WO2014167678A1 - Dispositif de commande pour moteur à aimant permanent - Google Patents

Dispositif de commande pour moteur à aimant permanent Download PDF

Info

Publication number
WO2014167678A1
WO2014167678A1 PCT/JP2013/060857 JP2013060857W WO2014167678A1 WO 2014167678 A1 WO2014167678 A1 WO 2014167678A1 JP 2013060857 W JP2013060857 W JP 2013060857W WO 2014167678 A1 WO2014167678 A1 WO 2014167678A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
axis
axis voltage
command
value
Prior art date
Application number
PCT/JP2013/060857
Other languages
English (en)
Japanese (ja)
Inventor
暁杰 庄
雅哉 原川
敦生 葉石
寛人 竹居
覚 寺島
今中 晶
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015511020A priority Critical patent/JP5791848B2/ja
Priority to CN201380075408.9A priority patent/CN105103434B/zh
Priority to KR1020157027541A priority patent/KR101576011B1/ko
Priority to PCT/JP2013/060857 priority patent/WO2014167678A1/fr
Priority to TW102136484A priority patent/TWI500252B/zh
Publication of WO2014167678A1 publication Critical patent/WO2014167678A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a control device for a permanent magnet type motor.
  • Patent Document 1 and Patent Document 2 describe a method in which a voltage saturation amount indicating the degree of voltage saturation is detected and a d-axis current corresponding thereto is supplied.
  • the voltage saturation amount corresponds to the amount that the voltage command value exceeds the voltage limiter value. Therefore, the voltage saturation amount can be obtained by calculating the difference between the voltage command value and the voltage limiter value. Since the voltage command value can be either positive or negative, the voltage saturation occurs in both the positive and negative regions. The voltage saturation amount can be obtained from the difference between the voltage command value and the voltage limiter value. However, since it is actually necessary to consider the polarities of the voltage command value and the voltage limiter value, it cannot be obtained by a simple subtractor alone.
  • the voltage saturation amount can be obtained by simply subtracting the absolute value of the voltage command value minus the voltage limiter value in any case. It becomes possible.
  • a method for obtaining the voltage saturation amount by subtracting the absolute value of the voltage command value minus the voltage limiter value as described above is described in Patent Document 3.
  • IPM Interior Permanent Magnet
  • the present invention has been made in view of the above, and provides a control device for a permanent magnet type motor capable of obtaining a voltage saturation amount with a simple subtractor regardless of whether it is a surface magnet type motor or an embedded magnet type motor. The purpose is to obtain.
  • the present invention is configured so that a current applied to a permanent magnet type motor is divided into two components, a d-axis current and a q-axis current, in a rotating dq-axis coordinate system.
  • a controller for a permanent magnet type motor having a PI current controller that performs proportional-integral control, the d-axis voltage command output from the PI current controller for controlling the d-axis current, and the q-axis current Q-axis voltage command output from the PI current controller to control the rotation coordinate conversion at a predetermined angle, respectively, and the result of the rotation coordinate conversion as a d-axis voltage correction command and a q-axis voltage correction command
  • a voltage command rotation coordinate converter to output, a first absolute value calculator for calculating an absolute value of the d-axis voltage correction command, and a second absolute value calculator for calculating an absolute value of the q-axis voltage correction command And d-axis voltage correction
  • the d-axis voltage saturation amount is obtained on the basis of the absolute value of the command and the d-axis voltage rotation limiter value obtained by rotating the d-axis voltage limiter value for limiting the d-axis voltage command at the predetermined angle.
  • a first subtracter, and a q-axis voltage rotation limiter that is a value obtained by rotating the q-axis voltage limiter value for limiting the q-axis voltage command and the q-axis voltage limit value at the predetermined angle.
  • a second subtractor for obtaining a q-axis voltage saturation amount based on the value.
  • the control device for a permanent magnet type motor has an effect that the voltage saturation amount can be obtained only with a simple subtractor regardless of whether it is a surface magnet type motor or an embedded magnet type motor.
  • FIG. 1 is a diagram showing a configuration example of a control device for a permanent magnet type motor according to the present invention.
  • FIG. 2 is a diagram illustrating an example of a relationship between a voltage command value, a voltage limiter value, and a voltage saturation amount.
  • FIG. 3 is a diagram illustrating an example of the calculation of the voltage saturation amount based on the absolute value of the voltage command value and the voltage limiter value.
  • FIG. 4 is a diagram showing the distribution of four types of operation modes on the orthogonal coordinates of the motor speed ⁇ and the torque current iq.
  • FIG. 1 is a diagram showing a configuration example of a control device for a permanent magnet type motor according to the present invention.
  • FIG. 2 is a diagram illustrating an example of a relationship between a voltage command value, a voltage limiter value, and a voltage saturation amount.
  • FIG. 3 is a diagram illustrating an example of the calculation of the voltage saturation amount based on the absolute value of the voltage command value and the voltage limiter value
  • FIG. 5 is a diagram illustrating an example of an equivoltage line of the motor voltage on the orthogonal coordinates of the d-axis current id and the q-axis current iq.
  • FIG. 6 is a diagram showing a motor operation mode on orthogonal coordinates of the d-axis voltage Vd and the q-axis voltage Vq in the surface magnet type motor.
  • FIG. 7 is a diagram illustrating an example of the d-axis voltage Vd and the q-axis voltage Vq in the forward rotation / power running operation of the embedded magnet type motor.
  • FIG. 8 is a diagram showing the relationship between the voltage command value and the voltage limiter value when the surface magnet type motor is used, and the voltage saturation amount obtained from both.
  • FIG. 8 is a diagram showing the relationship between the voltage command value and the voltage limiter value when the surface magnet type motor is used, and the voltage saturation amount obtained from both.
  • FIG. 9 is a diagram showing the relationship between the voltage command value and the voltage limiter value when the embedded magnet type motor is used, and the voltage saturation amount obtained from both.
  • FIG. 10 is a diagram illustrating the relationship between the voltage command value and the voltage limiter value after the rotational coordinate conversion at the angle ⁇ , and the voltage saturation amount obtained from both.
  • FIG. 1 is a diagram showing a configuration example of a control device for a permanent magnet type motor according to the present invention.
  • the control device for the permanent magnet type motor according to the present embodiment converts the current applied to the permanent magnet type motor 34 into two components (d axis current and q axis current) of the dq axis coordinate system which is a rotating orthogonal coordinate system. Therefore, proportional integral control (PI (Proportional Integral) control) is performed.
  • the permanent magnet type motor control device of the present embodiment includes a PWM inverter 32 that supplies power to the permanent magnet type motor 34 based on voltage commands Vu *, Vv *, and Vw *, which will be described later, and a permanent magnet type motor 34.
  • the permanent magnet type motor 34 may be a surface magnet type motor or an embedded magnet type motor.
  • the control device for the permanent magnet type motor according to the present embodiment is a coefficient unit that calculates the rotational angular velocity ⁇ e of the dq axis coordinate based on the motor speed ⁇ ( ⁇ r) of the permanent magnet type motor 34 detected by the speed detector 35.
  • an integrator 38 that integrates the rotational angular velocity ⁇ e and outputs the phase angle ⁇ of the dq axis coordinates, and currents iu, iv, iw of the current detectors 33a, 33b, 33c based on the phase angle ⁇ of the dq axis coordinates. Is converted into a d-axis current id and a q-axis current iq on the dq-axis coordinates, and is output.
  • control device for the permanent magnet type motor of the present embodiment includes a subtractor 11 that outputs a current deviation eid between a d-axis current correction command id * cmd and a d-axis current id, which will be described later, and the current deviation eid is zero.
  • a d-axis current controller 12 that outputs a d-axis voltage command Vd * by performing PI control, and a subtractor 21 that outputs a current deviation eiq between a q-axis current correction command iq * cmd and a q-axis current iq described later.
  • a q-axis current controller 22 that outputs a q-axis voltage command Vq * by performing PI control so that the current deviation eiq becomes 0, and a d-axis voltage command Vd * and q based on the phase angle ⁇ of the dq-axis coordinates.
  • a two-phase three-phase coordinate converter 31 that converts the shaft voltage command Vq * into voltage commands Vu *, Vv *, and Vw * on three-phase AC coordinates and outputs them as voltage commands for the PWM inverter 32.
  • Each unit described above includes a PI current controller (PWM inverter 32, current detectors 33a, 33b, and 33c, a speed detector 35, a coefficient unit 37, and an integrator that make the deviation between the current command and the actual current zero. 38, PI controller composed of three-phase two-phase coordinate converter 36, subtractor 11, d-axis current controller 12, subtractor 21, q-axis current controller 22 and two-phase three-phase coordinate converter 31). Since this is the part that performs the basic operation of the vector control of the used permanent magnet type motor 34, the detailed description of the operation is omitted.
  • the control device for the permanent magnet type motor further rotates the d-axis voltage command Vd * and the q-axis voltage command Vq * by an angle ⁇ , respectively, thereby rotating the d-axis voltage correction command Vd * ′ and the q-axis voltage correction command.
  • Rotation coordinate converter 1 (voltage command rotation coordinate converter) that outputs Vq * ′, d-axis voltage limiter value Vd_limit and q-axis voltage limiter value Vq_limit are rotated by an angle ⁇ , respectively, and d-axis voltage correction limiter value Vd_limit ′ a rotation coordinate converter 2 (limiter value rotation coordinate converter) that outputs a q-axis voltage correction limiter value Vq_limit ′.
  • the control device for the permanent magnet type motor further includes an absolute value calculator 13 (first step) for obtaining an absolute value
  • a subtracter 24 (second subtractor) that outputs a q-axis voltage saturation amount ⁇ Vq that is a difference between the q-axis voltage correction limiter value Vq_limit ′ output from the rotary coordinate converter 2 and the q-axis voltage correction command Vq * ′. And).
  • the controller for the permanent magnet type motor of the present embodiment further includes a q-axis current command corrector 15 that outputs a q-axis current command correction amount ⁇ iq for avoiding voltage saturation from the d-axis voltage saturation amount ⁇ Vd, and q A d-axis current command correction unit 25 that outputs a d-axis current command correction amount ⁇ id for avoiding voltage saturation from the shaft voltage saturation amount ⁇ Vq, and a difference between the d-axis current command value id * and the d-axis current command correction amount ⁇ id.
  • the voltage saturation amount is detected.
  • the voltage saturation amount will be described.
  • the permanent magnet motor is operated at a high speed or a large motor torque is generated, a high voltage is required to drive the motor, and a so-called voltage saturation state occurs.
  • voltage saturation occurs, not only does the speed and torque as commanded stop, but it also causes deterioration of control characteristics such as vibration of the speed and motor current, so the voltage saturation amount is detected and the d-axis current corresponding to it is detected. Measures such as flushing are taken.
  • FIG. 2 is a diagram illustrating an example of a relationship between a voltage command value, a voltage limiter value, and a voltage saturation amount.
  • the voltage saturation amount corresponds to an amount by which the voltage command value exceeds the voltage limiter value. Therefore, the voltage saturation amount can be obtained by calculating the difference between the voltage command value and the voltage limiter value. Since the voltage command value can be either positive or negative, the voltage saturation occurs in both positive and negative regions as shown in FIG. Therefore, since it is necessary to consider the polarities of the voltage command value and the voltage limiter value in order to obtain the voltage saturation amount, it cannot be obtained with a simple subtractor alone.
  • FIG. 3 is a diagram showing an example of calculation of the voltage saturation amount based on the absolute value of the voltage command value and the voltage limiter value (only + value may be used).
  • Patent Document 3 describes that the voltage saturation amount is calculated using only the subtractor by obtaining the voltage saturation amount by subtracting the absolute value of the voltage command value minus the voltage limiter value in this way.
  • FIG. 4 is a diagram showing the distribution of four types of operation modes on the orthogonal coordinates of the motor speed ⁇ and the q-axis current iq.
  • Vd R ⁇ id ⁇ Pm ⁇ ⁇ ⁇ Lq ⁇ iq
  • Vq R ⁇ iq + Pm ⁇ ⁇ ⁇ ( ⁇ + Ld ⁇ id) (2)
  • R is a winding resistance
  • Ld is a d-axis inductance
  • Lq is a q-axis inductance
  • is a permanent magnet magnetic flux
  • Pm is the number of pole pairs
  • is a motor speed
  • id is a d-axis current
  • iq is a q-axis current.
  • Equation (1) and Equation (2) are composed of the sum of the voltage drop due to the winding resistance, the transformer electromotive force due to the winding inductance, and the speed electromotive force due to the permanent magnet magnetic flux. Yes.
  • Equation (1) and Equation (2) are approximated as Equation (3) and Equation (4). be able to.
  • Vd ⁇ Pm ⁇ ⁇ ⁇ Lq ⁇ iq (3)
  • Vq Pm ⁇ ⁇ ⁇ Lq ( ⁇ + Ld ⁇ id) (4)
  • the expressions (3) and (4) are expressed by the following expressions (5) and (6 ).
  • Vd ⁇ Pm ⁇ ⁇ ⁇ L ⁇ iq (5)
  • Vq Pm ⁇ ⁇ ⁇ ( ⁇ + L ⁇ id) (6)
  • Vq 2 (Pm ⁇ ⁇ ⁇ L) 2 ⁇ ⁇ iq 2 + ( ⁇ / L + id) 2 ⁇ (7)
  • FIG. 5 is a diagram illustrating an example of an equivoltage line of the motor voltage on the orthogonal coordinates of the d-axis current id and the q-axis current iq.
  • the equal voltage lines 101 and 102 in FIG. 5 illustrate the equation (8).
  • the equal voltage line 101 indicates the motor voltage when the motor speed ⁇ is small
  • the equal voltage line 102 indicates the motor voltage when the motor speed ⁇ is small.
  • An isovoltage line is shown. As shown in FIG. 5, it can be seen that the motor voltage isovoltage line draws a circular locus from the same center point whether the motor speed ⁇ is large or small.
  • the d-axis current for the magnetic flux enhancement control is not set to a positive value. From the above, in the surface magnet type motor, the range in which the d-axis current actually flows is given by the following formula (9). - ⁇ / L ⁇ id ⁇ 0 (9)
  • FIG. 6 is a diagram showing a motor operation mode on orthogonal coordinates of the d-axis voltage Vd and the q-axis voltage Vq in the surface magnet type motor.
  • the q-axis voltage Vq increases in the + direction or ⁇ direction during light load operation (when the torque current iq is small), and during heavy load operation (torque current iq decreases).
  • the d-axis voltage Vd increases in the + or ⁇ direction.
  • the operating area of the d-axis voltage and the q-axis voltage is neatly divided on the orthogonal coordinates with respect to the operation mode of the permanent magnet type motor. If it is within, the polarity of the voltage command does not change. For this reason, the voltage saturation amount can be obtained by subtraction of the absolute value of the voltage command value minus the voltage limiter value.
  • FIG. 7 is a diagram illustrating an example of the d-axis voltage Vd and the q-axis voltage Vq in the forward rotation / power running operation of the embedded magnet type motor.
  • the same can be said for other operation modes.
  • the method of obtaining the voltage saturation amount by subtraction of the absolute value of the voltage command value minus the voltage limiter value cannot be used.
  • the voltage command value indicated by A in FIG. 7 and the voltage command value indicated by B become the same value when the absolute value is taken, so the absolute value of the voltage command value minus the voltage limiter value.
  • accurate voltage saturation cannot be derived by subtraction.
  • the polarity of the voltage command may change even in the same operation mode, and the voltage saturation amount cannot be obtained by subtraction of the absolute value of the voltage command value-the voltage limiter value. For this reason, there exists a problem that a complicated process is needed.
  • a control device for a permanent magnet type motor that can determine the voltage saturation amount with only a subtractor will be described.
  • the absolute value calculator 13, the absolute value calculator 23, the subtractor 14, and the subtractor 24 subtract the absolute value of the voltage command value minus the voltage limiter value to obtain the voltage saturation amount.
  • the voltage command value and the voltage limiter value cannot be used as they are.
  • the absolute value of the voltage command value minus the voltage limiter value is subtracted.
  • the q-axis current command corrector 15 and the d-axis current command corrector 25 determine the current command correction amount (q-axis current command correction amount ⁇ iq, d-axis current command correction amount based on the voltage saturation amount. ⁇ id) is obtained.
  • Various methods are conceivable for deriving the current command correction amount based on the voltage saturation amount, and any method may be used. For example, the method of Patent Document 1 described above can be used.
  • the subtractor 16 and the subtractor 26 correct the current command by calculating the difference between the current command (d-axis current command value id *, q-axis current command value iq *) and the current command correction amount, and calculate the calculated difference. Output as current correction commands (d-axis current correction command id * cmd, q-axis current correction command iq * cmd). Then, vector control of the permanent magnet motor 34 by PI control is performed using the current correction command.
  • d-axis current command value id * an arbitrary value may be given as the d-axis current command value id *, or a magnetic flux controller may be provided at the upper level and the output value of this magnetic flux controller may be used.
  • q-axis current command value iq * may be given an arbitrary value, or a speed controller may be provided at the upper level and the output value of this speed controller may be used.
  • FIG. 8 is a diagram showing the relationship between the voltage command value, the voltage limiter value, and the voltage saturation obtained from both.
  • This figure shows a case where the permanent magnet type motor 34 is a surface magnet type motor and is operated in the forward rotation / power running mode.
  • the hatched portion indicates a region where the voltage command value can operate without causing voltage saturation.
  • the voltage limiter values Vd_limit and Vq_limit are set in the shaded area.
  • the voltage command value varies in magnitude depending on the motor speed and q-axis current (torque current) (see Equation (3) and Equation (4)).
  • torque current q-axis current
  • the voltage command value is located in a region where the q-axis voltage is positive and the d-axis voltage is small on the negative side.
  • the load torque increases, It falls down and its size increases, and voltage saturation is likely to occur.
  • FIG. 2 in the case of a surface magnet type motor, as described above, the polarity of the voltage command value and the voltage limiter value can be changed within the same operation mode even if the motor speed or the load torque changes. Will not change. Therefore, the voltage saturation amount can always be easily obtained by subtracting the absolute value of the voltage command value minus the voltage limiter value.
  • FIG. 9 is a diagram showing the relationship between the voltage command value and the voltage limiter value when using an embedded magnet type motor, and the voltage saturation amount obtained from both.
  • This figure shows a case where the permanent magnet type motor 34 is an embedded magnet type motor and is operated in the forward rotation / power running mode.
  • the hatched portion indicates a region where the voltage command value can operate without causing voltage saturation.
  • the voltage limiter values Vd_limit and Vq_limit are set in the shaded area.
  • the voltage command value varies in magnitude depending on the motor speed and q-axis current (torque current) (see Equation (3) and Equation (4)).
  • torque current q-axis current
  • the voltage command value When the load torque is small, the voltage command value is located in a small region where the q-axis voltage is on the + side and the d-axis voltage is on the-side, but as the load torque increases, the voltage command value becomes the d-axis voltage. It will fall into the-side region, and its size will also increase, making it easier to cause voltage saturation.
  • the polarity of the voltage command value and the voltage limiter value may change even within the same operation mode. For this reason, there is a case where the voltage saturation amount cannot be obtained by subtraction of the absolute value of the voltage command value minus the voltage limiter value.
  • the voltage vector is rotated at the stage of obtaining the voltage saturation amount.
  • the angle at which the voltage command value at the maximum torque point enters the negative direction of the q-axis voltage (the angle formed by the voltage command value at the maximum torque point and the d-axis) is ⁇
  • the voltage command value And the voltage limiter value is converted into a rotation coordinate at an angle ⁇ .
  • FIG. 10 is a diagram illustrating the relationship between the voltage command value and the voltage limiter value after the rotational coordinate conversion at the angle ⁇ , and the voltage saturation amount obtained from both.
  • the light load operation part enters the + direction of the d-axis voltage.
  • the major problem with voltage saturation is that when the voltage command for heavy load operation is generated near the negative direction of the d-axis voltage, motor torque cannot be generated sufficiently due to the occurrence of voltage saturation. It is.
  • the maximum torque point of the motor exists when the voltage command value falls to the bottom of the shaded region, the motor torque can be extracted to the maximum by the operation of the present embodiment. Therefore, the voltage saturation amount at the time of light load when the portion at light load operation enters the + direction of the d-axis voltage is practically large even if there is a certain amount of error due to the calculation of the absolute value of this embodiment. It doesn't matter.
  • the rotation coordinate conversion will be specifically described with reference to FIG.
  • the rotary coordinate converter 1 rotates the d-axis voltage command Vd * and the q-axis voltage command Vq * by an angle ⁇ based on the following equation (10).
  • the rotary coordinate converter 2 rotates the d-axis voltage limiter value Vd_limit and the q-axis voltage limiter value Vq_limit by an angle ⁇ based on the following equation (11).
  • the d-axis voltage limiter value Vd_limit and the q-axis voltage limiter value Vq_limit may be fixed values or variable values calculated from values such as the bus voltage Vdc of the PWM inverter 32.
  • the angle ⁇ of the rotational coordinate conversion is an angle at which the voltage command value at the maximum torque point enters the negative direction of the q-axis voltage. This angle is a basic parameter of the motor (winding resistance R, d-axis inductance Ld, q-axis inductance Lq, permanent magnet magnetic flux ⁇ , number of pole pairs Pm, etc.), and is a value that can be calculated in advance.
  • the d-axis voltage limiter value Vd_limit and the q-axis voltage limiter value Vq_limit are fixed values, all the right sides of the equation (11) are fixed values, so the d-axis voltage correction limiter value Vd_limit ′ and the q-axis voltage correction
  • the limiter value Vq_limit ′ can be obtained by calculation in advance and held without performing rotation coordinate conversion by the rotation coordinate converter 2, and the held value can be used.
  • the voltage saturation amount calculation method of the present embodiment can be similarly applied to other operation modes without any problem.
  • 0 may be set.
  • 0 may be set.
  • it is possible to deal with both surface magnet type motors and embedded magnet type motors. If an embedded magnet type motor having different basic parameters is used, ⁇ may be changed.
  • the d-axis voltage command Vd * and the q-axis voltage command Vq * are rotated by an angle ⁇ , and the d-axis voltage limiter value Vd_limit and the q-axis voltage limiter value Vq_limit are rotated by an angle ⁇ .
  • the voltage saturation amount can be obtained simply by subtracting the absolute value of the voltage command value minus the voltage limiter value.
  • the permanent magnet type motor control apparatus is useful for a permanent magnet type motor control apparatus that detects the amount of voltage saturation, and in particular, when an embedded magnet type motor is used as the permanent magnet type motor. Suitable for

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

L'invention porte sur un dispositif de commande pour un moteur à aimant permanent possédant un régulateur de courant PI qui effectue respectivement une commande proportionnelle et intégrale d'un courant d'axe d et d'un courant d'axe q, qui sont les deux composants dans un système de coordonnées d'axes dq tournant, le dispositif de commande comportant : un transformateur de coordonnées de rotation (1) qui effectue une conversion de coordonnées de rotation à un angle prescrit pour une sortie de commande de tension d'axe d du régulateur de courant PI et pour une sortie de commande de tension d'axe q du régulateur de courant PI et qui émet les commandes transformées en tant que commande de correction de tension d'axe d et commande de correction de tension d'axe q ; un calculateur de valeur absolue (13) qui calcule la valeur absolue de la commande de correction de tension d'axe d ; un calculateur de valeur absolue (23) qui calcule la valeur absolue de la commande de correction de tension d'axe q ; un soustracteur (14) qui calcule une valeur de saturation de la tension d'axe d sur la base de la valeur absolue de la commande de correction de tension de l'axe d et une valeur de limitation de la rotation de tension d'axe d qui a été acquise par l'exécution d'une transformation de coordonnées de rotation de la valeur de limitation de tension d'axe d au niveau de l'angle prescrit ; un soustracteur (24) qui calcule une valeur de saturation de la tension d'axe q sur la base de la valeur absolue de la commande de correction de tension de l'axe q et une valeur de limitation de la rotation de tension d'axe q qui a été acquise par l'exécution d'une transformation de coordonnées de rotation de la valeur de limitation de tension d'axe q au niveau de l'angle prescrit.
PCT/JP2013/060857 2013-04-10 2013-04-10 Dispositif de commande pour moteur à aimant permanent WO2014167678A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015511020A JP5791848B2 (ja) 2013-04-10 2013-04-10 永久磁石型モータの制御装置
CN201380075408.9A CN105103434B (zh) 2013-04-10 2013-04-10 永磁体型电动机的控制装置
KR1020157027541A KR101576011B1 (ko) 2013-04-10 2013-04-10 영구 자석형 모터의 제어 장치
PCT/JP2013/060857 WO2014167678A1 (fr) 2013-04-10 2013-04-10 Dispositif de commande pour moteur à aimant permanent
TW102136484A TWI500252B (zh) 2013-04-10 2013-10-09 永久磁鐵型馬達的控制裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060857 WO2014167678A1 (fr) 2013-04-10 2013-04-10 Dispositif de commande pour moteur à aimant permanent

Publications (1)

Publication Number Publication Date
WO2014167678A1 true WO2014167678A1 (fr) 2014-10-16

Family

ID=51689111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060857 WO2014167678A1 (fr) 2013-04-10 2013-04-10 Dispositif de commande pour moteur à aimant permanent

Country Status (5)

Country Link
JP (1) JP5791848B2 (fr)
KR (1) KR101576011B1 (fr)
CN (1) CN105103434B (fr)
TW (1) TWI500252B (fr)
WO (1) WO2014167678A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662782B (zh) * 2017-10-13 2019-06-11 日商日立江森自控空調有限公司 馬達驅動裝置、及具備其之冷凍循環裝置、以及馬達驅動方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552506B (zh) * 2015-10-22 2016-10-01 東元電機股份有限公司 馬達驅動器之控制系統
CN112187129B (zh) * 2020-12-01 2021-04-02 深圳市兆威机电股份有限公司 电机控制方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017660A (ja) * 2006-07-07 2008-01-24 Toyota Motor Corp 電動機制御装置およびそれを備えた車両
JP2011004515A (ja) * 2009-06-18 2011-01-06 Hitachi Via Mechanics Ltd 電動機駆動制御装置。
JP2011229252A (ja) * 2010-04-19 2011-11-10 Mitsubishi Electric Corp 交流回転機の制御装置
JP2013017308A (ja) * 2011-07-04 2013-01-24 Yaskawa Electric Corp インバータ装置および電動機ドライブシステム
JP2013055788A (ja) * 2011-09-02 2013-03-21 Mitsubishi Electric Corp 交流電動機の速度制御装置
JP2013055820A (ja) * 2011-09-05 2013-03-21 Mitsubishi Electric Corp 交流電動機の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127996A (ja) * 1997-06-30 1999-01-29 Yaskawa Electric Corp Acモータ用電流ベクトル制御方法およびacモータ駆動装置
JP4231970B2 (ja) * 1999-05-28 2009-03-04 株式会社安川電機 Acモータの電圧飽和処理装置
CY1110678T1 (el) * 2003-08-15 2015-06-10 University Of South Florida Υλικα και μεθοδοι για την παγιδευση παθογονων και την απομακρυνση του χρυσινοτρικαρβοξυλικου οξεος απο ενα δειγμα
JP5595436B2 (ja) * 2012-03-21 2014-09-24 三菱電機株式会社 モータ制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017660A (ja) * 2006-07-07 2008-01-24 Toyota Motor Corp 電動機制御装置およびそれを備えた車両
JP2011004515A (ja) * 2009-06-18 2011-01-06 Hitachi Via Mechanics Ltd 電動機駆動制御装置。
JP2011229252A (ja) * 2010-04-19 2011-11-10 Mitsubishi Electric Corp 交流回転機の制御装置
JP2013017308A (ja) * 2011-07-04 2013-01-24 Yaskawa Electric Corp インバータ装置および電動機ドライブシステム
JP2013055788A (ja) * 2011-09-02 2013-03-21 Mitsubishi Electric Corp 交流電動機の速度制御装置
JP2013055820A (ja) * 2011-09-05 2013-03-21 Mitsubishi Electric Corp 交流電動機の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662782B (zh) * 2017-10-13 2019-06-11 日商日立江森自控空調有限公司 馬達驅動裝置、及具備其之冷凍循環裝置、以及馬達驅動方法

Also Published As

Publication number Publication date
JP5791848B2 (ja) 2015-10-07
KR101576011B1 (ko) 2015-12-08
KR20150119966A (ko) 2015-10-26
CN105103434B (zh) 2016-09-28
TWI500252B (zh) 2015-09-11
CN105103434A (zh) 2015-11-25
TW201440412A (zh) 2014-10-16
JPWO2014167678A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP4834129B2 (ja) 速度センサレスベクトル制御装置
JP6367332B2 (ja) インバータ制御装置及びモータ駆動システム
TWI411218B (zh) 永久磁石同步電動機之控制裝置
WO2017033508A1 (fr) Système d'entraînement et dispositif inverseur
JP5425173B2 (ja) 制御装置
JP2009290929A (ja) 永久磁石形同期電動機の制御装置
WO2014084009A1 (fr) Dispositif de commande de moteur électrique
JP4522273B2 (ja) モータ制御装置及びこれを有するモータ駆動システム
JP5791848B2 (ja) 永久磁石型モータの制御装置
JP5948266B2 (ja) インバータ装置、建設機械、電動機制御方法
JP5920067B2 (ja) モータ制御装置
JP2013078214A (ja) 永久磁石同期電動機の制御装置
WO2013061808A1 (fr) Unité de commande de moteur à induction de propulsion de véhicule
JP2010279095A (ja) 交流電動機のセンサレス制御装置
JP6762825B2 (ja) 電動機制御装置およびドライブシステム
JP2007282300A (ja) モーター制御装置
JP5312179B2 (ja) Dcブラシレスモータの制御装置
JP5326284B2 (ja) 同期電動機の制御装置
JP5996485B2 (ja) モータの駆動制御装置
JP5862690B2 (ja) 電動機駆動装置の制御装置および電動機駆動システム
JP6848406B2 (ja) インバータ制御装置
JP2010200544A (ja) 交流電動機制御装置および制御方法
JP5312195B2 (ja) Dcブラシレスモータの制御装置
JP6089608B2 (ja) 同期電動機の制御方法
JP5390970B2 (ja) モータ制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075408.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511020

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157027541

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881827

Country of ref document: EP

Kind code of ref document: A1