WO2014175227A1 - 水中機器及び水中機器の姿勢制御方法 - Google Patents

水中機器及び水中機器の姿勢制御方法 Download PDF

Info

Publication number
WO2014175227A1
WO2014175227A1 PCT/JP2014/061195 JP2014061195W WO2014175227A1 WO 2014175227 A1 WO2014175227 A1 WO 2014175227A1 JP 2014061195 W JP2014061195 W JP 2014061195W WO 2014175227 A1 WO2014175227 A1 WO 2014175227A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbines
power generation
posture
generation units
turbine
Prior art date
Application number
PCT/JP2014/061195
Other languages
English (en)
French (fr)
Inventor
典久 半田
茂樹 長屋
善行 山根
章雄 伊東
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2015513755A priority Critical patent/JP6056967B2/ja
Priority to BR112015026524A priority patent/BR112015026524A2/pt
Publication of WO2014175227A1 publication Critical patent/WO2014175227A1/ja
Priority to US14/875,824 priority patent/US10451026B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/10Submerged units incorporating electric generators or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/97Mounting on supporting structures or systems on a submerged structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/11Purpose of the control system to maintain desired vehicle trajectory parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/806Sonars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a submerged floating underwater device, such as a floating and sinking submerged ocean current power generator and a ocean current power generator equipped with a power generation unit having a turbine that rotates in response to a sea current (tidal current) and its attitude control.
  • a submerged floating underwater device such as a floating and sinking submerged ocean current power generator and a ocean current power generator equipped with a power generation unit having a turbine that rotates in response to a sea current (tidal current) and its attitude control.
  • This application claims priority based on Japanese Patent Application No. 2013-89438 for which it applied to Japan on April 22, 2013, and uses the content here.
  • This ocean current power generation device is a twin-engine underwater floating power generation device in which a pair of power generation units each having a horizontal axis turbine that rotates in response to an ocean current are connected in parallel by a connecting beam and moored in the sea.
  • variable pitch turbine blades are employed for the turbines of the pair of power generation units. By making all the turbine blades variable pitch turbine blades, the pitch can be adjusted so that the fluid resistance and output of each turbine do not exceed predetermined values.
  • a pair of power generation units connected by a connection beam are moored on the sea floor via a buoyancy imparting support column for depth control and three mooring cables. And by controlling the length of at least one mooring cable among the three mooring cables connecting the buoyancy imparting strut and the seabed by the length control unit arranged on the buoyancy imparting strut, a pair of power generation units Control the depth and attitude of the.
  • the present invention has been made paying attention to the above-described conventional problems, and can simplify the configuration and control system and reliably control the attitude of the apparatus main body including the pair of turbines in the roll direction. It is an object of the present invention to provide a submerged floating underwater device and a method for controlling the posture thereof.
  • the present invention includes a plurality of turbines that rotate in water, and a posture control unit that controls a posture in a roll direction by controlling rotation of the plurality of turbines.
  • a control unit provides an underwater device that controls a posture in a roll direction by controlling torque generated in each of the plurality of turbines as the plurality of turbines rotate.
  • each of the plurality of turbines includes variable pitch turbine blades
  • the attitude control unit may control the torque generated in each of the plurality of turbines by performing pitch control of the variable pitch turbine blades. Good.
  • the underwater device is an underwater mooring type ocean current power generation apparatus that includes the plurality of turbines that rotate in response to an ocean current and includes a plurality of power generation units that generate electric power by rotation of the plurality of turbines.
  • Each turbine in the power generation section includes a variable pitch turbine blade, and further includes an inclination detection means for detecting a deviation in a posture in a roll direction generated in the plurality of power generation sections, and the plurality of the plurality of detection detected by the inclination detection means.
  • the posture control unit may perform pitch control of the variable pitch turbine blades of each turbine in the plurality of power generation units in order to cancel the deviation of the posture in the roll direction generated in the power generation unit.
  • a flow state measurement unit that grasps the state of the current flow toward the plurality of power generation units and outputs it to the attitude control unit is arranged, Based on the measurement result from the flow state measuring means, the posture control unit avoids a change in posture in the roll direction in the plurality of power generation units, and the variable pitch turbine blades of each turbine in the plurality of power generation units. Pitch control may be performed.
  • an ultrasonic Doppler velocimeter capable of measuring a flow velocity distribution in the depth direction may be used as the flow state measuring means, and a plurality of ultrasonic Doppler velocimeters may be arranged upstream of the plurality of power generation units.
  • a buoy for measuring a flow state such as a flow velocity or a flow direction may be used as the flow state measuring means, and a plurality of buoys may be arranged upstream of the plurality of power generation units.
  • the present invention controls the rotation of the plurality of turbines and controls the posture in the roll direction by controlling the torque generated in each of the plurality of turbines as the plurality of turbines rotating in water.
  • a device attitude control method is also provided.
  • each of the plurality of turbines may include a variable pitch turbine blade, and the torque generated in each of the plurality of turbines may be controlled by performing pitch control of the variable pitch turbine blade.
  • the underwater device is an underwater mooring type ocean current power generation apparatus that includes the plurality of turbines that rotate in response to an ocean current and includes a plurality of power generation units that generate electric power by rotation of the plurality of turbines.
  • the turbine blades of each turbine in the power generation section are variable pitch turbine blades, and the pitch control of the variable pitch turbine blades of each turbine in the plurality of power generation sections is made to cancel out the deviation of the posture in the roll direction generated in the plurality of power generation sections. May be performed.
  • FIG. 2 is a partial plan view of a state in which a drag of a variable pitch turbine blade of a turbine in the ocean current power generation device illustrated in FIG. 1 is small.
  • FIG. 2 is a partial plan view showing a state in which a drag of a variable pitch turbine blade of the turbine in the ocean current power generation device shown in FIG. 1 is large.
  • It is a perspective view which shows the whole structure of the ocean current power generator by other embodiment of this invention.
  • It is a perspective view which shows the whole structure of the ocean current electric power generating apparatus by further another embodiment of this invention.
  • FIG. 1, 2A and 2B show an ocean current power generation device as an embodiment of the underwater apparatus according to the present invention.
  • twin floating generators as shown in these figures float and sink in the sea so that there is no significant difference between the depths of the pair of generators, that is, float and sink in the sea while keeping the pair of generators substantially horizontal. It is important to let In the ocean current power generation device according to the present invention, the “deviation of the posture in the roll direction generated in the pair of power generation units” means that the horizontal state of the pair of power generation units collapses and tilts.
  • a horizontal axis type turbine that rotates by ocean current and generates electric power has a diameter of several tens of meters.
  • the power generation unit having this turbine is moored at a depth of about several tens of meters,
  • the power generation capacity is approximately several MW. The power generation capacity varies depending on the difference in specifications.
  • this ocean current power generation apparatus 1 includes a pair of left and right pods 4, 4 each having a horizontal shaft type turbine 3 that rotates in response to an ocean current indicated by a white arrow, and these pods 4, 4 are arranged in parallel.
  • the apparatus main body 2 provided with the connecting beam 5 connected to the seabed, the sinker 8 installed on the seabed, and the two mooring lines 6 connecting the sinker 8 and the apparatus main body 2 and mooring the apparatus main body 2 to the seabed B 6 is provided.
  • the pair of pods 4, 4 constitutes a power generation unit by incorporating a generator (not shown) connected to the turbine shaft.
  • the two mooring lines 6 and 6 are connected to the pair of pods 4 and 4 of the apparatus main body 2, respectively, and are connected to the sinker 8 as a single unit, forming a Y shape as a whole. ing.
  • the turbine 3 is arranged on each downstream side (left side in the drawing) of the pair of pods 4 and 4 along the flow of the ocean current.
  • the turbine 3 is connected to a hub 3a coupled to the rear end portion of the turbine shaft. Blades 3b and 3b are attached. These turbines 3 and 3 are configured to rotate in directions opposite to each other in order to cancel each rotational torque.
  • the two blades 3b and 3b of the turbine 3 are variable pitch blades whose pitch with respect to the hub 3a can be changed.
  • the pair of pods 4, 4 includes an inclination detection unit that detects a deviation of the posture in the roll direction generated in the pair of pods 4, and the posture in the roll direction of the pods 4, 4 detected by the inclination detection unit.
  • an attitude control unit 9 that performs pitch control of the variable pitch turbine blades 3b and 3b in the turbines 3 and 3 is disposed.
  • a gyro sensor gyroscope
  • a depth meter can be employed as the tilt detecting means for detecting the deviation of the posture in the roll direction that occurs in the pair of pods 4, 4.
  • the tilt detecting means Depth meter 7 is adopted. That is, in this embodiment, the depth gauges 7 and 7 are respectively installed in the pair of pods 4 and 4, and the roll direction generated in the pair of pods 4 and 4 based on the difference in depth obtained by both the depth gauges 7 and 7. Is detected.
  • the gyro sensor and the depth gauges 7 and 7 may be used in combination.
  • the pitch of the variable pitch turbine blade 3b is changed from a state where the drag is small to a state where the drag is large, thereby generating torque unbalance between the left and right turbines 3, thereby generating a pair of pods 4, 4 in the roll direction can be eliminated.
  • the device body 2 starts to rotate in the roll direction when a slight deviation in the posture in the roll direction occurs in the pair of pods 4 and 4 (device body 2), this rotation Are detected by the depth meters 7 and 7, and a signal is output to the attitude control unit 9.
  • one of the left and right turbines 3 is provided with a variable pitch in order to eliminate the deviation of the attitude in the roll direction in the pair of pods 4, 4 detected by the depth gauges 7, 7.
  • Pitch control is performed to change the pitch of the turbine blade 3b from a state where the drag shown in FIG. 2A is small to a state where the drag shown in FIG. 2B is large.
  • the left and right positions of the pair of pods 4 and 4 are controlled horizontally, and rotation in the roll direction in the apparatus main body 2 is suppressed.
  • the posture of the pair of pods 4 and 4 in the roll direction can be controlled after simplifying the configuration of the apparatus and the control system.
  • FIG. 3 shows another embodiment of the ocean current power generation apparatus according to the present invention.
  • the ocean current power generation apparatus 1 is configured to have a current flowing toward the pods 4, 4 upstream of a pair of pods 4, 4 moored on the seabed B (in the vicinity of the sinker 8 in the illustrated example).
  • An ultrasonic Doppler velocimeter (ADCP) 10 is arranged as a flow state measuring means for grasping the flow state and outputting it to the attitude control unit 9.
  • Other configurations are the same as those of the ocean current power generation apparatus 1 according to the previous embodiment.
  • the ultrasonic Doppler velocimeter 10 as a flow state measuring means measures the flow velocity distribution in the depth direction by emitting an ultrasonic wave E upward from the seabed B side. By arranging a plurality (two in this embodiment), it is possible to measure a change in the flow velocity of the flow passing through the pair of pods 4 and 4.
  • attitude control unit 9 of the ocean current power generation apparatus 1 a change in attitude in the roll direction in the pair of pods 4, 4 is avoided in advance based on the measurement result of the flow velocity distribution from the two ultrasonic Doppler velocimeters 10, 10.
  • the pair of turbines 3 and 3 are caused to perform pitch control of the variable pitch turbine blades 3b and 3b.
  • the flow velocity distribution in the depth direction of the ocean current changes on the upstream side of the pair of pods 4, 4, and the posture in the roll direction can change to the pair of pods 4, 4.
  • the attitude control unit 9 assigns the variable pitch turbine blades 3b and 3b to the turbines 3 and 3, respectively. Let the pitch control. As a result, it is avoided that the pair of pods 4 and 4 lose their postures in the roll direction.
  • FIG. 4 shows still another embodiment of the ocean current power generation apparatus according to the present invention.
  • a buoy 11 for measuring a flow state such as a flow velocity and a flow direction is used as a flow state measuring means, and a plurality of the buoys 11 are arranged on the upstream side of a pair of pods 4 and 4. ing. Further, the plurality of buoys 11 are all moored to the sinker 8 via the cable 12.
  • the flow velocity of the ocean current may be measured using the above-described ultrasonic Doppler velocimeter, or may be measured using a fluid measuring device such as an electromagnetic flow meter.
  • the attitude control unit 9 causes the turbines 3 and 3 to perform the pitch control of the variable pitch turbine blades 3b and 3b. As a result, it is avoided that the pair of pods 4 and 4 lose their postures in the roll direction.
  • the ultrasonic Doppler velocimeters 10 and 10 and the buoy 11 for measuring the flow condition are used as the flow condition measurement means. Change of the posture in the roll direction in the pods (power generation units) 4 and 4 is avoided.
  • the pair of pods 4 and 4 can be used even if the current flow around the pair of pods 4 and 4 changes. Will not break the posture in the roll direction. Therefore, the torque generated in each turbine 3, 3 is measured, and the attitude control unit 9 controls the pitch of the variable pitch turbine blades 3b, 3b on each turbine 3, 3 so that these torques are maintained constant. Also, the deviation of the posture in the roll direction in the pair of pods 4 and 4 can be eliminated.
  • a torque meter 13 for measuring the torque generated in the turbine shaft 3 c is installed on the turbine shaft 3 c of the turbine 3.
  • FIG. 6 there is a method of calculating torque from the output of the output device (generator 12) connected to the turbine shaft 3c and the rotational speed of the turbine shaft 3c at that time.
  • the torque balance between the turbines 3 and 3 included in the pair of pods 4 and 4 can also be adjusted by adjusting the load applied to the turbine shaft 3c from the generator 12 connected to the turbine shaft 3c.
  • the torque generated in each of the turbines 3 and 3 is measured by the method illustrated in FIG. 5 and FIG. 6, and the attitude control unit 9 maintains the torque from the generator 12 to the turbine.
  • the load applied to the shaft 3c is adjusted. Therefore, it is not necessary to control the pitch of the variable pitch turbine blades 3b and 3b in the turbines 3 and 3 by the attitude control unit 9.
  • FIG. 7 and 8 are flowcharts showing an example of attitude control by adjusting the torque balance of a turbine in an ocean current power generation apparatus including a plurality of turbines.
  • FIG. 7 shows an example of torque balance control by pitch control of the turbine blade
  • FIG. 8 shows an example of torque balance control by adjusting the load applied from the generator to the turbine shaft.
  • the torques of a plurality (n) of turbines are measured, and the torque balance between the turbines is detected from the results.
  • a control part (equivalent to the attitude
  • the torque balance between the turbines is kept constant, and the deviation of the posture of the apparatus in the roll direction can be eliminated.
  • the torques of a plurality of (n) turbines are measured, and the torque balance between the turbines is detected from the results.
  • a control part (equivalent to the attitude
  • the torque balance between the turbines is kept constant, and the deviation of the posture of the apparatus in the roll direction can be eliminated.
  • the deviation of the posture in the roll direction generated in the pair of pods 4, 4 is detected by the inclination detecting means (depth meter 7), and the posture of the apparatus main body 2 is controlled based on the result. So-called feedback control is used.
  • changes in the ocean current flow measured using the flow condition measuring means (ultrasonic Doppler velocimeter 10 or buoy 11) and torques generated in the turbines 3 and 3 are used.
  • the so-called feedforward control is used to avoid the deviation of the posture of the pair of pods 4 and 4 before the deviation of the posture in the roll direction occurs. That is, the embodiment shown in and after FIG.
  • each turbine 3 has an advantage that the posture of the apparatus main body 2 can be quickly controlled as compared with the embodiment shown in FIG. Further, based on the current of the ocean current obtained by using the flow condition measuring means (ultrasonic Doppler velocimeter 10 or buoy 11), the torque generated in each turbine 3, 3 is predicted and calculated, and based on this result, each turbine The torque balance between 3 and 3 may be adjusted.
  • the flow condition measuring means ultrasonic Doppler velocimeter 10 or buoy 11
  • the configurations of the ocean current power generation device and the ocean current power generation device attitude control method according to the present invention are not limited to the above-described embodiments. Additions, omissions, substitutions, and other exchanges can be made without departing from the spirit of the present invention. Moreover, this invention is not limited by said description, It is limited only by the attached claim.
  • the turbine 3 in each of the above embodiments has two variable pitch turbine blades 3b and 3b, but the number of turbine blades is not limited to this.
  • the installation position of the turbine 3 in each pod 4 is not limited to the tail part of the pod 4 but may be the front part (on the sinker 8 side) or the center part of the pod 4 or a combination thereof.
  • the pair of left and right pods 4, 4 are connected by the connecting beam 5, but three or more pods 4, 4 may be arranged via the connecting beam 3 or the like. Further, the plurality of pods 4 and 4 may be arranged vertically or vertically and horizontally. Further, the position and number of the inclination detecting means (depth meter 7) in each pod 4 are not limited to the above embodiments.
  • the mooring line 6 extends from the pods 4 and 4 and has a Y-shape that joins in the middle.
  • the mooring line 6 extends from the pods 4 and 4 and has the other end connected to the same sinker 8. It may be a shape.
  • one or more mooring lines 6 may extend from individual pods 4 or connection beams 5.
  • the mooring lines 6 extending from the pods 4 and 4 may be arranged three-dimensionally, for example, in an X shape when viewed from the front.
  • the number of sinkers 8 to which the other end of the mooring line 6 is connected may be one or more.
  • a known mooring method other than the mooring line 6 may be employed.
  • each said embodiment demonstrated the case where this invention was applied to the ocean current power generator 1, this invention is provided with several turbines other than the ocean current power generator 1, and attitude
  • Applicable to underwater equipment the present invention can be applied to a manned or unmanned self-propelled underwater vehicle or towed object, or a structure (such as a floating body) detained in water.
  • a submerged floating underwater device ocean current and a posture control method thereof capable of reliably performing posture control in the roll direction of the apparatus main body while simplifying a configuration and a control system. It becomes possible to provide.

Abstract

この水中機器は、双発の水中浮遊式発電装置であって、タービン(3)を有する一対のポッド(4,4)及びポッド(4,4)同士を並列に連結する連結ビーム(5)を具備した装置本体(2)と、シンカー(8)と、シンカー(8)を介して装置本体(2)を海底(B)に係留する2本の係留索(6,6)を備える。一対のポッド(4,4)の各タービン(3,3)は、可変ピッチタービンブレード(3b,3b)をそれぞれ備える。また、この装置は、一対のポッド(4,4)に生じるロール方向の姿勢のずれを検出する深度計(7)と、深度計(7)で検出された一対のポッド(4,4)に生じるロール方向の姿勢のずれを打ち消すべく、各タービン(3,3)の可変ピッチタービンブレード(3b,3b)のピッチコントロールを行う姿勢制御部(9)を備える。上記構成により、装置の構成や制御系をシンプルにしつつ、一対のタービンのロール方向の姿勢を確実に制御し得る水中機器及びその姿勢制御方法を提供することができる。

Description

水中機器及び水中機器の姿勢制御方法
 本発明は、海流(潮流)を受けて回転するタービンを有する発電部を備えた浮上及び沈降可能な水中浮遊式の海流発電装置及び海流発電装置等の、水中浮遊式の水中機器及びその姿勢制御方法に関する。
 本願は、2013年4月22日に日本に出願された特願2013-89438号に基づき優先権を主張し、その内容をここに援用する。
近年、海流(潮流)等の海水の流れを利用して発電を行う海流発電装置が開発されている。
このような海水の流れを利用して発電を行う海流発電装置としては、例えば、特許文献1に記載された装置がある。この海流発電装置は、海流を受けて回転する水平軸型のタービンを有する一対の発電部同士を連結ビームにより並列に連結し、海中に係留した、双発の水中浮遊式発電装置である。
この海流発電装置において、一対の発電部の各タービンには、可変ピッチタービンブレードが採用されている。タービンブレードをいずれも可変ピッチタービンブレードとすることで、各タービンの流体抵抗及び出力が所定値を超えないようにピッチを調整することができる。
また、この海流発電装置では、連結ビームにより連結された一対の発電部を、深度制御用の浮力付与支柱及び3本の係留ケーブルを介して海底に係留している。そして、浮力付与支柱に配置される長さ制御部によって、浮力付与支柱と海底とを結ぶ3本の係留ケーブルのうちの少なくとも1本の係留ケーブルの長さをコントロールすることで、一対の発電部の深度や姿勢を制御する。
日本国特表2010‐531956号
上記したような水中浮遊式の海流発電装置では、海中において発電を行う都合上、装置の構成や制御系を可能な限りシンプルにすることが求められる。
しかしながら、一対の発電部を浮力付与支柱及び3本の係留ケーブルを介して海底に係留する上述の海流発電装置では、その構成や姿勢を変更する姿勢制御系がシンプルであるとは言い難い。
本発明は、上記した従来の課題に着目してなされたもので、構成や制御系をシンプルなものとしたうえで、一対のタービンを含む装置本体のロール方向の姿勢制御を確実に行うことが可能である、水中浮遊式の水中機器及びその姿勢制御方法を提供することを目的としている。
 上記した目的を達成するために、本発明では、水中で回転する複数のタービンと、これら複数のタービンの回転を制御することにより、ロール方向の姿勢を制御する姿勢制御部とを備え、前記姿勢制御部が、前記複数のタービンの回転に伴い前記複数のタービンにそれぞれ発生するトルクを制御することにより、ロール方向の姿勢を制御する水中機器を提供する。
ここで、前記複数のタービンが、可変ピッチタービンブレードをそれぞれ備え、前記姿勢制御部が、前記複数のタービンにそれぞれ発生するトルクを、前記可変ピッチタービンブレードのピッチコントロールを行うことにより制御してもよい。
また、前記水中機器が、海流を受けて回転する前記複数のタービンを有し、前記複数のタービンの回転により発電する複数の発電部を備えた水中係留式の海流発電装置であって、前記複数の発電部における各タービンが、可変ピッチタービンブレードをそれぞれ備え、さらに、前記複数の発電部に生じるロール方向の姿勢のずれを検出する傾き検出手段と、前記傾き検出手段で検出された前記複数の発電部に生じるロール方向の姿勢のずれを打ち消すべく、前記複数の発電部における各タービンの可変ピッチタービンブレードのピッチコントロールを行う前記姿勢制御部とを備えていてもよい。
ここで、海底に係留される前記複数の発電部の上流側に、前記複数の発電部側に向かう海流の流れの状況を把握して前記姿勢制御部に出力する流れ状況計測手段を配置し、前記姿勢制御部が、前記流れ状況計測手段からの計測結果に基づいて、前記複数の発電部におけるロール方向の姿勢変化を未然に回避するべく、前記複数の発電部における各タービンの可変ピッチタービンブレードのピッチコントロールを行ってもよい。
さらに、深さ方向の流速分布を計測可能な超音波ドップラー流速計を前記流れ状況計測手段とし、この超音波ドップラー流速計を前記複数の発電部の上流側に複数配置してもよい。あるいは、流速や流れの向き等の流況を計測するブイを前記流れ状況計測手段とし、このブイを前記複数の発電部の上流側に複数配置してもよい。
また、本発明は、水中で回転する複数のタービンの回転に伴いこれら複数のタービンにそれぞれ発生するトルクを制御することにより、前記複数のタービンの回転を制御し、ロール方向の姿勢を制御する水中機器の姿勢制御方法をも提供する。
 この場合、前記複数のタービンが、可変ピッチタービンブレードをそれぞれ備え、前記複数のタービンにそれぞれ発生するトルクを、前記可変ピッチタービンブレードのピッチコントロールを行うことにより制御してもよい。
また、前記水中機器が、海流を受けて回転する前記複数のタービンを有し、前記複数のタービンの回転により発電する複数の発電部を備えた水中係留式の海流発電装置であって、前記複数の発電部における各タービンのタービンブレードをそれぞれ可変ピッチタービンブレードとし、前記複数の発電部に生じるロール方向の姿勢のずれを打ち消すべく、前記複数の発電部における各タービンの可変ピッチタービンブレードのピッチコントロールを行ってもよい。
本発明に係る水中機器及びその姿勢制御方法では、装置の構成や制御系を複雑化することなく、一対のタービンを含む装置本体におけるロール方向の姿勢を確実に制御することが可能であるという非常に優れた効果が得られる。
本発明の一実施形態による海流発電装置の全体構成を示す斜視図である。 図1に示した海流発電装置におけるタービンの可変ピッチタービンブレードの抗力が小さい状態の部分的な平面図である。 図1に示した海流発電装置におけるタービンの可変ピッチタービンブレードの抗力が大きい状態の部分的な平面図である。 本発明の他の実施形態による海流発電装置の全体構成を示す斜視図である。 本発明のさらに他の実施形態による海流発電装置の全体構成を示す斜視図である。 本発明に係る海流発電装置におけるトルク計の設置状況を例示する概略図である。 本発明に係る海流発電装置におけるタービンシャフトと発電機との連結状況を例示する概略図である。 本発明に係る海流発電装置における、タービンブレードのピッチコントロールによるトルクバランス制御の例を示すフローチャートである。 本発明に係る海流発電装置における、発電機からタービンシャフトにかかる負荷の調節によるトルクバランス制御の例を示すフローチャートである。
以下、本発明を図面に基づいて説明する。
図1、図2A及び図2Bは、本発明に係る水中機器の一実施形態としての、海流発電装置を示している。
これらの図に示すような双発の浮遊式発電装置は、一対の発電部の各深度に大きな差が生じないように海中で浮沈させる、すなわち、一対の発電部をほぼ水平に保ちつつ海中で浮沈させることが重要である。本発明に係る海流発電装置において、「一対の発電部に生じるロール方向の姿勢のずれ」とは、一対の発電部の水平状態が崩れて傾くことを意味している。
また、海流により回転して発電する水平軸型のタービンには、直径数十mのものが用いられ、このタービンを有する発電部は、水深数十m程度の位置にて係留され、双発の水中浮遊式発電装置の場合、発電容量はおおよそ数MWである。なお、この発電容量は仕様等の違いに応じて上下する。
図1に示すように、この海流発電装置1は、白抜き矢印で示す海流を受けて回転する水平軸型のタービン3を有する左右一対のポッド4,4及びこれらのポッド4,4同士を並列に連結する連結ビーム5を具備した装置本体2と、海底に設置したシンカー8と、このシンカー8と装置本体2とを連結し、装置本体2を海底Bに係留する2本の係留索6,6を備えている。
一対のポッド4,4は、タービンシャフトと連結する発電機(いずれも図示せず)を内蔵することで発電部を構成している。また、2本の係留索6,6は、装置本体2の一対のポッド4,4にそれぞれ連結されて、シンカー8に対しては1本に纏められて連結され、全体としてY字状をなしている。
タービン3は、海流の流れに沿う一対のポッド4,4の各下流側(図示左側)に配置されており、このタービン3は、タービンシャフトの後端部に結合されるハブ3aに2枚のブレード3b,3bを取り付けて構成されている。これらのタービン3,3は、各々の回転トルクを相殺するべく互いに反対方向に回転するよう構成されている。
この場合、タービン3の2枚のブレード3b,3bは、ハブ3aに対するピッチが変えられる可変ピッチブレードである。また、一対のポッド4,4には、一対のポッド4,4に生じるロール方向の姿勢のずれを検出する傾き検出手段と、この傾き検出手段で検出されたポッド4,4におけるロール方向の姿勢のずれを打ち消すべく、タービン3,3における可変ピッチタービンブレード3b,3bのピッチコントロールを行う姿勢制御部9がそれぞれ配置されている。
ここで、一対のポッド4,4に生じるロール方向の姿勢のずれを検出する傾き検出手段としては、ジャイロセンサ(ジャイロスコープ)や深度計を採用することができ、この実施例では、傾き検出手段として深度計7を採用している。
すなわち、この実施例では、深度計7,7を一対のポッド4,4にそれぞれ設置し、両深度計7,7で得られる深度の差に基づいて、一対のポッド4,4に生じるロール方向の姿勢のずれを検出している。
なお、傾きの検出システムの冗長化を図るために、ジャイロセンサ及び深度計7,7を併用してもよい。
姿勢制御部9では、深度計7,7がポッド4,4(装置本体2)におけるロール方向の姿勢のずれを検出した場合に、例えば、左右のタービン3のうちの一方のタービン3において、図2A及び図2Bに示すように、可変ピッチタービンブレード3bのピッチを抗力が小さい状態から抗力が大きい状態に変えて、左右のタービン3間にトルクアンバランスを生じさせることで、一対のポッド4,4におけるロール方向の姿勢のずれをなくすことができる。
この実施形態に係る海流発電装置1では、例えば、一対のポッド4,4(装置本体2)に微妙なロール方向の姿勢のずれが生じて装置本体2がロール方向に回転を始めると、この回転を深度計7,7が検出して姿勢制御部9に信号を出力する。
姿勢制御部9では、深度計7,7で検出された一対のポッド4,4におけるロール方向の姿勢のずれを解消するべく、例えば、左右のタービン3のうちの一方のタービン3に、可変ピッチタービンブレード3bのピッチを、図2Aに示す抗力が小さい状態から、図2Bに示す抗力が大きい状態に変えるピッチ制御を行わせる。その結果、一対のポッド4,4の左右の位置が水平に制御され、装置本体2におけるロール方向の回転が抑えられる。
つまり、装置の構成や制御系のシンプル化を図ったうえで、一対のポッド4,4のロール方向の姿勢を制御することが可能となる。
図3は本発明に係る海流発電装置の他の実施形態を示している。
図3に示すように、この海流発電装置1は、海底Bに係留される一対のポッド4,4の上流側(図示例ではシンカー8の近傍)に、これらのポッド4,4に向かう海流の流れの状況を把握して姿勢制御部9に出力する流れ状況計測手段としての超音波ドップラー流速計(ADCP)10を配置した構成を成している。他の構成は、先の実施形態に係る海流発電装置1と同じである。
流れ状況計測手段としての超音波ドップラー流速計10は、海底B側から上方に向けて超音波Eを発することで、深さ方向の流速分布を計測しており、この超音波ドップラー流速計10を複数(この実施例では2台)配置することで、一対のポッド4,4を通過する流れの流速の変化を計測することができる。
この海流発電装置1の姿勢制御部9では、2つの超音波ドップラー流速計10,10からの流速分布の計測結果に基づいて、一対のポッド4,4におけるロール方向の姿勢の変化を未然に回避するべく、一対のタービン3,3に可変ピッチタービンブレード3b,3bのピッチコントロールを行わせる。
この実施形態に係る海流発電装置1では、一対のポッド4,4の上流側において、海流の深さ方向の流速分布が変化して、一対のポッド4,4にロール方向の姿勢が変化する可能性が生じたとしても、この流速分布の変化を計測した超音波ドップラー流速計10,10からの計測結果に基づいて、姿勢制御部9が、各タービン3,3に可変ピッチタービンブレード3b,3bのピッチコントロールを行わせる。その結果、一対のポッド4,4がロール方向に姿勢を崩すことが回避される。
図4は本発明に係る海流発電装置のさらに他の実施形態を示している。
図4に示すように、この実施形態では、流速や流れの向き等の流況を計測するブイ11を流れ状況計測手段として、このブイ11を一対のポッド4,4の上流側に複数配置している。また、複数のブイ11は、いずれも索12を介してシンカー8に係留されている。
なお、海流の流速は、上記した超音波ドップラー流速計を用いて計測してもよいし、電磁流量計等の流体計測機器を用いて計測してもよい。
この実施形態の海流発電装置1においても、一対のポッド4,4の上流側において、海流の流況が変化して、一対のポッド4,4にロール方向の姿勢が変化する可能性が生じたとしても、この流況の変化を把握した複数のブイ11からの計測結果に基づいて、姿勢制御部9が、各タービン3,3に可変ピッチタービンブレード3b,3bのピッチコントロールを行わせる。その結果、一対のポッド4,4がロール方向に姿勢を崩すことが回避される。
上記実施形態に係る海流発電装置1では、超音波ドップラー流速計10,10や流況を計測するブイ11を流れ状況計測手段としているので、装置の構成や制御系を複雑化させることなく、一対のポッド(発電部)4,4におけるロール方向の姿勢変化が未然に回避される。
また、一対のポッド4,4が備える各タービン3,3間のトルクバランスが一定であれば、一対のポッド4,4の周囲における海流の流況が変化しても、一対のポッド4,4がロール方向に姿勢を崩すことはない。そこで、各タービン3,3において発生するトルクをそれぞれ計測し、姿勢制御部9が、これらのトルクを一定に維持するよう、各タービン3,3に可変ピッチタービンブレード3b,3bのピッチコントロールを行わせることによっても、一対のポッド4,4におけるロール方向の姿勢のずれをなくすことができる。
この場合、各タービン3,3において発生するトルクを計測する方法としては、例えば図5に示すように、タービン3のタービンシャフト3cに、タービンシャフト3cに発生するトルクを測定するトルク計13を設置するか、図6に示すように、タービンシャフト3cに連結された出力機器(発電機12)の出力と、その際のタービンシャフト3cの回転数とからトルクを算出する方法がある。
さらに、タービンシャフト3cに連結された発電機12からタービンシャフト3cにかかる負荷を調節することによっても、一対のポッド4,4が備える各タービン3,3間のトルクバランスを調節することができる。この場合、上記図5及び図6に例示するような方法で各タービン3,3において発生するトルクを計測し、姿勢制御部9が、これらのトルクを一定に維持するよう、発電機12からタービンシャフト3cにかかる負荷を調節する。従って、姿勢制御部9による各タービン3,3における可変ピッチタービンブレード3b,3bのピッチコントロールは不要となる。
図7及び図8は、複数のタービンを備える海流発電装置における、タービンのトルクバランスの調節による姿勢制御の例を示すフローチャートである。
図7は、タービンブレードのピッチコントロールによるトルクバランス制御の例を示し、図8は、発電機からタービンシャフトにかかる負荷の調節によるトルクバランス制御の例を示している。
図7で示す例では、複数(n個)のタービンのトルクがそれぞれ計測され、それらの結果から、各タービン間のトルクバランスが検知される。そして、制御部(姿勢制御部9に相当)は、個々のタービンが備える可変ピッチタービンブレードのピッチを調節し、各タービン間のトルクバランスを制御する。その結果、各タービン間のトルクバランスが一定に維持され、ロール方向における装置の姿勢のずれをなくすことができる。
図8で示す例では、複数(n個)のタービンのトルクがそれぞれ計測され、それらの結果から、各タービン間のトルクバランスが検知される。そして、制御部(姿勢制御部9に相当)は、個々のタービンに連結された発電機からタービンシャフトを介してタービンにかかる負荷を調節し、各タービン間のトルクバランスを制御する。その結果、各タービン間のトルクバランスが一定に維持され、ロール方向における装置の姿勢のずれをなくすことができる。
なお、図1に示す実施形態では、一対のポッド4,4に生じたロール方向の姿勢のずれを傾き検出手段(深度計7)で検出し、その結果に基づき装置本体2の姿勢を制御する、所謂フィードバック制御が用いられている。これに対し、図3以降に示す実施形態では、流れ状況計測手段(超音波ドップラー流速計10またはブイ11)を用いて計測した海流の流況の変化や、各タービン3,3において発生するトルクの計測結果等を用い、一対のポッド4,4にロール方向の姿勢のずれが生じる前に、この姿勢のずれを回避する、所謂フィードフォワード制御が用いられている。すなわち、図3以降に示す実施形態は、図1に示す実施形態と比較して、装置本体2の姿勢を迅速に制御できるという利点がある。
また、流れ状況計測手段(超音波ドップラー流速計10またはブイ11)を用いて得た海流の流況に基づき、各タービン3,3において発生するトルクを予測、算出し、この結果に基づき各タービン3,3間のトルクバランスを調節してもよい。
本発明に係る海流発電装置及び海流発電装置の姿勢制御方法の構成は、上記した実施形態に限定されるものではない。本発明の趣旨を逸脱しない範囲で構成の付加、省略、置換、及びその他の交換が可能である。また、本発明は、上記の説明によって限定されることはなく、添付の請求の範囲によってのみ限定される。
例えば、上記各実施形態におけるタービン3は2枚の可変ピッチタービンブレード3b,3bを有するが、タービンブレードの枚数はこれに限られない。個々のポッド4におけるタービン3の設置位置も、ポッド4の尾部のみならず、ポッド4の前部(シンカー8側)や中央部でもよく、あるいはこれらを組み合わせてもよい。また、上記各実施形態では、左右一対のポッド4、4が連結ビーム5により接続されているが、3個以上のポッド4,4が連結ビーム3等を介して配置されていてもよい。
さらに、複数のポッド4,4が上下もしくは上下左右に配置されていてもよい。
また、個々のポッド4における傾き検出手段(深度計7)の位置及び数も、上記各実施形態に限定されない。
また、係留索6は、各ポッド4,4から延びて途中で合流するY字状をなすものの他、一端が各ポッド4,4から延びて他端が同一のシンカー8に接続されるV字状であってもよい。あるいは、個々のポッド4、あるいは連結ビーム5から1本または複数本の係留索6が延びてもよい。複数のポッド4、4が上下左右に配置されている場合、これらのポッド4,4からそれぞれ延びる係留索6が、例えば前方から見てX字状等、立体的に配置されていてもよい。また、係留索6の他端が接続されるシンカー8の数が、1または複数であってもよい。あるいは係留索6以外の公知の係留方法を採用してもよい。
また、上記各実施形態では、本発明を海流発電装置1に適用した場合について説明したが、本発明は、海流発電装置1以外の、複数のタービンを備え、これらのタービンを用いた姿勢制御を行う水中機器にも適用可能である。例えば、本発明は、有人もしくは無人の自走式水中航走体や曳航物、水中に留置される構造物(浮体等)にも適用可能である。
 本発明によれば、構成や制御系をシンプルなものとしたうえで、装置本体のロール方向の姿勢制御を確実に行うことが可能である、水中浮遊式の水中機器海流及びその姿勢制御方法を提供することが可能となる。
1 海流発電装置
3 タービン
3b 可変ピッチタービンブレード
4 ポッド(発電部)
7 深度計(傾き検出手段)
9 姿勢制御部
10 超音波ドップラー流速計(流れ状況計測手段)
11 ブイ(流れ状況計測手段)
12 発電機(出力機器)

Claims (9)

  1.  水中で回転する複数のタービンと、
    これら複数のタービンの回転を制御することにより、ロール方向の姿勢を制御する姿勢制御部とを備え、
     前記姿勢制御部が、前記複数のタービンの回転に伴い前記複数のタービンにそれぞれ発生するトルクを制御することにより、ロール方向の姿勢を制御する水中機器。
  2.  前記複数のタービンが、可変ピッチタービンブレードをそれぞれ備え、前記姿勢制御部が、前記複数のタービンにそれぞれ発生するトルクを、前記可変ピッチタービンブレードのピッチコントロールを行うことにより制御する請求項1に記載の水中機器。
  3. 前記水中機器が、海流を受けて回転する前記複数のタービンを有し、前記複数のタービンの回転により発電する、複数の発電部を備えた水中係留式の海流発電装置であって、
    前記複数の発電部における各タービンが、可変ピッチタービンブレードをそれぞれ備え、
    前記複数の発電部に生じるロール方向の姿勢のずれを検出する傾き検出手段と、
    前記傾き検出手段で検出された前記複数の発電部に生じるロール方向の姿勢のずれを打ち消すべく、前記複数の発電部における各タービンの可変ピッチタービンブレードのピッチコントロールを行う前記姿勢制御部とを設けた請求項1に記載の水中機器。
  4. 海底に係留される前記複数の発電部の上流側に、前記複数の発電部側に向かう海流の流れの状況を把握して前記姿勢制御部に出力する流れ状況計測手段を配置し、
    前記姿勢制御部では、前記流れ状況計測手段からの計測結果に基づいて、前記複数の発電部におけるロール方向の姿勢変化を未然に回避するべく、前記複数の発電部における各タービンの可変ピッチタービンブレードのピッチコントロールを行う請求項3に記載の水中機器。
  5. 深さ方向の流速分布を計測可能な超音波ドップラー流速計を前記流れ状況計測手段とし、この超音波ドップラー流速計を前記複数の発電部の上流側に複数配置した請求項4に記載の水中機器。
  6. 流況を計測するブイを前記流れ状況計測手段とし、このブイを前記複数の発電部の上流側に複数配置した請求項4に記載の水中機器。
  7. 水中で回転する複数のタービンの回転に伴いこれら複数のタービンにそれぞれ発生するトルクを制御することにより、前記複数のタービンの回転を制御し、ロール方向の姿勢を制御する水中機器の姿勢制御方法。
  8.  前記複数のタービンが、可変ピッチタービンブレードをそれぞれ備え、前記複数のタービンにそれぞれ発生するトルクを、前記可変ピッチタービンブレードのピッチコントロールを行うことにより制御する請求項7に記載の水中機器の姿勢制御方法。
  9. 前記水中機器が、海流を受けて回転する前記複数のタービンを有し、前記複数のタービンの回転により発電する複数の発電部を備えた水中係留式の海流発電装置であって、
    前記複数の発電部における各タービンのタービンブレードをそれぞれ可変ピッチタービンブレードとし、
    前記複数の発電部に生じるロール方向の姿勢のずれを打ち消すべく、前記複数の発電部における各タービンの可変ピッチタービンブレードのピッチコントロールを行う請求項7に記載の水中機器の姿勢制御方法。
PCT/JP2014/061195 2013-04-22 2014-04-21 水中機器及び水中機器の姿勢制御方法 WO2014175227A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015513755A JP6056967B2 (ja) 2013-04-22 2014-04-21 海流発電装置及び海流発電装置の姿勢制御方法
BR112015026524A BR112015026524A2 (pt) 2013-04-22 2014-04-21 dispositivo submarino e método para controlar a postura do dispositivo submarino
US14/875,824 US10451026B2 (en) 2013-04-22 2015-10-06 Underwater device and method for controlling posture of underwater device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013089438 2013-04-22
JP2013-089438 2013-04-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/875,824 Continuation US10451026B2 (en) 2013-04-22 2015-10-06 Underwater device and method for controlling posture of underwater device

Publications (1)

Publication Number Publication Date
WO2014175227A1 true WO2014175227A1 (ja) 2014-10-30

Family

ID=51791801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061195 WO2014175227A1 (ja) 2013-04-22 2014-04-21 水中機器及び水中機器の姿勢制御方法

Country Status (5)

Country Link
US (1) US10451026B2 (ja)
JP (1) JP6056967B2 (ja)
BR (1) BR112015026524A2 (ja)
TW (1) TWI599515B (ja)
WO (1) WO2014175227A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020420A (ja) * 2015-07-10 2017-01-26 株式会社Ihi 浮遊式水中発電装置の姿勢制御システムおよび姿勢制御方法
JP2017149174A (ja) * 2016-02-22 2017-08-31 株式会社Ihi 水中浮遊式発電装置の姿勢調整システム
CN107203222A (zh) * 2017-07-03 2017-09-26 中华人民共和国辽宁出入境检验检疫局 无人机实现船舶水尺图像及视频拍摄的方法
JP2018001821A (ja) * 2016-06-28 2018-01-11 株式会社Ihi 水中浮遊式発電装置の姿勢制御システムおよび姿勢制御方法
CN107942687A (zh) * 2017-12-28 2018-04-20 上海海事大学 一种水下热滑翔机姿态调节的近似动态规划优化控制方法
CN108661850A (zh) * 2018-04-13 2018-10-16 中国航天空气动力技术研究院 一种系绳式洋流发电机运动轨迹控制方法
JP2018202892A (ja) * 2017-05-30 2018-12-27 株式会社Ihi 水中浮遊式発電装置の姿勢制御システムおよび姿勢制御方法
JP2020084764A (ja) * 2018-11-15 2020-06-04 株式会社Ihi 海中浮遊式海流発電装置及び海中浮遊式海流発電システム
CN112327946A (zh) * 2020-11-09 2021-02-05 国网山东省电力公司威海供电公司 一种基于最优姿态路径的云台控制方法及其系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163141A1 (ja) 2013-04-03 2014-10-09 株式会社Ihi 水中機器
GB2521631B (en) * 2013-12-23 2017-10-11 Tidal Generation Ltd Water current power generation systems
JP6358927B2 (ja) * 2014-10-29 2018-07-18 三菱重工業株式会社 海中浮遊式海流発電装置
CN113217263A (zh) * 2021-05-10 2021-08-06 东北师范大学 新型聚能涵道式自变距直驱波浪能发电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474043A (en) * 1978-06-26 1979-06-13 Shigeji Sugaya Diving floating marine current generator
JPS6296197A (ja) * 1985-09-10 1987-05-02 アメテツク・インコ−ポレ−テツド プロペラシステム
JP2000505017A (ja) * 1995-09-21 2000-04-25 ジーイーシー マルコニ リミテッド 潜水艇の推進制御システム
JP3116265B2 (ja) * 1994-12-19 2000-12-11 三井造船株式会社 無人潜水機
JP2003135865A (ja) * 2001-11-05 2003-05-13 Mitsumi Electric Co Ltd 浮力調整装置
JP2010531956A (ja) * 2007-06-29 2010-09-30 アクアンティス,エル.エル.シー. マルチポイント係留及び安定化システム、及び流れを用いた水中用タービンのための制御方法
WO2011091448A2 (en) * 2010-01-22 2011-07-28 Stephen Gavin John Oldfield Method of counteracting the tendency of a tethered electricity water current-driven turbine to dive when power is produced
JP4920823B2 (ja) * 1999-01-12 2012-04-18 デールセン アソシエイツ,アイエヌシー. デバイスの動作深度を制御する方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2640550A (en) * 1948-07-24 1953-06-02 Curtiss Wright Corp Turbine propeller control system
DK155454C (da) * 1986-12-03 1989-08-07 Hans Marius Pedersen Flydende vandkraftvaerk til anbringelse i hav- og flodstroemme for energiindvirkning
US6531788B2 (en) * 2001-02-22 2003-03-11 John H. Robson Submersible electrical power generating plant
US6923622B1 (en) * 2002-03-07 2005-08-02 Clipper Windpower Technology, Inc. Mechanism for extendable rotor blades for power generating wind and ocean current turbines and means for counter-balancing the extendable rotor blade
GB0425303D0 (en) * 2004-11-17 2004-12-15 Overberg Ltd Floating apparatus for deploying in a marine current for gaining energy
GB2441821A (en) * 2006-09-13 2008-03-19 Michael Torr Todman Self-aligning submerged buoyant tidal turbine
US20080164698A1 (en) * 2007-01-10 2008-07-10 Gilbert Habets Method and device to measure, test and monitor turbine performance and conditions
AU2008328536B2 (en) * 2007-11-23 2013-07-25 Atlantis Resources Corporation Pte Limited Control system for extracting power from water flow
US7815772B2 (en) * 2008-08-29 2010-10-19 W. R. Meadows Inc. Wet-end manufacturing process for bitumen-impregnated fiberboard
TW200933026A (en) 2009-03-27 2009-08-01 Wan Chi Steel Ind Co Ltd Dynamic ocean current power generation apparatus and carrier thereof
WO2010125476A1 (en) 2009-04-28 2010-11-04 Atlantis Resources Corporation Pte Limited Underwater power generator
CN102498285A (zh) * 2009-06-30 2012-06-13 特纳·汉特 系泊的水动力装置的纵摇、横摇和拖曳稳定
US9822757B2 (en) * 2011-02-23 2017-11-21 The Woods Hole Group, Inc. Underwater tethered telemetry platform
CN201963461U (zh) 2011-04-18 2011-09-07 浙江海洋学院 多向自适应悬浮型潮流能水轮机
CN202140233U (zh) 2011-06-13 2012-02-08 卢国林 江河水流及海洋洋流发电系统
KR101339227B1 (ko) * 2011-12-08 2013-12-11 기아자동차주식회사 자동변속기의 댐퍼 클러치 제어방법
HU229754B1 (hu) * 2012-02-23 2014-06-30 Elite Account Kft Szélenergiát hasznosító energiatermelõ berendezés és eljárás annak üzemeltetésére
WO2014163141A1 (ja) 2013-04-03 2014-10-09 株式会社Ihi 水中機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474043A (en) * 1978-06-26 1979-06-13 Shigeji Sugaya Diving floating marine current generator
JPS6296197A (ja) * 1985-09-10 1987-05-02 アメテツク・インコ−ポレ−テツド プロペラシステム
JP3116265B2 (ja) * 1994-12-19 2000-12-11 三井造船株式会社 無人潜水機
JP2000505017A (ja) * 1995-09-21 2000-04-25 ジーイーシー マルコニ リミテッド 潜水艇の推進制御システム
JP4920823B2 (ja) * 1999-01-12 2012-04-18 デールセン アソシエイツ,アイエヌシー. デバイスの動作深度を制御する方法
JP2003135865A (ja) * 2001-11-05 2003-05-13 Mitsumi Electric Co Ltd 浮力調整装置
JP2010531956A (ja) * 2007-06-29 2010-09-30 アクアンティス,エル.エル.シー. マルチポイント係留及び安定化システム、及び流れを用いた水中用タービンのための制御方法
WO2011091448A2 (en) * 2010-01-22 2011-07-28 Stephen Gavin John Oldfield Method of counteracting the tendency of a tethered electricity water current-driven turbine to dive when power is produced

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020420A (ja) * 2015-07-10 2017-01-26 株式会社Ihi 浮遊式水中発電装置の姿勢制御システムおよび姿勢制御方法
JP2017149174A (ja) * 2016-02-22 2017-08-31 株式会社Ihi 水中浮遊式発電装置の姿勢調整システム
JP2018001821A (ja) * 2016-06-28 2018-01-11 株式会社Ihi 水中浮遊式発電装置の姿勢制御システムおよび姿勢制御方法
JP2018202892A (ja) * 2017-05-30 2018-12-27 株式会社Ihi 水中浮遊式発電装置の姿勢制御システムおよび姿勢制御方法
CN107203222A (zh) * 2017-07-03 2017-09-26 中华人民共和国辽宁出入境检验检疫局 无人机实现船舶水尺图像及视频拍摄的方法
CN107942687A (zh) * 2017-12-28 2018-04-20 上海海事大学 一种水下热滑翔机姿态调节的近似动态规划优化控制方法
CN108661850A (zh) * 2018-04-13 2018-10-16 中国航天空气动力技术研究院 一种系绳式洋流发电机运动轨迹控制方法
JP2020084764A (ja) * 2018-11-15 2020-06-04 株式会社Ihi 海中浮遊式海流発電装置及び海中浮遊式海流発電システム
JP7139903B2 (ja) 2018-11-15 2022-09-21 株式会社Ihi 海中浮遊式海流発電装置及び海中浮遊式海流発電システム
CN112327946A (zh) * 2020-11-09 2021-02-05 国网山东省电力公司威海供电公司 一种基于最优姿态路径的云台控制方法及其系统

Also Published As

Publication number Publication date
TW201505911A (zh) 2015-02-16
US20160201641A1 (en) 2016-07-14
JP6056967B2 (ja) 2017-01-11
JPWO2014175227A1 (ja) 2017-02-23
TWI599515B (zh) 2017-09-21
BR112015026524A2 (pt) 2017-07-25
US10451026B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
JP6056967B2 (ja) 海流発電装置及び海流発電装置の姿勢制御方法
JP5727992B2 (ja) 循環的波エネルギー変換システム
US10584675B2 (en) Underwater floating-type ocean current power generation device
Dang et al. Quasi-steady two-quadrant open water tests for the Wageningen Propeller C-and D-series
JP2017132358A (ja) 水上ロボットの位置制御システムおよび位置制御方法
CN114555938A (zh) 用于定位风电场中的至少两个浮动风力涡轮机的控制系统
US9494130B2 (en) Yaw control-by-rudder type tidal stream power generation apparatus and yaw control method of the same
JP2016055679A (ja) 曳航装置及び曳航方法
JP6119971B2 (ja) 海流発電装置
JP6786907B2 (ja) 水中浮遊式発電装置の姿勢制御システムおよび姿勢制御方法
JP6150046B2 (ja) 海流発電装置
WO2016147245A1 (ja) 水上風力発電システムおよび水上複合発電システム
KR101850900B1 (ko) 부유식 계류형 해류발전 장치
JP5993188B2 (ja) 海流発電装置
US20150240778A1 (en) Submersible power generator
JP2005214142A (ja) 発電装置
JP7139903B2 (ja) 海中浮遊式海流発電装置及び海中浮遊式海流発電システム
JP2016169696A (ja) 海流発電装置
JP6926932B2 (ja) 水中浮遊式発電装置の姿勢制御システム
JP6627292B2 (ja) 浮遊式水中発電装置の姿勢制御システムおよび姿勢制御方法
JP5296736B2 (ja) 入射波の波高及び波向き推定方法、自動航路又は/及び船位維持制御方法、自動航路又は/及び船位維持制御システム及び船舶と洋上構造物
JP6634738B2 (ja) 発電装置
JP6787094B2 (ja) 水中浮遊式発電装置
EP2896822B1 (en) Submersible generator
JP6103449B2 (ja) 潮流発電パネルと係留索

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513755

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201507025

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015026524

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14788046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015026524

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151020