WO2014181641A1 - 透光性基板、有機led素子、透光性基板の製造方法 - Google Patents

透光性基板、有機led素子、透光性基板の製造方法 Download PDF

Info

Publication number
WO2014181641A1
WO2014181641A1 PCT/JP2014/060550 JP2014060550W WO2014181641A1 WO 2014181641 A1 WO2014181641 A1 WO 2014181641A1 JP 2014060550 W JP2014060550 W JP 2014060550W WO 2014181641 A1 WO2014181641 A1 WO 2014181641A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
coating layer
transparent conductive
substrate
Prior art date
Application number
PCT/JP2014/060550
Other languages
English (en)
French (fr)
Inventor
尚洋 眞下
木原 直人
和伸 前重
藤原 晃男
政洋 岸
中村 伸宏
衛 礒部
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015515827A priority Critical patent/JP6582981B2/ja
Priority to CN201480025507.0A priority patent/CN105189393B/zh
Priority to EP14794913.5A priority patent/EP2995595B1/en
Publication of WO2014181641A1 publication Critical patent/WO2014181641A1/ja
Priority to US14/933,156 priority patent/US10501369B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/361Coatings of the type glass/metal/inorganic compound/metal/inorganic compound/other
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/22Deposition from the vapour phase
    • C03C25/226Deposition from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0084Producing gradient compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/948Layers comprising indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/153Deposition methods from the vapour phase by cvd by plasma-enhanced cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/155Deposition methods from the vapour phase by sputtering by reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/06Substrate layer characterised by chemical composition
    • C09K2323/061Inorganic, e.g. ceramic, metallic or glass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a translucent substrate, an organic LED element, and a method for producing a translucent substrate.
  • Organic LED (Light Emitting Diode) elements are widely used for displays, backlights, lighting applications, and the like.
  • a general organic LED element has a first electrode (anode) placed on a glass substrate, a second electrode (cathode), and an organic light emitting layer placed between these electrodes.
  • a voltage is applied between the electrodes, holes and electrons are injected from each electrode into the organic light emitting layer.
  • the holes and electrons are recombined in the organic light emitting layer, binding energy is generated, and the organic light emitting material in the organic light emitting layer is excited by this binding energy. Since light is emitted when the excited light emitting material returns to the ground state, a light emitting (LED) element can be obtained by utilizing this.
  • a transparent conductive layer such as ITO (Indium Tin Oxide) is used for the first electrode, that is, the anode, and a metal electrode such as aluminum and silver is used for the second electrode, that is, the cathode. Layers are used.
  • ITO Indium Tin Oxide
  • a transparent conductive layer is formed as a first electrode on a glass substrate containing Bi or the like.
  • a member formed by forming a transparent conductive layer on a glass substrate is often referred to as a “translucent substrate.”
  • the “translucent substrate” reaches, for example, a product such as an organic LED element. (Used as the previous semi-finished product.)
  • optical glass containing Bi 2 O 3 as a main component is colored (black) by reducing bismuth in a glass component in a non-oxidizing atmosphere to precipitate bismuth suboxide, metal bismuth, and the like. ) And surface roughness occur. And such coloring and surface roughness are considered to cause defects on the glass surface and reduce the transmittance.
  • a glass substrate containing Bi or the like may be discolored depending on the surrounding environment.
  • a phenomenon in which coloring occurs in the glass substrate is often recognized when an ITO film is formed on the glass substrate.
  • Such coloring of the glass substrate greatly affects the characteristics of the light-transmitting substrate and further the organic LED element.
  • light generated in the organic light emitting layer is absorbed inside the element during use, which may cause a problem that the light extraction efficiency is greatly reduced.
  • This invention is made
  • Another object of the present invention is to provide a method for producing a translucent substrate in which the occurrence of coloring is significantly suppressed.
  • a glass substrate In the present invention, a glass substrate; A scattering layer containing at least one element selected from the group consisting of Bi, Ti, and Sn formed on the glass substrate; A coating layer formed on the scattering layer; A transparent conductive film formed on the coating layer, A translucent substrate is provided in which the coating layer is formed by a dry film forming method.
  • the coating layer may contain an oxide containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W.
  • the coating layer may contain a nitrogen oxide containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W. .
  • the coating layer may contain a nitride containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W.
  • the transparent conductive film may have a higher degree of oxidation on the side closer to the glass substrate than on the side farther from the glass substrate.
  • the transparent conductive film may be oxidized continuously or discontinuously from the side closer to the glass substrate toward the side farther from the glass substrate. Good.
  • the transparent conductive film may have a thickness of 2 nm to 500 nm.
  • the transparent conductive film is composed of at least two layers, a first transparent conductive layer on the side close to the glass substrate, and a second transparent on the side far from the glass substrate. Having a conductive layer;
  • the first transparent conductive layer may be in a state where the degree of oxidation is higher than that of the second transparent conductive layer.
  • the transparent conductive film may have a resistivity of less than 2.38 ⁇ 10 ⁇ 4 ⁇ cm.
  • the transparent conductive film may have an extinction coefficient of 0.0086 or less.
  • an organic LED element which has a glass substrate, a 1st electrode layer, an organic light emitting layer, and a 2nd electrode layer in this order, An organic LED element provided with the above-mentioned translucent board
  • a method for producing a translucent substrate comprising a glass substrate, a coating layer formed on the glass substrate, and a transparent conductive film formed on the coating layer, Providing a glass substrate containing at least one element selected from the group consisting of Bi, Ti, and Sn; Forming a coating layer on the glass substrate by a dry film-forming method; Depositing a transparent conductive film on the coating layer; A method for producing a light-transmitting substrate is provided.
  • a transparent substrate having a glass substrate, a scattering layer formed on the glass substrate, a coating layer formed on the scattering layer, and a transparent conductive film formed on the coating layer.
  • a method of manufacturing a light substrate A step of disposing a scattering layer having a base material made of glass and a plurality of scattering materials dispersed in the base material on a glass substrate, wherein the scattering layer is made of Bi, Ti, and Sn Including at least one element selected from the group; Forming a coating layer on the scattering layer by a dry film-forming method; Depositing a transparent conductive film on the coating layer; A method for producing a light-transmitting substrate is provided.
  • the coating layer contains an oxide containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W. Also good.
  • the coating layer includes a nitrogen oxide containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W. May be.
  • the coating layer includes a nitride containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W. Also good.
  • the transparent conductive film in the step of forming the transparent conductive film, is oxidized on the side closer to the glass substrate than on the side farther from the glass substrate.
  • the film may be formed so as to be in a high state.
  • the transparent conductive film in the step of forming the transparent conductive film, is oxidized from the side closer to the glass substrate toward the side farther from the glass substrate. May decrease continuously or discontinuously.
  • the transparent conductive film in the step of forming the transparent conductive film, may have a thickness of 2 nm to 500 nm.
  • the step of forming the transparent conductive film comprises: (I) depositing a first transparent conductive layer; and thereafter (Ii) depositing a second transparent conductive layer on top of the first transparent conductive layer;
  • the first transparent conductive layer may be formed such that the degree of oxidation is higher than that of the second transparent conductive layer.
  • the transparent conductive film may have a resistivity of less than 2.38 ⁇ 10 ⁇ 4 ⁇ cm.
  • the transparent conductive film may have an extinction coefficient of 0.0086 or less.
  • the present invention it is possible to provide a translucent substrate in which the occurrence of coloring is significantly suppressed, and an organic LED element having such a translucent substrate. Moreover, in this invention, the manufacturing method of the translucent board
  • an ITO film is used as the transparent conductive film.
  • a glass substrate containing Bi or the like there is a risk of coloring the scattering layer.
  • substrate of this embodiment it is not limited to an ITO film.
  • Various transparent conductive films can be applied instead of an ITO film.
  • the transparent conductive film preferably satisfies the various conditions (parameters) described with the ITO film as an example. That is, “ITO film” and “ITO layer” in the following text can be read as “transparent conductive film” and “transparent conductive layer”.
  • the transparent conductive film in addition to the above-mentioned ITO film, for example, SnO 2 (tin oxide) film, GZO (gallium zinc oxide) film, IZO (indium zinc oxide) film, AZO (Al-doped ZnO) film, Ta-doped Examples thereof include a SnO 2 film and a Ti-doped In 2 O 3 film.
  • FIG. 1 is a schematic cross-sectional view of a first light-transmitting substrate according to an embodiment of the present invention.
  • a first light-transmissive substrate 100 is formed on a glass substrate 110, a coating layer 120 formed on the glass substrate 110, and the coating layer 120. And an ITO film 130.
  • the glass substrate 110 contains at least one element of bismuth (Bi), titanium (Ti), and tin (Sn).
  • a coating layer 120 is provided on the glass substrate 110, that is, between the glass substrate 110 and the ITO film 130.
  • the covering layer 120 is a film formed by a dry film forming method.
  • the glass substrate is colored.
  • Such coloring of the glass substrate greatly affects the characteristics of the translucent substrate and further the organic LED element.
  • light generated in the organic light emitting layer is absorbed inside the element during use, which may cause a problem that the light extraction efficiency is greatly reduced.
  • paragraph [0130] of International Publication No. 2009/017035 shows the relationship between the transmittance of the scattering layer base material and the light extraction efficiency of the organic LED element. As the absorption of the scattering layer becomes stronger, the organic LED It has been shown that the light extraction efficiency decreases. Therefore, in the translucent substrate of the present embodiment, the light extraction efficiency from the organic LED element is improved by suppressing the coloring of the glass substrate and the scattering layer described later and suppressing the absorption of the glass substrate and the scattering layer. can do.
  • the glass substrate contains a specific component, more specifically, the glass substrate is more specifically selected from bismuth (Bi), titanium (Ti), and tin (Sn).
  • the glass substrate is more specifically selected from bismuth (Bi), titanium (Ti), and tin (Sn).
  • bismuth Bi
  • Ti titanium
  • Sn tin
  • the atmosphere when forming the ITO film is an atmosphere with relatively little oxygen. This is because if the ITO film is formed in an “oxygen-excess” atmosphere, the conductivity of the obtained ITO film is lowered and it becomes difficult to use it as an electrode of the element.
  • the coloration of the glass substrate is caused by oxygen deficiency in the environment to which the glass substrate is exposed when an ITO film is formed on the glass substrate. That is, in the process of forming the ITO film, since the vicinity of the glass substrate becomes an atmosphere having weak oxidizability, the reducible elements in the glass substrate are reduced, and thereby the glass substrate is considered to be colored.
  • the coating layer 120 formed by the dry film forming method is provided on the surface of the glass substrate 110 facing the ITO film 130.
  • a film formed by a wet film forming method has fine pores in the film because a solvent (dispersion medium) evaporates in a drying process or the like.
  • a film formed by a dry film forming method does not accompany evaporation of the solvent (dispersion medium), and thus can be a dense film.
  • the coating layer 120 which is such a dense film, on the surface of the glass substrate 110 facing the ITO film 130, the coating layer 120 is included in the glass substrate 110 depending on the atmosphere in which the ITO film 130 is formed.
  • the reduction reaction of the reducible element can be suppressed. This is considered because the coating layer 120 functions as a barrier layer.
  • the coating layer 120 formed by the dry film formation method an atmosphere having a low oxidizability, which is an atmosphere when forming the ITO film 130, and the reducibility included in the glass substrate 110 are used.
  • the probability of contact with an element can be reduced. For this reason, it becomes possible to suppress generation
  • the covering layer 120 also functions as an anti-etching barrier that prevents elution and deterioration of the glass substrate 110 when the ITO film 130 is patterned, for example.
  • the dry film forming method for forming the coating layer 120 is not particularly limited, and examples thereof include a sputtering method and a plasma CVD method.
  • the film can be formed in an atmosphere containing argon and / or oxygen as an atmosphere for forming the film.
  • the obtained coating layer can be a film containing argon.
  • the oxygen concentration in the atmosphere during the formation of the coating layer 120 is not particularly problematic.
  • the oxygen concentration in the atmosphere when forming the coating layer 120 is preferably 10 vol% or more, and more preferably 15 vol% or more.
  • the upper limit value of the oxygen concentration is not particularly limited, and can be selected depending on the material of the coating layer to be formed. For example, it is preferable to set it as 90 vol% or less, and it is more preferable to set it as 80 vol% or less.
  • the coating layer 120 may be formed by a dry film formation method as described above, and the material and configuration thereof are not particularly limited. Moreover, the coating layer 120 does not need to be composed of only one type of substance, and may include a plurality of substances. It can also be composed of a plurality of layers.
  • the coating layer 120 can include an oxide containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W. Further, the coating layer 120 can include a nitrogen oxide containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W.
  • the covering layer 120 may include a nitride containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W.
  • the covering layer 120 preferably has a filling rate of, for example, 85% or more, and more preferably 90% or more.
  • the upper limit value in this case is not particularly limited, and can be, for example, 100% or less.
  • the filling rate of the coating layer 120 is in the above range, it is particularly preferable because the reduction reaction of the reducible element contained in the glass substrate 110 due to the atmosphere when forming the ITO film 130 can be suppressed.
  • the filling rate can be calculated by dividing the measured density by the theoretical density calculated from the composition of the coating layer and multiplying by 100.
  • it can be calculated by dividing the measured density of the film measured using an X-ray reflectometer by the theoretical density calculated from the composition of the film and multiplying the obtained value by 100.
  • the surface roughness (arithmetic mean roughness) Ra of the surface on which the ITO film 130 of the coating film 120 is laminated is preferably 2.0 nm or less, and more preferably 1.0 nm or less. In addition, it does not specifically limit about a lower limit, For example, what is necessary is just 0 nm or more.
  • the surface roughness Ra is in the above range, it indicates that the surface of the coating layer 120 on which the ITO film 130 is laminated is smooth, which is preferable because ITO crystal nuclei grow well.
  • the refractive index of the coating layer 120 is preferably close to the refractive index of the glass substrate 110. This is because when the difference between the refractive index of the glass substrate 110 and the refractive index of the coating layer 120 is large, the emission color of the organic LED may vary due to the influence of interference due to the film thickness variation of the coating layer 120. is there. On the other hand, when the refractive index of the glass substrate 110 and the refractive index of the coating layer 120 are close, the interference condition does not change even if there is a variation in the film thickness of the coating layer 120, and the emission color of the organic LED is not affected. is there.
  • the difference between the refractive index of the glass substrate 110 and the refractive index of the covering layer 120 with respect to light having a wavelength of 550 nm is preferably from minus 0.15 to plus 0.15, preferably from minus 0.1 to plus 0.1. More preferably, it is more preferably minus 0.05 or more and plus 0.05 or less.
  • the coating layer has a property that it is difficult to be eroded by an etching solution for ITO film (for example, a mixed solution of 50 at% hydrochloric acid and 50 at% ferric chloride). This is because if the coating layer is eroded during the ITO patterning, the base material of the scattering layer and the glass substrate may also be eroded by the etching solution and may not be used as an element. Therefore, a material that is easily soluble in an acidic liquid such as zinc oxide is not suitable for the coating layer.
  • an etching solution for ITO film for example, a mixed solution of 50 at% hydrochloric acid and 50 at% ferric chloride.
  • the ITO film 130 functions as one electrode (anode) when a finished product such as an organic LED element is formed from the first light-transmissive substrate 100.
  • the ITO film 130 has a first surface 132 on the side close to the glass substrate 110 and a second surface 134 on the side far from the glass substrate 110.
  • the configuration of the ITO film 130 is not particularly limited.
  • the ITO film 130 may be formed in an atmosphere with relatively little oxygen in order to obtain predetermined conductivity. This is because the first light-transmitting substrate according to the present embodiment is provided with the above-described coating layer 120, so that the coloring of the glass substrate can be suppressed regardless of the film formation conditions of the ITO film 130.
  • the ITO film 130 may be formed in an atmosphere with relatively little oxygen, and the ITO film having a substantially uniform composition without changing the film forming conditions when forming the ITO film 130. 130.
  • the ITO film 130 has a higher degree of oxidation (degree of oxidation) on the first surface 132 side than on the second surface 134 side.
  • the conductivity on the second surface 134 side is higher than that on the first surface 132 side.
  • the atmosphere for forming the ITO film is usually an atmosphere with relatively little oxygen, and it is considered that the glass substrate has been colored due to the atmosphere.
  • the color of the glass substrate is suppressed by providing the predetermined coating layer 120.
  • the initial stage In this stage the film-forming atmosphere is set to a condition of “oxygen excess” as compared with the conventional case.
  • the atmosphere in the vicinity of the glass substrate at the time of film formation becomes stronger oxidizing property, and the reduction of the reducible element in the glass substrate can be particularly suppressed.
  • the coloration of the glass substrate can be further suppressed.
  • the entire ITO film is formed under such “oxygen-excess” conditions, the resistance of the ITO film becomes high as described above, and the ITO film is used as an element electrode. It becomes impossible to do.
  • first ITO portion the ITO film portion having a high degree of oxidation
  • second ITO portion an ITO film portion having a low degree of oxidation
  • the first ITO portion 136 is also a reducible element contained in the glass substrate 110 when the second ITO portion 138 is formed. It functions as a barrier layer against the reduction reaction. Therefore, even when the second ITO portion 138 is formed in a conventional oxygen-deficient environment, it is possible to particularly suppress the reduction of the reducible element in the glass substrate 110. As a result, the coloring of the glass substrate 110 is more significantly suppressed.
  • the second ITO portion 138 has higher conductivity than the first ITO portion 136, the resistance increase of the ITO film 130 as a whole can be suppressed.
  • the coloring of the glass substrate 110 can be further suppressed, and the increase in the resistance of the ITO film 130 can also be suppressed.
  • the ITO film 130 includes the first ITO portion 136 having a high degree of oxidation and the second ITO portion 138 having a low degree of oxidation, the first ITO portion 136 to the second ITO portion.
  • the mode of change in the degree of oxidation up to 138 is not particularly limited.
  • the degree of oxidation of the ITO film 130 may vary continuously from the first surface 132 to the second surface 134, or it may vary discontinuously (eg, stepwise) and continuously. You may change in the aspect which combined the part and the discontinuous part. When the degree of oxidation changes continuously, the change may be linear or curvilinear. Alternatively, a third ITO portion having the lowest degree of oxidation may exist between the first ITO portion 136 and the second ITO portion 138.
  • first ITO portion 136 and the second ITO portion 138 are merely convenient, and the two do not necessarily need to be clearly identifiable.
  • the “oxidation degree” of the ITO film 130 can be relatively evaluated, for example, by performing X-ray photoelectron spectroscopy (XPS) analysis on each of the two comparison targets.
  • XPS X-ray photoelectron spectroscopy
  • the resistivity of the ITO film 130 is not particularly limited, but may be less than 2.38 ⁇ 10 ⁇ 4 ⁇ cm, for example.
  • the resistivity of the ITO film 130 here means the resistivity of the entire ITO film 130. Therefore, even in the case of a configuration in which a film is formed without changing the film formation conditions and has a substantially uniform composition, even in a configuration with a different degree of oxidation in the ITO film (non-uniform configuration),
  • the resistivity of the ITO film 130 is preferably in the above range, and the film configuration is not limited.
  • the thickness of the ITO film 130 is not particularly limited, and can be selected according to the power to be supplied, the substrate conveyance speed, etc., but may have a thickness of 2 nm to 520 nm, for example, and more preferably The thickness can be 2 nm to 500 nm.
  • the ITO film preferably has an extinction coefficient of 0.0086 or less.
  • the extinction coefficient can be evaluated by, for example, ellipsometry, and the value varies depending on the atmosphere when forming the ITO film.
  • the fact that the extinction coefficient of the ITO film is in the above range means that the film was formed in an atmosphere with sufficiently low oxygen when forming at least a part of the ITO film. For this reason, when the ITO film satisfies the above-mentioned definition for the extinction coefficient, it indicates that the hole resistivity of the ITO film is sufficiently low.
  • the extinction coefficient is a value when the entire ITO film is measured regardless of whether the ITO film is a single layer or a multilayer structure as described later. In this specification, the extinction coefficient is defined as that at a wavelength of 550 nm.
  • the ITO film can be various transparent conductive films.
  • the transparent conductive film preferably satisfies the same conditions as those of the above-mentioned ITO film. Since the transparent conductive film has already been described, the description thereof is omitted here.
  • FIG. 2 shows a schematic cross-sectional view of a second light-transmitting substrate according to an embodiment of the present invention.
  • the second translucent substrate 200 is basically configured in the same manner as the first translucent substrate 100. Therefore, in FIG. 2, the same reference numerals as those in FIG. 1 plus 100 are used for the same members as in FIG.
  • the second translucent substrate 200 shown in FIG. 2 is different from the ITO film 130 in FIG. 1 in the configuration of the ITO film 230. That is, the ITO film 230 having the first surface 232 and the second surface 234 has a multilayer structure having at least two layers.
  • the ITO film 230 includes a first ITO layer 235 disposed on the side close to the glass substrate 210 and a second ITO layer 237 disposed on the side far from the glass substrate 210.
  • the configuration of the first ITO layer 235 and the second ITO layer 237 is not particularly limited.
  • the degree of oxidation of the first ITO layer 235 and the second ITO layer 237 may be the same, or one of the ITO layers may have a higher degree of oxidation than the other ITO layer.
  • the first ITO layer 235 has a higher degree of oxidation than the second ITO layer 237.
  • the second ITO layer 237 has higher conductivity than the first ITO layer 235.
  • the first ITO layer 235 has a higher degree of oxidation than the second ITO layer 237
  • the first ITO layer 235 is formed when the second ITO layer 237 is formed.
  • the film is formed in an atmosphere having a lower oxidizing property than usual.
  • the first ITO layer 235 suppresses the reduction reaction of the reducible element contained in the glass substrate 210 due to the atmosphere when forming the second ITO layer 237. Function as. For this reason, discoloration of the glass substrate 210 can be further suppressed, which is preferable. Further, by providing the second ITO layer 237 having a low degree of oxidation, an effect of suppressing the increase in resistance of the ITO film 230 can be obtained.
  • the ITO film 230 has a two-layer structure, but the ITO film 230 may have a multilayer structure of three or more layers. In this case, it is preferable that the ITO film closest to the glass substrate is configured to have a higher degree of oxidation than the other ITO films.
  • the first ITO layer 235 may have a thickness of 1 nm to 20 nm, for example.
  • the second ITO layer 237 may have a thickness of 1 nm to 500 nm, for example.
  • the total thickness of the ITO film 230 may be, for example, in the range of 2 nm to 520 nm, and more preferably 2 nm to 500 nm.
  • the resistivity of the entire ITO film 230 may be, for example, less than 2.38 ⁇ 10 ⁇ 4 ⁇ cm.
  • the resistivity of the ITO film 230 means the resistivity of the ITO film 230 as a whole.
  • the ITO film preferably has an extinction coefficient of 0.0086 or less. Since the extinction coefficient has been described in the first light-transmitting substrate, it is omitted here.
  • the ITO film can be various transparent conductive films.
  • the transparent conductive film preferably satisfies the same conditions as those of the above-mentioned ITO film.
  • the first ITO layer 235 and the second ITO layer 237 can be a first transparent conductive layer and a second transparent conductive layer, respectively.
  • the composition of the first transparent conductive layer and the second transparent conductive layer may be different.
  • a scattering layer for scattering light is installed on the surface of a glass substrate for installing an ITO film. Has been proposed.
  • such a scattering layer is composed of, for example, a glass base material and a scattering material dispersed in the base material. Therefore, even when the scattering layer made of glass contains the above-mentioned “reducible element”, the scattering layer is colored when the ITO film is formed on the scattering layer. Problems can arise.
  • FIG. 3 shows a schematic cross-sectional view of a third light-transmitting substrate 300 according to an embodiment of the present invention.
  • the third translucent substrate 300 includes a glass substrate 310, a scattering layer 340, a covering layer 320, and an ITO film 330.
  • the glass substrate 310 does not necessarily include the reducible element described above. Therefore, in the third light-transmitting substrate, the glass substrate 310 contains at least one element of bismuth (Bi), titanium (Ti), and tin (Sn), that is, a “reducible element”. It does not have to be included.
  • the scattering layer 340 includes a glass base material 341 having a first refractive index, and a plurality of scattering materials 342 having a second refractive index different from the base material 341 and dispersed in the base material 341. Consists of.
  • the scattering layer 340 includes at least one element of bismuth (Bi), titanium (Ti), and tin (Sn), that is, a “reducible element”. Note that the scattering layer 340 contains a reducible element means that at least one of the base material 341 and the scattering material 342 constituting the scattering layer 340 contains a reducible element.
  • a covering layer 320 formed by a dry film forming method is provided between the scattering layer 340 and the ITO film 330. Since the coating layer 320 is formed by a dry film formation method, it is a dense film.
  • the dry film forming method for forming the coating layer 320 is not particularly limited, and examples thereof include a sputtering method and a plasma CVD method. Note that when the coating layer 320 is formed by a sputtering method, film formation can be performed in an atmosphere containing argon and / or oxygen as an atmosphere for the film formation. In particular, from the viewpoint of productivity, it is preferable to perform film formation in an atmosphere containing argon. In this case, since the argon in the atmosphere is mixed into the formed coating layer 320, the obtained coating layer can be a film containing argon.
  • the oxygen concentration in the atmosphere during the formation of the coating layer 320 is not particularly problematic.
  • the oxygen concentration in the atmosphere when forming the coating layer 320 is preferably 10 vol% or more, and more preferably 15 vol% or more.
  • the upper limit value of the oxygen concentration is not particularly limited, and can be selected depending on the material of the coating layer to be formed. For example, it is preferable to set it as 90 vol% or less, and it is more preferable to set it as 80 vol% or less.
  • the coating layer 320 may be formed by the dry film forming method as described above, and the material and configuration thereof are not particularly limited. Moreover, the coating layer 320 does not need to be composed of only one type of substance, and may include a plurality of substances. It can also be composed of a plurality of layers.
  • the coating layer 320 can include an oxide containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W.
  • the coating layer 320 can include a nitrogen oxide containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W.
  • the coating layer 320 can include a nitride containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W.
  • the covering layer 320 preferably has a filling rate of, for example, 85% or more, and more preferably 90% or more.
  • the upper limit value in this case is not particularly limited, and can be, for example, 100% or less.
  • the surface roughness (arithmetic average roughness) Ra of the surface on which the ITO film 330 of the coating film 320 is laminated is preferably 2.0 nm or less, and more preferably 1.0 nm or less. In addition, it does not specifically limit about a lower limit, For example, what is necessary is just 0 nm or more.
  • the surface roughness Ra is in the above range, it indicates that the surface of the coating layer 320 on which the ITO film 330 is laminated is smooth, which is preferable because ITO crystal nuclei grow well.
  • the refractive index of the covering layer 320 is preferably close to the refractive index of the base material 341. This is because when the difference between the refractive index of the base material 341 and the refractive index of the coating layer 320 is large, the emission color of the organic LED may vary due to the influence of interference due to the film thickness variation of the coating layer 320. is there. On the other hand, when the refractive index of the base material 341 and the refractive index of the coating layer 320 are close, the interference condition does not change even if the film thickness of the coating layer 320 varies, and the emission color of the organic LED is not affected. is there.
  • the difference between the refractive index of the base material 341 and the refractive index of the coating layer 320 with respect to light having a wavelength of 550 nm is preferably ⁇ 0.15 or more and 0.15 or less, and is ⁇ 0.1 or more and 0.1 or less. More preferably, it is more preferably minus 0.5 or more and plus 0.5 or less.
  • the coating layer 320 which is a dense film, on the surface of the scattering layer 340 facing the ITO film 330, the reducible element contained in the scattering layer 340 due to the atmosphere when the ITO film 330 is formed.
  • the reduction reaction can be suppressed. This is considered because the coating layer 320 functions as a barrier layer.
  • the coating layer 320 formed by the dry film formation method an atmosphere having a low oxidizability, which is an atmosphere when forming the ITO film 330, and the reducibility included in the scattering layer 340.
  • the probability of contact with an element can be reduced. For this reason, generation
  • the covering layer 320 also functions as an anti-etching barrier that prevents the scattering layer 340 from eluting or degrading, for example, during pattern processing of the ITO film 330.
  • the ITO film 330 functions as one electrode (anode) when a finished product such as an organic LED element is formed from the third translucent substrate 300.
  • the ITO film 330 has a first surface 332 on the side close to the glass substrate 310 and a second surface 334 on the side far from the glass substrate 310.
  • the configuration of the ITO film 330 is not particularly limited, and may be various forms as described for the first and second light-transmitting substrates, for example.
  • 3 shows an example in which the ITO film 330 is composed of two layers.
  • the present invention is not limited to such an embodiment, and may be configured by a single layer or two or more layers as described later.
  • the ITO film 330 can be composed of a single layer (single layer) ITO film having a substantially uniform composition without changing the film forming conditions during the film forming process.
  • the ITO film 330 is oxidized on the first surface 332 side compared to the second surface 334 side.
  • a high degree (degree of oxidation) can be achieved.
  • the conductivity on the second surface 334 side is higher than that on the first surface 332 side.
  • the film forming atmosphere is set to an “oxygen-excess” condition in the initial stage in the ITO film forming process.
  • the atmosphere in the vicinity of the scattering layer at the time of film formation becomes more oxidizing, and the reduction of the reducible element in the scattering layer can be particularly suppressed.
  • the film formation condition is changed to, for example, a normal one. It is preferable to form an ITO film part (second ITO part) "low oxidation degree" to constitute the entire ITO film.
  • the first ITO portion When the ITO film 330 is formed by such a method, as described in the first light-transmitting substrate, in addition to the covering layer 320, the first ITO portion also forms the second ITO portion. Furthermore, it functions as a barrier layer against the reduction reaction of the reducible element contained in the scattering layer 340. For this reason, even if the second ITO portion is formed in an oxygen-deficient environment, the reduction of the reducible element in the scattering layer 340 can be particularly suppressed. As a result, coloring of the scattering layer 340 is more significantly suppressed.
  • the second ITO portion has higher conductivity than the first ITO portion, it is possible to suppress an increase in resistance of the ITO film 330 as a whole.
  • the coloring of the glass substrate 310 can be further suppressed, and the increase in resistance of the ITO film 330 can also be suppressed.
  • the interval between the first ITO portion and the second ITO portion is not particularly limited.
  • the degree of oxidation of the ITO film 330 may vary continuously from the first surface 332 to the second surface 334, or may vary discontinuously (eg, stepwise) You may change in the aspect which combined the part and the discontinuous part. When the degree of oxidation changes continuously, the change may be linear or curvilinear. Alternatively, a third ITO portion having the lowest degree of oxidation may be present between the first ITO portion and the second ITO portion.
  • first ITO portion and “second ITO portion” are merely for convenience, and it is not always necessary to clearly distinguish them. .
  • the ITO film 330 can have a multilayer structure. For example, as shown in FIG. 3, it is composed of at least two layers, and has two layers of a first ITO layer 335 near the glass substrate 310 and a second ITO layer 337 far from the glass substrate. can do.
  • the first ITO layer 335 may be in a state of higher degree of oxidation than the second ITO layer 337. preferable. In such a configuration, the second ITO layer 337 has higher conductivity than the first ITO layer 335.
  • the first ITO layer 335 is formed in an atmosphere of “oxygen-excess” as compared with the conventional case, and the reduction target in the scattering layer 340 is formed during the formation of the first ITO layer 335. It is possible to significantly suppress the reduction of the sex element. Then, the second ITO layer 337 is formed in an atmosphere with less oxygen compared to the film formation conditions of the first ITO layer 335, for example, in an atmosphere having a weak oxidizing property equivalent to that in the conventional case. In this case, since the covering layer 320 and the first ITO layer 335 exist, that is, since the covering layer 320 and the first ITO layer 335 function as a barrier layer, the second ITO layer 337 is formed. However, the reduction reaction of the reducible element contained in the scattering layer 340 is suppressed.
  • the first ITO layer 335 having a higher degree of oxidation than the second ITO layer 337 and the higher conductivity than the first ITO layer 335.
  • the ITO film 330 having the second ITO layer 337 can be formed.
  • the first ITO layer 335 may have a thickness of 1 nm to 20 nm, for example.
  • the second ITO layer 337 may have a thickness of 1 nm to 500 nm, for example.
  • the total thickness of the ITO film 330 is preferably in the range of 2 nm to 520 nm, for example, and more preferably 2 nm to 500 nm.
  • the resistivity of the entire ITO film 330 may be, for example, less than 2.38 ⁇ 10 ⁇ 4 ⁇ cm.
  • the resistivity of the ITO film 330 here means the resistivity of the entire ITO film 330.
  • the configuration of the ITO film 330 at this time is not limited. Therefore, as described above, the ITO film 330 may be formed without changing the film formation conditions and may have a substantially uniform composition.
  • the first ITO portion 336 having a high degree of oxidation and the second ITO portion 338 having a low degree of oxidation have a different degree of oxidation in the ITO film (non-uniform structure).
  • the ITO film 330 may be composed of a plurality of layers.
  • the ITO film preferably has an extinction coefficient of 0.0086 or less. Since the extinction coefficient has been described in the first light-transmitting substrate, it is omitted here.
  • both the coloring prevention of the scattering layer 340 and the resistance increase suppression of the ITO film 330 are both achieved. It becomes possible to obtain the effect.
  • the ITO film can be various transparent conductive films.
  • the transparent conductive film preferably satisfies the same conditions as the ITO film. Since the transparent conductive film has already been described, the description thereof is omitted here.
  • FIG. 4 shows a schematic cross-sectional view of an example of an organic LED element according to an embodiment of the present invention.
  • an organic LED element 400 includes a glass substrate 410, a scattering layer 440, a covering layer 420, a first electrode (anode) layer 430, and an organic light emitting layer 450.
  • the second electrode (cathode) layer 460 is laminated in this order.
  • the glass substrate 410 has a role of supporting each layer constituting the organic LED element on the top.
  • the lower surface of the organic LED element 400 (that is, the exposed surface of the glass substrate 410) is the light extraction surface 470.
  • the scattering layer 440 includes a glass base material 441 having a first refractive index, and a plurality of scattering materials 442 having a second refractive index different from the base material 441 and dispersed in the base material 441. Can be configured.
  • the scattering layer 440 has a role of effectively scattering the light generated from the organic light emitting layer 450 and reducing the amount of light totally reflected in the organic LED element 400. Therefore, in the organic LED element 400 having the configuration shown in FIG. 4, the amount of light emitted from the light extraction surface 470 can be improved.
  • the scattering layer 440 includes the “reducible element” as described above.
  • a coating layer 420 formed by a dry film forming method is provided.
  • the configuration of the coating layer 420 can be the same as that described for the first to third light-transmitting substrates. Since a specific configuration example has already been described, the description is omitted here.
  • the covering layer 420 By providing the covering layer 420, the reduction reaction of the reducible element contained in the scattering layer 440 due to the atmosphere when forming the ITO film 430 can be suppressed. This is considered because the coating layer 420 functions as a barrier layer.
  • the coating layer 420 formed by the dry film forming method, an atmosphere having a low oxidizability, which is an atmosphere in forming the ITO film 430, and the reducibility included in the scattering layer 440.
  • the probability of contact with an element can be reduced. For this reason, generation
  • the coating layer 420 can function as a smoothing layer that smoothes the surface of the scattering layer and facilitates the subsequent film formation process. Further, for example, when the first electrode layer (ITO film) 430 is patterned, it also functions as an anti-etching barrier that prevents the scattering layer 440 from eluting and deteriorating.
  • the first electrode layer 430 can be composed of an ITO film. Moreover, it can also be comprised by various transparent conductive films as already stated.
  • the second electrode layer 460 can be made of a metal such as aluminum or silver.
  • the organic light emitting layer 450 can be composed of a plurality of layers such as an electron transport layer, an electron injection layer, a hole transport layer, and a hole injection layer in addition to the light emitting layer.
  • the ITO film constituting the first electrode layer 430 can have various forms described in the first to third light-transmitting substrates.
  • FIG. 4 shows an example in which the ITO film is composed of two layers, a first ITO layer 435 closer to the glass substrate 410 and a second ITO layer 437 farther from the glass substrate 410. It is not limited to such a form. For example, it can be configured by a single layer and may have a multilayer structure. Since the other structure of the ITO film has been described in the first to third light-transmitting substrates, the description thereof is omitted here.
  • the covering layer 420 is provided as described above, the scattering layer 440 can be more reliably prevented from being colored. In addition, an increase in resistance of the first electrode layer 430 can be suppressed.
  • the configuration of the organic LED element has been described with reference to FIG. 4 as an example, it is not limited to such a form.
  • the portions up to the glass substrate 410, the scattering layer 440, the coating layer 420, and the first electrode layer 430 in FIG. 4 can be configured as the first to third light-transmitting substrates already described.
  • the organic LED element 400 is described as an example of a configuration having the scattering layer 440.
  • the scattering layer 440 is not necessarily required and may be omitted.
  • the glass substrate has a composition including a reducible element as described in the first light-transmitting substrate and the second light-transmitting substrate.
  • the glass substrate 410 is made of a material having a high transmittance for visible light.
  • Examples of the material of the glass substrate include inorganic glass such as alkali glass, non-alkali glass, and quartz glass.
  • the glass substrate 410 contains a reducible element.
  • the thickness of the glass substrate 410 is not particularly limited, but may be in the range of 0.1 mm to 2.0 mm, for example. Considering strength and weight, the thickness of the glass substrate 410 is preferably 0.5 mm to 1.4 mm.
  • the scattering layer 440 includes a base material 441 and a plurality of scattering materials 442 dispersed in the base material 441.
  • the base material 441 has a first refractive index
  • the scattering material 442 has a second refractive index different from that of the base material.
  • the scattering layer 440 contains the aforementioned reducible element.
  • the amount of the scattering material 442 in the scattering layer 440 is preferably small from the inside to the outside of the scattering layer 440. In this case, highly efficient light extraction can be realized.
  • the base material 441 is made of glass, and as the material of the glass, inorganic glass such as soda lime glass, borosilicate glass, alkali-free glass, and quartz glass is used.
  • inorganic glass such as soda lime glass, borosilicate glass, alkali-free glass, and quartz glass is used.
  • the scattering material 442 includes, for example, bubbles, precipitated crystals, material particles different from the base material, phase separation glass, and the like.
  • a phase-separated glass refers to a glass composed of two or more types of glass phases.
  • the difference between the refractive index of the base material 441 and the refractive index of the scattering material 442 is preferably large.
  • one or more components of P 2 O 5 , SiO 2 , B 2 O 3 , GeO 2 , and TeO 2 are selected as the network former.
  • high refractive index components TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , ZrO 2 , ZnO, BaO, PbO, and Sb 2
  • alkali oxides, alkaline earth oxides, fluorides, and the like may be added within a range that does not affect the refractive index.
  • examples of the glass-based material constituting the base material 441 include B 2 O 3 —ZnO—La 2 O 3 and P 2 O 5 —B 2 O 3 —R ′ 2 O—R ′′ O—TiO. 2— Nb 2 O 5 —WO 3 —Bi 2 O 3 system, TeO 2 —ZnO system, B 2 O 3 —Bi 2 O 3 system, SiO 2 —Bi 2 O 3 system, SiO 2 —ZnO system, B 2 Examples thereof include an O 3 —ZnO system, a P 2 O 5 —ZnO system, etc.
  • R ′ represents an alkali metal element
  • R ′′ represents an alkaline earth metal element.
  • the above material system is only an example, and if it is the structure which satisfy
  • the color of light emission can be changed by adding a colorant to the base material 441.
  • a colorant such as transition metal oxides, rare earth metal oxides, metal colloids, and the like can be used alone or in combination.
  • Coating layer 420 A coating layer 420 is provided between the scattering layer 440 and the first electrode layer 430. Note that in the case where the scattering layer 440 is not provided, it can be formed over the glass substrate 410.
  • the covering layer 420 is a film formed by a dry film forming method.
  • a dense film can be formed as compared with a film formed by a wet film formation method. For this reason, even in a weakly oxidizing atmosphere when forming the ITO film, the probability that the atmosphere and the glass substrate or the scattering layer are in contact with each other can be reduced, and the occurrence of coloring of the glass substrate or the scattering layer can be significantly reduced. It becomes possible to suppress. Further, when the ITO film is formed, the atmosphere does not need to be an oxygen-rich atmosphere, so that it is possible to suppress an increase in resistance of the ITO film (first electrode film).
  • the covering layer 420 may be a film formed by the dry film forming method as described above, and the dry film forming method when forming the covering layer 420 is not particularly limited. Examples thereof include a sputtering method and a plasma CVD method. Note that when the coating layer 420 is formed by a sputtering method, the film can be formed in an atmosphere containing argon and / or oxygen as an atmosphere for forming the film. In particular, from the viewpoint of productivity, it is preferable to perform film formation in an atmosphere containing argon. In this case, since the argon in the atmosphere is mixed in the formed coating layer 420, the obtained coating layer 420 can be a film containing argon.
  • the coating layer 420 is preferably formed in an atmosphere containing oxygen.
  • the oxygen concentration in the atmosphere when forming the coating layer 420 is preferably 10 vol% or more, and more preferably 15 vol% or more.
  • the upper limit value of the oxygen concentration is not particularly limited, and can be selected depending on the material of the coating layer to be formed. For example, it is preferable to set it as 90 vol% or less, and it is more preferable to set it as 80 vol% or less.
  • the coating layer 420 may be formed by the dry film formation method as described above, and the material and configuration thereof are not particularly limited. Moreover, the coating layer 420 does not need to be composed of only one type of substance, and may include a plurality of substances. It can also be composed of a plurality of layers.
  • the coating layer 420 may include an oxide containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W. Further, the coating layer 420 may include a nitrogen oxide containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W.
  • the covering layer 420 may include a nitride containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W.
  • the covering layer 420 has a filling rate of preferably 85% or more, and more preferably 90% or more.
  • the upper limit value in this case is not particularly limited, and can be, for example, 100% or less.
  • the filling rate of the coating layer 420 is in the above range, it is particularly preferable because the reduction reaction of the reducible element contained in the scattering layer or the glass substrate due to the atmosphere when forming the ITO film 430 can be suppressed.
  • the surface roughness (arithmetic average roughness) Ra of the surface of the coating layer 420 on which the ITO film 430 is laminated is preferably 2.0 nm or less, and more preferably 1.0 nm or less. In addition, it does not specifically limit about a lower limit, For example, what is necessary is just 0 nm or more.
  • the surface on which the ITO film 430 of the coating layer 420 is laminated is shown to be smooth, which is preferable because the ITO crystal nucleus grows well.
  • the refractive index of the covering layer 420 is preferably close to the refractive index of the base material 441. If the difference between the refractive index of the base material 441 and the refractive index of the covering layer 420 is large, the emission color of the organic LED may vary due to the influence of interference due to the variation in the film thickness of the covering layer 420. Because. On the other hand, when the refractive index of the base material 441 and the refractive index of the coating layer 420 are close, the interference condition does not change even if the coating layer 420 has a variation in film thickness, and the emission color of the organic LED is not affected. is there.
  • the difference between the refractive index of the base material 441 and the refractive index of the covering layer 420 with respect to light having a wavelength of 550 nm is preferably, for example, minus 0.15 to plus 0.15, and minus 0.1 to plus 0.1. It is more preferable that it is minus 0.05 or more and plus 0.05 or less.
  • the refractive index of the covering layer 420 is preferably higher than that of the first electrode layer 430. However, it is preferable that the difference between the refractive index of the covering layer 420 and the refractive index of the base material 441 is small as described above.
  • the film thickness of the covering layer 420 is not particularly limited.
  • the film thickness of the covering layer 420 may be, for example, in the range of 50 nm to 500 ⁇ m.
  • the first electrode layer 430 is made of an ITO film.
  • the ITO film can be composed of a single layer as described above, or can have a multilayer structure of two or more layers.
  • the ITO film may be composed of two layers: a first ITO layer 435 closer to the glass substrate 410 and a second ITO layer 437 farther from the glass substrate 410.
  • the first ITO layer 435 is preferably configured to have a higher degree of oxidation than the second ITO layer 437, and in this case, the second ITO layer 437 is configured to have higher conductivity than the first ITO layer 435.
  • the thickness of the first ITO layer 435 is not particularly limited, but is preferably in the range of 1 nm to 20 nm, for example.
  • the thickness of the second ITO layer 437 is not particularly limited, but is preferably in the range of 1 nm to 500 nm, for example.
  • the total thickness of the ITO film is preferably in the range of 2 nm to 520 nm, for example, and more preferably 2 nm to 500 nm.
  • the ITO film constituting the first electrode layer 430 may be composed of three or more layers. Alternatively, as shown in FIG. 1 described above, the ITO film can be composed of a single layer. In this case, in particular, the degree of oxidation may be changed (decreased) continuously or discontinuously from the first surface 432 to the second surface 434 of the first electrode layer 430. preferable.
  • the total thickness of the first electrode layer 430 is preferably 50 nm or more.
  • the refractive index of the first electrode layer 430 is preferably in the range of 1.65 to 2.2.
  • the refractive index of the first electrode layer 430 is preferably determined in consideration of the refractive index of the base material 441 included in the scattering layer 440 and the reflectance of the second electrode layer 460.
  • the difference in refractive index between the first electrode layer 430 and the base material 441 is preferably 0.2 or less.
  • the first electrode layer 430 may be formed of various transparent conductive films instead of the ITO film as described above. Even when the first electrode layer 430 is made of various transparent conductive films, it is preferable to satisfy the above-described various conditions as in the case of the ITO film. Further, since the transparent conductive film has already been described, description thereof is omitted.
  • the organic light emitting layer 450 is a layer having a light emitting function, and is usually composed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. However, it is obvious to those skilled in the art that the organic light emitting layer 450 does not necessarily have all of the other layers as long as it has a light emitting layer. In general, the refractive index of the organic light emitting layer 450 is preferably in the range of 1.7 to 1.8.
  • the hole injection layer preferably has a small difference in ionization potential in order to lower the hole injection barrier from the first electrode layer 430.
  • the charge injection efficiency from the electrode to the hole injection layer is increased, the driving voltage of the organic LED element 400 is lowered, and the charge injection efficiency is increased.
  • High molecular material or low molecular material is used as the material for the hole injection layer.
  • polymer materials polyethylene dioxythiophene (PEDOT: PSS) doped with polystyrene sulfonic acid (PSS) is often used, and among low molecular materials, phthalocyanine-based copper phthalocyanine (CuPc) is widely used.
  • PEDOT polyethylene dioxythiophene
  • PSS polystyrene sulfonic acid
  • CuPc phthalocyanine-based copper phthalocyanine
  • the hole transport layer serves to transport holes injected from the hole injection layer to the light emitting layer.
  • the hole transport layer include triphenylamine derivatives, N, N′-bis (1-naphthyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPD), N , N′-Diphenyl-N, N′-bis [N-phenyl-N- (2-naphthyl) -4′-aminobiphenyl-4-yl] -1,1′-biphenyl-4,4′-diamine ( NPTE), 1,1′-bis [(di-4-tolylamino) phenyl] cyclohexane (HTM2), and N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′- Diphenyl-4,4′-diamine (TPD) or the like is used.
  • NPD triphen
  • the thickness of the hole transport layer can be in the range of 10 nm to 150 nm, for example.
  • the range of 10 nm to 150 nm is preferable.
  • the light emitting layer has a role of providing a field where the injected electrons and holes are recombined.
  • the organic light emitting material for example, a low molecular weight or high molecular weight material is used.
  • Examples of the light emitting layer include tris (8-quinolinolato) aluminum complex (Alq 3 ), bis (8-hydroxy) quinaldine aluminum phenoxide (Alq ′ 2 OPh), bis (8-hydroxy) quinaldine aluminum-2, 5-dimethylphenoxide (BAlq), mono (2,2,6,6-tetramethyl-3,5-heptanedionate) lithium complex (Liq), mono (8-quinolinolato) sodium complex (Naq), mono ( 2,2,6,6-tetramethyl-3,5-heptanedionate) lithium complex, mono (2,2,6,6-tetramethyl-3,5-heptanedionate) sodium complex and bis (8- quinolinolate) calcium complex (CAQ 2) metal complexes of quinoline derivatives such as tetraphenyl butadiene, polyphenylene Quinacridone (QD), anthracene, perylene, as well as fluorescent substance such as coronene.
  • a quinolinolate complex may be used, and in particular, an aluminum complex having 8-quinolinol and a derivative thereof as a ligand may be used.
  • the electron transport layer serves to transport electrons injected from the electrode.
  • the electron transport layer include quinolinol aluminum complex (Alq 3 ), oxadiazole derivatives (eg, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (END), and 2- (4-t-butylphenyl) -5- (4-biphenyl))-1,3,4-oxadiazole (PBD) etc.), triazole derivatives, bathophenanthroline derivatives, silole derivatives and the like are used.
  • quinolinol aluminum complex Alq 3
  • oxadiazole derivatives eg, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (END), and 2- (4-t-butylphenyl) -5- (4-biphenyl))-1,3,4-oxadiazole (PBD) etc.
  • triazole derivatives bathophenanthroline derivative
  • the electron injection layer is configured, for example, by providing a layer doped with an alkali metal such as lithium (Li) or cesium (Cs) at the interface with the second electrode layer 460.
  • an alkali metal such as lithium (Li) or cesium (Cs)
  • a metal having a small work function or an alloy thereof can be used for the second electrode layer 460.
  • a metal having a small work function or an alloy thereof can be used for the second electrode layer 460.
  • an alkali metal, an alkaline earth metal, a metal belonging to Group 3 of the periodic table, or the like can be preferably used.
  • aluminum (Al), magnesium (Mg), or an alloy thereof can be more preferably used.
  • a laminated electrode in which aluminum (Al) is deposited on a thin film of aluminum (Al), magnesium silver (MgAg), lithium fluoride (LiF), or lithium oxide (Li 2 O) may be used. good.
  • a laminated film of calcium (Ca) or barium (Ba) and aluminum (Al) may be used.
  • FIG. 5 shows a schematic flow chart when a light-transmitting substrate according to an embodiment of the present invention is manufactured.
  • the manufacturing method of this translucent substrate is as follows: (A) A step of installing a scattering layer having a base material made of glass and a plurality of scattering materials dispersed in the base material on a glass substrate, wherein the scattering layer is Bi (bismuth), Including at least one element selected from the group consisting of Ti (titanium) and Sn (tin) (step S110); (B) forming a coating layer on the scattering layer by a dry film formation method (step S120); (C) forming an ITO film on the coating layer (step S130);
  • a scattering layer having a base material made of glass and a plurality of scattering materials dispersed in the base material on a glass substrate, wherein the scattering layer is Bi (bismuth), Including at least one element selected from the group consisting of Ti (titanium) and Sn (tin) (step S110); (B) forming a coating layer on the scattering layer by a dry film formation method (step S120); (C)
  • Step S110 First, the glass substrate 310 is prepared. Next, a scattering layer 340 containing a reducible element is formed on the glass substrate 310.
  • the method for forming the scattering layer 340 is not particularly limited, but here, a method for forming the scattering layer 340 by the “frit paste method” will be particularly described. However, it will be apparent to those skilled in the art that the scattering layer 340 may be formed by other methods.
  • frit paste method a paste containing a glass material called a frit paste is prepared (preparation process), this frit paste is applied to the surface of the substrate to be installed, patterned (pattern formation process), and the frit paste is then baked.
  • This is a method of forming a desired glass film on the surface of the substrate to be installed by performing (firing process).
  • the glass powder is composed of a material that finally forms the base material 341 of the scattering layer 340.
  • the composition of the glass powder is not particularly limited as long as the desired scattering characteristics can be obtained and it can be frit pasted and fired.
  • the scattering layer contains a reducible element.
  • the composition of the glass powder is, for example, 20-30 mol% of P 2 O 5 , 3-14 mol% of B 2 O 3 , 10-20 mol% of Bi 2 O 3 , 3-15 mol% of TiO 2 , Nb 2 O 5 10 to 20 mol%, WO 3 to 5 to 15 mol%, the total amount of Li 2 O, Na 2 O and K 2 O is 10 to 20 mol%, and the total amount of the above components is 90 mol% or more. May be.
  • SiO 2 is 0 to 30 mol%
  • B 2 O 3 is 10 to 60 mol%
  • ZnO is 0 to 40 mol%
  • Bi 2 O 3 is 0 to 40 mol%
  • P 2 O 5 is 0 to 40 mol%
  • alkali metal oxidation The product may be 0 to 20 mol%, and the total amount of the above components may be 90 mol% or more.
  • the particle size of the glass powder can be, for example, in the range of 1 ⁇ m to 100 ⁇ m.
  • a predetermined amount of filler may be added to the glass powder in order to control the thermal expansion characteristics of the finally obtained scattering layer.
  • the filler for example, particles such as zircon, silica, or alumina are used, and the particle size can be usually in the range of 0.1 ⁇ m to 20 ⁇ m.
  • the resin examples include ethyl cellulose, nitrocellulose, acrylic resin, vinyl acetate, butyral resin, melamine resin, alkyd resin, and rosin resin. Note that the addition of butyral resin, melamine resin, alkyd resin, and rosin resin improves the strength of the frit paste coating film.
  • the solvent has a role of dissolving the resin and adjusting the viscosity.
  • the solvent include ether solvents (butyl carbitol (BC), butyl carbitol acetate (BCA), dipropylene glycol butyl ether, tripropylene glycol butyl ether, butyl cellosolve), alcohol solvents ( ⁇ -terpineol, pine oil) , Ester solvents (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate), phthalate esters solvents (DBP (dibutyl phthalate), DMP (dimethyl phthalate), DOP (dioctyl phthalate)) is there.
  • ether solvents butyl carbitol (BC), butyl carbitol acetate (BCA), dipropylene glycol butyl ether, tripropylene glycol butyl ether, butyl cellosolve
  • alcohol solvents ⁇ -terpine
  • DBP dibutyl phthalate
  • DMP dimethyl phthalate
  • DOP dioctyl phthalate
  • a surfactant may be added to the frit paste to adjust the viscosity and promote frit dispersion.
  • you may use a silane coupling agent for surface modification.
  • the frit paste prepared by the above-described method is applied on the glass substrate 310 and patterned.
  • the application method and the patterning method are not particularly limited.
  • a frit paste may be pattern printed on the glass substrate 310 using a screen printer.
  • a doctor blade printing method or a die coat printing method may be used.
  • the frit paste film is baked. Usually, firing is performed in two steps. In the first step, the resin in the frit paste film is decomposed and disappeared, and in the second step, the glass powder is softened and sintered.
  • the first step is performed by maintaining the frit paste film in a temperature range of 200 ° C. to 400 ° C. in an air atmosphere.
  • the processing temperature varies depending on the resin material contained in the frit paste.
  • the treatment temperature may be about 350 ° C. to 400 ° C.
  • the resin is nitrocellulose
  • the treatment temperature may be about 200 ° C. to 300 ° C.
  • the processing time is usually about 30 minutes to 1 hour.
  • the second step is performed by maintaining the frit paste film in the temperature range of the softening temperature ⁇ 30 ° C. of the contained glass powder in an air atmosphere.
  • the processing temperature is, for example, in the range of 450 ° C. to 600 ° C.
  • the processing time is not particularly limited, but is, for example, 30 minutes to 1 hour.
  • the glass powder is softened and sintered, and the base material 341 of the scattering layer 340 is formed.
  • the scattering material 342 uniformly dispersed in the base material 341 is obtained by the scattering material encapsulated in the frit paste film, for example, due to the bubbles present therein.
  • the scattering layer 340 can be formed by cooling the glass substrate 310.
  • the thickness of the finally obtained scattering layer 340 may be in the range of 5 ⁇ m to 50 ⁇ m, for example.
  • this step is performed by (a ′) Bi (bismuth), Ti (titanium), and Sn (tin). ) To prepare a glass substrate containing at least one element selected from the group consisting of (S110 ′).
  • Step S120 Next, the coating layer 320 is formed on the scattering layer 340.
  • the covering layer 320 is formed by a dry film forming method.
  • a dry film forming method for forming the coating layer 320 is not particularly limited, and examples thereof include a sputtering method and a plasma CVD method. Note that when the coating layer 320 is formed by a sputtering method, film formation can be performed in an atmosphere containing argon and / or oxygen as an atmosphere for the film formation. In particular, from the viewpoint of productivity, it is preferable to perform film formation in an atmosphere containing argon. In this case, since argon in the atmosphere is mixed in the formed coating layer 320, the obtained coating layer 320 can be a film containing argon.
  • the coating layer 320 is preferably formed in an atmosphere containing oxygen.
  • the oxygen concentration in the atmosphere when forming the coating layer 320 is preferably 2 vol% or more, and more preferably 10 vol% or more.
  • the upper limit value of the oxygen concentration is not particularly limited, and can be selected depending on the material of the coating layer to be formed. For example, it is preferable to set it as 90 vol% or less, and it is more preferable to set it as 80 vol% or less.
  • the coating layer 320 may be formed by the dry film forming method as described above, and the material and configuration thereof are not particularly limited. Moreover, the coating layer 320 does not need to be composed of only one type of substance, and may include a plurality of substances. It can also be composed of a plurality of layers.
  • the coating layer 320 can include an oxide containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W.
  • the coating layer 320 can include a nitrogen oxide containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W.
  • the coating layer 320 can include a nitride containing one or more elements selected from Si, Al, Ti, Nb, Zr, Sn, Ta, and W.
  • the covering layer 320 preferably has a filling rate of, for example, 85% or more, and more preferably 90% or more.
  • the upper limit value in this case is not particularly limited, and can be, for example, 100% or less.
  • the filling rate of the coating layer 320 is in the above range, it is particularly preferable because the reduction reaction of the reducible element contained in the scattering layer or the glass substrate due to the atmosphere when forming the ITO film 330 can be suppressed.
  • the surface roughness (arithmetic average roughness) Ra of the surface on which the ITO film 330 of the coating film 320 is laminated is preferably 2.0 nm or less, and more preferably 1.0 nm or less. In addition, it does not specifically limit about a lower limit, For example, what is necessary is just 0 nm or more.
  • the surface roughness Ra is in the above range, it indicates that the surface of the coating layer 320 on which the ITO film 330 is laminated is smooth, which is preferable because ITO crystal nuclei grow well.
  • the refractive index of the covering layer 320 is preferably close to the refractive index of the base material 341. This is because when the difference between the refractive index of the base material 341 and the refractive index of the coating layer 320 is large, the emission color of the organic LED varies due to the influence of interference due to the film thickness variation of the coating layer 320. . On the other hand, when the refractive index of the base material 341 and the refractive index of the coating layer 320 are close, the interference condition does not change even if the film thickness of the coating layer 320 varies, and the emission color of the organic LED is not affected. is there.
  • the difference between the refractive index of the base material 341 and the refractive index of the coating layer 320 with respect to light having a wavelength of 550 nm is preferably, for example, minus 0.15 to plus 0.15, and is minus 0.1 to plus 0.1. More preferably, it is more preferably minus 0.05 or more and plus 0.05 or less.
  • substrate which does not have a scattering layer the one where the refractive index of a coating layer is near the refractive index of a glass substrate is preferable. Since this case has already been described with reference to the first light-transmitting substrate, description thereof is omitted.
  • the refractive index of the coating layer 320 is preferably higher than that of the ITO film 330. However, as described above, it is preferable that the difference between the refractive index of the coating layer 320 and the refractive index of the scattering layer 340 is small.
  • the film thickness of the coating layer 320 is not particularly limited.
  • the film thickness of the covering layer 320 may be, for example, in the range of 50 nm to 500 ⁇ m.
  • this process is (b ') a coating layer by the dry-type film-forming method on the said glass substrate.
  • the coating layer can be formed in the same manner as described above.
  • Step S130 Next, an ITO film 330 is formed on the cover layer 320.
  • the installation method of the ITO film 330 is not particularly limited, and for example, the ITO film 330 may be installed by a film formation method such as a sputtering method, a vapor deposition method, and a vapor phase film formation method.
  • the ITO film 330 may be composed of a single layer. it can. Since the ITO film composed of a single layer is already described in the first light-transmitting substrate, the description thereof is omitted.
  • the ITO film 330 is formed by sputtering, the ITO film 330 is formed by, for example, a first film formation process for forming the first ITO layer 335 and a second film formation for forming the second ITO layer 337.
  • the film can be formed by the film forming process 2.
  • I First film formation step Generally, when forming an ITO film by sputtering, a target made of an alloy of metallic indium and metallic tin or an ITO target is used.
  • Power density of plasma will vary depending on size of the apparatus, for example, it is preferably in the range of 0.2W / cm 2 ⁇ 5W / cm 2.
  • a mixed gas of inert gas and oxygen can be used as the sputtering gas.
  • the first ITO layer 335 is formed in the first film-forming step under an atmosphere that is more oxidative than that in the prior art, that is, in an “oxygen-excess” condition. Is preferred.
  • the ratio R (vol% ⁇ cm 2 / W) of the oxygen partial pressure P O2 (vol%) of the sputtering gas to the plasma power density P d (W / cm 2 ), that is, R P O2 / Pd is used to define the oxidizability of the deposition environment.
  • the amount of oxygen contained in the sputtering gas varies depending on various film forming conditions such as the scale and type of the sputtering apparatus and the power of the plasma. Therefore, it is difficult to simply represent the oxidizability of the film forming environment by the oxygen partial pressure in the sputtering gas.
  • the index R vol% ⁇ cm 2 / W
  • R P O 2 / P d
  • the index R (vol% ⁇ cm 2 / W) is larger than 1.03 (vol% ⁇ cm 2 / W). Is preferable, and more preferably 1.5 (vol% ⁇ cm 2 / W) or more.
  • the index R (vol% ⁇ cm 2 / W) can be, for example, about 1.6 or more, or about 2 or more.
  • the first ITO layer 335 By forming the first ITO layer 335 under such an “oxygen-excess” condition, it is possible to significantly suppress the reduction of the reducible element in the scattering layer 340 during the sputtering process. it can. Further, the first ITO layer 335 having a high degree of oxidation can be formed on the scattering layer 340 by performing sputtering film formation under “oxygen-excess” conditions.
  • a second ITO layer 337 is formed on the first ITO layer 335.
  • the second ITO layer 337 has conditions that are less oxidizable than the film formation environment selected in the first film formation process, that is, from the index R (vol% ⁇ cm 2 / W) in the first film formation process.
  • the film is formed in an environment showing a small index R (vol% ⁇ cm 2 / W).
  • the second ITO layer 337 may be formed under conditions generally employed when forming a conventional ITO film.
  • the index R (vol% ⁇ cm 2 / W) is preferably 1.03 or less.
  • the covering layer 320 and the first ITO layer 335 having a high degree of oxidation are already formed on the scattering layer 340. Therefore, the barrier effect of the covering layer 320 and the first ITO layer 335 prevents the reducible elements contained in the scattering layer 340 from being reduced during the formation of the second ITO layer 337. it can.
  • the second ITO layer 337 can be formed without causing the scattering layer 340 to be colored even in the second film formation step.
  • the ITO film 330 having the first ITO layer 335 and the second ITO layer 337 can be formed.
  • the conductivity of the film is higher than that of the first ITO layer 335. Can be increased. Therefore, the resistivity of the ITO film 330 can be reduced as compared with the case where the entire ITO film 330 is configured by the first ITO layer 335 having a high degree of oxidation.
  • the resistivity of the entire ITO film 330 can be set to a value comparable to that of an ITO film formed by a conventional method, for example, about 1.5 ⁇ 10 ⁇ 4 ⁇ cm.
  • the ITO film 330 may be patterned by an etching process or the like.
  • step S130 it can also be set as the process of forming various transparent conductive films into a film instead of an ITO film
  • the transparent conductive film can be formed in the same manner as the ITO film. Since the transparent conductive film has already been described, the description thereof is omitted here.
  • the translucent substrate 300 having the glass substrate 310, the scattering layer 340, the coating layer 320, and the ITO film 330 can be manufactured.
  • an organic light emitting layer (for example, the organic light emitting layer 450 in FIG. 4) may be disposed on the ITO film 330 by vapor deposition and / or coating.
  • a second electrode layer (for example, the second electrode layer 460 in FIG. 4) may be provided on the organic light emitting layer by vapor deposition, sputtering, vapor phase film formation, or the like.
  • the manufacturing method according to an embodiment of the present invention is described by taking as an example the case where a multilayer ITO film 330 having two ITO layers 335 and 337 that can be clearly identified is formed. did.
  • the ITO film 330 having such a multi-layer structure is easily formed, for example, when the film forming process is temporarily interrupted before changing film forming conditions such as plasma density and oxygen partial pressure.
  • the manufacturing method of the present invention is not limited to the above-described embodiment.
  • the ITO film 130 having a single layer structure having two portions 136 and 138 having different characteristics as shown in FIG. May be formed.
  • the ITO film 130 having such a single layer structure can be configured, for example, by continuously performing film formation without interrupting the film formation process when changing the film formation conditions.
  • a single ITO film is formed under normal ITO film forming conditions (low oxidizing atmosphere), for example, under the condition that the index R is 1.03 or less. Also good.
  • the ITO film 330 is formed by the sputtering method. However, this is merely an example, and the ITO film 330 may be formed by other film forming methods.
  • the application range of the present invention is not limited to such translucent substrates and organic LED elements.
  • various conductive oxides such as GZO (gallium zinc oxide) and IZO (Indium Zinc Oxide) are used for the electrode layer of the translucent substrate.
  • AZO Al-doped ZnO
  • SnO 2 SnO 2
  • Ta-doped SnO 2 Ti-doped In 2 O 3 and the like can be used.
  • Such a conductive oxide is usually formed on a glass substrate under the same conditions as those for forming an ITO film, that is, in an environment where oxygen deficiency is likely to occur. Therefore, the same problem of coloring the glass substrate can occur when various conductive oxides other than the ITO film are formed. The problem can be solved by applying the present invention to such a problem.
  • Examples 1, 2, 5 to 8 are examples, and examples 3 and 4 are comparative examples.
  • the coating layer and the ITO film were formed on the scattering layer of the glass substrate provided with the scattering layer containing Bi by the following method, and the characteristics of the obtained samples were evaluated.
  • Example 1 A sample of a light-transmitting substrate (hereinafter referred to as “sample 1”) was produced by the following procedure.
  • a glass substrate provided with a scattering layer on one side was prepared. At this time, the scattering layer uses glass containing Bi as a base material.
  • the coating layer was formed by reactive sputtering.
  • a glass substrate provided with a scattering layer is heated to 250 ° C., a 28 at% Si-72 at% Sn target is used as a target, and argon and oxygen are used as reaction gases at the time of sputtering. 80 vol% was carried out by a sputtering apparatus.
  • a 190 nm STO film (a mixed film containing Si, Sn, and O as a composition) was formed as a coating layer.
  • the refractive index, surface roughness Ra, and filling rate of the coating layer were measured by the methods described below. In Examples 2 to 8, the measurement was performed in the same manner after the coating layer was formed.
  • the ITO film was formed by reactive sputtering in the same manner as the coating layer.
  • the substrate formed up to the coating layer is heated to 380 ° C., an ITO target is used as the target, argon and oxygen are used as the reaction gas during sputtering, and the oxygen concentration is 0.79 vol%.
  • a sputtering apparatus was used. An ITO film having a thickness of 150 nm was formed.
  • Example 2 A sample of a translucent substrate (hereinafter referred to as “sample 2”) was produced in the same manner as in Example 1.
  • Example 2 a sample was produced under the following conditions when forming the coating layer on the scattering layer.
  • the coating layer was formed by reactive sputtering.
  • a glass substrate provided with a scattering layer is heated to 250 ° C.
  • a Si target is used as a target
  • argon and oxygen are used as reaction gases during sputtering
  • the oxygen concentration is 50 vol% by a sputtering apparatus. went.
  • As a coating layer a 30 nm SiO 2 film was formed.
  • Example 3 A sample of a light-transmitting substrate (hereinafter referred to as “sample 3”) was produced in the same manner as in Example 1.
  • Example 3 a sample was manufactured under the following conditions when forming the coating layer on the scattering layer.
  • the coating layer was formed by the following procedure.
  • a mixture of titanate tetranormal butoxide and 3-glycidyloxypropyltrimethoxysilane in a ratio of 40:60 (volume ratio) is diluted with a solvent (1-butanol) and has a viscosity suitable for coating.
  • a liquid for forming a coating layer was obtained.
  • This coating layer forming liquid was dropped on the scattering layer formed on the glass substrate, and a coating film was formed using a spin coater.
  • the coated film was put into a drier held at 120 ° C. and held for 10 minutes to obtain a dried film having a dried film thickness of 0.6 ⁇ m.
  • the dried film was baked by holding at 475 ° C. for 1 hour, thereby obtaining a baked film having a thickness of 150 nm.
  • a coating layer-forming liquid was applied onto the fired film, dried and fired, and two layers were laminated to obtain a cover layer formed of a 300 nm fired film.
  • Example 4 A sample of a light-transmitting substrate (hereinafter referred to as “sample 4”) was produced in the same manner as in Example 3.
  • Example 4 an ITO film was formed under the following conditions. Other conditions are the same as in Example 3.
  • the ITO film was similarly formed by reactive sputtering.
  • the substrate formed up to the coating layer is heated to 380 ° C., an ITO target is used as a target, and argon and oxygen are used as reaction gases at the time of sputtering. At this time, the oxygen concentration is 2.3 vol%.
  • a sputtering apparatus was used. An ITO film having a thickness of 150 nm was formed.
  • Example 5 A sample of a translucent substrate (hereinafter referred to as “sample 5”) was produced in the same manner as in Example 1.
  • Example 5 a sample was prepared under the following conditions when the coating layer was formed on the scattering layer.
  • the coating layer was formed by reactive sputtering.
  • a glass substrate provided with a scattering layer is heated to 250 ° C.
  • a 40 at% Si-60 at% Sn target is used as a target
  • argon and oxygen are used as reaction gases at the time of sputtering. 50 vol% was carried out by a sputtering apparatus.
  • a 300 nm STO film (a mixed film containing Si, Sn, and O as a composition) was formed.
  • Example 6 A sample of a translucent substrate (hereinafter referred to as “sample 6”) was produced in the same manner as in Example 1.
  • Example 6 a sample was prepared under the following conditions when forming the coating layer on the scattering layer.
  • the coating layer was formed by reactive sputtering.
  • a glass substrate provided with a scattering layer is heated to 250 ° C.
  • a 40 at% Si-60 at% Sn target is used as a target
  • argon and oxygen are used as reaction gases at the time of sputtering. 50 vol% was carried out by a sputtering apparatus.
  • a 150 nm STO film (mixed film containing Si, Sn, and O as a composition) was formed as a coating layer.
  • Example 7 A sample of a light-transmitting substrate (hereinafter referred to as “sample 7”) was produced in the same manner as in Example 1.
  • Example 7 a sample was prepared under the following conditions when forming the coating layer on the scattering layer.
  • the coating layer was formed by reactive sputtering.
  • a glass substrate provided with a scattering layer is heated to 250 ° C., a 28 at% Si-72 at% Sn target is used as a target, and argon and oxygen are used as reaction gases at the time of sputtering. 50 vol% was carried out by a sputtering apparatus.
  • a 300 nm STO film (a mixed film containing Si, Sn, and O as a composition) was formed.
  • Example 8 A sample of a translucent substrate (hereinafter referred to as “sample 8”) was produced in the same manner as in Example 1.
  • the coating layer was formed by reactive sputtering.
  • a glass substrate provided with a scattering layer is set to room temperature, a 40 at% Si-60 at% Sn target is used as a target, and argon and oxygen are used as reaction gases at the time of sputtering, with an oxygen concentration of 50 vol%.
  • a sputtering apparatus was used.
  • As the coating layer a 300 nm STO film (a mixed film containing Si, Sn, and O as a composition) was formed.
  • Table 1 summarizes the method of forming the coating layers of Samples 1 to 8 and the results of evaluation described later.
  • samples 1 to 8 were measured for the refractive index, surface roughness (arithmetic average roughness) Ra, and filling rate of the coating layer after the coating layer was formed. Further, for the samples 1 to 8, after the ITO film was formed, a color evaluation test, an electrical resistivity measurement, and an absorption amount measurement were performed. The evaluation method and the results will be described below.
  • the refractive index of the coating layer was measured by using an ellipsometer (JA Woollam Spectroscopic Ellipsometry M-2000DI).
  • the filling rate (filling density) of the coating layer is determined by measuring the measured density of the film using an X-ray reflectometer, dividing the measured density by the theoretical density calculated from the composition of the film, and obtaining the obtained value by 100. Calculated by multiplying. When the density of the coating film is changed in the film thickness direction, the highest density in the film is used as the actually measured density.
  • the coloring evaluation test was performed according to the following procedure. (1) The coating layer and the ITO film are wet-etched with an iron chloride aqueous solution on the sample on which the ITO film is formed. (2) The spectral absorption of the sample is evaluated with a spectroscopic device (Lambda 950, manufactured by Perkin Elmer). The value of the spectral absorption at this time is shown in Table 1 as “absorption (%) at a wavelength of 550 nm of the substrate after ITO film formation”. (3) If the absorption amount at a wavelength of 550 nm is 1% or more larger than the absorption of the substrate glass, it is determined that the substrate is colored during the ITO film formation process. In this case, it is determined that there is absorption derived from Bi reduction. The result of the coloring evaluation test is shown in Table 1 as “presence / absence of absorption derived from Bi reducing component”.
  • the amount of absorption at a wavelength of 550 nm of the glass substrate was about It was 3.5%.
  • the samples 1, 2, 3, 5, 6, 7, and 8 have a sufficiently small electrical resistivity of less than 2.38 ⁇ 10 ⁇ 4 ⁇ cm. However, it was confirmed that the electrical resistivity of Sample 4 was high.
  • the ITO film was formed in a region where the oxygen concentration was low except for the sample 4, whereas the ITO film was formed in an atmosphere where the oxygen concentration was higher in the sample 4 than in the other samples. It is done.
  • Samples 5 and 6 had absorptions of 6.8%, 5.7%, and 7.0% or less, respectively, confirming that they were very low compared to other samples. .
  • the filling rate of the coating layer was distributed in the range of 96% to 99%.
  • the filling rate of the coating layer is as low as 81% and 82%.
  • the refractive index of samples other than sample 2 is between 1.86 and 1.91.
  • the refractive index of the base material with respect to light having a wavelength of 550 nm is 1.9.
  • the refractive index is close to that of the base material (about 1.9). In this way, when the refractive index of the base material and the refractive index of the coating layer are close, the interference condition does not change even if the coating layer thickness varies, so the emission color of the organic LED is not affected and stable. It is possible to obtain the light emitting layer color.
  • the refractive index of the base material is preferably 1.7 or more and 2.1 or less in order to improve light extraction of the organic LED, and 1.8 or more and 2 More preferably, it is 0.0 or less.
  • the overall evaluation was ⁇ or ⁇ for each of the samples 1, 2, 5 to 8 as examples.
  • the scattering layer is not colored, the electrical resistivity is sufficiently low, and the amount of absorption at a wavelength of 550 nm of the sample is 7.0% or less, confirming that the performance is particularly excellent. It was.
  • samples 3 and 4 as comparative examples were colored in the scattering layer or increased in electrical resistivity, and the overall evaluation was x.
  • the coating layer formed by the dry film forming method includes the coating layer included in the scattering layer due to the ambient atmosphere when forming the ITO film. Since it functioned as a barrier layer that suppresses the reduction reaction of the reducing element, the scattering layer was not colored. In addition, since the ITO film is formed under a condition where the oxygen concentration is low, the electrical resistivity can be sufficiently reduced.
  • Sample 3 as a comparative example was formed by a wet film formation method although a coating layer was provided, so that the reducible element contained in the scattering layer was the periphery when forming the ITO film. It was reduced by the atmosphere and the scattering layer was colored.
  • the oxygen concentration in the surrounding atmosphere when forming the ITO film was higher than that of the other samples, so that the coating layer was formed by a wet film formation method. It was possible to prevent coloring. However, since the ITO film was formed under a condition where the oxygen concentration was high as described above, the electrical resistivity increased.
  • a coating layer is formed by a dry film formation method, a dense coating layer is formed, and the coating layer is included in a scattering layer or the like due to a low oxygen atmosphere when forming an ITO film. It can function as a barrier layer that suppresses the reduction reaction of a reducible element such as Bi 2 O 3 . Therefore, even when the ITO film is formed in an atmosphere with a low oxygen concentration, it is possible to prevent the scattering layer from being colored, and it is confirmed that both the low absorption of the scattering layer (or glass substrate) and the low resistance of the ITO film can be achieved. did it.
  • the present invention can be applied to organic LED elements used for light-emitting devices and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

【解決手段】Bi、Ti、およびSnからなる群から選定された少なくとも一つの元素を含むガラス基板と、 該ガラス基板上に形成された被覆層と、 該被覆層上に形成された透明導電膜とを有し、 前記被覆層が乾式の成膜方法により成膜されたことを特徴とする透光性基板が提供される。

Description

透光性基板、有機LED素子、透光性基板の製造方法
 本発明は、透光性基板、有機LED素子、透光性基板の製造方法に関する。
 有機LED(Light Emitting Diode)素子は、ディスプレイ、バックライト、および照明用途等に広く用いられている。
 一般的な有機LED素子は、ガラス基板上に設置された第1の電極(陽極)と、第2の電極(陰極)と、これらの電極間に設置された有機発光層とを有する。電極間に電圧を印加すると、それぞれの電極から、有機発光層にホールおよび電子が注入される。このホールと電子が有機発光層内で再結合された際に、結合エネルギーが生じ、この結合エネルギーによって有機発光層中の有機発光材料が励起される。励起した発光材料が基底状態に戻る際に発光が生じるため、これを利用することにより、発光(LED)素子が得られる。
 通常、第1の電極、すなわち陽極には、ITO(Indium Tin Oxide:インジウムスズ酸化物)のような透明導電層が使用され、第2の電極、すなわち陰極には、アルミニウムおよび銀等の金属電極層が使用される。
 通常、有機LED素子を製造する場合、Bi等を含有するガラス基板の上に第1の電極として、透明導電層が形成される。(ガラス基板の上に透明導電層が形成されて構成される部材は、しばしば、「透光性基板」と称される。「透光性基板」は、例えば、有機LED素子等の製品に至る前の半製品として利用される。)
 なお、特許文献1には、Biを主成分とする光学ガラスは、非酸化性雰囲気において、ガラス成分中のビスマスが還元されて亜酸化ビスマス、金属ビスマス等が析出し、着色(黒色)や表面荒れが発生する旨開示されている。そして、このような着色や表面荒れはガラス表面の欠陥になると共に、透過率を低下させる原因となりうるとされている。
日本国特開2010-215426号公報
 上記した特許文献1に開示されているように、Bi等を含有するガラス基板は周囲の環境により変色等する場合がある。そして、本願発明者等の研究では、ガラス基板の上にITO膜を形成した際に、しばしば、ガラス基板に着色が生じる現象が認められている。
 このようなガラス基板の着色は、透光性基板、さらには有機LED素子の特性に大きな影響を及ぼす。例えば、着色が生じたガラス基板を備える有機LED素子では、使用時に、有機発光層において生じた光が素子内部で吸収されてしまい、光の取り出し効率が大きく低下してしまうという問題が生じ得る。
 本発明は、このような課題に鑑みなされたものであり、着色の発生が有意に抑制された透光性基板、およびそのような透光性基板を有する有機LED素子を提供することを目的とする。また、本発明では、着色の発生が有意に抑制された透光性基板の製造方法を提供することを目的とする。
 本発明では、Bi、Ti、およびSnからなる群から選定された少なくとも一つの元素を含むガラス基板と、
 該ガラス基板上に形成された被覆層と、
 該被覆層上に形成された透明導電膜とを有し、
 前記被覆層が乾式の成膜方法により成膜されたことを特徴とする透光性基板が提供される。
 また、本発明では、ガラス基板と、
 該ガラス基板上に形成されたBi、Ti、およびSnからなる群から選定された少なくとも一つの元素を含む散乱層と、
 該散乱層上に形成された被覆層と、
 該被覆層上に形成された透明導電膜とを有し、
 前記被覆層が乾式の成膜方法により成膜されたことを特徴とする透光性基板が提供される。
 本発明の透光性基板においては、前記被覆層がSi、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する酸化物を含んでいてもよい。
 本発明の透光性基板においては、前記被覆層がSi、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒素酸化物を含んでいてもよい。
 本発明の透光性基板においては、前記被覆層がSi、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒化物を含んでいてもよい。
 また、本発明の透光性基板において、前記透明導電膜は、前記ガラス基板に近い側の方が、前記ガラス基板から遠い側に比べて酸化の程度が高い状態となっていてもよい。
 また、本発明の透光性基板において、前記透明導電膜は、前記ガラス基板に近い側から前記ガラス基板から遠い側に向かって、酸化の程度が連続的にまたは不連続に低下していてもよい。
 本発明の透光性基板において、前記透明導電膜は、2nm~500nmの厚さを有していてもよい。
 本発明の透光性基板において、前記透明導電膜は、少なくとも2層の膜で構成され、前記ガラス基板に近い側の第1の透明導電層と、前記ガラス基板から遠い側の第2の透明導電層を有し、
 前記第1の透明導電層は、前記第2の透明導電層よりも酸化の程度が高い状態となっていてもよい。
 本発明の透光性基板において、前記透明導電膜は、2.38×10-4Ωcm未満の抵抗率を有していてもよい。
 本発明の透光性基板において、前記透明導電膜は、0.0086以下の消衰係数を有していてもよい。
 さらに本発明では、ガラス基板と、第1の電極層と、有機発光層と、第2の電極層とをこの順に有する有機LED素子であって、
 前述の透光性基板を備える、有機LED素子が提供される。
 また、本発明においては、ガラス基板と、該ガラス基板上に形成された被覆層と、該被覆層上に形成された透明導電膜とを有する透光性基板の製造方法であって、
 Bi、Ti、およびSnからなる群から選定された少なくとも一つの元素を含むガラス基板を準備するステップと、
 前記ガラス基板上に、乾式の成膜方法により被覆層を成膜するステップと、
 前記被覆層上に透明導電膜を成膜するステップと、
 を有することを特徴とする透光性基板の製造方法が提供される。
 また、本発明においては、ガラス基板と、該ガラス基板上に形成された散乱層と、該散乱層上に形成された被覆層と、該被覆層上に形成された透明導電膜とを有する透光性基板の製造方法であって、
 ガラス基板上に、ガラスからなるベース材と、該ベース材中に分散された複数の散乱物質とを有する散乱層を設置するステップであって、前記散乱層は、Bi、Ti、およびSnからなる群から選定された少なくとも一つの元素を含むステップと、
 前記散乱層上に、乾式の成膜方法により被覆層を成膜するステップと、
 前記被覆層上に透明導電膜を成膜するステップと、
 を有することを特徴とする透光性基板の製造方法が提供される。
 本発明の透光性基板の製造方法においては、前記被覆層がSi、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する酸化物を含んでいてもよい。
 本発明の透光性基板の製造方法においては、前記被覆層がSi、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒素酸化物を含んでいてもよい。
 本発明の透光性基板の製造方法においては、前記被覆層がSi、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒化物を含んでいてもよい。
 本発明の透光性基板の製造方法においては、前記透明導電膜を成膜するステップにおいて、前記透明導電膜は、前記ガラス基板に近い側の方が、前記ガラス基板から遠い側に比べて酸化の程度が高い状態となるように成膜されていてもよい。
 本発明の透光性基板の製造方法においては、前記透明導電膜を成膜するステップにおいて、前記透明導電膜は、前記ガラス基板に近い側から前記ガラス基板から遠い側に向かって、酸化の程度が連続的にまたは不連続に低下していてもよい。
 本発明の透光性基板の製造方法においては、前記透明導電膜を成膜するステップにおいて、前記透明導電膜は、2nm~500nmの厚さを有していてもよい。
 本発明の透光性基板の製造方法においては、前記透明導電膜を成膜するステップは、
 (i)第1の透明導電層を成膜するステップと、その後、
 (ii)前記第1の透明導電層の上部に、第2の透明導電層を成膜するステップと、
を有し、
 前記第1の透明導電層は、前記第2の透明導電層よりも酸化の程度が高い状態となるように成膜されてもよい。
 本発明の透光性基板の製造方法においては、前記透明導電膜は、2.38×10-4Ωcm未満の抵抗率を有していてもよい。
 本発明の透光性基板の製造方法においては、前記透明導電膜は、0.0086以下の消衰係数を有していてもよい。
 本発明では、着色の発生が有意に抑制された透光性基板、およびそのような透光性基板を有する有機LED素子を提供することができる。また、本発明では、着色の発生が有意に抑制された透光性基板の製造方法を提供することができる。
本発明の一形態による第1の透光性基板の概略的な断面図である。 本発明の一形態による第2の透光性基板の概略的な断面図である。 本発明の一形態による第3の透光性基板の概略的な断面図である。 本発明の一形態による有機LED素子の概略的な断面図である。 本発明による有機LED素子の製造方法の一例を概略的に示したフロー図である。
 以下、図面を参照して、本発明について詳しく説明する。
 なお、本実施の形態では、透明導電膜としてITO膜を用いた例により説明しているが、ITO膜だけではなく各種透明導電膜を成膜する際には、Bi等を含有するガラス基板や散乱層に着色を生じる恐れがある。このため、本実施形態の透光性基板においては、ITO膜に限定されるものではなく、ITO膜にかえて各種透明導電膜を適用できる。そして、ITO膜にかえて透明導電膜を適用した場合においても、透明導電膜はITO膜を例に説明した各種条件(パラメータ)を充足することが好ましい。すなわち、以下の本文中の「ITO膜」、「ITO層」は「透明導電膜」、「透明導電層」に読み替えることができる。
 透明導電膜としては上述のITO膜に加えて、例えばSnO(酸化スズ)膜、GZO(ガリウム亜鉛酸化物)膜、IZO(インジウム亜鉛酸化物)膜、AZO(AlドープZnO)膜、TaドープSnO膜、およびTiドープIn膜等が挙げられる。
 (第1の透光性基板)
 図1には、本発明の一形態による第1の透光性基板の概略的な断面図を示す。
 図1に示すように、本発明の一形態による第1の透光性基板100は、ガラス基板110と、該ガラス基板110上に形成された被覆層120と、該被覆層120上に形成されたITO膜130とを有している。
 ガラス基板110は、ビスマス(Bi)、チタン(Ti)、およびスズ(Sn)のうちの少なくとも一つの元素を含む。
 そして、ガラス基板110上には、すなわち、ガラス基板110と、ITO膜130との間には被覆層120が設けられている。被覆層120は、乾式の成膜方法により成膜された膜となっている。
 ここで、このような被覆層120の効果について説明する。
 本願発明者らの検討によれば、ガラス基板の上にITO膜を形成した際、しばしば、ガラス基板に着色が生じることが認められている。このようなガラス基板の着色は、透光性基板、さらには有機LED素子の特性に大きな影響を及ぼす。例えば、着色が生じたガラス基板を備える有機LED素子では、使用時に、有機発光層において生じた光が素子内部で吸収されてしまい、光の取り出し効率が大きく低下してしまうという問題が生じ得る。
 なお、国際公開第2009/017035号の段落[0130]に、散乱層ベース材の透過率と有機LED素子における光取り出し効率の関係が示されており、散乱層の吸収が強くなるに従って、有機LEDの光取り出し効率が低下することが示されている。したがって、本実施形態の透光性基板においては、ガラス基板や後述する散乱層の着色を抑制し、ガラス基板や散乱層の吸収を抑制することによって、有機LED素子からの光の取り出し効率を向上することができる。
 このようなガラス基板の着色は、ガラス基板に特定の成分が含まれている場合、より具体的には、ガラス基板中に、ビスマス(Bi)、チタン(Ti)、およびスズ(Sn)のうちの少なくとも一つの元素(以下、これらの元素をまとめて「被還元性元素」と称する)が含まれている場合に、生じる傾向にある。
 一方、通常、ITO膜を成膜する際の雰囲気は、比較的酸素の少ない雰囲気となっている。これは、「酸素過剰」な雰囲気下でITO膜を成膜すると、得られるITO膜の導電性が低下してしまい、素子の電極として使用することが難しくなるからである。
 これらの事実から考察すると、ガラス基板の着色は、ガラス基板上にITO膜を成膜する際に、ガラス基板の晒される環境が酸素欠乏となることに起因しているものと考えられる。すなわち、ITO膜の成膜過程において、ガラス基板の近傍が酸化性の弱い雰囲気となるため、ガラス基板中の被還元性元素が還元され、これにより、ガラス基板が着色するものと考えられる。
 以上の考察に基づき、本発明では、ガラス基板110の、ITO膜130と対向する面に乾式の成膜方法により成膜された被覆層120を設けている。
 湿式の成膜方法により成膜された膜は、乾燥工程等において溶媒(分散媒)が蒸発するため膜内に微細な孔を有する。これに対して、乾式の成膜方法により成膜された膜は、溶媒(分散媒)の蒸発を伴わないため、緻密な膜とすることができる。
 そして、このような緻密な膜である被覆層120をガラス基板110のITO膜130と対向する面に設けておくことにより、ITO膜130を成膜する際の雰囲気による、ガラス基板110に含まれる被還元性元素の還元反応を抑制することができる。これは、被覆層120がバリア層として機能するためと考えられる。
 このように、乾式の成膜方法により成膜された被覆層120を設けることにより、ITO膜130を成膜する際の雰囲気である酸化性の弱い雰囲気と、ガラス基板110に含まれる被還元性元素とが接触する確率を低減できる。このため、ガラス基板110の着色の発生を有意に抑制することが可能になる。また、被覆層120は、例えば、ITO膜130のパターン処理の際などにおいて、ガラス基板110の溶出や劣化等を防止する耐エッチングバリアとしても機能する。
 ここで、被覆層120を形成する際の乾式の成膜方法については特に限定されるものではないが、例えば、スパッタ法やプラズマCVD法を挙げることができる。なお、スパッタ法により被覆層120を形成する場合、その成膜する際の雰囲気として、アルゴンおよび/または酸素を含む雰囲気中で成膜できる。特に生産性の観点から、アルゴンを含む雰囲気中で成膜を行うことが好ましい。なお、この場合、成膜した被覆層120には雰囲気中のアルゴンが混入することから、得られる被覆層は、アルゴンを含む膜とすることができる。
 ガラス基板等に着色が生じる問題はITO膜の成膜に特有の問題であるため、被覆層120の成膜の際の雰囲気中の酸素濃度は特に問題とならない。ただし、被覆層120を成膜する過程においてもガラス基板110に着色が生じることを確実に防止するため、酸素を含む雰囲気下で被覆層120の成膜を行うことが好ましい。例えば被覆層120を成膜する際の雰囲気中の酸素濃度を10vol%以上とすることが好ましく、15vol%以上とすることがより好ましい。なお、酸素濃度の上限値は特に限定されるものではなく、成膜する被覆層の材料等により選択することができる。例えば90vol%以下とすることが好ましく、80vol%以下とすることがより好ましい。
 また、被覆層120については上述のように乾式の成膜方法により成膜されていればよく、その材質や構成は特に限定されるものではない。また、被覆層120は1種類の物質のみから構成されている必要はなく、複数の物質が含まれていてもよい。また、複数の層から構成することもできる。例えば、被覆層120は、Si、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する酸化物を含むことができる。また、被覆層120は、Si、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒素酸化物を含むことができる。また、被覆層120は、Si、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒化物を含むことができる。
 また、被覆層120は、充填率が例えば85%以上であることが好ましく、90%以上であることがより好ましい。この場合の上限値は特に限定されず、例えば100%以下とすることができる。被覆層120の充填率が上記範囲の場合、特に、ITO膜130を成膜する際の雰囲気による、ガラス基板110に含まれる被還元性元素の還元反応を抑制することができるため好ましい。
 なお、ここで、充填率とは、実測密度を、被覆層の組成から算出した理論密度で除し、100倍することにより算出できる。例えば、X線反射率測定器を用いて測定した膜の実測密度を、膜の組成から算出した理論密度で除し、得られた値を100倍することにより算出できる。被覆膜の密度測定に当たって、膜厚方向の密度変化がある場合は、膜中で最も高い密度を該被覆膜の実測密度とすることができる。
 また、被覆膜120のITO膜130を積層する面については表面粗さ(算術平均粗さ)Raは2.0nm以下であることが好ましく、1.0nm以下であることがより好ましい。なお下限値については特に限定されず、例えば0nm以上であればよい。
 表面粗さRaが上記範囲の場合、被覆層120のITO膜130を積層する面が平滑であることを示しており、ITOの結晶核が良好に成長するため好ましい。
 また、被覆層120の屈折率は、ガラス基板110の屈折率に近い方が好ましい。これはガラス基板110の屈折率と被覆層120の屈折率の差が大きい場合には、被覆層120の膜厚バラツキにより、有機LEDの発光色が干渉の影響を受けてばらつく場合があるためである。一方ガラス基板110の屈折率と被覆層120の屈折率が近い場合には、被覆層120の膜厚ばらつきがあっても干渉条件が変化しない為、有機LEDの発光色は変動を受けないためである。波長550nmの光に対する、ガラス基板110の屈折率と被覆層120の屈折率の差は、マイナス0.15以上プラス0.15以下であることが好ましく、マイナス0.1以上プラス0.1以下であることがより好ましく、マイナス0.05以上プラス0.05以下であることがさらに好ましい。
 被覆層は、ITO膜のエッチング液(例えば塩酸50at%と塩化第二鉄50at%混合液)に対して侵食されにくい性質を有することが好ましい。これは、ITOのパターニングの際に被覆層が侵食されてしまうと、散乱層のベース材やガラス基板もエッチング液に侵食されて、素子として使用できなくなるおそれがあるためである。そのため、被覆層は酸化亜鉛等の酸性液に溶けやすい材料は適さない。
 ITO膜130は、第1の透光性基板100から完成製品、例えば有機LED素子が構成された際に、一方の電極(陽極)として機能する。
 ITO膜130は、前記ガラス基板110に近い側にある第1の表面132と、前記ガラス基板110から遠い側にある第2の表面134とを有する。
 本実施形態において、ITO膜130の構成は特に限定されるものではなく、例えば、上述のように、所定の導電性を得るために比較的酸素の少ない雰囲気において成膜してもよい。これは、本実施形態の第1の透光性基板は上述の被覆層120を設けているため、ITO膜130の成膜条件によらずガラス基板の着色を抑制できるためである。
 ITO膜130としては、上述のように、比較的酸素の少ない雰囲気において成膜してもよく、ITO膜130を成膜する際に成膜条件を変化させずに略均一な組成を有するITO膜130とすることができる。また特に、ITO膜130は、第1の表面132側が第2の表面134側に比べて、酸化度合い(酸化の程度)が高い状態とすることが好ましい。この場合、第2の表面134側での導電性は、第1の表面132側よりも高くなる。
 ここで、ITO膜130の第1の表面132側が第2の表面134側に比べて、酸化度合い(酸化の程度)が高い状態とした場合の効果について説明する。
 上述のように、通常、ITO膜を成膜する際の雰囲気は、比較的酸素の少ない雰囲気となっており、従来は係る雰囲気に起因してガラス基板が着色していたと考えられる。これについて本実施形態の第1の透光性基板においては、所定の被覆層120を設けることにより、ガラス基板の着色を抑制している。
 そして、上述のように、ITO膜130の第1の表面132側が第2の表面134側に比べて、酸化度合い(酸化の程度)が高い状態とする場合、ITO膜の成膜過程において、初期の段階では、成膜雰囲気を従来よりも「酸素過剰」な条件とすることとなる。これにより、成膜の際のガラス基板の近傍の雰囲気がより強い酸化性となり、ガラス基板中の被還元性元素の還元を特に抑制できる。その結果、上記被覆層120の働きとあわせて、ガラス基板の着色をより抑制することができる。
 ただし、ITO膜全体をそのような「酸素過剰」な条件で成膜してしまうと、今度は、前述のように、ITO膜の抵抗が高くなってしまい、ITO膜を素子の電極として使用することができなくなってしまう。
 このため、初期の「酸素過剰」な条件下での成膜によって、「酸化の程度が高い」ITO膜部分(以降、「第1のITO部分」136と称する)が形成された以降は、成膜条件を例えば通常のものに戻し、「酸化の程度が低い」ITO膜部分(以降、「第2のITO部分」138と称する)を形成し、ITO膜全体を構成することが好ましい。
 このような方法でITO膜130を形成した場合、被覆層120に加えて第1のITO部分136も、第2のITO部分138を成膜する際に、ガラス基板110に含まれる被還元性元素の還元反応に対するバリア層として機能する。このため、従来のような酸素欠乏環境で第2のITO部分138を成膜しても、ガラス基板110中の被還元性元素が還元されることを特に抑制することができる。その結果、ガラス基板110の着色がより有意に抑制される。
 またこの場合、第2のITO部分138は、第1のITO部分136に比べて導電性が高くなっているため、これにより、ITO膜130全体としての抵抗上昇を抑制できる。
 従って、成膜条件を変化させることなくITO膜130を成膜した場合と比較して、ガラス基板110の着色をより抑制し、ITO膜130の抵抗上昇も抑制することが可能となる。
 上述のように、ITO膜130が、酸化の程度が高い第1のITO部分136および酸化の程度が低い第2のITO部分138を有する場合において、第1のITO部分136から第2のITO部分138までの間の酸化の程度の変化の態様は、特に限定されない。
 例えば、ITO膜130の酸化の程度は、第1の表面132から第2の表面134まで、連続的に変化しても良く、または不連続に(例えばステップ状に)変化しても良く、連続部分と不連続部分を組み合わせた態様で変化しても良い。また、酸化の程度が連続的に変化する場合、その変化は、直線的であっても曲線的であっても良い。あるいは、第1のITO部分136と第2のITO部分138との間に、酸化の程度が最も低い、第3のITO部分が存在しても良い。
 さらに言えば、第1のITO部分136および第2のITO部分138という表現は、単なる便宜的なものに過ぎず、両者は、必ずしも明確に識別できる必要はない。
 なお、ここまでの説明で用いてきた、ITO膜の「酸化の程度」および「酸化度合い」という用語は、2つの比較対象の間の差異を表現するために相対的に使用される指標であることに留意する必要がある。
 ITO膜130の「酸化度合い」は、例えば、2つの比較対象のそれぞれに対して、X線光電子分光法(XPS)分析を行うことにより、相対的に評価できる。
 ITO膜130の抵抗率は特に限定されるものではないが、例えば、2.38×10-4Ωcm未満であっても良い。
 なお、ここでいうITO膜130の抵抗率とは、ITO膜130全体での抵抗率を意味している。従って、成膜条件を変化させずに成膜され略均一な組成を有する構成の場合であっても、ITO膜内での酸化の程度が異なった構成(均一ではない構成)であっても、ITO膜130の抵抗率が上記範囲に入っていることが好ましく、膜の構成は限定されない。
 また、ITO膜130の膜厚は特に限定されるものではなく、供給する電力、基材搬送速度等に応じて選択可能だが、例えば2nm~520nmの厚さを有してもよく、より好ましくは2nm~500nmの厚さとすることができる。
 また、ITO膜は、消衰係数が0.0086以下であることが好ましい。消衰係数は例えばエリプソメトリー法により評価可能であり、ITO膜を成膜する際の雰囲気によりその値が変化する。そして、ITO膜の消衰係数が上記範囲にあることは、少なくともITO膜の一部を成膜する際に十分に酸素の少ない雰囲気下において成膜がなされたことを意味している。このため、ITO膜が、消衰係数について上記規定を満たす場合、該ITO膜のホール抵抗率が十分に低いことを示している。なお、ここでの消衰係数は、ITO膜が単層の場合や後述のように多層から構成されている場合のいずれの場合であってもITO膜全体について測定した場合の値である。なお、本明細書において消衰係数は波長550nmにおけるものと定義する。
 なお、既述のように、ITO膜は各種透明導電膜とすることもできる。ITO膜にかえて透明導電膜とした場合、透明導電膜は上述のITO膜と同様の条件を満たすことが好ましい。透明導電膜については既述のため、ここでは説明を省略する。
 (第2の透光性基板)
 次に、本発明の一形態による第2の透光性基板について説明する。
 図2には、本発明の一形態による第2の透光性基板の概略的な断面図を示す。
 図2に示すように、第2の透光性基板200も、基本的に、第1の透光性基板100と同様に構成される。従って、図2において、図1と同様の部材には、図1の部材の参照符号に100を加えた参照符号が使用されている。
 しかしながら、図2に示す第2の透光性基板200は、ITO膜230の構成が、図1のITO膜130とは異なっている。すなわち、第1の表面232および第2の表面234を有するITO膜230は、少なくとも2つの層を有する多層化構造を有する。例えば、図2において、ITO膜230は、ガラス基板210に近い側に設置された第1のITO層235と、ガラス基板210から遠い側に配置された第2のITO層237とを有する。
 そして、この場合、第1のITO層235と、第2のITO層237の構成は特に限定されるものではない。例えば、第1のITO層235と、第2のITO層237の酸化の程度は同じ、または、いずれか一方のITO層について他方のITO層よりも酸化の程度を高い状態とすることができる。
 ただし、第1のITO層235は、第2のITO層237に比べて、酸化の程度が高い状態となっていることが好ましい。この場合、第2のITO層237は、第1のITO層235に比べて、導電性が高くなる。
 このように第1のITO層235の方が第2のITO層237に比べて酸化の程度が高い場合、第2のITO層237を成膜する際、第1のITO層235を成膜する際よりも酸化性の低い雰囲気で成膜することとなる。
 しかし、被覆層220に加えて第1のITO層235が、該第2のITO層237を成膜する際の雰囲気による、ガラス基板210に含まれる被還元性元素の還元反応を抑制するバリア層として機能する。このため、ガラス基板210の変色をより抑制でき好ましい。また、酸化の程度の低い第2のITO層237を設けることにより、ITO膜230の抵抗上昇抑制の効果も得ることができる。
 なお、図2の例では、ITO膜230は、2層構造であるが、ITO膜230は、3層以上の多層化構造で構成されても良い。この場合、ガラス基板に最も近い側のITO膜が、他のITO膜に比べて、より酸化の程度が高い状態となるように構成されることが好ましい。
 第1のITO層235は、例えば、1nm~20nmの厚さを有しても良い。同様に、第2のITO層237は、例えば、1nm~500nmの厚さを有しても良い。ITO膜230全体の厚さは、例えば、2nm~520nmの範囲であっても良く、2nm~500nmであることがより好ましい。
 また、ITO膜230全体の抵抗率は、例えば、2.38×10-4Ωcm未満であっても良い。なお、ここでいうITO膜230の抵抗率とは、ITO膜230全体での抵抗率を意味している。
 また、ITO膜は、消衰係数が0.0086以下であることが好ましい。消衰係数については第1の透光性基板において説明したため、ここでは省略する。
 なお、既述のように、ITO膜は各種透明導電膜とすることもできる。ITO膜にかえて透明導電膜とした場合、透明導電膜は上述のITO膜と同様の条件を満たすことが好ましい。また、第2の透光性基板においては、例えば第1のITO層235、第2のITO層237はそれぞれ第1の透明導電層、第2の透明導電層とすることができる。第1の透明導電層と、第2の透明導電層とは、組成が異なっていてもよい。
 透明導電膜については既述のため、ここでは説明を省略する。
 (第3の透光性基板)
 以上、ガラス基板と、ITO膜と、被覆層とで構成される透光性基板を例に、本発明の構成および効果について説明した。しかしながら、本発明は、そのような態様に限られるものではない。
 例えば、最近では、透光性基板および有機LED素子からの光取り出し効率を高めることを目的として、ITO膜を設置するためのガラス基板の表面に、光を散乱させるための散乱層を設置することが提案されている。
 ここで、そのような散乱層は、例えば、ガラス製のベース材と、該ベース材中に分散された散乱物質とで構成される。従って、ガラス製の散乱層が前述の「被還元性元素」を含む場合にも、前述のような問題、すなわち、散乱層の上部にITO膜を成膜する際に、散乱層が着色するという問題が生じ得る。
 そこで、以下、そのような散乱層の着色の問題を有意に抑制するための、本発明の一実施例による別の透光性基板の構成について説明する。
 図3には、本発明の一形態による第3の透光性基板300の概略的な断面図を示す。
 図3に示すように、第3の透光性基板300は、ガラス基板310と、散乱層340と、被覆層320、ITO膜330とを有する。
 この形態では、前述のガラス基板110、210とは異なり、ガラス基板310は、必ずしも、前述の被還元性元素を含む必要はない。このため、第3の透光性基板においてガラス基板310は、ビスマス(Bi)、チタン(Ti)、およびスズ(Sn)のうちの少なくとも一つの元素、すなわち「被還元性元素」を含んでいてもよく、含んでいなくてもよい。
 散乱層340は、第1の屈折率を有するガラス製のベース材341と、該ベース材341中に分散された、前記ベース材341とは異なる第2の屈折率を有する複数の散乱物質342とで構成される。散乱層340は、ビスマス(Bi)、チタン(Ti)、およびスズ(Sn)のうちの少なくとも一つの元素、すなわち「被還元性元素」を含む。なお、散乱層340が被還元性元素を含むとは、散乱層340を構成するベース材341および散乱物質342のうち、少なくとも一方が被還元性元素を含んでいることを意味している。
 そして、散乱層340とITO膜330との間には、乾式の成膜方法により成膜された被覆層320が設置されている。被覆層320は乾式の成膜方法により成膜されているため緻密な膜となっている。
 被覆層320を形成する際の乾式の成膜方法については特に限定されるものではないが、例えば、スパッタ法やプラズマCVD法を挙げることができる。なお、スパッタ法により被覆層320を形成する際、その成膜する際の雰囲気として、アルゴンおよび/または酸素を含む雰囲気中で成膜を行うことができる。特に生産性の観点から、アルゴンを含む雰囲気中で成膜を行うことが好ましい。なお、この場合、成膜した被覆層320には雰囲気中のアルゴンが混入することから、得られる被覆層は、アルゴンを含む膜とすることができる。
 散乱層に着色が生じる問題はITO膜の成膜に特有の問題であるため、被覆層320の成膜の際の雰囲気中の酸素濃度は特に問題とならない。ただし、被覆層320を成膜する過程においても散乱層340に着色が生じることを確実に防止するため、酸素を含む雰囲気下で被覆層320の成膜を行うことが好ましい。例えば被覆層320を成膜する際の雰囲気中の酸素濃度を10vol%以上とすることが好ましく、15vol%以上とすることがより好ましい。なお、酸素濃度の上限値は特に限定されるものではなく、成膜する被覆層の材料等により選択することができる。例えば90vol%以下とすることが好ましく、80vol%以下とすることがより好ましい。
 また、被覆層320については上述のように乾式の成膜方法により成膜されていればよく、その材質や構成は特に限定されるものではない。また、被覆層320は1種類の物質のみから構成されている必要はなく、複数の物質が含まれていてもよい。また、複数の層から構成することもできる。例えば、被覆層320は、Si、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する酸化物を含むことができる。また、被覆層320は、Si、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒素酸化物を含むことができる。また、被覆層320は、Si、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒化物を含むことができる。
 また、被覆層320は、充填率が例えば85%以上であることが好ましく、90%以上であることがより好ましい。この場合の上限値は特に限定されず、例えば100%以下とすることができる。被覆層320の充填率が上記範囲の場合、特に、ITO膜330を成膜する際の雰囲気による、散乱層340に含まれる被還元性元素の還元反応を抑制することができるため好ましい。
 なお、充填率の算出方法については既に説明したためここでは説明を省略する。
 また、被覆膜320のITO膜330を積層する面については表面粗さ(算術平均粗さ)Raは2.0nm以下であることが好ましく、1.0nm以下であることがより好ましい。なお下限値については特に限定されず、例えば0nm以上であればよい。
 表面粗さRaが上記範囲の場合、被覆層320のITO膜330を積層する面が平滑であることを示しており、ITOの結晶核が良好に成長するため好ましい。
 また、被覆層320の屈折率は、ベース材341の屈折率に近い方が好ましい。これはベース材341の屈折率と被覆層320の屈折率の差が大きい場合には、被覆層320の膜厚バラツキにより、有機LEDの発光色が干渉の影響を受けてばらつく場合があるためである。一方ベース材341の屈折率と被覆層320の屈折率が近い場合には、被覆層320の膜厚ばらつきがあっても干渉条件が変化しない為、有機LEDの発光色は変動を受けないためである。波長550nmの光に対する、ベース材341の屈折率と被覆層320の屈折率の差は、マイナス0.15以上プラス0.15以下であることが好ましく、マイナス0.1以上プラス0.1以下であることがより好ましく、マイナス0.5以上プラス0.5以下であることがさらに好ましい。
 係る緻密な膜である被覆層320を散乱層340のITO膜330と対向する面に設けておくことにより、ITO膜330を成膜する際の雰囲気による、散乱層340に含まれる被還元性元素の還元反応を抑制することができる。これは、被覆層320がバリア層として機能するためと考えられる。
 このように、乾式の成膜方法により成膜された被覆層320を設けることにより、ITO膜330を成膜する際の雰囲気である酸化性の弱い雰囲気と、散乱層340に含まれる被還元性元素とが接触する確率を低減できる。このため、散乱層340の着色の発生を有意に抑制することが可能になる。また、被覆層320は、例えば、ITO膜330のパターン処理の際などにおいて、散乱層340の溶出や劣化等を防止する耐エッチングバリアとしても機能する。
 ITO膜330は、第3の透光性基板300から完成製品、例えば有機LED素子が構成された際に、一方の電極(陽極)として機能する。ITO膜330は、前記ガラス基板310に近い側にある第1の表面332と、前記ガラス基板310から遠い側にある第2の表面334とを有する。
 ITO膜330の構成は特に限定されるものではなく、例えば第1、第2の透光性基板で説明したような各種形態とすることができる。なお、図3においてはITO膜330が2層からなる例を示しているが、係る形態に限定されるものではなく、後述のように単層または2層以上により構成することもできる。
 例えばITO膜330は成膜工程中、その成膜条件を変化させることなく成膜された膜の組成が略均一な一層(単層)のITO膜から構成することができる。
 また、ITO膜を一層で構成する場合の他の形態として、第1の透光性基板で説明したようにITO膜330は、第1の表面332側が第2の表面334側に比べて、酸化度合い(酸化の程度)が高い状態とすることができる。この場合、第2の表面334側での導電性は、第1の表面332側よりも高くなる。
 ITO膜330をこのように構成することにより、ITO膜の成膜過程において、初期の段階では、成膜雰囲気を従来よりも「酸素過剰」な条件とすることとなる。これにより、成膜の際の散乱層の近傍の雰囲気がより強い酸化性となり、散乱層中の被還元性元素の還元を特に抑制することができる。その結果、被覆層320の働きとあわせて、散乱層の着色をより抑制することができる。
 そして、初期の「酸素過剰」な条件下での成膜によって、「酸化の程度が高い」ITO膜部分(第1のITO部分)が形成された以降は、成膜条件を例えば通常のものに戻し、「酸化の程度が低い」ITO膜部分(第2のITO部分)を形成し、ITO膜全体を構成することが好ましい。
 このような方法でITO膜330を形成した場合、第1の透光性基板において説明したように、被覆層320に加えて、第1のITO部分も、第2のITO部分を成膜する際に、散乱層340に含まれる被還元性元素の還元反応に対するバリア層として機能する。このため、酸素欠乏環境で第2のITO部分を成膜しても、散乱層340中の被還元性元素が還元されることを特に抑制することができる。その結果、散乱層340の着色がより有意に抑制される。
 またこの場合、第2のITO部分は、第1のITO部分に比べて導電性が高くなっているため、これにより、ITO膜330全体としての抵抗上昇を抑制することができる。
 従って、成膜条件を変化させることなくITO膜330を成膜した場合と比較して、ガラス基板310の着色をより抑制し、ITO膜330の抵抗上昇も抑制することが可能となる。
 上述のように、ITO膜330が、酸化の程度が高い第1のITO部分および酸化の程度が低い第2のITO部分を有する場合において、第1のITO部分から第2のITO部分までの間の酸化の程度の変化の態様は、特に限定されない。
 例えば、ITO膜330の酸化の程度は、第1の表面332から第2の表面334まで、連続的に変化しても良く、または不連続に(例えばステップ状に)変化しても良く、連続部分と不連続部分を組み合わせた態様で変化しても良い。また、酸化の程度が連続的に変化する場合、その変化は、直線的であっても曲線的であっても良い。あるいは、第1のITO部分と第2のITO部分の間に、酸化の程度が最も低い、第3のITO部分が存在しても良い。
 また第1の透光性基板においても説明したように、第1のITO部分および第2のITO部分という表現は、単なる便宜的なものに過ぎず、両者は、必ずしも明確に識別できる必要はない。
 また、ITO膜330は、多層化構造を有する構造とすることができる。例えば図3に示すように、少なくとも2層の膜で構成され、ガラス基板310に近い側の第1のITO層335およびガラス基板から遠い側の第2のITO層337の2層を有する構成とすることができる。
 この場合、前述の図2に示した透光性基板200のITO膜230と同様に、第1のITO層335は、第2のITO層337に比べて酸化の程度が高い状態とすることが好ましい。このような構成とした場合、第2のITO層337は、第1のITO層335に比べて導電性が高くなっている。
 このように構成する場合、第1のITO層335を、従来よりも「酸素過剰」な雰囲気下で形成することとなり、第1のITO層335の成膜中に、散乱層340中の被還元性元素が還元されることを有意に抑制することができる。そして、第2のITO層337は、第1のITO層335の成膜条件に比べて、より酸素の少ない雰囲気下、例えば従来と同等の酸化性の弱い雰囲気下で成膜する。この場合、被覆層320および第1のITO層335の存在のため、すなわち、被覆層320および第1のITO層335がバリア層として機能するため、第2のITO層337を成膜する際にも、散乱層340に含まれる被還元性元素の還元反応は、抑制される。
 その結果、散乱層340に着色を生じさせることなく、第2のITO層337に比べて酸化の程度の高い状態の第1のITO層335と、第1のITO層335に比べて高導電性の第2のITO層337と、を有するITO膜330を形成することができる。
 第1のITO層335は、例えば、1nm~20nmの厚さを有しても良い。同様に、第2のITO層337は、例えば、1nm~500nmの厚さを有しても良い。ITO膜330全体の厚さは、例えば、2nm~520nmの範囲であることが好ましく、2nm~500nmとすることがより好ましい。
 また、ITO膜330全体の抵抗率は、例えば、2.38×10-4Ωcm未満であっても良い。
 なお、ここでいうITO膜330の抵抗率とは、ITO膜330全体での抵抗率を意味している。この際のITO膜330の構成は限定されるものではない。このため、ITO膜330は上述のように、成膜条件を変化させずに成膜され略均一な組成を有する構成であっても良い。また、上述のように酸化の程度が高い第1のITO部分336および酸化の程度が低い第2のITO部分338を有し、ITO膜内での酸化の程度が異なった構成(均一ではない構成)とすることもできる。また、ITO膜330が複数の層から構成されていてもよい。
 また、ITO膜は、消衰係数が0.0086以下であることが好ましい。消衰係数については第1の透光性基板において説明したため、ここでは省略する。
 以上のことから、第3の透光性基板300においても、乾式の成膜方法により成膜された被覆層320を設けることにより散乱層340の着色防止と、ITO膜330の抵抗上昇抑制の両方の効果を得ることが可能となる。
 なお、既述のように、ITO膜は各種透明導電膜とすることもできる。ITO膜に変えて透明導電膜とした場合、透明導電膜はITO膜と同様の条件を満たすことが好ましい。透明導電膜については既述のため、ここでは説明を省略する。
 (有機LED素子)
 次に、図4を参照して、本発明の一形態による有機LED素子について説明する。
 図4には、本発明の一形態による有機LED素子の一例の概略的な断面図を示す。
 図4に示すように、本発明の一形態による有機LED素子400は、ガラス基板410と、散乱層440と、被覆層420と、第1の電極(陽極)層430と、有機発光層450と、第2の電極(陰極)層460とを、この順に積層することにより構成される。
 ガラス基板410は、上部に有機LED素子を構成する各層を支持する役割を有する。図4の例では、有機LED素子400の下側の表面(すなわちガラス基板410の露出面)が光取り出し面470となる。
 散乱層440は、第1の屈折率を有するガラス製のベース材441と、該ベース材441中に分散された、前記ベース材441とは異なる第2の屈折率を有する複数の散乱物質442とで構成することができる。
 散乱層440は、有機発光層450から生じる光を効果的に散乱させ、有機LED素子400内で全反射される光の量を低減する役割を有する。従って、図4の構成の有機LED素子400では、光取り出し面470から出射される光量を向上させることができる。
 散乱層440は、前述のような「被還元性元素」を含む。
 散乱層440と第1の電極430との間には、乾式の成膜方法で成膜された被覆層420が設けられている。
 被覆層420の構成は第1~第3の透光性基板で説明したものと同様の構成とすることができる。具体的な構成例については既に説明したため、ここでは省略する。
 該被覆層420を設けることにより、ITO膜430を成膜する際の雰囲気による、散乱層440に含まれる被還元性元素の還元反応を抑制することができる。これは、被覆層420がバリア層として機能するためと考えられる。
 このように、乾式の成膜方法により成膜された被覆層420を設けることにより、ITO膜430を成膜する際の雰囲気である酸化性の弱い雰囲気と、散乱層440に含まれる被還元性元素とが接触する確率を低減することができる。このため、散乱層440の着色の発生を有意に抑制することが可能になる。また、被覆層420は、散乱層の表面を平滑化して、以降の層の成膜処理を容易化する平滑化層として機能することができる。さらに、例えば、第1の電極層(ITO膜)430のパターン処理の際などにおいて、散乱層440の溶出や劣化等を防止する耐エッチングバリアとしても機能する。
 第1の電極層430は、ITO膜で構成することができる。また、既述のように各種透明導電膜で構成することもできる。一方、第2の電極層460は、例えばアルミニウムや銀のような金属で構成することができる。
 有機発光層450は、通常の場合、発光層の他、電子輸送層、電子注入層、ホール輸送層、ホール注入層など、複数の層で構成することができる。
 ここで、第1の電極層430を構成するITO膜は、第1~第3の透光性基板で説明した各種形態とすることができる。図4では、ITO膜は、ガラス基板410に近い側の第1のITO層435と、ガラス基板410から遠い側の第2のITO層437との2層で構成された例を示しているが係る形態に限定されるものではない。例えば、単層により構成することもでき、多層化構造を有しても良い。ITO膜のその他の構成については、第1~第3の透光性基板において説明したためここでは説明を省略する。
 このように構成された第1の電極層430を備える有機LED素子400においても、上述のように被覆層420を設けているため、散乱層440についてより確実に着色防止を図ることができる。また、第1の電極層430の抵抗上昇を抑制することもできる。
 なお、有機LED素子の構成として、図4を例に説明しているが、係る形態に限定されるものではない。図4における、ガラス基板410、散乱層440、被覆層420、第1の電極層430までの部分は、既に説明した第1~第3の透光性基板の構成とすることができる。
 また、図4では、有機LED素子400は、散乱層440を有する構成を例に説明したが、有機LED素子において、散乱層440は、必ずしも必要ではなく、省略されても良い。ただし、そのような散乱層を含まない有機LED素子の場合、第1の透光性基板、第2の透光性基板において説明したようにガラス基板は、被還元性元素を含む組成を有する。
 (各構成素子について)
 次に、有機LED素子400を構成する各素子の詳細について説明する。なお、以下に示す素子の一部は、図1~図3に示した透光性基板100~300においても同様に使用され得ることに留意する必要がある。
 (ガラス基板410)
 ガラス基板410は、可視光に対する透過率が高い材料で構成される。ガラス基板の材料としては、アルカリガラス、無アルカリガラスまたは石英ガラスなどの無機ガラスが挙げられる。
 なお、有機LED素子が散乱層440を有しない場合、ガラス基板410中には、被還元性元素が含まれる。
 ガラス基板410の厚さは、特に限られないが、例えば、0.1mm~2.0mmの範囲であっても良い。強度および重量を考慮すると、ガラス基板410の厚さは、0.5mm~1.4mmであることが好ましい。
 (散乱層440)
 散乱層440は、ベース材441と、該ベース材441中に分散された複数の散乱物質442とを有する。ベース材441は、第1の屈折率を有し、散乱物質442は、ベース材とは異なる第2の屈折率を有する。
 散乱層440は、前述の被還元性元素を含む。
 なお、散乱層440中の散乱物質442の存在量は、散乱層440の内部から外側に向かって小さくなっていることが好ましく、この場合、高効率の光取り出しを実現することができる。
 ベース材441は、ガラスで構成され、ガラスの材料としては、ソーダライムガラス、ホウケイ酸塩ガラス、無アルカリガラス、および石英ガラスなどの無機ガラスが使用される。
 散乱物質442は、例えば、気泡、析出結晶、ベース材とは異なる材料粒子、分相ガラス等で構成される。分相ガラスとは、2種類以上のガラス相により構成されるガラスをいう。
 ベース材441の屈折率と散乱物質442の屈折率の差は、大きい方が良く、このためには、ベース材441として高屈折率ガラスを使用し、散乱物質442として気泡を使用することが好ましい。
 ベース材441用の高屈折率のガラスのため、ネットワークフォーマとして、P、SiO、B、GeO、およびTeOのうちの一種類または二種類以上の成分を選定し、高屈折率成分として、TiO、Nb、WO、Bi、La、Gd、Y、ZrO、ZnO、BaO、PbO、およびSbのうちの一種類または二種類以上の成分を選定しても良い。さらに、ガラスの特性を調整するため、アルカリ酸化物、アルカリ土類酸化物、フッ化物などを、屈折率に影響を及ぼさない範囲で、添加しても良い。
 従って、ベース材441を構成するガラス系の材料としては、例えば、B-ZnO-La系、P-B-R’O-R”O-TiO-Nb-WO-Bi系、TeO-ZnO系、B-Bi系、SiO-Bi系、SiO-ZnO系、B-ZnO系、P-ZnO系などが挙げられる。ここで、R’はアルカリ金属元素、R”はアルカリ土類金属元素を示す。なお、以上の材料系は、一例に過ぎず、上記条件を満たすような構成であれば、使用材料は、特に限られない。
 ベース材441に、着色剤を添加することにより、発光の色味を変化させることもできる。着色剤としては、遷移金属酸化物、希土類金属酸化物、および金属コロイドなどを、単独でまたは組み合わせて使うことができる。
 (被覆層420)
 散乱層440と第1の電極層430との間には、被覆層420が設置されている。なお、散乱層440を設けない場合には、ガラス基板410上に形成することができる。
 被覆層420は、乾式の成膜方法により成膜された膜である。乾式の成膜方法により成膜された膜の場合、湿式の成膜方法により成膜された膜と比較して緻密な膜とすることができる。このため、ITO膜を成膜する際の酸化性の弱い雰囲気においても該雰囲気とガラス基板または散乱層とが接触する確率を低減することができ、ガラス基板または散乱層の着色の発生を有意に抑制することが可能になる。また、ITO膜を成膜する際に、その雰囲気を酸素リッチな雰囲気とする必要がなくなることから、ITO膜(第1の電極膜)の抵抗上昇を抑制することも可能になる。
 被覆層420は上述のように乾式の成膜方法により成膜された膜であればよく、被覆層420を形成する際の乾式の成膜方法については特に限定されるものではないが、例えば、スパッタ法やプラズマCVD法を挙げることができる。なお、スパッタ法により被覆層420を形成する際、その成膜する際の雰囲気として、アルゴンおよび/または酸素を含む雰囲気中で成膜を行うことができる。特に生産性の観点から、アルゴンを含む雰囲気中で成膜を行うことが好ましい。なお、この場合、成膜した被覆層420には雰囲気中のアルゴンが混入することから、得られる被覆層420は、アルゴンを含む膜とすることができる。
 散乱層等に着色が生じる問題はITO膜の成膜に特有の問題であるため、被覆層420の成膜の際の雰囲気中の酸素濃度は特に問題とならない。ただし、被覆層420を成膜する過程においても散乱層440またはガラス基板410に着色が生じることを確実に防止するため、酸素を含む雰囲気下で被覆層420の成膜を行うことが好ましい。例えば被覆層420を成膜する際の雰囲気中の酸素濃度を10vol%以上とすることが好ましく、15vol%以上とすることがより好ましい。なお、酸素濃度の上限値は特に限定されるものではなく、成膜する被覆層の材料等により選択することができる。例えば90vol%以下とすることが好ましく、80vol%以下とすることがより好ましい。
 また、被覆層420については上述のように乾式の成膜方法により成膜されていればよく、その材質や構成は特に限定されるものではない。また、被覆層420は1種類の物質のみから構成されている必要はなく、複数の物質が含まれていてもよい。また、複数の層から構成することもできる。例えば、被覆層420は、Si、Al、Ti、Nb、Zr,Sn、Ta、Wから選択された1種以上の元素を含有する酸化物を含むことができる。また、被覆層420は、Si、Al、Ti、Nb、Zr,Sn、Ta、Wから選択された1種以上の元素を含有する窒素酸化物を含むことができる。また、被覆層420は、Si、Al、Ti、Nb、Zr,Sn、Ta、Wから選択された1種以上の元素を含有する窒化物を含むことができる。
 また、被覆層420は、充填率が例えば85%以上であることが好ましく、90%以上であることがより好ましい。この場合の上限値は特に限定されず、例えば100%以下とすることができる。被覆層420の充填率が上記範囲の場合、特に、ITO膜430を成膜する際の雰囲気による、散乱層またはガラス基板に含まれる被還元性元素の還元反応を抑制することができるため好ましい。
 なお、充填率の算出方法については既に説明したためここでは説明を省略する。
 また、被覆層420のITO膜430を積層する面については表面粗さ(算術平均粗さ)Raは2.0nm以下であることが好ましく、1.0nm以下であることがより好ましい。なお下限値については特に限定されず、例えば0nm以上であればよい。
 表面粗さRaが上記範囲の場合、被覆層420のITO膜430を積層する面が平滑であることを示しており、ITOの結晶核が良好に成長するため好ましい。
 被覆層420の屈折率は、ベース材441の屈折率に近い方が好ましい。これはベース材441の屈折率と被覆層420の屈折率の差が大きい場合には、被覆層420の膜厚バラツキにより、有機LEDの発光色が干渉の影響を受けてばらついてしまう場合があるためである。一方ベース材441の屈折率と被覆層420の屈折率が近い場合には、被覆層420の膜厚ばらつきがあっても干渉条件が変化しない為、有機LEDの発光色は変動を受けないためである。波長550nmの光に対する、ベース材441の屈折率と被覆層420の屈折率の差は、例えばマイナス0.15以上プラス0.15以下であることが好ましく、マイナス0.1以上プラス0.1以下であることがより好ましく、マイナス0.05以上プラス0.05以下であることがさらに好ましい。
 また、取り出し効率をより向上させるため、被覆層420の屈折率は、第1の電極層430よりも高いことが好ましい。ただし、上記のように被覆層420の屈折率と、ベース材441の屈折率との差は小さい方が好ましい。
 被覆層420の膜厚は、特に限られない。被覆層420の膜厚は、例えば、50nm~500μmの範囲であっても良い。
 (第1の電極層430)
 第1の電極層430は、前述のように、ITO膜で構成される。ITO膜は上述のように単層から構成することもでき、2層以上の多層化構造とすることもできる。
 例えば図4に示したように、ITO膜はガラス基板410に近い側の第1のITO層435と、ガラス基板410から遠い側の第2のITO層437との2層で構成されても良い。この場合、第1のITO層435は、第2のITO層437に比べて酸化の程度が高い状態となるように構成されていることが好ましく、このように構成した場合、第2のITO層437は、第1のITO層435に比べて導電性が高くなるように構成される。
 第1のITO層435の厚さは、特に限られないが、例えば、1nm~20nmの範囲であることが好ましい。第2のITO層437の厚さは、特に限られないが、例えば、1nm~500nmの範囲であることが好ましい。ITO膜全体の厚さは、例えば、2nm~520nmの範囲であることが好ましく、2nm~500nmとすることがより好ましい。
 なお、第1の電極層430を構成するITO膜は、3層以上の層で構成されても良い。あるいは、前述の図1に示したように、ITO膜は、単一の層で構成することもできる。この場合、特に第1の電極層430の第1の表面432から第2の表面434に沿って、酸化の程度が連続的にまたは不連続に変化(低下)するように構成されていることが好ましい。
 第1の電極層430の総厚さは、50nm以上であることが好ましい。
 第1の電極層430の屈折率は、1.65~2.2の範囲であることが好ましい。なお、第1の電極層430の屈折率は、散乱層440を構成するベース材441の屈折率や第2の電極層460の反射率を考慮して、決定することが好ましい。導波路計算や第2の電極層460の反射率等を考慮すると、第1の電極層430とベース材441の屈折率の差は、0.2以下であることが好ましい。
 なお、第1の電極層430は既述のようにITO膜にかえて各種透明導電膜により構成することもできる。第1の電極層430を各種透明導電膜とした場合でも、ITO膜と同様に上述した各種条件を充足することが好ましい。また、透明導電膜については既述のため説明を省略する。
 (有機発光層450)
 有機発光層450は、発光機能を有する層であり、通常の場合、ホール注入層と、ホール輸送層と、発光層と、電子輸送層と、電子注入層とにより構成される。ただし、有機発光層450は、発光層を有していれば、必ずしも他の層の全てを有する必要はないことは、当業者には明らかである。なお、通常の場合、有機発光層450の屈折率は、1.7~1.8の範囲とすることが好ましい。
 ホール注入層は、第1の電極層430からのホール注入の障壁を低くするため、イオン化ポテンシャルの差が小さいものが好ましい。電極からホール注入層への電荷の注入効率が高まると、有機LED素子400の駆動電圧が下がり、電荷の注入効率が高まる。
 ホール注入層の材料としては、高分子材料または低分子材料が使用される。高分子材料の中では、ポリスチレンスルフォン酸(PSS)がドープされたポリエチレンジオキシチオフェン(PEDOT:PSS)が良く使用され、低分子材料の中では、フタロシアニン系の銅フタロシアニン(CuPc)が広く用いられる。
 ホール輸送層は、前述のホール注入層から注入されたホールを発光層に輸送する役割をする。ホール輸送層には、例えば、トリフェニルアミン誘導体、N,N’-ビス(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)、N,N’-ジフェニル-N,N’-ビス[N-フェニル-N-(2-ナフチル)-4’-アミノビフェニル-4-イル] -1,1’-ビフェニル-4,4’-ジアミン(NPTE)、1,1’-ビス[(ジ-4-トリルアミノ)フェニル]シクロヘキサン(HTM2)、およびN,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ジフェニル-4,4’-ジアミン(TPD)などが用いられる。
 ホール輸送層の厚さは、例えば10nm~150nmの範囲とすることができる。ホール輸送層の厚さが薄いほど、有機LED素子を低電圧化できるが、電極間短絡の問題から、10nm~150nmの範囲とすることが好ましい。
 発光層は、注入された電子とホールが再結合する場を提供する役割を有する。有機発光材料としては、例えば低分子系または高分子系のものが使用される。
 発光層には、例えば、トリス(8-キノリノラート)アルミニウム錯体(Alq)、ビス(8-ヒドロキシ)キナルジンアルミニウムフェノキサイド(Alq’OPh)、ビス(8-ヒドロキシ)キナルジンアルミニウム-2,5-ジメチルフェノキサイド(BAlq)、モノ(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)リチウム錯体(Liq)、モノ(8-キノリノラート)ナトリウム錯体(Naq)、モノ(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)リチウム錯体、モノ(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)ナトリウム錯体およびビス(8-キノリノラート)カルシウム錯体(Caq)などのキノリン誘導体の金属錯体、テトラフェニルブタジエン、フェニルキナクドリン(QD)、アントラセン、ペリレン、並びにコロネンなどの蛍光性物質が挙げられる。
 ホスト材料としては、キノリノラート錯体を使用しても良く、特に、8-キノリノールおよびその誘導体を配位子としたアルミニウム錯体が使用されても良い。
 電子輸送層は、電極から注入された電子を輸送する役割をする。電子輸送層には、例えば、キノリノールアルミニウム錯体(Alq)、オキサジアゾール誘導体(例えば、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(END)、および2-(4-t-ブチルフェニル) -5-(4-ビフェニル))-1,3,4-オキサジアゾール(PBD)など)、トリアゾール誘導体、バソフェナントロリン誘導体、およびシロール誘導体などが用いられる。
 電子注入層は、例えば、第2の電極層460との界面に、リチウム(Li)、セシウム(Cs)等のアルカリ金属をドープした層を設けることにより構成される。
 (第2の電極層460)
 第2の電極層460には例えば、仕事関数の小さな金属またはその合金を用いることができる。第2の電極層460には、例えば、アルカリ金属、アルカリ土類金属、および周期表第3属の金属などを好ましく用いることができる。第2の電極層460には、例えば、アルミニウム(Al)、マグネシウム(Mg)、またはこれらの合金などをより好ましく用いることができる。
 また、アルミニウム(Al)、マグネシウム銀(MgAg)の共蒸着膜、フッ化リチウム(LiF)または酸化リチウム(LiO)の薄膜上に、アルミニウム(Al)を蒸着した積層電極が用いられても良い。さらに、カルシウム(Ca)またはバリウム(Ba)と、アルミニウム(Al)との積層膜が用いられても良い。
 (本発明の一形態による透光性基板の製造方法)
 次に、図面を参照して、本発明の一形態による透光性基板の製造方法の一例について説明する。なお、ここでは、一例として、図3に示した透光性基板300の構成を例に、その製造方法について説明する。ただし、以降の説明の一部は、図1および図2に示した透光性基板100、200の製造方法にも、同様に適用することができる。このため、以下に記載した以外の事項については、第1~第3の透光性基板で説明したものと同様の構成とすることができる。
 図5には、本発明の一形態による透光性基板を製造する際の概略的なフロー図を示す。
 図5に示すように、この透光性基板の製造方法は、
(a)ガラス基板上に、ガラスからなるベース材と、該ベース材中に分散された複数の散乱物質とを有する散乱層を設置するステップであって、前記散乱層は、Bi(ビスマス)、Ti(チタン)、およびSn(スズ)からなる群から選定された少なくとも一つの元素を含むステップ(ステップS110)と、
(b)前記散乱層上に、乾式の成膜方法により被覆層を成膜するステップ(ステップS120)と、
(c)前記被覆層上にITO膜を成膜するステップ(ステップS130)と、
 を有する。以下、各ステップについて詳しく説明する。なお、以下の説明では、明確化のため、各部材の参照符号として、図3に示した参照符号を使用することにする。
 (ステップS110)
 まず、ガラス基板310が準備される。次に、このガラス基板310上に、被還元性元素を含む散乱層340が形成される。
 散乱層340の形成方法は、特に限られないが、ここでは、特に、「フリットペースト法」により、散乱層340を形成する方法について説明する。ただし、その他の方法で散乱層340を形成しても良いことは、当業者には明らかである。
 フリットペースト法とは、フリットペーストと呼ばれるガラス材料を含むペーストを調製し(調製工程)、このフリットペーストを被設置基板の表面に塗布して、パターン化し(パターン形成工程)、さらにフリットペーストを焼成すること(焼成工程)により、被設置基板の表面に、所望のガラス製の膜を形成する方法である。以下、各工程について簡単に説明する。
 (調製工程)
 まず、ガラス粉末、樹脂、および溶剤等を含むフリットペーストが調製される。
 ガラス粉末は、最終的に散乱層340のベース材341を形成する材料で構成される。ガラス粉末の組成は、所望の散乱特性が得られ、フリットペースト化して焼成することが可能なものであれば特に限られない。ただし、本発明では、散乱層は、被還元性元素を含む。
 ガラス粉末の組成は、例えば、Pを20~30mol%、Bを3~14mol%、Biを10~20mol%、TiOを3~15mol%、Nbを10~20mol%、WOを5~15mol%含み、LiOとNaOとKOの総量が10~20mol%であり、以上の成分の総量が、90mol%以上のものであっても良い。また、SiOは0~30mol%、Bは10~60mol%、ZnOは0~40mol%、Biは0~40mol%、Pは0~40mol%、アルカリ金属酸化物は0~20mol%であり、以上の成分の総量が、90mol%以上のものであっても良い。ガラス粉末の粒径は、例えば、1μm~100μmの範囲とすることができる。
 なお、最終的に得られる散乱層の熱膨張特性を制御するため、ガラス粉末には、所定量のフィラーを添加しても良い。フィラーには、例えば、ジルコン、シリカ、またはアルミナなどの粒子が使用され、粒径は、通常、0.1μm~20μmの範囲とすることができる。
 樹脂には、例えば、エチルセルロース、ニトロセルロース、アクリル樹脂、酢酸ビニル、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、およびロジン樹脂などが用いられる。なお、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、およびロジン樹脂を添加すると、フリットペースト塗布膜の強度が向上する。
 溶剤は、樹脂を溶解し、粘度を調整する役割を有する。溶剤には、例えば、エーテル系溶剤(ブチルカルビトール(BC)、ブチルカルビトールアセテート(BCA)、ジプロピレングリコールブチルエーテル、トリプロピレングリコールブチルエーテル、酢酸ブチルセロソルブ)、アルコール系溶剤(α-テルピネオール、パインオイル)、エステル系溶剤(2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート)、フタル酸エステル系溶剤(DBP(ジブチルフタレート)、DMP(ジメチルフタレート)、DOP(ジオクチルフタレート))がある。主に用いられているのは、α-テルピネオールや2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート)である。なお、DBP(ジブチルフタレート)、DMP(ジメチルフタレート)、DOP(ジオクチルフタレート)は、可塑剤としても機能する。
 その他、フリットペーストには、粘度の調整やフリット分散促進のため、界面活性剤を添加しても良い。また、表面改質のため、シランカップリング剤を使用しても良い。
 これらの原料を混合し、ガラス原料が均一に分散されたフリットペーストを調製する。
 (パターン形成工程)
 次に、前述の方法で調製したフリットペーストを、ガラス基板310上に塗布し、パターン化する。塗布の方法およびパターン化の方法は、特に限られない。例えば、スクリーン印刷機を用いて、ガラス基板310上にフリットペーストをパターン印刷しても良い。あるいは、ドクターブレード印刷法またはダイコート印刷法を利用しても良い。
 その後、フリットペースト膜は、乾燥される。
 (焼成工程)
 次に、フリットペースト膜が焼成される。通常、焼成は、2段階のステップで行われる。第1のステップでは、フリットペースト膜中の樹脂が分解、消失され、第2のステップでは、ガラス粉末が軟化、焼結される。
 第1のステップは、大気雰囲気下で、フリットペースト膜を200℃~400℃の温度範囲に保持することにより行われる。ただし、処理温度は、フリットペーストに含まれる樹脂の材料によって変化する。例えば、樹脂がエチルセルロースの場合は、処理温度は、350℃~400℃程度であり、樹脂がニトロセルロースの場合は、処理温度は、200℃~300℃程度であっても良い。なお処理時間は、通常、30分から1時間程度である。
 第2のステップは、大気雰囲気下で、フリットペースト膜を、含まれるガラス粉末の軟化温度±30℃の温度範囲に保持することにより行われる。処理温度は、例えば、450℃~600℃の範囲である。また、処理時間は、特に限られないが、例えば、30分~1時間である。
 第2のステップ後に、ガラス粉末が軟化、焼結して、散乱層340のベース材341が形成される。また、フリットペースト膜中に内包させた散乱物質によって、例えば内在する気泡などによって、ベース材341中に均一に分散された散乱物質342が得られる。
 その後、ガラス基板310を冷却することにより、散乱層340を形成することができる。最終的に得られる散乱層340の厚さは例えば、5μm~50μmの範囲であっても良い。
 なお、図1、図2に示したように散乱層を有しない透光性基板を製造する場合には、本工程を、(a´)Bi(ビスマス)、Ti(チタン)、およびSn(スズ)からなる群から選定された少なくとも一つの元素を含むガラス基板を準備するステップ(S110´)とすることができる。
 (ステップS120)
 次に、散乱層340の上部に、被覆層320が成膜される。
 被覆層320は、乾式の成膜方法により成膜される。被覆層320を形成する際の乾式の成膜方法については特に限定されるものではないが、例えば、スパッタ法やプラズマCVD法を挙げることができる。なお、スパッタ法により被覆層320を形成する際、その成膜する際の雰囲気として、アルゴンおよび/または酸素を含む雰囲気中で成膜を行うことができる。特に生産性の観点から、アルゴンを含む雰囲気中で成膜を行うことが好ましい。なお、この場合、成膜した被覆層320には雰囲気中のアルゴンが混入することから、得られる被覆層320は、アルゴンを含む膜とすることができる。
 散乱層等に着色が生じる問題はITO膜の成膜に特有の問題であるため、被覆層320の成膜の際の雰囲気中の酸素濃度は特に問題とならない。ただし、被覆層320を成膜する過程においても散乱層340またはガラス基板310に着色が生じることを確実に防止するため、酸素を含む雰囲気下で被覆層320の成膜を行うことが好ましい。例えば被覆層320を成膜する際の雰囲気中の酸素濃度を2vol%以上とすることが好ましく、10vol%以上とすることがより好ましい。なお、酸素濃度の上限値は特に限定されるものではなく、成膜する被覆層の材料等により選択することができる。例えば90vol%以下とすることが好ましく、80vol%以下とすることがより好ましい。
 また、被覆層320については上述のように乾式の成膜方法により成膜されていればよく、その材質や構成は特に限定されるものではない。また、被覆層320は1種類の物質のみから構成されている必要はなく、複数の物質が含まれていてもよい。また、複数の層から構成することもできる。例えば、被覆層320は、Si、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する酸化物を含むことができる。また、被覆層320は、Si、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒素酸化物を含むことができる。また、被覆層320は、Si、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒化物を含むことができる。
 また、被覆層320は、充填率が例えば85%以上であることが好ましく、90%以上であることがより好ましい。この場合の上限値は特に限定されず、例えば100%以下とすることができる。被覆層320の充填率が上記範囲の場合、特に、ITO膜330を成膜する際の雰囲気による散乱層またはガラス基板に含まれる被還元性元素の還元反応を抑制することができるため好ましい。
 なお、充填率の算出方法については既に説明したためここでは説明を省略する。
 また、被覆膜320のITO膜330を積層する面については表面粗さ(算術平均粗さ)Raは2.0nm以下であることが好ましく、1.0nm以下であることがより好ましい。なお下限値については特に限定されず、例えば0nm以上であればよい。
 表面粗さRaが上記範囲の場合、被覆層320のITO膜330を積層する面が平滑であることを示しており、ITOの結晶核が良好に成長するため好ましい。
 また、被覆層320の屈折率は、ベース材341の屈折率に近い方が好ましい。これはベース材341の屈折率と被覆層320の屈折率の差が大きい場合には、被覆層320の膜厚バラツキにより、有機LEDの発光色が干渉の影響を受けてばらついてしまうからである。一方ベース材341の屈折率と被覆層320の屈折率が近い場合には、被覆層320の膜厚ばらつきがあっても干渉条件が変化しない為、有機LEDの発光色は変動を受けないためである。波長550nmの光に対する、ベース材341の屈折率と被覆層320の屈折率の差は例えばマイナス0.15以上プラス0.15以下であることが好ましく、マイナス0.1以上プラス0.1以下であることがより好ましく、マイナス0.05以上プラス0.05以下であることがさらに好ましい。
 なお、散乱層を有しない透光性基板を製造する場合には、被覆層の屈折率は、ガラス基板の屈折率に近い方が好ましい。この場合については第1の透光性基板で既に説明したため説明を省略する。
 また、取り出し効率をより向上させるため、被覆層320の屈折率は、ITO膜330よりも高いことが好ましい。ただし、上記のように被覆層320の屈折率と、散乱層340の屈折率との差は小さい方が好ましい。
 被覆層320の膜厚は、特に限られない。被覆層320の膜厚は、例えば、50nm~500μmの範囲であっても良い。
 なお、図1、図2に示したように散乱層を有しない透光性基板を製造する場合には、本工程を、(b´)前記ガラス基板上に、乾式の成膜方法により被覆層を成膜するステップ(S120´)とすることができる。被覆層の成膜方法については上述の方法と同様にして行うことができる。
 (ステップS130)
 次に、被覆層320の上部に、ITO膜330が成膜される。
 ITO膜330の設置方法は、特に限られず、例えば、スパッタ法、蒸着法、および気相成膜法等の成膜法により設置されても良い。
 以下、一例として、スパッタ法により、ITO膜330を形成する方法について説明する。なお、ここでは、ITO膜330が第1のITO層335と第2のITO層337から構成される場合を例に説明するが、既述のように、ITO膜は単層から構成することもできる。単層からなるITO膜については第1の透光性基板で既述のため、説明を省略する。
 スパッタ法によりITO膜330を形成する場合、ITO膜330は例えば、第1のITO層335を成膜するための第1の成膜工程と、第2のITO層337を成膜するための第2の成膜工程によって成膜することができる。
 (i 第1の成膜工程)
 一般に、スパッタ法によりITO膜を成膜する場合、金属インジウムと金属スズの合金からなるターゲット、またはITOターゲットが使用される。
 プラズマのパワー密度は、装置の規模によっても変化するが、例えば、0.2W/cm~5W/cmの範囲とすることが好ましい。
 また、スパッタリングガスとして、不活性ガスと酸素の混合ガスを使用することができる。
 本発明による一実施形態の製造方法では、第1の成膜工程において、従来よりも酸化性の強い雰囲気、すなわち「酸素過剰」な条件下で、第1のITO層335が成膜されることが好ましい。
 ここでは、以下の理由により、プラズマパワー密度P(W/cm)に対するスパッタリングガスの酸素分圧PO2(vol%)の比R(vol%・cm/W)、すなわちR=PO2/Pdを用いて、成膜環境の酸化性を規定する。
 すなわち、例えば、スパッタリングガス中に含まれる酸素の量は、スパッタリング装置の規模および種類、ならびにプラズマのパワー等、各種成膜条件によって変動する。従って、成膜環境の酸化性を、単にスパッタリングガス中の酸素分圧で表すことは難しい。しかしながら、指標R(vol%・cm/W)(R=PO2/Pd)を使用した場合、前述のような変動因子の影響が規格化され、成膜環境の酸化性をより適正に比較することが可能になる。
 なお、前記定義によれば、指標R(vol%・cm/W)が大きいほど、その環境は、より酸化性であり、「酸素過剰」な条件であるといえる。上述のように酸素過剰な条件で第1のITO層335を成膜する場合、指標R(vol%・cm/W)は、1.03(vol%・cm/W)よりも大きいことが好ましく、1.5(vol%・cm/W)以上であることがより好ましい。指標R(vol%・cm/W)は、例えば、約1.6以上、または約2以上とすることもできる。
 このような「酸素過剰」な条件下で第1のITO層335を成膜することにより、スパッタリング処理中に、散乱層340中の被還元性元素が還元されることを有意に抑制することができる。また、「酸素過剰」な条件下で、スパッタリング成膜を行うことにより、散乱層340上に、酸化の程度が高い第1のITO層335を成膜することができる。
 (ii 第2の成膜工程)
 次に、第1のITO層335の上部に、第2のITO層337が成膜される。
 第2のITO層337は、第1の成膜工程で選定された成膜環境よりも酸化性の弱い条件、すなわち、第1の成膜工程における指標R(vol%・cm/W)よりも小さな指標R(vol%・cm/W)を示す環境下で成膜される。例えば、第2のITO層337は、従来のITO膜の成膜の際に一般に採用されているような条件下で成膜されても良い。
 第2の成膜工程において、指標R(vol%・cm/W)は、1.03以下であることが好ましい。
 ここで、第2のITO層337を成膜する際には、散乱層340の上部に、既に、被覆層320および酸化の程度が高い第1のITO層335が形成されている。このため、被覆層320および第1のITO層335のバリア効果により、第2のITO層337を成膜中に、散乱層340に含まれる被還元性元素が還元されることを抑制することができる。
 従って、第2の成膜工程においても、散乱層340に着色を生じさせることなく、第2のITO層337を成膜することができる。
 以上のような第1の成膜工程および第2の成膜工程を経て、第1のITO層335および第2のITO層337を有するITO膜330を形成することができる。
 ここで、第2のITO層337は、指標Rがより小さな条件(すなわち、より酸化性の弱い条件)下で成膜されるため、第1のITO層335に比べて、膜の導電性を高めることができる。従って、ITO膜330全体を、酸化の程度が高い状態の第1のITO層335で構成した場合に比べて、ITO膜330の抵抗率を低減させることができる。
 例えば、ITO膜330全体の抵抗率は、従来の方法で成膜されるITO膜と遜色のない値、例えば1.5×10-4Ωcm程度にすることができる。
 このようにして、第2のITO層337に比べて酸化の程度が高い状態の第1のITO層335と、該第1のITO層335に比べて高導電性の第2のITO層337と、を有するITO膜330を形成することができる。
 その後、ITO膜330は、エッチング処理等により、パターン化されても良い。
 なお、ステップS130の工程についてはITO膜にかえて、各種透明導電膜を成膜する工程とすることもできる。透明導電膜についてもITO膜と同様にして成膜できる。透明導電性膜については既述のためここでは説明を省略する。
 以上の工程により、ガラス基板310、散乱層340、被覆層320、およびITO膜330を有する透光性基板300を製造することができる。
 なお、透光性基板300から有機LED素子を製造する場合は、さらに、有機発光層および第2の電極層を順次形成すれば良い。
 例えば、蒸着法および/または塗布法等により、ITO膜330上に、有機発光層(例えば図4における有機発光層450)が設置されても良い。また、例えば、蒸着法、スパッタ法、気相成膜法等により、有機発光層上に、第2の電極層(例えば図4における第2の電極層460)が設置されても良い。
 なお、上記記載では、明確に識別することが可能な2つのITO層335および337を有する複層構造のITO膜330が形成される場合を例に、本発明の一実施例による製造方法について説明した。このような複層構造のITO膜330は、例えば、プラズマ密度および酸素分圧等のような成膜条件を変更する前に、一旦成膜過程を中断した場合などに形成されやすい。
 しかしながら、本発明の透光性基板においては、被覆層を設けることにより、ITO膜を成膜する成膜条件に関わらず、ガラス基板や散乱層に含まれる被還元性元素が還元されることを抑制することができる。このため、本発明の製造方法は、上記形態に限られるものではなく、スパッタ法により、例えば、図1に示すような、特性の異なる2つの部分136、138を有する単層構造のITO膜130が成膜されても良い。そのような単層構造のITO膜130は、例えば、成膜条件を変更する際に、成膜処理を中断せず、成膜を継続的に実施させること等により、構成することができる。また、成膜条件を変化させることなく、通常のITO膜の成膜条件(酸化性の弱い雰囲気)、例えば、指標Rが1.03以下の条件下、単層のITO膜を成膜してもよい。
 また、上記記載では、ITO膜330は、スパッタ法により成膜される例を示したが、これは単なる一例であって、ITO膜330は、その他の成膜方法で形成されても良い。
 以上、ガラス基板の上にITO膜が設置されて構成される透光性基板および有機LED素子を例に、本発明の課題およびそれを解決するための思想について説明した。
 しかしながら、本発明の適用範囲は、そのような透光性基板および有機LED素子に限られるものではない。
 例えば、既述のように、透光性基板の電極層には、ITO膜以外にも各種導電性酸化物、例えば、GZO(ガリウム亜鉛酸化物)、IZO(Indium Zinc Oxide:インジウム亜鉛酸化物)、AZO(AlドープZnO)、SnO、TaドープSnO、およびTiドープIn等が使用され得る。このような導電性酸化物は、通常、ITO膜を成膜する場合と同様の条件、すなわち酸素欠乏が生じやすい環境下で、ガラス基板上に成膜される。従って、ITO膜以外の各種導電性酸化物を成膜する場合にも、ガラス基板の着色という同様の課題が生じ得る。そのような課題に対しても、本発明を適用することにより、問題を解決することができる。
 次に、本発明の実施例について説明する。例1、2、5~8が実施例、例3、4が比較例である。
 以下の方法により、Biを含有する散乱層を備えたガラス基板の散乱層上に被覆層、ITO膜を成膜し、得られたサンプルの特性を評価した。
 (例1)
 以下の手順により透光性基板のサンプル(以下、「サンプル1」と称する)を作製した。
 一方の面に散乱層を備えたガラス基板を用意した。この際、散乱層はベース材としてBiを含有するガラスを用いている。
 そして、該散乱層上に被覆層を成膜した。
 被覆層は反応性スパッタにより成膜した。
 成膜は、散乱層を備えたガラス基板を250℃に加熱し、ターゲットとして28at%Si-72at%Snターゲットを用い、スパッタの際の反応ガスとしてはアルゴンと酸素を用い、この際酸素濃度は80vol%としてスパッタ装置により行った。被覆層として、190nmのSTO膜(Si、Sn、Oを組成として含む混合膜)を成膜した。
 被覆層を成膜後、後述の方法により被覆層の屈折率、表面粗さRa、充填率の測定を行った。例2~8についても被覆層の成膜後、同様にして測定を行った。
 次に被覆層上にITO膜の成膜を行った。
 ITO膜は被覆層と同様に反応性スパッタにより成膜した。
 成膜は、被覆層まで形成された基板を380℃に加熱し、ターゲットとしてはITOターゲットを用い、スパッタの際の反応ガスとしてはアルゴンと酸素を用い、この際酸素濃度は0.79vol%としてスパッタ装置により行った。膜厚150nmのITO膜を成膜した。
 (例2)
 例1と同様の方法により、透光性基板のサンプル(以下、「サンプル2」と称する)を作製した。
 ただし、この例2では、散乱層上に被覆層を成膜する際の条件を以下の条件としてサンプルを作製した。
 被覆層は反応性スパッタにより成膜した。
 成膜は、散乱層を備えたガラス基板を250℃に加熱し、ターゲットとしてSiターゲットを用い、スパッタの際の反応ガスとしてはアルゴンと酸素を用い、この際酸素濃度は50vol%としてスパッタ装置により行った。被覆層として、30nmのSiO膜を成膜した。
 その後、例1と同様にしてITO膜を成膜した。
 これにより、サンプル2が得られた。
 (例3)
 例1と同様の方法により、透光性基板のサンプル(以下、「サンプル3」と称する)を作製した。
 ただし、この例3では、散乱層上に被覆層を成膜する際の条件を以下の条件としてサンプルを作製した。
 被覆層は以下の手順により成膜した。
 まず、チタネートテトラノルマルブトキシドと、3-グリシジロキシプロピルトリメトキシシランを40:60(体積比)の割合で混合したものを、溶剤(1-ブタノール)で希釈し、塗布に適した粘度を持つ被覆層形成用の液体を得た。この被覆層形成用の液体を、ガラス基板上に形成された散乱層上に滴下し、スピンコーターを用いて塗布膜を形成した。
 塗布膜を120℃に保持した乾燥機に投入し、10分間保持することにより、乾燥膜厚0.6μmの乾燥膜を得た。
 乾燥膜は、475℃で1時間保持して焼成し、これにより150nmの焼成膜を得た。
 再度、焼成膜の上に被覆層形成用の液体を塗布し、乾燥、焼成し、2層積層することにより、300nmの焼成膜で形成された被覆層を得た。
 その後、例1と同様にしてITO膜を成膜した。
 これにより、サンプル3が得られた。
 (例4)
 例3と同様の方法により、透光性基板のサンプル(以下、「サンプル4」と称する)を作製した。
 ただし、この例4では、ITO膜を以下の条件により成膜した。その他の条件は、例3の場合と同様である。
 ITO膜は同様に反応性スパッタにより成膜した。
 成膜は、被覆層まで形成された基板を380℃に加熱し、ターゲットとしてはITOターゲットを用い、スパッタの際の反応ガスとしてはアルゴンと酸素を用い、この際酸素濃度は2.3vol%としてスパッタ装置により行った。膜厚150nmのITO膜を成膜した。
 これにより、サンプル4が得られた。
 (例5)
 例1と同様の方法により透光性基板のサンプル(以下、「サンプル5」と称する)を作製した。
 ただし、例5では、散乱層上に被覆層を成膜する際の条件を以下の条件としてサンプルを作製した。
 被覆層は反応性スパッタにより成膜した。
 成膜は、散乱層を備えたガラス基板を250℃に加熱し、ターゲットとして40at%Si-60at%Snターゲットを用い、スパッタの際の反応ガスとしてはアルゴンと酸素を用い、この際酸素濃度は50vol%としてスパッタ装置により行った。被覆層として、300nmのSTO膜(Si、Sn、Oを組成として含む混合膜)を成膜した。
 その後、例1と同様にしてITO膜の成膜を行った。
 これにより、サンプル5が得られた。
 (例6)
 例1と同様の方法により、透光性基板のサンプル(以下、「サンプル6」と称する)を作製した。
 ただし、この例6では、散乱層上に被覆層を成膜する際の条件を以下の条件としてサンプルを作製した。
 被覆層は反応性スパッタにより成膜した。
 成膜は、散乱層を備えたガラス基板を250℃に加熱し、ターゲットとして40at%Si-60at%Snターゲットを用い、スパッタの際の反応ガスとしてはアルゴンと酸素を用い、この際酸素濃度は50vol%としてスパッタ装置により行った。被覆層として、150nmのSTO膜(Si、Sn、Oを組成として含む混合膜)を成膜した。
 その後、例1と同様にしてITO膜を成膜した。
 これにより、サンプル6が得られた。
 (例7)
 例1と同様の方法により、透光性基板のサンプル(以下、「サンプル7」と称する)を作製した。
 ただし、この例7では、散乱層上に被覆層を成膜する際の条件を以下の条件としてサンプルを作製した。
 被覆層は反応性スパッタにより成膜した。
 成膜は、散乱層を備えたガラス基板を250℃に加熱し、ターゲットとして28at%Si-72at%Snターゲットを用い、スパッタの際の反応ガスとしてはアルゴンと酸素を用い、この際酸素濃度は50vol%としてスパッタ装置により行った。被覆層として、300nmのSTO膜(Si、Sn、Oを組成として含む混合膜)を成膜した。
 その後、例1と同様にしてITO膜の成膜を行った。
 これにより、サンプル7が得られた。
 (例8)
 例1と同様の方法により、透光性基板のサンプル(以下、「サンプル8」と称する)を作製した。
 ただし、この例8では、散乱層上に被覆層を成膜する際の条件を以下の条件としてサンプルを作製した。
 被覆層は反応性スパッタにより成膜した。
 成膜は、散乱層を備えたガラス基板を室温とし、ターゲットとして40at%Si-60at%Snターゲットを用い、スパッタの際の反応ガスとしてはアルゴンと酸素を用い、この際酸素濃度は50vol%としてスパッタ装置により行った。被覆層として、300nmのSTO膜(Si、Sn、Oを組成として含む混合膜)を成膜した。
 その後例1と同様にしてITO膜の成膜を行った。
 これにより、サンプル8が得られた。
 以下の表1に、サンプル1~8の被覆層の成膜方法、及び、後述の評価の結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
(評価)
 上述のようにサンプル1~8について、被覆層を成膜後に被覆層の屈折率、表面粗さ(算術平均粗さ)Ra、充填率の測定を行った。また、サンプル1~8についてITO膜を成膜後に着色評価試験、電気抵抗率測定と吸収量測定を行った。評価方法とその結果について以下に説明する。
 (被覆層の屈折率測定)
 被覆層の屈折率はエリプソメーター(J.A.Woollam社 Spectroscopic Ellipsometery M-2000DI)を用いて測定を実施した。
 結果を表1に「波長550nmの光に対する屈折率」として示す。
 (被覆層の表面粗さRa測定)
 被覆層のITO膜を成膜する面についてJIS B 0601 2001で定義されている表面粗さ(算術平均粗さ)Raを測定した。表面粗さ(算術平均粗さ)Raは原子間力顕微鏡(セイコーエプソン社 SPM3800)を用い、測定を実施した。
 測定は、被覆層の表面のうち任意の箇所で、3μm四方の範囲について行った。
 結果を表1に「表面粗さRa」として示す。
 (被覆層の充填率測定)
 被覆層の充填率(充填密度)はX線反射率測定器を用いて膜の実測密度を測定し、該実測密度を、膜の組成から算出した理論密度で除し、得られた値を100倍して算出した。被覆膜の密度測定は膜厚方向の密度変化がある場合は、膜中で、もっとも高い密度を実測密度として用いている。
 結果を表1に「充填率」として示す。
 (着色評価試験)
 着色評価試験は、下記の手順で実施した。
(1)ITO膜を成膜したサンプルを塩化鉄水溶液にて被覆層とITO膜とをウエットエッチングする。
(2)サンプルの分光吸収量を分光装置(パーキンエルマー社製、Lambda950)にて評価する。この際の分光吸収量の値を表1において、「ITO成膜後の基材の波長550nmにおける吸収量(%)」として示す。
(3)波長550nmにおける吸収量が基材ガラスの吸収よりも1%以上大きいものは、ITO成膜プロセス中に基材に着色が生じていると判断する。また、この場合、Bi還元由来の吸収があると判断する。着色評価試験の結果を、表1に「Bi還元成分由来の吸収の有無」として示す。
 なお、被覆層、ITO膜を形成する前のガラス基板(基材ガラス)、すなわち、散乱層が設けられたガラス基板について同様の測定を行ったところ、ガラス基板の波長550nmにおける吸収量は、約3.5%であった。
 (電気抵抗率測定)
 サンプル1~8のITO膜の電気抵抗率を、ホール効果測定装置により測定した。結果を表1に「電気抵抗率」として示す。
 なお、本測定は着色評価試験の前に行っている。
 (吸収量測定)
 次にサンプル1~8のガラス基板と、散乱層と、被覆層と、ITO膜と、を含む透光性基板の吸収量測定を行なった。吸収量の測定は分光装置(パーキンエルマー社製、Lambda950)を用いて行った。この結果を「サンプルの波長550nmにおける吸収量」として表1に示す。
 なお、本測定は着色評価試験の前に行っている。
 まず、着色評価試験の結果によると、サンプル1、2、4、5、6、7、8は、着色していないものの、サンプル3は、着色していることが確認された。
 また、電気抵抗率測定の結果、表1に示すようにサンプル1、2、3、5、6、7、8については、電気抵抗率は2.38×10-4Ωcm未満と、十分に小さいが、サンプル4については電気抵抗率が高くなっていることが確認された。
 これは、サンプル4以外については、酸素濃度が低い領域でITO膜を成膜したのに対して、サンプル4は他のサンプルと比較して酸素濃度が高い雰囲気においてITO膜を成膜したためと考えられる。
 表1に示したサンプルの波長550nmにおける吸収量を比較すると、サンプル1、2、4、5、6、7、8は8.7%以下と低くなっているのに対して、サンプル3は13.2%と非常に高くなっていることが確認された。これは、サンプル3は上述のように散乱層に着色が生じたためと考えられる。
 また、サンプル5、6は吸収量がそれぞれ6.8%、5.7%と、7.0%以下になっており、他のサンプルと比較して非常に低くなっていることが確認できた。
 ここで、表1に示すように、乾式で被覆層を成膜したサンプル1、2、5~8では被覆層の充填率が96%~99%の範囲に分布していた。これに対して、湿式で被覆層を成膜したサンプル3、4では、被覆層の充填率が81%、82%と低くなっていることが分かる。そして、ITO膜を成膜する際の酸素濃度が同じ、サンプル1~3、5~8で比較すると上述のようにサンプル3の場合にのみ着色が生じていた。
 被覆層の充填率と、着色評価試験の結果から、被覆層の充填率を高くすることにより、ITO成膜時の雰囲気によらず散乱層の着色を防止できることがわかる。そして、乾式で被覆層を成膜することにより、被覆層の充填率が高くなることが確認できた。
 また、サンプル1、2、5~8において、被覆層表面の表面粗さRaが2.0nm以下と低くなっていることが確認できた。中でも、サンプルの波長550nmにおける吸収量が7.0%よりも低いサンプル5、6は、被覆層の表面粗さが1.0nm以下になっていることが確認できた。これは、被覆層の表面粗さRaが平滑であるほどITOの結晶核が良好に成長することができたためと考えられる。
 そして、被覆層の屈折率を比較すると、サンプル2以外は屈折率が1.86から1.91の間であり、この実施例ではベース材の波長550nmの光に対する屈折率が1.9であり、屈折率がベース材(約1.9)に近くなっている。このようにベース材の屈折率と被覆層の屈折率が近い場合には、被覆層の膜厚にばらつきがあっても干渉条件が変化しない為、有機LEDの発光色は変動を受けず、安定した発光層の色合いを得ることが可能になる。尚、ベース材の屈折率に制限はないが、有機LEDの光取り出しを良好にするには、ベース材の屈折率が1.7以上から2.1以下であると好ましく、1.8以上2.0以下であるとなお好ましい。
 以上の評価の結果から総合評価を行った。総合評価の基準として、散乱層に着色がなく、電気抵抗率が十分に小さいサンプルを○とした。散乱層に着色がみられるか、電気抵抗率が高くなっているサンプルについては総合評価を×とした。また、散乱層に着色がなく、電気抵抗率が十分に小さく、かつサンプルの波長550nmにおける吸収量が7.0%以下のサンプルの総合評価は◎とした。結果を表1に示す。
 これによると、実施例であるサンプル1、2、5~8についてはいずれも総合評価は○または◎となった。特にサンプル5、6は、散乱層に着色がなく、電気抵抗率が十分に低く、サンプルの波長550nmにおける吸収量は7.0%以下になっており、特に性能が優れていることが確認できた。
 これに対して、比較例であるサンプル3、4は散乱層に着色が生じるか、電気抵抗率が高くなっており、総合評価は×となった。
 以上のように、実施例であるサンプル1、2、5~8では乾式の成膜方法により成膜された被覆層が、ITO膜を成膜する際の周辺雰囲気による、散乱層に含まれる被還元性元素の還元反応を抑制するバリア層として機能したため、散乱層に着色がみられなかった。また、ITO膜を成膜する際に酸素濃度が低い条件で成膜したため、電気抵抗率も十分に小さくすることができている。
 これに対して、比較例であるサンプル3については、被覆層を設けたものの湿式の成膜方法により成膜したため、散乱層に含まれる被還元性元素が、ITO膜を成膜する際の周辺雰囲気によって還元され、散乱層に着色がみられた。
 また、比較例であるサンプル4については、ITO膜を成膜する際の周辺雰囲気中の酸素濃度を他のサンプルよりも高くしたため、湿式の成膜方法により被覆層を成膜したものの、散乱層の着色を防ぐことはできた。しかしながら、上述のように酸素濃度が高い条件下でITO膜を成膜したため、電気抵抗率が高くなった。
 以上のように、乾式の成膜方法により被覆層を成膜した場合、緻密な被覆層を形成し、該被覆層はITO膜を成膜する際の低酸素雰囲気による、散乱層等に含まれるBi等の被還元性元素の還元反応を抑制するバリア層として機能することができる。このため、ITO膜を低酸素濃度の雰囲気で成膜した場合でも散乱層の着色を防止することができ、散乱層(またはガラス基板)の低吸収とITO膜の低抵抗とを両立できることが確認できた。
 以上に透光性基板、有機LED素子、透光性基板の製造方法を、実施形態および実施例等で説明したが、本発明は上記実施形態および実施例等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。
 本出願は、2013年5月9日に日本国特許庁に出願された特願2013-099112号、及び2013年12月18日に日本国特許庁に出願された特願2013-261821号に基づく優先権を主張するものであり、特願2013-099112号、及び特願2013-261821号の全内容を本国際出願に援用する。
 本発明は、発光デバイス等に使用される有機LED素子に適用することができる。
 100  第1の透光性基板
 110  ガラス基板
 120  被覆層
 130  ITO膜
 132  第1の表面
 134  第2の表面
 136  第1のITO部分
 138  第2のITO部分
 200  第2の透光性基板
 210  ガラス基板
 220  被覆層
 230  ITO膜
 232  第1の表面
 234  第2の表面
 235  第1のITO層
 237  第2のITO層
 300  第3の透光性基板
 310  ガラス基板
 320  被覆層
 330  ITO膜
 332  第1の表面
 334  第2の表面
 340  散乱層
 341  ベース材
 342  散乱物質
 335  第1のITO層
 337  第2のITO層
 400  有機LED素子
 410  ガラス基板
 420  被覆層
 430  第1の電極層
 432  第1の表面
 434  第2の表面
 435  第1のITO層
 437  第2のITO層
 440  散乱層
 441  ベース材
 442  散乱物質
 450  有機発光層
 460  第2の電極層
 470  光取り出し面

Claims (23)

  1.  Bi、Ti、およびSnからなる群から選定された少なくとも一つの元素を含むガラス基板と、
     該ガラス基板上に形成された被覆層と、
     該被覆層上に形成された透明導電膜とを有し、
     前記被覆層が乾式の成膜方法により成膜されたことを特徴とする透光性基板。
  2.  ガラス基板と、
     該ガラス基板上に形成されたBi、Ti、およびSnからなる群から選定された少なくとも一つの元素を含む散乱層と、
     該散乱層上に形成された被覆層と、
     該被覆層上に形成された透明導電膜とを有し、
     前記被覆層が乾式の成膜方法により成膜されたことを特徴とする透光性基板。
  3.  前記被覆層がSi、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する酸化物を含むことを特徴とする請求項1または2に記載の透光性基板。
  4.  前記被覆層がSi、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒素酸化物を含むことを特徴とする請求項1乃至3のいずれか一項に記載の透光性基板。
  5.  前記被覆層がSi、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒化物を含むことを特徴とする請求項1乃至4のいずれか一項に記載の透光性基板。
  6.  前記透明導電膜は、前記ガラス基板に近い側の方が、前記ガラス基板から遠い側に比べて酸化の程度が高い状態となっていることを特徴とする請求項1乃至5のいずれか一項に記載の透光性基板。
  7.  前記透明導電膜は、前記ガラス基板に近い側から前記ガラス基板から遠い側に向かって、酸化の程度が連続的にまたは不連続に低下する、請求項1乃至6のいずれか一項に記載の透光性基板。
  8.  前記透明導電膜は、2nm~500nmの厚さを有する、請求項1乃至7のいずれか一項に記載の透光性基板。
  9.  前記透明導電膜は、少なくとも2層の膜で構成され、前記ガラス基板に近い側の第1の透明導電層と、前記ガラス基板から遠い側の第2の透明導電層を有し、
     前記第1の透明導電層は、前記第2の透明導電層よりも酸化の程度が高い状態となっている、請求項1乃至8のいずれか一項に記載の透光性基板。
  10.  前記透明導電膜は、2.38×10-4Ωcm未満の抵抗率を有する、請求項1乃至9のいずれか一項に記載の透光性基板。
  11.  前記透明導電膜は、0.0086以下の消衰係数を有する、請求項1乃至10のいずれか一項に記載の透光性基板。
  12.  ガラス基板と、第1の電極層と、有機発光層と、第2の電極層とをこの順に有する有機LED素子であって、
     請求項1乃至11のいずれか一項に記載の透光性基板を備える、有機LED素子。
  13.  ガラス基板と、該ガラス基板上に形成された被覆層と、該被覆層上に形成された透明導電膜とを有する透光性基板の製造方法であって、
     Bi、Ti、およびSnからなる群から選定された少なくとも一つの元素を含むガラス基板を準備するステップと、
     前記ガラス基板上に、乾式の成膜方法により被覆層を成膜するステップと、
     前記被覆層上に透明導電膜を成膜するステップと、
     を有することを特徴とする透光性基板の製造方法。
  14.  ガラス基板と、該ガラス基板上に形成された散乱層と、該散乱層上に形成された被覆層と、該被覆層上に形成された透明導電膜とを有する透光性基板の製造方法であって、
     ガラス基板上に、ガラスからなるベース材と、該ベース材中に分散された複数の散乱物質とを有する散乱層を設置するステップであって、前記散乱層は、Bi、Ti、およびSnからなる群から選定された少なくとも一つの元素を含むステップと、
     前記散乱層上に、乾式の成膜方法により被覆層を成膜するステップと、
     前記被覆層上に透明導電膜を成膜するステップと、
     を有することを特徴とする透光性基板の製造方法。
  15.  前記被覆層がSi、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する酸化物を含むことを特徴とする請求項13または14に記載の透光性基板の製造方法。
  16.  前記被覆層がSi、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒素酸化物を含むことを特徴とする請求項13乃至15のいずれか一項に記載の透光性基板の製造方法。
  17.  前記被覆層がSi、Al、Ti、Nb、Zr、Sn、Ta、Wから選択された1種以上の元素を含有する窒化物を含むことを特徴とする請求項13乃至16のいずれか一項に記載の透光性基板の製造方法。
  18.  前記透明導電膜を成膜するステップにおいて、前記透明導電膜は、前記ガラス基板に近い側の方が、前記ガラス基板から遠い側に比べて酸化の程度が高い状態となるように成膜されていることを特徴とする請求項13乃至17のいずれか一項に記載の透光性基板の製造方法。
  19.  前記透明導電膜を成膜するステップにおいて、前記透明導電膜は、前記ガラス基板に近い側から前記ガラス基板から遠い側に向かって、酸化の程度が連続的にまたは不連続に低下する、請求項13乃至18のいずれか一項に記載の透光性基板の製造方法。
  20.  前記透明導電膜を成膜するステップにおいて、前記透明導電膜は、2nm~500nmの厚さを有する、請求項13乃至19のいずれか一項に記載の透光性基板の製造方法。
  21.  前記透明導電膜を成膜するステップは、
     (i)第1の透明導電層を成膜するステップと、その後、
     (ii)前記第1の透明導電層の上部に、第2の透明導電層を成膜するステップと、
    を有し、
     前記第1の透明導電層は、前記第2の透明導電層よりも酸化の程度が高い状態となるように成膜される、請求項13乃至20のいずれか一項に記載の透光性基板の製造方法。
  22.  前記透明導電膜は、2.38×10-4Ωcm未満の抵抗率を有する、請求項13乃至21のいずれか一項に記載の透光性基板の製造方法。
  23.  前記透明導電膜は、0.0086以下の消衰係数を有する、請求項13乃至22のいずれか一項に記載の透光性基板の製造方法。
PCT/JP2014/060550 2013-05-09 2014-04-11 透光性基板、有機led素子、透光性基板の製造方法 WO2014181641A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015515827A JP6582981B2 (ja) 2013-05-09 2014-04-11 透光性基板、有機led素子、透光性基板の製造方法
CN201480025507.0A CN105189393B (zh) 2013-05-09 2014-04-11 透光性基板、有机led元件、透光性基板的制造方法
EP14794913.5A EP2995595B1 (en) 2013-05-09 2014-04-11 Translucent substrate, organic led element and method of manufacturing translucent substrate
US14/933,156 US10501369B2 (en) 2013-05-09 2015-11-05 Translucent substrate, organic LED element and method of manufacturing translucent substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013099112 2013-05-09
JP2013-099112 2013-05-09
JP2013261821 2013-12-18
JP2013-261821 2013-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/933,156 Continuation US10501369B2 (en) 2013-05-09 2015-11-05 Translucent substrate, organic LED element and method of manufacturing translucent substrate

Publications (1)

Publication Number Publication Date
WO2014181641A1 true WO2014181641A1 (ja) 2014-11-13

Family

ID=51867123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060550 WO2014181641A1 (ja) 2013-05-09 2014-04-11 透光性基板、有機led素子、透光性基板の製造方法

Country Status (5)

Country Link
US (1) US10501369B2 (ja)
EP (1) EP2995595B1 (ja)
JP (1) JP6582981B2 (ja)
CN (1) CN105189393B (ja)
WO (1) WO2014181641A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166110A (ja) * 2015-03-10 2016-09-15 日本電気硝子株式会社 透明導電膜付ガラス基板及びその製造方法
JP7143141B2 (ja) 2017-08-16 2022-09-28 東友ファインケム株式会社 透明電極積層体及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155493B2 (en) 2010-01-16 2021-10-26 Cardinal Cg Company Alloy oxide overcoat indium tin oxide coatings, coated glazings, and production methods
CN106630655B (zh) * 2016-09-29 2019-04-05 中国科学院理化技术研究所 一种掺杂锑烯纳米材料的高透明复合光学玻璃及应用
CN106169539B (zh) * 2016-09-30 2018-02-09 昆山国显光电有限公司 有机发光器件及其制造方法
KR102152876B1 (ko) * 2018-11-26 2020-09-07 주식회사 첨단랩 양면 발광 조명 장치
EP4087827A1 (en) * 2020-01-10 2022-11-16 Cardinal CG Company Alloy oxide overcoat indium tin oxide coatings, coated glazings, and production methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281209A (ja) * 1994-04-05 1995-10-27 Matsushita Electric Ind Co Ltd 酸化インジウム錫薄膜およびその形成方法と表示装置と薄膜トランジスタ
JPH11145495A (ja) * 1997-11-04 1999-05-28 Asahi Glass Co Ltd 太陽電池用ガラス基板およびその製造方法
WO2002098812A1 (fr) * 2001-06-04 2002-12-12 Nippon Sheet Glass Co., Ltd. Procede de production de substrat transparent, substrat transparent et element electroluminescent organique presentant ledit substrat transparent
JP2008030972A (ja) * 2006-07-26 2008-02-14 Agc Techno Glass Co Ltd 無鉛組成物およびプレスフリット
WO2009017035A1 (ja) 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. 透光性基板、その製造方法、有機led素子及びその製造方法
WO2010084922A1 (ja) * 2009-01-26 2010-07-29 旭硝子株式会社 有機led素子の散乱層用ガラス及び有機led素子
WO2010084925A1 (ja) * 2009-01-26 2010-07-29 旭硝子株式会社 ガラス組成物および基板上にそれを具備する部材
WO2012053549A1 (ja) * 2010-10-20 2012-04-26 旭硝子株式会社 Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351068B2 (en) * 1995-12-20 2002-02-26 Mitsui Chemicals, Inc. Transparent conductive laminate and electroluminescence light-emitting element using same
JP3999837B2 (ja) * 1997-02-10 2007-10-31 Tdk株式会社 有機エレクトロルミネッセンス表示装置
JP4345278B2 (ja) 2001-09-14 2009-10-14 セイコーエプソン株式会社 パターニング方法、膜形成方法、パターニング装置、有機エレクトロルミネッセンス素子の製造方法、カラーフィルタの製造方法、電気光学装置の製造方法、及び電子装置の製造方法
JP2005019211A (ja) * 2003-06-26 2005-01-20 Casio Comput Co Ltd El表示パネル及びel表示パネルの製造方法
KR20050019289A (ko) * 2003-08-18 2005-03-03 엘지전자 주식회사 플라즈마 디스플레이 패널 및 그 제조 방법
JP2005268616A (ja) * 2004-03-19 2005-09-29 Tosoh Corp 透明導電膜およびその製造方法
CN101978781A (zh) * 2008-03-18 2011-02-16 旭硝子株式会社 电子器件用基板、有机led元件用层叠体及其制造方法、有机led元件及其制造方法
JP5239936B2 (ja) * 2009-02-23 2013-07-17 日本電気硝子株式会社 有機el素子用ガラス基板及びその製造方法
JP2010215426A (ja) 2009-03-13 2010-09-30 Isuzu Seiko Glass Kk ビスマス含有ガラスのプレス成型方法
KR20130143547A (ko) * 2010-07-16 2013-12-31 에이쥐씨 글래스 유럽 유기발광소자용 반투명 전도성 기재
EP2635091A4 (en) * 2010-10-25 2015-06-10 Asahi Glass Co Ltd ORGANIC ELECTROLUMINESCENT DEVICE, TRANSLUCENT SUBSTRATE AND METHOD FOR MANUFACTURING THE ORGANIC ELECTROLUMINESCENCE DEVICE
US20130018714A1 (en) * 2011-07-14 2013-01-17 Varughese George Incentive through relaying a geo-spatially aware advertisement to proximate peers
KR20130021224A (ko) * 2011-08-22 2013-03-05 한국전자통신연구원 색가변 유기발광 다이오드
FR3002534B1 (fr) * 2013-02-27 2018-04-13 Saint-Gobain Glass France Substrat revetu d'un empilement bas-emissif.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281209A (ja) * 1994-04-05 1995-10-27 Matsushita Electric Ind Co Ltd 酸化インジウム錫薄膜およびその形成方法と表示装置と薄膜トランジスタ
JPH11145495A (ja) * 1997-11-04 1999-05-28 Asahi Glass Co Ltd 太陽電池用ガラス基板およびその製造方法
WO2002098812A1 (fr) * 2001-06-04 2002-12-12 Nippon Sheet Glass Co., Ltd. Procede de production de substrat transparent, substrat transparent et element electroluminescent organique presentant ledit substrat transparent
JP2008030972A (ja) * 2006-07-26 2008-02-14 Agc Techno Glass Co Ltd 無鉛組成物およびプレスフリット
WO2009017035A1 (ja) 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. 透光性基板、その製造方法、有機led素子及びその製造方法
WO2010084922A1 (ja) * 2009-01-26 2010-07-29 旭硝子株式会社 有機led素子の散乱層用ガラス及び有機led素子
WO2010084925A1 (ja) * 2009-01-26 2010-07-29 旭硝子株式会社 ガラス組成物および基板上にそれを具備する部材
WO2012053549A1 (ja) * 2010-10-20 2012-04-26 旭硝子株式会社 Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2995595A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166110A (ja) * 2015-03-10 2016-09-15 日本電気硝子株式会社 透明導電膜付ガラス基板及びその製造方法
EP3269689A4 (en) * 2015-03-10 2018-11-14 Nippon Electric Glass Co., Ltd. Transparent conductive film-equipped glass substrate and method for manufacturing same
US20180351116A1 (en) * 2015-03-10 2018-12-06 Nippon Electric Glass Co., Ltd. Transparent conductive film-equipped glass substrate and method for manufacturing same
TWI672712B (zh) * 2015-03-10 2019-09-21 日商日本電氣硝子股份有限公司 附透明導電膜之玻璃基板及其製造方法
US10651404B2 (en) 2015-03-10 2020-05-12 Nippon Electric Glass Co., Ltd. Transparent conductive film-equipped glass substrate and method for manufacturing same
JP7143141B2 (ja) 2017-08-16 2022-09-28 東友ファインケム株式会社 透明電極積層体及びその製造方法

Also Published As

Publication number Publication date
EP2995595A1 (en) 2016-03-16
EP2995595B1 (en) 2020-11-25
JP6582981B2 (ja) 2019-10-02
US10501369B2 (en) 2019-12-10
EP2995595A4 (en) 2017-05-03
JPWO2014181641A1 (ja) 2017-02-23
US20160060162A1 (en) 2016-03-03
CN105189393B (zh) 2018-07-27
CN105189393A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
JP6582981B2 (ja) 透光性基板、有機led素子、透光性基板の製造方法
JP5742838B2 (ja) 有機led素子、透光性基板、および有機led素子の製造方法
JP5998124B2 (ja) 有機led素子、透光性基板、および透光性基板の製造方法
WO2012057043A1 (ja) 有機el素子、透光性基板、および有機el素子の製造方法
WO2013054820A1 (ja) 有機led素子の散乱層用ガラス、有機led素子用の積層基板及びその製造方法、並びに有機led素子及びその製造方法
TWI506836B (zh) 透明導電膜及包含其之有機發光裝置
JP6056765B2 (ja) 有機led素子用の積層基板及び有機led素子
WO2013137403A1 (ja) 有機led素子、透光性基板、および透光性基板の製造方法
US20140048790A1 (en) Organic el element, translucent substrate and method of manufacturing organic led element
WO2012081442A1 (ja) 有機led素子の製造方法、散乱層で散乱される光の散乱特性をミー散乱およびレイリー散乱の間で制御する方法、ならびに透光性基板を製造する方法
JP2013229186A (ja) 有機led素子、透光性基板、および透光性基板の製造方法
TW201605095A (zh) 用於oled的透明支撐電極
WO2014112414A1 (ja) 透光性基板の製造方法、透光性基板、および有機led素子
JP2015107892A (ja) ガラス組成物および光取り出し層
JP2014120384A (ja) 有機led素子の製造方法、および有機led素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480025507.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015515827

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014794913

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE