を説明する模式図である。 図6は、空気調和機器100を用いた具体例3を説明するフローチャートである 図7は、第2の実施形態に係る空気調和機器200の構成を示す図である。 図8Aは、空気調和機器200を用いた具体例1を説明する図である。 図8Bは、空気調和機器200を用いた具体例2を説明する図である。 図8Cは、空気調和機器200を用いた具体例3を説明する図である。 図8Dは、空気調和機器200を用いた具体例4を説明する図である。 図9は、センサー120で測定されたデータの扱い例を説明する図である。 図10は、睡眠時における人の一般的な生理現象を説明する図である。 図11は、人の温冷感を推定する一例を示す図である。 図12は、人の温冷感を推定する他の一例を示す図である。 図13は、第3の実施形態における空気調和機器300を用いた具体例を説明する図である。 図14は、温度センサー121の構成例を説明する図である。 図15は、温度センサー121で取得したデータの一例を示す図である。 図16は、温度センサー122の構成例を説明する図である。 図17は、第3の実施形態に係る他の空気調和機器301の構成を示す図である。 図18は、空気調和機器301で実現されるルーバー制御の一例を説明する図である。 図19は、空気調和機器301で実現されるコンプレッサー制御の一例を説明する図である。 図20Aは、第4の実施形態に係る空気調和機器400の構成を示す図である。 図20Bは、第4の実施形態に係る他の空気調和機器401の構成を示す図である。 図21は、第5の実施形態に係るディスプレイ機器500の構成を説明する図である。 図22は、従来の空気調和機器1000の構成を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同じ構成要素には同じ参照符号を付して、説明を省略する場合もある。また、図面の一部では、開示内容を理解しやすくするために、必要に応じて特定の構成要素を模式的に示したり、簡素化したり、省略したりしている。
 <本発明の基礎となった知見>
 図1は、装置10が備え付けられた部屋の内部を模式的に示した図である。図1に例示する装置10は、センサー12を搭載した空気調和機器であって、部屋の壁面に取り付けられている。人(ユーザ)51は、掛布団53a及び敷布団53bからなる寝具53に入って就寝しているものとする。以下、この就寝している人を就寝者51と表現する。
 上述した図1の状況における装置10として用いられる従来の空気調和機器1000の構成図を、図22に示す。
 図22に示す従来の空気調和機器1000は、電源部1100、センサー1200、第1の制御部1300、スイッチ部1400、第2の制御部150、操作部160、及び装置機能部170を備えている。装置機能部170は、ルーバー171、コンプレッサー172、及びファン173等を含んでいる。
 従来の空気調和機器1000において、電源部1100は、外部から第1の電源(例えば、AC100V等)を入力し、機器に必要な第2の電源(例えば、DC12V等)を発生する。電源部1100が発生した第2の電源は、スイッチ部1400に(また必要に応じて操作部160にも)供給される。スイッチ部1400は、操作部160の制御に基づいてオン/オフ状態を切り替えることができる構成であり、オン状態の時に電源部1100から入力した第2の電源を後段の構成に出力する。スイッチ部1400が第2の電源を出力する後段の構成は、センサー1200、第1の制御部1300、及び第2の制御部150である。
 センサー1200は、図1のセンサー12に相当し、例えば室内の温度に関する情報を取得する(データを測定する)温度センサーである。この温度センサーとしては、二次元的に温度分布を測定可能な熱画像センサー等が適している。センサー1200が取得した情報(測定したデータ)は、第1の制御部1300に出力される。第1の制御部1300は、センサー1200で取得された情報から特徴量を抽出する。特徴量としては、例えば室内の人の有無や、人が存在する位置や、人の顔温度等が挙げられる。このような特徴量により、第1の制御部1300は、(人の位置から)どの方向に風を向けるべきか、また(顔温度等から)どの程度の温度の風を吹き出すべきか等の、今の部屋に必要な制御を把握できる。第1の制御部1300で把握された制御内容は、第2の制御部150へ出力される。第2の制御部150は、装置機能部170に接続されており、第1の制御部1300から受けた制御内容に基づいて、ルーバー171により風向を、コンプレッサー172により風温度を、ファン173により風量をそれぞれ調整する。また、第2の制御部150は、操作部160から指示される制御内容に基づいて、風向、風温度、風量の調整が同様に可能である。
 しかしながら、上記従来の空気調和機器1000では、以下のような問題が発生する。
 例えば、切タイマーを設定して空気調和機器1000を動作させた状態で、人が就寝した場合を考える。この場合、タイマー(操作部160)で設定した時間が経過した後に、タイマーからの信号によりスイッチ部1400がオフ状態に切り替わるので、センサー1200の動きも含めて空気調和機器1000の全体が停止することになる。
 空気調和機器1000が停止した後、夏場では室内の温度が上昇し、冬場では室内の温度が下降することが予想される。しかし、空気調和機器1000は、センサー1200が停止しているため、室内の温度変化を検知することができない。このため、就寝者51が心地よく睡眠できなくなり、最悪の場合覚醒してしまうことも考えられる。なお、入タイマーを設定して空気調和機器1000を自動に動作開始させることも考えられるが、就寝前に設定した時間が経過した後にしか動作させることができないので、予測不能に変化する室内の温度に適切に対応することは不可能である。
 すなわち、従来の空気調和機器1000では、機器本体の電源を入れないと、すなわちスイッチ部1400をオン状態にしないと、センサー1200及び第1の制御部1300が動作せず、センサー1200を利用する機能を利用できないという問題があった。
 <本発明者らが着目した手法>
 そこで、本発明者らは、センサーが搭載された装置において、電源が切られることによって装置の主要機能部が停止していても、センサーを動作させておくことに着目し、ユーザにとって利便性や快適性等を向上させた装置を新たに創案した。
 この新たな創案に基づいた本発明の様々な態様は、次の通りである。
 <発明の各態様の概要>
 発明に基づいた本開示の一態様によるセンサーが搭載された装置は、装置に供給する電源を生成する電源部と、装置周辺の情報を取得するセンサーと、センサーが取得した情報に基づいて指示を与える第1の制御部と、第1の制御部の指示に従って装置を制御する第2の制御部とを備え、センサー及び第1の制御部へは、電源部から電源が直接供給され、第2の制御部へは、第1の制御部によってオンオフ状態が制御されるスイッチ部を介して、電源部から電源が供給される。
 また、センサーには、温度センサー及び湿度センサーの少なくとも1つが含まれていてもよい。
 この一態様によれば、装置が停止している間もセンサー及び第1の制御部を動作させることができる。
 この一態様において、第1の制御部は、スイッチ部がオフ状態の時にセンサーによって装置の動作が要求される情報が取得されると、スイッチ部をオン状態に切り替えて第2の制御部に指示を与えることができる。
 この一態様によれば、第1の制御部を通じて、必要に応じて装置の動作を開始することが可能である。これにより、ユーザの利便性や快適性等を向上させることができる。
 ここで、例えば、第1の制御部は、センサーにおいて以前に取得された装置周辺の情報と差異がない新たな装置周辺の情報が取得された場合、新たな装置周辺の情報に基づく指示を第2の制御部に与えなければ、装置の消費減力を低減できる。
 他の一態様としては、例えば、第1の制御部は、センサーが取得した情報に基づく指示を装置の外に送信することができる。
 さらに、第1の制御部は、センサーが取得した情報に基づく指示を装置の外に送信することで、指示を受信した別の装置を遠隔制御することができる。
 この他の一態様によれば、本装置以外の別の装置を容易に制御することができる。
 ここで、例えば、第1の制御部は、センサーにおいて以前に取得された装置周辺の情報と差異がない新たな装置周辺の情報が取得された場合、装置の外に送信しなければ、装置の消費減力を低減できる。
 また、他の一態様としては、例えば、センサーを装置周辺の情報を所定の時間間隔で取得するようにできる。
 ここで、例えば、第1の制御部は、センサーにおいて以前に取得された装置周辺の情報と差異がない新たな装置周辺の情報が取得された場合、センサーが装置周辺の情報を取得する時間間隔を変更することや、新たな装置周辺の情報の処理間隔を変更することもできる。これにより、装置の消費減力を低減できる。
 また、他の一態様としては、例えば、第1の制御部は、センサーで取得された装置周辺の情報から、人の行動や睡眠時の布団の状態を推定することができる。
 センサーが搭載された装置が空気調和機である場合、第1の制御部は、第2の制御部に指示を与えることによって、例えば風の送出/停止、方向、強さ、温度、及び湿度の少なくとも1つを制御することができる。
 また、センサーが搭載された装置がディスプレイ装置である場合、第1の制御部は、第2の制御部に指示を与えることによって、例えば表示部に表示するコンテンツの選定を制御することができる。
 さらに、第1の制御部は、空気調和機能を有した別の装置に対して、風の送出/停止、方向、強さ、温度、及び湿度の少なくとも1つを遠隔制御することもできるし、照明機能を有した別の装置に対して、照明の点灯/消灯、及び調光の少なくとも1つを遠隔制御することもできるし、掃除機能を有した別の装置に対して、掃除の開始/停止、場所、及び時間の少なくとも1つを遠隔制御することもできるし、冷凍及び/又は冷蔵機能を有した別の装置に対して、冷凍及び/又は冷蔵の開始/停止、及び温度の少なくとも1つを遠隔制御することもできる。
 この他の一態様によれば、様々な別の装置を容易に遠隔操作することができる。
 <発明の各態様の詳細な説明>
 (第1の実施形態)
 図2は、上述した図1の状況における装置10として用いられる、本開示の第1の実施形態における空気調和機器100の構成を示す図である。
 図2に示す空気調和機器100は、電源部110、センサー120、第1の制御部130、スイッチ部140、第2の制御部150、操作部160、及び装置機能部170を備えている。装置機能部170は、ルーバー171、コンプレッサー172、及びファン173等を含んでいる。なお、装置機能部170の構成は一例であって、他の構成が含まれていても、一部の構成が欠けていてもよい。
 空気調和機器100において、電源部110は、外部から第1の電源(例えば、AC100V等)を入力し、機器に必要な第2の電源(例えば、DC12V等)を発生する。電源部110が発生した第2の電源は、センサー120、第1の制御部130、及びスイッチ部140に(また必要に応じて操作部160にも)供給される。スイッチ部140は、操作部160の制御に基づいてオン/オフ状態を切り替えることができる構成であり、オン状態の時に電源部110から入力した第2の電源を後段の構成に出力する。このスイッチ部140は、機械的スイッチでも電気的スイッチでもよく、またハードウェアで制御されてもソフトウェアで制御されてもよい。スイッチ部140が第2の電源を出力する後段の構成は、第2の制御部150である。操作部160は、無線又は有線の操作端末であり、典型的にはリモートコントローラ(リモコン)である。また、操作部160は、任意の設定時間にスイッチ部140のオン/オフ状態を切り替えることができるタイマー機能を含む概念である。操作部160が無線でスイッチ部140を操作する場合には、スイッチ部140が受信機能を有することになる。
 センサー120は、例えば温度センサーであり、室内の温度に関する情報を取得する(データを測定する)。この温度センサーとしては、二次元的に温度分布を測定可能な熱画像センサー等が適している。センサー120が取得した情報(測定したデータ)は、第1の制御部130に出力される。第1の制御部130は、センサー120で取得された情報から特徴量を抽出する。特徴量としては、例えば室内の人の有無や、人が存在する位置や、人の顔温度等が挙げられる。このような特徴量により、第1の制御部130は、(人の位置から)どの方向に風を向けるべきか、また(顔温度等から)どの程度の温度の風を吹き出すべきか等、今の部屋に必要な制御を把握できる。第1の制御部130で把握された制御内容は、第2の制御部150へ出力される。ここで、第1の制御部130は、第2の制御部150へ出力した制御内容が実行されるよう、スイッチ部140のオン/オフ状態を切り替える機能を有している。第2の制御部150及び装置機能部170は、上述した通りである。なお、第1の制御部130及び第2の制御部150は、例えばマイコン等の演算処理や機器制御機能を実行できるものであれば特に限定されず、両制御部が同一の構成であってもよい。
 上述した第1の実施形態における空気調和機器100の構成は、下記の点で従来の空気調和機器1000の構成と異なる。
 まず、センサー120及び第1の制御部130への電源が、スイッチ部140を介さずに電源部110から直接供給されていることである。次に、第1の制御部130が、スイッチ部140のオン/オフ状態を切り替える機能を有していることである。
 以下に、上記構成の違いによって第1の実施形態における空気調和機器100が実現する機能を、図3をさらに参照して説明する。図3は、第1の実施形態における空気調和機器100が行う機器制御を説明するフローチャートである。
 まず、センサー120及び第1の制御部130への電源が、スイッチ部140を介さずに電源部110から直接供給されているので、センサー120及び第1の制御部130が常に動作している。つまり、スイッチ部140がオフ状態で第2の制御部150が動作していない、すなわち空気調和機器100が機能を停止している場合であっても、センサー120によって室内を監視して温度(分布)の情報を得ている(ステップS31)。そして、空気調和機器100が機能を停止している場合であっても、センサー120によって取得された情報が第1の制御部130へ送出され、第1の制御部130がその情報から特徴量を抽出して機器の制御が必要か否かを判断する処理を行っている(ステップS32)。従って、室内の温度を監視して特徴量に基づいた空気調和機器100の制御を実行できる状態を、常に維持することができる。なお、センサー120の監視行為は、連続的に行われてもよいし、所定の時間間隔で離散的に行われてもよい。また、第1の制御部130がセンサー120から情報を受け取る行為も、連続的に行われてもよいし、所定の時間間隔で離散的に行われてもよい。
 そして、第1の制御部130が、スイッチ部140のオン/オフ状態を切り替える機能を有しているので、いつでも必要な時にスイッチ部140の状態を制御することができる。
 つまり、スイッチ部140がオフ状態で第2の制御部150が動作していない、すなわち空気調和機器100が機能を停止している場合であっても、スイッチ部140をオン状態に切り替えて空気調和機器100を動作させることができる(ステップS33、S34)。従って、常に室内の温度を監視して、特徴量に基づいた装置の制御が必要な状態になれば(ステップS32:Yes)、直ちに空気調和機器100を動作させて室内の温度を最適に調整することができる(ステップS35)。また、スイッチ部140がオン状態で空気調和機器100が動作している場合であっても、スイッチ部140をオフ状態に切り替えて空気調和機器100を停止させることができる(ステップS36、S37)。従って、常に室内の温度を監視して、特徴量に基づいた装置の制御が不要な状態になれば(ステップS32:No)、直ちに空気調和機器100を停止することができる。
 このセンサー120及び第1の制御部130の機能を利用した具体例としては、例えば以下のような様々な例が考えられる。
 [具体例1]
 就寝時における具体例を説明する。
 切タイマーなどによって空気調和機器100が停止した後に、センサー120及び第1の制御部130によって、就寝者51の顔温度が所定温度以上になったことを検出することができる。この状態を検出すると、周囲温度が高くて就寝者51は不快であろうと第1の制御部130が判断し、スイッチ部140をオン状態に切り替える。これにより、第2の制御部150、つまり空気調和機器100を動作させることができる。この際、第1の制御部130は、抽出した特徴量に基づいてどの位置に向けてどの程度の風量でどの程度の温度の風を発生させるかを判断できるため、その判断した制御内容を第2の制御部150に出力して、ルーバー171、コンプレッサー172、及びファン173を適切に制御させることができる。
 この制御によって、就寝者51の周囲温度を一定温度以下に抑えることができるので、就寝者51は快適に睡眠し続けることができる。
 なお、ここでは室内の温度(分布)を監視して顔の温度を検出する場合を説明したが、勿論顔だけではなく、例えば手や足の温度を検出してもよい。手や足の温度から空気調和機器100の風量、風向、風温のすべてもしくはいずれかを制御しても構わないし、機器の動作/停止状態を制御しても構わない。特に、就寝者51が冷え性の場合は、手や足の温度の低下が著しいため、手や足の温度を測定することで、冷え性の人であっても快適な室内コンディションを提供することができる。
 また、室内の温度(分布)から人の手や足の温度を検出する場合には、例えば図4に示すように、掛布団53aが捲れて露出してしまった就寝者51の手や足を検出することができる。例えばこれが夏場であれば、就寝者51の体温が必要以上に下がらないよう、空気調和機器100の運転条件(風量、風向、風温等の1つ以上)を制御することや、機器の動作/停止状態を制御することで、風邪を引かない快適な室内コンディションを提供することができる。
 また、第1の制御部130は、抽出された体動量から就寝者51が睡眠状態に入ったか否かを判断できる。よって、例えば就寝者51の睡眠状態を検出した場合は、その後目覚めるまでの間は空気調和機器100が始動又は停止する際に発する「ピッ」といった動作音が鳴らないように制御することもできる。このような制御することで、就寝者51の睡眠を妨げずに、快適な環境を維持することができる。同様に、睡眠状態と判断された場合には、コンプレッサー172の動作を控えめにすることや、ルーバー171やファン173の動作も控えめにすることで、騒音の発生を抑制し、就寝者51の睡眠を妨げずに快適な環境を維持することができる。
 [具体例2]
 図5を用いて、覚醒時における具体例を説明する。
 空気調和機器100が停止していてもセンサー120及び第1の制御部130は動作しているので、図5のように部屋に入ってきた人54(以下、入室者54と記す)を検出することができる。この時、センサー120及び第1の制御部130によって、例えば検出された顔温度が所定温度以上であることが検出された場合、入室者54は不快であろうと第1の制御部130が判断し、スイッチ部140をオン状態に切り替える。これにより、第2の制御部150、つまり空気調和機器100を動作させることができる。
 この制御によって、入室者54の周囲温度を一定以下に抑えることや風を当てること等で、入室者54及び室内を快適にすることができる。
 勿論、検出された入室者54の顔温度が一定以下であった場合には、入室者54の周囲温度を上げる制御をすればよいし、センサー120として湿度センサーも取り付けた場合には、湿度を含めて制御しても構わない。センサー120及び第1の制御部130で実現される制御を、この具体例に限定するものではない。勿論、センサー120が人を検出したことをトリガーにして、空気調和機器100を動作させてもよいし、その他の変化をトリガーにして空気調和機器100を動作させてもよい。さらに、人が退室して不在になった場合には、センサー120及び第1の制御部130において室内に誰もいないと判断することで、空気調和機器100を停止させることができる。この場合、停止させた後も、センサー120及び第1の制御部130は動作し続けていることから、次に誰かが入室した場合に動作を自動で開始させることができる。
 また、センサー120として使用されるものとして、実施例で説明した温度センサー以外にも湿度センサーであっても構わないし、温度センサーと湿度センサーの両方であっても構わない。一般に人の快適度は湿度にも大きく左右されることが分かっており、例えば30℃環境下であれば湿度が60%以上になると極めて不快になるが、40%程度だと温度が高くても快適に感じられることが知られている。よって、湿度センサーを用いて湿度を検出し、温度センサーの場合と同様に第1の制御部130にて快適な条件を割り出し、第2の制御部150を経由してルーバー171、コンプレッサー172、ファン173等を制御することで、同様に快適な環境を作り出すことができる。勿論、温度センサーと湿度センサーの両方を搭載することで、さらに精密に快適な環境を作り出すことができる。
 なお、以上の実施形態においては、空気調和機器100において制御する対象を、風量、風向、風温の3つとして説明したが、このうちのいずれかでも構わないし、すべてでも構わないし、これ以外の対象を含んでも構わない。
 [具体例3]
 なお、本実施形態における空気調和機器100では、空気調和機器100が停止していてもセンサー120及び第1の制御部130が常に動作している。このため、従来の空気調和機器1000と比べて消費電力が増えるという課題がある。そこで、空気調和機器100が停止している間の消費電力を、できるだけ少なくさせる工夫を説明する。図6は、図3のフローチャートに消費電力を制御するための手順(ステップS61~S64)を加えたフローチャートである。
 第1の制御部130は、センサー120から情報(データ)を新たに受け取ると(ステップS31)、この新たに受け取った情報を前回にセンサー120から受け取った情報と比較する(ステップS61)。そして、双方の情報に差がないと判断した場合には(ステップS62:Yes)、第1の制御部130は、センサー120に対して情報を取得する(データを測定する)頻度を少なくしたり、能力(分解能や範囲)を低下させたり、あるいはセンサー120から受け取った情報を自らが処理する間隔を長くしたりする、消費電力削減動作を行う(ステップS63)。一方、双方の情報に差があると判断した場合には(ステップS62:No)、第1の制御部130は、通常動作を行う(ステップS64)。このとき、すでに消費電力削減動作を行っていれば、通常動作に戻ることになる。
 この制御により、実施形態における空気調和機器100において、適切に消費電力を削減することができる。
 (第2の実施形態)
 図7、図8A~図8Dを用いて、第2の実施形態における空気調和機器200の構成及び制御を説明する。図7に、第2の実施形態における空気調和機器200の構成を示す。図8A~図8Dは、空気調和機器200を用いた具体例1~4をそれぞれ説明する図である。
 図7に示すように、空気調和機器200は、電源部110、センサー120、第1の制御部230、スイッチ部140、第2の制御部150、操作部160、及び装置機能部170を備えている。第1の制御部230は、送信処理部231を含んでいる。
 この第2の実施形態における空気調和機器200は、送信処理部231を含んだ第1の制御部230を備えていることが、第1の実施形態における空気調和機器100と異なる。第1の制御部230以外の構成は、空気調和機器100の構成と同じであるので説明を省略する。
 第1の制御部230は、センサー120で取得された情報から特徴量を抽出する。特徴量としては、例えば室内の人の有無や、人が存在する位置や、人の顔温度等が挙げられる。このような特徴量により、第1の制御部230は、(人の位置から)どの方向に風を向けるべきか、また(顔温度等から)どの程度の温度の風を向けるべきか等の、今の部屋に必要な制御を把握できる。第1の制御部230で把握された制御内容は、第2の制御部150へ出力されると共に、必要に応じて送信処理部231を介して外部へ送信される。送信処理部231は、例えば、無線電波を放射する発信機や発信機を制御するコントローラなどから構成される。
 以下に、上記構成の違いによって第1の実施形態における空気調和機器100が実現する機能を、実施例1~4を用いて説明する。
 [具体例1]
 図8Aは、空気調和機器200、ルーター281、受信機付きファン282が備え付けられた部屋の内部を模式的に示した図である。受信機付きファン282は、空気調和機器200の第1の制御部230が送信処理部231を介して送信してくる制御信号を、受信及び解釈して実行する機能を有している。この制御信号は、例えばルーター281を介して送受信される。また、受信機付きファン282は、空気調和機器200のセンサー120が感知して自らの存在を認識させることができる指標信号を発生させる指標機能部283を有している。例えば、指標機能部283としてセンサー120が感知できる赤外線を発生する赤外線LEDを受信機付きファン282に搭載し、赤外線を所定の周期で点滅させて指標信号とすることができる。あるいは、指標機能部283としてセンサー120が感知できる熱を発生する発熱体を受信機付きファン282に搭載し、所定の温度で発熱体を発熱させて指標信号とすることができる。勿論、この赤外線LEDや発熱体以外にも指標機能部283として用いることが可能である。
 本第2の実施形態においては、センサー120が、室内の周囲温度や、就寝者51の存在、顔温度、さらには体動量等以外にも、指標信号によって受信機付きファン282の存在を検出することができる。受信機付きファン282を検出した場合、空気調和機器200は、受信機付きファン282を含めた空気調和を行うことができる。すなわち、第1の制御部230は、受信機付きファン282を制御すべきと判断した場合、送信処理部231及びルーター281を経由して、受信機付きファン282を駆動する制御信号を送信することができる。その際、送信する制御信号としては、受信機付きファン282が発生させる風の方向、強さ、首振り有無等に関する内容を送信することが考えられる。制御信号を受信した受信機付きファン282は、制御信号の内容に基づき、風の方向、強さ、首振りなどを調整して動作することになる。
 例えば、夏場において就寝者51の顔温度が35℃を超えている時、就寝者51は不快に感じている可能性が高い。これは、秋や春等の快適に睡眠できている時の顔の温度は33~34℃程度であることから予想できる。一方で、睡眠時の顔以外の皮膚温は、季節によらずに変動がないことが知られている。よって、顔温度が35℃を超えている時は、顔以外の温度は一定にしたまま、顔周辺の温度のみを1~2℃下げるような制御をすることで、さらに快適に睡眠することができる。
 通常、空気調和機器200は、就寝者51から2~3m程度離れた位置に設置されていることが多く、空気調和機器200からの風を就寝者51の顔のみに当てることが困難な場合がある。しかし、この具体例のように、受信機付きファン282と連携することにより、就寝者51の顔周辺のみに風を当てることができるようになる。こうすることで、就寝者51の体の温度を必要以上に下げることなく、就寝者51の顔の温度を下げることができるため、極めて快適な睡眠を提供することができる。
 この時、例えば周囲温度は高くなく、顔の温度のみが高い場合は、空気調和機器200を停止したままで、受信機付きファン282のみを稼動させても構わない。こうすることで、快適さを維持しつつ消費電力を抑えた空気調和を実現することができる。
 なお、ここでは空気調和機器200に接続される外部の装置として受信機付きファン282を例として説明したが、勿論これに限定したものではなく、空気調和機能を有する外部の装置であれば同様な効果を有することは言うまでもない。また、空気調和機能を有さない外部の装置であっても、次のような効果を発揮することができる。
 [具体例2]
 図8Bは、空気調和機器200、ルーター281、受信機付き照明284が備え付けられた部屋の内部を模式的に示した図である。受信機付き照明284は、空気調和機器200の第1の制御部230が送信処理部231を介して送信してくる制御信号を、受信及び解釈して実行する機能を有している。この制御信号は、例えばルーター281を介して送受信される。また、受信機付き照明284は、上述した受信機付きファン282と同様に、空気調和機器200のセンサー120が感知して自らの存在を認識させることができる指標信号を発生させる指標機能部283を有している。
 本第2の実施形態においては、センサー120が、室内の周囲温度や、就寝者51の存在、顔温度、さらには体動の量等以外にも、指標信号によって受信機付き照明284の存在を検出することができる。受信機付き照明284を検出した場合、空気調和機器200は、照明の点灯/消灯を制御することができる。例えば、第1の制御部230は、抽出した体動量などの特徴量から就寝者51が目覚めたと判断できた場合、送信処理部231及びルーター281を経由して、受信機付き照明284を駆動する制御信号、つまり点灯信号を送信することができる。点灯信号を受信した受信機付き照明284は、就寝者51の起床タイミングに合わせて、照明を自動で点灯することができる。これにより、就寝者51は室内の暗闇の中で照明のスイッチ位置を探す必要もなくなり、利便性が向上する。
 なお、この具体例では、部屋の照明を制御する場合を説明したが、リビングルームや廊下やトイレの照明などを制御しても構わない。また、トイレの空調や便座温度を制御することも考えられる。
 また、この具体例では、就寝者51の体動量を検出して制御する場合を説明したが、他の方法で制御しても構わない。例えば、睡眠時の体温は、通常入眠期から徐々に低下し、起きる1~2時間前から上昇するようなリズムを取る。また、睡眠時の体動に関して、入眠期よりも起床前の方が量は増加することが知られている。そこで、これらの体温情報や体動情報を第1の制御部230で抽出し、そこから起床時刻を想定しても構わない。その場合、想定される起床時刻の前から少しずつ受信機付き照明284の明るさを上昇させることで、緩やかな目覚めを促すことも可能である。
 また、その他、就寝者51のジェスチャで受信機付き照明284と連携させることも可能である。例えば、腕を伸ばして大きく振るといったジェスチャが受信機付き照明284を点灯/消灯させる合図であることを第1の制御部230に予め設定しておけば、部屋が暗い時に照明を探さずとも就寝者51が腕を伸ばして大きく振ることで、室内を明るくすることが可能になる。勿論、ここでのジェスチャは一例であって、例えば両手を用いても構わないし、曲げ伸ばしでも構わないし、ここではその手段を限定するものではない。
 さらに、就寝者51が例えば幼児であって夜尿した場合、短時間で局所的な温度低下が見られることになる。そういった事象が第1の制御部230で検出された場合、受信機付き照明284を点灯させ、就寝者51の起床を促すことで、そのまま寝続けることによる体温の低下や、風邪引きを防止することができる。勿論、空気調和機器200の風温を上昇させることで、体温の低下や風邪引きを防止しても構わない。また、親の寝室にも受信機付き照明が設置してある場合には、その照明を点灯させて就寝者51の夜尿を知らせても構わないし、親の寝室に図示しない受信機付きアラームがあれば、そのアラームを鳴らすことで就寝者51の夜尿を知らせても構わない。そうすることで、親が子供である就寝者51を適切にケアすることを促すことができ、就寝者51の体温低下を防止し、風邪引きを防止できるという効果を有する。
 [具体例3]
 図8Cは、図8Bと同様に、空気調和機器200、ルーター281、受信機付き照明284が備え付けられた部屋の内部を模式的に示した図であるが、2人の就寝者51及び55がいることが異なる。この場合、センサー120で得られた画像から、第1の制御部230では就寝者が2人存在することが検出されている。この時、例えば就寝者51が目覚めた場合、第1の制御部230では、就寝者51は目覚めたが、就寝者55はまだ睡眠中であることが分かる。そこで、第1の制御部230が受信機付き照明284に送信する信号によって明るさを落として点灯するように設定することで、就寝者55の睡眠を妨害せず、かつ就寝者51の利便性を確保できるという効果を有する。
 また、例えば第1の制御部230から抽出された体動量から、入眠時と判断された期間は、受信機付き照明284を薄明かりで点灯させておき、同じく第1の制御部230から抽出された体動量が低下して、例えば深い眠りに達したと判断された場合に受信機付き照明284を消灯させる制御をしても構わない。例えば、子供が怖がる等の理由で終夜薄明かりを点灯させて眠った場合、睡眠が浅くなるということが分かっている。しかしこうすることで、入眠時は薄明かりを点灯させ、さらに深い眠りに達すると消灯させることができるため、より深い睡眠を得ることが可能になる。当然上で述べた通り、目覚めた時には自動で点灯するため、目覚めた時部屋が暗い(暗くて恐怖を感じる)ということもない。
 なお、この場合、照明の明るさ制御は、空気調和機器200の第1の制御部230で決定しても構わないし、第1の制御部230で抽出された体動量を受信機付き照明284で受信し、受信機付き照明284内で明るさを判断して制御しても構わない。勿論、他の制御方法でも構わず、その方法限定されない。
 [具体例4]
 図8Dは、空気調和機器200、ルーター281、受信機付き掃除機285が備え付けられた部屋の内部を模式的に示した図である。受信機付き掃除機285は、空気調和機器200の第1の制御部230が送信処理部231を介して送信してくる制御信号を、受信及び解釈して実行する機能を有している。この制御信号は、例えばルーター281を介して送受信される。また、受信機付き掃除機285は、上述した受信機付きファン282と同様に、空気調和機器200のセンサー120が感知して自らの存在を認識させることができる指標信号を、発生させる指標機能部283を有している。
 本第2の実施形態においては、センサー120が、室内の周囲温度や、就寝者51の存在、顔温度、さらには体動の量等以外にも、指標信号によって受信機付き掃除機285の存在を検出することができる。受信機付き掃除機285を検出した場合、空気調和機器200は、掃除機の動作/停止を制御することができる。例えば、第1の制御部230は、抽出した体動量などの特徴量から就寝者51が睡眠状態になったと判断できた場合、送信処理部231及びルーター281を経由して、受信機付き掃除機285を駆動する制御信号、つまり起動信号を送信することができる。起動信号を受信した受信機付き掃除機285は、就寝者51の睡眠タイミングに合わせて、掃除を開始することができる。これにより、就寝者51は寝ている間に部屋の掃除を行うことができ、利便性が向上する。
 また、センサー120が検出した温度分布から、就寝者51の位置を検出することができ、検出された就寝者51の位置情報から、第1の制御部230は受信機付き掃除機285が掃除すべき範囲を規定することができる。さらに、体動等から睡眠深度を推定して、推定された睡眠深度をもとに受信機付き掃除機285の動作を制御しても構わない。例えば、睡眠深度が深くなったタイミングで受信機付き掃除機285を動作させることで、さらに就寝者51の眠りを妨げることなく、部屋を掃除することができるという効果を有する。また、就寝者51が寝ている部屋ではなく、他の部屋に置いている受信機付き掃除機を制御しても構わない。
 なお、上記具体例においては、第1の制御部230が送信処理部231を介して送信してくる制御信号を、ルーター281を介して受信機付きファン282、受信機付き照明284、受信機付き掃除機285が受信する例を説明した。しかし、制御信号の受信は、ルーター281を介さず、送信処理部231から直接行う構成でもよい。勿論、有線か無線かは問わない。また、空気調和機器200が制御する対象には、受信機付きファン282、受信機付き照明284、及び受信機付き掃除機285以外にも、受信機を備えた様々な装置を適用可能である。例えば、火災警報器等と連携してもよく、その場合はセンサー120で異常に高い温度を検出した時、火災報知機のアラームを鳴らすようにすることが考えられる。こうすることで、火災報知機の検出性能をさらに向上させることができる。
 また、空気調和機器200が制御する対象は、同じ部屋にある装置に限定するものでもない。例えば、ルーター281を介してインターネットに接続し、サーバーにデータをアップロードし、それらのデータを用いて空気調和機器200や受信機付きファン282等を制御しても構わないし、例えば他の装置の制御や、統計調査や故障予測等、別の用途に用いても構わない。さらには、冷蔵庫を対象にする場合には、就寝者51が睡眠に入ったことを検出すると、冷蔵庫をコンプレッサーの動作を控えて運転させるといった制御が考えられる。するこれにより、冷蔵庫の音が静かになるため、就寝者51はより深い眠りを得ることができる。
 [センシングデータの取り扱い]
 次に、図9を用いて、センサー120で測定されたデータ(取得された情報)の扱いに関して説明する。
 図9は、センサー120で測定されて第1の制御部230にて抽出されたデータである、就寝者51の顔温度の推移の一例である。図9では、横軸が時間を縦軸が顔温度を示している。
 まず、図9(a)では、センサー120での測定時間間隔をp1(秒)としており、顔温度がp1(秒)毎にプロットされていることが分かる。この場合、p1(秒)毎にセンサー120から得られた情報をもとに第1の制御部230で顔温度を抽出し、p1(秒)毎に送信処理部231から制御信号が送信される。ここで一般に、睡眠時の体温は、睡眠初期から朝方にかけて徐々に低下してゆくことが分かっているが、さほど大きな変動は見られない。そのため、睡眠時に送信される大方の制御信号が、同じデータの制御信号となる可能性が高い。
 そこで、例えば受信機付きファン282の側で、p1(秒)経過後に制御信号が受信されない場合は、直前の制御信号を用いて制御するように設定しておく。このような受信機付きファン282を設定できれば、センサー120及び第1の制御部230によって抽出された顔温度が、p1(秒)前の顔温度と同じであった場合、第1の制御部230は制御信号の送信をやめることができる。
 こうすることで、送信処理部231から余分な制御信号を送信する必要がなくなり、送信処理部231の駆動と、ルーター281での受送信と、受信機付きファン282等での制御信号の受信に掛かる消費電力を削減できるという効果を有する。
 図9(a)の例では、実際に制御信号が空気調和機器200の送信処理部231から発信されるタイミングは、○印で示された、測定初期のタイミングと、顔温度がf1(℃)に遷移したt1秒後と、顔温度がf2(℃)に遷移したt2秒後と、顔温度がf3(℃)に遷移したt3秒後のみとなる。
 また、図9(b)の例では、センサー120での測定時間間隔は、測定初期ではp1(秒)毎に顔温度を抽出するが、p1(秒)の時間間隔で抽出された顔温度が2回連続同じ温度であった場合には、測定間隔をp1(秒)からそれよりも長いp2(秒)に変更して顔温度を抽出する。
 例えば、受信機付きファン282の側で、p1(秒)経過後に制御信号が受信されない場合は、直前の制御信号を用いて制御するように設定しておく。このような受信機付きファン282を設定できれば、センサー120及び第1の制御部230によってp1(秒)間隔で抽出された幾つかの顔温度が、連続して同じ温度であった場合、第1の制御部230が制御信号を送信する間隔を長くする(間引く)。これにより、送信処理部231から余分な制御信号を送信する回数が減り、送信処理部231の駆動と、ルーター281での受送信と、受信機付きファン282等での制御信号の受信に掛かる消費電力を削減できるという効果を有する。
 なお、図9(b)では、センサー120での測定間隔をp1(秒)からp2(秒)に変更することを説明した。しかし、勿論センサー120での測定間隔を変更するのではなく、第1の制御部230での顔温度の抽出タイミングをp2(秒)に変更したり、送信処理部231から制御信号を送信するタイミングをp2(秒)に変更したりしても構わない、ここではその手段を限定するものではない。また、図9(a)の方式と図9(b)の方式とを組み合わせても構わない。
 なお、本実施形態においては、睡眠時の顔の温度を例にとって説明したが、勿論覚醒時であっても、他の部位であっても同様な制御を行ってよく、推移する体温変動に応じて、同様な効果が得られる。
 (第3の実施形態)
 上述の第1及び第2の実施形態において、睡眠中を例にとって熱画像センサーを搭載した空気調和機器100及び200に関して説明した。この第3の実施形態では、熱画像センサーを搭載した空気調和機器100及び200において具体的にどのような制御をすればより快適な睡眠が得られるのかを説明する。
 まず、図10を用いて、睡眠時における人の一般的な生理現象を説明する。
 図10(a)は睡眠の深さの時間経過を、図10(b)は睡眠中の体温や体表面温度の時間経過を、図10(c)は体動量の時間経過を、それぞれ示している。なお、図10に示すデータは、典型的な人における一例であり、個人差や周囲環境等に依存してこれらの波形は異なる。
 図10(a)を用いて、睡眠の深さに関して説明する。
 睡眠中は、眼球が急速に動作するREM(Rapid Eye Movement)睡眠と、眼球運動を伴わないノンREM睡眠の二種類に分けられ、さらにノンREM睡眠は睡眠の深さに応じて1~4の段階が存在する。なお、睡眠段階4が最も睡眠が深く脳も眠っているが、一方でREM睡眠は、体は眠っているのに脳は活動している状態と言われている。図10(a)で示すように、睡眠中にはREM睡眠とノンREM睡眠とは交互に現れる。入眠直後はまずノンREM睡眠が現れ、次にREM睡眠が現れる。この周期は約90分程度であることが一般的とされており、一晩の間にはこの周期が4~5回現れるのが普通と言われている。この約90分の周期のことをウルトラディアンリズムとも言う。
 また、図10(c)に示すように、一般に睡眠中の体動量は、睡眠が深い時には発生しにくく、睡眠深度が浅い時やREM睡眠の段階において発生頻度が高くなると言われている。
 次に、図10(b)を用いて睡眠中の体表面温度変動に関して説明する。
 睡眠中は代謝量が下がるため、深部体温(実線)は、睡眠前から低下する傾向にあり、一般に睡眠中期から後期に最低体温まで下がった後、目覚めに向けて上昇する。また、額部皮膚温(点線)は、体表面温度であるが比較的深部体温に近く環境温度の影響を受けにくい部位であり、睡眠中は定常状態に落ち着いた以降はほぼ一定温度を示す傾向にある。一方で、鼻部皮膚温(破線)は、末梢部に該当し、環境温度の影響を受けやすい。また、一般にREM睡眠中は自律神経系の活動が不安定となるため、末梢部の皮膚温は環境温度の影響を受けやすくなると言われており、図10(b)の鼻部皮膚温のように、環境温度によってはREM睡眠時近傍において体表面温度が変動する場合があることが知られている。また、睡眠時に一時的に覚醒する中途覚醒は、REM睡眠やその前後の睡眠深度1~2程度の比較的浅い睡眠のタイミングで発生頻度が高いとされており、この期間の室内環境を快適に保つことが、中途覚醒頻度の低減、ひいては快適な睡眠の増進に繋がると考えられる。
 一般に、人が寒さを感じている時は、末梢部に向けて流れる血流の量を抑えることで深部体温の低下を防止していると考えられており、深部体温に対して末梢皮膚温が所定温度まで低下するとその人は寒さを感じていると推定することができる。また、人が暑い場合はその逆で、その場合は末梢部に向けて流れる血流の量を増やすことで体内の熱の拡散を促進しており、その場合は寒い時と比較して相対的に末梢皮膚温が上昇することになる。すなわち、鼻部皮膚温のような末梢皮膚温をモニターすることで、人の温冷感を推定することができる。また、その末梢皮膚温が所定温度範囲に収まるように空気調和機器等で環境温度を調整することで、常に快適な睡眠環境を維持することができると考えられる。一方で、図10(b)で示したように、REM睡眠時において体表面温度は環境温度の影響を受けやすくなるため、このタイミングにおける鼻部等の末梢部位に該当する体表面温度の変動が小さくなるように空気調和機器で周囲温度を調整することで、中途覚醒の頻度を低減させ、さらに快適な睡眠環境を提供することが可能になると考えられる。
 なお、ここでは、末梢皮膚温として鼻部皮膚温を例として示したが、勿論他の部位でも構わず、頬部や手背、手掌部等もあり、測定部位を限定するものではない。
 また、深部体温が人によってばらつくように、末梢部の皮膚温も人によってある程度個人差が見られるが、深部体温に近い額部皮膚温と末梢皮膚温との差分を取り、その値が所定温度以下になるように環境温度を調整することで、個人差の少ないさらに快適な睡眠環境を提供することができると考えられる。一例として図11に、鼻部皮膚温から額部皮膚温を引いたグラフを示す。上で述べたように睡眠が浅くなるにつれ鼻部と額部との温度差分が上昇しており、REM睡眠タイミングの近傍でピークを迎えているのが分かる。この周期的な体温変動が小さくなるよう空気調和機器で周囲温度を調整することで、中途覚醒の頻度を低減させ、さらに快適な睡眠環境を提供することが可能になると考えられる。
 さらに、上記では深部体温に近い部分として額部としたが、それ以外の部位でも深部体温を反映している部分であれば構わず、例えば血管部位を用いても構わない。例えば、血管部位と非血管部位との比較により温冷感を推定することも可能である。例えば、図12のように、手の血管部位306の温度と近傍の非血管部位307の温度とを測定して差分を取っても構わない。こうすることで、個人差が少なく、さらに近傍部位の温度から温冷感を推定できるため、測定も簡便に行えるという効果もある。
 次に、睡眠中に体の皮膚温を測定する方法の一例を説明する。
 図13は、第3の実施形態における空気調和機器300に搭載したセンサー120で就寝者51の皮膚温を測定する様子の模式図である。センサー120は、例えば図14に示す温度センサー121でも構わない。図14に示す温度センサー121は、赤外線検出素子121eを設けた赤外線検出素子アレイ121bと、赤外線検出素子アレイ121bを保持する軸121dと、軸121dを保持する基板121aと、赤外線検出素子121e上に熱画像を結像するレンズ121fと、軸121cとからなる。軸121cは、紙面における左右方向に回転することが可能で、軸121dは、紙面における上下方向に回転することができる。また、レンズ121fは、図示しない部材により赤外線検出素子アレイ121bに対して固定されている。この状態において、軸121cや軸121dを回転させることで、上下左右方向から熱画像を広く結像することが可能である。
 ここで、レンズ121fには、遠赤外線を結像させるために、一般には遠赤外線を透過可能なゲルマニウムやシリコン等が使用される。しかし、レンズ121fの材料は、樹脂材料であれば高密度ポリエチレン等でも構わず、遠赤外線を透過する硝材であれば限定はしない。このような広い角度を走査可能な温度センサー121を用いることにより、動作初期には図13のように室内を角度θ1のように広く走査することにより、どこに人が存在するかを検出することができる。このとき得られる画像の一例を図15(a)に示す。一般に、人間の皮膚温は例えば額近傍であれば33℃程度であり、通常の睡眠時において周囲温度よりも高い。よって、高温部位を検出することにより、就寝者の位置を把握することができるし、入室時からの動作をトレースすることで、テレビ等の発熱体であっても静止していれば区別することが可能である。この時、温度センサー121は、例えば複数の赤外線検出素子121eで1画素を形成することで、形成される1画素あたりの感度が向上して高速な走査が可能になり、迅速に就寝者51の位置を検出することができる。
 角度θ1の走査で得られた画像から就寝者51の顔の位置を検出すると、次は就寝者51の顔面近傍の温度を詳細に検出することになる。この検出では、図13のように室内を角度θ2で狭く走査することにより、就寝者51の顔面近傍の詳細な温度を検出する。その顔面近傍の熱画像の一例を図15(b)に示す。一般に、顔面の皮膚温の中では額の温度が最も高く、鼻もしくは頬の温度が最も低い。そこで、例えば顔面の位置を抽出して切り出し、その中心部分の温度の中で、最低温度の箇所(図中A2)を鼻部、最高温度の箇所(図中A1)を額部として検出しても構わない。また、例えば、顔の輪郭と額位置から頬部の位置を同定しても構わない。このようにして、就寝者51の額部温度、鼻部温度、及び頬部温度等を検出することができる。
 なお、ここで述べた方法は、就寝者51の体表面温度を測定するための一例であり、他の方法でも構わない。例えば、温度センサー120は、図16に示す温度センサー122でも構わない。温度センサー122は、基板122aと、赤外線検出素子122eを二次元マトリクス状に配列した赤外線検出素子アレイ122bと、ズームレンズ122hを構成するレンズ122f及びレンズ122gとで構成されている。赤外線検出素子アレイ122bは、基板122aに取り付けられており、ズームレンズ122hは図示しない部材により基板122aに保持されている。レンズ122f及び122gは、図示しない機構部品により光軸と平行な方向にスライドすることができる。このような構成において、レンズ12112fとレンズ112gの位置関係を調整することで、広角画像と望遠画像の両方を撮影することができる。例えば、レンズ122fとレンズ122gの位置関係を調整することで、図15(a)のような広角画像を撮影することができる。また、温度センサー122に、温度センサー121と同様に軸122cや軸122dを取り付けることで、任意の位置の望遠画像を取得することができる。すなわち、初期にはレンズ122fとレンズ122gの位置関係を調整することで、図15(a)のような広角画像を撮影し、撮影した画像から顔面位置を抽出し、軸122cや軸122dを回転させて抽出した顔面位置に向けた状態でさらにレンズ122fとレンズ122gの位置関係を調整することで、図15(b)のような顔面の温度分布を高い解像度で撮影することが可能になる。
 なお、図16の赤外線検出素子アレイ122bは、画素数が10画素×10画素であるが、これはあくまで一例であり画素数は任意に決めることが可能である。また、図15に示した画像もあくまで一例であり、温度センサー121及び122の赤外線検出素子の画素数と対応するものでもない。
 次に、このような皮膚温の変動を検出するためには、高い温度精度で皮膚温を検出する必要がある。この方法に関して、図17~図19を用いて説明する。図17は、高い温度精度で皮膚温を検出するために空気調和機器100及び200をさらに発展させた、第3の実施形態における空気調和機器301の構成を示す図である。
 図17に示すように、空気調和機器301は、電源部110、センサー120、第1の制御部130、スイッチ部140、第2の制御部350、操作部160、及び装置機能部370を備えている。この第3の実施形態における空気調和機器301は、第2の制御部350及び装置機能部370が特徴的な制御を行うことが、第1の実施形態における空気調和機器100と異なる。第2の制御部350及び装置機能部370以外の構成は、空気調和機器100の構成と同じであるので説明を省略する。
 装置機能部370は、ルーバー171の状態を第2の制御部350にフィードバックする。具体的には、装置機能部370は、ルーバー171が向いている方向(風が吹き出される方向)を第2の制御部350に通知する。第2の制御部350は、装置機能部370から通知されたルーバー171が向いている方向をセンサー120に伝える。このような構成にすることで、ルーバー171の位置に応じてセンサー120を動作させることができる。
 図18は、空気調和機器301を用いた例である。この例では、ルーバー171から吹き出される風が就寝者51に直接あたらないタイミングで、センサー120により就寝者51の顔面の温度分布を測定する。このようにすれば、就寝者51に風があたって表面温度が一時的に低下した状態をセンサー120が測定してしまうことを回避することができる。よって、測定毎の温度ばらつきを低減でき、測定温度の精度を向上させることができる。勿論、就寝者51に直接風があたらないタイミングにおいて、ルーバー171の向きがある所定の方向を向いているタイミングに同期させて、センサー120で温度を測定しても構わない。そうすることで、ルーバー171から吹き出される風が仮に間接的に就寝者51にあたっていたとしても、毎回同じ条件で温度測定されることになるので測定ばらつきを低減できるという効果を有する。
 また、センサー120及び第1の制御部130の処理によって人が存在しかつ人が布団に入ったことを検出した場合に、第2の制御部350を経由してファン173の風量を低減させても構わない。こうすることで、ルーバー171から吹き出される風が間接的に就寝者51にあたっていたとしても、測定ばらつきを低減できるという効果を有する。
 ここで、人が布団に入ったかどうかは、図10(c)に示すような体動量から判断しても構わない。布団に入った場合の体動量は、起きている場合と比較して少なくなるため、体動量が一定以下の値になった場合に布団に入ったと見なすことができる。それ以外であっても、例えば人の存在が検出された状態において所定温度以上の温度域が所定面積以下になった段階で、布団に入ったと判断しても構わない。勿論、人が布団に入ったと判別できればこれら以外の方法でも構わないし、人が操作部160(リモコン等)でその旨を空気調和機器に送信しても構わない。
 また、空気調和機器301において、通常はセンサー120にて設定された温度から所定温度以上乖離したと第2の制御部350で判断した場合に、コンプレッサー172を動作させるため、例えば図19(a)のようにコンプレッサーの動作期間は離散的となる。図19(a)においては、一例として設定温度±0.3℃(温度制御幅△T1=0.6℃)以上乖離するとコンプレッサー172の動作をオン/オフする場合を示している。REM睡眠近傍においては、上述の通り自律神経の機能が低下し、体表面温度が環境温度の影響を受けやすくなるため、より精密な温度制御が好ましい。よって、上で述べたようにセンサー120及び第1の制御部130の処理によって人が布団に入ったと判断された場合、図19(b)のように、例えば制御温度幅△T2=0.2と通常駆動時よりも小さくなるように制御しても構わない。こうすることで、REM睡眠近傍においても、就寝者51の体温を精密に制御できるようになるため、より快適な睡眠を提供できるようになる。なお、ここでの温度制御幅はあくまで一例であり、限定するものではない。
 また、コンプレッサー172の動作をオン/オフさせるタイミングを、第1の制御部130で処理した結果から得たREM睡眠/ノンREM睡眠のタイミングに同期させても構わない。こうすることで、より快適な睡眠を得られる。なお、REM睡眠/ノンREM睡眠のタイミングは、熱画像から第1の制御部130で抽出された体動量から判断しても構わないし、鼻部等の末梢部の体温変動周期から判断しても構わないし、その手段を限定するものではない。
 (第4の実施形態)
 ここまでは、センサー120で得た情報から、第1の制御部130又は230で状態を検出していたが、他の装置から状態を受信しても構わない。
 図20Aは、送信処理部231及び受信処理部232を備えた第1の制御部430を構成に含んだ、第4の実施形態における空気調和機器400の構成を示す図である。受信処理部232は、例えば、無線電波を受信する受信機や受信機を制御するコントローラなどから構成される。
 図20Aに示す空気調和機器400では、受信処理部232を介して他の装置から情報を入手することができる。例えば、睡眠状態においては、敷布団53bの下に敷いた体動を検出するマット型のセンサーや、就寝者51の腕にはめた加速度センサーを搭載した腕時計型のセンサー等を利用して、就寝者51の状態に関する信号を、空気調和機器400が取得することができる。空気調和機器400は、他の装置から取得した情報に基づいて、装置機能部170を制御しても構わない。こうすることで、さらに検出精度を向上することができるため、さらに快適な環境を提供することができる。
 なお、図20Aの例では、受信処理部232が第1の制御部430に含まれる構成を示したが、図20Bの空気調和機器401で示すように、受信処理部232を第1の制御部430とは独立した構成としてもよい。この構成によれば、第1の制御部430による制御とは別に、他の装置から取得した情報に基づいて第2の制御部150を制御することができる。
 (第5の実施形態)
 上記各実施形態においては、センサーが搭載された装置として、空気調和機器を用いて説明した。本第5の実施形態においては、図21(a)のようにセンサー120が搭載されたディスプレイ機器500を用いた場合に関して説明する。
 まず、図21(b)を用いて、本ディスプレイ機器500の構成を説明する。
 ディスプレイ機器500は、電源部110、センサー120、第1の制御部130、スイッチ部140、第2の制御部150、操作部160、及び装置機能部570を備えている。装置機能部570は、チューナ571及びスピーカ572等を含んでいる。なお、装置機能部570の構成は一例であって、他の構成が含まれていても、一部の構成が欠けていてもよい。図2に示した第1の実施形態に係る空気調和機器100の構成と同様に、本ディスプレイ機器500においても、センサー120及び第1の制御部130への電源が、スイッチ部140を介さずに電源部110から直接供給されており、スイッチ部140がオフされている間であっても、室内の温度分布を測定し続けることができる。
 この第5の実施形態におけるディスプレイ機器500は、制御対象である装置機能部570が、第1の実施形態における空気調和機器100と異なるだけで、基本的な制御思想は同じである。装置機能部570以外の構成は、空気調和機器100の構成と同じであるので説明を省略する。
 第2の制御部150は、装置機能部570に接続されており、第1の制御部130から受けた制御内容に基づいて、チューナ571により表示コンテンツを選択し、スピーカ572により音量を調整することができる。例えば、ディスプレイ機器500の停止中に、図21(a)のように視認者56がディスプレイ機器500の正面に来た場合、センサー120から得られた情報(データ)により、第1の制御部130は人の存在を抽出する。それにより、第1の制御部130は、スイッチ部140をオン状態に切り替えてディスプレイ機器500を起動し、画像を表示させる。これにより、視認者56は、リモコン等の操作部160を操作することなく、画像を視認することができるようになる。
 また、ディスプレイ機器500の画像を視認中、センサー120から得られた情報(画像)により、第1の制御部130は、例えば顔の大きさから視認者56の年齢を推定することができる。さらに、第1の制御部130は、推定された年齢から、画面上に年齢層にあった番組を表示させることで、番組を推薦しても構わない。
 また、センサー120から得られた情報により、第1の制御部130は、視認者56の位置を抽出した場合、次のような制御が可能である。
 ディスプレイ機器500が左右のステレオスピーカを搭載した機器であれば、第1の制御部130は、第2の制御部150を制御して、抽出した視認者56の位置に基づいて左右のスピーカのバランスを調整することができる。これにより、視認者56がどこの位置で視認しても、常に臨場感にあふれた音を提供することができる。
 また、ディスプレイ機器500が映像を見せる画面方向を調整できる機能を備えた機器であれば、第1の制御部130は、第2の制御部150を制御して、画面を視認者56の方向に向けることができる。これにより、視認者56によるディスプレイ機器500の視認性を損なうことがなくなる。
 さらに、本ディスプレイ機器500は、送信処理部や受信処理部を備えていないが、上記第2及び第3の実施形態で説明したように送信処理部231や受信処理部232を備えることで、他の装置と通信しても構わない。また、第2の実施形態のように、受信機付きの送風機器、照明機器、掃除機器等と連携しても構わないし、その他の装置と連携しても構わず、その組み合わせを限定するものではない。
 なお、上記第1~第5の実施形態で説明した機器構成による制御では、第1の制御部130によるスイッチ部140及び第2の制御部150の指示(制御)と、操作部160によるスイッチ部140及び第2の制御部150の指示(制御)とが、競合したり相反したりする場合が考えられる。これについては、例えば、いずれかの指示を優先させるというルールを機器に与えたり、自動で制御を行う「センサーモード」と手動(リモコンやタイマーによる操作等)で制御を行う「ユーザモード」とを設けてユーザに切り替えさせたり、することによって対処することができる。
 また、上記第1~第5の実施形態で説明した機器構成では、第1の制御部130と第2の制御部150とが別構成であるとして記載していた。しかしながら、第1の制御部130と第2の制御部150とは、機能的に独立してさえいればよく、例えば1つのICチップ内に電源系統を独立させて半導体化されている等、必ずしも物理的に独立していなくても構わない。
 なお、上記各実施形態で示される構成要素や構成要素の接続形態等は一例であり、本発明を限定するものではない。つまり、本発明の趣旨を逸脱しない範囲で、構成要素やその接続形態等を他の装置へ展開したり、構成要素やその接続形態等に様々な変形を加えたり,それらを組み合わせたりすることができるのは、言うまでもない。また、本発明における必須の構成は、最上位概念を示す独立請求項によって限定される。よって、実施形態で説明した構成要素のうち独立請求項に記載されていない構成要素については、必須ではなく実施形態の一例として説明している。
 本発明のセンサー搭載装置は、簡便な構成でありながら、装置の利便性を大幅に向上させること等が可能である。
10 装置
100、200、300、301、400、401、1000 空気調和機器
12、120、1200 センサー
51、54、55、56 人(就寝者、入室者、視認者)
53 寝具
53a 掛布団
53b 敷布団
110、1100 電源部
121、122 温度センサー
121a、122a 基板
121b、122b 赤外線検出素子アレイ
121c、121d 軸
121e、122e 赤外線検出素子
121f、122f、122g レンズ
122h ズームレンズ
130、230、430、1300 第1の制御部
140、1400 スイッチ部
150、350 第2の制御部
160 操作部
170、370、570 装置機能部
171 ルーバー
172 コンプレッサー
173 ファン
231 送信処理部
232 受信処理部
281 ルーター
282 受信機付きファン
283 指標機能部
284 受信機付き照明
285 受信機付き掃除機
306 血管部位
307 非血管部位
500 ディスプレイ装置
571 チューナ
572 スピーカ

Claims (18)

  1.  センサーが搭載された装置であって、
     装置に供給する電源を生成する電源部と、
     装置周辺の情報を取得するセンサーと、
     前記センサーが取得した情報に基づいて指示を与える第1の制御部と、
     前記第1の制御部の指示に従って装置を制御する第2の制御部とを備え、
     前記センサー及び前記第1の制御部へは、前記電源部から電源が直接供給され、
     前記第2の制御部へは、前記第1の制御部によってオンオフ状態が制御されるスイッチ部を介して、前記電源部から電源が供給されることを特徴とする、装置。
  2.  前記第1の制御部は、前記スイッチ部がオフ状態の時に前記センサーによって装置の動作が要求される情報が取得されると、前記スイッチ部をオン状態に切り替えて前記第2の制御部に指示を与えることを特徴とする、請求項1に記載の装置。
  3.  前記第1の制御部は、前記センサーが取得した情報に基づく指示を装置の外に送信することを特徴とする、請求項1に記載の装置。
  4.  前記第1の制御部は、前記センサーにおいて以前に取得された装置周辺の情報と差異がない新たな装置周辺の情報が取得された場合、当該新たな装置周辺の情報に基づく指示を前記第2の制御部に与えないことを特徴とする、請求項2に記載の装置。
  5.  前記第1の制御部は、前記センサーにおいて以前に取得された装置周辺の情報と差異がない新たな装置周辺の情報が取得された場合、当該新たな装置周辺の情報に基づく指示を装置の外に送信しないことを特徴とする、請求項3に記載の装置。
  6.  前記センサーは、装置周辺の情報を所定の時間間隔で取得することを特徴とする、請求項1に記載の装置。
  7.  前記第1の制御部は、前記センサーにおいて以前に取得された装置周辺の情報と差異がない新たな装置周辺の情報が取得された場合、前記センサーが装置周辺の情報を取得する時間間隔を変更することを特徴とする、請求項6に記載の装置。
  8.  前記第1の制御部は、前記センサーにおいて以前に取得された装置周辺の情報と差異がない新たな装置周辺の情報が取得された場合、当該新たな装置周辺の情報の処理間隔を変更することを特徴とする、請求項6に記載の装置。
  9.  前記センサーは、温度センサー及び湿度センサーの少なくとも1つを含むことを特徴とする、請求項1に記載の装置。
  10.  前記第1の制御部は、前記センサーで取得された装置周辺の情報から人の行動を推定することを特徴とする、請求項9に記載の装置。
  11.  前記第1の制御部は、前記センサーで取得された装置周辺の情報から睡眠時の布団の状態を推定することを特徴とする、請求項10に記載の装置。
  12.  前記装置は、空気調和機であり、
     前記第1の制御部は、前記第2の制御部に指示を与えることによって、風の送出/停止、方向、強さ、温度、及び湿度の少なくとも1つを制御することを特徴とする、請求項2に記載の装置。
  13.  前記装置は、ディスプレイ装置であり、
     前記第1の制御部は、前記第2の制御部に指示を与えることによって、表示部に表示するコンテンツの選定を制御することを特徴とする、請求項2に記載の装置。
  14.  前記第1の制御部は、前記センサーが取得した情報に基づく指示を装置の外に送信することで、当該指示を受信した別の装置を遠隔制御することを特徴とする、請求項3に記載の装置。
  15.  前記第1の制御部は、空気調和機能を有した前記別の装置に対して、風の送出/停止、方向、強さ、温度、及び湿度の少なくとも1つを遠隔制御することを特徴とする、請求項14に記載の装置。
  16.  前記第1の制御部は、照明機能を有した前記別の装置に対して、照明の点灯/消灯、及び調光の少なくとも1つを遠隔制御することを特徴とする、請求項14に記載の装置。
  17.  前記第1の制御部は、掃除機能を有した前記別の装置に対して、掃除の開始/停止、場所、及び時間の少なくとも1つを遠隔制御することを特徴とする、請求項14に記載の装置。
  18.  前記第1の制御部は、冷凍及び/又は冷蔵機能を有した前記別の装置に対して、冷凍及び/又は冷蔵の開始/停止、及び温度の少なくとも1つを遠隔制御することを特徴とする、請求項14に記載の装置。
PCT/JP2014/002525 2013-05-17 2014-05-13 センサー搭載装置 WO2014185061A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480001821.5A CN104428601B (zh) 2013-05-17 2014-05-13 传感器搭载装置
US14/414,191 US9841202B2 (en) 2013-05-17 2014-05-13 Sensor mounting device
JP2015512943A JP5785349B2 (ja) 2013-05-17 2014-05-13 センサー搭載装置
US15/782,361 US10371402B2 (en) 2013-05-17 2017-10-12 Sensor mounting device
US16/446,839 US11808478B2 (en) 2013-05-17 2019-06-20 Air conditioning control device and method for controlling an air conditioning appliance and a wind-blowing appliance
US18/375,692 US20240027093A1 (en) 2013-05-17 2023-10-02 Sensor mounting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-105305 2013-05-17
JP2013105305 2013-05-17
US201361891473P 2013-10-16 2013-10-16
US61/891,473 2013-10-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/414,191 A-371-Of-International US9841202B2 (en) 2013-05-17 2014-05-13 Sensor mounting device
US15/782,361 Division US10371402B2 (en) 2013-05-17 2017-10-12 Sensor mounting device

Publications (1)

Publication Number Publication Date
WO2014185061A1 true WO2014185061A1 (ja) 2014-11-20

Family

ID=51898051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002525 WO2014185061A1 (ja) 2013-05-17 2014-05-13 センサー搭載装置

Country Status (4)

Country Link
US (4) US9841202B2 (ja)
JP (2) JP5785349B2 (ja)
CN (1) CN104428601B (ja)
WO (1) WO2014185061A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748315A (zh) * 2015-03-31 2015-07-01 美的集团股份有限公司 家用空调器及家用空调器的控制方法
JP2017113379A (ja) * 2015-12-25 2017-06-29 アイシン精機株式会社 温冷感推定装置および温冷感調整装置
JP2018035957A (ja) * 2016-08-29 2018-03-08 シャープ株式会社 空調システムおよび端末装置
JP2018179496A (ja) * 2015-03-30 2018-11-15 三菱電機株式会社 送風機器
CN109506348A (zh) * 2018-11-07 2019-03-22 珠海格力电器股份有限公司 一种空调导风板的控制方法及空调
CN109780699A (zh) * 2019-01-31 2019-05-21 珠海荣邦电子科技有限公司 转速控制方法及装置
JPWO2021234989A1 (ja) * 2020-05-18 2021-11-25
US11275350B2 (en) 2018-11-05 2022-03-15 Endel Sound GmbH System and method for creating a personalized user environment

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335060B1 (en) 2010-06-19 2019-07-02 Dp Technologies, Inc. Method and apparatus to provide monitoring
US9192326B2 (en) 2011-07-13 2015-11-24 Dp Technologies, Inc. Sleep monitoring system
US9459597B2 (en) 2012-03-06 2016-10-04 DPTechnologies, Inc. Method and apparatus to provide an improved sleep experience by selecting an optimal next sleep state for a user
US10791986B1 (en) 2012-04-05 2020-10-06 Dp Technologies, Inc. Sleep sound detection system and use
US9594354B1 (en) 2013-04-19 2017-03-14 Dp Technologies, Inc. Smart watch extended system
US10568565B1 (en) * 2014-05-04 2020-02-25 Dp Technologies, Inc. Utilizing an area sensor for sleep analysis
US11963792B1 (en) 2014-05-04 2024-04-23 Dp Technologies, Inc. Sleep ecosystem
JP6242300B2 (ja) * 2014-06-25 2017-12-06 三菱電機株式会社 空気調和装置の室内機及び空気調和装置
US9909774B2 (en) * 2015-03-04 2018-03-06 Elwha Llc Systems and methods for regulating an environmental variable within a target zone having multiple inhabitants
US11883188B1 (en) 2015-03-16 2024-01-30 Dp Technologies, Inc. Sleep surface sensor based sleep analysis system
EP3175786A1 (en) 2015-12-01 2017-06-07 Panasonic Intellectual Property Corporation of America Estimation of physical conditions
JP6703893B2 (ja) * 2015-12-01 2020-06-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 体調推定装置、及び、体調推定システム
CN105757886B (zh) * 2016-03-03 2018-12-14 珠海格力电器股份有限公司 空调制热控制方法和装置
WO2017173222A1 (en) * 2016-04-01 2017-10-05 Gentherm Inc. Occupant thermal state detection and comfort adjustment system and method
CN106225155A (zh) * 2016-07-26 2016-12-14 珠海格力电器股份有限公司 一种睡眠状态确定装置、方法、空调控制装置、方法及空调
JP7039824B2 (ja) * 2016-10-26 2022-03-23 三菱電機株式会社 室内環境制御システム、加湿器及び空気調和機
JP6941938B2 (ja) * 2016-12-15 2021-09-29 三菱電機株式会社 加湿器および環境制御システム
US10660450B2 (en) * 2017-03-22 2020-05-26 Panasonic Intellectual Property Management Co., Ltd. Air-conditioning control method and air-conditioning control system for in-bed air conditioning
JP6477767B2 (ja) * 2017-03-31 2019-03-06 ダイキン工業株式会社 冷凍装置
JP7054800B2 (ja) * 2017-04-26 2022-04-15 パナソニックIpマネジメント株式会社 深部体温測定装置、深部体温測定システム及び深部体温測定方法
US11384956B2 (en) * 2017-05-22 2022-07-12 Sharkninja Operating Llc Modular fan assembly with articulating nozzle
JP6910221B2 (ja) * 2017-06-29 2021-07-28 日立ジョンソンコントロールズ空調株式会社 空気調和機
US11004567B2 (en) 2017-08-15 2021-05-11 Koko Home, Inc. System and method for processing wireless backscattered signal using artificial intelligence processing for activities of daily life
US12094614B2 (en) 2017-08-15 2024-09-17 Koko Home, Inc. Radar apparatus with natural convection
JP7143582B2 (ja) * 2017-11-24 2022-09-29 三菱電機株式会社 扇風機
JP7002053B2 (ja) * 2018-02-22 2022-01-20 パナソニックIpマネジメント株式会社 空気調和機
US11306937B2 (en) * 2018-08-24 2022-04-19 Pixart Imaging Inc. Temperature detecting device and air conditioner
US11793455B1 (en) 2018-10-15 2023-10-24 Dp Technologies, Inc. Hardware sensor system for controlling sleep environment
JP7086223B2 (ja) * 2018-12-17 2022-06-17 三菱電機株式会社 センサ制御システム、空気調和機、およびセンサ制御方法
EP3908974A4 (en) 2019-01-10 2022-08-31 The Regents of the University of Michigan DETECTION OF THE PRESENCE AND ESTIMATION OF THE THERMAL COMFORT OF ONE OR MORE HUMAN OCCUPANTS IN A CONSTRUCTED SPACE IN REAL TIME USING ONE OR MORE THERMOGRAPHIC CAMERAS AND ONE OR MORE RGB-D SENSORS
US11997455B2 (en) 2019-02-11 2024-05-28 Koko Home, Inc. System and method for processing multi-directional signals and feedback to a user to improve sleep
US11971503B2 (en) * 2019-02-19 2024-04-30 Koko Home, Inc. System and method for determining user activities using multiple sources
US10810850B2 (en) 2019-02-19 2020-10-20 Koko Home, Inc. System and method for state identity of a user and initiating feedback using multiple sources
CN110602197A (zh) * 2019-09-06 2019-12-20 北京海益同展信息科技有限公司 物联网控制装置和方法、电子设备
US11719804B2 (en) 2019-09-30 2023-08-08 Koko Home, Inc. System and method for determining user activities using artificial intelligence processing
KR20210098682A (ko) * 2020-02-03 2021-08-11 엘지전자 주식회사 온도 제어 장치 및 방법
US11240635B1 (en) 2020-04-03 2022-02-01 Koko Home, Inc. System and method for processing using multi-core processors, signals, and AI processors from multiple sources to create a spatial map of selected region
US11184738B1 (en) 2020-04-10 2021-11-23 Koko Home, Inc. System and method for processing using multi core processors, signals, and AI processors from multiple sources to create a spatial heat map of selected region
CN112283906B (zh) * 2020-10-22 2022-02-01 佛山市顺德区美的电子科技有限公司 一种空调控制方法及装置、控制设备、空调、存储介质
US20240159419A1 (en) * 2021-02-24 2024-05-16 Panasonic Intellectual Property Management Co., Ltd. Determination system, sensor, determination method, and recording medium
TWI792214B (zh) * 2021-03-10 2023-02-11 群光電子股份有限公司 溫度感測模組與電子裝置
CN113465154A (zh) * 2021-04-26 2021-10-01 青岛海尔空调器有限总公司 一种空调导风控制方法及装置、一种空调系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203233A (ja) * 1992-01-24 1993-08-10 Fujitsu General Ltd 空気調和機の制御装置
JPH10191560A (ja) * 1996-12-24 1998-07-21 Sharp Corp テレビチューナを備えたパーソナルコンピュータシステム
JP2005241056A (ja) * 2004-02-24 2005-09-08 Matsushita Electric Works Ltd 負荷制御装置
JP2006128831A (ja) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd 無線リモコンシステム
JP2010133692A (ja) * 2008-10-31 2010-06-17 Mitsubishi Electric Corp 空気調和機
JP2011009890A (ja) * 2009-06-24 2011-01-13 Mega Chips Corp 通信装置、監視システム、プログラムおよび通信方法
JP2011069553A (ja) * 2009-09-25 2011-04-07 Toshiba Carrier Corp 空気調和機
JP2013024463A (ja) * 2011-07-20 2013-02-04 Fujitsu General Ltd 空気調和機

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094166A (en) * 1977-03-23 1978-06-13 Electro-Thermal Corporation Air conditioning control system
JPH0587380A (ja) * 1991-09-26 1993-04-06 Toshiba Corp 空気調和機
US5441476A (en) * 1992-05-22 1995-08-15 Matsushita Electric Works, Ltd. Body temperature regulation system
JPH0618072A (ja) * 1992-07-03 1994-01-25 Hitachi Ltd 空気調和機
JP3001203U (ja) * 1994-02-18 1994-08-23 ダイヤモンド電機株式会社 空気調和機の制御装置
US7918100B2 (en) * 1994-05-09 2011-04-05 Automotive Technologies International, Inc. Vehicular HVAC control systems and methods
JP3563803B2 (ja) * 1995-02-14 2004-09-08 松下電器産業株式会社 空調装置およびその制御方法
KR0182727B1 (ko) * 1996-10-08 1999-05-01 삼성전자주식회사 공기조화기의 풍향제어방법
US6290140B1 (en) * 1999-03-04 2001-09-18 Energyiq Systems, Inc. Energy management system and method
JP4130047B2 (ja) 2000-01-11 2008-08-06 三洋電機株式会社 空気調和機
JP2004130998A (ja) * 2002-10-11 2004-04-30 Denso Corp 車両用空調装置
US6880799B2 (en) * 2003-08-01 2005-04-19 Honeywell International Inc. Self-adjusting system for a damper
US7623028B2 (en) * 2004-05-27 2009-11-24 Lawrence Kates System and method for high-sensitivity sensor
US20050277381A1 (en) * 2004-06-15 2005-12-15 Chinmoy Banerjee System to control environmental conditions in a living space
US8033479B2 (en) * 2004-10-06 2011-10-11 Lawrence Kates Electronically-controlled register vent for zone heating and cooling
CN2849539Y (zh) * 2005-01-12 2006-12-20 珠海格力电器股份有限公司 网络家电系统
JP2007078283A (ja) * 2005-09-15 2007-03-29 Seiko Epson Corp 空気調和機及び空気調和方法
US20070241203A1 (en) * 2006-04-14 2007-10-18 Ranco Inc. Of Delaware Management of a thermostat's power consumption
JP3963936B1 (ja) * 2006-10-20 2007-08-22 松下電器産業株式会社 空気調和機
JP2008157548A (ja) * 2006-12-25 2008-07-10 Tokyo Electric Power Co Inc:The 空調システム
US8259535B2 (en) * 2007-01-22 2012-09-04 Koninklijke Philips Electronics N.V. Wake up stimulus control system
JP4902517B2 (ja) * 2007-12-19 2012-03-21 三菱電機株式会社 空気調和機
WO2009108228A1 (en) * 2008-02-25 2009-09-03 Kingsdown, Inc. Systems and methods for controlling a bedroom environment and for providing sleep data
TW200943204A (en) * 2008-04-15 2009-10-16 Univ Nat Chiao Tung A physiological signal monitoring system for medical care automation
KR101632884B1 (ko) * 2008-12-23 2016-06-23 엘지전자 주식회사 천장형 공기조화기
CN101476765A (zh) 2009-01-22 2009-07-08 桂林电子科技大学 空调房节能智能化控制系统
JP2011033263A (ja) * 2009-07-31 2011-02-17 Sanyo Electric Co Ltd 空気調和機
BR112012013422A2 (pt) 2009-12-02 2016-03-29 Panasonic Corp condicionador de ar
JP5089676B2 (ja) 2009-12-08 2012-12-05 三菱電機株式会社 空気調和機
JP5569425B2 (ja) * 2010-05-20 2014-08-13 株式会社デンソー 車両用空調装置
US20120031984A1 (en) * 2010-08-03 2012-02-09 Massachusetts Institute Of Technology Personalized Building Comfort Control
US8950687B2 (en) * 2010-09-21 2015-02-10 Honeywell International Inc. Remote control of an HVAC system that uses a common temperature setpoint for both heat and cool modes
EP2659319A4 (en) * 2010-11-19 2017-07-26 Google, Inc. Flexible functionality partitioning within intelligent-thermostat-controlled hvac systems
WO2014151733A1 (en) * 2013-03-14 2014-09-25 Nunn Rob Inflatable air mattress with light and voice controls
CN108981932B (zh) * 2013-05-17 2020-08-18 松下电器(美国)知识产权公司 热图像传感器以及空气调节机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203233A (ja) * 1992-01-24 1993-08-10 Fujitsu General Ltd 空気調和機の制御装置
JPH10191560A (ja) * 1996-12-24 1998-07-21 Sharp Corp テレビチューナを備えたパーソナルコンピュータシステム
JP2005241056A (ja) * 2004-02-24 2005-09-08 Matsushita Electric Works Ltd 負荷制御装置
JP2006128831A (ja) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd 無線リモコンシステム
JP2010133692A (ja) * 2008-10-31 2010-06-17 Mitsubishi Electric Corp 空気調和機
JP2011009890A (ja) * 2009-06-24 2011-01-13 Mega Chips Corp 通信装置、監視システム、プログラムおよび通信方法
JP2011069553A (ja) * 2009-09-25 2011-04-07 Toshiba Carrier Corp 空気調和機
JP2013024463A (ja) * 2011-07-20 2013-02-04 Fujitsu General Ltd 空気調和機

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179496A (ja) * 2015-03-30 2018-11-15 三菱電機株式会社 送風機器
CN104748315A (zh) * 2015-03-31 2015-07-01 美的集团股份有限公司 家用空调器及家用空调器的控制方法
JP2017113379A (ja) * 2015-12-25 2017-06-29 アイシン精機株式会社 温冷感推定装置および温冷感調整装置
JP2018035957A (ja) * 2016-08-29 2018-03-08 シャープ株式会社 空調システムおよび端末装置
US11275350B2 (en) 2018-11-05 2022-03-15 Endel Sound GmbH System and method for creating a personalized user environment
CN109506348A (zh) * 2018-11-07 2019-03-22 珠海格力电器股份有限公司 一种空调导风板的控制方法及空调
CN109506348B (zh) * 2018-11-07 2020-07-24 珠海格力电器股份有限公司 一种空调导风板的控制方法及空调
CN109780699A (zh) * 2019-01-31 2019-05-21 珠海荣邦电子科技有限公司 转速控制方法及装置
CN109780699B (zh) * 2019-01-31 2020-03-13 珠海荣邦电子科技有限公司 转速控制方法及装置
JPWO2021234989A1 (ja) * 2020-05-18 2021-11-25
WO2021234989A1 (ja) * 2020-05-18 2021-11-25 三菱電機株式会社 センサー電源制御システムおよび空気清浄機
JP7327665B2 (ja) 2020-05-18 2023-08-16 三菱電機株式会社 センサー電源制御システムおよび空気清浄機

Also Published As

Publication number Publication date
CN104428601B (zh) 2020-01-17
JP2015178953A (ja) 2015-10-08
US20200003438A1 (en) 2020-01-02
US20180045428A1 (en) 2018-02-15
US20150233598A1 (en) 2015-08-20
US9841202B2 (en) 2017-12-12
US11808478B2 (en) 2023-11-07
JPWO2014185061A1 (ja) 2017-02-23
JP5785349B2 (ja) 2015-09-30
JP6472340B2 (ja) 2019-02-20
CN104428601A (zh) 2015-03-18
US10371402B2 (en) 2019-08-06
US20240027093A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
WO2014185061A1 (ja) センサー搭載装置
JP5300602B2 (ja) 空気調和機
CN107205659B (zh) 用于改善与监视睡眠的方法和装置
JP5089676B2 (ja) 空気調和機
JP4980410B2 (ja) 空気調和機及び空気調和システム
JP5169070B2 (ja) 空調制御システム、空調装置、空調制御方法及び空調制御プログラム
US20200100682A1 (en) System and Method for Determining a Sleep Onset, Sleep Arousal, and Sleep Awakening
JP6359043B2 (ja) 空気調和機及び空気調和システム
JP2019508120A (ja) インテリジェントベッド
JP2001074292A (ja) 空気調和装置及び生理情報装置
US20180192779A1 (en) Tv bed, tv, bed, and method for operating the same
JP7245989B2 (ja) 情報処理方法、情報処理プログラム及び情報処理システム
KR101765659B1 (ko) 수면 관리 장치 및 방법
JP2013036647A (ja) 空調機用リモコン
JP5344004B2 (ja) 空調機用リモコン
JP2001078966A (ja) 発汗検出装置
US20190231255A1 (en) System with vital data sensor
JP4909143B2 (ja) ホームネットワークシステム
EP2263530A1 (en) Intelligent power-saving device
JP6663198B2 (ja) 見守り装置及び見守り方法
JP2011021857A (ja) 空調制御装置
CN111459042B (zh) 家电设备的控制方法、系统、电视机与存储介质
JP2021137325A (ja) 据え置き型テレビ
JP2005013754A (ja) 安眠装置
WO2018076764A1 (zh) 基于可穿戴设备的空调器控制方法、装置及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798558

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14414191

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015512943

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798558

Country of ref document: EP

Kind code of ref document: A1