WO2014181873A1 - 燃料電池用電極触媒、及び触媒を活性化させる方法 - Google Patents
燃料電池用電極触媒、及び触媒を活性化させる方法 Download PDFInfo
- Publication number
- WO2014181873A1 WO2014181873A1 PCT/JP2014/062510 JP2014062510W WO2014181873A1 WO 2014181873 A1 WO2014181873 A1 WO 2014181873A1 JP 2014062510 W JP2014062510 W JP 2014062510W WO 2014181873 A1 WO2014181873 A1 WO 2014181873A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- core
- shell
- impurities
- fuel cell
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a catalyst, particularly a fuel cell catalyst, particularly a cathode catalyst of a solid polymer fuel cell, and also relates to a method for activating the catalyst.
- the polymer electrolyte fuel cell has a basic structure in which a cation exchange membrane that selectively permeates protons, a catalyst layer bonded to both sides thereof, and a gas diffusion layer such as carbon paper are arranged on the outside thereof.
- the catalyst layer mainly includes an anode that causes a reaction using hydrogen as an active material and a cathode that causes a reaction that uses oxygen as an active material.
- the catalyst layer is composed of conductive carbon particles carrying a catalyst metal and a polymer electrolyte material so as to satisfy the above characteristics.
- gaps between the catalyst particles and pores of the catalyst particles play a role, and an electron conduction path is formed by contact of the catalyst carrier particles.
- Electrode catalyst conductive carbon particles carrying a catalyst metal such as platinum or a platinum alloy are generally used. Since catalytic metals such as platinum used for electrode catalysts are very expensive materials, the development of fuel cells that exhibit excellent power generation performance with a small amount of platinum is indispensable for the practical use of fuel cells. It has become.
- platinum is finely divided to increase the exposed surface area.
- the exposed surface area of the catalyst metal is increased even if the amount of the catalyst metal used is the same, so that the utilization rate of the catalyst metal can be increased.
- the fuel cell electrode catalyst has a core-shell structure of a core portion made of a noble metal or a transition metal and a shell portion made of a noble metal-containing layer having a composition different from that of the core portion formed on the outer periphery of the core portion. Electrocatalysts have been proposed.
- the core-shell type catalyst metal fine particles have a large exposed surface area per unit weight of the highly active catalyst metal since the highly active catalyst metal can be disposed only on the surface (shell). Therefore, the electrode catalyst having the core-shell structure is excellent in the utilization rate of the catalyst metal that contributes to the activation of the electrode reaction, and the amount of the catalyst metal used can be reduced.
- the core-shell catalyst can be produced by an electrochemical production method as shown in Patent Document 1 below. When these techniques are used, a material having an ideal core-shell structure with a high shell coverage can be produced.
- a catalyst having a core-shell structure manufactured by the methods disclosed in those documents has a very high characteristic value in the catalytic activity evaluated using RDE (rotating disk electrode).
- RDE rotating disk electrode
- the core-shell catalyst has a problem that the expected battery characteristics cannot be obtained when it is evaluated as a fuel cell. That is, the problem to be solved by the present invention is to provide a core-shell catalyst that can be realized even when the catalytic activity expected from the catalytic activity value obtained by RDE is evaluated as a fuel cell, and to the core-shell catalyst. It is to provide a method for such activation of the catalyst.
- the present invention will be described exclusively with reference to a fuel cell catalyst, the present invention is not limited to a catalyst for a fuel cell, but widely relates to a catalyst for general use.
- the present inventor has obtained the expected battery characteristics, and the content of impurities is one of the reasons why the expected battery characteristics have not been obtained. I found that it had a big influence.
- the present invention completed based on this finding provides the following aspects.
- the core-shell catalyst is a fuel cell catalyst.
- the dispersion solvent is water.
- the gas having the reducing ability is hydrogen and / or alcohol.
- the dispersion solvent is stirred at a temperature of 70 ° C.
- the core-shell catalyst of the present invention is arranged on the oxygen electrode side and evaluated as a fuel cell, the catalyst is compared with the case of using a conventional electrode catalyst (a catalyst having no core-shell structure). It was confirmed that even if the amount used was reduced to 1 ⁇ 4, the battery characteristics were equivalent. In other words, it has become possible to greatly reduce the amount of catalyst such as platinum, which is one of the major issues in the practical application of fuel cells.
- the catalyst according to the present invention is not limited to a fuel cell catalyst. Even when the catalyst according to the present invention is used as a catalyst for general use, the catalytic activity confirmed at the laboratory level can be realized in actual operation. Also provided is a method for activating such general purpose catalysts.
- FIG. 1 is a diagram for explaining the underpotential deposition method (UPD method).
- FIG. 2 is a schematic view of an electrochemical cell for preparing a core-shell catalyst.
- a catalyst particularly a fuel cell, having a core-shell structure, for example, an electrode catalyst, wherein the core member is covered by 99% or more by the shell member and the halogen content is 5000 ppm or less.
- the catalyst according to the present invention is a general-purpose catalyst and is not limited to a fuel cell catalyst.
- the use of the catalyst according to the present invention includes automobile exhaust gas purification catalyst, petroleum refining catalyst, desulfurization catalyst, denitration catalyst, synthesis gas production catalyst, hydrogen production catalyst, alcohol synthesis catalyst, coal liquefaction catalyst, coal gasification catalyst, Biomass resources recycling catalyst, organic chemicals catalyst, inorganic chemicals catalyst, fine chemicals catalyst, etc.
- a fuel cell catalyst it can be used as an electrode catalyst, a desulfurization catalyst, a fuel reforming catalyst, a CO modification catalyst, a CO removal catalyst, and the like.
- the core-shell catalyst is a material in which a highly active material (for example, platinum) is left only on the surface (shell: shell) of the catalyst particle, and the inside of the particle (core: core) that does not directly contribute to the catalytic action is replaced with a different material.
- the core-shell catalyst can reduce the amount of extremely expensive and rare active materials such as platinum as much as possible, and can form the same fine particles as the conventional platinum catalyst, and the same or higher catalyst. Activity can be expected.
- the element constituting the shell is at least one noble metal selected from the group consisting of platinum, cobalt, iron, nickel, ruthenium, iridium, and gold, and platinum is particularly preferable.
- the element constituting the shell may be one or more of the above metals, and two or more may be used as an alloy.
- the element constituting the core is at least one noble metal selected from the group consisting of palladium, gold, iridium, nickel, iron, cobalt, and ruthenium, and palladium is particularly preferable.
- the element constituting the core may be one or more of the above metals, and two or more may be used as an alloy.
- the carrier for supporting the core-shell catalyst is required to have sufficient conductivity and sufficient permeability for fuel and the like when used in a fuel cell. Therefore, a porous carbon material such as carbon black or activated carbon may be used.
- the method for producing the core-shell catalyst is not particularly limited, and a chemical method such as a liquid phase reduction method or an electrochemical method such as an under-potential precipitation method (UPD method) may be used.
- a chemical method such as a liquid phase reduction method or an electrochemical method such as an under-potential precipitation method (UPD method)
- a salt containing an element constituting a shell is added to a solution in which a carrier carrying core particles is suspended.
- a reducing agent such as hydrogen or sodium borohydride
- ions of elements constituting the shell in the solution are reduced, and the shell constituent elements are deposited on the core particles, whereby a core-shell catalyst can be obtained.
- the under-potential precipitation method is performed according to the procedure shown in FIG. An electrochemical cell for catalyst preparation is prepared, and the element constituting the shell is used as a counter electrode.
- a solution containing base metal ions (4) of an appropriate concentration is prepared in the cell, and the carrier carrying the core particles (1) is immersed in this solution (S1).
- the core particle (1) comes into contact with the cell body electrode (CBE), obtains the charge required for UPD, and the base metal on the surface of the core particle (1).
- Adsorption of ions (4) occurs (S2), and a base metal monolayer (5) is formed (S3).
- base metal ions (4) remaining in the solution are removed, and excess base metal ions (4) on the particle surface are also removed.
- an inert atmosphere such as nitrogen is used to suppress oxidation of the base metal monolayer (5).
- a solution containing a salt of a shell constituent element (a noble metal) is added to the cell (S4).
- the ion (6) of the shell constituent element is replaced with the base metal monolayer (5) by the oxidation-reduction reaction (S5).
- the shell constituent element (more precious metal) (6) receives electrons from the base metal and acts as an oxidizing agent.
- the ions of the shell constituent elements (more noble metals) are reduced and replaced with the base metal monolayer on the surface.
- the final product can obtain a core-shell catalyst having a monolayer of shell constituent elements (more precious metals) (S6).
- the core member is covered with 99% or more of the shell member.
- a catalytic reaction or the like dissolution / outflow of the core member may occur from a portion not covered with the shell member, the core-shell structure may collapse, and the function as a catalyst may be lost. If the coverage is 99% or more, a sufficient life can be secured.
- a chemical method such as a liquid phase reduction method efficiently coats the core member with the shell member because a thick shell layer is deposited on the core metal or the shell element is deposited in the solution. It is difficult. Therefore, an electrochemical method such as an underpotential deposition method (UPD method) is preferable to a chemical method such as a liquid phase reduction method because a high coverage can be easily obtained.
- UPD method underpotential deposition method
- the coverage of the core member by the shell member may be obtained from a cyclic voltammogram of the obtained core-shell catalyst. For example, the hydrogen desorption peak of the obtained voltammogram is obtained.
- a catalyst having no core-shell structure (a catalyst having only a core) is also prepared, and its peak is also obtained.
- the peaks of the core-shell catalyst and the core-only catalyst are compared, and the peak reduced by the core-only catalyst is found by coating with the shell, and the coverage can be calculated from the degree of reduction of the peak.
- Formula (1) Coverage (%) ⁇ [(Peak area of core only catalyst) ⁇ (peak area of core shell catalyst)] / (peak area of core only catalyst) ⁇ ⁇ 100
- the halogen content is 5000 ppm or less.
- the catalysts having a core-shell structure a very high characteristic value can be obtained in the catalytic activity evaluated using an RDE (rotary disk electrode).
- RDE rotary disk electrode
- one of the causes is the halogen content.
- the halogen content By setting the halogen content to 5000 ppm or less, a fuel cell having excellent battery characteristics can be realized. The smaller the halogen content, the better.
- the halogen content is preferably 4000 ppm or less, more preferably 3000 ppm or less, further preferably 2000 ppm or less, more preferably 1500 ppm or less, further preferably 1000 ppm or less, and further preferably 500 ppm or less.
- the catalyst according to the invention provides an advantageous effect in any reaction system in which the halogen content can influence.
- the halogen content may be adjusted to 5000 ppm or less by post-treatment after preparing the core-shell catalyst. Adjusting the halogen content by post-treatment is very useful in a core-shell catalyst by an electrochemical method such as an underpotential deposition method (UPD method).
- UPD method underpotential deposition method
- a catalyst particularly a fuel cell catalyst
- a catalyst carrier that uses a carrier having a large surface area with fine pores, such as carbon black, and supports very small catalyst fine particles. It has been difficult to efficiently remove the impurities that have accumulated.
- impurities that may be contained in the electrode catalyst anions such as halogen have a high electronegativity, are easily attached to the catalyst and the carrier, and are difficult to remove.
- a method for removing impurities from the catalyst and activating the catalyst which will be described below, was completed. This method can be used as a post-treatment for reducing the halogen content of the catalyst to 5000 ppm or less.
- the present invention provides a method for activating a core-shell catalyst.
- This method includes the following steps. A step of dispersing the core-shell catalyst in a dispersion solvent, A step of blowing a gas having a reducing ability or a mixed gas containing the same into the dispersion solvent to separate impurities from the core-shell catalyst, and a step of removing impurities.
- the core-shell catalyst is a catalyst that is widely used for general purposes and is not particularly limited in use, and may be a fuel cell catalyst.
- the catalytic activity expected from the catalyst activity value obtained by RDE can also be realized when the fuel cell is evaluated.
- the dispersion solvent is not particularly limited as long as it does not easily cause decomposition or aggregation of the core-shell catalyst.
- Water may be used as the dispersion solvent.
- a gas having reducing ability or a mixed gas containing it is blown into the solvent in which the core-shell catalyst is dispersed. Since the blown gas contains a gas having a reducing ability or contains it, impurities contained in the core-shell catalyst, particularly halogen, can be reduced and separated from the core-shell catalyst.
- the gas having reducing ability may be hydrogen, alcohol, or a mixture of hydrogen and alcohol.
- the dispersion solvent may be stirred at a temperature of 70 ° C. or higher. This promotes dispersion of the core-shell catalyst in the solvent and separation of impurities from the core-shell catalyst.
- the temperature of the solvent may be 70 ° C. or higher, and preferably 80 ° C. or higher.
- the upper limit of the temperature may be determined by properties such as the vapor pressure of the solvent. When the solvent is water, the upper limit of the temperature may be 100 ° C, and preferably 90 ° C.
- Stirring is also performed by blowing a gas, but may be performed by adding mechanical means.
- the mechanical stirring means is not particularly limited, and for example, a magnetic stirrer or a homogenizer may be used.
- Impurities separated from the core-shell catalyst by injecting a gas having a reducing ability are transferred to the solvent. Impurities in this solvent are removed.
- the operation for removing the impurities is not particularly limited, and decantation, centrifugation, distillation, filtration, and the like can be used depending on the properties of the impurities, the solvent, and the like.
- the supernatant may be removed by separating the supernatant liquid containing impurities and the core-shell catalyst by decantation and removing the supernatant liquid. Decantation is advantageous in that it has less mechanical or thermal influence and less influence on the core-shell catalyst itself than centrifugal separation, distillation, filtration and the like.
- the step of removing impurities may be completed within 1 hour from the end of the step of separating impurities (blowing).
- a gas having reducing ability By blowing a gas having reducing ability, impurities are separated from the core-shell catalyst and transferred to the solvent.
- impurities transferred to the solvent, particularly halogen will adhere to the core-shell catalyst again.
- the halogen content is increased, a fuel cell having excellent battery characteristics cannot be obtained.
- the halogen content of the core-shell catalyst can be reduced to 5000 ppm or less by removing the impurities within about 15 hours from the end of the step of separating the impurities (blowing).
- the step of removing impurities is preferably as fast as possible, and may be within one hour from the end of the step of separating impurities. More preferably, it is within 50 minutes, More preferably, it is within 40 minutes, More preferably, it is within 30 minutes, More preferably, it is within 20 minutes, More preferably, it is within 10 minutes. This lower limit can be determined according to the time spent in the step of removing impurities.
- the core-shell catalyst was prepared by a method according to Patent Document 1.
- a titanium cell coated with ruthenium oxide as an electrochemical cell for catalyst preparation, platinum with platinum black as the counter electrode (CE), an Ag / AgCl electrode as the reference electrode (RE), and 0.5 M as the electrolyte Catalyst preparation was performed using sulfuric acid while blowing Ar (see FIG. 2).
- the cell and the counter electrode were used separated by a glass frit. All potentials used below are given as potentials relative to the reversible hydrogen electrode (RHE).
- the Cu monolayer on the surface of the Pd particles is replaced with Pt atoms, and a Pt monolayer is formed.
- the obtained slurry is filtered to separate the solution and the catalyst, and in order to wash the catalyst obtained as a solid content, after adding distilled water and stirring, the operation of filtration is repeated to obtain a Pt / Pd / C catalyst.
- the obtained core-shell catalyst and the catalyst before coating with the shell were subjected to cyclic voltammogram to determine the coating rate by the shell. The coverage of the obtained core-shell catalyst was 99% or more.
- Example 1 Catalyst activation treatment 2 g of the prepared Pt / Pd / C core-shell catalyst was dispersed in 200 mL of distilled water, the temperature was maintained at 70 ° C, and a mixed gas of 10% hydrogen and 90% nitrogen was blown into the magnetic stirrer. The activation treatment was carried out for 7 hours with stirring. Thereafter, stirring was stopped, the supernatant liquid and the catalyst were separated by decantation, and the supernatant liquid was removed. 200 ml of distilled water was added to the obtained precipitate, and washing by decantation was repeated. Repeated washing was performed within 1 hour after completion of the activation treatment.
- Distilled water was added to the washed precipitate to form a 200 mL dispersion, and activation treatment, decantation, and washing were performed for 7 hours in the same procedure as above.
- the obtained precipitate was dried at 90 ° C. to obtain an activated catalyst A.
- Example 2 Catalyst activation treatment 2 g of the prepared Pt / Pd / C core-shell catalyst was dispersed in 200 mL of distilled water, the temperature was maintained at 70 ° C, and a mixed gas of 10% hydrogen and 90% nitrogen was blown into the magnetic stirrer. An activation treatment was performed for 7 hours with stirring. Thereafter, stirring was stopped, the supernatant liquid and the catalyst were separated by decantation, and the supernatant liquid was removed. 200 ml of distilled water was added to the obtained precipitate, and washing by decantation was repeated. Repeated washing was performed within 1 hour after completion of the activation treatment. The resulting precipitate was dried at 90 ° C. to obtain activated catalyst B.
- Catalyst activation treatment Catalyst C was prepared in the same manner as in Example 2 except that the activation treatment time was 3 hours.
- Catalyst activation treatment Catalyst D was prepared in the same manner as in Example 2 except that the activation treatment time was 1.5 hours.
- Example 5 Catalyst Activation Treatment
- Catalyst E was prepared by the same procedure as in Example 2 except that the activation treatment time was 30 minutes.
- a membrane / electrode assembly (MEA) used for battery evaluation was prepared by the following procedure. After mixing each catalyst and alcohol shown in the Examples and Comparative Examples so that the solid content concentration becomes 9 wt%, the ion exchange resin solution is added so as to have a mass ratio of 1.0 with respect to the carrier carbon. . The prepared mixed solution was irradiated with ultrasonic waves to disperse the catalyst-supporting carbon to prepare a coating solution. The obtained coating solution was applied to ePTFE and dried to form an electrode layer.
- the platinum loading of the Pt / Pd / C core-shell catalyst was 0.1 mg / cm 2
- the Pt / C catalyst Comparative Example 2.
- the electrode layer thus obtained was arranged as a cathode electrode, PRIMEA (registered trademark) # 5584 (Pt loading 0.1 mg / cm 2 ) was used for the anode electrode, and GORE-SELECT (registered trademark) 20 ⁇ m was used for the electrolyte membrane. Then, hot pressing was performed to prepare a membrane electrode assembly by a decal method.
- Each membrane electrode assembly is placed between two sheets of water-repellent carbon paper (CARBEL (registered trademark) CNW20B) and incorporated in a power generation cell. Hydrogen (utilization rate 77%), air (utilization rate 50%) at normal pressure ) And an initial power generation test was conducted at a cell temperature of 80 ° C. and a current density of 0.2 Acm ⁇ 2 and 0.8 Acm ⁇ 2 . A gas having a dew point of 80 ° C. was supplied to both the anode and the cathode. Table 2 shows the voltage values obtained there.
- CARBEL water-repellent carbon paper
- the power generation voltage of the treated catalyst (Examples 1 to 5) is improved, and the voltage tends to increase as the activation treatment time increases. Can take a look. Furthermore, the performance of the activated core-shell catalyst is equivalent to that of a Pt / C catalyst containing 4 times that of platinum (Comparative Example 2), and even if the amount of platinum is reduced to 1 ⁇ 4, the performance is sufficient. It can be confirmed that it is obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Inert Electrodes (AREA)
- Catalysts (AREA)
- Fuel Cell (AREA)
Abstract
Description
(2)該触媒が燃料電池用触媒であることを特徴とする(1)に記載の触媒。
(3)電気化学的手法によって作製されることを特徴とする(1)または(2)に記載の触媒。
(4)後処理によって含有ハロゲン量を5000ppm以下に軽減していることを特徴とする(1)~(3)のいずれか1項に記載の触媒。
(5)コアシェル触媒を分散溶媒に分散させる工程、
還元能を有する気体またはそれを含む混合気体を該分散溶媒中に吹き込んで、該コアシェル触媒から不純物を分離させる工程、および
該不純物を除去する工程、
を含む、該コアシェル触媒を活性化させる方法。
(6)該コアシェル触媒が燃料電池用触媒であることを特徴とする、(5)に記載の方法。
(7)該分散溶媒が水であることを特徴とする、(5)または(6)に記載の方法。
(8)該還元能を有する気体は、水素および/またはアルコールであることを特徴とする、(5)~(7)のいずれか1項に記載の方法。
(9)該吹き込みの間、該分散溶媒は70℃以上の温度で攪拌されることを特徴とする、(5)~(8)のいずれか1項に記載の方法。
(10)該不純物を分離させる工程の終了から1時間以内に、該不純物を除去する工程を終了させることを特徴とする、(5)~(9)のいずれか1項に記載の方法。
(11)該不純物を除去する工程では、デカンテーションにより該不純物を含む上澄み液と該コアシェル触媒とを分離し、該上澄み液を除去することを特徴とする、(5)~(10)のいずれか1項に記載の方法。
(12)該コアシェル触媒は、シェル部に白金、コバルト、鉄、ニッケル、ルテニウム、イリジウム、金の少なくとも一つを含むことを特徴とする、(5)~(11)のいずれか1項に記載の方法。
具体的には、本発明のコアシェル触媒を酸素極側に配置し、燃料電池としての評価をした場合に、従来の電極触媒(コアシェル構造を有さない触媒)を用いた場合と比較して触媒使用量を1/4に低減しても同等の電池特性を有することを確認した。つまり、燃料電池の実用化にあたっての大きな課題の一つとなっている白金などの触媒使用量を大幅低減することが可能となった。
本発明による触媒は、燃料電池用触媒に限定されるものではない。本発明による触媒を一般的用途の触媒として利用した場合でも、実験室レベルで確認された触媒活性を実運用上でも実現することができる。また、そのように一般的用途の触媒を活性化する方法が提供される。
本発明による触媒は、一般的用途の触媒であって、燃料電池用触媒に限定されるものではない。具体的には、本発明による触媒の用途は、自動車排ガス浄化触媒、石油精製触媒、脱硫触媒、脱硝触媒、合成ガス製造触媒、水素製造触媒、アルコール合成触媒、石炭液化触媒、石炭ガス化触媒、バイオマス資源化触媒、有機ケミカルズ触媒、無機ケミカルズ触媒、ファインケミカルズ触媒等である。特に燃料電池用触媒である場合は、電極触媒、脱硫触媒、燃料改質触媒、CO変性触媒、CO除去触媒等として用いることができる。
液相還元法では、コア粒子を担持した担体を懸濁させた溶液に、シェルを構成する元素を含む塩を添加する。水素や水素化ホウ素ナトリウムなどの還元剤を用いて、溶液中のシェルを構成する元素のイオンを還元し、コア粒子上にシェル構成元素を析出させて、コアシェル触媒を得ることができる。
アンダーポテンシャル析出法(UPD法)は、図1に示すような手順で行われる。触媒調製用電気化学セルを用意し、シェルを構成する元素を対極とする。セルに適当な濃度の卑金属イオン(4)を含む溶液を用意し、コア粒子(1)を担持した担体をこの溶液に浸す(S1)。この溶液を攪拌し、適当な電位を印加することによって、コア粒子(1)がセル本体電極(CBE)と接触し、UPDに必要な電荷を得て、コア粒子(1)の表面での卑金属イオン(4)の吸着が起き(S2)、卑金属のモノレイヤー(5)が形成される(S3)。次に、溶液中に残る卑金属イオン(4)を除去し、粒子表面の過剰な卑金属イオン(4)も除去する。このとき、卑金属のモノレイヤー(5)の酸化を抑制するために、窒素等の不活性雰囲気とする。シェル構成元素(より貴な金属)の塩を含む溶液をセルに加える(S4)。シェル構成元素のイオン(6)が酸化還元反応により卑金属のモノレイヤー(5)と置換される(S5)。シェル構成元素(より貴な金属)(6)は、卑金属から電子を受け取って酸化剤として作用する。同時に、シェル構成元素(より貴な金属)のイオンが還元して、表面の卑金属モノレイヤーと置換される。最終生成物は、シェル構成元素(より貴な金属)のモノレイヤーを有する、コアシェル触媒を得ることができる(S6)。
式(1) 被覆率(%)=
{[(コアのみ触媒のピーク面積)-(コアシェル触媒のピーク面積)]/(コアのみ触媒のピーク面積)}×100
コア-シェル型構造を有する触媒の中には、RDE(回転ディスク電極)を用いて評価される触媒活性においては非常に高い特性値が得られるが、燃料電池として評価した際には、RDEによって得られる触媒活性値により期待される触媒活性が得られず、電池特性に優れない触媒がある。本発明者が、鋭意検討した結果、その原因の一つが含有ハロゲン量であることを見いだした。含有ハロゲン量が5000ppm以下とすることにより、優れた電池特性を有する燃料電池を実現できる。含有ハロゲン量は、少ないほど好ましい。例えば、含有ハロゲン量は、好ましくは4000ppm以下であり、さらに好ましくは3000ppm以下、さらに好ましくは2000ppm以下、さらに好ましくは1500ppm以下、さらに好ましくは1000ppm以下、さらに好ましくは500ppm以下であってもよい。本発明による触媒は、含有ハロゲン量が影響を与え得るあらゆる反応系において、有利な効果をもたらす。
・コアシェル触媒を分散溶媒に分散させる工程、
・還元能を有する気体またはそれを含む混合気体を該分散溶媒中に吹き込んで、コアシェル触媒から不純物を分離させる工程、および
・不純物を除去する工程。
概して、温度が高くなるにつれて、吹き込まれる気体の還元能が高まる。そのため、溶媒の温度を70℃以上としてもよく、好ましくは80℃以上であってもよい。温度の上限は、溶媒の蒸気圧等の性質によって決定してもよい。溶媒が水の場合、温度の上限は100℃としてもよく、好ましくは90℃としてもよい。
攪拌は、気体の吹き込みによっても行われるが、さらに機械的な手段を追加して行ってもよい。機械的な攪拌手段は、特に制限されるものではなく、例えば、マグネティックスターラー、ホモジナイザー等を用いてもよい。
コアシェル触媒は特許文献1に準ずる方法で調製した。触媒調製用電気化学セルとして酸化ルテニウムコーティングを施したチタン製セルを用い、対極(CE)には白金黒付き白金を、参照極(RE)としてAg/AgCl電極を用い、電解液として0.5M硫酸を用い、Arを吹き込みながら、触媒調製を実施した(図2参照)。Pd担持カーボン(コア部を形成するPd粒子および担体を形成するカーボンブラック)と対極(白金)とが直接に接触することを避けるため、セルと対極はガラスフリットで分離して用いた。以下で用いるすべての電位は可逆水素電極(RHE)に対する電位で示す。調製用セルへ2gのPd担持カーボンを投入し、電位サイクルによりPd粒子表面のクリーニングと酸化物皮膜の除去を行った後、マグネティックスターラーにより電解液を攪拌させながら、銅(II)イオン濃度が50mMとなるように硫酸銅溶液を添加した。その後、電位を400mVに保持しPd粒子表面へCuのアンダーポテンシャル析出を行い、Pd粒子表面にCuモノレイヤーを形成した。電流がゼロ近傍で安定したところで溶液を激しく攪拌しながら、塩化白金酸(II)カリウムを50mMとなるようにゆっくりと添加した。このときPd粒子表面のCuモノレイヤーがPt原子と置換し、Ptモノレイヤーが形成される。得られたスラリーをろ過して、溶液と触媒を分離し、固形分として得られた触媒を洗浄するため、蒸留水を加えて攪拌した後、ろ過する操作を繰り返し行い、Pt/Pd/C触媒を調製した。得られたコアシェル触媒と、シェルで被覆する前の触媒について、サイクリックボルタモグラムを行って、シェルによる被覆率を求めた。得られたコアシェル触媒の被覆率はいずれも99%以上であった。
調製したPt/Pd/Cコアシェル触媒2gを蒸留水200mLに分散させ、温度を70℃に保ち、水素10%、窒素90%の混合気体を吹き込み、マグネティックスターラーで攪拌しながら7時間活性化処理を行った。その後、攪拌を止め、デカンテーションによって上澄み液と触媒を分離し、上澄み液を除去した。得られた沈殿へ蒸留水200mlを加え、デカンテーションによる洗浄を繰り返した。繰り返し洗浄は、活性化処理終了後1時間以内の範囲で行った。洗浄後の沈殿に蒸留水を加えて200mLの分散液とし、さらに上記と同様の手順で7時間活性化処理、デカンテーション、洗浄を行った。得られた沈殿を90℃で乾燥させ、活性化処理済みの触媒Aを得た。
調製したPt/Pd/Cコアシェル触媒2gを蒸留水200mLに分散させ、温度を70℃に保ち、水素10%、窒素90%の混合気体を吹き込み、マグネティックスターラーで攪拌しながら7時間活性化処理を行った。その後、攪拌を止め、デカンテーションによって上澄み液と触媒を分離し、上澄み液を除去した。得られた沈殿へ蒸留水200mlを加え、デカンテーションによる洗浄を繰り返した。繰り返し洗浄は、活性化処理終了後1時間以内の範囲で行った。得られた沈殿を90℃で乾燥させ、活性化処理済みの触媒Bを得た。
活性化処理時間を3時間とした以外は実施例2と同様の手順により、触媒Cを調製した。
活性化処理時間を1.5時間とした以外は実施例2と同様の手順により、触媒Dを調製した。
活性化処理時間を30分とした以外は実施例2と同様の手順により、触媒Eを調製した。
比較対象として活性化処理を施していないPt/Pd/Cコアシェル触媒を用いて評価を行った。
比較対象として市販のエヌ・イー ケムキャット株式会社製Pt担持カーボン触媒NEF-50を用いて評価を行った。
実施例、及び比較例で示した触媒の含有塩素量を株式会社ダイヤインスツルメンツ製クーロメトリー方式 塩素・硫黄分析装置 TOX-2100Hを用いて行った。調製したPtPd/Cコアシェル触媒もしくはPt/C触媒0.1gに対し0.9gのKetjen Black EC(含有塩素量は検出限界以下)を混合し、測定用サンプルとした。Ar(200mL/min)、O2(200mL/min)混合気体流通下、燃焼温度900℃にてサンプルを燃焼させ発生した塩素量を測定し、触媒に含まれる塩素の濃度を算出した。ここで得られた塩素濃度を表1に示す。活性化処理時間が増大するにつれて触媒の塩素含有量が低下し、本発明による触媒活性化処理により触媒中の塩素量を低減することができることが分かる。
以下に示す手順により、電池評価に用いる膜電極接合体(MEA)を作製した。
実施例、及び比較例で示したそれぞれの触媒とアルコールを固形分濃度が9wt%となるように混合した後、イオン交換樹脂溶液を担体カーボンに対して1.0の質量比率になるように加える。調製されたその混合液に超音波照射を行い、触媒担持カーボンを分散させ塗工液を作製した。得られた塗工液をePTFEに塗布・乾燥し、電極層を形成した。ここで形成した電極層の白金担持量について、Pt/Pd/Cコアシェル触媒(実施例1~5、比較例1)は白金担持量が0.1mg/cm2、Pt/C触媒(比較例2)は白金担持量が0.4mg/cm2となるようにそれぞれ作製した。そこで得られた電極層をカソード極として配置し、アノード極にはPRIMEA(登録商標)#5584(Pt担持量0.1mg/cm2)、電解質膜にはGORE-SELECT(登録商標)20μmを使用して熱プレスを行いデカール法にて膜電極接合体を作製した。
撥水化カーボンペーパー(CARBEL(登録商標)CNW20B)2枚の間に各膜電極接合体を配置して発電セルに組み込み、常圧にて水素(利用率77%),空気(利用率50%)を供給し、セル温度80℃にて電流密度0.2Acm-2、0.8Acm-2での初期発電試験を実施した。アノード・カソード共に露点80℃のガスを供給した。そこで得られた電圧値を表2に示す。活性化処理を施していない触媒(比較例1)と比較して、処理を施した触媒(実施例1~5)の発電電圧は向上し、また活性化処理時間が長いほど電圧が上昇する傾向を見て取ることができる。さらに活性化されたコア-シェル触媒の性能はその4倍の白金を含むPt/C触媒(比較例2)と同等の性能を示し、白金量を1/4に低減しても十分な性能を得られることを確認できる。
Claims (12)
- コアシェル構造を有する触媒であって、コア部材が高活性材料のシェル部材によって99%以上被覆されており、かつ含有ハロゲン量が5000ppm以下であることを特徴とする触媒。
- 該触媒が燃料電池用触媒であることを特徴とする請求項1に記載の触媒。
- 電気化学的手法によって作製されることを特徴とする請求項1または2に記載の触媒。
- 後処理によって含有ハロゲン量を5000ppm以下に軽減していることを特徴とする請求項1~3のいずれか1項に記載の触媒。
- コアシェル触媒を分散溶媒に分散させる工程、
還元能を有する気体またはそれを含む混合気体を該分散溶媒中に吹き込んで、該コアシェル触媒から不純物を分離させる工程、および
該不純物を除去する工程、
を含む、該コアシェル触媒を活性化させる方法。 - 該コアシェル触媒が燃料電池用触媒であることを特徴とする、請求項5に記載の方法。
- 該分散溶媒が水であることを特徴とする、請求項5または6に記載の方法。
- 該還元能を有する気体は、水素および/またはアルコールであることを特徴とする、請求項5~7のいずれか1項に記載の方法。
- 該吹き込みの間、該分散溶媒は70℃以上の温度で攪拌されることを特徴とする、請求項5~8のいずれか1項に記載の方法。
- 該不純物を分離させる工程の終了から1時間以内に、該不純物を除去する工程を終了させることを特徴とする、請求項5~9のいずれか1項に記載の方法。
- 該不純物を除去する工程では、デカンテーションにより該不純物を含む上澄み液と該
コアシェル触媒とを分離し、該上澄み液を除去することを特徴とする、請求項5~10のいずれか1項に記載の方法。 - 該コアシェル触媒は、シェル部に白金、コバルト、鉄、ニッケル、ルテニウム、イリジウム、金の少なくとも一つを含むことを特徴とする、請求項5~11のいずれか1項に記載の方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2911438A CA2911438C (en) | 2013-05-10 | 2014-05-09 | Fuel cell electrode catalyst and method for activating catalyst |
US14/889,555 US10158124B2 (en) | 2013-05-10 | 2014-05-09 | Fuel cell electrode catalyst and method for activating catalyst |
EP14794211.4A EP2995378B1 (en) | 2013-05-10 | 2014-05-09 | Fuel cell electrode catalyst and method for activating catalyst |
CN201480026192.1A CN105377428B (zh) | 2013-05-10 | 2014-05-09 | 燃料电池用电极催化剂、及使催化剂活化的方法 |
KR1020157034480A KR20160008225A (ko) | 2013-05-10 | 2014-05-09 | 연료 전지용 전극 촉매, 및 촉매를 활성화시키는 방법 |
KR1020177027156A KR102056527B1 (ko) | 2013-05-10 | 2014-05-09 | 연료 전지용 전극 촉매, 및 촉매를 활성화시키는 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-100602 | 2013-05-10 | ||
JP2013100602 | 2013-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014181873A1 true WO2014181873A1 (ja) | 2014-11-13 |
Family
ID=51867345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/062510 WO2014181873A1 (ja) | 2013-05-10 | 2014-05-09 | 燃料電池用電極触媒、及び触媒を活性化させる方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10158124B2 (ja) |
EP (1) | EP2995378B1 (ja) |
JP (1) | JP6554266B2 (ja) |
KR (2) | KR20160008225A (ja) |
CN (2) | CN111509242A (ja) |
CA (1) | CA2911438C (ja) |
WO (1) | WO2014181873A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015147311A1 (ja) * | 2014-03-28 | 2015-10-01 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック |
WO2015147308A1 (ja) * | 2014-03-28 | 2015-10-01 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック |
WO2015147310A1 (ja) * | 2014-03-28 | 2015-10-01 | エヌ・イー ケムキャット株式会社 | 電極用触媒の製造方法、電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体(mea)及び燃料電池スタック |
WO2015147309A1 (ja) * | 2014-03-28 | 2015-10-01 | エヌ・イー ケムキャット株式会社 | 電極用触媒の製造方法、電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体(mea)及び燃料電池スタック |
JP2017059530A (ja) * | 2015-09-18 | 2017-03-23 | エヌ・イーケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック |
ITUB20153968A1 (it) * | 2015-09-28 | 2017-03-28 | Breton Spa | Elettrocatalizzatori su matrici carbonitruriche |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5929942B2 (ja) | 2014-02-14 | 2016-06-08 | トヨタ自動車株式会社 | カーボン担持触媒 |
WO2016143784A1 (ja) * | 2015-03-10 | 2016-09-15 | 学校法人同志社 | 白金触媒の製造方法及びそれを用いた燃料電池 |
JP6653875B2 (ja) | 2015-03-10 | 2020-02-26 | 学校法人同志社 | 白金触媒の製造方法及びそれを用いた燃料電池 |
JP6269581B2 (ja) * | 2015-06-02 | 2018-01-31 | トヨタ自動車株式会社 | 燃料電池電極用コアシェル触媒の製造方法 |
JP6524856B2 (ja) * | 2015-08-20 | 2019-06-05 | エヌ・イーケムキャット株式会社 | 電極用触媒の製造方法 |
JP6441834B2 (ja) * | 2016-01-19 | 2018-12-19 | 国立大学法人信州大学 | コアシェル構造型ナノシート、電極触媒及び燃料電池用電極触媒の製造方法 |
KR101910254B1 (ko) * | 2016-12-07 | 2018-10-19 | 한국에너지기술연구원 | 코어-쉘 촉매의 제조방법 및 이의 제조장치 |
JP7102412B2 (ja) | 2017-12-22 | 2022-07-19 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド | 膜電極接合体の製造方法 |
JP7189072B2 (ja) * | 2019-04-09 | 2022-12-13 | トヨタ自動車株式会社 | 燃料電池用触媒、燃料電池、及び燃料電池用触媒の製造方法 |
CN111570788B (zh) * | 2020-05-21 | 2021-12-14 | 中国科学院福建物质结构研究所 | 一种双金属纳米材料、催化剂及其制备方法与应用 |
CN114068966B (zh) | 2020-07-31 | 2024-01-09 | 广州市香港科大霍英东研究院 | 一种核壳催化剂后处理方法和系统 |
WO2022125729A1 (en) * | 2020-12-09 | 2022-06-16 | Hyzon Motors Inc. | Catalyst, electrode, and method of preparing the same for pem fuel cells |
CN115149003B (zh) * | 2022-06-09 | 2024-08-06 | 东风汽车集团股份有限公司 | 多壳层结构的燃料电池用合金催化剂及其制备方法和应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005100713A (ja) * | 2003-09-22 | 2005-04-14 | Nissan Motor Co Ltd | 燃料電池用電極触媒およびその製造方法 |
JP2005135900A (ja) * | 2003-10-06 | 2005-05-26 | Nissan Motor Co Ltd | 燃料電池用電極触媒およびその製造方法 |
JP2007134295A (ja) * | 2005-11-09 | 2007-05-31 | Shin Etsu Chem Co Ltd | 燃料電池用電極触媒ならびにその製造方法 |
JP2010214330A (ja) * | 2009-03-18 | 2010-09-30 | Toyota Motor Corp | コア‐シェル粒子の製造方法 |
JP2012120949A (ja) * | 2010-12-06 | 2012-06-28 | Toyota Motor Corp | 白金/パラジウムコアシェル触媒の製造方法 |
JP2012143753A (ja) * | 2011-01-13 | 2012-08-02 | Samsung Electronics Co Ltd | 活性粒子含有触媒、その製造方法、該触媒を含んだ燃料電池、該活性粒子を含有するリチウム空気電池用電極、及び該電極を含んだリチウム空気電池 |
WO2012105978A1 (en) * | 2011-02-03 | 2012-08-09 | Utc Power Corporation | Method to prepare full monolayer of platinum on palladium based core nanoparticles |
US20120245019A1 (en) | 2011-03-23 | 2012-09-27 | Brookhaven Science Associates, Llc | Method and Electrochemical Cell for Synthesis of Electrocatalysts by Growing Metal Monolayers, or Bilayers and Treatment of Metal, Carbon, Oxide and Core-Shell Nanoparticles |
JP2012192334A (ja) * | 2011-03-16 | 2012-10-11 | Toyota Motor Corp | 触媒微粒子の製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB184473A (en) * | 1921-08-09 | 1924-02-11 | Johan Nicolaas Adolf Sauer | A process for purifying liquids |
US2012245A (en) | 1933-04-18 | 1935-08-20 | Meisel Press Mfg Company | Printing press |
US20060042957A1 (en) | 2004-08-27 | 2006-03-02 | Chunzhi He | Ion removal from particulate material using electrodeionization process and devices therefor |
KR101436410B1 (ko) * | 2006-08-30 | 2014-09-01 | 우미코레 아게 운트 코 카게 | 금속 또는 세라믹 코어 물질을 포함하는 코어/쉘형 촉매 입자 및 이의 제조방법 |
DE112009002507B8 (de) * | 2008-10-17 | 2018-08-30 | Toyota Jidosha Kabushiki Kaisha | Verstärkte brennstoffzellen-elektrolytmembran, membran-elektroden-anordnung und polymerelektrolytbrennstoffzelle, diese enthaltend und herstellungsverfahren dazu |
JP2011089143A (ja) | 2009-10-20 | 2011-05-06 | Japan Advanced Institute Of Science & Technology Hokuriku | 一元系及び二元系の立方体型金属ナノ粒子の製造方法 |
JP2011235215A (ja) | 2010-05-07 | 2011-11-24 | Mitsubishi Rayon Co Ltd | パラジウム含有担持触媒の製造方法、その触媒、およびα,β−不飽和カルボン酸の製造方法 |
WO2011145225A1 (ja) | 2010-05-18 | 2011-11-24 | トヨタ自動車株式会社 | 燃料電池用触媒の製造方法 |
CN104769759B (zh) * | 2012-11-07 | 2017-04-12 | 丰田自动车株式会社 | 制备用于燃料电池的催化剂的方法 |
CN103041823B (zh) | 2012-12-07 | 2015-05-13 | 大连科诺催化有限公司 | 一种核壳型超低钯铂燃料电池催化剂及制备方法 |
CN105122524B (zh) * | 2013-04-18 | 2017-07-18 | 丰田自动车株式会社 | 燃料电池用催化剂和其制造方法 |
-
2014
- 2014-05-09 KR KR1020157034480A patent/KR20160008225A/ko not_active Application Discontinuation
- 2014-05-09 CN CN202010347901.3A patent/CN111509242A/zh active Pending
- 2014-05-09 JP JP2014097915A patent/JP6554266B2/ja active Active
- 2014-05-09 CA CA2911438A patent/CA2911438C/en active Active
- 2014-05-09 WO PCT/JP2014/062510 patent/WO2014181873A1/ja active Application Filing
- 2014-05-09 EP EP14794211.4A patent/EP2995378B1/en active Active
- 2014-05-09 US US14/889,555 patent/US10158124B2/en active Active
- 2014-05-09 KR KR1020177027156A patent/KR102056527B1/ko active IP Right Grant
- 2014-05-09 CN CN201480026192.1A patent/CN105377428B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005100713A (ja) * | 2003-09-22 | 2005-04-14 | Nissan Motor Co Ltd | 燃料電池用電極触媒およびその製造方法 |
JP2005135900A (ja) * | 2003-10-06 | 2005-05-26 | Nissan Motor Co Ltd | 燃料電池用電極触媒およびその製造方法 |
JP2007134295A (ja) * | 2005-11-09 | 2007-05-31 | Shin Etsu Chem Co Ltd | 燃料電池用電極触媒ならびにその製造方法 |
JP2010214330A (ja) * | 2009-03-18 | 2010-09-30 | Toyota Motor Corp | コア‐シェル粒子の製造方法 |
JP2012120949A (ja) * | 2010-12-06 | 2012-06-28 | Toyota Motor Corp | 白金/パラジウムコアシェル触媒の製造方法 |
JP2012143753A (ja) * | 2011-01-13 | 2012-08-02 | Samsung Electronics Co Ltd | 活性粒子含有触媒、その製造方法、該触媒を含んだ燃料電池、該活性粒子を含有するリチウム空気電池用電極、及び該電極を含んだリチウム空気電池 |
WO2012105978A1 (en) * | 2011-02-03 | 2012-08-09 | Utc Power Corporation | Method to prepare full monolayer of platinum on palladium based core nanoparticles |
JP2012192334A (ja) * | 2011-03-16 | 2012-10-11 | Toyota Motor Corp | 触媒微粒子の製造方法 |
US20120245019A1 (en) | 2011-03-23 | 2012-09-27 | Brookhaven Science Associates, Llc | Method and Electrochemical Cell for Synthesis of Electrocatalysts by Growing Metal Monolayers, or Bilayers and Treatment of Metal, Carbon, Oxide and Core-Shell Nanoparticles |
Non-Patent Citations (1)
Title |
---|
See also references of EP2995378A4 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9525180B2 (en) | 2014-03-28 | 2016-12-20 | N. E. Chemcat Corporation | Production method of electrode catalyst, electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly (MEA), and fuel cell stack |
JP2015195207A (ja) * | 2014-03-28 | 2015-11-05 | エヌ・イーケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック |
WO2015147311A1 (ja) * | 2014-03-28 | 2015-10-01 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック |
US10256475B2 (en) | 2014-03-28 | 2019-04-09 | N.E. Chemcat Corporation | Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly, and fuel cell stack |
WO2015147309A1 (ja) * | 2014-03-28 | 2015-10-01 | エヌ・イー ケムキャット株式会社 | 電極用触媒の製造方法、電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体(mea)及び燃料電池スタック |
JP2015195210A (ja) * | 2014-03-28 | 2015-11-05 | エヌ・イーケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック |
JP2015195208A (ja) * | 2014-03-28 | 2015-11-05 | エヌ・イーケムキャット株式会社 | 電極用触媒の製造方法、電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体(mea)及び燃料電池スタック |
JP2015195209A (ja) * | 2014-03-28 | 2015-11-05 | エヌ・イーケムキャット株式会社 | 電極用触媒の製造方法、電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体(mea)及び燃料電池スタック |
US9437876B2 (en) | 2014-03-28 | 2016-09-06 | N.E. Chemcat Corporation | Production method of electrode catalyst, electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly (MEA), and fuel cell stack |
US9496561B2 (en) | 2014-03-28 | 2016-11-15 | N.E. Chemcat Corporation | Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly, and fuel cell stack |
WO2015147310A1 (ja) * | 2014-03-28 | 2015-10-01 | エヌ・イー ケムキャット株式会社 | 電極用触媒の製造方法、電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体(mea)及び燃料電池スタック |
WO2015147308A1 (ja) * | 2014-03-28 | 2015-10-01 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック |
JP2017059530A (ja) * | 2015-09-18 | 2017-03-23 | エヌ・イーケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック |
CN107210448A (zh) * | 2015-09-18 | 2017-09-26 | 恩亿凯嘉股份有限公司 | 电极用催化剂、气体扩散电极形成用组合物、气体扩散电极、膜/电极接合体以及燃料电池组 |
EP3240070A4 (en) * | 2015-09-18 | 2018-01-03 | N.E. Chemcat Corporation | Electrode catalyst, gas diffusion electrode-forming composition, gas diffusion electrode, membrane electrode assembly, and fuel cell stack |
US10115992B2 (en) | 2015-09-18 | 2018-10-30 | N.E. Chemcat Corporation | Electrode catalyst, gas diffusion electrode-forming composition, gas diffusion electrode, membrane electrode assembly, and fuel cell stack |
WO2017047465A1 (ja) * | 2015-09-18 | 2017-03-23 | エヌ・イー ケムキャット株式会社 | 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック |
CN107210448B (zh) * | 2015-09-18 | 2019-04-19 | 恩亿凯嘉股份有限公司 | 电极用催化剂、气体扩散电极形成用组合物、气体扩散电极、膜/电极接合体以及燃料电池组 |
ITUB20153968A1 (it) * | 2015-09-28 | 2017-03-28 | Breton Spa | Elettrocatalizzatori su matrici carbonitruriche |
WO2017055981A1 (en) * | 2015-09-28 | 2017-04-06 | Breton S.P.A. | Electrocatalysts on carbonitride matrices |
US10811691B2 (en) | 2015-09-28 | 2020-10-20 | Breton S.P.A. | Electrocatalysts on carbonitride matrices |
Also Published As
Publication number | Publication date |
---|---|
CA2911438C (en) | 2020-08-18 |
KR20160008225A (ko) | 2016-01-21 |
US10158124B2 (en) | 2018-12-18 |
CN105377428A (zh) | 2016-03-02 |
KR20170116174A (ko) | 2017-10-18 |
EP2995378A1 (en) | 2016-03-16 |
CA2911438A1 (en) | 2014-11-13 |
CN105377428B (zh) | 2020-05-22 |
US20160126560A1 (en) | 2016-05-05 |
JP6554266B2 (ja) | 2019-07-31 |
EP2995378A4 (en) | 2016-11-23 |
KR102056527B1 (ko) | 2019-12-16 |
JP2014239033A (ja) | 2014-12-18 |
CN111509242A (zh) | 2020-08-07 |
EP2995378B1 (en) | 2019-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6554266B2 (ja) | 燃料電池用電極触媒、及び触媒を活性化させる方法 | |
EP2917952B1 (en) | Method for producing a catalyst for fuel cells | |
US11682773B2 (en) | Electrocatalyst | |
KR101556580B1 (ko) | 촉매 미립자, 카본 담지 촉매 미립자, 촉매 합제, 및 전극의 각 제조 방법 | |
KR20170044146A (ko) | 연료 전지용 전극 촉매 및 그 제조 방법 | |
WO2005081340A1 (ja) | 燃料電池用担持触媒、その製造方法及び燃料電池 | |
EP3269449A1 (en) | Method for manufacturing platinum catalyst, and fuel cell using same | |
WO2011099957A1 (en) | Platinum monolayer on hollow, porous nanoparticles with high surface areas and method of making | |
Ávila‐Bolívar et al. | Electrochemical reduction of CO2 to formate on nanoparticulated Bi− Sn− Sb electrodes | |
Habibi et al. | Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media | |
Teppor et al. | Exploring different synthesis parameters for the preparation of metal-nitrogen-carbon type oxygen reduction catalysts | |
JPWO2006114942A1 (ja) | カーボン粒子、白金および酸化ルテニウムを含んでなる粒子およびその製造方法 | |
JPWO2019097631A1 (ja) | カソード、膜電極接合体及び電池 | |
JP2002248350A (ja) | 合金触媒の調製方法及び固体高分子型燃料電池の製造方法 | |
CN110575830A (zh) | 一种含铂催化剂及其制备方法与用途 | |
KR101391707B1 (ko) | 복합 촉매를 포함하는 고분자 전해질 멤브레인 연료전지 및 복합 촉매의 제조방법 | |
Habibi et al. | Platinum nanoparticles/functionalized carbon nanoparticles composites supported on the carbon-ceramic electrode and their electroactivity for ethanol oxidation | |
JP2022138872A (ja) | 燃料電池用電極触媒、その選定方法及びそれを備える燃料電池 | |
KR102183156B1 (ko) | 비대칭 코어-쉘 나노입자 구조에 기반한 산소환원용 전극촉매 및 그 제조방법 | |
JP5531313B2 (ja) | 複合電極触媒とその製造方法 | |
JPWO2006112368A1 (ja) | 燃料電池用電極触媒およびその製造方法 | |
JP2005174755A (ja) | 電極触媒、該触媒を用いた触媒担持電極およびmea | |
JP2019212611A (ja) | カソード、膜電極接合体及び電池 | |
JP2019053901A (ja) | 電極触媒の製造方法 | |
JP2021026961A (ja) | 燃料電池用触媒及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14794211 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2911438 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014794211 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14889555 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157034480 Country of ref document: KR Kind code of ref document: A |