JP2011004515A - 電動機駆動制御装置。 - Google Patents

電動機駆動制御装置。 Download PDF

Info

Publication number
JP2011004515A
JP2011004515A JP2009145485A JP2009145485A JP2011004515A JP 2011004515 A JP2011004515 A JP 2011004515A JP 2009145485 A JP2009145485 A JP 2009145485A JP 2009145485 A JP2009145485 A JP 2009145485A JP 2011004515 A JP2011004515 A JP 2011004515A
Authority
JP
Japan
Prior art keywords
motor
phase angle
drive control
synchronous motor
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009145485A
Other languages
English (en)
Other versions
JP5546804B2 (ja
Inventor
Yoshitaka Iwaji
善尚 岩路
Kiyoshi Sakamoto
坂本  潔
Shinji Tanaka
慎治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP2009145485A priority Critical patent/JP5546804B2/ja
Publication of JP2011004515A publication Critical patent/JP2011004515A/ja
Application granted granted Critical
Publication of JP5546804B2 publication Critical patent/JP5546804B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】電気時定数の長いPMモータを用いた場合でも、大きな負荷変動に対して即座に反応し、定常状態では無駄な電流を一切流さずに済むようにした電動機駆動制御装置を提供すること。
【解決手段】インバータ3によりPMモータ5をベクトル制御する方式の電動機駆動制御装置において、Δθd推定器12によりPMモータ5の軸誤差Δθd を推定し、推定値Δθdc の値に応じて励磁電流指令の補正量ΔId をΔId演算器20により演算し、演算した補正量ΔId を加算器74により励磁電流指令Id*に加算して制御軸上で励磁電流を発生させ、軸誤差Δθd の過渡的な増加時には励磁電流によりPMモータ5のトルクが増大されるようにし、負荷変動の抑制に必要なトルクが瞬間的に補われるようにした。
【選択図】図1

Description

本発明は、同期電動機の駆動制御装置に係り、特に、永久磁石同期電動機をベクトル制御方式により駆動する電動機駆動制御装置に関する。
PMモータと略称される永久磁石同期電動機は、小型且つ高効率であるため、従来から様々な用途に適用展開され、その制御技術も大きく進歩し、この結果、例えば、プリント基板用穿孔機や各種の切削加工機など、スピンドルを高速度で回転駆動する必要がある装置に適用し、その高応答化、高効率化、高品質化を図るのに有効な技術になっている。
中でも、近年は、それまでPMモータの駆動に必須であった回転子位置センサが不要にできる“センサレス制御方式”によるシステムが進歩し、この結果、適用対象も拡大傾向にある。
そして、このセンサレス制御方式による従来技術の一例(第1の従来技術)においては、PMモータの実際の回転子位相角と、制御上で仮定している位相角との偏差(これを“軸誤差”と呼ぶ)を直接推定演算し、この偏差が零になるように、制御上の位相を修正することで、位置センサレス制御を実現している(例えば特許文献1参照)。
しかし、この第1の従来技術における軸誤差の演算は、PMモータの誘導起電圧から間接的に求めるものであり、従って零回転速度を含む低速域においては正確な軸誤差の演算ができず、このため高トルク化が困難であるという問題がある。
そこで、この問題を解決するため、PMモータの励磁電流を該PMモータの回転数(回転速度)に応じて変化させ、位置センサレス制御系を安定化させるようにした別の従来技術(第2の従来技術)も知られている(例えば特許文献2参照)。
この第2の従来技術は、基本的には、位相推定が困難となる低速域においてPMモータの回転子位相と同位相の電流(励磁電流)を流し、負荷変動により回転子位相が変動することによりトルクを自然発生させ、系を安定化させるものである。
また、別の従来技術(第3の従来技術)も同様の発想によるもので、この場合、トルク電流Iqの大きさに応じて、それに見合った励磁電流Idを与えるように制御し、これにより位置センサレス制御系の安定化が得られるようにしている(例えば特許文献3参照)。
そして、更に別の従来技術(第4の従来技術)では、軸誤差を演算し、その軸誤差に含まれる変動分から、負荷のトルク変動を推定演算し、その変動を打ち消すようなトルク電流指令を作成するようにしたものである(例えば特許文献4参照)。
特開2001−251889号公報 特開2001−190099号公報 特開2000−262100号公報 特開2005−198402号公報
ところで、プリント基板用穿孔機などの装置の場合、加工中にインパクトドロップ負荷と呼ばれる負荷が発生することがある。
例えば、スピンドルで孔あけ加工を行う場合、スピンドルのドリル歯が材料面に触れたとき、瞬間的に大きな負荷が発生し、これを“インパクトドロップ負荷”という。
そして、このインパクトドロップ負荷が発生した場合、瞬間的ではあるが、PMモータにより駆動されているスピンドルの回転数が一時的に低下してしまう。
そこで、この場合、即座にPMモータのトルク電流を増加させるようにすれば、PMモータのトルクが速やかに増加し、スピンドルの回転数を復元することができる。
しかしながら、このときの負荷の増加量が大きいと、回転数の低下も大きくなり、場合によってはPMモータが脱調し、停止してしまう虞がある。特に、位置センサレス制御方式の場合、センサレスによる応答が可能な回転数範囲を超えて低速域まで回転数が低下したとすると、脱調が確実になってしまう。
また、仮にセンサ付の場合であっても、高負荷時には回転数の低下が大きくなり、この場合、例えば孔あけ加工機であれば、加工面の品質が低下してしまうことになる。
更に、近年のPMモータは高効率を追及しており、このため、固定子巻線として、抵抗値が小さくできる“集中巻”を採用する傾向にあり、回転子構造としては、永久磁石を回転子内部に埋め込む構造のものが増えているので、インダクタンス値が増加する傾向にあり、この結果、PMモータの等価回路における抵抗Rは、インダクタンスLに対して相対的に小さくなるため、電気時定数(=L/R)は長くなる方向にある。
そのため、近年のPMモータは電流応答が悪く、従って、インパクトドロップ負荷の発生時に、即座にトルク電流を多く流すのが難しいという問題があった。
このとき、上記した第2の従来技術と第3の従来技術の手法を用いるようにすれば、上記の問題は、ある程度は解決可能であるが、しかし、これらの手法による場合、本来はトルク発生に寄与しない励磁電流成分を、負荷の大きさに拠らず、常に流し続けることになり、この結果、PMモータの長所である“高効率”が犠牲になり、また、発熱の問題も発生する。
ここで、上記した第4の従来技術の手法は、圧縮機負荷のように、周期的な負荷変動には効果があるものの、インパクトドロップ負荷のような単発的に発生する外乱による負荷変動には適用できない。
本発明は、これら従来技術が有する問題に鑑みてなされたもので、その目的は、電気時定数の長いPMモータを用いた場合でも、大きな負荷変動に対して即座に反応し、定常状態では無駄な電流を一切流さずに済むようにした電動機駆動制御装置を提供することにある。
上記目的は、同期電動機をインバータによりベクトル制御する方式の電動機駆動制御装置において、前記同期電動機の回転子位相角と前記ベクトル制御のための制御系内に設定してある位相角との偏差を検出する位相角偏差検出手段と、前記偏差の大きさに応じて前記同期電動機の励磁電流成分に対する補正量を算出する補正量算出手段と、前記補正量を前記ベクトル制御のための励磁電流指令に加算する手段とを設け、前記偏差が増大したとき、前記ベクトル制御における励磁電流成分の増加により前記同期電動機のトルクが過渡的に増大されるようにして達成される。
このとき、前記位相角偏差検出手段は、前記同期電動機に対するトルク電流指令と前記同期電動機のトルク電流検出値の偏差に基づいて位相角の偏差を算出するものであってもよく、前記同期電動機に対するトルク電流指令と前記同期電動機のトルク電流検出値及び前記同期電動機の定数である抵抗値とインダクタンス値に基づいて位相角の偏差を算出するものであってもよく、更に、前記位相角偏差検出手段は、位置センサにより検出した前記同期電動機の回転子の位置に基づいて位相角の偏差を算出するものであってもよい。
また、このとき、前記位相角偏差検出手段が、前記同期電動機に対するトルク電流指令と前記同期電動機のトルク電流検出値の偏差に基づいて位相角の偏差を算出する第1の手段と、位置センサにより検出した前記同期電動機の回転子の位置に基づいて位相角の偏差を算出する第2の手段を備え、前記同期電動機が低速のときには、前記第1の手段により検出した位相角の偏差を出力し、前記同期電動機が高速のときには、前記第2の手段により検出した位相角の偏差を出力するものであってもよい。
インパクトドロップなどの負荷変動発生時には、PMモータの回転子位相角と制御器内部の位相角とに差異(軸誤差)が発生するが、このときの軸誤差の発生量は、負荷変動の大きさに応じて変化する。
そこで、このことを利用し、上記の手段では、制御器内部の励磁電流成分を軸誤差に応じて流すようにする。その結果、負荷変動の抑制に必要なトルク電流を瞬間的に補うことができ、回転数の低下や、脱調などの不具合を回避できる。
本発明によれば、電気時定数の長いPMモータであっても回転数変動の抑制が充分に得られるので、指令通りの回転数に保つことができ、従って、過大なインパクトドロップ負荷外乱に対するロバスト性(耐性)が向上し、脱調停止や回転数の大幅な低下を回避することができる。
また、本発明によれば、負荷変動時以外の定常状態で余分な励磁電流が流れることがないので、PMモータの高効率という長所と相俟って充分に高効率が維持できる。
更に、本発明の場合、構成がシンプルであるため、安価な汎用マイコンで実現が可能であり、構成がシンプルなことから、演算処理に時間がかからないため、より高速でのPMモータ駆動が実現できる。
本発明に係る電動機駆動制御装置の第1の実施形態を示すブロック構成図である。 本発明に係る電動機駆動制御装置の第1の実施形態における軸誤差を説明するためのベクトル図である。 本発明に係る電動機駆動制御装置の第1の実施形態における△θd推定器の一例を示すブロック構成図である。 本発明に係る電動機駆動制御装置の第1の実施形態における負荷の大きさと軸誤差の関係を説明するためのベクトル図である。 本発明に係る電動機駆動制御装置の第1の実施形態における△Id演算器の一例を示すブロック構成図である。 電動機駆動制御装置の従来技術による過大負荷トルク応答特性の一例を示す説明図である。 本発明に係る電動機駆動制御装置の第1の実施形態による過大負荷トルク応答特性の説明図である。 本発明に係る電動機駆動制御装置の第2の実施形態を示すブロック構成図である。 本発明に係る電動機駆動制御装置の第3の実施形態を示すブロック構成図である。 本発明に係る電動機駆動制御装置の第3の実施形態における位置検出パルスの波形図である。 本発明に係る電動機駆動制御装置の第4の実施形態を示すブロック構成図である。 本発明に係る電動機駆動制御装置の第4の実施形態における△θd推定器の一例を示すブロック構成図である。 本発明に係る電動機駆動制御装置の第4の実施形態における△Id演算器の一例を示すブロック構成図である。 本発明に係る電動機駆動制御装置の第4の実施形態における△Id演算器の一例を示すブロック構成図である。 本発明に係る電動機駆動制御装置の適用対象の一例であるプリント基板穿孔機を示す斜視図である。
以下、本発明に係る電動機駆動制御装置について、図示の実施の形態により詳細に説明する。
図1は、本発明をセンサレス制御方式の電動機駆動制御装置に適用し、PMモータ(永久磁石同期電動機)5の回転速度指令ωr*により制御するようにした場合の一例(実施例1)であり、図示のとおり、回転速度指令ωr* を発生する回転速度指令発生器1と、PMモータ5に印加する電圧を演算し、PWM信号(パルス幅変調波信号)を生成する制御器2と、制御器2から供給されるPWM信号に応じて直流電力を三相交流電力に変換するインバータ3と、インバータ3の電源となる直流電源4とを備えている。
このときインバータ3は、6個のスイッチング素子Sup〜Swn により構成されているインバータ主回路部31と、スイッチング素子Sup〜Swn を駆動するゲート・ドライバ32とで構成され、直流電源4は、交流電源41とダイオード整流器42それに平滑コンデンサ43により構成されている。
速度指令発生器1は、PMモータ5の回転速度指令ωr* を与える制御部で、制御器2の上位に位置し、その指令に従ってPMモータ5が駆動される。
制御器2は、回転速度指令発生器1から供給される回転速度指令ωr*と、電流検出器6により検出したPMモータ5の電流値の双方に基づいて、インバータ3を駆動するPWM信号を発生する。
このため制御器2には、信号を加算又は減算する5個の加減算器7、70、71、73、74、PMモータ5の回転速度を回転速度指令ωr*に一致させるために必要な、PMモータ5のトルク電流指令Iq*を生成する働きをするASR(速度制御器)8、検出したトルク電流Iqc がトルク電流指令Iq*に一致するように制御するIqACR(電流制御器)9、検出した励磁電流Idc が励磁電流指令Id*に一致するように制御を行うIdACR(電流制御器)10、PMモータ5の磁石磁束位相と同相の電流である励磁電流指令Id*を発生させるId*発生器11を備えている。
更に制御器2には、PMモータ5の永久磁石磁束の回転軸であるd軸と制御器内部で仮定しているd軸(これをdc軸とする)との偏差△θdc(軸誤差と呼ぶ)を推定演算する推定器12、偏差の推定値△θdc に対して指令値(例えば0)を設定する△θd指令設定器13、偏差△θdc を零に制御し、d軸とdc軸を一致させるPLL(Phase Locked Loop)を形成するPLL制御器14、PLL制御器14の出力である電気角周波数ω1c から回転数推定値を演算する電気角・機械角変換ゲイン部15、制御器内部での電気角周波数ω1c を積分し、制御器における位相角θdc を演算する積分器16、位相角θdc に基づいて、交流電流を回転座標軸であるdc−qc軸上の値に座標変換するdq座標変換器17、dc−qc軸上の電圧指令Vdc*、Vqc*を三相交流軸上の指令値vu*、vv*、vw*に座標変換するdq逆変換器18、三相電圧指令vu*、vv*、vw*に基づき、インバータ3をスイッチング動作させるためのPWM信号を発生するPWM信号発生器19、それに、この実施形態の特徴部分であり、位相角△θdc の値に応じて、励磁電流指令の補正量ΔId を演算するΔId演算器20とを備えている。
次に、この実施例1の動作原理について説明する。
ここで、上記したとおり、この実施例は、PMモータ5の回転子位置センサを用いないセンサレス制御をベースにしたものであり、このため直接回転数を検出することはできない。
そこで、図1において、ASR8は、回転速度指令ωr*と推定速度ωrc の偏差に基づいてトルク電流指令Iq*を作成するようになっている。
このとき励磁電流指令Id*は、図示してない別の励磁電流指令Id*発生器から出力されるようになっているが、ここでPMモータ5が非突極型であれば、通常はId*=0と与えるようになっている。
このため、まず、加減算器70、71により、各電流指令と実際の電流検出値Idc、Iqc を比較し、次に、電流制御器9、10により、これらの偏差が零になるように、印加電圧Vdc*、Vqc*を計算する。このとき電流制御器9、10は、通常、比例積分(PI)による計算を用いている。
このときの電流制御は、一般のベクトル制御と同様、回転座標軸上において実施され、この実施例では、図2に示すように、PMモータ5の回転子の位置角を基準に、dc−qC軸上で制御を行うようになっており、ここで、図2は、PMモータの回転子位置を基準とした座標軸d−q座標と、制御上で仮定している座標軸dc−qc座標の関係を示したもので、PMモータの場合、磁石磁束の存在する軸をd軸とし、それに直交する軸をq軸とするのが一般的である。
そこで、これらd−q軸とdc−qc軸との偏差である“軸誤差△θd"を零に制御することで、dc−qc軸をd−q軸に一致させることができ、従って、位置センサなしでPMモータを高精度でベクトル制御することができる。
しかし、このためには軸誤差Δθd の推定方法が重要となる。
そこで、この実施例では、Δθd推定器12として、図3に示す構成のものを採用している。
図3のΔθd推定器12は、トルク電流指令Iq*とトルク電流検出値Iqc の偏差に係数K0を乗算し、積を軸誤差Δθd の推定値Δθdc としている。ここで、この推定値Δθdc の推定原理については、以下のように説明できる。
いま、PMモータ5が駆動中、何らかの負荷外乱があったとすると、軸誤差Δθd が発生し、その結果、トルク電流Iqc が乱れ、トルク電流指令Iq*との偏差が発生する。
この偏差は、軸誤差に起因しており、従って、軸誤差の発生量が大きいほど、大きくなる傾向にある。よって、トルク電流指令Iq*とトルク電流検出値Iqc の偏差に係数(この場合、係数=K0)を乗算すれば、これを軸誤差に相当する状態量、すなわち推定値Δθdc と看做すことができるのである。
このようにして推定演算した推定値Δθdc を零に制御するため、推定値Δθdc とΔθd指令設定器13の設定値(=0)との偏差を加減算器73により取り、PLL制御器14により駆動周波数ω1cを演算する。
このときPLL制御器14はPI計算回路で構成され、推定値Δθdc が零になるように、駆動周波数ω1c を調整する。
この結果、駆動周波数ω1c は、Δθdc >0であれば大きくなり、Δθdc >0であれば小さくなるように変化し、最終的には推定値Δθdc =0に収束する。
また、駆動周波数ω1c は電気角周波数であるので、これを極数(P/2)で除算することで、回転数が推定できることになる。
そこで、この計算を電気角・機械角変換ゲイン部15により行ない、回転数推定値ωrc としている。
以上が、本実施例のセンサレス駆動部分の概要であり、次に、本発明の特徴部分であるΔId演算器20について説明する。
前述のように、軸誤差Δθd の発生は、PMモータ5に加わる負荷の大きさに密接に関係している。そこで、図4に、軽負荷時と過大負荷時のそれぞれにおける軸誤差Δθd の関係を示す。
軽負荷の場合、図4(a)に示すように、軸誤差Δθd の発生量が小さく、従って、この場合、制御におけるqc軸上においてトルク電流成分Iqc を増加させたとすると、それはほとんどq 軸上の成分となり、従って、トルク発生に大きく寄与することになる。
しかし、過大負荷の場合、図4(b)に示すように、軸誤差Δθd が大きくなってしまうので、トルク電流成分Iqc を増加させたとしてもトルクの発生に寄与する分は僅かになってしまう。従って、この場合、むしろdc軸上に電流を流した方が、実際のq軸電流への寄与が大きいことが判る。
すなわち過大負荷のときに軸誤差Δθd が発生した場合には、その発生量に応じて、適切にdc軸電流を流した方が、過大負荷トルクに対して安定に制御できることになり、そこで、この動作をΔId演算器20により行うように構成したものである。
図5は、このΔId演算器20の詳細ブロックを示したもので、この場合、まず、軸誤差Δθd の推定値Δθdc を絶対値演算器201により演算して絶対値とし、その後、この絶対値をゲイン部202により適切なゲインとして与え、それを励磁電流指令の補正量ΔId としてΔId演算器20から出力させる。
このとき推定値Δθdc は、インパクトドロップ時には正の値、インパクトアップ時には負の値となるが、この場合、何れにしても励磁電流Idを正の値にして流すことで、d軸をdc軸に一致させる方向にトルクが働くことになるので(つまり推定値Δθdc の拡大を抑制する方向に働くので)、絶対値演算を行っているのである。
また、ゲイン部202によるゲインの値は、推定値Δθdc が90度のとき、励磁電流指令の補正量ΔId が最大電流I0になるように設定しておけば、最大トルクに対して充分に対応することができる。
そこで、ΔId演算器20から出力さる励磁電流指令の補正量ΔId を加算器74により、Id*発生器11から供給される励磁電流指令Id*に加算し、励磁電流指令Id**として加減算器70に供給する。
そうすると、IdACR10に供給される励磁電流指令Id*には、軸誤差Δθd の推定値Δθdc に応じて増加する補正量ΔId が加算されることになる。
この結果、過大負荷により軸誤差Δθd が大きくなると、このときには、トルク電流成分Iqc よりも実際のq軸電流への寄与が大きいdc軸上の電流、つまり励磁電流Id が増加され、トルクが増大されることになり、過大負荷によるトルクの増大に適切に対応することができ、図6と図7に示すように、インパクトドロップ時での負荷変動の抑制に必要なトルクを瞬間的に補うことができ、回転数の低下や脱調などの不具合が回避できることになる。
ここで、図6は、従来技術の場合の動作特性で、図7は上記した実施例1による動作特性であり、それぞれ負荷トルクとモータトルク特性(a)、回転数特性(b)、励磁電流指令Id*とトルク電流指令Iq*特性(c)、モータ電流Id、Iq特性(d)、それに軸誤差Δθd 特性(e)が示されている。
いま、過大なインパクトドロップが発生したとすると、その瞬間にPMモータ5の回転数が落ち込み、同時に軸誤差Δθd が発生する。
このとき図6の従来技術の場合、負荷変化に対応するべくIqACR9が反応し、トルク電流指令Iq*を増加させるが、この場合、PMモータ5のq軸とqC軸の偏差が大きいため、図4(b)において既に説明したように、トルク電流指令Iq*を増加させても、PMモータ5の発生トルクには寄与できない。この結果、最終的にはトルクが立ち上がる前に軸誤差が拡大してしまい、脱調停止となる。
これに対して、図7の実施例1の場合、軸誤差Δθd が発生すると、これと同時に励磁電流指令Id*が増加され、dc軸上の電流を流す。この場合、同じく図4(b)において既に説明したように、結果的にd−q軸上のq軸電流Iqが増え、モータトルクの増大をもたらすことになり、この結果、軸誤差が拡大するよりも早くモータのトルクが立ち上るようになるので、脱調の虞はまったく生じない。また、回転数の落ち込み量も少なく抑えられるので、外乱応答特性が大幅に改善されることが判る。
ところで、以上に説明した実施例1は、一般的なベクトル制御をベースとした構成であり、従って、ASR8などの回転数制御系やIqACR9とIdACR10などの電流制御系の調整が幾分難しいきらいがあり、このことは、PMモータ5を高速スピンドルの駆動に適用した場合、特に顕著で、高速時にはPMモータの特性であるdq軸間の干渉が強くなり、これらの回避とセンサレス部分のバランスの取り方が難しくなる。
また、実施例1の場合、同じく一般的なベクトル制御をベースとした構成であることから、トルク電流指令Iq*の変化が回転数制御系の設定応答に依存する。このため回転数制御系のハイゲイン化と高速演算処理が必要になる。
このことは、回転数の落ち込み量を抑えるためであり、従って、回転数の回復をできるだけ早くする必要があり、このためにはフイードバックループを極力少なくするのが望ましい。
そこで、次に、上記の点に配慮した本発明の実施例について、以下、実施例2として説明する。
図8は、この実施例2における制御器2Bを示したもので、この制御器2Bを図1の制御器2に代えて用いたのが実施例2である。
この制御器2Bにおいては、図1の制御器2におけるIqACR9とIdACR10に代えて電圧指令演算器22、Iq*発生器23、機械角・電気角変換ゲイン部24、比例ゲイン部によるPLL制御器14Bを設けたもので、その他の構成は、図1の実施例1と同じである。
次に、この図8に示した実施例2の動作について説明する。
まず、機械角・電気角変換ゲイン部24は、速度指令発生器1から供給される回転速度指令ωr*に対して極数p/2に一致するゲインを乗算して電気角周波数指令ω1*を得るための演算を行う。
次いで電圧指令演算器22は、この電気角周波数指令ω1*及び励磁電流指令Id**とトルク電流指令Iq*を用いて、電圧指令Vdc*、Vqc*を演算する。
そうすると、ここでの電圧演算は、基本的にはフイードフォワード演算であり、図1の制御器2の場合のフィードバック演算とは大きく動作が異なることになる。
このときの電圧指令演算器22による演算は、次の(数1)式の通りである。
Figure 2011004515
一方、この制御器2Bでは、回転数制御器がないので、トルク電流指令Iq*を別の方法で作成する必要がある。そこで、ここでは、一次遅れフィルタからなるIq*発生器23を用い、電流検出値Iqc からトルク電流指令Iq*を作成し、電圧指令演算器22に供給するのである。
この方式は、いわば検出値から指令値を“あと付け”で決めるものであり、従って、一見したところ、トルク応答が低下するように思えるが、しかし、実際は反対で、以下に説明するように、フィードバックの場合より高い応答が得られる。
図1の実施例1における制御器2の場合、トルク電流指令Iq*が回転数制御系のASR8から出力される。従って、回転数推定演算による遅れと回転数制御系での応答遅れが加わる上、最終的には電流制御の応答遅れが加わることになる。
一方、図8の実施例2における制御器2Bの場合、Iq*発生器23は電流検出値に一次遅れフィルタをかけるだけの処理で済み、この場合、フィルタ定数だけで応答が決まることになり、従って、応答が改善されるのである。
特に、高速スピンドル装置などに本発明を適用した場合、演算処理回数が少なく済むので、図8の構成のほうが有利であり、更に処理内容の簡潔さや設定パラメータの少なさの面でも有利であるといえる。
また、図8の実施例2の場合、位相角θdc も、基本的には電気角周波数ω1c を積分器16により積分して求めるため、PLL制御器14Bは比例制御器で問題なく、要は軸誤差Δθd に応じて、電気角周波数指令ω1*を修正するためのΔω1が発生させられればよい。
その他、ΔId演算器20などの動作は、図1の実施例1の場合と全く同じである。
従って、この実施例2によれば、より高い応答特性が得られ、より高速域まで負荷変動に対して追従可能なPMモータの制御装置が実現できる。
次に、図9と図10により、本発明の実施例3について説明する。
これまで説明した実施例1と実施例2は、何れも位置センサレス制御方式に本発明を適用した場合の実施例であり、軸誤差Δθd の推定演算によるものであるが、この推定演算には一応限界があり、より高応答なシステムの実現を目指した場合、位置センサを用いた方式が考慮される。
なお、Δθdの推定方法の別案としては、実施例5として後述するが、この場合でも、極低速域では推定誤差の影響が免れない。
また、本来、PMモータのベクトル制御は、位置センサをベースに行うのが本筋であるが、対象が例えば超高速回転(数万〜数十万r/min)のモータの場合には、センサの性能も問題になる。
例えばパルスジェネレータのようなセンサを用いた場合、高速になるほどパルス周波数が高くなるので、演算処理が難しくなる。また、数十万回転に対応可能なパルスジェネレータはほとんど市販品がなく、特別仕様として極めてコスト高になる。
このときホールICのように、非接触で磁石磁束の有無を1、又は0で検出するセンサを用いた場合には安価なセンシングが可能であるが、この場合は位置情報が少なくなるので、信号間の補間をしなければならない。この補間は、正弦波駆動の場合、特に重要であり、この問題を解決しないと、正弦波駆動の意味がなくなってしまう。
そこで、以下に説明する実施例3は、これらの問題を解決した“位置センサ付き”の制御器を備えた電動機駆動制御装置に関するものである。
図9は、この実施例3におけるPMモータ5の制御器2Cを示したもので、これを図1の制御器2に代えて用いることにより、実施例3に係る電動機駆動制御装置を実現することができる。
図9において、25は位置センサで、26はΔθd計測器26であり、その他のブロックと部品は、図1と図8における同じ番号のものと同一のものである。
従って、この制御器2Cは、基本的には図8の実施例2と同様に動作するが、このとき位置センサ25が追加され、その上でΔθd演算器12に代えてΔθd計測器26が設けられている点で図8の実施例2の制御器2Bと大きく異なっている。
そして、まず、位置センサ25は、PMモータ5の回転子の位置角を検出し、位置角情報を出力する働きをし、次に、Δθd計測器26は、位置センサ25から入力される位置角情報に基づいて、軸誤差Δθdを計測する働きをする。
ここで、位置センサ25には、一回転1パルスの低分解能の位置センサが用いられ、図10(a)、(b)のそれぞれの上側に示す波形(矩形波)の位置検出パルスを出力する。
この例では、位置検出パルスの立下り時が回転子位置の0度になり、パルスの立ち上がり時が回転子位置の180度に一致するようにセンサが取り付けられている。よって、位置検出パルスからの情報は、常にθd=0度(これを位置情報θdl とする)か、θd=180度(これを位置情報θd2 とする)の何れかである。
そして、制御器2Cの内部では、電気角周波数ωlc を積分器16に入力して積分し、連続的な位相角θdc を作成している。
ところで、通常のベクトル制御では、位置検出パルスの立上り時点と立下り時点を基準にし、その間を補間して制御器内部位相θdc を作成するが、しかし、この方式では、位置検出パルスのデューティが乱れた場合などの対応が難しい。
そこで、この実施例3では、位置検出パルスを軸誤差Δθd の計測のためだけに使用するようになっている。
このため、図10に示すように、位置検出パルスの立下りと立上りをトリガーにして、位相角θdc をサンプリングする。この結果、定常状態では、サンプリングされた位相角θdc は、検出トリガーの位相角に一致するが、過渡時においては差異が生じ、この差分が図10(b)に示されているように、軸誤差Δθd を表わす。
従って、この場合、軸誤差Δθd の計測は、位置検出パルスをトリガーにサンプルした位相角θdc とトリガー発生時の位相角との差から簡単に求めることができる。
この結果、正弦波の補間などを気にすることなく、センサレス方式と全く同様の考え方で位相の制御が実現できる。
また、この場合、位置センサレスの場合の推定演算ではないため、低速域まで高精度な制御が実現可能である。
しかも、図9に示した制御器2Cは、軸誤差Δθd の作成方法が異なるだけであり、従って、実施例2と全く同じように動作し、その上、低速域を含めて高精度化されるため、より大きなインパクトドロップ負荷に対しても対応が可能になる。
なお、位置センサは一回転に付き1パルスのものにこだわる必要はなく、パルスの立上りと立下りにおいて、その時の回転子位置関係が掴めていれば、マルチパルスのものでも全く問題ない。
次に、図11により、本発明による実施例4について説明する。
既に説明した実施例1と実施例2では、位置センサレスの場合のPMモータのドライブシステムに適用した場合について説明し、実施例3では、位置センサ付きの場合のPMモータのドライブシステムに適用した場合について説明した。
ここで位置センサレスの場合は、低速域における精度に多少課題が残るものであることが知られているが、一方で、高速域の場合、安定性はむしろセンサ付き以上となる場合が多い。
他方、センサ付きの場合、センサからの位置検出パルスの情報がベースとなるため、複雑な割り込みの管理が必要となる。また、時間当たりの位置情報量が、高速と低速では全く異なるため、ゲインの設定など、安定性の面で難しさがある。
そこで、以下に説明する実施例4における制御器2Dでは、図11に示すように、図9の実施例3における制御器2CにΔθd推定器12を追加し、更に切替スイッチ27を追加し、これにより、低速域のときは切替スイッチ27をL側に切り替えることにより、位置センサ25の信号に基づいて軸誤差Δθd の計測を行い、高速域では、切替スイッチ27をH側に切り替えて、この場合は推定値Δθdc に基づいて軸誤差Δθd の計測を行うようにしたものであり、その他の構成は、図9の実施例3と同じである。
この結果、実施例4によれば、切替スイッチ27の切り替えにより、低速域のときにはセンサ付きのシステムとして動作し、高速域では、位置センサレスのシステムとして動作させることができるようになり、従って、この実施例4によれば、広い回転数範囲にわたって、常に最高レベルのPMモータドライブシステムが提供できるようになる。
次に、本発明の実施例5に係る電動機駆動制御装置について説明する。
以上の実施例1〜4では、軸誤差Δθd の導出方法として、センサレスによる推定方法と、位置センサによる計測方法があることについて説明した。
しかし、位置センサは超高速モータでは扱いが難しく、やはりセンサレス方式にし、センサレスにより駆動できる範囲をなるべく拡大するのが望ましく、従って、これを可能にした電動機駆動制御装置が以下に説明する実施例5である。
ここで、図12は、本発明の実施例5におけるΔθd推定器12Eを示したもので、このΔθd推定器12Eを、図1の制御器2と図8の制御器2B、それに図11の制御器2Dの何れかにおけるΔθd推定器12として適用することにより実施例5が実現できるようになる。
図12に示したΔθd推定器12Eは、それぞれ2個の加減算器7と乗算器28、PMモータ5の巻線抵抗Rに相当する抵抗ゲインを与えるゲイン部29、PMモータ5のq軸インダクタンスLqに相当するインダクタンスゲインを与えるゲイン部33、アークタンジェントを計算するアークタンジェント演算器34を用い、これらを図示のように組み合わせて軸誤差Δθd を推定し演算している。
このときのΔθd推定器12Eによる演算処理は、演算は、次の(数2)式で表わすことができる。
Figure 2011004515
ここで、この実施例5による軸誤差演算の原理については、特許文献1に詳細な説明があるが、このときの(数2)式による演算は“拡張誘起電圧方式”と称されていて、モータパラメータと、モータへの印加電圧、検出電流を用いて軸誤差Δθd を直接的に演算しているものであり、この演算式によれば、±180度の範囲で回転数推定ができ、従って、この(数2)式による演算を用いることにより、過大負荷まで対応が可能になり、大きなメリットとなる。
このときの演算に使用される電気角周波数については、図示のように、指令値であるω1*とω1c の何れかを採用すればよい。
次に、図13と図14により、本発明による第6の実施例について説明する。
上述の図1と図8、図9、それに図11の各実施例においては、そのΔId演算器として、図5に記載のΔId演算器20を使用しているが、このとき励磁電流指令の補正量ΔId の量が更に正確に調整できれば、より一層、高応答、且つ高安定なPMモータドライブシステムが実現できる。
まず、図13は、ΔId演算器20の別方式として構成したΔId演算器20Fを示したもので、図示のように、Δθd推定器12から出力される軸誤差Δθd の推定値Δθdc に対してノイズなどのカット処理を行うフィルタ203と、推定値Δθdc に対して上限と下限を設け、±90度の範囲に納めるリミッタ204と、絶対値化する絶対値演算器201、サイン化するサイン演算器205、電流ゲインを与えるゲイン部202Fとで構成されている。
次に、図14は、ΔId演算器20の更に別方式として構成したΔId演算器20Gを示したもので、ここではリミッタ204Gの下限設定が0度となっており、絶対値演算器が削除されている点で、図13のΔId演算器20Fと異なっているものである。
そして、本発明の実施例6は、これらΔId演算器20Fと、ΔId演算器20Gの何れかを、実施例1(図1)と実施例2(図8)、実施例3(図9)、それに実施例4(図11)の何れかにおけるΔId演算器20に代えて適用することにより実現できる。
次に、これら図13のΔId演算器20Fと図14のΔId演算器20Gの動作について説明する。
図4のベクトル図で示したように、軸誤差Δθd が小さい場合は、励磁電流指令の補正量ΔId も小さくてよいが、大きな場合には、補正量ΔId は、やはり多く流す必要がある。この場合、PMモータ5の最大トルク時の電流をI0とすると、軸誤差Δθd が90度のとき、ΔId =I0となるのが望ましい。
この関係で考えると、補正量ΔId は次の(数3)式に従って与えるのが理想であることが判る。
ΔId =I0・Sin(Δθdc)……(数3)
Δθdc :軸誤差Δθd の推定値
しかし、この(数3)式は、Δθd =90度のとき最大値になり、それ以上に軸誤差Δθd が大きくなると、反対に補正量ΔId の大きさが減少してしまう。そこで、軸誤差Δθd に対して、±90度のリミッタ204を設けることにより軸誤差Δθd が90度を越えた場合でも、最大のアシスト量で固定化できることができる。
また、このときの軸誤差Δθd の推定値Δθdc は電流検出値に基づいているので、ノイズ、オフセットなど、余分な成分が多く含まれている場合がある。そこで、フィルタ203が入力側に設けられているのである。
このとき、フィルタ203は、補正量ΔId の変化率を抑制する作用もある。
従って、補正量ΔId の動き自体が敏感過ぎるような場合には、このフィルタ203の時定数を変えることで調整可能になるというメリットがある。
同様に、図14に示すΔId演算器20Gも全く同じような動作をする。但し、ここではリミッタ204Gの下限値が0度に設定されているが、ここで推定値Δθdc が負になるのは制御軸よりもモータの回転子位置が進んだ状態のときであり、回転数がオーバーシュートしているものと考えてよく、この状態では、特に脱調などの不具合が起きることは少ないので、補正量ΔId による補償は不要なケースであることが多い。よって、リミッタ204Gの上限90度、下限0度としても、システム的な問題は少ない。
更に、この実施例の場合は、絶対値演算処理が不要にできるので、構成の簡略化が可能となるメリットもある。
従って、これら図13と図14の実施例によれば、補正量ΔId が更に正確に算出できるようになるので、より一層、正確にトルク補償が可能になり、インパクトドロップに対して、さらに良好な特性を実現することができる。
ここで、本発明による電動機駆動制御装置は、既に説明したように、例えばPMモータに対してインパクトドロップ負荷を発生させる装置に適用されるが、その一例に、図15に示すプリント基板用の穿孔機35があり、これに、例えば図1に示す電動機駆動制御装置を適用した場合、この穿孔機35には、制御器2とインバータ3及び電源4並びに電流検出器6を備えたコントローラが設けられ、これにPMモータ5が接続されるように構成されることになる。
そして、このコントローラに、速度指令発生器1からスピンドルの速度指令、加減速指令などが設定され、この結果、PMモータ5が制御される。
PMモータ5にはドリル部分36が取り付けられている。
そこで、PMモータ5を速度指令発生器1から設定された速度で回転させると、ドリル歯37が回転し、基板に孔開け加工することができる。
このときのドリル歯37の太さは数10μmから数mmまであり、それに応じて必要な回転数や負荷特性が大幅に変化するが、ここで、本発明に係る実施例を適用し、PMモータ5を制御すれば、回転数変動が少なく、且つ、無駄の電流が少ない高効率なプリント基板穿孔機が提供できるようになる。
そして、このことは、他の切削機械に適用した場合でも同じであり、従って、本発明によれば、過大なインパクトドロップ負荷外乱に対するロバスト性(耐性)が向上し、脱調停止や回転数の大幅な低下を回避することができ、しかも負荷変動時以外の定常状態で余分な励磁電流が流れることがない。この結果、PMモータの高効率という長所と相俟って充分に高効率が維持できるという本発明の効果を充分に享受することができる。
なお、以上の実施例は、PMモータの相電流を検出するために、電流検出器6を用いているが、インバータ3の直流母線電流IDCを検出し、その検出値からモータの相電流を再現して制御を行ってもよいことは、いうまでもない。
1 回転速度指令発生器
2 制御器
3 インバータ
31 インバータ主回路部
32 ゲート・ドライバ
4 直流電源
41 交流電源
42 ダイオード整流器
43 平滑コンデンサ
5 PMモータ(永久磁石同期電動機)
6 電流検出器
7 加減算器
8 速度制御器(ASR)
9 Iq電流制御器(IqACR)
10 Id電流制御器(IdACR)
11 Id*発生器
12 Δθd推定器
13 Δθd指令設定器
14 PLL制御器
15 電気角・機械角変換ゲイン部
16 積分器
17 dq座標変換器
18 dq逆変換器
19 PWM信号発生器
20 ΔId演算器
22 電圧指令演算器
23 Iq*発生器
24 機械角・電気角変換ゲイン部

Claims (5)

  1. 同期電動機をインバータによりベクトル制御する方式の電動機駆動制御装置において、
    前記同期電動機の回転子位相角と前記ベクトル制御のための制御系内に設定してある位相角との偏差を検出する位相角偏差検出手段と、前記偏差の大きさに応じて前記同期電動機の励磁電流成分に対する補正量を算出する補正量算出手段と、前記補正量を前記ベクトル制御のための励磁電流指令に加算する手段とを設け、
    前記偏差が増大したとき、前記ベクトル制御における励磁電流成分の増加により前記同期電動機のトルクが過渡的に増大されるように構成したことを特徴とする電動機駆動制御装置。
  2. 請求項1に記載の電動機駆動制御装置において、
    前記位相角偏差検出手段は、前記同期電動機に対するトルク電流指令と前記同期電動機のトルク電流検出値の偏差に基づいて位相角の偏差を算出することを特徴とする電動機駆動制御装置。
  3. 請求項1に記載の電動機駆動制御装置において、
    前記位相角偏差検出手段は、前記同期電動機に対するトルク電流指令と前記同期電動機のトルク電流検出値及び前記同期電動機の定数である抵抗値とインダクタンス値に基づいて位相角の偏差を算出することを特徴とする電動機駆動制御装置。
  4. 請求項1に記載の電動機駆動制御装置において、
    前記位相角偏差検出手段は、位置センサにより検出した前記同期電動機の回転子の位置に基づいて位相角の偏差を算出することを特徴とする電動機駆動制御装置。
  5. 請求項1に記載の電動機駆動制御装置において、
    前記位相角偏差検出手段が、前記同期電動機に対するトルク電流指令と前記同期電動機のトルク電流検出値の偏差に基づいて位相角の偏差を算出する第1の手段と、位置センサにより検出した前記同期電動機の回転子の位置に基づいて位相角の偏差を算出する第2の手段を備え、
    前記同期電動機が低速のときには、前記第1の手段により検出した位相角の偏差を出力し、
    前記同期電動機が高速のときには、前記第2の手段により検出した位相角の偏差を出力することを特徴とする電動機駆動制御装置。
JP2009145485A 2009-06-18 2009-06-18 電動機駆動制御装置。 Active JP5546804B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145485A JP5546804B2 (ja) 2009-06-18 2009-06-18 電動機駆動制御装置。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145485A JP5546804B2 (ja) 2009-06-18 2009-06-18 電動機駆動制御装置。

Publications (2)

Publication Number Publication Date
JP2011004515A true JP2011004515A (ja) 2011-01-06
JP5546804B2 JP5546804B2 (ja) 2014-07-09

Family

ID=43561981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145485A Active JP5546804B2 (ja) 2009-06-18 2009-06-18 電動機駆動制御装置。

Country Status (1)

Country Link
JP (1) JP5546804B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111505A1 (ja) * 2011-02-15 2012-08-23 サンデン株式会社 モータ制御装置
CN102847725A (zh) * 2011-06-29 2013-01-02 株式会社日立制作所 感应电动机的控制装置及感应电动机的控制方法
JP2013078214A (ja) * 2011-09-30 2013-04-25 Toshiba Schneider Inverter Corp 永久磁石同期電動機の制御装置
WO2014167678A1 (ja) * 2013-04-10 2014-10-16 三菱電機株式会社 永久磁石型モータの制御装置
JP2015012718A (ja) * 2013-06-28 2015-01-19 株式会社東芝 電気車制御装置
US9035581B2 (en) 2011-02-15 2015-05-19 Sanden Corporation Motor control device
WO2016199396A1 (ja) * 2015-06-11 2016-12-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置
RU178668U1 (ru) * 2017-11-15 2018-04-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Синхронно-синфазный электропривод
CN110753603A (zh) * 2018-03-28 2020-02-04 南京德朔实业有限公司 电动工具及其控制方法
WO2022113732A1 (ja) * 2020-11-27 2022-06-02 オリエンタルモーター株式会社 モータ制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208438A (ja) * 2002-12-26 2004-07-22 Hitachi Ltd モータ制御装置
JP2006087152A (ja) * 2004-09-14 2006-03-30 Hitachi Ltd 永久磁石同期モータの制御装置及びモジュール
JP2007166690A (ja) * 2005-12-09 2007-06-28 Hitachi Appliances Inc 電動機制御装置
JP2007181352A (ja) * 2005-12-28 2007-07-12 Toshiba Corp インバータ装置およびインバータシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208438A (ja) * 2002-12-26 2004-07-22 Hitachi Ltd モータ制御装置
JP2006087152A (ja) * 2004-09-14 2006-03-30 Hitachi Ltd 永久磁石同期モータの制御装置及びモジュール
JP2007166690A (ja) * 2005-12-09 2007-06-28 Hitachi Appliances Inc 電動機制御装置
JP2007181352A (ja) * 2005-12-28 2007-07-12 Toshiba Corp インバータ装置およびインバータシステム

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035581B2 (en) 2011-02-15 2015-05-19 Sanden Corporation Motor control device
JP2012170250A (ja) * 2011-02-15 2012-09-06 Sanden Corp モータ制御装置
CN103370871A (zh) * 2011-02-15 2013-10-23 三电有限公司 电动机控制装置
WO2012111505A1 (ja) * 2011-02-15 2012-08-23 サンデン株式会社 モータ制御装置
US9143067B2 (en) 2011-02-15 2015-09-22 Sanden Corporation Motor control device
CN102847725A (zh) * 2011-06-29 2013-01-02 株式会社日立制作所 感应电动机的控制装置及感应电动机的控制方法
JP2013078214A (ja) * 2011-09-30 2013-04-25 Toshiba Schneider Inverter Corp 永久磁石同期電動機の制御装置
JP5791848B2 (ja) * 2013-04-10 2015-10-07 三菱電機株式会社 永久磁石型モータの制御装置
TWI500252B (zh) * 2013-04-10 2015-09-11 Mitsubishi Electric Corp 永久磁鐵型馬達的控制裝置
WO2014167678A1 (ja) * 2013-04-10 2014-10-16 三菱電機株式会社 永久磁石型モータの制御装置
JPWO2014167678A1 (ja) * 2013-04-10 2017-02-16 三菱電機株式会社 永久磁石型モータの制御装置
JP2015012718A (ja) * 2013-06-28 2015-01-19 株式会社東芝 電気車制御装置
WO2016199396A1 (ja) * 2015-06-11 2016-12-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP2017003197A (ja) * 2015-06-11 2017-01-05 パナソニックIpマネジメント株式会社 冷凍サイクル装置
US10590934B2 (en) 2015-06-11 2020-03-17 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle device with motor speed estimator
RU178668U1 (ru) * 2017-11-15 2018-04-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Синхронно-синфазный электропривод
CN110753603A (zh) * 2018-03-28 2020-02-04 南京德朔实业有限公司 电动工具及其控制方法
EP3750670A4 (en) * 2018-03-28 2021-05-05 Nanjing Chervon Industry Co., Ltd. ELECTRIC TOOL AND CONTROL PROCEDURE FOR IT
US11258389B2 (en) 2018-03-28 2022-02-22 Nanjing Chervon Industry Co., Ltd. Power tool and control method thereof
WO2022113732A1 (ja) * 2020-11-27 2022-06-02 オリエンタルモーター株式会社 モータ制御装置

Also Published As

Publication number Publication date
JP5546804B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5546804B2 (ja) 電動機駆動制御装置。
JP4988329B2 (ja) 永久磁石モータのビートレス制御装置
JP3668870B2 (ja) 同期電動機駆動システム
JP5130031B2 (ja) 永久磁石モータの位置センサレス制御装置
JP5639035B2 (ja) 誘導電動機用磁束制御装置、誘導電動機の磁束制御装置
JPWO2018230141A1 (ja) インパクト電動工具
JP2008271755A (ja) 永久磁石モータの弱め界磁制御装置及びそれを用いた電動パワーステアリング
JP6776066B2 (ja) インバータ制御装置および電動機駆動システム
JP6179389B2 (ja) 電動機の制御装置
WO2015056541A1 (ja) 電動機の駆動装置
JP4797074B2 (ja) 永久磁石モータのベクトル制御装置、永久磁石モータのベクトル制御システム、及びスクリュー圧縮器
JPWO2016121373A1 (ja) モータ制御装置、およびこのモータ制御装置におけるトルク定数の補正方法
JP2010200430A (ja) 電動機の駆動制御装置
JP4402600B2 (ja) 同期電動機の駆動システム及び同期電動機の駆動方法
JP6199776B2 (ja) 電動機の駆動装置
JP2007135345A (ja) 磁石モータ制御装置
JP5361452B2 (ja) 同期電動機のセンサレス制御装置
JP2013187931A (ja) モータ制御装置
JP4639832B2 (ja) 交流電動機駆動装置
JP2009284598A (ja) 交流電動機の制御装置
JP5007546B2 (ja) 永久磁石同期電動機の駆動装置
JP2007336645A (ja) 同期機の制御装置
JP7251424B2 (ja) インバータ装置及びインバータ装置の制御方法
JP5307578B2 (ja) 電動機制御装置
JP5659639B2 (ja) モータ駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140514

R150 Certificate of patent or registration of utility model

Ref document number: 5546804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350