WO2014178406A1 - 液晶配向処理剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向処理剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2014178406A1
WO2014178406A1 PCT/JP2014/062009 JP2014062009W WO2014178406A1 WO 2014178406 A1 WO2014178406 A1 WO 2014178406A1 JP 2014062009 W JP2014062009 W JP 2014062009W WO 2014178406 A1 WO2014178406 A1 WO 2014178406A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
aligning agent
crystal aligning
Prior art date
Application number
PCT/JP2014/062009
Other languages
English (en)
French (fr)
Inventor
保坂 和義
徳俊 三木
橋本 淳
暁子 若林
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2015514868A priority Critical patent/JP6281567B2/ja
Priority to KR1020157034083A priority patent/KR102127032B1/ko
Priority to CN201480037753.8A priority patent/CN105359032B/zh
Publication of WO2014178406A1 publication Critical patent/WO2014178406A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent used in the production of a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element having the liquid crystal alignment film.
  • a film made of an organic material such as a polymer material has attracted attention for ease of formation, insulation performance, and the like, and is widely used as an interlayer insulating film, a protective film, and the like in the electronic device field.
  • an organic film made of polyimide is used as a liquid crystal alignment film.
  • the liquid crystal alignment film is used for the purpose of controlling the alignment state of the liquid crystal.
  • liquid crystal alignment film In response to these problems, when polyimide is used as the liquid crystal alignment film, a liquid crystal alignment treatment agent to which an alkoxysilane compound is added as a technique for improving liquid crystal alignment and making display defects less likely to occur at the periphery of the liquid crystal display screen.
  • a liquid crystal alignment film formed by using see, for example, Patent Document 1 or 2.
  • liquid crystal display elements have been used for mobile applications such as smartphones and mobile phones.
  • the width of the sealing agent used for bonding the substrates of the liquid crystal display elements narrower than in the past.
  • the drawing position of the sealing agent be a position in contact with the end portion of the liquid crystal alignment film having low adhesiveness with the sealing agent or an upper portion of the liquid crystal alignment film.
  • use under high-temperature and high-humidity conditions makes it easy for water to enter from between the sealing agent and the liquid crystal alignment film, resulting in display unevenness near the frame of the liquid crystal display element.
  • an object of the present invention is to combine the above characteristics, improve the adhesion between the sealing agent and the liquid crystal alignment film, suppress the occurrence of display unevenness near the frame of the liquid crystal display element under high temperature and high humidity conditions, and maintain the voltage holding ratio. It is providing the liquid crystal aligning agent which can provide the liquid crystal aligning film which can suppress the fall of this, and the liquid crystal display element which has this liquid crystal aligning film.
  • liquid crystal aligning agent containing a compound having a specific structure and at least one polymer selected from a polyimide precursor or a polyimide is extremely suitable for achieving the above object.
  • the present invention has been found to be effective. That is, the present invention has the following gist.
  • a liquid crystal aligning agent comprising the following component (A), component (B) and component (C).
  • Component A compound represented by the following formula [1].
  • Component (B) a compound represented by the following formula [2].
  • X 1 represents a divalent organic group having an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a divalent organic group having 6 to 24 carbon atoms having a benzene ring or a cyclohexane ring
  • X 2 represents the following: A structure selected from the formulas [1-1] to [1-6] is shown.)
  • a 1 represents a hydrogen atom or a benzene ring
  • a 2 represents a single bond, or a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring
  • a 3 represents a carbon number of 1 to 18 represents an alkyl group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • W 1 represents an organic group having an ali
  • W 5 is a single bond, an aliphatic hydrocarbon group or a non-aromatic cyclic group.
  • X 1 in the formula [1] is an alkylene group having 1 to 10 carbon atoms.
  • X 2 in the formula [1] is a structure selected from the formula [1-1], the formula [1-2] and the formula [1-4], according to the above (1) or (2) Liquid crystal aligning agent.
  • W 1 in the formula [2] is any one of the above (1) to (3), which is a linear or branched alkylene group having 1 to 10 carbon atoms, a cyclohexane ring or a bicyclohexyl ring.
  • Liquid crystal aligning agent (5) The liquid crystal aligning agent according to any one of (1) to (4), wherein W 2 in the formula [2] is a single bond, —O— or —OCO—. (6) The liquid crystal aligning agent according to any one of (1) to (5), wherein W 3 in the formula [2] is a single bond or a benzene ring.
  • the diamine component in the polymer of the component (C) contains at least one diamine compound having a structure represented by the following formula [3], according to any one of the above (1) to (8) Liquid crystal aligning agent.
  • Y represents a substituent selected from the following formulas [3-1] to [3-6], and m represents an integer of 1 to 4.
  • A represents an integer of 0 to 4, and b represents an integer of 0 to 4.
  • Y 1 represents a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—
  • Y 2 represents a single bond Or — (CH 2 ) b — (b is an integer of 1 to 15)
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O— , —CH 2 O—, —COO— or —OCO—
  • Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent group having 12 to 25 carbon atoms having a steroid skeleton
  • An arbitrary hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms,
  • a liquid crystal composition including a polymerizable compound that has a liquid crystal layer between a pair of substrates provided with electrodes and is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, The liquid crystal alignment film according to the above (14) or (15), which is used for a liquid crystal display device produced by polymerizing the polymerizable compound while applying a voltage between electrodes.
  • a liquid crystal alignment film including a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, The liquid crystal alignment film according to (14) or (15), which is used in a liquid crystal display device produced by polymerizing the polymerizable group while applying a voltage between electrodes.
  • the liquid crystal alignment treatment agent containing a compound having a specific structure and at least one polymer selected from the group consisting of a polyimide precursor and a polyimide has an adhesive property between the sealant and the liquid crystal alignment film. Even under high temperature and high humidity conditions, it is possible to form a liquid crystal alignment film that can suppress the occurrence of display unevenness in the vicinity of the frame of the liquid crystal display element and suppress the decrease in voltage holding ratio. That is, a liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
  • the present invention provides a liquid crystal aligning agent containing the following component (A), component (B) and component (C), a liquid crystal aligning film obtained using the liquid crystal aligning agent, and further the liquid crystal aligning film.
  • a liquid crystal display element containing the following component (A), component (B) and component (C), a liquid crystal aligning film obtained using the liquid crystal aligning agent, and further the liquid crystal aligning film.
  • Component (A) a compound represented by the following formula [1] (also referred to as a specific isocyanate compound).
  • Component (B) a compound represented by the following formula [2] (also referred to as a specific amine compound).
  • X 1 represents a divalent organic group having an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a divalent organic group having 6 to 24 carbon atoms having a benzene ring or a cyclohexane ring
  • X 2 represents the following: A structure selected from the formulas [1-1] to [1-6] is shown.)
  • a 1 represents a hydrogen atom or a benzene ring
  • a 2 represents a single bond, or a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring
  • a 3 represents a carbon number of 1 to 18 represents an alkyl group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • W 1 represents an organic group having an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group.
  • W 2 represents a single bond, —O—, —NH—, —CO—, —COO—, —OCO— , —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, —S— or —SO 2 —.
  • W 4 represents a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—. , —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, —S— or —SO 2 —, wherein W 5 is a single bond, an aliphatic hydrocarbon group or a non-aromatic cyclic group. (It represents an organic group having a hydrocarbon group, and n represents an integer of 1 to 5.)
  • the primary amino group in the specific amine compound forms a salt with the carboxyl group in the specific polymer, or relative to the carboxyl group or carboxy ester group in the specific polymer, It is considered that the amide bond is accompanied by elimination of water or alcohol, or that the imide group in the specific polymer undergoes a binding reaction involving ring opening of the imide group. That is, it is considered that the specific amine compound is salt-formed or chemically bonded to the specific polymer via the primary amino group of the specific amine compound.
  • the OCN group (also referred to as isocyanate group) of the specific isocyanate compound contained in the liquid crystal aligning agent is chemically similar to the terminal OH group (also referred to as hydroxyl group) of the specific amine compound that is salt-formed or chemically bonded to the specific polymer. It is thought to combine.
  • the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent has a specific amine compound and a specific isocyanate compound in spite of the simple method of mixing the liquid crystal alignment treatment agent in an organic solvent. It is considered that the specific polymer is efficiently bonded.
  • the double bond site of the formula [1-1] to the formula [1-6] which is X 2 in the specific isocyanate compound reacts when irradiated with heat or ultraviolet rays. Further, these double binding sites are sites that are also included in the compound contained in the sealant. Therefore, when the liquid crystal alignment treatment agent of the present invention is used, the double bond site in the liquid crystal alignment film and the sealant are obtained by the curing process of the sealant when producing the liquid crystal display element, that is, the ultraviolet irradiation process or the baking process. A chemical reaction with the compound therein causes a chemical bond between the sealing agent and the liquid crystal alignment film, thereby enhancing their adhesion.
  • the liquid crystal aligning agent containing the specific isocyanate compound, the specific amine compound and the specific polymer of the present invention has high adhesion to the sealant and is near the frame of the liquid crystal display element under high temperature and high humidity conditions. It is possible to form a liquid crystal alignment film that can suppress the occurrence of display unevenness and suppress a decrease in voltage holding ratio.
  • the specific isocyanate compound of the present invention is a compound represented by the following formula [1]. (X 1 and X 2 are as defined above.) (A 1 , A 2 and A 3 are the same as defined above.)
  • X 1 represents a divalent organic group having an aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a divalent organic group having 6 to 24 carbon atoms having a benzene ring or a cyclohexane ring. Among these, an alkylene group having 1 to 10 carbon atoms is preferable, and an alkylene group having 1 to 5 carbon atoms is more preferable.
  • X 2 is a structure selected from the formulas [1-1] to [1-6].
  • a 1 represents a hydrogen atom or a benzene ring. Of these, a hydrogen atom is preferable.
  • a 2 is a single bond or a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring. Of these, a single bond, a benzene ring, a cyclohexane ring or a biphenyl ring is preferable.
  • a 3 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. It is. Of these, an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms is preferable.
  • X 2 is preferably a structure represented by Formula [1-1], Formula [1-2], Formula [1-4], or Formula [1-6]. More specifically, structures represented by the following formulas [1a] to [1e] can be given.
  • X 3 represents an alkylene group having 1 to 5 carbon atoms, a benzene ring or a cyclohexane ring
  • X 4 represents an alkylene group having 1 to 5 carbon atoms, a benzene ring or a cyclohexane ring.
  • X 5 represents an alkylene group having 1 to 5 carbon atoms, a benzene ring or a cyclohexane ring
  • X 6 represents an alkylene group having 1 to 5 carbon atoms, a benzene ring or a cyclohexane ring
  • X 7 represents an alkylene group having 1 to 5 carbon atoms.
  • Said specific isocyanate compound can also be used 1 type or in mixture of 2 or more types according to characteristics, such as liquid crystal orientation at the time of setting it as a liquid crystal aligning film, a voltage holding ratio, and an accumulation charge.
  • the specific amine compound of the present invention is a compound represented by the following formula [2].
  • W 1 represents an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group so that the primary amino group contained in the specific amine compound can easily form a salt or bond with the specific polymer. It is an organic group.
  • Specific examples of the aliphatic hydrocarbon group include a linear alkylene group, a branched alkylene group, a hydrocarbon group having an unsaturated bond, and the like. Of these, a linear or branched alkylene group having 1 to 20 carbon atoms is preferable. A linear or branched alkylene group having 1 to 15 carbon atoms is more preferable, and a linear or branched alkylene group having 1 to 10 carbon atoms is still more preferable.
  • non-aromatic cyclic hydrocarbon group examples include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, Cyclotridecane ring, cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosane ring, tricyclodecosan ring, bicyclohexyl ring, bicyclo Examples include heptane ring, decahydronaphthalene ring,
  • a ring having 3 to 20 carbon atoms is preferable.
  • a ring having 3 to 15 carbon atoms is more preferable, and a ring having 6 to 12 carbon atoms is more preferable, which is a non-aromatic cyclic hydrocarbon group.
  • it is a cyclohexane ring or a bicyclohexyl ring, and particularly preferably a cyclohexane ring.
  • W 2 represents a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ). CO—, —CONH—, —CON (CH 3 ) —, —S— or —SO 2 —.
  • a single bond, —O—, —NH—, —COO—, —OCO—, —CONH— or —NHCO— is preferable.
  • W 3 is a single bond, a benzene ring or a cyclohexane ring. More preferably, it is a single bond or a benzene ring.
  • W 4 is a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ).
  • W 5 is an organic group having a single bond, an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group.
  • Specific examples of the aliphatic hydrocarbon group and the non-aromatic cyclic hydrocarbon group include those described above. Of these, a single bond, a linear or branched alkylene group having 1 to 20 carbon atoms, or a non-aromatic cyclic hydrocarbon group having 3 to 20 carbon atoms is preferable. More preferably, they are a single bond, a linear or branched alkylene group having 1 to 15 carbon atoms, or a non-aromatic cyclic hydrocarbon group having 3 to 15 carbon atoms.
  • n is an integer of 1 to 5.
  • an integer of 1 to 4 is preferable. More preferably, it is an integer of 1 to 3.
  • Preferred combinations of W 1 , W 2 , W 3 , W 4 , W 5 and n in the formula [2] are as shown in Tables 1 to 14.
  • the above-mentioned specific amine compounds can be used alone or in combination of two or more according to properties such as liquid crystal alignment properties, voltage holding ratio, accumulated charge, etc. when a liquid crystal alignment film is formed.
  • the specific polymer which is the component (C) of the present invention is at least one polymer selected from the group consisting of a polyimide precursor obtained by reacting a diamine component and a tetracarboxylic acid component and a polyimide.
  • the polyimide precursor has a structure represented by the following formula [A].
  • R 1 is a tetravalent organic group
  • R 2 is a divalent organic group
  • a 1 and A 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, which may be the same or different.
  • a 3 and A 4 may represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an acetyl group, and may be the same or different
  • n represents a positive integer.
  • the diamine component is a diamine compound having two primary or secondary amino groups in the molecule
  • the tetracarboxylic acid component is a tetracarboxylic acid compound, tetracarboxylic dianhydride, or tetracarboxylic acid dihalide compound.
  • Tetracarboxylic acid dialkyl ester compounds or tetracarboxylic acid dialkyl ester dihalide compounds can be obtained relatively easily by using a tetracarboxylic dianhydride represented by the following formula [B] and a diamine compound represented by the following formula [C] as raw materials.
  • the polyamic acid consisting of the structural formula of the repeating unit represented by the formula [D] or a polyimide obtained by imidizing the polyamic acid is preferable.
  • R 1 and R 2 are the same as defined in formula [A]). (R 1 and R 2 have the same meaning as defined in formula [A].)
  • the polymer of the formula [D] obtained above by the usual synthesis method is added to the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 represented by the formula [A] and the formula [A]. It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 shown.
  • a known diamine compound can be used as the diamine component for producing the specific polymer as the component (C).
  • Y represents a substituent selected from the following formulas [3-1] to [3-6], and m represents an integer of 1 to 4.
  • a represents an integer of 0 to 4.
  • 0 or 1 is preferable from the viewpoint of availability of raw materials and ease of synthesis.
  • b represents an integer of 0 to 4.
  • the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • a single bond — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO.
  • More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Indicates.
  • a single bond — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms.
  • Y 4 may be a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton.
  • Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms.
  • a benzene ring or a cyclohexane ring is preferable.
  • n represents an integer of 0 to 4. Among these, 0 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferred is 0-2.
  • Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Indicates.
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [3-3] are the international publications WO 2011/132751 (2011.10.27), pages 13 to 34.
  • the same combinations as (2-1) to (2-629) listed in Tables 6 to 47 on the page can be mentioned.
  • Y1 to Y6 in each table of the International Publication are respectively replaced with Y 1 to Y 6 of the present invention.
  • Y 7 represents —O—, —CH 2 O—, —COO—, —OCO—, —CONH— or —NHCO—. Of these, —O—, —CH 2 O—, —COO— or —CONH— is preferable. More preferred is —O—, —COO— or —CONH—.
  • Y 8 represents an alkyl group having 8 to 22 carbon atoms.
  • Y 9 and Y 10 each independently represent a hydrocarbon group having 1 to 12 carbon atoms.
  • Y 11 represents an alkyl group having 1 to 5 carbon atoms.
  • the specific diamine compound represented by the formula [3] can be obtained by synthesizing a dinitro compound represented by the following formula [3-A] and further reducing the nitro group to convert it to an amino group.
  • Y represents a substituent selected from the formulas [3-1] to [3-6], and m represents an integer of 1 to 4.
  • the method for reducing the dinitro group of the dinitro compound represented by the formula [3-A] is not particularly limited, and usually in a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane, alcohol solvent, palladium-carbon, There is a method in which platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon or the like is used as a catalyst and reacted in hydrogen gas, hydrazine or hydrogen chloride.
  • Specific diamine compounds include 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, 2,4-diaminophenol, 3,5
  • diaminophenol 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol and the like, structures represented by the following formulas [3-7] to [3-47]
  • the diamine compound can be mentioned.
  • a 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—
  • R 2 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, or a fluorine-containing alkyl. Group or fluorine-containing alkoxy group.
  • R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or —CH 2 —
  • R 4 has 1 to 22 carbon atoms. Represents an alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • R 5 is —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 — or —O—
  • R 6 is a fluorine group , Cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy group or hydroxyl group.
  • R 7 represents an alkyl group having 3 to 12 carbon atoms.
  • the cis-trans isomerism of 1,4-cyclohexylene is preferably a trans isomer.
  • R 8 represents an alkyl group having 3 to 12 carbon atoms.
  • the cis-trans isomerism of 1,4-cyclohexylene is preferably a trans isomer.
  • B 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • B 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group
  • B 2 represents an oxygen atom.
  • —COO— * where a bond marked with “*” is bonded to B 3
  • B 1 is an oxygen atom or —COO— * (where a bond marked with “*” is (CH 2 ) is bonded to a 2.
  • a 1 represents an integer of 0 or 1
  • a 2 represents an integer of 2 to 10
  • a 3 represents an integer of 0 or 1.
  • the liquid crystal alignment treatment obtained from the specific polymer using the diamine compound in which the substituent Y in the formula [3] is represented by the formula [3-3] When the liquid crystal alignment film is formed using an agent, the pretilt angle of the liquid crystal can be increased.
  • diamine compounds represented by the formulas [3-29] to [3-40] or the formulas [3-43] to [3-47]. More preferred are diamine compounds represented by the formulas [3-25] to [3-40] or the formulas [3-43] to [3-47].
  • the amount of the diamine compound used for increasing the pretilt angle is preferably 5 mol% or more and 80 mol% or less of the entire diamine component. More preferably, it is 5 mol% or more and 60 mol% of the whole diamine component from the viewpoint of the coating property of the liquid crystal aligning agent and the electric characteristics as the liquid crystal alignment film.
  • the specific diamine compound represented by the formula [3] is soluble or coatable in a solvent of a specific polymer, depending on characteristics such as liquid crystal alignment, voltage holding ratio, accumulated charge, etc. in a liquid crystal alignment film.
  • a diamine component for producing the specific polymer a diamine compound other than the specific diamine compound represented by the formula [3] (also referred to as other diamine compound) can be used as the diamine component. Specific examples of other diamine compounds are shown below, but are not limited to these examples.
  • diamine compounds examples include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, and those having a macrocyclic substituent composed of these groups. Can do. Specifically, diamine compounds represented by the following formulas [DA1] to [DA7] can be exemplified.
  • a 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—
  • a 2 represents a straight chain having 1 to 22 carbon atoms.
  • diamine compounds represented by the following formulas [DA8] to [DA13] can also be used as other diamine compounds.
  • diamine compounds represented by the following formulas [DA14] to [DA17] can also be used.
  • a 1 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N ( CH 3 ) CO—, each of m 1 and m 2 represents an integer of 0 to 4, and m 1 + m 2 represents an integer of 1 to 4, and m 3 and m 4 represent an integer of 1 to 5, respectively.
  • a 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms
  • m 5 represents an integer of 1 to 5
  • a 3 represents a single bond, —CH 2 —, —C 2 H 4 —, — C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO Represents —, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—, and m 6 represents an integer of 1 to 4. .
  • diamine compounds represented by the following formulas [DA18] and [DA19] can also be used.
  • a diamine compound represented by the following formula [DA20] can also be used as long as the effects of the present invention are not impaired.
  • a 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — and —N (CH 3 )
  • a 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, — A divalent group selected from the group consisting of N (CH 3 ) CO— and —O (CH 2 ) m — (m is an integer of 1 to 5), and A 4 is a nitrogen-containing aromatic heterocyclic ring.
  • n is an integer of 1 to 4.
  • tetracarboxylic acid component As the tetracarboxylic acid component for producing the specific polymer which is the component (C) of the present invention, a tetracarboxylic dianhydride represented by the following formula [4] or a tetracarboxylic acid which is a tetracarboxylic acid derivative thereof It is preferable to use a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound (all are collectively referred to as a specific tetracarboxylic acid component).
  • Z 1 is a group having a structure selected from the following formulas [4a] to [4j].
  • Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 represent a hydrogen atom or a methyl group, and may be the same or different.
  • Z 1 is represented by the formula [4a] and the formula from the viewpoint of ease of synthesis and polymerization reactivity when producing a polymer.
  • a structure represented by [4c], formula [4d], formula [4e], formula [4f] or formula [4g] is preferable.
  • the specific tetracarboxylic acid component is preferably 1 mol% or more of the total tetracarboxylic acid component. More preferred is 5 mol% or more, and particularly preferred is 10 mol% or more. Among these, 15 to 100 mol% is more preferable.
  • the usage-amount is 20 mol% or more of the whole tetracarboxylic acid component. More preferably, it is 30 mol% or more.
  • all of the tetracarboxylic acid component may be a tetracarboxylic acid component having a structure of the formula [4e], the formula [4f], or the formula [4g].
  • other tetracarboxylic acid components other than the specific tetracarboxylic acid component can be used as long as the effects of the present invention are not impaired.
  • tetracarboxylic acid components include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, tetracarboxylic acid dihalide compounds, tetracarboxylic acid dialkyl ester compounds, and tetracarboxylic acid dialkyl ester dihalide compounds.
  • tetracarboxylic acid components include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalene.
  • Tetracarboxylic acid 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ', 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3', 4,4'-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis ( 3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2- (3,4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetrac
  • the specific tetracarboxylic acid component and other tetracarboxylic acid components are the solubility of the specific polymer in the solvent, the coating property of the liquid crystal aligning agent, the orientation of the liquid crystal when it is used as a liquid crystal alignment film, the voltage holding ratio, the accumulated charge. Depending on the characteristics such as, one kind or a mixture of two or more kinds may be used.
  • the method for synthesizing the specific polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Generally, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid.
  • a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and primary or secondary diamine compound dehydration polycondensation reaction of tetracarboxylic acid and primary or secondary diamine compound
  • a method of obtaining a polyamic acid by polycondensation of a tetracarboxylic acid dihalide and a primary or secondary diamine compound is a method of obtaining polyamic acid by polycondensation of a tetracarboxylic acid dihalide and a primary or secondary diamine compound.
  • a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine compound, a tetracarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group and 1 A method of polycondensation with a secondary or secondary diamine compound or a method of converting a carboxyl group of a polyamic acid into an ester is used.
  • polyimide a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually performed in an organic solvent containing the diamine component and the tetracarboxylic acid component.
  • the organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the organic solvent used for reaction below is given, it is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-imidazolidinone, etc.
  • solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]
  • the indicated solvents can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is.
  • a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent a method of alternately adding a diamine component and a tetracarboxylic acid component, etc. Any of these methods may be used.
  • the polymerization temperature can be selected from -20 to 150 ° C., but is preferably in the range of ⁇ 5 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyimide of the present invention is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%. It can be arbitrarily adjusted according to the purpose. Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to carry out while removing water generated by the imidization reaction from the system.
  • the catalytic imidation of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • the solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the specific polymer is 5 in terms of weight average molecular weight measured by GPC (Gel Permeation Chromatography) method in consideration of the strength of the liquid crystal alignment film obtained therefrom, workability at the time of forming the liquid crystal alignment film, and coating properties. It is preferably from 1,000 to 1,000,000, more preferably from 10,000 to 150,000.
  • the liquid crystal aligning agent of this invention is a coating solution for forming a liquid crystal aligning film (it is also called a resin film), and contains a specific isocyanate compound, a specific amine compound, a specific polymer, and a solvent.
  • the content of the specific isocyanate compound in the liquid crystal aligning agent is 0.1 to 30 parts by mass with respect to 100 parts by mass of the specific polymer. Of these, 0.5 to 30 parts by mass is preferable, and 1 to 20 parts by mass is particularly preferable.
  • the amount of the specific amine compound introduced into the liquid crystal aligning agent is 0.1 to 30 parts by mass with respect to 100 parts by mass of the specific polymer. Of these, 0.5 to 30 parts by mass is preferable, and 1 to 20 parts by mass is particularly preferable.
  • the method for adding the specific isocyanate compound and the specific amine compound to the liquid crystal aligning agent is not particularly limited.
  • the following method is mentioned. That is, a specific amine compound is added to a polymer solution in which a specific polymer is dissolved in a solvent, and the solution of the specific polymer and the specific amine compound is heated and stirred. The temperature at that time is preferably 25 to 100 ° C., more preferably 25 to 80 ° C. Then, a specific isocyanate compound is added to this solution, and the solution of a specific polymer, a specific amine compound, and a specific isocyanate compound is heated and stirred. The temperature at that time is preferably 25 to 100 ° C., more preferably 25 to 80 ° C.
  • the solution thus obtained may be used as it is for a liquid crystal alignment treatment agent, and further, other polymers, solvents, additives and the like shown below may be added.
  • All the polymer components in the liquid crystal aligning agent may be the specific polymer of the present invention, or other polymers may be mixed.
  • the content of the other polymer is 0.5 to 15 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the specific polymer.
  • examples of other polymers include polyimide polymers that do not use the diamine compound represented by the formula [3] and the specific tetracarboxylic acid component.
  • other polymers specifically, cellulosic polymers, acrylic polymers, methacrylic polymers, polystyrenes, polyamides, polysiloxanes and the like can be mentioned.
  • the solvent in the liquid crystal aligning agent is preferably 70 to 99.9% by mass of the solvent in the liquid crystal aligning agent from the viewpoint of forming a uniform liquid crystal alignment film by coating.
  • the mass% is more preferable. Content can be suitably changed with the film thickness of the target liquid crystal aligning film.
  • the solvent used for the liquid crystal aligning agent is not particularly limited as long as it is a solvent (also referred to as a good solvent) that dissolves the specific compound and the specific polymer. Although the specific example of a good solvent is given to the following, it is not limited to these examples.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone is preferably used.
  • the good solvent in the liquid crystal aligning agent is preferably 10 to 100% by mass of the total solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
  • the liquid crystal aligning agent can use a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied.
  • a solvent also referred to as a poor solvent
  • a poor solvent is given to the following, it is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propaned
  • a solvent represented by These poor solvents are preferably 1 to 70% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 1 to 60% by mass is preferable. More preferred is 5 to 60% by mass.
  • the liquid crystal aligning agent is at least selected from the group consisting of a compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group.
  • a compound having one kind of substituent, and a compound having a polymerizable unsaturated bond (also collectively referred to as a crosslinkable compound) can be introduced. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-amin
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4A]. Specific examples include crosslinkable compounds represented by the formulas [4a] to [4k] published on pages 58 to 59 of International Publication No. WO2011 / 132751 (published 2011.10.27).
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5A]. Specifically, the crosslinkable compounds represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication No. WO2012 / 014898 (published on 2012.2.2). It is done.
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine resin, a urea resin, a guanamine resin, and a glycoluril such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • benzene having a hydroxyl group or alkoxyl group, or phenolic compounds examples include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, and 1,4-bis. (Sec-butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like. More specifically, International Publication WO2011 / 132751. (2011.10.27), pages 62 to 66, and crosslinkable compounds represented by the formulas [6-1] to [6-48].
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane and glycerin polyglycidyl ether poly (meth) acrylate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (me ) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) ) Acrylate, pentaerythritol di (meth) acrylate, ethylene glycol digly
  • a compound represented by the following formula [7A] can also be used.
  • E 1 represents a group selected from the group consisting of cyclohexane ring, bicyclohexane ring, benzene ring, biphenyl ring, terphenyl ring, naphthalene ring, fluorene ring, anthracene ring and phenanthrene ring
  • E 2 represents the following formula [ 7a] and a group selected from the formula [7b], and n represents an integer of 1 to 4.
  • the said compound is an example of a crosslinkable compound, It is not limited to these.
  • the crosslinkable compound used for the liquid-crystal aligning agent of this invention may be one type, and may be combined two or more types.
  • the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components.
  • the amount is more preferably 0.1 to 100 parts by weight, and most preferably 1 to 50 parts by weight, based on 100 parts by weight of all polymer components.
  • a compound that improves the uniformity of the thickness of the liquid crystal alignment film and the surface smoothness when the liquid crystal alignment treatment agent is applied can be used as the liquid crystal alignment treatment agent.
  • the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. It is.
  • the liquid crystal alignment treatment agent is a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge loss of the device, and is disclosed in International Patent Publication WO2011 / 132751 (2011.10.27), pages 69 to 73. It is also possible to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156] described in This amine compound may be added directly to the liquid crystal aligning agent, but it is preferably added after a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent.
  • the solvent to be used is not particularly limited as long as it is an organic solvent capable of dissolving the above-described specific polymer.
  • the crosslinkable compound, the resin film or the liquid crystal alignment film, the compound that improves the film thickness uniformity and surface smoothness, and the compound that promotes charge removal As long as the effect is not impaired, a dielectric material or conductive material for changing the electrical characteristics such as the dielectric constant or conductivity of the liquid crystal alignment film may be added.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation.
  • it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used in this case is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplifying the process, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, screen printing, offset printing, flexographic printing, inkjet method, and the like are common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
  • After applying the liquid crystal aligning agent on the substrate it is preferably 30 to 300 ° C., depending on the solvent used for the liquid crystal aligning agent, by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven.
  • the liquid crystal alignment film can be obtained by evaporating the solvent at a temperature of 30 to 250 ° C.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method and then preparing a liquid crystal cell by a known method.
  • a method for manufacturing a liquid crystal cell prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film on one substrate, and place the liquid crystal alignment film surface on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the liquid crystal after dropping the liquid crystal on the surface of the liquid crystal alignment film on which the spacers are dispersed.
  • the liquid-crystal aligning agent of this invention has a liquid-crystal layer between a pair of board
  • the liquid crystal composition is also preferably used for a liquid crystal display device produced by polymerizing a polymerizable compound by at least one of irradiation with active energy rays and heating while applying a voltage between electrodes.
  • ultraviolet rays are suitable as the active energy ray.
  • the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
  • the above-described liquid crystal display element controls the pretilt angle of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method.
  • a PSA method a small amount of a photopolymerizable compound such as a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer, The pretilt angle of the liquid crystal molecules is controlled by the polymer produced by irradiation with ultraviolet rays. That is, the alignment state of the liquid crystal molecules when the polymer is formed is memorized even after the voltage is removed, so the pretilt angle of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. Can do.
  • the PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt angle by the rubbing process.
  • the liquid crystal display element of the present invention is obtained by obtaining a substrate with a liquid crystal alignment film from a liquid crystal alignment treatment agent by the above-described method, then preparing a liquid crystal cell, and polymerizing a polymerizable compound by at least one of ultraviolet irradiation and heating. The orientation of the liquid crystal molecules can be controlled.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded, the liquid crystal is injected under reduced pressure and sealed, and the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed. .
  • the liquid crystal is mixed with a polymerizable compound that is polymerized by heat or ultraviolet irradiation.
  • the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
  • the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled. The seizure characteristics of the steel deteriorate.
  • the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of liquid crystal molecules can be controlled.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates.
  • positioning the liquid crystal aligning film containing this, and applying a voltage between electrodes is used preferably.
  • ultraviolet rays are suitable as the active energy ray.
  • the wavelength of ultraviolet rays is 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
  • liquid crystal aligning agent of the present invention contains a specific compound having a double bond site that reacts by irradiation with heat or ultraviolet rays, the alignment of liquid crystal molecules can be controlled by at least one of ultraviolet irradiation and heating. it can.
  • a liquid crystal display element having a liquid crystal alignment film produced by using the liquid crystal alignment treatment agent of the present invention has excellent reliability and can be suitably used for a large-screen and high-definition liquid crystal television.
  • A1 3,5-Diaminobenzoic acid
  • A2 Diamine compound represented by the following formula [A2]
  • A3 1,3-diamino-4-octadecyloxybenzene
  • A4 1,3-diamino-4- [4- (trans -4-n-heptylcyclohexyl) phenoxy] benzene
  • A5 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxymethyl] benzene
  • A6 1,3-diamino- 4- ⁇ 4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy ⁇ benzene
  • A7 diamine compound represented by the following formula [A7]
  • C1 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • C2 bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
  • C3 the following formula [C3 ]
  • C4 tetracarboxylic dianhydride represented by the following formula [C4]
  • NMP N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • ⁇ -BL ⁇ -butyrolactone
  • ECS ethylene glycol monoethyl ether
  • EC diethylene glycol monoethyl ether
  • BCS Ethylene glycol monobutyl ether
  • PB Propylene glycol monobutyl ether
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration.
  • the imidation ratio of this polyimide was 55%, the number average molecular weight was 18,000, and the weight average molecular weight was 51,400.
  • This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 60%, the number average molecular weight was 17,500, and the weight average molecular weight was 52,000.
  • the liquid crystal aligning agent was filtered under pressure with a membrane filter having a pore diameter of 1 ⁇ m, and the inkjet coating property was evaluated.
  • As the ink jet coater HIS-200 (manufactured by Hitachi Plant Technology) was used. Application is on an ITO (indium tin oxide) vapor-deposited substrate cleaned with pure water and IPA (isopropyl alcohol), application area is 70 ⁇ 70 mm, nozzle pitch is 0.423 mm, scan pitch is 0.5 mm, application The speed was 40 mm / second, the time from application to temporary drying was 60 seconds, and temporary drying was performed on a hot plate at 70 ° C. for 5 minutes.
  • the coating properties of the obtained substrate with a liquid crystal alignment film were confirmed. Specifically, the coating film was visually observed under a sodium lamp to confirm the presence or absence of pinholes. As a result, in any of the liquid crystal alignment films obtained in any of the examples, no pinhole was found on the coating film, and a liquid crystal alignment film having excellent coating properties was obtained.
  • a rubbing process was performed on the coating surface of this ITO substrate using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and a pushing amount of 0.1 mm. .
  • Two ITO substrates with the obtained liquid crystal alignment film were prepared, and 6 ⁇ m spacers were scattered on the liquid crystal alignment film surface of one of the substrates with the liquid crystal alignment film.
  • an ultraviolet curable sealant was drawn around the substrate, and liquid crystal was injected by an ODF (One Drop Filling) method to obtain a liquid crystal cell.
  • ODF One Drop Filling
  • the liquid crystal cell was cut with a wavelength of 310 nm or less using a metal halide lamp with an illuminance of 60 mW, and irradiated with ultraviolet rays of 5 J / cm 2 in terms of 365 nm.
  • heat treatment was performed at 120 ° C. for 60 minutes in a heat-circulating clean oven to obtain a liquid crystal cell (ordinary cell).
  • Used nematic liquid crystal (MLC-2003) (manufactured by Merck Japan).
  • liquid crystal aligning agents (4) to (6) obtained in Examples 4 to 6, the liquid crystal aligning agent (8) obtained in Example 8, and the liquid crystal aligning agent obtained in Example 9 ( 9) Liquid crystal aligning agents (11) to (15) obtained in Examples 11 to 15, Liquid crystal aligning agents (17) to (20) obtained in Examples 17 to 20, and Comparative Examples 7 to A nematic liquid crystal (MLC-6608) (manufactured by Merck Japan Ltd.) was used for the liquid crystal cell using the liquid crystal aligning agents (27) to (32) obtained in Step 12.
  • MLC-6608 nematic liquid crystal
  • the obtained liquid crystal cell (ordinary cell) was visually observed using a polarizing plate and a backlight, and the liquid crystal orientation in the vicinity of the sealant was evaluated. As a result, any liquid crystal obtained in Examples and Comparative Examples was obtained. Both cells showed uniform liquid crystal alignment. Thereafter, the liquid crystal cell was stored in a high-temperature and high-humidity tank having a temperature of 80 ° C. and a humidity of 90% RH for 72 hours, and the liquid crystal orientation in the vicinity of the sealant was evaluated under the same conditions as described above. Specifically, it was determined that the evaluation in which the disorder of the liquid crystal orientation was not observed in the vicinity of the sealant was excellent in this evaluation. In Tables 19 to 21, those in which the disorder of the liquid crystal alignment was not observed were marked with ⁇ , and those in which the liquid crystal alignment was disturbed were marked with x.
  • the surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm.
  • a liquid crystal cell (normal cell) was obtained by injecting liquid crystal into this empty cell by a reduced pressure injection method and sealing the injection port.
  • the liquid crystal used for manufacturing the liquid crystal cell of each Example and Comparative Example was the same as the above-mentioned “Evaluation of display unevenness characteristics in the vicinity of the frame of the liquid crystal cell after high temperature and high humidity storage (normal cell)”.
  • a voltage of 1 V was applied to the obtained liquid crystal cell at a temperature of 80 ° C. for 60 ⁇ s, the voltage after 50 ms was measured, and how much the voltage was held was calculated as a voltage holding ratio (also referred to as VHR).
  • the measurement was performed using a voltage holding ratio measuring device (VHR-1) (manufactured by Toyo Technica Co., Ltd.) with settings of Voltage: ⁇ 1 V, Pulse Width: 60 ⁇ s, and Frame Period: 50 ms. Further, the liquid crystal cell for which the voltage holding ratio was measured was stored in a high-temperature and high-humidity tank having a temperature of 80 ° C.
  • the liquid crystal aligning agent was pressure filtered through a membrane filter having a pore diameter of 1 ⁇ m to prepare a liquid crystal cell and evaluate the liquid crystal alignment (PSA cell).
  • This solution was washed with pure water and IPA at the center with a 10 ⁇ 10 mm substrate with an ITO electrode having a pattern spacing of 20 ⁇ m (length 40 mm ⁇ width 30 mm, thickness 0.7 mm) and a substrate with an ITO electrode 10 ⁇ 40 mm at the center.
  • This substrate with a liquid crystal alignment film was combined with a 6 ⁇ m spacer sandwiched with the liquid crystal alignment film surface inside, and the periphery was adhered with a sealant to produce an empty cell.
  • the response speed after ultraviolet irradiation was faster than that before ultraviolet irradiation, so it was confirmed that the alignment direction of the liquid crystal was controlled.
  • the liquid crystal cell of the Example confirmed that the liquid crystal was uniformly orientated by observation with a polarizing microscope (ECLIPSE E600WPOL) (Nikon Corporation).
  • NMP (20.9 g) and BCS (12.3 g) are added to the polyamic acid solution (1) (10.5 g) having a resin solid concentration of 25% by mass obtained in Synthesis Example 1, and the mixture is stirred at 25 ° C. for 2 hours. did. Then, S1 (0.132g) was added to this solution, and it stirred at 25 degreeC for 4 hours. Then, P2 (0.263g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (1). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (9.90 g) and PB (7.50 g) were added to the polyamic acid solution (2) (5.50 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 2, and the mixture was stirred at 25 ° C. for 2 hours. did. Then, S1 (0.097g) was added to this solution, and it stirred at 25 degreeC for 4 hours. Then, P2 (0.097g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (2). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (14.8 g) and PB (6.30 g) were added to the polyimide powder (3) (1.35 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. Then, S2 (0.095g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Then, P2 (0.095g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (3).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (9.90 g) and PB (7.50 g) were added to the polyamic acid solution (4) (5.50 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 4, and the mixture was stirred at 25 ° C. for 2 hours. did. Then, S1 (0.097g) was added to this solution, and it stirred at 25 degreeC for 4 hours. Then, P2 (0.097g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (4). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (9.00 g), EC (2.20 g) and PB (6.60 g) were added to the polyamic acid solution (4) (5.60 g) having a resin solid content concentration of 25% by mass obtained in Synthesis Example 4. And stirred at 25 ° C. for 2 hours. Then, S2 (0.14g) was added to this solution, and it stirred at 25 degreeC for 4 hours. Then, P1 (0.21g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (5). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (13.5 g) and PB (7.30 g) were added to the polyimide powder (5) (1.33 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. Then, S2 (0.093g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Then, P2 (0.093g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (6).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 7 NEP (24.2 g) and PB (13.0 g) were added to the polyimide powder (5) (1.15 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. Then, S1 (0.081g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Then, P2 (0.115g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (7). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (7), “evaluation of inkjet applicability of liquid crystal aligning agent” was performed.
  • Example 8 NMP (11.6 g), EC (2.10 g) and BCS (7.40 g) are added to the polyimide powder (5) (1.35 g) obtained in Synthesis Example 5, and the mixture is stirred at 70 ° C. for 24 hours. And dissolved. Then, S2 (0.135g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Then, P3 (0.203g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (8). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (13.2 g) and PB (7.10 g) were added to the polyimide powder (6) (1.30 g) obtained by the synthesis method of Synthesis Example 6, and dissolved by stirring at 70 ° C. for 24 hours. . Then, S1 (0.195g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Then, P1 (0.221g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (9). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (23.1 g) and PB (12.4 g) were added to polyimide powder (6) (1.10 g) obtained by the synthesis method of Synthesis Example 6, and dissolved by stirring at 70 ° C. for 24 hours. . Then, S1 (0.165g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Then, P1 (0.187g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (10). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (10), “evaluation of inkjet applicability of liquid crystal aligning agent” was performed.
  • NEP 8.30 g
  • ⁇ -BL 4.10 g
  • BCS 8.30 g
  • S2 0.026g
  • P2 0.066g
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 12 NMP (12.7 g), ECS (2.10 g) and BCS (6.30 g) are added to the polyimide powder (7) (1.35 g) obtained in Synthesis Example 7, and the mixture is stirred at 70 ° C. for 24 hours. And dissolved. Then, S2 (0.095g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Then, P1 (0.068g) and P2 (0.135g) were added, and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (12). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (13.2 g) and PB (7.10 g) were added to the polyimide powder (8) (1.30 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours. Then, S2 (0.091g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Thereafter, P2 (0.13 g) was added and stirred at 60 ° C. for 6 hours to obtain a liquid crystal aligning agent (13). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (13.2 g) and PB (7.10 g) were added to the polyimide powder (8) (1.30 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours. Then, S1 (0.065g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Thereafter, P1 (0.039 g) was added and stirred at 60 ° C. for 6 hours to obtain a liquid crystal aligning agent (14). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 15 NEP (10.6 g), ⁇ -BL (2.10 g) and PB (8.50 g) were added to the polyimide powder (9) (1.35 g) obtained in Synthesis Example 9, and the mixture was added at 70 ° C. for 24 hours. Stir to dissolve. Then, S1 (0.135g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Then, P3 (0.135g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (15). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (17.8 g), ⁇ -BL (3.60 g) and PB (14.2 g) were added to the polyimide powder (9) (1.10 g) obtained in Synthesis Example 9, and the mixture was added at 70 ° C. for 24 hours. Stir to dissolve. Then, S1 (0.077g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Thereafter, P3 (0.11 g) was added and stirred at 60 ° C. for 6 hours to obtain a liquid crystal aligning agent (16). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (16), “evaluation of ink jet coatability of liquid crystal aligning agent” was performed.
  • Example 17 NMP (13.2 g) and PB (7.10 g) were added to the polyimide powder (10) (1.30 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. Then, S2 (0.13g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Then, P1 (0.195g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (17). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (13.2 g) and PB (7.10 g) were added to the polyimide powder (10) (1.30 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. Then, S1 (0.091g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Then, P1 (0.091g) and P2 (0.091g) were added, and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (18). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 19 ⁇ -BL (11.6 g), EC (2.10 g) and BCS (7.40 g) were added to the polyimide powder (11) (1.35 g) obtained in Synthesis Example 11, and the mixture was added at 70 ° C. for 24 hours. Stir to dissolve. Then, S2 (0.068g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Then, P3 (0.135g) was added and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (19). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 20 NMP (12.2 g), ECS (2.00 g) and BCS (6.10 g) are added to the polyimide powder (11) (1.30 g) obtained in Synthesis Example 11, and the mixture is stirred at 70 ° C. for 24 hours. And dissolved. Then, S1 (0.065g) was added to this solution, and it stirred at 50 degreeC for 6 hours. Then, P1 (0.065g) and P2 (0.065g) were added, and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (20). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • NEP (9.90 g) and PB (7.50 g) were added to the polyamic acid solution (2) (5.50 g) having a resin solid content concentration of 25% by mass obtained by the synthesis method of Synthesis Example 2, and at 25 ° C. Stir for 2 hours. Then, P2 (0.097g) was added to this solution, and it stirred at 60 degreeC for 6 hours, and obtained the liquid-crystal aligning agent (22). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • the liquid crystal alignment treatment agent of the example is close to the liquid crystal cell sealant even when the liquid crystal cell is stored in a high-temperature and high-humidity tank for a long time compared to the liquid crystal alignment treatment agent of the comparative example.
  • a liquid crystal alignment film was obtained in which the liquid crystal alignment properties were not disturbed.
  • a liquid crystal alignment film capable of suppressing the decrease in voltage holding ratio was obtained. That is, the liquid crystal alignment treatment agent of the present invention becomes a liquid crystal alignment film that can suppress the occurrence of display unevenness near the frame of the liquid crystal display element and the decrease in voltage holding ratio under high temperature and high humidity conditions.
  • Example 2 and Comparative Example 1 Example 3 and Comparative Example 4, Example 4 and Comparative Example 7, and Example 6 and Comparative Example 10, and is identical to the Example (C
  • Example (C) This is a comparison with a comparative example in which a specific polymer as a component is used, a specific isocyanate compound as a component (A) is not contained, and a specific amine compound as a component (B) is not introduced.
  • a specific polymer as a component is used
  • a specific isocyanate compound as a component (A) is not contained
  • a specific amine compound as a component (B) is not introduced.
  • the liquid crystal alignment treatment agent of the comparative example when the liquid crystal cell is stored for a long time in a high-temperature and high-humidity tank, along with the vicinity of the sealant of the liquid crystal cell, liquid crystal alignment disorder occurs in the center of the cell, The voltage holding ratio was greatly reduced.
  • Example 2 and Comparative Example 2 Example 3 and Comparative Example 5, Example 4 and Comparative Example 8, and Example 6 and Comparative Example 11, that is, the same component (C) as in Example It is a comparison with the comparative example which does not introduce
  • the liquid crystal alignment treatment agent of the comparative example when used, when the liquid crystal cell is stored for a long time in a high-temperature and high-humidity tank, the disorder of the liquid crystal alignment in the liquid crystal cell and the decrease in the voltage holding ratio are suppressed. Compared to the examples, the characteristics were significantly inferior.
  • a liquid crystal display element having a liquid crystal alignment film formed using the liquid crystal aligning agent of the present invention is excellent in reliability and can be suitably used for a large-screen, high-definition liquid crystal television, and the like.
  • TN element, STN element, TFT It is useful as a liquid crystal element, particularly a vertical alignment type liquid crystal display element.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 シール剤と液晶配向膜との接着性を高め、高温高湿条件下でも液晶表示素子の額縁付近の表示ムラの発生を抑制し、かつ電圧保持率の低下を抑制できる液晶配向膜、液晶表示素子、及び液晶配向処理剤を提供する。 イソシアネート基を含有する添加剤、アミノ基とヒドロキシ基を含有する添加剤、並びにジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体を含有する液晶配向処理剤。

Description

液晶配向処理剤、液晶配向膜及び液晶表示素子
 本発明は、液晶表示素子の製造において用いられる液晶配向処理剤、この液晶配向処理剤から得られる液晶配向膜及びこの液晶配向膜を有する液晶表示素子に関するものである。
 高分子材料など有機材料からなる膜は、形成の容易さや絶縁性能などが着目されており、電子デバイス分野において、層間絶縁膜や保護膜等として広く用いられている。なかでも、表示デバイスとして良く知られた液晶表示素子では、ポリイミドからなる有機膜が液晶配向膜として使用されている。
 液晶配向膜は、液晶の配向状態を制御する目的で使用されるものである。特に、液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下や長期使用に伴う表示不良の抑制が求められている。
 これらの問題に対して、ポリイミドを液晶配向膜として用いた場合においては、液晶配向性を高め、液晶表示画面周辺部に表示不良が生じにくくする手法として、アルコキシシラン化合物を添加した液晶配向処理剤を用いて形成された液晶配向膜が提案されている(例えば特許文献1又は2参照)。
日本特開昭61-171762号公報 日本特開平11-119226号公報
 近年、スマートフォンや携帯電話などのモバイル用途向けに、液晶表示素子が用いられている。これらの用途では、できるだけ多くの表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤の幅を、従来に比べて狭くする必要がある。さらに、上述した理由により、シール剤の描画位置を、シール剤との接着性が弱い液晶配向膜の端部に接した位置、あるいは液晶配向膜の上部にすることも求められている。このような場合、高温高湿条件下での使用により、シール剤と液晶配向膜との間から水が混入しやすくなり、液晶表示素子の額縁付近に表示ムラが発生してしまう。
 また、液晶表示素子内に水が混入すると、液晶表示素子の電気特性の1つである電圧保持率が大きく低下し、液晶表示素子の表示不良の1つである焼き付き不良(線焼き付きともいわれる)が発生しやすくなってしまい、信頼性の高い液晶表示素子が得られない。
 そこで本発明の目的は、上記特性を兼ね備え、シール剤と液晶配向膜との接着性を高め、高温高湿条件下において液晶表示素子の額縁付近の表示ムラの発生を抑制し、かつ電圧保持率の低下を抑制することができる液晶配向膜を提供することが可能な液晶配向処理剤、該液晶配向膜を有する液晶表示素子を提供することである。
 本発明者は、鋭意研究を行った結果、特定構造を有する化合物及びポリイミド前駆体又はポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向処理剤が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の要旨を有するものである。
(1)下記の(A)成分、(B)成分及び(C)成分を含有することを特徴とする液晶配向処理剤。
(A)成分:下記の式[1]で示される化合物。
(B)成分:下記の式[2]で示される化合物。
(C)成分:ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体。
Figure JPOXMLDOC01-appb-C000008
(Xは炭素数1~20の脂肪族炭化水素基を有する2価の有機基、又はベンゼン環若しくはシクロヘキサン環を有する炭素数6~24の2価の有機基を示し、Xは下記の式[1-1]~式[1-6]から選ばれる構造を示す。)
Figure JPOXMLDOC01-appb-C000009
(Aは水素原子又はベンゼン環を示し、Aは単結合、又はベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基を示し、Aは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。)
Figure JPOXMLDOC01-appb-C000010
(Wは脂肪族炭化水素基又は非芳香族環式炭化水素基を有する有機基を示し、Wは単結合、-O-、-NH-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-又は-SO-を示し、Wは単結合、ベンゼン環又はシクロヘキサン環を示し、Wは単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-又は-SO-を示し、Wは単結合、脂肪族炭化水素基又は非芳香族環式炭化水素基を有する有機基を示し、nは1~5の整数を示す。)
(2)前記式[1]のXが、炭素数1~10のアルキレン基である上記(1)に記載の液晶配向処理剤。
(3)前記式[1]のXが、式[1-1]、式[1-2]及び式[1-4]から選ばれる構造である上記(1)又は(2)に記載の液晶配向処理剤。
(4)前記式[2]のWが、炭素数1~10の直鎖状又は分岐状アルキレン基、シクロヘキサン環又はビシクロヘキシル環である上記(1)~(3)のいずれかに記載の液晶配向処理剤。
(5)前記式[2]のWが、単結合、-O-又は-OCO-である上記(1)~(4)のいずれかに記載の液晶配向処理剤。
(6)前記式[2]のWが、単結合又はベンゼン環である上記(1)~(5)のいずれかに記載の液晶配向処理剤。
(7)前記式[2]のWが、単結合、-O-、-NH-又は-CONH-である上記(1)~(6)のいずれかに記載の液晶配向処理剤。
(8)前記式[2]のWが、単結合、炭素数が1~10の直鎖状又は分岐状アルキレン基又はシクロヘキサン環である上記(1)~(7)のいずれかに記載の液晶配向処理剤。
(9)前記(C)成分の重合体におけるジアミン成分が、下記の式[3]で示される構造のジアミン化合物を少なくとも1種以上含む、上記(1)~(8)のいずれかに記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000011
(Yは下記の式[3-1]~式[3-6]から選ばれる置換基を示し、mは1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000012
(aは0~4の整数を示し、bは0~4の整数を示す。
は単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示し、Yは単結合又は-(CH-(bは1~15の整数である)を示し、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示し、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数12~25の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、nは0~4の整数を示し、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。
は-O-、-CHO-、-COO-、-OCO-、-CONH-又は-NHCO-を示し、Yは炭素数8~22のアルキル基を示す。
及びY10はそれぞれ独立して、炭素数1~12の炭化水素基を示す。
11は炭素数1~5のアルキル基を示す。)
(10)前記(C)成分の重合体におけるテトラカルボン酸成分に、下記の式[4]で示される化合物を含む、上記(1)~(9)のいずれかに記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000013
(Zは下記の式[4a]~式[4j]から選ばれる構造の基である。)
Figure JPOXMLDOC01-appb-C000014
(Z~Zは水素原子、メチル基、塩素原子又はベンゼン環を示し、それぞれ同じであっても異なってもよく、Z及びZは水素原子又はメチル基を示し、それぞれ同じであっても異なってもよい。)
(11)前記(C)成分の重合体が、ポリアミド酸を脱水閉環させて得られるポリイミドである上記(1)~(10)のいずれかに記載の液晶配向処理剤。
(12)前記(C)成分の100質量部に対して、前記(A)成分が0.1~30質量部である上記(1)~(11)のいずれかに記載の液晶配向処理剤。
(13)前記(C)成分の100質量部に対して、前記(B)成分が0.1~30質量部である上記(1)~(12)のいずれかに記載の液晶配向処理剤。
(14)上記(1)~(13)のいずれかに記載の液晶配向処理剤を用いて得られる液晶配向膜。
(15)上記(1)~(13)のいずれかに記載の液晶配向処理剤を用い、インクジェット法を用いて得られる液晶配向膜。
(16)上記(14)又は(15)に記載の液晶配向膜を有する液晶表示素子。
(17)電極を備えた一対の基板の間に液晶層を有し、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させて製造される液晶表示素子に用いられる、上記(14)又は(15)に記載の液晶配向膜。
(18)上記(17)に記載の液晶配向膜を有する液晶表示素子。
(19)電極を備えた一対の基板の間に液晶層を有し、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させて製造される液晶表示素子に用いられる、上記(14)又は(15)に記載の液晶配向膜。
(20)上記(19)に記載の液晶配向膜を有する液晶表示素子。
 本発明によれば、特定構造を有する化合物、並びにポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体を含有する液晶配向処理剤は、シール剤と液晶配向膜との接着性を高め、高温高湿条件下においても、液晶表示素子の額縁付近の表示ムラの発生を抑制し、かつ電圧保持率の低下を抑制することができる液晶配向膜を形成することができる。すなわち、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
 以下に、本発明について詳細に説明する。
 本発明は、下記の(A)成分、(B)成分及び(C)成分を含有する液晶配向処理剤、該液晶配向処理剤を用いて得られる液晶配向膜、さらには、該液晶配向膜を有する液晶表示素子である。
(A)成分:下記の式[1]で示される化合物(特定イソシアネート化合物ともいう)。
(B)成分:下記の式[2]で示される化合物(特定アミン化合物ともいう)。
(C)成分:ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体(特定重合体ともいう)。
Figure JPOXMLDOC01-appb-C000015
(Xは炭素数1~20の脂肪族炭化水素基を有する2価の有機基、又はベンゼン環若しくはシクロヘキサン環を有する炭素数6~24の2価の有機基を示し、Xは下記の式[1-1]~式[1-6]から選ばれる構造を示す。)
Figure JPOXMLDOC01-appb-C000016
(Aは水素原子又はベンゼン環を示し、Aは単結合、又はベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基を示し、Aは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。)
Figure JPOXMLDOC01-appb-C000017
(Wは脂肪族炭化水素基又は非芳香族環式炭化水素基を有する有機基を示す。Wは単結合、-O-、-NH-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-又は-SO-を示す。Wは単結合、ベンゼン環又はシクロヘキサン環を示す。Wは単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-又は-SO-を示す。Wは単結合、脂肪族炭化水素基又は非芳香族環式炭化水素基を有する有機基を示し、nは1~5の整数を示す。)
 本発明の液晶配向処理剤において、特定アミン化合物中の1級アミノ基は、特定重合体中のカルボキシル基と塩形成をしているか、特定重合体中のカルボキシル基やカルボキシエステル基に対して、水又はアルコールの脱離を伴うアミド結合をしているか、又は、特定重合体中のイミド基に対してイミド基の開環を伴う結合反応をしていると考えられる。すなわち、特定アミン化合物は、特定重合体に対して、その1級アミノ基を介して特定重合体に塩形成や化学結合していると考えられる。
 さらに、液晶配向処理剤中に含まれる特定イソシアネート化合物のOCN基(イソシアネート基ともいう)は、特定重合体に対して塩形成や化学結合した特定アミン化合物の末端OH基(水酸基ともいう)と化学結合すると考えられる。すなわち、液晶配向処理剤の調製が、有機溶媒中で混合するという簡便な方法にも拘らず、該液晶配向処理剤から得られた液晶配向膜では、特定アミン化合物を介して、特定イソシアネート化合物と特定重合体とが効率良く結合していると考えられる。
 また、特定イソシアネート化合物中のXである式[1-1]~式[1-6]の2重結合部位は、熱や紫外線の照射により、反応することが知られている。さらに、これらの2重結合部位は、シール剤中に含まれる化合物中にも含まれている部位である。
 したがって、本発明の液晶配向処理剤を用いた場合、液晶表示素子を作製する際のシール剤の硬化工程、すなわち、紫外線照射工程や焼成工程により、液晶配向膜中の2重結合部位とシール剤中の化合物とが化学反応して、シール剤と液晶配向膜とが化学結合し、これらの接着性を高めることができる。
 上記のように、本発明の特定イソシアネート化合物、特定アミン化合物及び特定重合体を含有する液晶配向処理剤は、シール剤との密着性が高く、高温高湿条件下において、液晶表示素子の額縁付近の表示ムラの発生を抑制し、かつ電圧保持率の低下を抑制することができる液晶配向膜の形成が可能である。
<特定イソシアネート化合物>
 本発明の特定イソシアネート化合物は、下記の式[1]で示される化合物である。
Figure JPOXMLDOC01-appb-C000018
(X、Xは上記で定義したものと同意義である。)
Figure JPOXMLDOC01-appb-C000019
(A、A及びAは上記で定義したものと同意義である。)
 式[1]中、Xは炭素数1~20の脂肪族炭化水素基を有する2価の有機基、又はベンゼン環若しくはシクロヘキサン環を有する炭素数6~24の2価の有機基を示す。なかでも、炭素数1~10のアルキレン基が好ましく、より好ましくは炭素数が1~5のアルキレン基である。
 式[1]中、Xは式[1-1]~式[1-6]から選ばれる構造である。
 式[1-3]中、Aは水素原子又はベンゼン環を示す。なかでも、水素原子が好ましい。
 式[1-6]中、Aは単結合、又はベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基である。なかでも、単結合、ベンゼン環、シクロヘキサン環又はビフェニル環が好ましい。
 式[1-6]中、Aは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。なかでも、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基が好ましい。
 式[1]中、Xは式[1-1]、式[1-2]、式[1-4]又は式[1-6]で示される構造が好ましい。
 より具体的には、下記の式[1a]~式[1e]で示される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000020
(Xは炭素数1~5のアルキレン基、ベンゼン環又はシクロヘキサン環を示し、Xは炭素数1~5のアルキレン基、ベンゼン環又はシクロヘキサン環を示す。)
Figure JPOXMLDOC01-appb-C000021
(Xは炭素数1~5のアルキレン基、ベンゼン環又はシクロヘキサン環を示し、Xは炭素数1~5のアルキレン基、ベンゼン環又はシクロヘキサン環を示し、Xは炭素数1~5のアルキレン基、ベンゼン環又はシクロヘキサン環を示し、Xは単結合、ベンゼン環、シクロヘキサン環又はビフェニル環を示し、Xは炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基を示す。)
 上記の特定イソシアネート化合物は、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
<特定アミン化合物>
 本発明の特定アミン化合物は、下記の式[2]で示される化合物である。
Figure JPOXMLDOC01-appb-C000022
 式[2]中、Wは特定アミン化合物に含まれる1級アミノ基が特定重合体と塩形成や結合反応をしやすくするため、脂肪族炭化水素基又は非芳香族環式炭化水素基を有する有機基である。
 脂肪族炭化水素基の具体例としては、直鎖状アルキレン基、分岐状アルキレン基又は不飽和結合を有する炭化水素基等を挙げることができる。なかでも、炭素数が1~20の直鎖状又は分岐状アルキレン基が好ましい。より好ましくは炭素数が1~15の直鎖状又は分岐状アルキレン基であり、さらに好ましくは炭素数が1~10の直鎖状又は分岐状アルキレン基である。
 非芳香族環式炭化水素基の具体例としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロウンデカン環、シクロドデカン環、シクロトリデカン環、シクロテトラデカン環、シクロペンタデカン環、シクロヘキサデカン環、シクロヘプタデカン環、シクロオクタデカン環、シクロノナデカン環、シクロイコサン環、トリシクロエイコサン環、トリシクロデコサン環、ビシクロへキシル環、ビシクロヘプタン環、デカヒドロナフタレン環、ノルボルネン環、アダマンタン環などが挙げられる。なかでも、炭素数3~20からなる環が好ましい。より好ましくは炭素数3~15からなる環であり、さらに好ましくは炭素数6~12からなる環で、非芳香族環式炭化水素基である。具体的には、シクロヘキサン環又はビシクロへキシル環であり、特に好ましくは、シクロヘキサン環である。
 式[2]中、Wは単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-又は-SO-である。なかでも、単結合、-O-、-NH-、-COO-、-OCO-、-CONH-又は-NHCO-が好ましい。より好ましくは、単結合、-O-、-NH-、-OCO-又は-NHCO-であり、特に好ましいのは、単結合、-O-又は-OCO-である。
 式[2]中、Wは単結合、ベンゼン環又はシクロヘキサン環である。より好ましくは、単結合又はベンゼン環である。
 式[2]中、Wは単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-又は-SO-である。なかでも、単結合、-O-、-NH-、-COO-、-OCO-、-CONH-又は-NHCO-が好ましい。より好ましくは、単結合、-O-、-NH-、-OCO-又は-CONH-であり、特に好ましいのは、単結合、-O-、-NH-又は-CONH-である。
 式[2]中、Wは単結合、脂肪族炭化水素基又は非芳香族環式炭化水素基を有する有機基である。脂肪族炭化水素基及び非芳香族環式炭化水素基の具体例は、上述したものが挙げられる。なかでも、単結合、炭素数1~20の直鎖状又は分岐状アルキレン基、又は炭素数3~20からなる非芳香族環式炭化水素基が好ましい。より好ましくは、単結合、炭素数1~15の直鎖状又は分岐状アルキレン基、又は炭素数3~15からなる非芳香族環式炭化水素基である。さらに好ましくは、単結合、炭素数が1~10の直鎖状又は分岐状アルキレン基、シクロヘキサン環又はビシクロへキシル環であり、特に好ましくは、単結合、炭素数が1~10の直鎖状又は分岐状アルキレン基又はシクロヘキサン環である。
 式[2]中、nは1~5の整数である。なかでも、1~4の整数が好ましい。より好ましくは、1~3の整数である。
 式[2]におけるW、W、W、W、W及びnの好ましい組み合わせは、表1~表14に示すとおりである。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 上記の特定アミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
<特定重合体>
 本発明の(C)成分である特定重合体は、ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体である。
 ポリイミド前駆体は、下記の式[A]で示される構造である。
Figure JPOXMLDOC01-appb-C000037
(Rは4価の有機基であり、Rは2価の有機基であり、A及びAは水素原子又は炭素数1~8のアルキル基を示し、それぞれ同じであっても異なってもよく、A及びAは水素原子、炭素数1~5のアルキル基又はアセチル基を示し、それぞれ同じであっても異なってもよく、nは正の整数を示す。)
 前記ジアミン成分としては、分子内に1級又は2級のアミノ基を2個有するジアミン化合物であり、テトラカルボン酸成分としては、テトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。
 特定重合体は、下記の式[B]で示されるテトラカルボン酸二無水物と下記の式[C]で示されるジアミン化合物とを原料とすることで比較的簡便に得られるという理由から、下記の式[D]で示される繰り返し単位の構造式からなるポリアミド酸又は該ポリアミド酸をイミド化させたポリイミドが好ましい。
Figure JPOXMLDOC01-appb-C000038
(式[B]及び式[C]中、R及びRは式[A]で定義したものと同意義である)。
Figure JPOXMLDOC01-appb-C000039
(R及びRは式[A]で定義したものと同意義である。) 
 また、通常の合成手法で、上記で得られた式[D]の重合体に、式[A]で示されるA及びAの炭素数1~8のアルキル基、及び式[A]で示されるA及びAの炭素数1~5のアルキル基又はアセチル基を導入することもできる。
<ジアミン成分>
 (C)成分である特定重合体を作製するためのジアミン成分としては、公知のジアミン化合物を用いることができる。
 なかでも、下記の式[3]で示される構造を有するジアミン化合物(特定ジアミン化合物ともいう)を少なくとも1種以上用いることが好ましい。
Figure JPOXMLDOC01-appb-C000040
(Yは下記の式[3-1]~式[3-6]から選ばれる置換基を示し、mは1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000041
 式[3-1]中、aは、0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0又は1が好ましい。
 式[3-2]中、bは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0又は1の整数が好ましい。
 式[3-3]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示す。なかでも、原料の入手性や合成の容易さの点から、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又は-COO-が好ましい。より好ましいのは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又は-COO-である。
 式[3-3]中、Yは単結合又は-(CH-(bは1~15の整数である)を示す。なかでも、単結合又は-(CH-(bは1~10の整数である)が好ましい。
 式[3-3]中、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示す。なかでも、合成の容易さの点から、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-又は-COO-が好ましい。より好ましいのは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-又は-COO-である。
 式[3-3]中、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。さらに、Yは、ステロイド骨格を有する炭素数12~25の有機基から選ばれる2価の有機基であってもよい。なかでも、合成の容易さの点から、ベンゼン環、シクロへキサン環又はステロイド骨格を有する炭素数12~25の有機基が好ましい。
 式[3-3]中、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。なかでも、ベンゼン環又はシクロへキサン環が好ましい。
 式[3-3]中、nは0~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0~3が好ましい。より好ましいのは、0~2である。
 式[3-3]中、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。特に好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。
 式[3-3]におけるY、Y、Y、Y、Y、Y及びnの好ましい組み合わせは、国際公開公報WO2011/132751(2011.10.27公開)の13頁~34頁の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表におけるY1~Y6は、それぞれ、本発明のY~Yに読み替えるものとする。
 式[3-4]中、Yは-O-、-CHO-、-COO-、-OCO-、-CONH-又は-NHCO-を示す。なかでも、-O-、-CHO-、-COO-又は-CONH-が好ましい。より好ましくは、-O-、-COO-又は-CONH-である。
 式[3-4]中、Yは炭素数8~22のアルキル基を示す。
 式[3-5]中、Y及びY10はそれぞれ独立して、炭素数1~12の炭化水素基を示す。
 式[3-6]中、Y11は炭素数1~5のアルキル基を示す。
 式[3]で示される特定ジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては、下記に示すものが挙げられる。
 一例として、式[3]で示される特定ジアミン化合物は、下記の式[3-A]で示されるジニトロ体化合物を合成し、さらにそのニトロ基を還元してアミノ基に変換することで得られる。
Figure JPOXMLDOC01-appb-C000042
(Yは前記式[3-1]~式[3-6]から選ばれる置換基を示し、mは1~4の整数を示す。)
 式[3-A]で示されるジニトロ体化合物のジニトロ基を還元する方法には、特に制限はなく、通常、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系溶剤などの溶媒中、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナ、硫化白金炭素などを触媒として用いて、水素ガス、ヒドラジン又は塩化水素下で反応させる方法がある。
 下記に、式[3]で示される特定ジアミン化合物の具体的な構造を挙げるが、これらの例に限定されるものではない。
 特定ジアミン化合物としては、2,4-ジメチル-m-フェニレンジアミン、2,6-ジアミノトルエン、2,4-ジアミノ安息香酸、3,5-ジアミノ安息香酸、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール等の他に、下記の式[3-7]~式[3-47]で示される構造のジアミン化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000043
(Aは、炭素数1~22のアルキル基又はフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
(Rは-O-、-OCH-、-CHO-、-COOCH-又は-CHOCO-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を示す。)
Figure JPOXMLDOC01-appb-C000056
(Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-又は-CH-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を示す。)
Figure JPOXMLDOC01-appb-C000057
(Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-又は-O-であり、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基又は水酸基である。)
Figure JPOXMLDOC01-appb-C000058
(Rは炭素数3~12のアルキル基を示す。なお、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体が好ましい。)
Figure JPOXMLDOC01-appb-C000059
(Rは炭素数3~12のアルキル基を示す。なお、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体が好ましい。)
Figure JPOXMLDOC01-appb-C000060
(Bはフッ素原子で置換されていてもよい炭素数3~20のアルキル基を示し、Bは1,4-シクロへキシレン基又は1,4-フェニレン基を示し、Bは酸素原子又は-COO-*(但し、「*」を付した結合手がBと結合する)を示し、Bは酸素原子又は-COO-*(但し、「*」を付した結合手が(CH)aと結合する)を示す。また、aは0又は1の整数を示し、aは2~10の整数を示し、aは0又は1の整数を示す。)
 上記式[3]で示される特定ジアミン化合物のなかで、式[3]中の置換基Yが式[3-3]で示される構造のジアミン化合物を用いた特定重合体から得られる液晶配向処理剤を用いて液晶配向膜を形成した場合は、液晶のプレチルト角を高くすることができる。プレチルト角を高めるには、上記ジアミン化合物の中でも、式[3-29]~式[3-40]又は式[3-43]~式[3-47]で示されるジアミン化合物を用いることが好ましい。より好ましいのは、式[3-25]~式[3-40]又は式[3-43]~式[3-47]で示されるジアミン化合物である。
 プレチルト角を高めるために用いるジアミン化合物の量は、ジアミン成分全体の5モル%以上80モル%以下であることが好ましい。より好ましくは、液晶配向処理剤の塗布性や液晶配向膜としての電気特性の点から、ジアミン成分全体の5モル%以上60モル%である。
 式[3]で示される特定ジアミン化合物は、特定重合体の溶媒への溶解性や塗布性、液晶配向膜にした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
 特定重合体を作製するためのジアミン成分としては、式[3]で示される特定ジアミン化合物以外のジアミン化合物(その他ジアミン化合物ともいう)をジアミン成分として用いることができる。下記に、その他ジアミン化合物の具体例を挙げるが、これらの例に限定されるものではない。
 m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどが挙げられる。
 また、その他ジアミン化合物として、ジアミン側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環又は複素環を有するもの、さらに、これらの基からなる大環状置換体を有するものなどを挙げることができる。具体的には、下記の式[DA1]~[DA7]で示されるジアミン化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
(Aは-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-又は-NH-を示し、Aは炭素数1~22の直鎖状若しくは分岐状のアルキル基、又は炭素数1~22の直鎖状若しくは分岐状のフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000064
(pは1~10の整数を示す。)
 本発明の効果を損なわない限りにおいて、その他ジアミン化合物として、下記の式[DA8]~式[DA13]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
(mは0~3の整数を示し、nは1~5の整数を示す。)
 さらに、本発明の効果を損なわない限りにおいて、下記の式[DA14]~式[DA17]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000067
(Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、m及びmはそれぞれ0~4の整数を示し、かつm+mは1~4の整数を示し、m及びmはそれぞれ1~5の整数を示し、Aは炭素数1~5の直鎖又は分岐アルキル基を示し、mは1~5の整数を示し、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、mは1~4の整数を示す。)
 さらに、その他ジアミン化合物として、下記の式[DA18]及び式[DA19]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000068
 さらには、本発明の効果を損なわない限りにおいて、下記の式[DA20]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000069
(Aは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-及び-N(CH)CO-からなる群から選ばれる2価の有機基であり、Aは単結合、炭素数1~20の脂肪族炭化水素基、非芳香族環式炭化水素基又は芳香族炭化水素基であり、Aは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-及び-O(CH-(mは1~5の整数である)からなる群より選ばれる2価の基であり、Aは窒素含有芳香族複素環であり、nは1~4の整数である。)
 上記のその他ジアミン化合物は、特定重合体の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
<テトラカルボン酸成分>
 本発明の(C)成分である特定重合体を作製するためのテトラカルボン酸成分としては、下記の式[4]で示されるテトラカルボン酸二無水物やそのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物(すべてを総称して特定テトラカルボン酸成分ともいう)を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000070
 式[4]中、Zは下記の式[4a]~式[4j]から選ばれる構造の基である。
Figure JPOXMLDOC01-appb-C000071
 式[4a]中、Z~Zは水素原子、メチル基、塩素原子又はベンゼン環を示し、それぞれ同じであっても異なってもよい。
 式[4g]中、Z及びZは水素原子又はメチル基を示し、それぞれ同じであっても異なってもよい。
 上記の特定テトラカルボン酸成分である式[4]に示される構造中、Zは、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[4a]、式[4c]、式[4d]、式[4e]、式[4f]又は式[4g]で示される構造が好ましい。より好ましいのは、式[4a]、式[4e]、式[4f]又は式[4g]で示される構造であり、特に好ましいのは、式[4e]、式[4f]又は式[4g]である。
 特定テトラカルボン酸成分は、全テトラカルボン酸成分中の1モル%以上であることが好ましい。より好ましいのは、5モル%以上であり、特に好ましいのは、10モル%以上である。中でも、15~100モル%がさらに好ましい。
 また、式[4e]、式[4f]又は式[4g]の構造の特定テトラカルボン酸成分を用いる場合、その使用量は、テトラカルボン酸成分全体の20モル%以上とすることが好ましい。より好ましくは、30モル%以上である。さらに、テトラカルボン酸成分のすべてを式[4e]、式[4f]又は式[4g]の構造のテトラカルボン酸成分であってもよい。
 特定重合体においては、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸成分以外のその他のテトラカルボン酸成分を用いることができる。
 その他のテトラカルボン酸成分としては、以下に示すテトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。
 すなわち、その他のテトラカルボン酸成分としては、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸又は1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸が挙げられる。
 特定テトラカルボン酸成分及びその他のテトラカルボン酸成分は、特定重合体の溶媒への溶解性や液晶配向処理剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
<特定重合体の製造方法>
 特定重合体を合成する方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。一般的には、テトラカルボン酸及びその誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミド酸を得る。具体的には、テトラカルボン酸二無水物と1級又は2級のジアミン化合物とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸と1級又は2級のジアミン化合物とを脱水重縮合反応させてポリアミド酸を得る方法、又はテトラカルボン酸ジハライドと1級又は2級のジアミン化合物とを重縮合させてポリアミド酸を得る方法が用いられる。
 ポリアミド酸アルキルエステルを得るには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級又は2級のジアミン化合物とを重縮合させる方法、カルボン酸基をジアルキルエステル化したテトラカルボン酸ジハライドと1級又は2級のジアミン化合物とを重縮合させる方法、又はポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。
 ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを含む有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる有機溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-イミダゾリジノンなどが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000072
(Dは炭素数1~3のアルキル基を示し、Dは炭素数1~3のアルキル基を示し、Dは炭素数1~4のアルキル基を示す。)
 これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない有機溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記有機溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
 ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ重合体としてもよい。その際の重合温度は-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
 本発明のポリイミドは前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。
 上記特定重合体の分子量は、そこから得られる液晶配向膜の強度、液晶配向膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。
<液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜(樹脂被膜ともいう)を形成するための塗布溶液であり、特定イソシアネート化合物、特定アミン化合物、特定重合体及び溶媒を含有する。
 液晶配向処理剤中の特定イソシアネート化合物の含有量は、特定重合体100質量部に対して、0.1~30質量部である。なかでも、0.5~30質量部が好ましく、特に好ましいのは、1~20質量部である。
 液晶配向処理剤中の特定アミン化合物の導入量は、特定重合体100質量部に対して、0.1~30質量部である。なかでも、0.5~30質量部が好ましく、特に好ましいのは、1~20質量部である。
 液晶配向処理剤への特定イソシアネート化合物及び特定アミン化合物の添加方法は、特に限定されない。好ましくは、次の方法が挙げられる。すなわち、特定重合体を溶媒に溶解させた重合体溶液に、特定アミン化合物を添加し、この特定重合体及び特定アミン化合物の溶液を加熱攪拌する。その際の温度は、25~100℃が好ましく、より好ましくは、25~80℃である。その後、この溶液に、特定イソシアネート化合物を添加し、特定重合体、特定アミン化合物及び特定イソシアネート化合物の溶液を加熱攪拌する。その際の温度は、25~100℃が好ましく、より好ましくは、25~80℃である。これで得られた溶液を、そのまま液晶配向処理剤に用いても良く、さらに、下記に示すその他重合体、溶媒、添加剤等を添加しても良い。
 液晶配向処理剤におけるすべての重合体成分は、すべてが本発明の特定重合体であってもよく、それ以外の他の重合体が混合されていても良い。その際、それ以外の他の重合体の含有量は、特定重合体100質量部に対して、0.5~15質量部、好ましくは1~10質量部である。それ以外の他の重合体としては、前記式[3]で示されるジアミン化合物及び特定テトラカルボン酸成分を用いていないポリイミド系重合体が挙げられる。さらには、それ以外の重合体、具体的には、セルロース系重合体、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド、ポリシロキサンなどが挙げられる。
 液晶配向処理剤中の溶媒は、塗布により均一な液晶配向膜を形成するという観点から、液晶配向処理剤中の溶媒の含有量が70~99.9質量%であることが好ましく、80~99質量%がより好ましい。含有量は、目的とする液晶配向膜の膜厚によって適宜変更することができる。
 液晶配向処理剤に用いる溶媒は、特定化合物及び特定重合体を溶解させる溶媒(良溶媒ともいう)であれば特に限定されない。下記に、良溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノンなどである。
 なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンを用いることが好ましい。さらには、特定化合物及び特定重合体の溶媒への溶解性が高い場合は、前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。
 液晶配向処理剤における良溶媒は、液晶配向処理剤に含まれる溶媒全体の10~100質量%であることが好ましい。なかでも、20~90質量%が好ましい。より好ましいのは、30~80質量%である。
 液晶配向処理剤は、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、又は上述した前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。
 これら貧溶媒は、液晶配向処理剤に含まれる溶媒全体の1~70質量%であることが好ましい。なかでも、1~60質量%が好ましい。より好ましいのは5~60質量%である。
 液晶配向処理剤には、本発明の効果を損なわない限り、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する化合物、さらには、重合性不飽和結合を有する化合物(総称して架橋性化合物ともいう)を導入することもできる。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン、1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。
 オキセタン基を有する架橋性化合物は、下記の式[4A]で示すオキセタン基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000073
 具体的には、国際公開公報WO2011/132751(2011.10.27公開)の58頁~59頁に掲載される式[4a]~式[4k]で示される架橋性化合物が挙げられる。
 シクロカーボネート基を有する架橋性化合物としては、下記の式[5A]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000074
 具体的には、国際公開公報WO2012/014898(2012.2.2公開)の76頁~82頁に掲載される式[5-1]~式[5-42]で示される架橋性化合物が挙げられる。
 ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂、エチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基若しくはアルコキシメチル基又はその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。このメラミン誘導体又はベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。
 このようなメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリル等、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。
 ヒドロキシル基又はアルコキシル基を有するベンゼン、又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン、2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。
 より具体的には、国際公開公報WO2011/132751.(2011.10.27公開)の62頁~66頁に掲載される、式[6-1]~式[6-48]で示される架橋性化合物が挙げられる。
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル、N-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物;などが挙げられる。
 加えて、下記の式[7A]で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000075
(Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環及びフェナントレン環からからなる群から選ばれる基を示し、Eは下記の式[7a]及び式[7b]から選ばれる基を示し、nは1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000076
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向処理剤に用いる架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
 架橋性化合物の含有量は、すべての重合体成分100質量部に対して、0.1~150質量部であることが好ましい。架橋反応が進行し目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1~100質量部がより好ましく、特に、1~50質量部が最も好ましい。
 液晶配向処理剤は、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 さらに、液晶配向処理剤には、液晶配向膜中の電荷移動を促進し、素子の電荷抜けを促進させる化合物として、国際公開公報WO2011/132751(2011.10.27公開)の69頁~73頁に掲載される、式[M1]~式[M156]で示される窒素含有複素環アミン化合物を添加することもできる。このアミン化合物は、液晶配向処理剤に直接添加しても構わないが、適当な溶媒で濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。用いる溶媒としては、上述した特定重合体を溶解させる有機溶媒であれば特に限定されない。
 液晶配向処理剤には、上記の貧溶媒、架橋性化合物、樹脂被膜又は液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物、及び電荷抜けを促進させる化合物の他に、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
<液晶配向膜・液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板、ポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO(Indium Tin Oxide)電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミニウムなどの光を反射する材料も使用できる。
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法などが一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、目的に応じてこれらを用いてもよい。
 液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブンなどの加熱手段により、液晶配向処理剤に用いる溶媒に応じて、30~300℃、好ましくは30~250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。
 焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の液晶配向膜をラビング、偏光紫外線照射などで処理する。
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。
 さらに、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により重合性化合物を重合させて製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300~400nm、好ましくは310~360nmである。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線と加熱を同時に行ってもよい。
 上記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルト角を制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で、光重合性化合物に紫外線などを照射し、生成した重合体によって液晶分子のプレチルト角を制御する。すなわち、重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるので、液晶層に形成される電界などを制御することにより、液晶分子のプレチルト角を調整することができる。
 また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルト角を制御することが難しい垂直配向型の液晶層の形成に適している。
 本発明の液晶表示素子は、上記した手法により、液晶配向処理剤から液晶配向膜付き基板を得た後、液晶セルを作製し、紫外線の照射及び加熱の少なくとも一方により重合性化合物を重合することで液晶分子の配向を制御することができる。
 PSA方式の液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。
 液晶には、熱や紫外線照射により重合する重合性化合物が混合される。重合性化合物としては、アクリレート基、メタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分の100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御できなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。
 液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。
 さらに、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300~400nm、好ましくは310~360nmである。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線と加熱を同時に行ってもよい。
 活性エネルギー線及び熱の少なくとも一方より重合する重合性基を含む液晶配向膜を得るためには、この重合性基を含む化合物を液晶配向処理剤中に添加する方法や、重合性基を含む重合体成分を用いる方法が挙げられる。本発明の液晶配向処理剤は、熱や紫外線の照射により、反応する2重結合部位を持つ特定化合物を含んでいるため、紫外線の照射及び加熱の少なくとも一方により液晶分子の配向を制御することができる。
 かかる重合性基を含む液晶配向膜を有する液晶セルの作製、及び液晶セル作製後の液晶分子の配向の制御は、前記したPSA方式の液晶セルと同様の方法を用いることが可能である。
 本発明の液晶配向処理剤を用いて作製された液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビに好適に利用できる。
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定して解釈されない。合成例、実施例及び比較例中の略語は、以下の通りである。
<特定イソシアネート化合物>
 P1:下記の式[P1]で示される化合物
 P2:下記の式[P2]で示される化合物
 P3:下記の式[P3]で示される化合物
Figure JPOXMLDOC01-appb-C000077
<特定アミン化合物>
 S1:アミノエタノール
 S2:3-アミノ-1-プロパノール
Figure JPOXMLDOC01-appb-C000078
<ポリイミド系重合体(特定重合体)を作製するためのモノマー>
(特定ジアミン化合物)
 A1:3,5-ジアミノ安息香酸
 A2:下記の式[A2]で示されるジアミン化合物
 A3:1,3-ジアミノ-4-オクタデシルオキシベンゼン
 A4:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
 A5:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン
 A6:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
 A7:下記の式[A7]で示されるジアミン化合物
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
(その他ジアミン化合物)
 B1:p-フェニレンジアミン
 B2:m-フェニレンジアミン
Figure JPOXMLDOC01-appb-C000082
(特定テトラカルボン酸成分)
 C1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 C2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物 C3:下記の式[C3]で示されるテトラカルボン酸二無水物
 C4:下記の式[C4]で示されるテトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000083
<溶媒>
 NMP:N-メチル-2-ピロリドン
 NEP:N-エチル-2-ピロリドン
 γ-BL:γ-ブチロラクトン
 ECS:エチレングリコールモノエチルエーテル
 EC:ジエチレングリコールモノエチルエーテル 
 BCS:エチレングリコールモノブチルエーテル
 PB:プロピレングリコールモノブチルエーテル
「ポリイミド系重合体の分子量の測定方法」
 ポリイミド前駆体及びポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
「ポリイミドのイミド化率の測定方法」
 ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<合成例1>
 C1(3.28g,16.7mmol)、A2(0.69g,3.41mmol)及びB1(1.46g,13.5mmol)をNMP(16.3g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度25質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量は、26,800、重量平均分子量は、87,100であった。
<合成例2>
 C2(3.64g,14.5mmol)、A2(0.88g,4.35mmol)及びB2(2.67g,24.7mmol)をNEP(19.9g)中で混合し、50℃で2時間反応させた。その後、C1(2.76g,14.1mmol)とNEP(10.0g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(2)を得た。このポリアミド酸の数平均分子量は、23,900、重量平均分子量は、70,900であった。
<合成例3>
 合成例2で得られたポリアミド酸溶液(2)(30.0g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.93g)及びピリジン(2.45g)を加え、70℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は69%であり、数平均分子量は22,500、重量平均分子量は60,800であった。
<合成例4>
 C2(4.25g,17.0mmol)、A1(1.85g,12.2mmol)及びA4(4.61g,12.1mmol)をNEP(24.1g)中で混合し、80℃で5時間反応させた。その後、C1(1.36g,6.93mmol)とNEP(12.1g)を加え、40℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(4)を得た。このポリアミド酸の数平均分子量は、23,000、重量平均分子量は、68,000であった。
<合成例5>
 合成例4で得られたポリアミド酸溶液(4)(30.0g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.80g)及びピリジン(2.40g)を加え、70℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(5)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は20,100、重量平均分子量は58,100であった。
<合成例6>
 C2(4.85g,19.4mmol)、A1(1.84g,12.1mmol)、A2(0.49g,2.43mmol)及びA5(3.82g,9.68mmol)をNMP(23.8g)中で混合し、80℃で5時間反応させた。その後、C1(0.88g,4.51mmol)とNMP(11.9g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.35g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(6)を得た。このポリイミドのイミド化率は84%であり、数平均分子量は16,800、重量平均分子量は51,300であった。
<合成例7>
 C2(2.30g,9.19mmol)、A1(2.45g,16.1mmol)及びA6(2.98g,6.89mmol)をNEP(20.8g)中で混合し、80℃で5時間反応させた。その後、C1(2.65g,13.5mmol)とNEP(10.4g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.45g)及びピリジン(3.31g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(7)を得た。このポリイミドのイミド化率は80%であり、数平均分子量は16,800、重量平均分子量は50,900であった。
<合成例8>
 C2(4.10g,16.4mmol)、A1(2.85g,18.7mmol)及びA7(2.31g,4.68mmol)をNMP(21.1g)中で混合し、80℃で5時間反応させた。その後、C1(1.30g,6.64mmol)とNMP(10.6g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.88g)及びピリジン(2.53g)を加え、60℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(8)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は17,300、重量平均分子量は52,100であった。
<合成例9>
 C3(5.13g,22.9mmol)、A1(2.31g,15.2mmol)、A2(0.48g,2.34mmol)及びA7(2.87g,5.82mmol)をNMP(32.4g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.00g)及びピリジン(2.55g)を加え、60℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は18,000、重量平均分子量は51,400であった。
<合成例10>
 C3(5.11g,22.8mmol)、A1(2.11g,13.9mmol)及びA5(3.65g,9.25mmol)をNMP(32.6g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.00g)及びピリジン(2.50g)を加え、70℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は17,500、重量平均分子量は52,000であった。
<合成例11>
 C4(3.31g,11.0mmol)、A1(1.01g,6.62mmol)、A2(0.89g,4.39mmol)及びA3(4.14g,11.0mmol)をNEP(22.9g)中で混合し、40℃で6時間反応させた。その後、C1(2.09g,10.7mmol)とNEP(11.4g)を加え、25℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(30.5g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(7.20g)及びピリジン(2.35g)を加え、40℃で1.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(11)を得た。このポリイミドのイミド化率は70%であり、数平均分子量は18,900、重量平均分子量は45,300であった。
 ポリイミド系重合体をまとめて表15に示す。
Figure JPOXMLDOC01-appb-T000084
*1:ポリアミド酸。
「液晶配向処理剤のインクジェット塗布性の評価」
 液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、インクジェット塗布性の評価を行った。インクジェット塗布機には、HIS-200(日立プラントテクノロジー社製)を用いた。塗布は、純水及びIPA(イソプロピルアルコール)にて洗浄を行ったITO(酸化インジウムスズ)蒸着基板上に、塗布面積が70×70mm、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒、塗布から仮乾燥までの時間が60秒、仮乾燥がホットプレート上にて70℃で5分間の条件で行った。
 得られた液晶配向膜付き基板の塗膜性を確認した。具体的には、塗膜をナトリウムランプの下で目視観察することで行い、ピンホールの有無を確認した。その結果、いずれの実施例で得られた液晶配向膜とも、塗膜上にピンホールは見られず、塗膜性に優れた液晶配向膜が得られた。
「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」
 液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、液晶セルの作製(通常セル)を行った。この溶液を純水及びIPAにて洗浄を行った100×100mmITO電極付き基板(縦100mm×横100mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして膜厚が100nmのポリイミド液晶配向膜付きのITO基板を得た。このITO基板の塗膜面をロール径が120mmのラビング装置でレーヨン布を用いて、ロール回転数が1000rpm、ロール進行速度が50mm/sec、押し込み量が0.1mmの条件でラビング処理を行った。
 得られた液晶配向膜付きのITO基板を2枚用意し、その一方の液晶配向膜付き基板の液晶配向膜面に、6μmのスペーサーを散布した。その後、この基板の周囲に紫外線硬化型のシール剤を描画し、ODF(One Drop Filling)法にて液晶を注入して、液晶セルを得た。その後、紫外線硬化型のシール剤を硬化させるため、この液晶セルに、照度60mWのメタルハライドランプを用いて、310nm以下の波長をカットし、365nm換算で5J/cmの紫外線を照射した。その後、熱循環型クリーンオーブン中にて120℃で60分間加熱処理をして、液晶セル(通常セル)を得た。
 なお、実施例1~3で得られた液晶配向処理剤(1)~(3)、及び比較例1~6で得られた液晶配向処理剤(21)~(26)を用いた液晶セルには、ネマティック液晶(MLC-2003)(メルク・ジャパン社製)を用いた。
 また、実施例4~6で得られた液晶配向処理剤(4)~(6)、実施例8で得られた液晶配向処理剤(8)、実施例9で得られた液晶配向処理剤(9)、実施例11~15で得られた液晶配向処理剤(11)~(15)、実施例17~20で得られた液晶配向処理剤(17)~(20)、及び比較例7~12で得られた液晶配向処理剤(27)~(32)を用いた液晶セルには、ネマティック液晶(MLC-6608)(メルク・ジャパン社製)を用いた。
 得られた液晶セル(通常セル)を偏光板とバックライトを用いて、目視観察にて、シール剤付近の液晶配向性の評価を行ったところ、実施例及び比較例で得られたいずれの液晶セルとも、均一な液晶配向性を示した。
 その後、液晶セルを温度80℃、湿度90%RHの高温高湿槽内に72時間保管し、上記と同様の条件でシール剤付近の液晶配向性の評価を行った。具体的には、シール剤付近に液晶配向性の乱れが見られていないものほど、本評価に優れるとした。
 表19~21中、液晶配向性の乱れが見られていないものを○とし、液晶配向性の乱れが見られたものを×とした。
「高温高湿保管後の電圧保持率の評価(通常セル)」
 液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、液晶セルの作製(通常セル)を行った。この溶液を純水及びIPAにて洗浄を行った30×40mmITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして膜厚が100nmのポリイミド液晶配向膜付きのITO基板を得た。このITO基板の塗膜面をロール径が120mmのラビング装置でレーヨン布を用い、ロール回転数が1000rpm、ロール進行速度が50mm/sec、押込み量が0.1mmの条件でラビング処理した。
 得られた液晶配向膜付きのITO基板を2枚用意し、液晶配向膜面を内側にして6μmのスペーサーを挟んで組み合わせ、紫外線硬化型のシール剤を印刷した。次いで、他方の基板と液晶配向膜面が向き合うようにして貼り合わせた後、紫外線硬化型のシール剤を硬化させるための処理を行い、空セルを得た。具体的には、照度60mWのメタルハライドランプを用いて、310nm以下の波長をカットし、365nm換算で5J/cmの紫外線を照射し、その後、熱循環型クリーンオーブン中にて120℃で60分間加熱処理をして空セルを得た。この空セルに、減圧注入法によって、液晶を注入し、注入口を封止して液晶セル(通常セル)を得た。
 なお、各実施例及び比較例の液晶セルの作製に用いた液晶は、前記の「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」と同様とした。
 得られた液晶セルに、80℃の温度下で1Vの電圧を60μs印加し、50ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHRともいう)として計算した。なお、測定は、電圧保持率測定装置(VHR-1)(東陽テクニカ社製)を使用し、Voltage:±1V、Pulse Width:60μs、Flame Period:50msの設定で行った。
 さらに、電圧保持率の測定が終わった液晶セルを、温度80℃、湿度90%RHの高温高湿槽内に96時間保管し、再度、上記と同様の条件で電圧保持率の測定を行った。
 評価は、液晶セル作製直後の電圧保持率の値に対して、高温高湿槽内保管後の電圧保持率の値の低下が小さいものほど、良好とした(表19~20)。
「液晶セルの作製及び液晶配向性の評価(PSAセル)」
 液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、液晶セルの作製及び液晶配向性の評価(PSAセル)を行った。この溶液を、純水及びIPAにて洗浄した中心に10×10mmのパターン間隔20μmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)と中心に10×40mmのITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして膜厚が100nmのポリイミド塗膜を得た。
 この液晶配向膜付き基板を、液晶配向膜面を内側にして、6μmのスペーサー挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、下記の式で示される重合性化合物(1)を、ネマティック液晶(MLC-6608)の100質量%に対して0.3質量%混合した液晶混合物を注入し、注入口を封止して、液晶セルを得た。
Figure JPOXMLDOC01-appb-C000085
 得られた液晶セルに、交流5Vの電圧を印加しながら、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で20J/cmの紫外線照射を行い、液晶の配向方向が制御された液晶セル(PSAセル)を得た。液晶セルに紫外線を照射している際の照射装置内の温度は、50℃であった。
 この液晶セルの紫外線照射前と紫外線照射後の液晶の応答速度を測定した。応答速度は、透過率90%から透過率10%までのT90→T10を測定した。
 実施例で得られたPSAセルは、紫外線照射後の応答速度が、紫外線照射前に比べて早くなったことから、液晶の配向方向が制御されたことを確認した。また、実施例の液晶セルは、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)での観察により、液晶は均一に配向していることを確認した。
<実施例1>
 合成例1で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(1)(10.5g)に、NMP(20.9g)及びBCS(12.3g)を加え、25℃で2時間攪拌した。その後、この溶液に、S1(0.132g)を加え、25℃で4時間攪拌した。その後、P2(0.263g)を加え、60℃で6時間攪拌して、液晶配向処理剤(1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(1)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<実施例2>
 合成例2で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(2)(5.50g)に、NEP(9.90g)及びPB(7.50g)を加え、25℃で2時間攪拌した。その後、この溶液に、S1(0.097g)を加え、25℃で4時間攪拌した。その後、P2(0.097g)を加え、60℃で6時間攪拌して、液晶配向処理剤(2)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(2)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<実施例3>
 合成例3で得られたポリイミド粉末(3)(1.35g)に、NEP(14.8g)及びPB(6.30g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S2(0.095g)を加え、50℃で6時間攪拌した。その後、P2(0.095g)を加え、60℃で6時間攪拌して、液晶配向処理剤(3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(3)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<実施例4>
 合成例4で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(4)(5.50g)に、NEP(9.90g)及びPB(7.50g)を加え、25℃で2時間攪拌した。その後、この溶液に、S1(0.097g)を加え、25℃で4時間攪拌した。その後、P2(0.097g)を加え、60℃で6時間攪拌して、液晶配向処理剤(4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(4)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<実施例5>
 合成例4で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(4)(5.60g)に、NEP(9.00g)、EC(2.20g)及びPB(6.60g)を加え、25℃で2時間攪拌した。その後、この溶液に、S2(0.14g)を加え、25℃で4時間攪拌した。その後、P1(0.21g)を加え、60℃で6時間攪拌して、液晶配向処理剤(5)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(5)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<実施例6>
 合成例5で得られたポリイミド粉末(5)(1.33g)に、NEP(13.5g)及びPB(7.30g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S2(0.093g)を加え、50℃で6時間攪拌した。その後、P2(0.093g)を加え、60℃で6時間攪拌して、液晶配向処理剤(6)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(6)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」、「高温高湿保管後の電圧保持率の評価(通常セル)」及び「液晶セルの作製及び液晶配向性の評価(PSAセル)」を行った。
<実施例7>
 合成例5で得られたポリイミド粉末(5)(1.15g)に、NEP(24.2g)及びPB(13.0g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S1(0.081g)を加え、50℃で6時間攪拌した。その後、P2(0.115g)を加え、60℃で6時間攪拌して、液晶配向処理剤(7)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(7)を用いて、「液晶配向処理剤のインクジェット塗布性の評価」を行った。
<実施例8>
 合成例5で得られたポリイミド粉末(5)(1.35g)に、NMP(11.6g)、EC(2.10g)及びBCS(7.40g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S2(0.135g)を加え、50℃で6時間攪拌した。その後、P3(0.203g)を加え、60℃で6時間攪拌して、液晶配向処理剤(8)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(8)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<実施例9>
 合成例6の合成手法で得られたポリイミド粉末(6)(1.30g)に、NEP(13.2g)及びPB(7.10g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S1(0.195g)を加え、50℃で6時間攪拌した。その後、P1(0.221g)を加え、60℃で6時間攪拌して、液晶配向処理剤(9)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(9)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」、「高温高湿保管後の電圧保持率の評価(通常セル)」及び「液晶セルの作製及び液晶配向性の評価(PSAセル)」を行った。
<実施例10>
 合成例6の合成手法で得られたポリイミド粉末(6)(1.10g)に、NEP(23.1g)及びPB(12.4g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S1(0.165g)を加え、50℃で6時間攪拌した。その後、P1(0.187g)を加え、60℃で6時間攪拌して、液晶配向処理剤(10)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(10)を用いて、「液晶配向処理剤のインクジェット塗布性の評価」を行った。
<実施例11>
 合成例7で得られたポリイミド粉末(7)(1.32g)に、NEP(8.30g)、γ-BL(4.10g)及びBCS(8.30g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S2(0.026g)を加え、50℃で6時間攪拌した。その後、P2(0.066g)を加え、60℃で6時間攪拌して、液晶配向処理剤(11)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(11)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<実施例12>
 合成例7で得られたポリイミド粉末(7)(1.35g)に、NMP(12.7g)、ECS(2.10g)及びBCS(6.30g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S2(0.095g)を加え、50℃で6時間攪拌した。その後、P1(0.068g)及びP2(0.135g)を加え、60℃で6時間攪拌して、液晶配向処理剤(12)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(12)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<実施例13>
 合成例8で得られたポリイミド粉末(8)(1.30g)に、NEP(13.2g)及びPB(7.10g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S2(0.091g)を加え、50℃で6時間攪拌した。その後、P2(0.13g)を加え、60℃で6時間攪拌して、液晶配向処理剤(13)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(13)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」、「高温高湿保管後の電圧保持率の評価(通常セル)」及び「液晶セルの作製及び液晶配向性の評価(PSAセル)」を行った。
<実施例14>
 合成例8で得られたポリイミド粉末(8)(1.30g)に、NEP(13.2g)及びPB(7.10g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S1(0.065g)を加え、50℃で6時間攪拌した。その後、P1(0.039g)を加え、60℃で6時間攪拌して、液晶配向処理剤(14)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(14)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<実施例15>
 合成例9で得られたポリイミド粉末(9)(1.35g)に、NEP(10.6g)、γ-BL(2.10g)及びPB(8.50g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S1(0.135g)を加え、50℃で6時間攪拌した。その後、P3(0.135g)を加え、60℃で6時間攪拌して、液晶配向処理剤(15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(15)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<実施例16>
 合成例9で得られたポリイミド粉末(9)(1.10g)に、NEP(17.8g)、γ-BL(3.60g)及びPB(14.2g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S1(0.077g)を加え、50℃で6時間攪拌した。その後、P3(0.11g)を加え、60℃で6時間攪拌して、液晶配向処理剤(16)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(16)を用いて、「液晶配向処理剤のインクジェット塗布性の評価」を行った。
<実施例17>
 合成例10で得られたポリイミド粉末(10)(1.30g)に、NMP(13.2g)及びPB(7.10g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S2(0.13g)を加え、50℃で6時間攪拌した。その後、P1(0.195g)を加え、60℃で6時間攪拌して、液晶配向処理剤(17)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(17)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<実施例18>
 合成例10で得られたポリイミド粉末(10)(1.30g)に、NEP(13.2g)及びPB(7.10g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S1(0.091g)を加え、50℃で6時間攪拌した。その後、P1(0.091g)及びP2(0.091g)を加え、60℃で6時間攪拌して、液晶配向処理剤(18)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(18)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」、「高温高湿保管後の電圧保持率の評価(通常セル)」及び「液晶セルの作製及び液晶配向性の評価(PSAセル)」を行った。
<実施例19>
 合成例11で得られたポリイミド粉末(11)(1.35g)に、γ-BL(11.6g)、EC(2.10g)及びBCS(7.40g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S2(0.068g)を加え、50℃で6時間攪拌した。その後、P3(0.135g)を加え、60℃で6時間攪拌して、液晶配向処理剤(19)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(19)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<実施例20>
 合成例11で得られたポリイミド粉末(11)(1.30g)に、NMP(12.2g)、ECS(2.00g)及びBCS(6.10g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S1(0.065g)を加え、50℃で6時間攪拌した。その後、P1(0.065g)及びP2(0.065g)を加え、60℃で6時間攪拌して、液晶配向処理剤(20)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(20)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<比較例1>
 合成例2で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(2)(5.60g)に、NEP(10.1g)及びPB(7.70g)を加え、25℃で2時間攪拌して、液晶配向処理剤(21)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(21)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<比較例2>
 合成例2の合成手法で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(2)(5.50g)に、NEP(9.90g)及びPB(7.50g)を加え、25℃で2時間攪拌した。その後、この溶液に、P2(0.097g)を加え、60℃で6時間攪拌して、液晶配向処理剤(22)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(22)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<比較例3>
 合成例2で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(2)(5.50g)に、NEP(9.90g)及びPB(7.50g)を加え、25℃で2時間攪拌した。その後、この溶液に、S1(0.097g)を加え、50℃で6時間攪拌して、液晶配向処理剤(23)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(23)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<比較例4>
 合成例3で得られたポリイミド粉末(3)(1.30g)に、NEP(14.3g)及びPB(6.10g)を加え、70℃にて24時間攪拌して溶解させ、液晶配向処理剤(24)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(24)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<比較例5>
 合成例3で得られたポリイミド粉末(3)(1.30g)に、NEP(14.3g)及びPB(6.10g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、P2(0.091g)を加え、60℃で6時間攪拌して、液晶配向処理剤(25)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(25)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<比較例6>
 合成例3で得られたポリイミド粉末(3)(1.30g)に、NEP(14.3g)及びPB(6.10g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S2(0.091g)を加え、50℃で6時間攪拌して、液晶配向処理剤(26)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(26)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<比較例7>
 合成例4で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(4)(5.60g)に、NEP(10.1g)及びPB(7.70g)を加え、25℃で2時間攪拌して、液晶配向処理剤(27)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(27)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<比較例8>
 合成例4で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(4)(5.60g)に、NEP(10.1g)及びPB(7.70g)を加え、25℃で2時間攪拌した。その後、この溶液に、P2(0.098g)を加え、60℃で6時間攪拌して、液晶配向処理剤(28)を得た。
 得られた液晶配向処理剤(28)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<比較例9>
 合成例4で得られた樹脂固形分濃度25質量%のポリアミド酸溶液(4)(5.60g)に、NEP(10.1g)及びPB(7.70g)を加え、25℃で2時間攪拌した。その後、この溶液に、S1(0.098g)を加え、50℃で6時間攪拌して、液晶配向処理剤(29)を得た。
 得られた液晶配向処理剤(29)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<比較例10>
 合成例5で得られたポリイミド粉末(5)(1.35g)に、NEP(13.7g)及びPB(7.40g)を加え、70℃にて24時間攪拌して溶解させ、液晶配向処理剤(30)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(30)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<比較例11>
 合成例5で得られたポリイミド粉末(5)(1.35g)に、NEP(13.7g)及びPB(7.40g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、P2(0.095g)を加え、60℃で6時間攪拌して、液晶配向処理剤(31)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(31)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
<比較例12>
 合成例5で得られたポリイミド粉末(5)(1.35g)に、NEP(13.7g)及びPB(7.40g)を加え、70℃にて24時間攪拌して溶解させた。その後、この溶液に、S2(0.095g)を加え、50℃で6時間攪拌して、液晶配向処理剤(32)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(32)を用いて、「高温高湿保管後の液晶セルの額縁付近の表示ムラ特性の評価(通常セル)」及び「高温高湿保管後の電圧保持率の評価(通常セル)」を行った。
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
*1:シール剤付近及びセル中央部に、液晶配向性の乱れが見られた。
*2:シール剤付近に、液晶配向性の乱れが見られた。
 上記の結果からわかるように、実施例の液晶配向処理剤は、比較例の液晶配向処理剤に比べて、液晶セルを高温高湿槽内で長期間保管しても、液晶セルのシール剤付近の液晶配向性が乱れない液晶配向膜が得られた。さらに、液晶セルを高温高湿槽内で長期間保管しても、電圧保持率の低下を抑制することができる液晶配向膜が得られた。すなわち、本発明の液晶配向処理剤は、高温高湿条件下において、液晶表示素子の額縁付近の表示ムラの発生と電圧保持率の低下を抑制することができる液晶配向膜となる。
 具体的には、実施例2と比較例1、実施例3と比較例4、実施例4と比較例7及び実施例6と比較例10との比較であり、実施例と、同一の(C)成分である特定重合体を用い、(A)成分である特定イソシアネート化合物を含有せず、(B)成分である特定アミン化合物を導入しない比較例との比較である。比較例の液晶配向処理剤を用いた場合、液晶セルを高温高湿槽内で長期間保管すると、液晶セルのシール剤付近とともに、セル中央部にも液晶配向性の乱れが発生し、さらに、電圧保持率が大きく低下した。
 次に、実施例2と比較例2、実施例3と比較例5、実施例4と比較例8及び実施例6と比較例11との比較、すなわち、実施例と、同一の(C)成分である特定重合体及び(A)成分である特定イソシアネート化合物を用いて、(B)成分である特定アミン化合物を導入しない比較例との比較である。比較例の液晶配向処理剤を用いた場合、液晶セルを高温高湿槽内で長期間保管した際、液晶セル内の液晶配向性の乱れや電圧保持率の低下は抑制されているが、実施例に比べて、特性は大幅に劣るものであった。
 本発明の液晶配向処理剤を用いて形成される液晶配向膜を有する液晶表示素子は、信頼性に優れ、大画面で高精細の液晶テレビなどに好適に利用でき、TN素子、STN素子、TFT液晶素子、特に垂直配向型の液晶表示素子として有用である。
 なお、2013年5月1日に出願された日本特許出願2013-096469号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (20)

  1.  下記の(A)成分、(B)成分及び(C)成分を含有することを特徴とする液晶配向処理剤。
    (A)成分:下記の式[1]で示される化合物。
    (B)成分:下記の式[2]で示される化合物。
    (C)成分:ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種の重合体。
    Figure JPOXMLDOC01-appb-C000001
    (Xは炭素数1~20の脂肪族炭化水素基を有する2価の有機基、又はベンゼン環若しくはシクロヘキサン環を有する炭素数6~24の2価の有機基を示し、Xは下記の式[1-1]~式[1-6]から選ばれる構造を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (Aは水素原子又はベンゼン環を示し、Aは単結合、又はベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基を示し、Aは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (Wは脂肪族炭化水素基又は非芳香族環式炭化水素基を有する有機基を示し、Wは単結合、-O-、-NH-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-又は-SO-を示し、Wは単結合、ベンゼン環又はシクロヘキサン環を示し、Wは単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-又は-SO-を示し、Wは単結合、脂肪族炭化水素基又は非芳香族環式炭化水素基を有する有機基を示し、nは1~5の整数を示す。)
  2.  前記式[1]のXが、炭素数1~10のアルキレン基である請求項1に記載の液晶配向処理剤。
  3.  前記式[1]のXが、式[1-1]、式[1-2]及び式[1-4]から選ばれる構造である請求項1又は2に記載の液晶配向処理剤。
  4.  前記式[2]のWが、炭素数1~10の直鎖状又は分岐状アルキレン基、シクロヘキサン環又はビシクロヘキシル環である請求項1~3のいずれか一項に記載の液晶配向処理剤。
  5.  前記式[2]のWが、単結合、-O-又は-OCO-である請求項1~4のいずれか一項に記載の液晶配向処理剤。
  6.  前記式[2]のWが、単結合又はベンゼン環である請求項1~5のいずれか一項に記載の液晶配向処理剤。
  7.  前記式[2]のWが、単結合、-O-、-NH-又は-CONH-である請求項1~6のいずれか一項に記載の液晶配向処理剤。
  8.  前記式[2]のWが、単結合、炭素数が1~10の直鎖状又は分岐状アルキレン基又はシクロヘキサン環である請求項1~7のいずれか一項に記載の液晶配向処理剤。
  9.  前記(C)成分の重合体におけるジアミン成分が、下記の式[3]で示される構造のジアミン化合物を少なくとも1種以上含む、請求項1~8のいずれか一項に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000004
    (Yは下記の式[3-1]~式[3-6]から選ばれる置換基を示し、mは1~4の整数を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (aは0~4の整数を示し、bは0~4の整数を示す。
    は単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示し、Yは単結合又は-(CH-(bは1~15の整数である)を示し、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を示し、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数12~25の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、Yはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、nは0~4の整数を示し、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基を示す。
    は-O-、-CHO-、-COO-、-OCO-、-CONH-又は-NHCO-を示し、Yは炭素数8~22のアルキル基を示す。
    及びY10はそれぞれ独立して、炭素数1~12の炭化水素基を示す。
    11は炭素数1~5のアルキル基を示す。)
  10.  前記(C)成分の重合体におけるテトラカルボン酸成分に、下記の式[4]で示される化合物を含む、請求項1~9のいずれか一項に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000006
    (Zは下記の式[4a]~式[4j]から選ばれる構造の基である。)
    Figure JPOXMLDOC01-appb-C000007
    (Z~Zは水素原子、メチル基、塩素原子又はベンゼン環を示し、それぞれ同じであっても異なってもよく、Z及びZは水素原子又はメチル基を示し、それぞれ同じであっても異なってもよい。)
  11.  前記(C)成分の重合体が、ポリアミド酸を脱水閉環させて得られるポリイミドである請求項1~10のいずれか一項に記載の液晶配向処理剤。
  12.  前記(C)成分の100質量部に対して、前記(A)成分が0.1~30質量部である請求項1~11のいずれか一項に記載の液晶配向処理剤。
  13.  前記(C)成分の100質量部に対して、前記(B)成分が0.1~30質量部である請求項1~12のいずれか一項に記載の液晶配向処理剤。
  14.  請求項1~13のいずれか一項に記載の液晶配向処理剤を用いて得られる液晶配向膜。
  15.  請求項1~13のいずれか一項に記載の液晶配向処理剤を用い、インクジェット法を用いて得られる液晶配向膜。
  16.  請求項14又は15に記載の液晶配向膜を有する液晶表示素子。
  17.  電極を備えた一対の基板の間に液晶層を有し、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させて製造される液晶表示素子に用いられる、請求項14又は15に記載の液晶配向膜。
  18.  請求項17に記載の液晶配向膜を有する液晶表示素子。
  19.  電極を備えた一対の基板の間に液晶層を有し、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させて製造される液晶表示素子に用いられる、請求項14又は請求項15に記載の液晶配向膜。
  20.  請求項19に記載の液晶配向膜を有する液晶表示素子。
PCT/JP2014/062009 2013-05-01 2014-04-30 液晶配向処理剤、液晶配向膜及び液晶表示素子 WO2014178406A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015514868A JP6281567B2 (ja) 2013-05-01 2014-04-30 液晶配向処理剤、液晶配向膜及び液晶表示素子
KR1020157034083A KR102127032B1 (ko) 2013-05-01 2014-04-30 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
CN201480037753.8A CN105359032B (zh) 2013-05-01 2014-04-30 液晶取向处理剂、液晶取向膜和液晶表示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-096469 2013-05-01
JP2013096469 2013-05-01

Publications (1)

Publication Number Publication Date
WO2014178406A1 true WO2014178406A1 (ja) 2014-11-06

Family

ID=51843530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062009 WO2014178406A1 (ja) 2013-05-01 2014-04-30 液晶配向処理剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP6281567B2 (ja)
KR (1) KR102127032B1 (ja)
CN (1) CN105359032B (ja)
TW (1) TWI638008B (ja)
WO (1) WO2014178406A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615145A (zh) * 2015-03-24 2018-01-19 日产化学工业株式会社 液晶取向剂、液晶取向膜及液晶表示元件
KR20180089487A (ko) 2015-12-03 2018-08-08 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
KR20180101453A (ko) 2016-01-07 2018-09-12 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
WO2019107518A1 (ja) * 2017-11-30 2019-06-06 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
CN110462501A (zh) * 2016-12-28 2019-11-15 日产化学株式会社 液晶取向剂、液晶取向膜和液晶表示元件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319488B2 (en) 2017-03-31 2022-05-03 Sharp Kabushiki Kaisha Liquid crystal display device, method for manufacturing liquid crystal display device, and electronic apparatus
TWI767035B (zh) * 2017-07-28 2022-06-11 日商日產化學股份有限公司 液晶配向劑、液晶配向膜及液晶顯示元件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192660A (ja) * 1997-09-24 1999-04-06 Shin Etsu Chem Co Ltd 感光性樹脂組成物
CN101807001A (zh) * 2010-03-17 2010-08-18 长兴化学工业股份有限公司 感光性树脂组合物及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171762A (ja) 1985-01-28 1986-08-02 Japan Synthetic Rubber Co Ltd 可溶性ポリイミド樹脂組成物
WO1999017153A1 (fr) * 1997-10-01 1999-04-08 Matsushita Electric Industrial Co., Ltd. Film a alignement de cristaux liquides et son procede de production, et afficheur a cristaux liquides utilisant ledit film et son procede de fabrication
JP2980080B2 (ja) 1997-10-09 1999-11-22 ジェイエスアール株式会社 液晶配向剤
TW548491B (en) * 2000-07-07 2003-08-21 Nissan Chemical Ind Ltd Liquid crystal orientating agent and liquid crystal display element using the same
JP5556482B2 (ja) * 2009-09-15 2014-07-23 Jnc株式会社 液晶配向剤、液晶配向膜および液晶表示素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192660A (ja) * 1997-09-24 1999-04-06 Shin Etsu Chem Co Ltd 感光性樹脂組成物
CN101807001A (zh) * 2010-03-17 2010-08-18 长兴化学工业股份有限公司 感光性树脂组合物及其应用

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615145A (zh) * 2015-03-24 2018-01-19 日产化学工业株式会社 液晶取向剂、液晶取向膜及液晶表示元件
KR20180089487A (ko) 2015-12-03 2018-08-08 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
KR20180101453A (ko) 2016-01-07 2018-09-12 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
CN110462501A (zh) * 2016-12-28 2019-11-15 日产化学株式会社 液晶取向剂、液晶取向膜和液晶表示元件
CN110462501B (zh) * 2016-12-28 2022-10-28 日产化学株式会社 液晶取向剂、液晶取向膜和液晶表示元件
WO2019107518A1 (ja) * 2017-11-30 2019-06-06 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR20200088846A (ko) * 2017-11-30 2020-07-23 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
JPWO2019107518A1 (ja) * 2017-11-30 2020-12-10 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP7193782B2 (ja) 2017-11-30 2022-12-21 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR102688702B1 (ko) 2017-11-30 2024-07-25 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자

Also Published As

Publication number Publication date
JPWO2014178406A1 (ja) 2017-02-23
TW201500466A (zh) 2015-01-01
KR102127032B1 (ko) 2020-06-25
JP6281567B2 (ja) 2018-02-21
KR20160003204A (ko) 2016-01-08
TWI638008B (zh) 2018-10-11
CN105359032B (zh) 2017-09-05
CN105359032A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
JP6561834B2 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP6281567B2 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP6497520B2 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
JP6512417B2 (ja) 組成物および樹脂被膜
JP5930239B2 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
JP6668754B2 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
WO2015046374A1 (ja) 液晶配向処理剤およびそれを用いた液晶表示素子
JP6281568B2 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP6079627B2 (ja) 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2014084309A1 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
KR102170065B1 (ko) 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
WO2013115387A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2012121259A1 (ja) 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子
WO2014061780A1 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
WO2016076413A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP6264577B2 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
WO2016076412A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480037753.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015514868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157034083

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14791313

Country of ref document: EP

Kind code of ref document: A1