WO2014181518A1 - Soi基板、物理量センサ、soi基板の製造方法、および物理量センサの製造方法 - Google Patents

Soi基板、物理量センサ、soi基板の製造方法、および物理量センサの製造方法 Download PDF

Info

Publication number
WO2014181518A1
WO2014181518A1 PCT/JP2014/002298 JP2014002298W WO2014181518A1 WO 2014181518 A1 WO2014181518 A1 WO 2014181518A1 JP 2014002298 W JP2014002298 W JP 2014002298W WO 2014181518 A1 WO2014181518 A1 WO 2014181518A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
support
movable
oxide film
thermal oxide
Prior art date
Application number
PCT/JP2014/002298
Other languages
English (en)
French (fr)
Inventor
テツヲ 吉岡
信哉 浅井
純也 西田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013099583A external-priority patent/JP6020341B2/ja
Priority claimed from JP2014065941A external-priority patent/JP6048435B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US14/774,194 priority Critical patent/US9446938B2/en
Publication of WO2014181518A1 publication Critical patent/WO2014181518A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0086Electrical characteristics, e.g. reducing driving voltage, improving resistance to peak voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/025Inertial sensors not provided for in B81B2201/0235 - B81B2201/0242
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0292Sensors not provided for in B81B2201/0207 - B81B2201/0285
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0136Comb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present disclosure relates to an SOI substrate, a physical quantity sensor, an SOI substrate manufacturing method, and a physical quantity sensor manufacturing method.
  • a movable portion having a plurality of movable electrodes that can be displaced in a predetermined direction is formed in the semiconductor layer.
  • the semiconductor layer has a first fixed portion having a first support portion provided with a first fixed electrode facing the movable electrode, and a second support portion provided with a second fixed electrode facing the movable electrode, A second fixed portion is formed on the opposite side of the first fixed portion with the movable portion interposed therebetween. That is, a pair of first and second fixed portions are formed in the semiconductor layer with the movable portion interposed therebetween.
  • a recess portion is formed in a portion of the support substrate and the insulating film including a portion facing the movable electrode and the first and second fixed electrodes, and the movable electrode and the first and second fixed electrodes are floated. It is in a state.
  • the first and second support portions including the first and second fixed electrodes are such that the end portion on the movable portion side protrudes partially on the recessed portion. Yes.
  • a capacitance-type physical quantity sensor a first capacitance composed of a detection capacitance between the movable electrode and the first fixed electrode and a parasitic capacitance between the first fixed portion and the support substrate is configured. Similarly, a detection capacitor between the movable electrode and the second fixed electrode and a second capacitor composed of a parasitic capacitance between the second fixed portion and the support substrate are configured. Then, the physical quantity is detected based on the difference between the first capacity and the second capacity.
  • the magnitude of the parasitic capacitance is proportional to the area of the first and second fixed portions that are joined to the support substrate via the insulating film. For this reason, the areas of the first and second fixed portions joined to the support substrate are made equal so that the parasitic capacitances are canceled when the difference between the first and second capacitances is calculated.
  • the above-described capacitive physical quantity sensor is manufactured as follows, for example. That is, an insulating film is formed on the support substrate, and a depression is formed in the support substrate and the insulating film. Thereafter, a semiconductor layer formed of a silicon substrate or the like is bonded to the insulating film. Then, a mask is formed on the semiconductor layer and the mask is patterned. Subsequently, reactive ion etching (RIE) or the like is performed to form the movable electrode and the first and second fixed electrodes, whereby the capacitive physical quantity sensor is manufactured.
  • RIE reactive ion etching
  • the capacitive physical quantity sensor when the movable portion and the first and second fixed portions are formed, a positional deviation or the like occurs during mask patterning, and the movable portion and the first and second fixed portions are formed as a whole. There is a case where it deviates from the planned area.
  • the first support is provided in the arrangement direction of the first fixed part, the movable part, and the second fixed part.
  • the first fixed part, the movable part, and the second fixed part are shifted to the first fixed part side as a whole.
  • the first support is provided.
  • the portion where the end portion on the movable portion side protrudes on the recessed portion becomes smaller.
  • the portion of the second support portion where the end portion on the movable portion side protrudes on the hollow portion is large.
  • the area of the first fixed part (first support part) bonded to the support substrate via the insulating film becomes large, and the support substrate via the insulating film of the second fixed part (second support part).
  • the area joined with becomes smaller. That is, the parasitic capacitance formed between the first fixed portion and the support substrate is increased, and the parasitic capacitance formed between the second fixed portion and the support substrate is decreased. For this reason, when calculating the capacitance difference between the first capacitor and the second capacitor, each parasitic capacitor cannot be canceled, and a detection error occurs.
  • a cap portion is provided to cover the movable electrode and the first and second fixed electrodes.
  • the cap part is configured by forming an insulating film on a semiconductor substrate, and the semiconductor substrate is bonded to the semiconductor layer via the insulating film.
  • the hollow part is formed in the part including the part which opposes a movable electrode and a 1st, 2nd fixed electrode among a semiconductor substrate and an insulating film.
  • parasitic capacitance is formed between the first and second support portions and the semiconductor substrate.
  • the area of the portion of the first and second fixing portions to be bonded to the semiconductor substrate (cap portion). are different from each other in parasitic capacitance.
  • an SOI substrate in which a thermal oxide film is formed on a first substrate having a depression on one surface, and a second substrate is disposed on one surface side of the first substrate via a thermal oxide film (for example, , See Patent Document 2).
  • a silicon substrate is used as the first substrate.
  • the SOI substrate is manufactured as follows. First, a recess is formed on one surface of the first substrate. Next, the first substrate is thermally oxidized to form a thermal oxide film. At this time, the thermal oxide film is formed on the entire surface of the first substrate and also on the wall surface of the recess. Then, the SOI substrate is manufactured by bonding the thermal oxide film formed on one surface of the first substrate and the second substrate.
  • Such an SOI substrate can use a thermal oxide film formed in the depression as an etching stopper when a sensing portion that outputs a sensor signal corresponding to a physical quantity is formed on the second substrate by dry etching or the like. For this reason, it can suppress that the bottom face of a hollow part becomes rough.
  • the thermal oxide film insulating film
  • the thermal oxide film when the first substrate is thermally oxidized to form a thermal oxide film, stress concentrates on the opening of the recess. For this reason, the part formed in the opening part of the hollow part of a thermal oxide film becomes thicker than the part formed in another area
  • One of the objects of the present disclosure is to provide a capacitive physical quantity sensor that can suppress detection errors and a manufacturing method thereof.
  • Another object of the present disclosure is to provide an SOI substrate capable of improving the bondability between the thermal oxide film and the second substrate, a physical quantity sensor using the SOI substrate, a method for manufacturing the SOI substrate, and a method for manufacturing the physical quantity sensor. is there.
  • the capacitive physical quantity sensor includes a first substrate and a second substrate joined to the first substrate via an insulating film.
  • the first substrate includes a movable part having a plurality of movable electrodes displaceable in a predetermined direction, a first fixed part having a first support part provided with a first fixed electrode facing the movable electrode, A second fixed portion having a second support portion provided with a second fixed electrode facing the movable electrode, wherein the second support portion is disposed on the opposite side of the first support portion across the movable portion; .
  • the insulating film and the second substrate at least a portion of the insulating film facing the movable electrode and the first and second fixed electrodes has a recess.
  • the capacitive physical quantity sensor detects a physical quantity based on a difference between a capacitance between the movable electrode and the first fixed electrode and a capacitance between the movable electrode and the second fixed electrode.
  • the second substrate has a first groove portion at a portion facing the end portion on the opposite side to the movable portion side in the first support portion, and an end portion on the opposite side to the movable portion side in the second support portion.
  • a second groove portion is provided in a portion facing the.
  • a part of the end part on the movable part side protrudes on the recess part, and a part of the end part on the opposite side to the movable part side protrudes on the first groove part.
  • a part of the end part on the movable part side protrudes on the recess part, and a part of the end part on the opposite side to the movable part side protrudes on the second groove part.
  • a parasitic capacitance formed between the first support portion and the second substrate is equal to a parasitic capacitance formed between the second support portion and the second substrate. Therefore, detection errors can be suppressed.
  • a manufacturing method is a manufacturing method of the capacitive physical quantity sensor according to the first aspect, and a step of preparing a semiconductor layer as the first substrate and preparing a support substrate as the second substrate.
  • a part of the end portion on the movable portion side of the first support portion protrudes on the hollow portion and is opposite to the movable portion side.
  • the first fixed portion is formed so that a part of the end portion of the second support portion protrudes on the first groove portion, and a part of the end portion on the movable portion side of the second support portion protrudes on the recess portion.
  • the second fixing portion so that a part of the end portion on the opposite side to the movable portion side protrudes on the second groove portion, so that the insulating film is interposed in the first support portion.
  • the area of the portion bonded to the second substrate is made equal to the area of the portion of the second support portion bonded to the second substrate via the insulating film.
  • a manufacturing method is a manufacturing method of a capacitive physical quantity sensor according to the first aspect, and an SOI substrate in which a semiconductor layer is formed on a support substrate via an insulating film as the first substrate.
  • Preparing a semiconductor substrate as the second substrate, forming the movable portion and the first and second fixing portions on the first substrate, and forming the insulating film on the second substrate A step of forming the recess in at least the insulating film of the second substrate and the insulating film, a step of forming the first and second groove portions in the second substrate, and the first substrate And bonding the second substrate through the insulating film.
  • a part of the end part on the movable part side of the first support part protrudes on the recess part and a part of the end part on the opposite side to the movable part side is on the first groove part.
  • a part of the end of the second support part on the side of the movable part protrudes on the recess part and a part of the end part on the opposite side to the side of the movable part is on the second groove part.
  • a part of the end part on the movable part side of the first support part protrudes on the recess part and the end part on the opposite side to the movable part side is provided.
  • a part protrudes on the first groove part, and a part of the end part on the movable part side of the second support part protrudes on the recess part and is one end part on the opposite side to the movable part side.
  • the part protrudes on the second groove part.
  • An SOI substrate manufacturing method includes a step of preparing a first substrate formed of a silicon substrate having one surface, a step of forming a depression on one surface of the first substrate, A step of thermally oxidizing one substrate to form a thermal oxide film; and a step of bonding a second substrate to the one surface side of the first substrate via the thermal oxide film.
  • a peripheral portion in the opening of the hollow portion on one surface of the first substrate is used as a boundary region, and an area larger than the boundary region and surrounding the boundary region
  • a thermal oxide film adjusting step is performed in which the thickness of the portion formed in the boundary region of the thermal oxide film is equal to or less than the thickness of the portion formed in the peripheral region.
  • a portion of the thermal oxide film formed in the peripheral region is bonded to the second substrate.
  • the SOI substrate is configured by bonding a portion of the thermal oxide film formed in the peripheral region and the second substrate.
  • the bondability between the thermal oxide film and the second substrate can be improved.
  • a step of preparing an SOI substrate manufactured by the manufacturing method according to the fourth aspect, and a plurality of the second substrate that are displaceable in a predetermined direction are provided.
  • a movable part having a movable electrode, a first fixed part having a first support part provided with a first fixed electrode opposed to the movable electrode, and a second support part provided with a second fixed electrode opposed to the movable electrode And forming a sensing part including the second fixed part disposed on the opposite side of the first support part with the second support part sandwiching the movable part.
  • a first groove portion is formed in a portion of the thermal oxide film facing the end portion on the opposite side of the movable portion side in the first support portion.
  • a step of forming a second groove portion in a portion of the second support portion facing the end portion on the side opposite to the movable portion side is performed.
  • a part of the end part on the movable part side of the first support part protrudes into a space surrounded by the thermal oxide film formed on the wall surface of the hollow part and the movable part
  • a first fixed portion is formed such that a part of the end opposite to the side protrudes on the first groove, and a part of the end on the movable part side in the second support part is the space.
  • the thermal oxidation of the first support part is formed by forming the second fixing part so that a part of the end part opposite to the movable part side protrudes onto the second groove part.
  • the area of the portion bonded to the first substrate via the film is made equal to the area of the portion of the second support portion bonded to the first substrate via the thermal oxide film.
  • the area of the portion bonded to the first substrate via the thermal oxide film in the first and second support portions is small. It does not change and the parasitic capacitance does not change. For this reason, it can suppress that detection accuracy falls.
  • An SOI substrate includes a first substrate including a silicon substrate having one surface and a depression formed on the one surface, a thermal oxide film formed on the first substrate, A second substrate disposed on one surface side of the first substrate with the thermal oxide film interposed therebetween.
  • the thermal oxide film has a peripheral region in the opening of the hollow portion of one surface of the first substrate as a boundary region, an area larger than the boundary region, and a region surrounding the boundary region as a peripheral region
  • the thickness of the portion formed in the boundary region of the thermal oxide film is set to be equal to or less than the thickness of the portion formed in the peripheral region.
  • the second substrate is bonded to a portion of the thermal oxide film formed in the peripheral region.
  • a relaxation space is formed between the boundary portion connecting the portion formed on the one surface of the thermal oxide film and the portion formed on the wall surface of the recess and the second substrate.
  • the thermal oxide film when the use environment changes to a high temperature and the thermal oxide film expands, the thermal oxide film can expand into the relaxation space, and the thermal oxide film and the second substrate It is possible to suppress the occurrence of thermal stress in the meantime.
  • a physical quantity sensor includes the SOI substrate according to the sixth aspect, the movable portion having a plurality of movable electrodes that are displaceable in a predetermined direction on the second substrate, and the movable electrode A first fixed portion having a first support portion provided with a first fixed electrode opposed to the second fixed portion, and a second support portion provided with a second fixed electrode opposed to the movable electrode, wherein the second support portion is A sensing part is formed that includes a second fixed part disposed on the opposite side of the first support part across the movable part.
  • a first groove is formed in a portion of the first support portion opposite to the end portion on the opposite side to the movable portion side, and opposite to the movable portion side in the second support portion.
  • a second groove is formed in a portion facing the side end.
  • the first support part protrudes into a space surrounded by the thermal oxide film formed on the wall surface of the depression part, and a part of the end part on the opposite side to the movable part side.
  • a part protrudes on the first groove.
  • a part of the end part on the movable part side protrudes into the space, and a part of the end part on the opposite side to the movable part side protrudes on the second groove part.
  • a parasitic capacitance formed between the first support portion and the first substrate, and a parasitic capacitance formed between the second support portion and the first substrate Therefore, it is possible to suppress a decrease in detection accuracy.
  • FIG. 1 is a plan view of the capacitive physical quantity sensor according to the first embodiment of the present disclosure.
  • FIG. 2 is a sectional view of the capacitive physical quantity sensor taken along line II-II in FIG. 3 (a) to 3 (d) are cross-sectional views showing the manufacturing process of the capacitive physical quantity sensor shown in FIG. 4A is a cross-sectional view of the vicinity of the first support portion when there is no displacement in the process of FIG. 3D, and FIG. 4B is a case of displacement in the process of FIG. 3D. It is sectional drawing of the 1st support part vicinity.
  • FIG. 4A is a cross-sectional view of the vicinity of the first support portion when there is no displacement in the process of FIG. 3D
  • FIG. 4B is a case of displacement in the process of FIG. 3D. It is sectional drawing of the 1st support part vicinity.
  • FIG. 5 is a cross-sectional view of a capacitive physical quantity sensor according to the second embodiment of the present disclosure.
  • 6 is a cross-sectional view of a capacitive physical quantity sensor having a cross section different from that of FIG.
  • FIG. 7A to FIG. 7C are cross-sectional views showing the manufacturing process of the capacitive physical quantity sensor shown in FIG.
  • FIG. 8 is a plan view of a capacitive physical quantity sensor according to the third embodiment of the present disclosure.
  • FIG. 9 is a sectional view of the capacitive physical quantity sensor taken along line IX-IX in FIG.
  • FIG. 10 is a plan view of a capacitive physical quantity sensor according to the fourth embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view of the capacitive physical quantity sensor taken along line XI-XI in FIG.
  • FIG. 12 is a cross-sectional view of a capacitive physical quantity sensor according to the fifth embodiment of the present disclosure.
  • FIG. 13 is a cross-sectional view of a capacitive physical quantity sensor according to the sixth embodiment of the present disclosure.
  • FIG. 14 is a cross-sectional view of a capacitive physical quantity sensor according to the seventh embodiment of the present disclosure.
  • FIG. 15 is a plan view of an acceleration sensor according to the eighth embodiment of the present disclosure.
  • FIG. 16 is a cross-sectional view of the acceleration sensor taken along line XVI-XVI in FIG.
  • FIG. 17 is an enlarged view of a region XVII in FIG.
  • FIG. 18 (a) to 18 (e) are cross-sectional views showing manufacturing steps of the acceleration sensor shown in FIG.
  • FIG. 19 is an enlarged view of a region XIX in FIG. 20 (a) to 20 (f) are cross-sectional views illustrating manufacturing steps of the acceleration sensor according to the ninth embodiment of the present disclosure.
  • FIG. 21 is an enlarged view of a region XXI in FIG.
  • FIG. 22 is a plan view of an acceleration sensor according to the tenth embodiment of the present disclosure.
  • FIG. 23 is a cross-sectional view of the acceleration sensor along the line XXIII-XXIII in FIG.
  • FIG. 24A is a cross-sectional view of the vicinity of the first support portion when there is a displacement in the process of FIG. 18E, and FIG. 24B is a displacement in the process of FIG. It is sectional drawing of the 1st support part vicinity in the case of not having.
  • the acceleration sensor according to the present embodiment includes a support substrate 11, an insulating film 12 disposed on the support substrate 11, and the opposite side of the support substrate 11 across the insulating film 12.
  • An SOI substrate 14 having a semiconductor layer 13 disposed thereon is used.
  • the support substrate 11 and the semiconductor layer 13 are a silicon substrate or the like, and the insulating film 12 is SiO 2 or the like.
  • the semiconductor layer 13 corresponds to the first substrate of the capacitive physical quantity sensor
  • the support substrate 11 corresponds to the second substrate of the capacitive physical quantity sensor.
  • the SOI substrate 14 is subjected to well-known micromachining to form a sensing unit 15.
  • the semiconductor layer 13 is formed with a movable portion 20 and first and second fixed portions 30 and 40 each having a comb-shaped beam structure by forming the groove portion 16.
  • a sensing unit 15 that outputs a sensor signal corresponding to the acceleration is formed by the structure.
  • the portions of the support substrate 11 and the insulating film 12 corresponding to the region where the beam structure is formed are removed to form the depressions 17.
  • the depression 17 is for preventing the movable electrode 24 and the first and second fixed electrodes 31 and 41 described later from coming into contact with the support substrate 11 and the insulating film 12.
  • the movable part 20 is arranged so as to cross over the hollow part 17, and both ends in the longitudinal direction of the rectangular weight part 21 are integrally connected to the anchor parts 23 a and 23 b via the beam part 22. ing.
  • the anchor portions 23 a and 23 b are supported by the support substrate 11 through the insulating film 12 at the opening edge portion of the recess portion 17. Thereby, the weight part 21 and the beam part 22 are in the state which faced the hollow part 17.
  • the x-axis direction is the longitudinal direction of the weight portion 21.
  • the y-axis direction is a direction orthogonal to the x-axis in the plane of the SOI substrate 14.
  • the z-axis direction is a direction orthogonal to the planar direction of the SOI substrate 14.
  • the beam portion 22 has a rectangular frame shape in which two parallel beams are connected at both ends thereof, and has a spring function of being displaced in a direction perpendicular to the longitudinal direction of the two beams. Specifically, when receiving an acceleration including a component in the x-axis direction, the beam portion 22 displaces the weight portion 21 in the x-axis direction and restores the original state according to the disappearance of the acceleration. ing. Therefore, the weight portion 21 connected to the support substrate 11 through such a beam portion 22 can be displaced in the displacement direction (x-axis direction) of the beam portion 22 on the recess portion 17 in accordance with the application of acceleration. It has become.
  • the movable portion 20 includes a plurality of movable electrodes 24 that are integrally projected in opposite directions from both side surfaces of the weight portion 21 in a direction (y-axis direction) orthogonal to the longitudinal direction of the weight portion 21. ing.
  • four movable electrodes 24 are formed on the left side and the right side of the weight part 21 so as to face the hollow part 17.
  • Each movable electrode 24 is formed integrally with the weight portion 21 and the beam portion 22, and can be displaced in the x-axis direction together with the weight portion 21 when the beam portion 22 is displaced.
  • the first and second fixing portions 30 and 40 are supported by the support substrate 11 via the insulating film 12 at portions other than the portions where the anchor portions 23a and 23b are supported in the opening edge portion of the recess portion 17. Yes. That is, the first and second fixed portions 30 and 40 are arranged so as to sandwich the movable portion 20. In FIG. 1, the first fixed unit 30 is disposed on the left side of the sheet with respect to the movable unit 20, and the second fixed unit 40 is disposed on the right side of the sheet with respect to the movable unit 20.
  • the first and second fixing portions 30 and 40 are electrically independent from each other.
  • first and second fixed portions 30 and 40 are a plurality of first and second fixed electrodes 31 and 41 disposed to face each other in parallel with the side surface of the movable electrode 24 so as to have a predetermined detection interval.
  • the first and second support portions 32 and 42 are supported by the support substrate 11 via the insulating film 12.
  • the first and second fixed electrodes 31 and 41 are formed in four pieces in FIG. 1 and are arranged in a comb shape so as to engage with the gaps of the comb teeth in the movable electrode 24. And it is in the state which faced the hollow part 17 by being supported by each support part 32 and 42 in the shape of a cantilever.
  • the first support part 32 has a first connection part 32a provided with the first fixed electrode 31, and a first connection part 32b for electrically connecting the first connection part 32a to an external circuit.
  • the second support part 42 includes a second connection part 42a provided with the second fixed electrode 41, and a second connection part 42b for electrically connecting the second connection part 42a to an external circuit. .
  • the first and second connecting portions 32a and 42a are formed in a planar rectangular shape whose long side is parallel to the longitudinal direction (x-axis direction) of the weight portion 21, and each end on the movable portion 20 side.
  • the part includes first and second fixed electrodes 31 and 41. And the edge part by the side of the movable part 20 among the 1st, 2nd connection parts 32a and 42a protrudes on the hollow part 17, respectively.
  • the first and second connection portions 32b and 42b are connected to the first and second connection portions 32a and 42a, respectively, and predetermined portions of the first and second connection portions 32b and 42b are bonded wires (not shown) or the like. Via an external circuit.
  • the movable part 20 has an anchor part 23b electrically connected to an external circuit via a bonding wire (not shown) or the like.
  • the peripheral portion 60 located around the movable portion 20, the first and second fixed portions 30, 40 with the groove portion 16 therebetween is also electrically connected to an external circuit via a bonding wire (not shown). ing.
  • a first groove portion 18a is formed in a portion of the first connecting portion 32a facing the end portion on the side opposite to the movable portion 20 side.
  • a second groove portion 18b is formed in a portion of the second coupling portion 42a that faces the end portion on the opposite side to the movable portion 20 side.
  • first and second groove portions 18a and 18b are extended in the direction (x-axis direction) along the boundary between the first and second coupling portions 32a and 42a and the opening in the recess portion 17. Yes.
  • first and second connecting portions 32a and 42a have end portions on the opposite side to the movable portion 20 side protruding above the first and second groove portions 18a and 18b, respectively.
  • the first connecting portion 32a has a first connecting portion 32a (first support) having a direction and a length of a boundary between the first connecting portion 32a (first supporting portion 32) and the opening in the first groove portion 18a. Part 32) and the opening of the hollow part 17 so that the direction and the length of the boundary are equal to each other, and protrudes on the first groove part 18a.
  • the direction and length of the boundary between the second connection portion 42a (second support portion 42) and the opening in the second groove portion 18b are the same as the second connection portion 42a (second support portion 42a). 42) and the direction of the boundary between the opening portion in the recess portion 17 and the length thereof are equal to each other so as to protrude on the second groove portion 18b.
  • the first and second support portions 32 and 42 including the first and second connecting portions 32 a and 42 a and the first and second connection portions 32 b and 42 b are joined to the support substrate 11 via the insulating film 12.
  • the areas of the parts are equal to each other. That is, the parasitic capacitance formed between the first support portion 32 and the support substrate 11 and the parasitic capacitance formed between the second support portion 42 and the support substrate 11 are made equal.
  • the area is equal includes a slight error caused by a manufacturing error or the like.
  • capacitance consisting of these is comprised.
  • a second capacitor including a detection capacitor formed between the movable electrode 24 and the second fixed electrode 41 and a parasitic capacitor formed between the second support portion 42 and the support substrate 11 is configured. ing.
  • the entire movable part 20 excluding the anchor parts 23a and 23b is integrally displaced in the x-axis direction by the spring function of the beam part 22, and according to the displacement of the movable electrode 24
  • the above is the configuration of the capacitive physical quantity sensor in this embodiment.
  • acceleration is detected based on a difference in capacitance between the first capacitor and the second capacitor.
  • the parasitic capacitance included in the first capacitor and the parasitic capacitance included in the second capacitor are equalized as described above. For this reason, when the capacitance difference between the first capacitor and the second capacitor is calculated, the mutual parasitic capacitance is canceled, and the detection error can be suppressed.
  • an insulating film 12 is formed on a support substrate 11.
  • a mask such as a resist or an oxide film is formed on the insulating film 12 to form the depressions 17 and the first and second groove portions 18a and 18b.
  • the mask is patterned so that the predetermined area is opened.
  • the insulating film 12 and the support substrate 11 are etched by RIE or the like to form the recessed portion 17 and the first and second groove portions 18a and 18b.
  • the insulating film 12 and the semiconductor layer 13 are joined to form an SOI substrate 14.
  • the bonding between the insulating film 12 and the semiconductor layer 13 is not particularly limited, but can be performed as follows, for example.
  • the surface (bonding surface) of the insulating film 12 and the surface (bonding surface) of the semiconductor layer 13 are irradiated with N 2 plasma, O 2 plasma, or Ar ion beam, and each surface (bonding) of the insulating film 12 and the semiconductor layer 13 is bonded.
  • the surface ).
  • the insulating film 12 and the semiconductor layer 13 may be bonded by a bonding technique such as anodic bonding or intermediate layer bonding. Further, after the joining, a treatment for improving the joining quality such as high temperature annealing may be performed. Further, after bonding, the semiconductor layer 13 may be processed to a desired thickness by grinding and polishing.
  • a mask such as a resist or an oxide film is formed on the semiconductor layer 13, and the mask is patterned so that a region where the groove 16 is to be formed is opened.
  • the semiconductor layer 13 is etched by RIE or the like to form the groove 16.
  • the movable part 20 and the first and second fixed parts 30 and 40 are formed, and the capacitive physical quantity sensor is manufactured.
  • the end portion on the movable portion 20 side of the first connecting portion 32 a protrudes on the recessed portion 17, and the end portion on the opposite side to the movable portion 20 side is the first end portion.
  • fixed part 30 is formed so that it may protrude on the 1 groove part 18a.
  • the second fixed portion 40 is formed, the end portion on the movable portion 20 side of the second coupling portion 42a protrudes on the recessed portion 17 and the end portion on the opposite side to the movable portion 20 side is formed.
  • the second fixing portion 40 is formed so as to protrude on the second groove portion 18b.
  • a positional shift of about several ⁇ m occurs when patterning the mask, and the movable portion 20 and the first and second fixed portions 30 and 40 are entirely on the first fixed portion 30 side (y-axis direction). May be misaligned.
  • the length L 1 of the portion projecting on the recess 17 of the first connecting portion 32a is shortened, the length of the portion projecting into the first groove 18a L 2 becomes longer.
  • the sum of the lengths of the first connecting portions 32a projecting into the depressions 17 and the first groove portions 18a is not misaligned (FIG. 4A) and misaligned. (FIG. 4B) is the same. That is, the area of the portion of the first connecting portion 32a that is bonded to the support substrate 11 via the insulating film 12 (the area of the portion facing the support substrate 11) does not change, and the first connecting portion 32a and the support substrate are not changed. 11 does not change. Similarly, although not particularly illustrated, even if a positional deviation occurs, the sum of the lengths of the portions of the second connecting portion 42a protruding into the recessed portion 17 and the second groove portion 18b does not change, and the second connecting portion 42a.
  • the parasitic capacitance formed between the support substrate 11 and the support substrate 11 do not change. That is, even if the positional deviation occurs as described above by providing the length (width) of the first and second groove portions 18a and 18b in the y-axis direction larger in advance than the positional deviation amount that can occur in manufacturing, It can suppress that a parasitic capacitance changes.
  • the capacitive physical quantity sensor as described above, it is possible to provide a capacitive physical quantity sensor in which the parasitic capacitance does not change even if a positional deviation occurs.
  • the first and second groove portions 18a and 18b are formed, and the first and second support portions 32 and 42 are partially recessed portions 17 respectively. And it protrudes on the 1st, 2nd groove part 18a, 18b. And the area of the part joined to the support substrate 11 via the insulating film 12 (the area of the part which opposes) is made mutually equal. For this reason, the parasitic capacitance formed between the 1st, 2nd support parts 32 and 42 and the support substrate 11 becomes equal, and a detection error can be suppressed.
  • the first groove portion 18a is formed, and the end portion on the movable portion 20 side of the first connecting portion 32 protrudes on the recessed portion 17, and the movable portion 20 side
  • fixed part 30 is formed so that the edge part on the opposite side may protrude on the 1st groove part 18a.
  • the second groove portion 18b is formed, and the end portion on the movable portion 20 side of the second connecting portion 42a protrudes on the recessed portion 17, and the end portion on the opposite side to the movable portion 20 side is on the second groove portion 18b.
  • the second fixing portion 40 is formed so as to protrude in the direction.
  • the movable part 20 and the first and second fixed parts 30 and 40 are entirely displaced in the y-axis direction when the movable part 20 and the first and second fixed parts 30 and 40 are formed,
  • the area of the portion joined to the support substrate 11 via the insulating film 12 does not change. That is, the parasitic capacitance formed between the first and second support portions 32 and 42 and the support substrate 11 does not change. Therefore, even if a positional deviation occurs, a capacitive physical quantity sensor that can suppress detection errors without changing the parasitic capacitance can be manufactured.
  • the positional deviation in the y-axis direction has been described as an example. However, even if a positional deviation in the rotational direction around the x-axis direction and the z-axis that may occur in manufacturing occurs, according to the present embodiment. Thus, it is possible to manufacture a capacitive physical quantity sensor that can suppress the detection error without changing the parasitic capacitance.
  • the cap unit in order to prevent water or foreign matter from adhering to the sensing unit 15, the cap unit is hermetically sealed to the semiconductor layer 13.
  • 50 is provided. 5 is a cross-sectional view corresponding to the II-II line in FIG. 1, and the cap portion 50 is a cross-sectional view of a portion corresponding to the II-II line. 6 is a cross-sectional view corresponding to the VI-VI line in FIG. 1, and the cap portion 50 is a cross-sectional view of a portion corresponding to the VI-VI line.
  • the cap portion 50 is configured by forming an insulating film 52 on one surface 51 a of the semiconductor substrate 51 and forming an insulating film 53 on the other surface 51 b, and the insulating film 52 is bonded to the semiconductor layer 13.
  • a recess 54 is formed in a portion of the semiconductor substrate 51 and the insulating film 52 facing the movable electrode 24 and the first and second fixed electrodes 31 and 41.
  • the recessed portion 54 prevents the movable electrode 24 and the first and second fixed electrodes 31 and 41 from coming into contact with the semiconductor substrate 51 and the insulating film 52, as in the recessed portion 17.
  • the semiconductor layer 13 corresponds to the first substrate of the capacitive physical quantity sensor
  • the support substrate 11 and the semiconductor substrate 51 correspond to the second substrate of the capacitive physical quantity sensor.
  • the capacitive physical quantity sensor of the present embodiment has a first substrate disposed between two second substrates.
  • the semiconductor substrate 51 and the insulating film 52 have a first groove portion 55a formed in a portion of the first connecting portion 32a that faces the end opposite to the movable portion 20 side, and the second connecting portion 42a Of these, the second groove 55b is formed in a portion facing the end opposite to the movable portion 20 side.
  • first and second groove portions 55a and 55b are extended in a direction (x-axis direction) along the boundary between the first and second coupling portions 32a and 42a and the opening in the recess portion 54. Yes.
  • first and second connecting portions 32a and 42a have end portions on the opposite side to the movable portion 20 side protruding above the first and second groove portions 55a and 55b. More specifically, the first connecting portion 32a has a first connecting portion 32a (first support) having a boundary direction and a length between the first connecting portion 32a (first supporting portion 32) and the opening in the first groove portion 55a. Part 32) and the opening in the recessed part 54 so as to be equal to the direction and length of the boundary, and protrudes on the first groove part 55a. Similarly, the direction and length of the boundary between the second connection portion 42a (second support portion 42) and the opening in the second groove portion 55b are the same as the second connection portion 42a (second support portion 42a). 42) and the direction of the boundary between the opening portion in the recessed portion 54 and the length thereof are the same so as to protrude on the second groove portion 55b.
  • the areas of the first and second connecting parts 32a and 42a that are joined to the semiconductor substrate 51 via the insulating film 52 are equal to each other. That is, the parasitic capacitance formed between the first connection portion 32a and the semiconductor substrate 51 is equal to the parasitic capacitance formed between the second connection portion 42a and the semiconductor substrate 51.
  • each through electrode portion 56 includes a hole portion 56a penetrating the insulating film 53, the semiconductor substrate 51, and the insulating film 52, an insulating film 56b formed on the wall surface of the hole portion 56a, and the insulating film 56b. And a pad 56d.
  • one of the four through electrode portions 56 is electrically connected to the anchor portion 23b. Also, two of the four through electrode portions 56 are electrically connected to the first and second connection portions 32b and 42b, respectively. One of the four through electrode portions 56 is electrically connected to the peripheral portion 60.
  • the hole portion 56a is illustrated as having a conical shape, the hole portion 56a may have a cylindrical shape or a rectangular tube shape.
  • an insulating material such as TEOS is used as the insulating film 56b, and Al or the like is used as the through electrode 56c and the pad 56d.
  • the electrodes 57a and the pads 57b are formed so that the semiconductor substrate 51 and the external circuit can be electrically connected. More specifically, the electrode 57 a is formed so as to be connected to the semiconductor substrate 51 through a contact hole 53 a formed in the insulating film 53. The pad 57b is formed on the insulating film 53.
  • a protective film 58 is formed on the insulating film 53, the through electrode 56c, the pad 56d, the electrode 57a, and the pad 57b.
  • a contact hole 58a that exposes the pads 56d and 57b is formed in the protective film 58. Yes. Thereby, electrical connection between the pads 56d and 57b and the external circuit can be achieved.
  • an insulating film 52 is formed on one surface 51 a of the semiconductor substrate 51.
  • a mask (not shown) such as a resist or an oxide film is formed on the insulating film 52, and the recess 54 and the first and second groove portions 55a and 55b are to be formed.
  • the mask is patterned so that the region is opened.
  • the insulating film 52 and the semiconductor substrate 51 are etched by RIE or the like to form the recessed portion 54 and the first and second groove portions 55a and 55b.
  • FIG. 7C a device obtained by performing the steps of FIGS. 3A to 3D is prepared, and the semiconductor layer 13 and the insulating film 52 are bonded as shown in FIG. 7C.
  • the end portion on the movable portion 20 side of the first connecting portion 32a protrudes on the recessed portion 54, and the end portion on the opposite side to the movable portion 20 side protrudes on the first groove portion 55a.
  • the semiconductor layer 13 and the insulating film 52 are bonded.
  • the end of the second connecting portion 42a on the movable portion 20 side protrudes on the recessed portion 54, and the end on the opposite side to the movable portion 20 side protrudes on the second groove portion 55b.
  • the insulating film 52 are bonded.
  • the movable unit 20 and the first and second fixed units 30 and 40 may be displaced in the y-axis direction as a whole.
  • the first and second groove portions 55a and 55b are formed in the same manner as described above, the sum of the lengths of the portions of the first connecting portion 32a protruding into the recessed portion 54 and the first groove portion 55a is changed.
  • the parasitic capacitance formed between the first connecting portion 32a and the support substrate 11 does not change.
  • the sum of the lengths of the portions of the second connecting portion 42a that protrude into the recessed portion 17 and the second groove portion 18b does not change, and the parasitic capacitance formed between the second connecting portion 42a and the support substrate 11. Does not change.
  • four holes are formed by etching and removing the semiconductor substrate 51 and the insulating film 52 at locations corresponding to the anchor portion 23b, the first and second connection portions 32b and 42b, and the peripheral portion 60.
  • a portion 56a is formed.
  • an insulating film 56b such as TEOS is formed on the wall surface of each hole 56a.
  • the insulating film 53 is configured by the insulating film formed on the other surface 51 b of the semiconductor substrate 51.
  • the insulating film 56b formed at the bottom of each hole 56a is removed, and the semiconductor layer 13 is exposed.
  • part of the insulating film 53 is removed to form a contact hole 53a that partially exposes the other surface 51b of the semiconductor substrate 51.
  • a metal such as Al or Al—Si is formed in the hole 56a by sputtering or vapor deposition to form the through electrode 56c, and each through electrode 56c, the anchor 23b, the first and second connection parts 32b. , 42b and the peripheral portion 60 are electrically connected to each other.
  • the electrode 57a is also formed at the same time.
  • the metal on the insulating film 53 is patterned to form pads 56d and 57b.
  • the protective film 58 is formed by a CVD method or the like, and the contact hole 58a is formed by etching or the like, whereby the capacitive physical quantity sensor of this embodiment is manufactured.
  • the cap unit 50 is provided, and it is possible to prevent water and foreign matter from adhering to the sensing unit 15.
  • the first and second groove portions 55a and 55b are formed in the semiconductor substrate 51, the first support is provided even when misalignment occurs due to misalignment or the like when the semiconductor layer 13 and the insulating film 52 are joined.
  • the parasitic capacitance formed between the portion 32 and the semiconductor substrate 51 and the parasitic capacitance formed between the second support portion 42 and the semiconductor substrate 51 do not change. For this reason, a detection error can be suppressed.
  • two first recesses 19a are formed in a portion of the support substrate 11 and the insulating film 12 that faces the first connecting portion 32a.
  • two second recesses 19b having the same size as the first recesses 19a are formed in portions of the support substrate 11 and the insulating film 12 that face the second connection portions 42a.
  • the first recess 19a is formed to communicate the recess 17 and the first groove 18a
  • the second recess 19b is formed to communicate the recess 17 and the second groove 18b. Has been.
  • the parasitic capacitance formed between the first connecting portion 32a and the support substrate 11 and the parasitic capacitance formed between the second connecting portion 42a and the support substrate 11 are large. You can make it smaller. For this reason, the original SN ratio (signal noise ratio) can be increased.
  • the 1st recessed part 19a and the 2nd recessed part 19b may be only one, and more are formed. It may be.
  • first and second connecting portions 32a and 42a are formed with the first and second holes with respect to the first embodiment, and the others are the same as the first embodiment. The description is omitted here.
  • two first and second hole portions 71 and 72 having the same size are formed in the first and second connection portions 32a and 42a, respectively. ing. Specifically, the two first hole portions 71 are formed from a portion located on the recessed portion 17 to a portion located on the first groove portion 18a in the first connecting portion 32a. The two second hole portions 72 are formed from a portion located on the recessed portion 17 to a portion located on the second groove portion 18b in the second connecting portion 42a.
  • the said physical quantity sensor forms the groove part 16
  • the 1st, 2nd hole parts 71 and 72 covering the part located on the 1st, 2nd groove parts 18a and 18b from the part located on the hollow part 17 are provided. Manufactured by forming.
  • the 1st hole part 71 and the 2nd hole part 72 may be only one, A plurality of them may be formed.
  • the recess 17 and the first and second groove portions 18 a and 18 b are formed only in the insulating film 12. Even in such a capacitive physical quantity sensor, since the first and second groove portions 18a, 18b, 55a, and 55b are formed, the same effects as in the second embodiment can be obtained.
  • the recessed portion 54 and the first and second groove portions 55 a and 55 b are formed only in the insulating film 52. Even in such a capacitive physical quantity sensor, since the first and second groove portions 18a, 18b, 55a, and 55b are formed, the same effects as in the second embodiment can be obtained.
  • the recess 17 and the first and second groove portions 18 a and 18 b are formed only in the insulating film 12.
  • the recess 54 and the first and second groove portions 55 a and 55 b are formed only in the insulating film 52.
  • the acceleration sensor of the present embodiment includes a support substrate 110 having one surface 110 a and another surface 110 b, a thermal oxide film 120 formed on the support substrate 110, and a thermal oxide film 120.
  • the SOI substrate 101 is configured to include a semiconductor layer 130 disposed on the opposite side of the support substrate 110 with the substrate interposed therebetween.
  • the support substrate 110 and the semiconductor layer 130 are made of a silicon substrate.
  • the support substrate 110 corresponds to the first substrate of the SOI substrate
  • the semiconductor layer 130 corresponds to the second substrate of the SOI substrate.
  • a sensing unit 131 is formed on the SOI substrate 101 by performing known micromachining. Specifically, the semiconductor layer 130 is formed with the movable portion 140 having the comb-shaped beam structure and the first and second fixed portions 150 and 160 by forming the groove portion 132. A sensing unit 131 that outputs a sensor signal corresponding to the acceleration is formed by the structure.
  • a recess 111 is formed in a portion of the support substrate 110 corresponding to the region where the beam structure is formed.
  • the thermal oxide film 120 is formed on the entire surface of the support substrate 110 including the wall surface of the recess 111. That is, the thermal oxide film 120 is also formed on the other surface 110 b and the side surface of the support substrate 110.
  • the peripheral portion of the opening 110 of the recess 111 in the one surface 110a of the support substrate 110 is defined as a boundary region 112a, and the region surrounding the boundary region 112a is defined as a peripheral region 112b.
  • the thickness of the portion formed in the boundary region 112a is set to be equal to or less than the thickness of the portion formed in the peripheral region 112b.
  • the thickness of the portion formed in the boundary region 112a is made thinner than the thickness of the portion formed in the peripheral region 112b.
  • the boundary region 112a has a smaller area than the peripheral region 112b.
  • the semiconductor layer 130 is bonded to a portion of the thermal oxide film 120 formed in the peripheral region 112b.
  • the boundary 120 a that connects the portion of the thermal oxide film 120 formed along the one surface 110 a of the support substrate 110 and the portion formed along the wall surface of the recess 111, and the semiconductor layer 130.
  • a relaxation space 170 is formed between them. That is, the relaxation space 170 is formed between the portion of the thermal oxide film 120 formed in the boundary region 112 a and the semiconductor layer 130.
  • the movable portion 140 formed in the semiconductor layer 130 is disposed so as to cross over the hollow portion 111, and both ends in the longitudinal direction of the rectangular weight portion 141 are beams. It is configured to be integrally connected to the anchor portions 143a and 143b via the portion 142.
  • the anchor portions 143a and 143b are supported by the support substrate 110 via the thermal oxide film 120 at the opening edge portion of the recess portion 111.
  • the weight part 141 and the beam part 142 are in a state facing the space 113 (hereinafter simply referred to as the space 113) surrounded by the thermal oxide film 120 formed on the wall surface of the hollow part 111.
  • the x-axis direction is the longitudinal direction of the weight portion 141.
  • the y-axis direction is a direction orthogonal to the x-axis in the plane of the SOI substrate 101.
  • the z-axis direction is a direction orthogonal to the planar direction of the SOI substrate 101.
  • the beam portion 142 has a rectangular frame shape in which two parallel beams are connected at both ends thereof, and has a spring function of being displaced in a direction perpendicular to the longitudinal direction of the two beams. Specifically, when receiving an acceleration including a component in the x-axis direction, the beam portion 142 displaces the weight portion 141 in the x-axis direction and restores the original state according to the disappearance of the acceleration. ing. Therefore, the weight part 141 connected to the support substrate 110 via the beam part 142 can be displaced in the displacement direction (x-axis direction) of the beam part 142 on the depression part 111 in response to application of acceleration. It has become.
  • the movable part 140 includes a plurality of movable electrodes 144 that are integrally projected in opposite directions from both side surfaces of the weight part 141 in a direction orthogonal to the longitudinal direction of the weight part 141 (y-axis direction). ing.
  • four movable electrodes 144 protrude from the left and right sides of the weight portion 141, respectively, and face the space 113.
  • Each movable electrode 144 is formed integrally with the weight portion 141 and the beam portion 142, and can be displaced in the x-axis direction together with the weight portion 141 when the beam portion 142 is displaced.
  • the first and second fixing portions 150 and 160 have the same shape, and the thermal oxide film 120 is interposed between the opening edge portions of the recess portion 111 other than the portion where the anchor portions 143a and 143b are supported. And supported by the support substrate 110. That is, the first and second fixed parts 150 and 160 are arranged so as to sandwich the movable part 140. In FIG. 15, the first fixed part 150 is disposed on the left side of the sheet with respect to the movable part 140, and the second fixed part 160 is disposed on the right side of the sheet with respect to the movable part 140.
  • the first and second fixing parts 150 and 160 are electrically independent from each other.
  • first and second fixed parts 150 and 160 are a plurality of first and second fixed electrodes 151 and 161 arranged to face the side surface of the movable electrode 144 so as to have a predetermined detection interval.
  • the first and second support portions 152 and 162 are supported by the support substrate 110 via the thermal oxide film 120.
  • first and second fixed electrodes 151 and 161 are formed, and are arranged in a comb shape so as to engage with the gaps of the comb teeth in the movable electrode 144. And it is in the state which faced the space 113 by being supported by each support part 152,6 in the shape of a cantilever.
  • the first support part 152 includes a first connection part 152a provided with the first fixed electrode 151 and a first connection part 152b for electrically connecting the first connection part 152a to an external circuit.
  • the second support part 162 includes a second connecting part 162a provided with the second fixed electrode 161, and a second connecting part 162b for electrically connecting the second connecting part 162a to an external circuit. Yes.
  • the first and second connecting portions 152a and 162a have a planar rectangular shape whose long side is parallel to the longitudinal direction (x-axis direction) of the weight portion 141, and each end on the movable portion 140 side.
  • the portion includes first and second fixed electrodes 151 and 161. And the edge part by the side of the movable part 140 among the 1st, 2nd connection parts 152a and 162a protrudes in the space 113, respectively.
  • the first and second connection portions 152b and 162b are connected to the first and second connection portions 152a and 162a, respectively, and predetermined portions are electrically connected to an external circuit via bonding wires (not shown) or the like. It is like that.
  • the movable part 140 has the anchor part 143b electrically connected to an external circuit via a bonding wire (not shown) or the like.
  • the acceleration sensor in the present embodiment.
  • An acceleration is detected based on the difference.
  • a support substrate 110 having one surface 110a and another surface 110b is prepared. Then, a resist or the like (not shown) is formed on one surface 110a of the support substrate 110, and the recess 111 is formed by dry etching or the like using the resist as a mask.
  • a thermal oxide film 120 is formed on the entire surface of the support substrate 110 by thermally oxidizing the support substrate 110.
  • stress concentrates so that a thermal oxide film 120 thicker than the peripheral region 112b is formed.
  • the thermal oxide film 120 is raised and formed in the boundary region 112a. That is, it can be said that the boundary region 112a in the support substrate 110 is a portion where the thermal oxide film 120 is raised.
  • a resist 180 is formed on the one surface 110a side of the support substrate 110 so that a portion of the thermal oxide film 120 formed in the boundary region 112a is exposed. Then, by performing dry etching, wet etching, or the like using the resist 180 as a mask, a portion of the thermal oxide film 120 formed in the boundary region 112a is made thinner than a portion formed in the peripheral region 112b. A film adjustment process is performed. In this step, the portion of the thermal oxide film 120 formed in the boundary region 112a is made thinner than the portion formed in the peripheral region 112b so that the support substrate 110 is not exposed from the thermal oxide film 120.
  • the SOI substrate 101 is formed by bonding the thermal oxide film 120 formed on the one surface 110 a side of the support substrate 110 and the semiconductor layer 130.
  • the portion of the thermal oxide film 120 formed in the boundary region 112a is thinner than the portion formed in the peripheral region 112b, and thus the portion of the thermal oxide film 120 formed in the peripheral region 112b.
  • the semiconductor layer 130 are bonded. Accordingly, since the peripheral region 112b is wider than the boundary region 112a, the bonding property between the thermal oxide film 120 and the semiconductor layer 130 can be improved.
  • the bonding between the thermal oxide film 120 and the semiconductor layer 130 is not particularly limited, but can be performed as follows, for example. That is, first, the surface of the thermal oxide film 120 (bonding surface) and the surface of the semiconductor layer 130 (bonding surface) are irradiated with N 2 plasma, O 2 plasma, or an Ar ion beam, and the thermal oxide film 120 and the semiconductor layer 130 are exposed. Each surface (bonding surface) is activated. Next, alignment is performed using an appropriately formed alignment mark with an infrared microscope or the like, and the thermal oxide film 120 and the semiconductor layer 130 are bonded by so-called direct bonding at a low temperature of room temperature to 1550 ° C.
  • the thermal oxide film 120 and the semiconductor layer 130 may be bonded by a bonding technique such as anodic bonding or intermediate layer bonding. Further, after the joining, a treatment for improving the joining quality such as high temperature annealing may be performed. Further, after bonding, the semiconductor layer 130 may be processed to a desired thickness by grinding and polishing.
  • a resist (not shown) is formed on the semiconductor layer 130, and the trench 132 is formed by performing dry etching or the like using the resist as a mask.
  • the sensing part 131 having the movable part 140 and the first and second fixed parts 150 and 160 is formed in the semiconductor layer 130, and the acceleration sensor is manufactured.
  • using the thermal oxide film 120 as an etching stopper can prevent the bottom of the recess 111 from being rough.
  • the support substrate 110 is thermally oxidized to form the thermal oxide film 120
  • a portion of the thermal oxide film 120 formed in the boundary region 112a is formed in the peripheral region 112b. It is thinner than the part.
  • the SOI substrate 101 is configured by bonding a portion of the thermal oxide film 120 formed in the peripheral region 112 b and the semiconductor layer 130. For this reason, compared with the conventional SOI substrate, the bondability between the thermal oxide film 120 and the semiconductor layer 130 can be improved.
  • thermal oxide film 120 can expand into the relaxation space 170, and thermal stress is generated between the thermal oxide film 120 and the semiconductor layer 130. Can be suppressed.
  • the same process as in FIG. 18A is performed to form the recess 111 in the support substrate 110.
  • the support substrate 110 is thermally oxidized to form a rounding insulating film 190.
  • the heating temperature may be lower than the thermal oxidation performed in the process of FIG. It may be short.
  • the rounding insulating film 190 thicker than the peripheral region 112b is formed.
  • the rounding insulating film 190 formed in the step of FIG. 20B is removed by wet etching or the like.
  • the same process as in FIG. 18B is performed, and the support substrate 110 is thermally oxidized to form a thermal oxide film 120 on the entire surface of the support substrate 110.
  • the thermal oxide film 120 having substantially the same film thickness is formed on the one surface 110a on the support substrate 110. That is, the film thickness of the portion formed in the boundary region 112a of the thermal oxide film 120 is substantially equal to the film thickness of the portion formed in the peripheral region 112b.
  • the process of FIG.20 (d) is performed in the state by which the opening part of the hollow part 111 was rounded.
  • the boundary part 120a which connects the part formed along the one surface 110a of the support substrate 110 in the thermal oxide film 120 and the part formed along the wall surface of the depression part 111 is a rounded depression part. It is formed along the opening of 111 (see FIG. 21). That is, the boundary 120a that connects the portion formed along the one surface 110a of the support substrate 110 and the portion formed along the wall surface of the recess 111 in the thermal oxide film 120 is opposite to the support substrate 110 side. The side surface is rounded.
  • the same process as in FIG. 18D is performed to join the thermal oxide film 120 and the semiconductor layer 130 together.
  • the film thickness of the portion formed in the boundary region 112a of the thermal oxide film 120 is substantially equal to the film thickness of the portion formed in the peripheral region 112b. For this reason, the portion formed in the boundary region 112 a and the portion formed in the peripheral region 112 b of the thermal oxide film 120 are joined to the semiconductor layer 130.
  • the acceleration sensor is manufactured by performing the same process as in FIG. 18 (e).
  • a relaxation space 170 is formed between the boundary 120 a that connects the two and the semiconductor layer 130.
  • the portion formed in the boundary region 112a and the portion formed in the peripheral region 112b of the thermal oxide film 120 are bonded to the semiconductor layer 130, so that the bonding property is further improved.
  • the same effect as the eighth embodiment can be obtained.
  • the first capacitor formed between the movable electrode 144 and the first fixed electrode 151, and the second capacitor formed between the movable electrode 144 and the second fixed electrode 161 The acceleration is detected based on the difference in capacity.
  • the first capacitor includes a parasitic capacitance between the first fixed unit 150 (first support unit 152) and the support substrate 110
  • the second capacitor includes the second fixed unit 160 ( The parasitic capacitance between the second support part 162) and the support substrate 110 is included.
  • the parasitic capacitance included in the first capacitor and the parasitic capacitance included in the second capacitor are equal, the parasitic capacitance is canceled when calculating the capacitance difference between the first capacitor and the second capacitor.
  • the detection accuracy is not particularly affected. However, due to misalignment or the like when forming the sensing unit 131, the length of the end of the first and second coupling units 152a and 162a on the movable unit 140 side protruding into the space 113 may be different. Then, the parasitic capacitance between the first fixing unit 150 (first support unit 152) and the support substrate 110 is different from the parasitic capacitance between the second fixing unit 160 (second support unit 162) and the support substrate 110. , Detection accuracy will decrease.
  • the present embodiment can suppress a decrease in detection accuracy, and the other aspects are the same as those in the eighth embodiment, and thus the description thereof is omitted here.
  • the thermal oxide film 120 includes a first groove 121a in a portion of the first connecting portion 152a that faces the end opposite to the movable portion 140 side. Is formed. Further, in the thermal oxide film 120, a second groove 121b is formed in a portion of the second connecting portion 162a that faces the end opposite to the movable portion 140 side.
  • first and second groove portions 121a and 121b are boundaries on the space 113 side at the joint portions with the thermal oxide film 120 of the first and second coupling portions 152a and 162a (hereinafter simply referred to as first 1 and the second connecting portions 152a and 162a (referred to as boundaries on the space 113 side) (in the x-axis direction).
  • the first and second connecting portions 152a and 162a have end portions on the opposite side of the movable portion 140 projecting from the first and second groove portions 121a and 121b, respectively. More specifically, the first connecting portion 152a has a first connecting portion 152a (first support) that has a boundary direction and length between the first connecting portion 152a (first supporting portion 152) and the opening in the first groove 121a. Part 152) protrudes on the first groove 121a so that the length is equal to the direction of the boundary on the space 113 side. Similarly, the direction and length of the boundary between the second connection portion 162a (second support portion 162) and the opening in the second groove portion 121b are the same as the second connection portion 162a (second support portion 162a). 162) protrudes on the second groove 121b so that the length is equal to the direction of the boundary on the space 113 side.
  • the first and second support portions 152 and 162 including the first and second connecting portions 152a and 162a and the first and second connection portions 152b and 162b are joined to the support substrate 110 via the thermal oxide film 120.
  • the areas of the portions are equal to each other. That is, the parasitic capacitance formed between the first support part 152 (first fixing part 150) and the support substrate 110 and the formation between the second support part 162 (second fixing part 160) and the support substrate 110 are formed.
  • the parasitic capacitance to be made is equal.
  • the direction and length of a boundary of this boundary are equal in length, and includes some errors produced by a manufacturing error etc.
  • the first and second groove portions 121a and 121b are formed in the thermal oxide film 120 in the step of FIG. 18B, and the sensing portion 131 is formed in the step of FIG. Manufactured by doing.
  • a positional shift of about several ⁇ m occurs when patterning the mask (resist).
  • the movable portion 140 and the first and second fixed portions 150 and 160 are entirely formed.
  • the position may be displaced toward the first fixed portion 150 (y-axis direction).
  • the length L 3 of the portion projecting into the space 113 of the first connecting portion 152a is shortened, the length of the portion projecting into the first groove 121a L 4 Becomes longer.
  • the sum of the lengths of the portions of the first connecting portion 152a protruding into the space 113 and the first groove portion 121a is the case where no positional deviation occurs (FIG. 24B) and the case where the positional deviation occurs. (FIG. 24A) is the same.
  • the area of the portion of the first connecting portion 152a that is bonded to the support substrate 110 via the thermal oxide film 120 does not change, and the first connecting portion 152a
  • the parasitic capacitance formed with the support substrate 110 does not change.
  • the sum of the lengths of the portions of the second connecting portion 162a protruding into the space 113 and the second groove 121b does not change, and the second connecting portion 162a. And the parasitic capacitance formed between the support substrate 110 and the support substrate 110 do not change.
  • the first and second groove portions 121a and 121b are formed, and the first and second support portions 152 and 162 are partially part of the space 113 and the first and second portions, respectively. It protrudes on the grooves 121a and 121b. And the area of the part joined to the support substrate 110 via the thermal oxide film 120 (the area of the part which opposes) is made mutually equal. For this reason, the parasitic capacitance formed between the first and second support portions 152 and 162 (first and second fixing portions 150 and 160) and the support substrate 110 becomes equal, and the detection accuracy is prevented from being lowered. it can.
  • the first groove portion 121a is formed, the end of the first connecting portion 152a on the movable portion 140 side protrudes on the space 113, and the movable portion 140 side
  • the first fixing portion 150 is formed so that the end portion on the opposite side projects from the first groove portion 121a.
  • the second groove portion 121b is formed, and the end portion on the movable portion 140 side of the second connecting portion 162a protrudes on the space 113, and the end portion on the opposite side to the movable portion 140 side is on the second groove portion 121b.
  • the second fixing part 160 is formed so as to protrude in the direction.
  • the movable part 140 and the first and second fixed parts 150 and 160 are formed, even if the movable part 140 and the first and second fixed parts 150 and 160 are displaced in the y-axis direction as a whole, Of the first and second support portions 152 and 162, the area of the portion bonded to the support substrate 110 via the thermal oxide film 120 (the area of the portion facing the support substrate 110) does not change. That is, the parasitic capacitance formed between the first and second support portions 152 and 162 (first and second fixing portions 150 and 160) and the support substrate 110 does not change. Therefore, even if a positional shift occurs, an acceleration sensor can be manufactured in which the parasitic capacitance does not change and the detection accuracy is suppressed from being lowered.
  • the positional deviation in the y-axis direction has been described as an example. However, even if a positional deviation in the rotational direction around the x-axis direction and the z-axis that may occur in manufacturing occurs, according to the present embodiment. Thus, it is possible to manufacture an acceleration sensor in which the parasitic capacitance does not change and the detection accuracy is prevented from being lowered.
  • the acceleration sensor in which the sensing unit 15 for detecting acceleration is formed is described as an example of the capacitive physical quantity sensor.
  • the present invention can be applied to a device that detects a physical quantity using a capacity difference.
  • the present invention can be applied to an angular velocity sensor that detects an angular velocity based on a capacity difference or a pressure sensor that detects pressure.
  • the third embodiment can be combined with the second, fifth to seventh embodiments. That is, in the capacitive physical quantity sensor including the cap unit 50, the first and second recesses 19 a and 19 b may be formed in the support substrate 11 and the insulating film 12. In this case, although not particularly illustrated, the first and second recesses corresponding to the first and second recesses 19 a and 19 b may be formed in the semiconductor substrate 51 and the insulating film 52.
  • the fourth embodiment can be combined with the second, fifth to seventh embodiments. That is, in the capacitive physical quantity sensor including the cap portion 50, the first and second hole portions 71 and 72 may be formed in the first and second connection portions 32a and 42a. Further, the second to fourth embodiments may be appropriately combined.
  • the recess 17 may be formed only in the insulating film 12, and the first and second grooves 18a and 18b may not be formed.
  • the SOI substrate 14 corresponds to the first substrate of the capacitive physical quantity sensor
  • the cap unit 50 corresponds to the second substrate of the capacitive physical quantity sensor.
  • the thickness of the portion formed in the boundary region 112a in the thermal oxide film 120 may be equal to the thickness of the portion formed in the peripheral region 112b.
  • the acceleration sensor that detects acceleration is described as an example of the physical quantity sensor.
  • the present invention is applied to an angular velocity sensor that detects angular velocity and a pressure sensor that detects pressure.
  • the physical quantity sensor can be applied to an angular velocity sensor, a pressure sensor, or the like that detects a physical quantity using a capacitance difference.
  • the ninth embodiment may be combined with the tenth embodiment to form the first and second groove portions 121a and 121b in the thermal oxide film 120.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pressure Sensors (AREA)

Abstract

 容量式物理量センサは、第1基板(13、14)と、絶縁膜(12、52)を介して前記第1基板と接合される第2基板(11、51)と、を備える。前記第2基板は、前記第1基板に形成された第1、第2支持部(32、42)における可動部(20)側と反対側の端部と対向する部分にそれぞれ第1、第2溝部(18a、18b)を有する。前記第1支持部(32)における端部の一部は、前記第1溝部(18a)上に突出し、前記第2支持部(42)における端部の一部は、前記第2溝部(18b)上に突出する。

Description

SOI基板、物理量センサ、SOI基板の製造方法、および物理量センサの製造方法 関連出願の相互参照
 本開示は、2013年5月9日に出願された日本出願番号2013-99583号および2014年3月27日出願された日本出願番号2014-65941号に基づくもので、ここにその記載内容を援用する。
 本開示は、SOI基板、物理量センサ、SOI基板の製造方法および物理量センサの製造方法に関する。
 従来より、容量式物理量センサとして、支持基板、絶縁膜、半導体層が順に積層されたシリコンオンインシュレーター(SOI)基板を用いたものが提案されている(例えば、特許文献1参照)。
 具体的には、この容量式物理量センサでは、半導体層に、所定方向に変位可能とされた複数の可動電極を有する可動部が形成されている。また、半導体層に、可動電極と対向する第1固定電極が備えられる第1支持部を有する第1固定部と、可動電極と対向する第2固定電極が備えられる第2支持部を有し、可動部を挟んで第1固定部と反対側に配置される第2固定部とが形成されている。つまり、半導体層には、可動部を挟んで一対の第1、第2固定部が形成されている。
 そして、支持基板および絶縁膜のうち可動電極および第1、第2固定電極と対向する部分を含む部分には、窪み部が形成されており、可動電極および第1、第2固定電極は浮遊した状態となっている。なお、第1、第2固定電極を完全に浮遊させるため、第1、第2固定電極を備える第1、第2支持部は、可動部側の端部が窪み部上に部分的に突出している。
 このような容量式物理量センサでは、可動電極と第1固定電極との間の検出容量と、第1固定部と支持基板との間の寄生容量とからなる第1容量が構成される。同様に、可動電極と第2固定電極との間の検出容量と、第2固定部と支持基板との間の寄生容量からなる第2容量が構成される。そして、第1容量と第2容量との差に基づいて物理量の検出が行われる。
 なお、寄生容量の大きさは、第1、第2固定部のうち絶縁膜を介して支持基板と接合されている部分の面積に比例する。このため、第1、第2容量の差を演算した際に各寄生容量がキャンセルされるように、第1、第2固定部のうち支持基板と接合される部分の面積が等しくされている。
 上記容量式物理量センサは、例えば、次のように製造される。すなわち、支持基板上に絶縁膜を形成し、支持基板および絶縁膜に窪み部を形成する。その後、絶縁膜にシリコン基板等で構成される半導体層を接合する。そして、半導体層にマスクを形成すると共に当該マスクをパターニングする。続いて、反応性イオンエッチング(RIE)等を行って可動電極および第1、第2固定電極を形成することにより、上記容量式物理量センサが製造される。
 しかしながら、上記容量式物理量センサでは、可動部および第1、第2固定部を形成する際、マスクのパターニング時に位置ずれ等が発生し、可動部および第1、第2固定部が全体的に形成予定領域に対してずれてしまうことがある。例えば、第1固定部、可動部、第2固定部の配列方向において、全体的に第1固定部側に第1固定部、可動部、第2固定部がずれた場合には、第1支持部のうち可動部側の端部が窪み部上に突出する部分は小さくなる。これに対し、第2支持部のうち可動部側の端部が窪み部上に突出する部分は大きくなる。
 すなわち、第1固定部(第1支持部)のうち絶縁膜を介して支持基板と接合されている面積は大きくなり、第2固定部(第2支持部)のうち絶縁膜を介して支持基板と接合されている面積は小さくなる。つまり、第1固定部と支持基板との間に形成される寄生容量は大きくなり、第2固定部と支持基板との間に形成される寄生容量は小さくなる。このため、第1容量と第2容量との容量差を演算する際に各寄生容量をキャンセルすることができず、検出誤差が生じる。
 なお、このような問題は、可動電極および第1、第2固定電極に異物が付着することを抑制するために、可動電極および第1、第2固定電極を覆うようにキャップ部が備えられた容量式物理量センサにおいても同様に発生する。すなわち、このような容量式物理量センサでは、キャップ部は半導体基板に絶縁膜が形成されて構成されており、絶縁膜を介して半導体基板が半導体層に接合されている。そして、半導体基板および絶縁膜のうち可動電極および第1、第2固定電極と対向する部分を含む部分に窪み部が形成されている。また、第1、第2支持部と半導体基板との間でそれぞれ寄生容量が形成される。このため、半導体基板(キャップ部)と半導体層とを接合する際、アライメントずれ等によって位置ずれが発生すると、第1、第2固定部のうち半導体基板(キャップ部)と接合される部分の面積が異なり、互いの寄生容量が異なる。
 また、一面に窪み部が形成された第1基板に熱酸化膜が形成され、第1基板の一面側に熱酸化膜を介して第2基板が配置されたSOI基板が提案されている(例えば、特許文献2参照)。このようなSOI基板では、第1基板としてシリコン基板が用いられる。
 上記SOI基板は、次のように製造される。まず、第1基板の一面に窪み部を形成する。次に、第1基板を熱酸化して熱酸化膜を形成する。このとき、熱酸化膜は、第1基板の全面に形成され、窪み部の壁面にも形成される。そして、第1基板の一面に形成された熱酸化膜と第2基板とを接合することにより、上記SOI基板が製造される。
 このようなSOI基板は、第2基板にドライエッチング等を行って物理量に応じたセンサ信号を出力するセンシング部を形成する場合、窪み部に形成された熱酸化膜をエッチングストッパとして利用できる。このため、窪み部の底面が荒れることを抑制できる。また、窪み部に熱酸化膜(絶縁膜)が形成されていることにより、第1基板と第2基板とが異物を介して電気的に接続されることを抑制できる。
 しかしながら、上記SOI基板では、第1基板を熱酸化して熱酸化膜を形成すると、窪み部の開口部に応力が集中する。このため、熱酸化膜のうちの窪み部の開口部に形成される部分は、他の領域に形成される部分よりも膜厚が厚くなる。つまり、第1基板の一面において、熱酸化膜は、窪み部の開口部に形成される部分が他の領域に形成される部分より盛り上がって形成される。したがって、このような状態で熱酸化膜と第2基板とを接合すると、熱酸化膜のうちの盛り上がっている部分のみが第2基板と接合されるため、熱酸化膜と第2基板との接合性が悪くなるという問題がある。
日本特許第3435647号公報 日本特開2013-229356号公報
 本開示の目的の一つは、検出誤差を抑制できる容量式物理量センサおよびその製造方法を提供することである。また、本開示の他の目的は、熱酸化膜と第2基板との接合性を向上できるSOI基板およびそれを用いた物理量センサ、SOI基板の製造方法および物理量センサの製造方法を提供することである。
 本開示の第一態様に係る容量式物理量センサは、第1基板と、絶縁膜を介して第1基板と接合される第2基板と、を備える。前記第1基板は、所定方向に変位可能とされた複数の可動電極を有する可動部と、前記可動電極と対向する第1固定電極が備えられる第1支持部を有する第1固定部と、前記可動電極と対向する第2固定電極が備えられる第2支持部を有し、前記第2支持部が前記可動部を挟んで前記前記第1支持部と反対側に配置された第2固定部と、を備える。前記絶縁膜および前記第2基板のうち少なくとも前記絶縁膜における前記可動電極および前記第1、第2固定電極と対向する部分は窪み部を有する。前記第1支持部が前記絶縁膜を介して前記第2基板と接合されている面積と、前記第2支持部が前記絶縁膜を介して前記第2基板と接合されている面積とが等しくされる。前記容量式物理量センサは、前記可動電極と前記第1固定電極との間の容量と、前記可動電極と前記第2固定電極との間の容量との差に基づいて物理量を検出する。
 前記第2基板は、前記第1支持部における前記可動部側と反対側の端部と対向する部分に第1溝部を有し、前記第2支持部における前記可動部側と反対側の端部と対向する部分に第2溝部を有する。前記第1支持部は、前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第1溝部上に突出する。前記第2支持部は、前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第2溝部上に突出する。
 前記容量式物理量センサでは、前記第1支持部と前記第2基板との間に形成される寄生容量と、前記第2支持部と前記第2基板との間に形成される寄生容量が等しくなるため、検出誤差を抑制できる。
 本開示の第2態様に係る製造方法は、前記第1態様に係る容量式物理量センサの製造方法であり、前記第1基板として半導体層を用意し、前記第2基板として支持基板を用意する工程と、前記第2基板に前記窪み部を形成する工程と、前記第2基板に前記第1、第2溝部を形成する工程と、前記第2基板の表面に前記絶縁膜を介して前記第1基板を接合することにより、SOI基板を形成する工程と、前記第1基板に前記可動部および前記第1、第2固定部を形成する工程と、を含む。
 前記可動部および前記第1、第2固定部を形成する工程では、前記第1支持部における前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第1溝部上に突出するように第1固定部を形成し、かつ、前記第2支持部における前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第2溝部上に突出するように前記第2固定部を形成することにより、前記第1支持部のうち前記絶縁膜を介して前記第2基板と接合されている部分の面積と、前記第2支持部のうち前記絶縁膜を介して前記第2基板と接合されている部分の面積とを等しくする。
 本開示の第3態様に係る製造方法は、前記第1態様に係る容量式物理量センサの製造方法であり、前記第1基板として支持基板上に絶縁膜を介して半導体層が形成されたSOI基板を用意し、前記第2基板として半導体基板を用意する工程と、前記第1基板に前記可動部および前記第1、第2固定部を形成する工程と、前記第2基板に前記絶縁膜を形成する工程と、前記第2基板および前記絶縁膜のうち少なくとも前記絶縁膜に前記窪み部を形成する工程と、前記第2基板に前記第1、第2溝部を形成する工程と、前記第1基板に前記絶縁膜を介して前記第2基板を接合する工程と、を含む。
 前記接合する工程では、前記第1支持部における前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第1溝部上に突出し、かつ、前記第2支持部における前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第2溝部上に突出するように前記第1、第2基板を接合することにより、前記第1支持部のうち前記絶縁膜を介して前記第2基板と接合されている部分の面積と、前記第2支持部のうち前記絶縁膜を介して前記第2基板と接合されている部分の面積とを等しくする。
 前記第2態様および第3態様に係る製造方法では、前記第1支持部における前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第1溝部上に突出し、かつ、前記第2支持部における前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第2溝部上に突出するようにしている。このため、位置ずれが発生しても、前記第1、第2支持部が前記絶縁膜を介して前記第2基板と接合されている部分の面積は変化せず、寄生容量も変化しない。このため、検出精度が低下することを抑制できる。
 本開示の第4態様に係るSOI基板の製造方法は、一面を有するシリコン基板で構成される第1基板を用意する工程と、前記第1基板の一面に窪み部を形成する工程と、前記第1基板を熱酸化して熱酸化膜を形成する工程と、前記第1基板の一面側に前記熱酸化膜を介して第2基板を接合する工程と、を含む。
 前記熱酸化膜を形成する工程の後、前記第1基板の一面のうちの前記窪み部の開口部における周辺部を境界領域とし、前記境界領域より面積が大きく、前記境界領域を取り囲む領域を周辺領域としたとき、前記熱酸化膜のうちの前記境界領域に形成された部分の厚さを前記周辺領域に形成された部分の厚さ以下にする熱酸化膜調整工程を行う。前記第2基板を接合する工程では、前記熱酸化膜のうちの前記周辺領域に形成された部分と前記第2基板とを接合する。
 前記第4態様に係るSOI基板の製造方法によれば、前記熱酸化膜のうちの前記周辺領域に形成された部分と前記第2基板とを接合することで前記SOI基板を構成しているため、前記熱酸化膜と前記第2基板との接合性を向上できる。
 本開示の第5態様に係る物理量センサの製造方法では、前記第4態様に係る製造方法で製造したSOI基板を用意する工程と、前記第2基板に、所定方向に変位可能とされた複数の可動電極を有する可動部と、前記可動電極と対向する第1固定電極が備えられる第1支持部を有する第1固定部と、前記可動電極と対向する第2固定電極が備えられる第2支持部を有し、前記第2支持部が前記可動部を挟んで前記第1支持部と反対側に配置された第2固定部と、を含んで構成されるセンシング部を形成する工程と、を行う。
 前記SOI基板を用意する工程における前記熱酸化膜調整工程では、前記熱酸化膜のうちの前記第1支持部における前記可動部側と反対側の端部と対向する部分に第1溝部を形成すると共に、前記第2支持部における前記可動部側と反対側の端部と対向する部分に第2溝部を形成する工程を行う。前記センシング部を形成する工程では、前記第1支持部における前記可動部側の端部の一部が前記窪み部の壁面に形成された前記熱酸化膜で囲まれる空間に突出すると共に前記可動部側と反対側の端部の一部が前記第1溝部上に突出するように第1固定部を形成し、かつ、前記第2支持部における前記可動部側の端部の一部が前記空間に突出すると共に前記可動部側と反対側の端部の一部が前記第2溝部上に突出するように前記第2固定部を形成することにより、前記第1支持部のうちの前記熱酸化膜を介して前記第1基板と接合されている部分の面積と、前記第2支持部のうちの前記熱酸化膜を介して前記第1基板と接合されている部分の面積とを等しくする。
 前記第5態様に係る物理量センサの製造方法では、位置ずれが発生しても、前記第1、第2支持部における前記熱酸化膜を介して前記第1基板と接合されている部分の面積が変化せず、寄生容量も変化しない。このため、検出精度が低下することを抑制できる。
 本開示の第6態様に係るSOI基板は、一面を有し、前記一面に窪み部が形成されたシリコン基板で構成される第1基板と、前記第1基板に形成された熱酸化膜と、前記第1基板の一面側に前記熱酸化膜を介して配置された第2基板と、を備える。
 前記熱酸化膜は、前記第1基板の一面のうちの前記窪み部の開口部における周辺部を境界領域とし、前記境界領域より面積が大きく、前記境界領域を取り囲む領域を周辺領域としたとき、前記熱酸化膜のうちの前記境界領域に形成された部分の厚さが前記周辺領域に形成された部分の厚さ以下にされている。前記第2基板は、前記熱酸化膜のうちの前記周辺領域に形成された部分と接合される。前記熱酸化膜のうちの前記一面に形成された部分と前記窪み部の壁面に形成された部分とを連結する境界部と前記第2基板との間には、緩和空間が構成されている。
 前記第6態様に係るSOI基板は、使用環境が高温に変化して前記熱酸化膜が膨張する場合、前記熱酸化膜が前記緩和空間に膨張でき、前記熱酸化膜と前記第2基板との間に熱応力が発生することを抑制できる。
 本開示の第7態様に係る物理量センサは、前記第6態様に係るSOI基板を備え、前記第2基板に、所定方向に変位可能とされた複数の可動電極を有する可動部と、前記可動電極と対向する第1固定電極が備えられる第1支持部を有する第1固定部と、前記可動電極と対向する第2固定電極が備えられる第2支持部を有し、前記第2支持部が前記可動部を挟んで前記第1支持部と反対側に配置された第2固定部と、を含んで構成されるセンシング部が形成されている。
 前記熱酸化膜には、前記第1支持部における前記可動部側と反対側の端部と対向する部分に第1溝部が形成されていると共に、前記第2支持部における前記可動部側と反対側の端部と対向する部分に第2溝部が形成されている。前記第1支持部は、前記可動部側の端部の一部が前記窪み部の壁面に形成された前記熱酸化膜で囲まれる空間に突出すると共に前記可動部側と反対側の端部の一部が前記第1溝部上に突出する。前記第2支持部は、前記可動部側の端部の一部が前記空間に突出すると共に前記可動部側と反対側の端部の一部が前記第2溝部上に突出する。前記第1支持部のうちの前記熱酸化膜を介して前記第1基板と接合されている部分の面積と、前記第2支持部のうちの前記熱酸化膜を介して前記第1基板と接合されている部分の面積とが等しくされている。
 前記第7態様に係る物理量センサでは、前記第1支持部と前記第1基板との間に形成される寄生容量と、前記第2支持部と前記第1基板との間に形成される寄生容量が等しくなるため、検出精度が低下することを抑制できる。
 本開示における上記あるいは他の目的、構成、利点は、下記の図面を参照しながら、以下の詳細説明から、より明白となる。図面において、
図1は、本開示の第1実施形態における容量式物理量センサの平面図である。 図2は、図1のII-II線に沿った容量式物理量センサの断面図である。 図3(a)~図3(d)は、図1に示す容量式物理量センサの製造工程を示す断面図である。 図4(a)は図3(d)の工程において位置ずれがない場合の第1支持部近傍の断面図であり、図4(b)は図3(d)の工程において位置ずれがある場合の第1支持部近傍の断面図である。 図5は、本開示の第2実施形態における容量式物理量センサの断面図である。 図6は、図5とは別断面の容量式物理量センサの断面図である。 図7(a)~図7(c)は、図5に示す容量式物理量センサの製造工程を示す断面図である。 図8は、本開示の第3実施形態における容量式物理量センサの平面図である。 図9は、図8のIX-IX線に沿った容量式物理量センサ断面図である。 図10は、本開示の第4実施形態における容量式物理量センサの平面図である。 図11は、図10のXI-XI線に沿った容量式物理量センサの断面図である。 図12は、本開示の第5実施形態における容量式物理量センサの断面図である。 図13は、本開示の第6実施形態における容量式物理量センサの断面図である。 図14は、本開示の第7実施形態における容量式物理量センサの断面図である。 図15は、本開示の第8実施形態における加速度センサの平面図である。 図16は、図15のXVI-XVI線に沿った加速度センサの断面図である。 図17は、図16の領域XVIIの拡大図である。 図18(a)~図18(e)は、図15に示す加速度センサの製造工程を示す断面図である。 図19は、図18(b)中の領域XIXの拡大図である。 図20(a)~図20(f)は、本開示の第9実施形態における加速度センサの製造工程を示す断面図である。 図21は、図20(f)中の領域XXIの拡大図である。 図22は、本開示の第10実施形態における加速度センサの平面図である。 図23は、図22のXXIII-XXIII線に沿った加速度センサの断面図である。 図24(a)は、図18(e)の工程において位置ずれがある場合の第1支持部近傍の断面図であり、図24(b)は、図18(e)の工程において位置ずれがない場合の第1支持部近傍の断面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 本開示の第1実施形態について図面を参照しつつ説明する。なお、本実施形態では、容量式物理量センサとして、加速度を検出するセンシング部が形成された加速度センサを例に挙げて説明する。
 図1および図2に示されるように、本実施形態の加速度センサは、支持基板11と、支持基板11上に配置された絶縁膜12と、絶縁膜12を挟んで支持基板11と反対側に配置された半導体層13とを有するSOI基板14を用いて構成されている。
 なお、支持基板11および半導体層13はシリコン基板等であり、絶縁膜12はSiO2等である。また、本実施形態では、半導体層13が容量式物理量センサの第1基板に相当し、支持基板11が容量式物理量センサの第2基板に相当している。
 SOI基板14には、周知のマイクロマシン加工が施されてセンシング部15が形成されている。具体的には、半導体層13には、溝部16が形成されることによって櫛歯形状の梁構造体を有する可動部20および第1、第2固定部30、40が形成されており、この梁構造体によって加速度に応じたセンサ信号を出力するセンシング部15が形成されている。
 そして、支持基板11および絶縁膜12のうち梁構造体の形成領域に対応した部分は除去されて窪み部17が形成されている。窪み部17は、後述する可動電極24および第1、第2固定電極31、41が支持基板11および絶縁膜12に接触することを防止するためのものである。
 可動部20は、窪み部17上を横断するように配置されており、矩形状の錘部21における長手方向の両端が梁部22を介してアンカー部23a、23bに一体に連結した構成とされている。アンカー部23a、23bは、窪み部17の開口縁部で絶縁膜12を介して支持基板11に支持されている。これにより、錘部21および梁部22は、窪み部17に臨んだ状態となっている。
 ここで、図1および図2中のx軸、y軸、z軸の各方向について説明する。図1および図2中では、x軸方向は錘部21の長手方向である。y軸方向はSOI基板14の面内においてx軸と直交する方向である。z軸方向は、SOI基板14の平面方向と直交する方向である。
 梁部22は、平行な2本の梁がその両端で連結された矩形枠状とされており、2本の梁の長手方向と直交する方向に変位するバネ機能を有している。具体的には、梁部22は、x軸方向の成分を含む加速度を受けたとき、錘部21をx軸方向へ変位させると共に、加速度の消失に応じて元の状態に復元させるようになっている。したがって、このような梁部22を介して支持基板11に連結された錘部21は、加速度の印加に応じて、窪み部17上にて梁部22の変位方向(x軸方向)へ変位可能となっている。
 また、可動部20は、錘部21の長手方向と直交した方向(y軸方向)に、錘部21の両側面から互いに反対方向へ一体的に突出形成された複数個の可動電極24を備えている。図1では、可動電極24は、錘部21の左側および右側に各々4個ずつ突出して形成されており、窪み部17に臨んだ状態となっている。また、各可動電極24は、錘部21および梁部22と一体的に形成されており、梁部22が変位することによって錘部21と共にx軸方向に変位可能となっている。
 第1、第2固定部30、40は、窪み部17の開口縁部のうち、アンカー部23a、23bが支持されている部分以外にて、絶縁膜12を介して支持基板11に支持されている。すなわち、第1、第2固定部30、40は、可動部20を挟むように配置されている。図1では、第1固定部30が可動部20に対して紙面左側に配置され、第2固定部40が可動部20に対して紙面右側に配置されている。そして、第1、第2固定部30、40は互いに電気的に独立している。
 また、第1、第2固定部30、40は、可動電極24の側面と所定の検出間隔を有するように平行した状態で対向配置された複数個の第1、第2固定電極31、41と、絶縁膜12を介して支持基板11に支持された第1、第2支持部32、42とを有している。
 第1、第2固定電極31、41は、図1では4個ずつ形成されており、可動電極24における櫛歯の隙間にかみ合うように櫛歯状に配列されている。そして、各支持部32、42に片持ち状に支持されることにより、窪み部17に臨んだ状態となっている。
 第1支持部32は、第1固定電極31が備えられる第1連結部32aと、第1連結部32aを外部回路と電気的にするための第1接続部32bとを有している。また、第2支持部42は、第2固定電極41が備えられる第2連結部42aと、第2連結部42aを外部回路と電気的にするための第2接続部42bとを有している。
 第1、第2連結部32a、42aは、本実施形態では、長辺が錘部21の長手方向(x軸方向)と平行となる平面矩形状とされており、それぞれ可動部20側の端部に第1、第2固定電極31、41を備えている。そして、第1、第2連結部32a、42aのうち可動部20側の端部は、それぞれ窪み部17上に突出している。
 第1、第2接続部32b、42bは、それぞれ第1、第2連結部32a、42aと接続され、第1、第2接続部32b、42bの所定箇所がボンディングワイヤ(図示せず)等を介して外部回路と電気的に接続されている。
 なお、可動部20は、アンカー部23bがボンディングワイヤ(図示せず)等を介して外部回路と電気的に接続されている。同様に、溝部16を隔てて可動部20、第1、第2固定部30、40の周囲に位置する周辺部60もボンディングワイヤ(図示せず)等を介して外部回路と電気的に接続されている。
 また、支持基板11および絶縁膜12には、第1連結部32aのうち可動部20側と反対側の端部と対向する部分に第1溝部18aが形成されている。同様に、支持基板11および絶縁膜12には、第2連結部42aのうち可動部20側と反対側の端部と対向する部分に第2溝部18bが形成されている。
 具体的には、第1、第2溝部18a、18bは、第1、第2連結部32a、42aと窪み部17における開口部との境界に沿った方向(x軸方向)に延設されている。
 そして、第1、第2連結部32a、42aは、それぞれ可動部20側と反対側の端部が第1、第2溝部18a、18b上に突出している。詳述すると、第1連結部32aは、第1連結部32a(第1支持部32)と第1溝部18aにおける開口部との境界の方向と長さが、第1連結部32a(第1支持部32)と窪み部17における開口部との境界の方向と長さが等しくなるように、第1溝部18a上に突出している。同様に、第2連結部42aは、第2連結部42a(第2支持部42)と第2溝部18bにおける開口部との境界の方向と長さが、第2連結部42a(第2支持部42)と窪み部17における開口部との境界の方向と長さが等しくなるように、第2溝部18b上に突出している。
 なお、境界の方向と長さが等しいとは、完全に一致する場合に加えて、製造誤差等によって生じる若干の誤算を含むものである。
 そして、第1、第2連結部32a、42aおよび第1、第2接続部32b、42bからなる第1、第2支持部32、42は、絶縁膜12を介して支持基板11と接合されている部分の面積(対向する部分の面積)が互いに等しくされている。すなわち、第1支持部32と支持基板11との間に形成される寄生容量と、第2支持部42と支持基板11との間に形成される寄生容量とが等しくされている。
 なお、面積が等しいとは、完全に一致する場合に加えて、製造誤差等によって生じる若干の誤差を含むものである。
 すなわち、本実施形態の容量式物理量センサでは、可動電極24と第1固定電極31との間に形成される検出容量と、第1支持部32と支持基板11との間に形成される寄生容量とからなる第1容量が構成されている。同様に、可動電極24と第2固定電極41との間に形成される検出容量と、第2支持部42と支持基板11との間に形成される寄生容量とからなる第2容量が構成されている。そして、x軸方向に加速度が印加されると、梁部22のバネ機能によってアンカー部23a、23bを除く可動部20全体が一体的にx軸方向へ変位し、可動電極24の変位に応じて検出容量が変化するようになっている。
 以上が本実施形態における容量式物理量センサの構成である。このような容量式物理量センサでは、第1容量と第2容量との容量差に基づいて加速度が検出される。このとき、第1容量に含まれる寄生容量と、第2容量に含まれる寄生容量は、上記のように等しくされている。このため、第1容量と第2容量との容量差を演算したときに互いの寄生容量がキャンセルされ、検出誤差を抑制できる。
 次に、上記容量式物理量センサの製造方法について図3(a)~図3(d)を参照しつつ説明する。
 まず、図3(a)に示されるように、支持基板11上に絶縁膜12を形成する。次に、図3(b)に示されるように、絶縁膜12上にレジストや酸化膜等のマスク(図示せず)を形成し、窪み部17、第1、第2溝部18a、18bの形成予定領域が開口するように当該マスクをパターニングする。続いて、例えば、RIE等によって絶縁膜12および支持基板11をエッチングして窪み部17および第1、第2溝部18a、18bを形成する。
 続いて、図3(c)に示されるように、絶縁膜12と半導体層13とを接合してSOI基板14を形成する。絶縁膜12と半導体層13との接合は、特に限定されるものではないが、例えば、次のように行うことができる。
 まず、絶縁膜12の表面(接合面)および半導体層13の表面(接合面)にNプラズマ、Oプラズマ、またはArイオンビームを照射し、絶縁膜12および半導体層13の各表面(接合面)を活性化させる。
 次に、適宜形成されたアライメントマークを用いて赤外顕微鏡等によりアライメントを行い、室温~550℃の低温で絶縁膜12および半導体層13をいわゆる直接接合により接合する。
 なお、ここでは直接接合を例に挙げて説明したが、絶縁膜12と半導体層13とは、陽極接合や中間層接合等の接合技術によって接合されてもよい。また、接合後に、高温アニール等の接合品質を向上させる処理を行ってもよい。さらに、接合後に、半導体層13を研削研磨によって所望の厚さに加工してもよい。
 その後、図3(d)に示されるように、半導体層13上にレジストや酸化膜等のマスク(図示せず)を形成し、溝部16の形成予定領域が開口するように当該マスクをパターニングする。続いて、例えば、RIE等によって半導体層13をエッチングして溝部16を形成する。これにより、可動部20および第1、第2固定部30、40が形成されて上記容量式物理量センサが製造される。
 なお、第1固定部30を形成する際には、第1連結部32aのうち可動部20側の端部が窪み部17上に突出すると共に、可動部20側と反対側の端部が第1溝部18a上に突出するように第1固定部30を形成する。同様に、第2固定部40を形成する際には、第2連結部42aのうち可動部20側の端部が窪み部17上に突出すると共に、可動部20側と反対側の端部が第2溝部18b上に突出するように第2固定部40を形成する。
 このとき、例えば、マスクをパターニングする際に数μm程度の位置ずれが発生し、可動部20および第1、第2固定部30、40が全体的に第1固定部30側(y軸方向)に位置ずれすることがある。この場合、図4(b)に示されるように、第1連結部32aのうち窪み部17上に突出する部分の長さLが短くなり、第1溝部18aに突出する部分の長さLが長くなる。
 しかしながら、第1連結部32aのうち窪み部17および第1溝部18aに突出する部分の長さの和は、位置ずれが発生しなかった場合(図4(a))と位置ずれが発生した場合(図4(b))とで等しい。つまり、第1連結部32aのうち絶縁膜12を介して支持基板11と接合されている部分の面積(支持基板11と対向する部分の面積)は変化せず、第1連結部32aと支持基板11との間に形成される寄生容量も変化しない。同様に、特に図示しないが、位置ずれが発生したとしても、第2連結部42aのうち窪み部17および第2溝部18bに突出する部分の長さの和は変化せず、第2連結部42aと支持基板11との間に形成される寄生容量は変化しない。すなわち、第1、第2溝部18a、18bのy軸方向の長さ(幅)を製造上起こりうる位置ずれ量より予め大きく設けておくことにより、上記のように位置ずれが発生したとしても、寄生容量が変化することを抑制できる。
 このため、上記のように容量式物理量センサを製造することにより、位置ずれが発生したとしても、寄生容量が変化しない容量式物理量センサとすることができる。
 以上説明したように、本実施形態の容量式物理量センサでは、第1、第2溝部18a、18bが形成されており、第1、第2支持部32、42は、それぞれ一部が窪み部17および第1、第2溝部18a、18b上に突出している。そして、絶縁膜12を介して支持基板11と接合されている部分の面積(対向する部分の面積)が互いに等しくされている。このため、第1、第2支持部32、42と支持基板11との間に形成される寄生容量が等しくなり、検出誤差を抑制できる。
 また、容量式物理量センサを製造する際には、第1溝部18aを形成し、第1連結部32のうち可動部20側の端部が窪み部17上に突出すると共に、可動部20側と反対側の端部が第1溝部18a上に突出するように第1固定部30を形成している。そして、第2溝部18bを形成し、第2連結部42aのうち可動部20側の端部が窪み部17上に突出すると共に、可動部20側と反対側の端部が第2溝部18b上に突出するように第2固定部40を形成している。
 このため、可動部20および第1、第2固定部30、40を形成する際、可動部20および第1、第2固定部30、40が全体的にy軸方向に位置ずれしたとしても、第1、第2支持部32、42のうち絶縁膜12を介して支持基板11と接合されている部分の面積(支持基板11と対向する部分の面積)は変化しない。すなわち、第1、第2支持部32、42と支持基板11との間に形成される寄生容量は変化しない。したがって、位置ずれが発生したとしても、寄生容量が変化せず、検出誤差を抑制できる容量式物理量センサを製造できる。
 なお、上記では、y軸方向の位置ずれを例に挙げて説明したが、製造上発生しうるx軸方向およびz軸周りの回転方向の位置ずれが発生したとしても、本実施形態によれば、寄生容量が変化せず、検出誤差を抑制できる容量式物理量センサを製造できる。
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対して半導体層13にキャップ部を接合したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 図5および図6に示されるように、本実施形態では、センシング部15に水や異物等が付着することを抑制するために、半導体層13にセンシング部15を気密封止するようにキャップ部50が備えられている。なお、図5におけるSOI基板14は、図1中のII-II線に相当する断面図であり、キャップ部50はII-II線に相当する部分の断面図である。また、図6におけるSOI基板14は、図1中のVI-VI線に相当する断面図であり、キャップ部50はVI-VI線に相当する部分の断面図である。
 キャップ部50は、半導体基板51の一面51aに絶縁膜52が形成されていると共に他面51bに絶縁膜53が形成されて構成されており、絶縁膜52が半導体層13と接合されている。そして、半導体基板51および絶縁膜52のうち可動電極24および第1、第2固定電極31、41と対向する部分に窪み部54が形成されている。この窪み部54は、窪み部17と同様に、可動電極24および第1、第2固定電極31、41が半導体基板51および絶縁膜52と接触することを防止するものである。
 なお、本実施形態では、半導体層13が容量式物理量センサの第1基板に相当し、支持基板11および半導体基板51が容量式物理量センサの第2基板に相当する。すなわち、本実施形態の容量式物理量センサは、2つの第2基板の間に第1基板が配置されたものといえる。
 また、半導体基板51および絶縁膜52には、第1連結部32aのうち可動部20側と反対側の端部と対向する部分に第1溝部55aが形成されており、第2連結部42aのうち可動部20側と反対側の端部と対向する部分に第2溝部55bが形成されている。
 具体的には、第1、第2溝部55a、55bは、第1、第2連結部32a、42aと窪み部54における開口部との境界に沿った方向(x軸方向)に延設されている。
 また、第1、第2連結部32a、42aは、可動部20側と反対側の端部が第1、第2溝部55a、55b上に突出している。詳述すると、第1連結部32aは、第1連結部32a(第1支持部32)と第1溝部55aにおける開口部との境界の方向と長さが、第1連結部32a(第1支持部32)と窪み部54における開口部との境界の方向と長さが等しくなるように、第1溝部55a上に突出している。同様に、第2連結部42aは、第2連結部42a(第2支持部42)と第2溝部55bにおける開口部との境界の方向と長さが、第2連結部42a(第2支持部42)と窪み部54における開口部との境界の方向と長さが等しくなるように、第2溝部55b上に突出している。
 そして、第1、第2連結部32a、42aは、絶縁膜52を介して半導体基板51と接合されている部分の面積(対向する部分の面積)が互いに等しくされている。すなわち、第1連結部32aと半導体基板51との間に形成される寄生容量と、第2連結部42aと半導体基板51との間に形成される寄生容量とが等しくされている。
 また、キャップ部50には、該キャップ部50をSOI基板14とキャップ部50との積層方向に貫通する4つの貫通電極部56が形成されている。具体的には、各貫通電極部56は、絶縁膜53、半導体基板51、絶縁膜52を貫通する孔部56aと、この孔部56aの壁面に形成された絶縁膜56bと、この絶縁膜56bの上に形成された貫通電極56cと、パッド56dとにより構成されている。
 そして、4つの貫通電極部56のうちの1つは、アンカー部23bに電気的に接続されている。また、4つの貫通電極部56のうちの2つは、第1、第2接続部32b、42bにそれぞれ電気的に接続されている。そして、4つの貫通電極部56のうちの1つは、周辺部60に電気的に接続されている。
 なお、図6では、孔部56aが円錐状とされているものを図示しているが、孔部56aは円筒状とされていてもよいし、角筒状とされていてもよい。また、絶縁膜56bとしては、例えば、TEOS等の絶縁材料が用いられ、貫通電極56cおよびパッド56dとしては、例えば、Al等が用いられる。
 さらに、本実施形態では、半導体基板51と外部回路との電気的な接続が図れるように、電極57aおよびパッド57bが形成されている。詳述すると、電極57aは、絶縁膜53に形成されたコンタクトホール53aを介して半導体基板51と接続されるように形成されている。パッド57bは、絶縁膜53上に形成されている。
 そして、絶縁膜53、貫通電極56c、パッド56d、電極57a、パッド57b上には、保護膜58が形成されており、保護膜58にはパッド56d、57bを露出させるコンタクトホール58aが形成されている。これにより、パッド56d、57bと外部回路との電気的な接続が図れるようになっている。
 以上が本実施形態における容量式物理量センサの構成である。次に、このような容量式物理量センサの製造方法について説明する。
 まず、図7(a)に示されるように、半導体基板51の一面51aに絶縁膜52を形成する。そして、図7(b)に示されるように、絶縁膜52上にレジストや酸化膜等のマスク(図示せず)を形成し、窪み部54および第1、第2溝部55a、55bの形成予定領域が開口するように当該マスクをパターニングする。続いて、例えば、RIE等によって絶縁膜52および半導体基板51をエッチングして窪み部54および第1、第2溝部55a、55bを形成する。
 そして、上記図3(a)~図3(d)の工程を行ったものを用意し、図7(c)に示されるように、半導体層13と絶縁膜52とを接合する。
 具体的には、第1連結部32aのうち可動部20側の端部が窪み部54上に突出すると共に、可動部20側と反対側の端部が第1溝部55a上に突出するように半導体層13と絶縁膜52とを接合する。また、第2連結部42aのうち可動部20側の端部が窪み部54上に突出すると共に、可動部20側と反対側の端部が第2溝部55b上に突出するように半導体層13と絶縁膜52とを接合する。
 このとき、アライメントずれ等による位置ずれが発生し、可動部20および第1、第2固定部30、40が全体的にy軸方向に位置ずれすることがある。しかしながら、上記と同様に、第1、第2溝部55a、55bが形成されているため、第1連結部32aのうち窪み部54および第1溝部55aに突出する部分の長さの和は変化せず、第1連結部32aと支持基板11との間に形成される寄生容量は変化しない。同様に、第2連結部42aのうち窪み部17および第2溝部18bに突出する部分の長さの和は変化せず、第2連結部42aと支持基板11との間に形成される寄生容量は変化しない。
 続いて、特に図示しないが、アンカー部23b、第1、第2接続部32b、42b、および周辺部60に対応する場所の半導体基板51、絶縁膜52をエッチングして除去することにより4つの孔部56aを形成する。その後、各孔部56aの壁面にTEOS等の絶縁膜56bを成膜する。このとき、半導体基板51の他面51bに形成された絶縁膜にて絶縁膜53が構成される。続いて、各孔部56aの底部に形成された絶縁膜56bを除去し、半導体層13を露出させる。また、同時に絶縁膜53の一部を除去して、半導体基板51の他面51bを部分的に露出させるコンタクトホール53aを形成する。
 次に、スパッタ法や蒸着法等によりAlやAl-Si等の金属を孔部56aに形成して貫通電極56cを形成し、各貫通電極56cとアンカー部23b、第1、第2接続部32b、42b、および周辺部60とをそれぞれ電気的に接続する。このとき、電極57aも同時に形成する。そして、絶縁膜53上の金属をパターニングしてパッド56d、57bを形成する。
 その後、CVD法等によって保護膜58を形成し、エッチング等によってコンタクトホール58aを形成することにより、本実施形態の容量式物理量センサが製造される。
 以上説明したように、本実施形態では、キャップ部50を備えており、センシング部15に水や異物等が付着することを抑制できる。また、半導体基板51に第1、第2溝部55a、55bを形成しているため、半導体層13と絶縁膜52とを接合する際、アライメントずれ等によって位置ずれが発生しとしても、第1支持部32と半導体基板51との間に形成される寄生容量および第2支持部42と半導体基板51との間に形成される寄生容量は変化しない。このため、検出誤差を抑制できる。
 (第3実施形態)
 本開示の第3実施形態について説明する。本実施形態は、第1実施形態に対して支持基板11および絶縁膜12に第1、第2凹部を形成したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 図8および図9に示されるように、本実施形態では、支持基板11および絶縁膜12のうち第1連結部32aと対向する部分に2つの第1凹部19aが形成されている。また、支持基板11および絶縁膜12のうち第2連結部42aと対向する部分に、第1凹部19aと同じ大きさの2つの第2凹部19bが形成されている。
 本実施形態では、第1凹部19aは窪み部17と第1溝部18aとを連通するように形成されており、第2凹部19bは、窪み部17と第2溝部18bとを連通するように形成されている。
 このような容量式物理量センサでは、第1連結部32aと支持基板11との間に形成される寄生容量、および第2連結部42aと支持基板11との間に形成される寄生容量の大きさそのものを小さくできる。このため、もともとのSN比(信号雑音比)を高くすることができる。
 なお、ここでは2つの第1凹部19aおよび第2凹部19bが形成されているものを説明したが、第1凹部19aおよび第2凹部19bは1つのみであってもよいし、さらに複数形成されていてもよい。
 (第4実施形態)
 本開示の第4実施形態について説明する。本実施形態は、第1実施形態に対して第1、第2連結部32a、42aに第1、第2孔部を形成したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 図10および図11に示されるように、本実施形態では、第1、第2連結部32a、42aには、それぞれ同じ大きさの第1、第2孔部71、72が2つずつ形成されている。具体的には、2つの第1孔部71は、第1連結部32aのうち、窪み部17上に位置する部分から第1溝部18a上に位置する部分に渡って形成されている。2つの第2孔部72は、第2連結部42aのうち、窪み部17上に位置する部分から第2溝部18b上に位置する部分に渡って形成されている。
 このような容量式物理量センサでは、上記第3実施形態と同様に、それぞれの寄生容量の大きさそのものを小さくできる。このため、もともとの信号雑音比(SN比)を高くすることができる。
 なお、上記物理量センサは、溝部16を形成する際、窪み部17上に位置する部分から第1、第2溝部18a、18b上に位置する部分に渡る第1、第2孔部71、72を形成することにより製造される。
 なお、ここでは2つの第1孔部71および第2孔部72が形成されているものを説明したが、第1孔部71および第2孔部72は1つのみであってもよいし、さらに複数形成されていてもよい。
 (第5実施形態)
 本開示の第5実施形態について説明する。本実施形態は、第2実施形態に対して窪み部17および第1、第2溝部18a、18bの形状を変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 図12に示されるように、本実施形態では、窪み部17および第1、第2溝部18a、18bは、絶縁膜12のみに形成されている。このような容量式物理量センサとしても、第1、第2溝部18a、18b、55a、55bがそれぞれ形成されているため、上記第2実施形態と同様の効果を得ることができる。
 (第6実施形態)
 本開示の第6実施形態について説明する。本実施形態は、第2実施形態に対して窪み部54および第1、第2溝部55a、55bの形状を変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 図13に示されるように、本実施形態では、窪み部54および第1、第2溝部55a、55bは絶縁膜52のみに形成されている。このような容量式物理量センサとしても、第1、第2溝部18a、18b、55a、55bがそれぞれ形成されているため、上記第2実施形態と同様の効果を得ることができる。
 (第7実施形態)
 本開示の第7実施形態について説明する。本実施形態は、第2実施形態に対して窪み部17、54および第1、第2溝部18a、18b、55a、55bの形状を変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 図12に示されるように、本実施形態では、窪み部17および第1、第2溝部18a、18bは、絶縁膜12のみに形成されている。また、窪み部54および第1、第2溝部55a、55bは絶縁膜52のみに形成されている。
 このような容量式物理量センサとしても、第1、第2溝部18a、18b、55a、55bがそれぞれ形成されているため、上記第2実施形態と同様の効果を得ることができる。
 (第8実施形態)
 本開示の第8実施形態について図面を参照しつつ説明する。図15および図16に示されるように、本実施形態の加速度センサは、一面110aおよび他面110bを有する支持基板110と、支持基板110に形成された熱酸化膜120と、熱酸化膜120を挟んで支持基板110と反対側に配置された半導体層130とを有するSOI基板101を用いて構成されている。
 なお、支持基板110および半導体層130はシリコン基板で構成されている。また、本実施形態では、支持基板110がSOI基板の第1基板に相当し、半導体層130がSOI基板の第2基板に相当している。
 SOI基板101には、周知のマイクロマシン加工が施されてセンシング部131が形成されている。具体的には、半導体層130には、溝部132が形成されることによって櫛歯形状の梁構造体を有する可動部140および第1、第2固定部150、160が形成されており、この梁構造体によって加速度に応じたセンサ信号を出力するセンシング部131が形成されている。
 また、支持基板110のうちの梁構造体の形成領域に対応した部分には、窪み部111が形成されている。そして、熱酸化膜120は、窪み部111の壁面を含む支持基板110の全面に形成されている。つまり、熱酸化膜120は、支持基板110の他面110bや側面にも形成されている。
 熱酸化膜120は、図17に示されるように、支持基板110の一面110aのうちの窪み部111の開口部における周辺部分を境界領域112aとし、当該境界領域112aを取り囲む領域を周辺領域112bとしたとき、境界領域112aに形成されている部分の厚さが周辺領域112bに形成されている部分の厚さ以下とされている。本実施形態では、熱酸化膜120は、境界領域112aに形成されている部分の厚さが周辺領域112bに形成されている部分の厚さより薄くされている。なお、境界領域112aは、周辺領域112bより面積が小さくされている。
 そして、半導体層130は、熱酸化膜120のうちの周辺領域112bに形成された部分と接合されている。これにより、熱酸化膜120のうちの支持基板110の一面110aに沿って形成された部分と窪み部111の壁面に沿って形成された部分とを連結する境界部120aと、半導体層130との間に緩和空間170が構成されている。つまり、熱酸化膜120のうちの境界領域112aに形成された部分と半導体層130との間には、緩和空間170が構成されている。
 図15および図16に示されるように、半導体層130に形成された可動部140は、窪み部111上を横断するように配置されており、矩形状の錘部141における長手方向の両端が梁部142を介してアンカー部143a、143bに一体に連結した構成とされている。アンカー部143a、143bは、窪み部111の開口縁部で熱酸化膜120を介して支持基板110に支持されている。これにより、錘部141および梁部142は、窪み部111の壁面に形成された熱酸化膜120で囲まれる空間113(以下では、単に空間113という)に臨んだ状態となっている。
 ここで、図15および図16中のx軸方向、y軸方向、z軸方向の各方向について説明する。図15および図16中では、x軸方向は錘部141の長手方向である。y軸方向はSOI基板101の面内においてx軸と直交する方向である。z軸方向は、SOI基板101の平面方向と直交する方向である。
 梁部142は、平行な2本の梁がその両端で連結された矩形枠状とされており、2本の梁の長手方向と直交する方向に変位するバネ機能を有している。具体的には、梁部142は、x軸方向の成分を含む加速度を受けたとき、錘部141をx軸方向へ変位させると共に、加速度の消失に応じて元の状態に復元させるようになっている。したがって、このような梁部142を介して支持基板110に連結された錘部141は、加速度の印加に応じて、窪み部111上にて梁部142の変位方向(x軸方向)へ変位可能となっている。
 また、可動部140は、錘部141の長手方向と直交した方向(y軸方向)に、錘部141の両側面から互いに反対方向へ一体的に突出形成された複数個の可動電極144を備えている。図15では、可動電極144は、錘部141の左側および右側に各々4個ずつ突出して形成されており、空間113に臨んだ状態となっている。また、各可動電極144は、錘部141および梁部142と一体的に形成されており、梁部142が変位することによって錘部141と共にx軸方向に変位可能となっている。
 第1、第2固定部150、160は、同じ形状とされており、窪み部111の開口縁部のうち、アンカー部143a、143bが支持されている部分以外にて、熱酸化膜120を介して支持基板110に支持されている。すなわち、第1、第2固定部150、160は、可動部140を挟むように配置されている。図15では、第1固定部150が可動部140に対して紙面左側に配置され、第2固定部160が可動部140に対して紙面右側に配置されている。そして、第1、第2固定部150、160は互いに電気的に独立している。
 また、第1、第2固定部150、160は、可動電極144の側面と所定の検出間隔を有するように平行した状態で対向配置された複数個の第1、第2固定電極151、161と、熱酸化膜120を介して支持基板110に支持された第1、第2支持部152、162とを有している。
 第1、第2固定電極151、161は、図15では4個ずつ形成されており、可動電極144における櫛歯の隙間にかみ合うように櫛歯状に配列されている。そして、各支持部152、6に片持ち状に支持されることにより、空間113に臨んだ状態となっている。
 第1支持部152は、第1固定電極151が備えられる第1連結部152aと、第1連結部152aを外部回路と電気的にするための第1接続部152bとを有している。同様に、第2支持部162は、第2固定電極161が備えられる第2連結部162aと、第2連結部162aを外部回路と電気的にするための第2接続部162bとを有している。
 第1、第2連結部152a、162aは、本実施形態では、長辺が錘部141の長手方向(x軸方向)と平行となる平面矩形状とされており、それぞれ可動部140側の端部に第1、第2固定電極151、161を備えている。そして、第1、第2連結部152a、162aのうちの可動部140側の端部は、それぞれ空間113に突出している。
 第1、第2接続部152b、162bは、それぞれ第1、第2連結部152a、162aと接続され、所定箇所がボンディングワイヤ(図示せず)等を介して外部回路と電気的に接続されるようになっている。なお、可動部140は、アンカー部143bがボンディングワイヤ(図示せず)等を介して外部回路と電気的に接続される。
 以上が本実施形態における加速度センサの構成である。このような加速度センサでは、可動電極144と第1固定電極151との間に形成される第1容量と、可動電極144と第2固定電極161との間に形成される第2容量との容量差に基づいて加速度が検出される。
 次に、上記加速度センサの製造方法について図18(a)~図18(e)を参照しつつ説明する。
 まず、図18(a)に示されるように、一面110aおよび他面110bを有する支持基板110を用意する。そして、支持基板110の一面110aに図示しないレジスト等を形成し、当該レジストをマスクとしてドライエッチング等で窪み部111を形成する。
 次に、図18(b)に示されるように、支持基板110を熱酸化することにより、支持基板110の全面に熱酸化膜120を形成する。このとき、図19に示されるように、支持基板110のうちの境界領域112aでは、応力が集中するため、周辺領域112bより厚い熱酸化膜120が形成される。言い換えると、境界領域112aでは、熱酸化膜120が盛り上がって形成される。すなわち、支持基板110における境界領域112aとは、熱酸化膜120が盛り上がって形成される部分ともいえる。
 続いて、図18(c)に示されるように、熱酸化膜120のうちの境界領域112aに形成された部分が露出するように、支持基板110の一面110a側にレジスト180を形成する。そして、当該レジスト180をマスクとし、ドライエッチングやウェットエッチング等を行うことにより、熱酸化膜120のうちの境界領域112aに形成された部分を周辺領域112bに形成された部分より薄膜化する熱酸化膜調整工程を行う。なお、この工程では、支持基板110が熱酸化膜120から露出しないように、熱酸化膜120のうちの境界領域112aに形成された部分を周辺領域112bに形成された部分より薄くする。
 その後、図18(d)に示されるように、支持基板110の一面110a側に形成された熱酸化膜120と半導体層130とを接合してSOI基板101を形成する。具体的には、熱酸化膜120は、境界領域112aに形成された部分が周辺領域112bに形成された部分より薄くされているため、熱酸化膜120のうちの周辺領域112bに形成された部分と半導体層130とを接合する。これにより、周辺領域112bは境界領域112aより面積が広くされているため、熱酸化膜120と半導体層130との接合性を向上できる。
 熱酸化膜120と半導体層130との接合は、特に限定されるものではないが、例えば、次のように行うことができる。すなわち、まず、熱酸化膜120の表面(接合面)および半導体層130の表面(接合面)にNプラズマ、Oプラズマ、またはArイオンビームを照射し、熱酸化膜120および半導体層130の各表面(接合面)を活性化させる。次に、適宜形成されたアライメントマークを用いて赤外顕微鏡等によりアライメントを行い、室温~1550℃の低温で熱酸化膜120および半導体層130をいわゆる直接接合により接合する。
 なお、ここでは直接接合を例に挙げて説明したが、熱酸化膜120と半導体層130とは、陽極接合や中間層接合等の接合技術によって接合されてもよい。また、接合後に、高温アニール等の接合品質を向上させる処理を行ってもよい。さらに、接合後に、半導体層130を研削研磨によって所望の厚さに加工してもよい。
 その後、図18(e)に示されるように、半導体層130上に図示しないレジストを形成し、当該レジストをマスクとしてドライエッチング等を行って溝部132を形成する。これにより、半導体層130に上記可動部140および第1、第2固定部150、160を有するセンシング部131が形成されて上記加速度センサが製造される。なお、この工程では、熱酸化膜120をエッチングストッパとすることにより、窪み部111の底部が荒れることを抑制できる。
 以上説明したように、本実施形態では、支持基板110を熱酸化して熱酸化膜120を形成した後、熱酸化膜120のうちの境界領域112aに形成された部分を周辺領域112bに形成された部分より薄くしている。そして、熱酸化膜120のうちの周辺領域112bに形成された部分と半導体層130とを接合することにより、SOI基板101を構成している。このため、従来のSOI基板と比較して、熱酸化膜120と半導体層130との接合性を向上できる。
 また、熱酸化膜120のうちの支持基板110の一面110aに沿って形成された部分と窪み部111の壁面に沿って形成された部分とを連結する境界部120aと、半導体層130との間に緩和空間170が構成されている。このため、使用環境が高温に変化して熱酸化膜120が膨張する場合、熱酸化膜120が緩和空間170に膨張でき、熱酸化膜120と半導体層130との間に熱応力が発生することを抑制できる。
 (第9実施形態)
 本開示の第9実施形態について説明する。本実施形態は、第8実施形態に対して熱酸化膜120のうちの境界領域112aに形成された部分の膜厚と周辺領域112bに形成された部分の膜厚とを等しくするものであり、その他に関しては第8実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、まず、図20(a)に示されるように、図18(a)と同様の工程を行い、支持基板110に窪み部111を形成する。
 次に、図20(b)に示されるように、支持基板110における窪み部111の開口部を丸めるために、支持基板110を熱酸化して丸め用絶縁膜190を形成する。なお、この工程は、窪み部111の開口部を丸めることを主目的とするものであるため、上記図17(b)の工程で行う熱酸化より加熱温度が低くてもよいし、加熱時間が短くてもよい。また、この工程においても、支持基板110のうちの境界領域112aでは、応力が集中するため、周辺領域112bより厚い丸め用絶縁膜190が形成される。
 そして、図20(c)に示されるように、図20(b)の工程で形成した丸め用絶縁膜190をウェットエッチング等で除去する。
 続いて、図20(d)に示されるように、上記図18(b)と同様の工程を行い、支持基板110を熱酸化して支持基板110の全面に熱酸化膜120を形成する。このとき、図20(b)の工程において、窪み部111の開口部が丸められているため、熱酸化した際に境界領域112a(窪み部111の開口部)に応力が集中することを抑制できる。このため、支持基板110には、一面110a上に膜厚がほぼ等しい熱酸化膜120が形成される。つまり、熱酸化膜120のうちの境界領域112aに形成された部分の膜厚と周辺領域112bに形成された部分の膜厚とがほぼ等しくなる。
 なお、図20(d)の工程は、窪み部111の開口部が丸められている状態で行っている。このため、熱酸化膜120のうちの支持基板110の一面110aに沿って形成された部分と窪み部111の壁面に沿って形成された部分とを連結する境界部120aは、丸められた窪み部111の開口部に沿って形成される(図21参照)。つまり、熱酸化膜120のうちの支持基板110の一面110aに沿って形成された部分と窪み部111の壁面に沿って形成された部分とを連結する境界部120aは、支持基板110側と反対側の面が丸められた状態となっている。
 次に、図20(e)に示されるように、図18(d)と同様の工程を行い、熱酸化膜120と半導体層130とを接合する。本実施形態では、図20(d)の工程において、熱酸化膜120のうちの境界領域112aに形成された部分の膜厚と周辺領域112bに形成された部分の膜厚とがほぼ等しくなる。このため、熱酸化膜120のうちの境界領域112aに形成された部分および周辺領域112bに形成された部分が半導体層130と接合される。
 その後、図20(f)に示されるように、上記図18(e)と同様の工程を行うことにより、上記加速度センサが製造される。
 なお、本実施形態においても、図21に示されるように、熱酸化膜120のうちの支持基板110の一面110aに沿って形成された部分と窪み部111の壁面に沿って形成された部分とを連結する境界部120aと、半導体層130との間に緩和空間170が構成される。
 以上説明したように、本実施形態では、熱酸化膜120のうちの境界領域112aに形成された部分および周辺領域112bに形成された部分が半導体層130と接合されるため、さらに接合性を向上しつつ、上記第8実施形態と同様の効果を得ることができる。
 (第10実施形態)
 本開示の第10実施形態について説明する。上記各実施形態の加速度センサでは、可動電極144と第1固定電極151との間に形成される第1容量と、可動電極144と第2固定電極161との間に形成される第2容量との容量差に基づいて加速度が検出される。しかしながら、実際には、第1容量には、第1固定部150(第1支持部152)と支持基板110との間の寄生容量が含まれ、第2容量には、第2固定部160(第2支持部162)と支持基板110との間の寄生容量が含まれる。この場合、第1容量に含まれる寄生容量と第2容量に含まれる寄生容量とが等しい場合には、第1容量と第2容量との容量差を演算する際に寄生容量がキャンセルされるため、検出精度に特に影響はない。ところが、センシング部131を形成する際のアライメントずれ等により、第1、第2連結部152a、162aのうちの可動部140側の端部が空間113に突出する長さが異なる場合がある。すると、第1固定部150(第1支持部152)と支持基板110との間の寄生容量と、第2固定部160(第2支持部162)と支持基板110との間の寄生容量が異なり、検出精度が低下してしまう。
 したがって、本実施形態は、検出精度が低下することを抑制できるようにしたものであり、その他に関しては第8実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図22および図23に示されるように、熱酸化膜120には、第1連結部152aのうちの可動部140側と反対側の端部と対向する部分に第1溝部121aが形成されている。また、熱酸化膜120には、第2連結部162aのうちの可動部140側と反対側の端部と対向する部分に第2溝部121bが形成されている。具体的には、これら第1、第2溝部121a、121bは、第1、第2連結部152a、162aのうちの熱酸化膜120との接合部分における空間113側の境界(以下では、単に第1、第2連結部152a、162aの空間113側の境界という)に沿った方向(x軸方向)に延設されている。
 そして、第1、第2連結部152a、162aは、それぞれ可動部140側と反対側の端部が第1、第2溝部121a、121b上に突出している。詳述すると、第1連結部152aは、第1連結部152a(第1支持部152)と第1溝部121aにおける開口部との境界の方向と長さが、第1連結部152a(第1支持部152)の空間113側の境界の方向と長さが等しくなるように、第1溝部121a上に突出している。同様に、第2連結部162aは、第2連結部162a(第2支持部162)と第2溝部121bにおける開口部との境界の方向と長さが、第2連結部162a(第2支持部162)の空間113側の境界の方向と長さが等しくなるように、第2溝部121b上に突出している。
 そして、第1、第2連結部152a、162aおよび第1、第2接続部152b、162bからなる第1、第2支持部152、162は、熱酸化膜120を介して支持基板110と接合されている部分の面積(対向する部分の面積)が互いに等しくされている。すなわち、第1支持部152(第1固定部150)と支持基板110との間に形成される寄生容量と、第2支持部162(第2固定部160)と支持基板110との間に形成される寄生容量とが等しくされている。
 なお、ここでの境界の方向と長さが等しい、および面積が等しいとは、完全に一致する場合に加えて、製造誤差等によって生じる若干の誤差を含むものである。
 このような加速度センサは、上記図18(b)の工程において、熱酸化膜120に第1、第2溝部121a、121bを形成し、図18(e)の工程において、上記センシング部131を形成することによって製造される。
 そして、図18(e)の工程では、マスク(レジスト)をパターニングする際に数μm程度の位置ずれが発生し、例えば、可動部140および第1、第2固定部150、160が全体的に第1固定部150側(y軸方向)に位置ずれすることがある。この場合、図24(a)に示されるように、第1連結部152aのうちの空間113に突出する部分の長さLが短くなり、第1溝部121aに突出する部分の長さLが長くなる。
 しかしながら、第1連結部152aのうちの空間113および第1溝部121aに突出する部分の長さの和は、位置ずれが発生しなかった場合(図24(b))と位置ずれが発生した場合(図24(a))とで等しい。つまり、第1連結部152aのうちの熱酸化膜120を介して支持基板110と接合されている部分の面積(支持基板110と対向する部分の面積)は変化せず、第1連結部152aと支持基板110との間に形成される寄生容量は変化しない。
 同様に、特に図示しないが、位置ずれが発生したとしても、第2連結部162aのうちの空間113および第2溝部121bに突出する部分の長さの和は変化せず、第2連結部162aと支持基板110との間に形成される寄生容量は変化しない。
 すなわち、第1、第2溝部121a、121bのy軸方向の長さ(幅)を製造上起こり得る位置ずれ量より予め大きく設けておくことにより、上記のように位置ずれが発生したとしても、寄生容量が変化することを抑制できる。このため、上記のように加速度センサを製造することにより、位置ずれが発生したとしても、寄生容量が変化しない加速度センサとすることができる。
 以上説明したように、本実施形態では、第1、第2溝部121a、121bが形成されており、第1、第2支持部152、162は、それぞれ一部が空間113および第1、第2溝部121a、121b上に突出している。そして、熱酸化膜120を介して支持基板110と接合されている部分の面積(対向する部分の面積)が互いに等しくされている。このため、第1、第2支持部152、162(第1、第2固定部150、160)と支持基板110との間に形成される寄生容量が等しくなり、検出精度が低下することを抑制できる。
 また、このような加速度センサを製造する際には、第1溝部121aを形成し、第1連結部152aのうちの可動部140側の端部が空間113上に突出すると共に、可動部140側と反対側の端部が第1溝部121a上に突出するように第1固定部150を形成している。そして、第2溝部121bを形成し、第2連結部162aのうちの可動部140側の端部が空間113上に突出すると共に、可動部140側と反対側の端部が第2溝部121b上に突出するように第2固定部160を形成している。
 このため、可動部140および第1、第2固定部150、160を形成する際、可動部140および第1、第2固定部150、160が全体的にy軸方向に位置ずれしたとしても、第1、第2支持部152、162のうちの熱酸化膜120を介して支持基板110と接合されている部分の面積(支持基板110と対向する部分の面積)は変化しない。すなわち、第1、第2支持部152、162(第1、第2固定部150、160)と支持基板110との間に形成される寄生容量は変化しない。したがって、位置ずれが発生したとしても、寄生容量が変化せず、検出精度が低下することを抑制した加速度センサを製造できる。
 なお、上記では、y軸方向の位置ずれを例に挙げて説明したが、製造上発生し得るx軸方向およびz軸周りの回転方向の位置ずれが発生したとしても、本実施形態によれば、寄生容量が変化せず、検出精度が低下することを抑制した加速度センサを製造できる。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
 すなわち、上記第1~第7実施形態では、容量式物理量センサとして、加速度を検出するセンシング部15が形成された加速度センサを例に挙げて説明したが、第1~第7実施形態の開示は、容量差を用いて物理量を検出するものに適用することができる。例えば、容量差に基づいて角速度を検出する角速度センサや圧力を検出する圧力センサに適用することができる。
 また、上記第2、第5~第7実施形態に上記第3実施形態を組み合わせることもできる。すなわち、キャップ部50を備える容量式物理量センサにおいて、支持基板11および絶縁膜12に第1、第2凹部19a、19bを形成してもよい。この場合、特に図示しないが、第1、第2凹部19a、19bと対応する第1、第2凹部を半導体基板51および絶縁膜52に形成してもよい。そして、上記第2、第5~第7実施形態に上記第4実施形態を組み合わせることもできる。すなわち、キャップ部50を備える容量式物理量センサにおいて、第1、第2連結部32a、42aに第1、第2孔部71、72を形成してもよい。さらに、上記第2~第4実施形態を適宜組み合わせてもよい。
 また、上記第2、第5~第7実施形態において、窪み部17が絶縁膜12のみに形成され、第1、第2溝部18a、18bが形成されていなくてもよい。この場合、SOI基板14が容量式物理量センサの第1基板に相当し、キャップ部50が容量式物理量センサの第2基板に相当する。
 上記第8実施形態では、図18(c)の工程において、支持基板110の一面110a側から研削または研磨することにより、支持基板110の一面110aに形成された熱酸化膜120を平坦化してもよい。つまり、熱酸化膜120のうちの境界領域112aに形成されている部分の厚さを周辺領域112bに形成されている部分の厚さと等しくしてもよい。
 また、上記第8、第9実施形態では、物理量センサとして、加速度を検出する加速度センサを例に挙げて説明したが、例えば、角速度を検出する角速度センサや圧力を検出する圧力センサに適用することができる。また、上記第10実施形態では、物理量センサとして、容量差を用いて物理量を検出する角速度センサや圧力センサ等に適用することができる。
 さらに、上記第9実施形態に上記第10実施形態を組み合わせ、熱酸化膜120に第1、第2溝部121a、121bを形成するようにしてもよい。

Claims (13)

  1.  所定方向に変位可能とされた複数の可動電極(24)を有する可動部(20)と、前記可動電極と対向する第1固定電極(31)が備えられる第1支持部(32)を有する第1固定部(30)と、前記可動電極と対向する第2固定電極(41)が備えられる第2支持部(42)を有し、前記第2支持部が前記可動部を挟んで前記前記第1支持部と反対側に配置された第2固定部(40)と、を備える第1基板(13、14)と、
     絶縁膜(12、52)を介して前記第1基板と接合される第2基板(11、51)と、を備え、
     前記絶縁膜および前記第2基板のうち少なくとも前記絶縁膜における前記可動電極および前記第1、第2固定電極と対向する部分は窪み部(17、54)を有し、
     前記第1支持部が前記絶縁膜を介して前記第2基板と接合されている面積と、前記第2支持部が前記絶縁膜を介して前記第2基板と接合されている面積とが等しくされ、
     前記可動電極と前記第1固定電極との間の容量と、前記可動電極と前記第2固定電極との間の容量との差に基づいて物理量を検出する容量式物理量センサにおいて、
     前記第2基板は、前記第1支持部における前記可動部側と反対側の端部と対向する部分に第1溝部(18a、55a)を有し、前記第2支持部における前記可動部側と反対側の端部と対向する部分に第2溝部(18b、55b)を有し、
     前記第1支持部は、前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第1溝部上に突出し、
     前記第2支持部は、前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第2溝部上に突出している容量式物理量センサ。
  2.  前記第1溝部における開口部と前記第1支持部とが接する境界線の方向および長さが、前記窪み部における開口部と前記第1支持部とが接する境界線の方向および長さと等しくされ、
     前記第2溝部における開口部と前記第2支持部とが接する境界線の方向および長さが、前記窪み部における開口部と前記第2支持部とが接する境界線の方向および長さと等しくされている請求項1に記載の容量式物理量センサ。
  3.  前記第2基板は、前記第1支持部と対向する部分に少なくとも1つの第1凹部(19a)を有し、前記第2支持部と対向する部分に少なくとも1つの第2凹部(19b)を有する請求項1または2に記載の容量式物理量センサ。
  4.  前記第1支持部は、前記窪み部上に位置する部分から前記第1溝部上に位置する部分に渡って除去された少なくとも1つの第1孔部(71)を有し、
     前記第2支持部は、前記窪み部上に位置する部分から前記第2溝部上に位置する部分に渡って除去された少なくとも1つの第2孔部(72)を有する請求項1ないし3のいずれか1つに記載の容量式物理量センサ。
  5.  請求項1ないし4のいずれか1つに記載の容量式物理量センサの製造方法は、
     前記第1基板(13)として半導体層を用意し、前記第2基板(11)として支持基板を用意する工程と、
     前記第2基板に前記窪み部を形成する工程と、
     前記第2基板に前記第1、第2溝部を形成する工程と、
     前記第2基板の表面に前記絶縁膜(12)を介して前記第1基板を接合することにより、SOI基板を形成する工程と、
     前記第1基板に前記可動部および前記第1、第2固定部を形成する工程と、を含み、
     前記可動部および前記第1、第2固定部を形成する工程では、前記第1支持部における前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第1溝部上に突出するように第1固定部を形成し、かつ、前記第2支持部における前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第2溝部上に突出するように前記第2固定部を形成することにより、前記第1支持部のうち前記絶縁膜を介して前記第2基板と接合されている部分の面積と、前記第2支持部のうち前記絶縁膜を介して前記第2基板と接合されている部分の面積とを等しくする容量式物理量センサの製造方法。
  6.  請求項1ないし4のいずれか1つに記載の容量式物理量センサの製造方法は、
     前記第1基板(14)として支持基板(11)上に絶縁膜(12)を介して半導体層(13)が形成されたSOI基板を用意し、前記第2基板(51)として半導体基板を用意する工程と、
     前記第1基板に前記可動部および前記第1、第2固定部を形成する工程と、
     前記第2基板に前記絶縁膜を形成する工程と、
     前記第2基板および前記絶縁膜のうち少なくとも前記絶縁膜に前記窪み部を形成する工程と、
     前記第2基板に前記第1、第2溝部を形成する工程と、
     前記第1基板に前記絶縁膜(52)を介して前記第2基板を接合する工程と、を含み、
     前記接合する工程では、前記第1支持部における前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第1溝部上に突出し、かつ、前記第2支持部における前記可動部側の端部の一部が前記窪み部上に突出すると共に前記可動部側と反対側の端部の一部が前記第2溝部上に突出するように前記第1、第2基板を接合することにより、前記第1支持部のうち前記絶縁膜を介して前記第2基板と接合されている部分の面積と、前記第2支持部のうち前記絶縁膜を介して前記第2基板と接合されている部分の面積とを等しくする容量式物理量センサの製造方法。
  7.  一面(110a)を有するシリコン基板で構成される第1基板(110)を用意する工程と、
     前記第1基板の一面に窪み部(111)を形成する工程と、
     前記第1基板を熱酸化して熱酸化膜(120、190)を形成する工程と、
     前記第1基板の一面側に前記熱酸化膜を介して第2基板(130)を接合する工程と、を行い、
     前記熱酸化膜を形成する工程の後、前記第1基板の一面のうちの前記窪み部の開口部における周辺部を境界領域(112a)とし、前記境界領域より面積が大きく、前記境界領域を取り囲む領域を周辺領域(112b)としたとき、前記熱酸化膜(120)のうちの前記境界領域に形成された部分の厚さを前記周辺領域に形成された部分の厚さ以下にする熱酸化膜調整工程を行い、
     前記第2基板を接合する工程では、前記熱酸化膜のうちの前記周辺領域に形成された部分と前記第2基板とを接合するSOI基板の製造方法。
  8.  前記熱酸化膜調整工程では、前記第1基板の一面側に、前記熱酸化膜のうちの前記境界領域に形成された部分が露出するようにレジスト(190)を形成した後、前記レジストをマスクとして前記熱酸化膜のうちの前記境界領域に形成された部分を薄膜化することにより、前記熱酸化膜のうちの前記境界領域に形成された部分の厚さを前記周辺領域に形成された部分の厚さ以下にする請求項7に記載のSOI基板の製造方法。
  9.  前記熱酸化膜調整工程では、前記第1基板の一面側から、前記熱酸化膜のうちの前記境界領域に形成された部分を研削または研磨することにより、前記熱酸化膜のうちの前記境界領域に形成された部分の厚さを前記周辺領域に形成された部分の厚さ以下にする請求項7に記載のSOI基板の製造方法。
  10.  前記熱酸化膜を形成する工程では、前記熱酸化膜(190)を形成することによって前記窪み部の開口部を丸め、
     前記熱酸化膜調整工程では、前記熱酸化膜を除去する工程と、前記第1基板を熱酸化して再び熱酸化膜(120)を形成することにより、前記熱酸化膜のうちの前記境界領域に形成された部分の厚さを前記周辺領域に形成された部分の厚さ以下にする請求項7に記載のSOI基板の製造方法。
  11.  請求項7ないし10のいずれか1つに記載の製造方法で製造したSOI基板を用意する工程と、
     前記第2基板に、所定方向に変位可能とされた複数の可動電極(144)を有する可動部(140)と、前記可動電極と対向する第1固定電極(151)が備えられる第1支持部(152)を有する第1固定部(150)と、前記可動電極と対向する第2固定電極(161)が備えられる第2支持部(162)を有し、前記第2支持部が前記可動部を挟んで前記第1支持部と反対側に配置された第2固定部(160)と、を含んで構成されるセンシング部(131)を形成する工程と、を行う物理量センサの製造方法において、
     前記SOI基板を用意する工程における前記熱酸化膜調整工程では、前記熱酸化膜のうちの前記第1支持部における前記可動部側と反対側の端部と対向する部分に第1溝部(121a)を形成すると共に、前記第2支持部における前記可動部側と反対側の端部と対向する部分に第2溝部(121b)を形成する工程を行い、
     前記センシング部を形成する工程では、前記第1支持部における前記可動部側の端部の一部が前記窪み部の壁面に形成された前記熱酸化膜で囲まれる空間(113)に突出すると共に前記可動部側と反対側の端部の一部が前記第1溝部上に突出するように第1固定部を形成し、かつ、前記第2支持部における前記可動部側の端部の一部が前記空間に突出すると共に前記可動部側と反対側の端部の一部が前記第2溝部上に突出するように前記第2固定部を形成することにより、前記第1支持部のうちの前記熱酸化膜を介して前記第1基板と接合されている部分の面積と、前記第2支持部のうちの前記熱酸化膜を介して前記第1基板と接合されている部分の面積とを等しくする物理量センサの製造方法。
  12.  一面(110a)を有し、前記一面に窪み部(111)が形成されたシリコン基板で構成される第1基板(110)と、
     前記第1基板に形成された熱酸化膜(120)と、
     前記第1基板の一面側に前記熱酸化膜を介して配置された第2基板(130)と、を備えるSOI基板において、
     前記熱酸化膜は、前記第1基板の一面のうちの前記窪み部の開口部における周辺部を境界領域(112a)とし、前記境界領域より面積が大きく、前記境界領域を取り囲む領域を周辺領域(112b)としたとき、前記熱酸化膜のうちの前記境界領域に形成された部分の厚さが前記周辺領域に形成された部分の厚さ以下にされており、
     前記第2基板は、前記熱酸化膜のうちの前記周辺領域に形成された部分と接合され、
     前記熱酸化膜のうちの前記一面に形成された部分と前記窪み部の壁面に形成された部分とを連結する境界部(120a)と前記第2基板との間には、緩和空間(170)が構成されているSOI基板。
  13.  請求項12に記載のSOI基板を備え、
     前記第2基板に、所定方向に変位可能とされた複数の可動電極(144)を有する可動部(140)と、前記可動電極と対向する第1固定電極(151)が備えられる第1支持部(152)を有する第1固定部(150)と、前記可動電極と対向する第2固定電極(161)が備えられる第2支持部(162)を有し、前記第2支持部が前記可動部を挟んで前記第1支持部と反対側に配置された第2固定部(160)と、を含んで構成されるセンシング部(131)が形成されている物理量センサにおいて、
     前記熱酸化膜には、前記第1支持部における前記可動部側と反対側の端部と対向する部分に第1溝部(121a)が形成されていると共に、前記第2支持部における前記可動部側と反対側の端部と対向する部分に第2溝部(121b)が形成されており、
     前記第1支持部は、前記可動部側の端部の一部が前記窪み部の壁面に形成された前記熱酸化膜で囲まれる空間(113)に突出すると共に前記可動部側と反対側の端部の一部が前記第1溝部上に突出し、
     前記第2支持部は、前記可動部側の端部の一部が前記空間に突出すると共に前記可動部側と反対側の端部の一部が前記第2溝部上に突出しており、
     前記第1支持部のうちの前記熱酸化膜を介して前記第1基板と接合されている部分の面積と、前記第2支持部のうちの前記熱酸化膜を介して前記第1基板と接合されている部分の面積とが等しくされている物理量センサ。
PCT/JP2014/002298 2013-05-09 2014-04-24 Soi基板、物理量センサ、soi基板の製造方法、および物理量センサの製造方法 WO2014181518A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/774,194 US9446938B2 (en) 2013-05-09 2014-04-24 SOI substrate, physical quantity sensor, SOI substrate manufacturing method, and physical quantity sensor manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013099583A JP6020341B2 (ja) 2013-05-09 2013-05-09 容量式物理量センサおよびその製造方法
JP2013-099583 2013-05-09
JP2014065941A JP6048435B2 (ja) 2014-03-27 2014-03-27 Soi基板およびそれを用いた物理量センサ、soi基板の製造方法および物理量センサの製造方法
JP2014-065941 2014-03-27

Publications (1)

Publication Number Publication Date
WO2014181518A1 true WO2014181518A1 (ja) 2014-11-13

Family

ID=51867009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002298 WO2014181518A1 (ja) 2013-05-09 2014-04-24 Soi基板、物理量センサ、soi基板の製造方法、および物理量センサの製造方法

Country Status (2)

Country Link
US (1) US9446938B2 (ja)
WO (1) WO2014181518A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783297B2 (ja) * 2013-08-06 2015-09-24 株式会社デンソー 力学量センサ
US9574959B2 (en) * 2014-09-02 2017-02-21 Apple Inc. Various stress free sensor packages using wafer level supporting die and air gap technique
JP6401728B2 (ja) * 2016-03-18 2018-10-10 株式会社日立製作所 慣性センサおよびその製造方法
JP6922552B2 (ja) * 2017-08-25 2021-08-18 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス、電子機器、携帯型電子機器および移動体
JP7104680B2 (ja) * 2019-10-10 2022-07-21 株式会社鷺宮製作所 Mems素子および振動発電デバイス
JP7258796B2 (ja) * 2020-02-21 2023-04-17 株式会社鷺宮製作所 Mems素子および振動発電デバイス

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189500A (ja) * 1996-12-26 1998-07-21 Murata Mfg Co Ltd 振動型半導体センサの製造方法
JP2000205862A (ja) * 1999-01-15 2000-07-28 Samsung Electro Mech Co Ltd マイクロ慣性センサ―の製造方法及びマイクロ慣性センサ―
JP2001041973A (ja) * 1999-07-27 2001-02-16 Denso Corp 半導体力学量センサ
JP2010127763A (ja) * 2008-11-27 2010-06-10 Hitachi Ltd 半導体力学量検出センサ及びそれを用いた制御装置
JP2011017693A (ja) * 2009-06-09 2011-01-27 Denso Corp 半導体力学量センサの製造方法及び半導体力学量センサ
JP2012117972A (ja) * 2010-12-02 2012-06-21 Panasonic Corp 静電容量式センサ
JP2013229356A (ja) * 2012-04-24 2013-11-07 Mitsubishi Electric Corp Soiウェハおよびその製造方法、並びにmemsデバイス

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084036A (ja) 1996-09-06 1998-03-31 Mitsubishi Electric Corp 半導体装置およびその製造方法
DE10036106B4 (de) 1999-07-26 2009-09-03 DENSO CORPORATION, Kariya-shi Halbleitersensor für eine physikalische Größe
US6428713B1 (en) 1999-10-01 2002-08-06 Delphi Technologies, Inc. MEMS sensor structure and microfabrication process therefor
US6406982B2 (en) 2000-06-05 2002-06-18 Denso Corporation Method of improving epitaxially-filled trench by smoothing trench prior to filling
JP3435665B2 (ja) 2000-06-23 2003-08-11 株式会社村田製作所 複合センサ素子およびその製造方法
US6759734B2 (en) * 2001-03-15 2004-07-06 Iolon, Inc. Miniature device with increased insulative spacing and method for making same
JP2003257805A (ja) 2002-02-28 2003-09-12 Toshiba Corp 半導体ウエハ及びその製造方法
JP4556158B2 (ja) 2002-10-22 2010-10-06 株式会社Sumco 貼り合わせsoi基板の製造方法および半導体装置
JP3944087B2 (ja) * 2003-01-21 2007-07-11 株式会社東芝 素子形成用基板の製造方法
JP2005098740A (ja) 2003-09-22 2005-04-14 Denso Corp 容量式半導体力学量センサ
US20070232107A1 (en) 2006-04-03 2007-10-04 Denso Corporation Cap attachment structure, semiconductor sensor device and method
KR101001666B1 (ko) 2008-07-08 2010-12-15 광주과학기술원 마이크로 수직 구조체의 제조 방법
JP5000625B2 (ja) 2008-11-13 2012-08-15 アルプス電気株式会社 Memsセンサ及びその製造方法
JP2010221307A (ja) 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc 電気装置
EP2399863A1 (en) 2010-06-22 2011-12-28 Valtion Teknillinen Tutkimuskeskus Multi-layer substrate structure and manufacturing method for the same
JP5350339B2 (ja) * 2010-08-12 2013-11-27 株式会社日立製作所 微小電気機械システムおよびその製造方法
US8569090B2 (en) 2010-12-03 2013-10-29 Babak Taheri Wafer level structures and methods for fabricating and packaging MEMS
US9540230B2 (en) 2011-06-27 2017-01-10 Invensense, Inc. Methods for CMOS-MEMS integrated devices with multiple sealed cavities maintained at various pressures
JP5617801B2 (ja) 2011-08-22 2014-11-05 株式会社デンソー 半導体装置およびその製造方法
JP5692099B2 (ja) 2012-01-13 2015-04-01 三菱電機株式会社 半導体圧力センサおよびその製造方法
JP5916105B2 (ja) 2012-03-27 2016-05-11 国立大学法人九州工業大学 半導体装置の製造方法
JP5884667B2 (ja) 2012-07-23 2016-03-15 株式会社デンソー 半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189500A (ja) * 1996-12-26 1998-07-21 Murata Mfg Co Ltd 振動型半導体センサの製造方法
JP2000205862A (ja) * 1999-01-15 2000-07-28 Samsung Electro Mech Co Ltd マイクロ慣性センサ―の製造方法及びマイクロ慣性センサ―
JP2001041973A (ja) * 1999-07-27 2001-02-16 Denso Corp 半導体力学量センサ
JP2010127763A (ja) * 2008-11-27 2010-06-10 Hitachi Ltd 半導体力学量検出センサ及びそれを用いた制御装置
JP2011017693A (ja) * 2009-06-09 2011-01-27 Denso Corp 半導体力学量センサの製造方法及び半導体力学量センサ
JP2012117972A (ja) * 2010-12-02 2012-06-21 Panasonic Corp 静電容量式センサ
JP2013229356A (ja) * 2012-04-24 2013-11-07 Mitsubishi Electric Corp Soiウェハおよびその製造方法、並びにmemsデバイス

Also Published As

Publication number Publication date
US20160016788A1 (en) 2016-01-21
US9446938B2 (en) 2016-09-20

Similar Documents

Publication Publication Date Title
WO2014181518A1 (ja) Soi基板、物理量センサ、soi基板の製造方法、および物理量センサの製造方法
US9791472B2 (en) Acceleration sensor
US8418557B2 (en) Physical quantity sensor
JP6020341B2 (ja) 容量式物理量センサおよびその製造方法
CN103472260A (zh) 一种mems叉梁电容式加速度计及其制造方法
JP6123613B2 (ja) 物理量センサおよびその製造方法
JP2001004658A (ja) 2軸半導体加速度センサおよびその製造方法
JP6048435B2 (ja) Soi基板およびそれを用いた物理量センサ、soi基板の製造方法および物理量センサの製造方法
JP2011196966A (ja) 慣性センサ
WO2016117289A1 (ja) 物理量センサおよびその製造方法
JP2010210420A (ja) 加速度センサ
JP4478046B2 (ja) 変位センサとその製造方法
JP3938201B1 (ja) センサ装置およびその製造方法
JP4665733B2 (ja) センサエレメント
JP5783201B2 (ja) 容量式物理量センサ
JP2009270944A (ja) 静電容量型加速度センサ
WO2014208043A1 (ja) 物理量センサ
WO2012102292A1 (ja) 静電容量式デバイスの製造方法
JP2010210418A (ja) 加速度センサ
JP5824385B2 (ja) 静電容量型物理量センサとその製造方法
JP3938200B1 (ja) センサ装置およびその製造方法
JP5837846B2 (ja) 静電容量型物理量センサとその製造方法
JP2010216837A (ja) 力学量検出センサ
JP2010210426A (ja) 加速度センサ並びにその製造方法
JP2010210432A (ja) 加速度センサの製造方法及びその製造方法で製造された加速度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14774194

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794725

Country of ref document: EP

Kind code of ref document: A1