WO2014162693A1 - 複合材料 - Google Patents

複合材料 Download PDF

Info

Publication number
WO2014162693A1
WO2014162693A1 PCT/JP2014/001735 JP2014001735W WO2014162693A1 WO 2014162693 A1 WO2014162693 A1 WO 2014162693A1 JP 2014001735 W JP2014001735 W JP 2014001735W WO 2014162693 A1 WO2014162693 A1 WO 2014162693A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
composite material
sulfide
alkali metal
material according
Prior art date
Application number
PCT/JP2014/001735
Other languages
English (en)
French (fr)
Inventor
和明 柳
弘幸 ▲樋▼口
小鹿 博道
黒川 真一
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2015509896A priority Critical patent/JP6475159B2/ja
Priority to US14/781,747 priority patent/US20160036054A1/en
Priority to CN201480019377.XA priority patent/CN105074974A/zh
Priority to EP14779867.2A priority patent/EP2983231A4/en
Publication of WO2014162693A1 publication Critical patent/WO2014162693A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite material that can be used as a positive electrode material of a lithium ion battery and a method for producing the same.
  • a lithium ion conductive ceramic based on Li 3 N is conventionally known as a solid electrolyte exhibiting a high ion conductivity of 10 ⁇ 3 Scm ⁇ 1 at room temperature.
  • the decomposition voltage is low, a battery that operates at 3 V or more cannot be constructed.
  • Patent Document 1 discloses 10 ⁇ 4 Scm ⁇ 1 solid electrolyte
  • Patent Document 2 similarly describes an electrolyte synthesized from Li 2 S and P 2 S 5 with 10 Ionic conductivity on the order of -4 Scm -1 is disclosed.
  • Patent Document 3 is a sulfide-based crystallized glass obtained by synthesizing Li 2 S and P 2 S 5 in a ratio of 68 to 74 mol%: 26 to 32 mol%, and has an ion conductivity of 10 ⁇ 3 Scm ⁇ 1 unit. Realized.
  • the positive electrode of a conventional all-solid lithium battery uses an oxide-based positive electrode active material such as LCO and a sulfide-based solid electrolyte. It was manufactured (Patent Document 4).
  • Non-Patent Document 7 a technology for mixing a positive electrode with amorphous lithium sulfide having a high theoretical capacity and a conductive agent is disclosed (Patent Document 7), but a lithium ion battery using such a positive electrode operates at a high rate. In this case, the charge / discharge capacity is lowered.
  • Non-Patent Document 1 describes a production method using lithium triethylborohydride (LiEt3BH), but this production method is difficult to mass synthesize.
  • An object of the present invention is to provide a composite material that has a high charge / discharge capacity when used for a positive electrode of an all-solid battery and can use a negative electrode active material that does not contain lithium ions for a negative electrode.
  • the following composite materials and the like are provided. 1. Including an alkali metal sulfide, a conductive aid having pores, and a solid electrolyte; The alkali metal sulfide, the conductive additive and the solid electrolyte are combined, A composite material having a half-value width of the alkali metal sulfide peak measured by X-ray diffraction of 1.0 ° or more. 2. 2. The composite material according to 1, wherein at least a part of the alkali metal sulfide is dispersed inside pores of the conductive additive. 3. The composite material according to 1 or 2, wherein the alkali metal sulfide is lithium sulfide. 4). 4.
  • 6. The composite material according to any one of 1 to 5, wherein the solid electrolyte is a sulfide solid electrolyte. 7).
  • the solid electrolyte is a sulfide solid electrolyte containing Li, P, S and I, a sulfide solid electrolyte containing Li, P, S and Br, or a sulfide solid electrolyte containing Li, P, S and Cl.
  • a lithium ion battery comprising the electrode according to 12.11 as a positive electrode layer.
  • the method for producing a composite material according to 13, comprising the following steps (A) and (B).
  • a step of producing a composite material precursor by combining the auxiliary composite with a solid electrolyte A step of reacting the composite material precursor with an alkali metal 15.
  • the conductive additive is activated carbon. 19. 19.
  • 26. The method for producing a composite material according to any one of 13 to 22 and 25, wherein the reaction between the molded body and the alkali metal is performed by pressure-bonding the molded body and the alkali metal foil.
  • the present invention it is possible to provide a composite material that has a high charge / discharge capacity when used for the positive electrode of an all-solid battery and can use a negative electrode active material that does not contain lithium ions for the negative electrode.
  • the composite material of the present invention includes an alkali metal sulfide, a conductive assistant having pores, and a solid electrolyte, and the alkali metal sulfide, the conductive assistant, and the solid electrolyte are combined. Moreover, the half-value width of the peak of the alkali metal sulfide measured by X-ray diffraction (XRD) is 1.0 ° or more.
  • Composite means that an alkali metal sulfide, a conductive additive having pores, and a solid electrolyte are physically or chemically bonded to each other. This can be confirmed by observing the composition by XRD or observing the element distribution with an electron microscope or the like.
  • the peak half-value width of the alkali metal sulfide in XRD measurement is as large as 1.0 ° or more, and the peak is broad. This means that the growth of the crystal structure is suppressed, that is, the crystal is small. The smaller the crystal, the easier the movement of Li ions and the better the dispersibility. As a result, the performance when used for the positive electrode material of an all-solid battery, particularly the charge / discharge capacity per sulfur weight, is excellent.
  • the composite material preferably, at least a part of the alkali metal sulfide exists in the pores of the conductive additive and is finely dispersed. This can be confirmed by observing the crystal peak intensity by XRD or observing the element distribution with an electron microscope or the like.
  • the peak half width of the alkali metal sulfide in the XRD measurement is preferably 1.3 ° or more, more preferably 1.6 ° or more. Moreover, it is usually 10.0 degrees or less.
  • the peak half-value width of the alkali metal sulfide is measured by the method described in the examples. Of the plurality of alkali metal sulfide peaks, at least one peak may have a peak half width of 1.0 ° or more.
  • the peak half-value width of the alkali metal sulfide changes in the same manner for all peaks. For example, as the dispersibility of the alkali metal sulfide in the composite material increases, the full width at half maximum of the peak tends to increase.
  • the peak at which the half width is measured does not interfere with the peak due to the phase other than the alkali metal sulfide, and is preferably a peak having a higher intensity.
  • Alkali metal sulfide is not particularly limited. Examples thereof include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, francium sulfide, and the like, preferably lithium sulfide and sodium sulfide, and more preferably lithium sulfide.
  • the composite material can contain an alkali metal in an amount higher than the stoichiometric ratio of the alkali metal sulfide.
  • an alkali metal in an amount higher than the stoichiometric ratio of the alkali metal sulfide.
  • the molar ratio of Li: S is 2: 1, but Li can be excessively doped at a ratio of 2.1: 1 to 6: 1, for example. This reason is presumed to be due to the fine dispersion of Li metal in the composite material.
  • the conductive auxiliary agent may be any material having electron conductivity having a plurality of pores, but a carbon material is preferable.
  • the BET specific surface area of the conductive assistant is preferably 0.1 m 2 / g or more and 5000 m 2 / g or less, more preferably 1 m 2 / g or more and 4000 m 2 / g or less, and further preferably 1 m 2 / g or more. It is 3000 m 2 / g or less, and most preferably 10 m 2 / g or more and 3000 m 2 / g or less. If it is less than 0.1 m 2 / g, it may be difficult to complex with the alkali metal sulfide, and if it exceeds 5000 m 2 / g, it may be bulky and difficult to handle.
  • the pores of the conductive assistant preferably have an average diameter of 1 nm to 40 nm, more preferably 1 nm to 20 nm.
  • the BET specific surface area and the average diameter of the pores can be measured using a nitrogen adsorption isotherm obtained by adsorbing nitrogen gas to the composite material under liquid nitrogen.
  • the BET specific surface area can be obtained by the BET method
  • the average diameter of the pores can be obtained by the BJH (Barrett-Joyner-Halenda) method.
  • the carbon material satisfying the BET specific surface area and pores is not particularly limited, but carbon black such as ketjen black and acetylene black, mesoporous carbon, carbon nanotube, carbon nanohorn, fullerene, amorphous carbon, carbon fiber, Examples thereof include natural graphite, artificial graphite, activated carbon and the like. Moreover, these composite materials can also be used.
  • Mesoporous carbon is a carbon material having pores two-dimensionally or three-dimensionally obtained by, for example, a production method described in the following literature: J. et al. Sang, S .; H. Joe, R.A. Ryoo, et. , J .; Am. Chem. Soc. , 122 (2000) 10712-10713, and T.W. Yokoi, Y. et al. Sakamoto, O .; Terasaki, et. , J .; Am. Chem. Soc. , 128 (2006) 13664-13665
  • an inorganic solid electrolyte is preferable.
  • the inorganic solid electrolyte include an oxide solid electrolyte and a sulfide solid electrolyte, but a sulfide solid electrolyte is more preferable.
  • sulfide solid electrolyte a sulfide solid electrolyte containing Li, P and S is preferable.
  • a sulfide-based solid electrolyte containing Li, P and S a sulfide-based solid electrolyte using at least Li 2 S as a raw material is more preferable.
  • a sulfide-based solid electrolyte using Li 2 S as a raw material a sulfide-based solid electrolyte using Li 2 S and other sulfides as raw materials is more preferable.
  • sulfide-based solid electrolyte using Li 2 S and other sulfides as raw materials those having a molar ratio of Li 2 S and other sulfides of 50:50 to 95: 5 are particularly preferable.
  • a sulfide-based solid electrolyte using at least Li 2 S and P 2 S 5 as raw materials is preferable.
  • a sulfide-based solid electrolyte using Li 2 S and P 2 S 5 as raw materials is preferable.
  • Li 2 S and a sulfide-based solid electrolyte as a raw material of P 2 S 5 is used as a raw material
  • a halide may be further added to the solid electrolyte.
  • the halide include LiI, LiBr, LiCl and the like.
  • Specific examples of the solid electrolyte to which a halide is added include a sulfide-based solid electrolyte containing Li, P, S and I, a sulfide-based solid electrolyte containing Li, P, S and Br, Li, P, S and Examples thereof include sulfide-based solid electrolytes containing Cl.
  • solid electrolyte examples include Li 2 S—P 2 S 5 , LiI—Li 2 S—P 2 S 5 , LiBr—Li 2 S—P 2 S 5 , Li 3 PO 4 —Li 2 S—Si.
  • Sulfide-based solid electrolytes such as 2 S, Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 2 O—P 2 O 5 , Li 2 O—B 2 O 3 —ZnO Examples thereof include oxide-based solid electrolytes.
  • the solid electrolyte may be in a glass state obtained by a manufacturing method such as an MM (mechanical milling) method, a melting method, or the like, or in a glass ceramic state obtained by heat treatment.
  • a specific example of the solid electrolyte in the glass ceramic state is a solid electrolyte having a Li 7 P 3 S 11 crystal structure.
  • Other specific examples include a Li 3 PS 4 crystal structure, a Li 4 P 2 S 6 crystal structure, a Li 7 PS 6 crystal structure, and a Li 4-x Ge 1-x P x S 4 system thiolithicone type II crystal structure ( Kanno et al., Journal of The Electrochemical Society, 148 (7) A742-746 (2001)).
  • the shape, size, etc. of the solid electrolyte are not particularly limited, but those having a primary particle diameter of 0.1 ⁇ m or more and 100 ⁇ m or less are preferable, and those having a particle size of 0.1 ⁇ m or more and 20 ⁇ m or less are more preferable.
  • a material in which sulfur, a conductive additive having pores, and a solid electrolyte are combined and at least a part of sulfur is present inside the pores of the conductive additive.
  • Body is reacted with an alkali metal.
  • the method of reacting the composite material precursor with the alkali metal include a method of simply mixing the composite material precursor and the alkali metal and a method of performing a discharge reaction through an external circuit.
  • a method in which only the composite material precursor and the alkali metal are simply mixed is used. This is because the alkali metal has high reactivity.
  • the alkali metal may be in the form of a foil, in the form of flakes, granules or powder.
  • the composite material precursor may be reacted with an alkali metal as it is, or the composite material precursor may be once reacted with an alkali metal after being formed into a molded body.
  • the composite material precursor can be reacted once by forming it into a molded body and then pressing it with an alkali metal, specifically, an alkali metal foil.
  • alkali metal include Li, Na, K, Rb and the like, and Li is preferable.
  • the alkali metal is usually used in an amount of 10 to 50 parts by weight with respect to 100 parts by weight of the composite material precursor.
  • a method in which a composite material precursor and an alkali metal are contacted and mixed by a mill that does not contain balls for example, a planetary ball mill (medialess ball mill) is preferable.
  • the pressure is preferably 1 MPa or more and 1000 MPa or less, more preferably 5 MPa or more and 500 MPa or less, and further preferably 10 MPa or more and 60 MPa.
  • the temperature at that time is preferably 0 ° C. or higher and 200 ° C. or lower, and more preferably 10 ° C. or higher and 180 ° C. or lower.
  • the alkali metal foil may be pressure-bonded to the composite material precursor on the current collector side or the solid electrolyte layer side of the composite material precursor. In addition, it is preferable that the amount of alkali metal foil remaining on the molded body is small.
  • the composite material precursor is a material in which sulfur and a conductive additive having pores are combined, and at least a part of the sulfur is present in the pores of the conductive auxiliary agent ( Sulfur-conducting aid composite) can be produced by compounding with a solid electrolyte.
  • a method for combining the sulfur-conducting aid complex and the solid electrolyte include a method of mixing by a planetary ball mill to form a composite. The same solid electrolyte can be used as described above.
  • the sulfur-conductive aid complex can be produced by combining sulfur and a conductive additive having pores.
  • sulfur and a conductive additive are mixed by a planetary ball mill, combined with a heat treatment above the melting point of sulfur, and combined with a conductive additive.
  • a method of compounding by dissolving sulfur in a solvent and drying is exemplified, and a plurality of methods can be combined.
  • the composite material of the present invention can be used as an electrode.
  • the electrode can be produced by a method of press-molding the composite material of the present invention by a usual method to form a sheet-like electrode.
  • a method of forming an electrode by forming a composite material and an electrode material containing the composite material into a film shape on a current collector can be used.
  • the film forming method include an aerosol deposition method, a screen printing method, and a cold spray method.
  • distributing or partly dissolving in a solvent is mentioned. You may mix a binder as needed.
  • a plate-like body, a foil-like body, a mesh-like body, or the like made of stainless steel, gold, platinum, copper, zinc, nickel, tin, aluminum, or an alloy thereof can be used.
  • the layer thickness may be appropriately selected according to the battery design.
  • the above electrode can be used as a positive electrode layer of a lithium ion battery.
  • a known configuration in this technical field can be used, and a negative electrode layer not including lithium ions can be selected as the negative electrode active material.
  • the negative electrode is not particularly limited as long as it can be used for a normal battery. It may consist of a negative electrode mixture in which a negative electrode active material and a solid electrolyte are mixed.
  • What is marketed can be used as a negative electrode active material.
  • carbon materials, Sn metal, In metal, Si metal, and alloys of these metals can be used.
  • natural graphite, various graphites, metal powders such as Si, Sn, Al, Sb, Zn, Bi, metal alloys such as SiAl, Sn 5 Cu 6 , Sn 2 Co, Sn 2 Fe, other amorphous alloys, A plating alloy is mentioned.
  • these Li alloys can also be used.
  • the particle size is not particularly limited, but those having an average particle size of several ⁇ m to 80 ⁇ m, for example, 1 ⁇ m to 80 ⁇ m, and 2 ⁇ m to 70 ⁇ m can be preferably used.
  • the solid electrolyte is not particularly limited, and known ones can be used.
  • oxide-based solid electrolytes, sulfide-based solid electrolytes, and polymer-based electrolytes are preferable, and sulfide-based solid electrolytes are more preferable from the viewpoint of ionic conductivity.
  • This sulfide-based solid electrolyte is preferably used for the above composite material.
  • the particle size is not particularly limited, but those having an average particle size of 0.1 ⁇ m to 100 ⁇ m, for example, 0.5 ⁇ m to 80 ⁇ m, and 1 ⁇ m to 60 ⁇ m can be preferably used.
  • the average particle diameter can use the measuring method as described in an Example.
  • the method for producing the lithium battery is not particularly limited.
  • a solid electrolyte layer is formed on a sheet in which a positive electrode layer composed of an electrode containing the composite material of the present invention is formed on a positive electrode current collector, and a sheet in which a negative electrode layer is formed on a previously formed negative electrode current collector is laminated.
  • the solid electrolyte layer includes a solid electrolyte. There is no restriction
  • the particle size is not particularly limited, but those having an average particle size of 0.1 ⁇ m to 100 ⁇ m, for example, 0.5 ⁇ m to 80 ⁇ m, and 1 ⁇ m to 60 ⁇ m can be preferably used. Moreover, the average particle diameter can use the measuring method as described in an Example.
  • Lithium sulfide was produced according to the method of the first embodiment (two-step method) in JP-A-7-330312. Specifically, 3326.4 g (33.6 mol) of N-methyl-2-pyrrolidone (NMP) and 287.4 g (12 mol) of lithium hydroxide were charged into a 10-liter autoclave equipped with a stirring blade at 300 rpm, 130 The temperature was raised to ° C. After the temperature rise, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters / minute for 2 hours.
  • NMP N-methyl-2-pyrrolidone
  • 287.4 g (12 mol) of lithium hydroxide were charged into a 10-liter autoclave equipped with a stirring blade at 300 rpm, 130 The temperature was raised to ° C. After the temperature rise, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters / minute for 2 hours.
  • this reaction solution was heated under a nitrogen stream (200 cc / min), and the reacted lithium hydrosulfide was dehydrosulfurized to obtain lithium sulfide.
  • water produced as a by-product due to the reaction between hydrogen sulfide and lithium hydroxide started to evaporate, but this water was condensed by the condenser and extracted out of the system.
  • water was distilled out of the system the temperature of the reaction solution rose, but when the temperature reached 180 ° C., the temperature increase was stopped and the temperature was kept constant.
  • the reaction was completed after the dehydrosulfurization reaction of lithium hydrosulfide (about 80 minutes) to obtain lithium sulfide.
  • the impurity content in the obtained lithium sulfide was measured. Content of each sulfur oxide of lithium sulfite (Li 2 SO 3 ), lithium sulfate (Li 2 SO 4 ), lithium thiosulfate (Li 2 S 2 O 3 ), and lithium N-methylaminobutyrate (LMAB) Quantification was performed by ion chromatography. As a result, the total content of sulfur oxides was 0.13% by mass, and LMAB was 0.07% by mass. Li 2 S thus purified was used in the following examples.
  • the obtained solid electrolyte glass particles were sealed in a SUS tube under an Ar atmosphere in a glove box, and subjected to a heat treatment at 300 ° C. for 2 hours to obtain electrolyte glass ceramic particles (average particle size 14.52 ⁇ m).
  • the average particle diameter was measured in a measuring range of 0.02 ⁇ m to 2000 ⁇ m using a particle size distribution measuring device (Mastersizer 2000 (manufactured by Malvern)).
  • Mastersizer 2000 manufactured by Malvern
  • a peak was observed at 0.0 deg.
  • the obtained solid electrolyte glass ceramic particles are made of Li 7 P 3 S 11 crystals. Further, when the conductivity of the solid electrolyte glass ceramic particles was evaluated, the conductivity was 1.3 ⁇ 10 ⁇ 3 S / cm.
  • Production Example 2 [Production of solid electrolyte] Li 2 S with an average particle size of about 30 ⁇ m produced in Production Example 1 (2), P 2 S 5 with an average particle size of about 50 ⁇ m (made by Aldrich) 5.27 g and LiBr (made by Aldrich) 1.40 g was put in a 500 ml alumina container containing 600 g of 10 mm ⁇ alumina balls and sealed. The above weighing and sealing operations were all carried out in a glove box, and all the equipment used was water removed beforehand with a dryer. This sealed alumina container was mechanically milled at room temperature for 20 hours using a planetary ball mill (LP-4 manufactured by Ito Seisakusho) to obtain white yellow solid electrolyte glass particles.
  • a planetary ball mill LP-4 manufactured by Ito Seisakusho
  • the recovery rate at this time was 65%.
  • the solid electrolyte glass particles were sealed in a SUS tube under an Ar atmosphere in a glove box, and subjected to a heat treatment at 220 ° C. for 2 hours to obtain electrolyte glass ceramic particles.
  • the conductivity of the solid electrolyte glass ceramic particles was 0.7 ⁇ 10 ⁇ 3 S / cm.
  • Production Example 4 [Production of Composite Material Precursor] 5.00 g of the sulfur-conducting aid composite produced in Production Example 3 and 5.00 g of the solid electrolyte produced in Production Example 2 and 600 g of alumina balls having a diameter of 10 mm are placed in a 500 ml alumina container and mechanically milled for 20 hours. Thus, a composite of sulfur, a conductive additive and a solid electrolyte (composite material precursor) was obtained.
  • Production Example 5 [Production of solid electrolyte] Li 2 S 3.90 g having an average particle size of about 30 ⁇ m and 6.10 g of P 2 S 5 (manufactured by Aldrich) having an average particle size of about 50 ⁇ m produced in Production Example 1 (2) were filled with 600 g of 10 mm diameter alumina balls. The container was sealed in a 500 ml alumina container. The above weighing and sealing operations were all carried out in a glove box, and all the equipment used was water removed beforehand with a dryer. This sealed alumina container was mechanically milled at room temperature for 20 hours using a planetary ball mill (LP-4 manufactured by Ito Seisakusho) to obtain white yellow solid electrolyte glass particles. The recovery rate at this time was 65%. The conductivity of the solid electrolyte glass ceramic particles was 0.2 ⁇ 10 ⁇ 3 S / cm.
  • Production Example 6 [Production of Composite Material Precursor] 5.00 g of the sulfur-conducting aid composite obtained in Production Example 3, 5.00 g of the solid electrolyte produced in Production Example 5, and 600 g of alumina balls having a diameter of 10 mm are placed in a 500 ml alumina container and subjected to mechanical milling for 20 hours. Thus, a composite of sulfur, a conductive additive and a solid electrolyte (composite material precursor) was obtained.
  • Example 1 Examples of the composite positive electrode material of the present invention will be described below.
  • the measuring method of 0.2C discharge capacity, 1C discharge capacity, and 2C discharge capacity of the lithium ion battery produced by all the examples and the comparative examples is as follows.
  • the 0.2 C discharge capacity was a constant current discharge of 0.785 mA, and the discharge capacity up to a final voltage of 0.5 V was measured.
  • the 1C discharge capacity was a constant current discharge of 3.927 mA, and the discharge capacity up to a final voltage of 0.5 V was measured.
  • the 2C discharge capacity was a constant current discharge of 7.854 mA, and the discharge capacity up to a final voltage of 0.5 V was measured.
  • the discharge capacity was measured using HJ1005SM8 manufactured by Hokuto Denko Corporation.
  • the 0.2C discharge capacity was 0.400 mA constant current discharge, and the discharge capacity up to a final voltage of 0.6V was measured.
  • the 1C discharge capacity was a constant current discharge of 2.0 mA, and the discharge capacity up to a final voltage of 0.6 V was measured.
  • the 2C discharge capacity was a constant current discharge of 4.0 mA, and the discharge capacity up to a final voltage of 0.5 V was measured.
  • the discharge capacity was measured using HJ1005SM8 manufactured by Hokuto Denko Corporation.
  • the measurement conditions for XRD are as follows. The same applies to all the following examples and comparative examples.
  • a lithium battery was prepared using the composite positive electrode for the positive electrode layer, the solid electrolyte produced in Production Example 1 for the electrolyte layer, and the In / Li alloy for the negative electrode, and the charge / discharge capacity was measured. The results are shown in Table 1.
  • This composite positive electrode is used for the positive electrode layer
  • the solid electrolyte produced in Production Example 1 is used for the electrolyte layer
  • the silicon powder is used for the negative electrode
  • the solid electrolyte produced in Production Example 1 is 17 parts by weight of Li foil with respect to 100 parts by weight of the silicon powder.
  • a lithium battery was prepared using the negative electrode composite with the attached, and the charge / discharge capacity was measured. The results are shown in Table 1.
  • This composite positive electrode is used as the positive electrode layer
  • the solid electrolyte prepared in Production Example 1 is used as the electrolyte layer
  • the silicon powder is used as the negative electrode
  • the solid electrolyte produced in Production Example 1 is 6 parts by weight of Li foil with respect to 100 parts by weight of the silicon powder.
  • a lithium battery was prepared using the negative electrode composite with the attached, and the charge / discharge capacity was measured. The results are shown in Table 1.
  • Example 6 [Production and Evaluation of Composite Cathode Material and Battery] 8.684 g of the composite material precursor produced in Production Example 6 and 1.316 g of 0.1 mmt, 3 mm square Li foil (manufactured by Honjo Metal Co., Ltd.) are placed in a 500 ml alumina container, and stirred for 15 minutes with a shell. And sealed with a lid. This sealed alumina container was agitated for 17 hours in a planetary ball mill apparatus not containing ceramic balls, to produce a composite cathode material of lithium sulfide, a conductive additive and a solid electrolyte.
  • This composite positive electrode is used for the positive electrode layer
  • the solid electrolyte produced in Production Example 1 is used for the electrolyte layer
  • the silicon powder is used for the negative electrode
  • the solid electrolyte produced in Production Example 1 is 17 parts by weight of Li foil with respect to 100 parts by weight of the silicon powder.
  • a lithium battery was prepared using the negative electrode composite with the attached, and the charge / discharge capacity was measured. The results are shown in Table 1.
  • This composite positive electrode is used for the positive electrode layer
  • the solid electrolyte produced in Production Example 1 is used for the electrolyte layer
  • the silicon powder is used for the negative electrode
  • the solid electrolyte produced in Production Example 1 is 17 parts by weight of Li foil with respect to 100 parts by weight of the silicon powder.
  • a lithium battery was prepared using the negative electrode composite with the attached, and the charge / discharge capacity was measured. The results are shown in Table 1.
  • Example 8 [Production and Evaluation of Composite Cathode Material and Battery] 1.700 g of the composite material precursor produced in Production Example 6 and 0.696 g of 0.1 mmt, 3 mm square Li foil (manufactured by Honjo Metal Co., Ltd.) are placed in a 50 ml alumina container, and stirred for 15 minutes with a shell. And sealed with a lid. This sealed alumina container was agitated for 17 hours in a planetary ball mill apparatus not containing ceramic balls, to produce a composite cathode material of lithium sulfide, a conductive additive and a solid electrolyte.
  • Comparative Example 1 [Production / Evaluation of Composite Cathode Material and Battery] A composite positive electrode material composed of a lithium sulfide carbon composite and a solid electrolyte was produced using the composite method of lithium sulfide and a conductive additive described in International Publication No. 2012/102037 pamphlet. Specifically, 8.50 g of the sulfur-conducting aid complex prepared in Production Example 3 was added to 72 ml of THF, and 1.7 MTEBHLi (hydrogenation) in which the solvent was a THF solution and the volume molarity was 1.7. Lithium triethylboron) solution (Wako Pure Chemical Industries, 120-05631) 240 ml was added and heated to 65 ° C. and stirred for 8 hours.
  • Lithium triethylboron Lithium triethylboron
  • THF was added to dissolve unreacted TEBHLi in this THF, and unreacted TEBHLi was removed.
  • This removal operation with THF was performed twice, and then the removal operation with hexane was repeated twice, and then the solvent was removed by vacuuming at room temperature, followed by vacuum heating at 150 ° C. for 2 hours and further heating at 300 ° C. for 2 hours. It dried and collect
  • Comparative Example 2 [Production / Evaluation of Composite Cathode Material and Battery] A composite positive electrode material composed of a lithium sulfide carbon composite and a solid electrolyte was produced using the composite method of lithium sulfide and a conductive additive disclosed in International Publication No. 2012/102037 pamphlet. Specifically, 8.50 g of the sulfur-conducting agent complex prepared in Production Example 3 was added to 72 ml of THF, and a 1.7 MTEBHLi solution (Wako Pure Chemical Industries, Ltd.) having a THF solution and a volume molarity of 1.7 was added thereto. 240 ml of Yakuhin Co., Ltd., 120-05631) was added and heated to 65 ° C. and stirred for 8 hours.
  • a 1.7 MTEBHLi solution (Wako Pure Chemical Industries, Ltd.) having a THF solution and a volume molarity of 1.7
  • THF was added to dissolve unreacted TEBHLi in this THF, and unreacted TEBHLi was removed.
  • This removal operation with THF was performed twice, and then the removal operation with hexane was repeated twice, and then the solvent was removed by vacuuming at room temperature, followed by vacuum heating at 150 ° C. for 2 hours and further heating at 300 ° C. for 2 hours. It dried and collect
  • the composite material of the present invention can be used for a positive electrode of a lithium ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の目的は、全固体電池の正極に用いたときに充放電容量が高く、負極にリチウムイオンを含まない負極活物質を用いることができる複合材料を提供することである。 本発明は、アルカリ金属硫化物、細孔を有する導電助剤、及び固体電解質を含み、前記アルカリ金属硫化物、前記導電助剤及び前記固体電解質が複合化され、X線回折で測定した前記アルカリ金属硫化物のピークの半値幅が1.0°以上である複合材料に関する。

Description

複合材料
 本発明は、リチウムイオン電池の正極材料として用いることのできる複合材料及びその製造方法に関する。
 近年の移動通信、情報電子機器の発達に伴い、高容量かつ軽量なリチウム二次電池の需要が増加する傾向にある。室温で高いリチウムイオン伝導性を示す電解質のほとんどが液体であり、市販されているリチウムイオン二次電池の多くが有機系電解液を用いている。この有機系電解液を用いたリチウム二次電池では、漏洩、発火・爆発の危険性があり、より安全性の高い電池が望まれている。固体電解質を用いた全固体電池では、電解質の漏洩や発火が起こりにくいという特徴を有するが、固体電解質のイオン伝導度は一般的に低く実用化が難しいのが現状である。
 固体電解質を用いた全固体リチウム電池では、従来、室温で10-3Scm-1の高いイオン伝導性を示す固体電解質としてLiNをベースとするリチウムイオン伝導性セラミックが知られている。しかし、分解電圧が低いため3V以上で作動する電池を構成することができなかった。
 硫化物系固体電解質としては、特許文献1で10-4Scm-1台の固体電解質が開示されており、また特許文献2ではLiSとPから合成された電解質で同様に10-4Scm-1台のイオン伝導性が開示されている。さらに、特許文献3ではLiSとPを68~74モル%:26~32モル%の比率で合成した硫化物系結晶化ガラスで10-3Scm-1台のイオン導電性を実現している。
 特許文献2に記載の全固体リチウム電池では、正極活物質にリチウムイオンが含まれないため、負極活物質にリチウムイオンを含む活物質が必要になる。しかし、リチウムイオンを含む負極活物質は少なく、選択の余地が少ないという欠点があった。
 上記硫化物系固体電解質を用いて全固体リチウム電池を製造することも可能であるが、従来の全固体リチウム電池の正極はLCO等の酸化物系正極活物質と硫化物系固体電解質を用いて製造されていた(特許文献4)。
 LCO等は理論容量が低く、高容量の全固体リチウム電池を得ることができない。これに対し、硫黄又は硫化リチウム、カーボン、及び無機固体電解質を正極に用いる全固体リチウム電池が開示されている(特許文献5、6)。しかし、硫黄重量あたりの充放電容量がより高い全固体リチウム電池が要求されている。
 また、理論容量が高い非晶質の硫化リチウムと導電剤を混合して正極とする技術が開示されているが(特許文献7)、このような正極を用いたリチウムイオン電池は高レートで動作した際に充放電容量が低くなってしまうという欠点があった。
 また、非特許文献1には、水素化トリエチルホウ素リチウム(LiEt3BH)を利用した製造方法が記載されているが、この製造方法は大量合成が困難であった。
特開平4-202024号公報 特開2002-109955号公報 特開2005-228570号公報 特開2008-226639号公報 特開2010-95390号公報 国際公開第2012/102037号パンフレット 特開2006-32143号公報
「NEW METHODOLOGY FOR THE INTRODUCTION OF SULFUR INTO ORGANIC MOLECULES」
 本発明の目的は、全固体電池の正極に用いたときに充放電容量が高く、負極にリチウムイオンを含まない負極活物質を用いることができる複合材料を提供することである。
 本発明によれば、以下の複合材料等が提供される。
1.アルカリ金属硫化物、細孔を有する導電助剤、及び固体電解質を含み、
 前記アルカリ金属硫化物、前記導電助剤及び前記固体電解質が複合化され、
 X線回折で測定した前記アルカリ金属硫化物のピークの半値幅が1.0°以上である複合材料。
2.前記アルカリ金属硫化物の少なくとも一部が前記導電助剤の細孔の内部に分散している1に記載の複合材料。
3.前記アルカリ金属硫化物が硫化リチウムである1又は2に記載の複合材料。
4.前記導電助剤が炭素材料である1~3のいずれかに記載の複合材料。
5.前記導電助剤が活性炭である1~4のいずれかに記載の複合材料。
6.前記固体電解質が硫化物系固体電解質である1~5のいずれかに記載の複合材料。
7.前記固体電解質がLi、P及びSを含む硫化物系固体電解質である1~6のいずれかに記載の複合材料。
8.前記固体電解質が、Li、P、S及びIを含む硫化物系固体電解質、Li、P、S及びBrを含む硫化物系固体電解質、又はLi、P、S及びClを含む硫化物系固体電解質である1~7のいずれかに記載の複合材料。
9.前記固体電解質が少なくともLiSとPを原料として得られるものであり、原料として用いるLiSとPのモル比がLiS:P=60:40~80:20である1~8のいずれかに記載の複合材料。
10.前記固体電解質の一次粒子径が0.1μm以上100μm以下である1~9のいずれかに記載の複合材料。
11.1~10のいずれかに記載の複合材料から得られる電極。
12.11に記載の電極を正極層として含むリチウムイオン電池。
13.硫黄、細孔を有する導電助剤、及び固体電解質を含み、前記硫黄、前記導電助剤及び前記固体電解質が複合化され、前記硫黄の少なくとも一部が前記導電助剤の細孔の内部に存在する複合材料前駆体を、
 アルカリ金属と反応させることを含む複合材料の製造方法。
14.下記工程(A)及び(B)を含む13に記載の複合材料の製造方法。
(A) 硫黄、及び細孔を有する導電助剤を含み、前記硫黄及び前記導電助剤が複合化され、前記硫黄の少なくとも一部が前記導電助剤の細孔の内部に存在する硫黄-導電助剤複合体を、固体電解質と複合化して複合材料前駆体を製造する工程
(B) 前記複合材料前駆体をアルカリ金属と反応させる工程
15.下記工程(A-1)、(A-2)及び(B)を含む13又は14に記載の複合材料の製造方法。
(A-1) 硫黄と、細孔を有する導電助剤を複合化して、硫黄-導電助剤複合体を製造する工程
(A-2) 前記硫黄-導電助剤複合体を固体電解質と複合化して、複合材料前駆体を製造する工程
(B) 前記複合材料前駆体をアルカリ金属と反応させる工程
16.前記アルカリ金属がリチウム金属である13~15のいずれかに記載の複合材料の製造方法。
17.前記導電助剤が炭素材料である13~16のいずれかに記載の複合材料の製造方法。
18.前記導電助剤が活性炭である13~17のいずれかに記載の複合材料の製造方法。
19.前記固体電解質が硫化物系固体電解質である13~18のいずれかに記載の複合材料の製造方法。
20.前記固体電解質が、Li、P及びSを含む硫化物系固体電解質である13~19のいずれかに記載の複合材料の製造方法。
21.前記固体電解質が、少なくともLiSとPを原料として得られるものであり、原料として用いるLiSとPのモル比がLiS:P=60:40~80:20である13~20のいずれかに記載の複合材料の製造方法。
22.前記固体電解質の一次粒子径が0.1μm以上100μm以下である13~21のいずれかに記載の複合材料の製造方法。
23.前記複合材料前駆体とアルカリ金属との反応を、前記複合材料前駆体と前記アルカリ金属のみを単に混合して行う13~22のいずれかに記載の複合材料の製造方法。
24.前記複合材料前駆体とアルカリ金属との反応を、ボールを入れない遊星型ボールミルにより混合して行う13~23のいずれかに記載の複合材料の製造方法。
25.前記複合材料前駆体とアルカリ金属との反応を、前記複合材料前駆体を含む成形体とアルカリ金属との反応により行う、13~22のいずれかに記載の複合材料の製造方法。
26.前記成形体とアルカリ金属との反応を、前記成形体とアルカリ金属箔とを圧着することにより行う、13~22及び25のいずれかに記載の複合材料の製造方法。
 本発明によれば、全固体電池の正極に用いたときに充放電容量が高く、負極にリチウムイオンを含まない負極活物質を用いることができる複合材料が提供できる。
 本発明の複合材料は、アルカリ金属硫化物、細孔を有する導電助剤、及び固体電解質を含み、アルカリ金属硫化物、導電助剤及び固体電解質が複合化されている。
 また、X線回折(XRD)で測定したアルカリ金属硫化物のピークの半値幅が1.0°以上である。
 「複合化されている」とは、アルカリ金属硫化物、細孔を有する導電助剤及び固体電解質がそれぞれ物理的又は化学的に結合していることをいう。このことは、XRDによる組成の観察や、電子顕微鏡等で元素分布を観察することにより確認できる。
 本発明の複合材料は、XRD測定におけるアルカリ金属硫化物のピーク半値幅が1.0°以上と大きく、ピークがブロードである。このことは、結晶構造の成長が抑制されていること、即ち、結晶が小さいことを意味する。結晶が小さいほどLiイオンの移動が容易で、かつ分散性に優れる。その結果、全固体電池の正極材に用いた場合の性能、特に硫黄重量あたりの充放電容量に優れる。
 また、上記複合材料において、好ましくはアルカリ金属硫化物の少なくとも一部が導電助剤の細孔の内部に存在し、微分散している。このことは、XRDによる結晶ピーク強度の観察や、電子顕微鏡等で元素分布を観察することにより確認できる。
 XRD測定におけるアルカリ金属硫化物のピーク半値幅は、好ましくは1.3°以上、より好ましくは1.6°以上である。また、通常10.0°以下である。
 アルカリ金属硫化物のピーク半値幅は、実施例に記載の方法で測定する。尚、複数あるアルカリ金属硫化物のピークのうち、少なくとも1つのピークのピーク半値幅が1.0°以上であればよい。アルカリ金属硫化物のピーク半値幅は、すべてのピークが同様に変化する。例えば、複合材料内におけるアルカリ金属硫化物の分散性が高くなる程、すべてのピーク半値幅は大きくなる傾向にある。半値幅を測定するピークは、アルカリ金属硫化物以外の相に起因するピークと干渉せず、また、より強度の強いピークであることが好ましい。
 アルカリ金属硫化物は、特に制限しない。例えば、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム、硫化フランシウム等を挙げることができ、好ましくは、硫化リチウム、硫化ナトリウムであり、より好ましくは硫化リチウムである。
 また、上記の複合材料は、アルカリ金属硫化物の量論比以上にアルカリ金属を含むことができる。例えば、LiSの場合、Li:Sのモル比は2:1であるが、例えば2.1:1~6:1の割合でLiを過剰にドープさせることができる。この理由は、Li金属が上記の複合材料に微分散することによると推察される。
 導電助剤は、複数の細孔を有する電子伝導性のある材料であればよいが、炭素材料が好ましい。
 導電助剤のBET比表面積は、好ましくは0.1m/g以上5000m/g以下であり、より好ましくは1m/g以上4000m/g以下であり、さらに好ましくは1m/g以上3000m/g以下であり、最も好ましくは10m/g以上3000m/g以下である。
 0.1m/g未満であるとアルカリ金属硫化物と複合化しにくくなる恐れがあり、5000m/gを超えると嵩高くて取り扱いが難しくなる恐れがある。
 導電助剤の細孔は、平均直径が好ましくは1nm以上40nm以下、より好ましくは1nm以上20nm以下である。このようにすることで、得られた複合材料を電極に用いた場合に充放電容量を高めることができる。
 BET比表面積及び細孔の平均直径は、複合材料を液体窒素下において、複合材料に窒素ガスを吸着させて得られる窒素吸着等温線を用いて測定することができる。具体的には、BET法によりBET比表面積、BJH(Barrett-Joyner-Halenda)法により細孔の平均直径を求めることができる。
 上記のBET比表面積と細孔を満足する炭素材料としては、特に限定されないが、ケッチェンブラック、アセチレンブラック等のカーボンブラック、メソポーラス炭素、カーボンナノチューブ、カーボンナノホーン、フラーレン、無定形炭素、炭素繊維、天然黒鉛、人造黒鉛、活性炭等が挙げられる。また、これらの複合材を用いることもできる。
 メソポーラス炭素は、例えば以下の文献に記載の製法で得られる二次元又は三次元的に細孔を有する炭素材料である:例えば、S.J.Sang,S.H.Joo,R.Ryoo,et.,J.Am.Chem.Soc.,122(2000)10712-10713、及びT.Yokoi,Y.Sakamoto,O.Terasaki,et.,J.Am.Chem.Soc.,128(2006)13664-13665
 固体電解質としては、無機系固体電解質が好ましい。無機系固体電解質としては酸化物系固体電解質、硫化物系固体電解質が挙げられるが、硫化物系固体電解質がより好ましい。
 硫化物系固体電解質としては、Li、P及びSを含む硫化物系固体電解質が好ましい。Li、P及びSを含む硫化物系固体電解質としては、少なくともLiSを原料とする硫化物系固体電解質がさらに好ましい。LiSを原料とする硫化物系固体電解質としては、LiSとその他硫化物を原料とする硫化物系固体電解質がより好ましい。LiSとその他硫化物を原料とする硫化物系固体電解質としては、LiSとその他硫化物のモル比が、50:50~95:5であるものが特に好ましい。
 また、LiSとその他硫化物を原料とする硫化物系固体電解質としては、少なくともLiSとPを原料とする硫化物系固体電解質が好ましい。
 少なくともLiSとPを原料とする硫化物系固体電解質としては、原料として用いるLiSとPのモル比がLiS:P=60:40~82:18となる硫化物系固体電解質が好ましく、LiS:P=60:40~80:20となる硫化物系固体電解質がより好ましく、さらにより好ましくは、LiSとPのモル比がLiS:P=65:35~78:22である硫化物系固体電解質である。
 また、少なくともLiSとPを原料とする硫化物系固体電解質としては、LiSとPを原料とする硫化物系固体電解質が好ましい。
 LiSとPを原料とする硫化物系固体電解質としては、原料として用いるLiSとPのモル比がLiS:P=60:40~80:20となる硫化物系固体電解質が好ましく、より好ましくは、LiSとPのモル比がLiS:P=65:35~78:22である。即ち、硫化物系固体電解質に含まれるLi、P及びSを、LiSとPの比に換算した場合に、モル比がLiS:P=60:40~80:20となる硫化物系固体電解質が好ましく、より好ましくは、LiSとPのモル比がLiS:P=65:35~78:22である硫化物系固体電解質である。
 固体電解質には、LiSとPの他、さらにハロゲン化物を添加してもよい。ハロゲン化物としてはLiI、LiBr、LiCl等が挙げられる。ハロゲン化物を添加した固体電解質として、具体的には、Li、P、S及びIを含む硫化物系固体電解質、Li、P、S及びBrを含む硫化物系固体電解質、Li、P、S及びClを含む硫化物系固体電解質が挙げられる。
 LiS及びPのモル量の合計に対するハロゲン化物のモル量の比は、好ましくは[LiS+P]:ハロゲン化物=50:50~99:1であり、より好ましくは[LiS+P]:ハロゲン化物=60:40~98:2であり、さらに好ましくは[LiS+P]:ハロゲン化物=70:30~98:2であり、特に好ましくは[LiS+P]:ハロゲン化物=80:20~98:2である。
 固体電解質としては、具体的にはLiS-P,LiI-LiS-P,LiBr-LiS-P,LiPO-LiS-SiS等の硫化物系固体電解質、LiO-B-P、LiO-SiO、LiO-P、LiO-B-ZnO等の酸化物系固体電解質が挙げられる。
 固体電解質は、MM(メカニカルミリング)法、溶融法他による製造方法で得られたガラス状態ものでも、加熱処理により得られたガラスセラミック状態のものでもあってもよい。ガラスセラミック状態の固体電解質の具体例としては、Li11結晶構造をとる固体電解質が挙げられる。その他の具体例としては、LiPS結晶構造、Li結晶構造、LiPS結晶構造、Li4-xGe1-x系チオリシコンII型の結晶構造(Kannoら、Journal of The Electrochemical Society,148(7)A742-746(2001)参照)が挙げられる。
 固体電解質の形状、サイズ等は特に限定されないが、一次粒子径が0.1μm以上100μm以下であるものが好ましく、0.1μm以上20μm以下のものがより好ましい。
 本発明の複合材料の製造方法は、硫黄、細孔を有する導電助剤、及び固体電解質が複合化され、硫黄の少なくとも一部が導電助剤の細孔の内部に存在する材料(複合材料前駆体)を、アルカリ金属と反応させる工程を含む。
(1)複合材料前駆体とアルカリ金属の反応
 複合材料前駆体とアルカリ金属の反応方法は、複合材料前駆体とアルカリ金属を単に混合する方法や外部回路を通じて放電反応する方法が挙げられる。好ましくは、複合材料前駆体とアルカリ金属のみを単に混合する方法が挙げられる。アルカリ金属の反応性が高いためである。アルカリ金属の形態は箔でもよく、フレーク状又は顆粒でも粉末でもよい。
 また、複合材料前駆体をそのままアルカリ金属と反応させてもよく、複合材料前駆体をいったん成形体としてからアルカリ金属と反応させてもよい。例えば、複合材料前駆体をいったん成形体としてから、アルカリ金属、具体的にはアルカリ金属箔と圧着することにより反応させることができる。
 アルカリ金属としては、Li,Na,K,Rb等が挙げられ、Liが好ましい。アルカリ金属は、複合材料前駆体100重量部に対して通常10~50重量部用いる。
 具体的な混合方法としては、ボールを入れないミル、例えば遊星型ボールミル(メディアレスボールミル)により複合材料前駆体とアルカリ金属を接触・混合する方法が好ましい。
 メディアレスボールミルとすることにより、後述する硫黄-導電助剤複合体を製造した際の硫黄の状態、即ち硫黄が導電助剤中の細孔中に微分散している状態を最終段階まで維持できるため好ましい。
 一方、本願比較例1、2(特許文献6に対応)のように、複合材料の製造の最終段階でメカニカルミリングを行うと、アルカリ金属硫化物の分散状態を維持できない場合がある。この場合、XRD測定におけるアルカリ金属硫化物のピーク半値幅は0.6程度となってしまう。
 アルカリ金属箔と圧着する場合は、その圧力は1MPa以上1000MPa以下であることが好ましく、5MPa以上500MPa以下がより好ましく、10MPa以上60MPaがさらに好ましい。
 その際の温度は、0℃以上200℃以下であることが好ましく、10℃以上180℃以下であることがより好ましい。
 複合材料前駆体にアルカリ金属箔を圧着するのは、複合材料前駆体の集電体側でも、固体電解質層側でもよい。尚、成形体上に残存するアルカリ金属箔は少ない方が好ましい。
(2)複合材料前駆体の製造方法
 複合材料前駆体は、硫黄、及び細孔を有する導電助剤が複合化され、硫黄の少なくとも一部が導電助剤の細孔の内部に存在する材料(硫黄-導電助剤複合体)を、固体電解質と複合化して製造することができる。
 硫黄-導電助剤複合体と固体電解質の複合化方法としては、遊星型ボールミルで混合して複合化する方法等が挙げられる。固体電解質は上記と同じものを用いることができる。
(3)硫黄-導電助剤複合体の製造方法
 硫黄-導電助剤複合体は、硫黄と、細孔を有する導電助剤を複合化して製造することができる。
 硫黄と導電助剤の複合化方法としては、硫黄と導電助剤を遊星型ボールミルで混合し複合化する方法、硫黄の融点以上の熱処理を行うことで複合化する方法、導電助剤共存下で硫黄を溶媒に溶解し、乾燥することで複合化する方法等が挙げられ、複数の方法を組み合わせることができる。
 複合材料前駆体100重量部に対して、通常、硫黄が10~80重量部、導電助剤が10~50重量部、固体電解質が10~80重量部となるように用いる。
 本発明の複合材料は、電極として用いることができる。
 電極として用いる場合、本発明の複合材料を通常の方法でプレス成形して、シート状の電極とする方法等により電極を製造することができる。
 また、複合材料及び複合材料を含む電極材料を集電体上に膜状に形成して電極とする方法が挙げられる。製膜方法としては、エアロゾルデポジション法、スクリーン印刷法、コールドスプレー法等が挙げられる。さらに、溶媒に分散又は一部を溶解させてスラリー状にして塗布する方法が挙げられる。必要に応じてバインダーを混合してもよい。
 上記の集電体としては、ステンレス鋼、金、白金、銅、亜鉛、ニッケル、スズ、アルミニウム又はこれらの合金等からなる板状体、箔状体、網目状体等が使用できる。
 電極として用いる場合、層厚みは電池設計に応じて適宜に選定すればよい。
 上記の電極は、リチウムイオン電池の正極層として用いることができる。この場合、リチウムイオン電池の他の構成は本技術分野にて公知のものが使用でき、負極活物質にリチウムイオンを含まない負極層を選択できる。
 負極は、通常の電池に使用できるものであれば、特に制限されない。負極活物質と固体電解質を混合した負極合剤からなるものでもよい。
 負極活物質としては、市販されているものを使用できる。例えば、炭素材料、Sn金属、In金属、Si金属、これらの金属に合金等を使用できる。具体的には、天然黒鉛や各種グラファイト、Si,Sn,Al,Sb,Zn,Bi等の金属粉、SiAl,SnCu,SnCo,SnFe等の金属合金、その他アモルファス合金やメッキ合金が挙げられる。
 また、これらのLi合金を用いることもできる。粒径に関しても特に制限はないが、平均粒径が数μm~80μmのもの、例えば1μm~80μmのもの、2μm~70μmのものを好適に使用できる。
 固体電解質は特に制限はなく、公知のものが使用できる。例えば、酸化物系固体電解質、硫化物系固体電解質、ポリマー系電解質が好ましく、イオン伝導度の観点から硫化物系固体電解質がより好ましい。この硫化物系固体電解質は上記の複合材料に使用するものが好ましい。粒径に関しても特に制限はないが、平均粒径が0.1μm~100μmのもの、例えば0.5μm~80μmのもの、1μm~60μmのものを好適に使用できる。また平均粒径は、実施例に記載の測定方法を用いることができる。
 リチウム電池の製造方法は、特に制限されない。例えば、正極集電体上に本発明の複合材料を含む電極からなる正極層を形成したシートに固体電解質層を形成し、予め形成した負極集電体上に負極層を形成したシートを積層し、プレスする方法等が挙げられる。
 上記固体電解質層は、固体電解質を含む。固体電解質は特に制限はなく、上記の負極合材に使用するものを使用できる。粒径に関しても特に制限はないが、平均粒径が0.1μm~100μmのもの、例えば0.5μm~80μmのもの、1μm~60μmのものを好適に使用できる。また平均粒径は、実施例に記載の測定方法を用いることができる。
製造例1[固体電解質の製造]
(1)硫化リチウムの製造
 硫化リチウムは、特開平7-330312号公報における第1の態様(2工程法)の方法に従って製造した。具体的には、撹拌翼のついた10リットルオートクレーブにN-メチル-2-ピロリドン(NMP)3326.4g(33.6モル)及び水酸化リチウム287.4g(12モル)を仕込み、300rpm、130℃に昇温した。昇温後、液中に硫化水素を3リットル/分の供給速度で2時間吹き込んだ。続いてこの反応液を窒素気流下(200cc/分)昇温し、反応した水硫化リチウムを脱硫化水素化し硫化リチウムを得た。昇温するにつれ、上記硫化水素と水酸化リチウムの反応により副生した水が蒸発を始めたが、この水はコンデンサにより凝縮し系外に抜き出した。水を系外に留去すると共に反応液の温度は上昇するが、180℃に達した時点で昇温を停止し、一定温度に保持した。水硫化リチウムの脱硫化水素反応が終了後(約80分)に反応を終了し、硫化リチウムを得た。
(2)硫化リチウムの精製
 上記で得られた500mLのスラリー反応溶液(NMP-硫化リチウムスラリー)中のNMPをデカンテーションした後、脱水したNMP100mLを加え、105℃で約1時間撹拌した。その温度のままNMPをデカンテーションした。さらにNMP100mLを加え、105℃で約1時間撹拌し、その温度のままNMPをデカンテーションし、同様の操作を合計4回繰り返した。デカンテーション終了後、窒素気流下230℃(NMPの沸点以上の温度)で硫化リチウムを常圧下で3時間乾燥した。得られた硫化リチウム中の不純物含有量を測定した。
 亜硫酸リチウム(LiSO)、硫酸リチウム(LiSO)、チオ硫酸リチウム(Li)の各硫黄酸化物、及びN-メチルアミノ酪酸リチウム(LMAB)の含有量は、イオンクロマトグラフ法により定量した。その結果、硫黄酸化物の総含有量は0.13質量%であり、LMABは0.07質量%であった。このようにして精製したLiSを、以下の実施例で使用した。
(3)固体電解質の製造
 上記で製造した平均粒径30μm程度の精製LiS 2.54gと平均粒径50μm程度のP(アルドリッチ社製)67.46gを10mmφアルミナボール175個が入った500mlアルミナ製容器に入れ密閉した。上記計量、密閉作業は全てグローブボックス内で実施し、使用する器具類は全て乾燥機で事前に水分除去して使用した。
 この密閉したアルミナ容器を、遊星ボールミル(レッチェ社製PM400)にて室温下、36時間メカニカルミリング処理することで白黄色の固体電解質ガラス粒子を得た。このときの回収率は78%であった。
 得られた固体電解質ガラス粒子のX線回折測定(CuKα:λ=1.5418Å)を行なった結果、原料LiSのピークは観測されず、固体電解質ガラスに起因するハローパターンであった。
 得られた固体電解質ガラス粒子をグローブボックス内Ar雰囲気下でSUS製チューブに密閉し、300℃2時間の加熱処理を施し、電解質ガラスセラミック粒子(平均粒径14.52μm)を得た。
 尚、平均粒径は、粒度分布測定装置(Mastersizer2000(Malvern社製))を用い、測定範囲0.02μm~2000μmで測定した。
 得られた固体電解質ガラスセラミック粒子について、X線回折測定を実施したところ、2θ=17.8、18.2、19.8、21.8、23.8、25.9、29.5、30.0degにピークが観測された。このことから、得られた固体電解質ガラスセラミック粒子は、Li11結晶ができていることが分かる。
 また、この固体電解質ガラスセラミック粒子の伝導度を評価したところ、伝導度は1.3×10-3S/cmであった。
製造例2[固体電解質の製造]
 製造例1(2)で作製した平均粒径30μm程度のLiS 3.34gと平均粒径50μm程度のP(アルドリッチ社製)5.27gとLiBr(アルドリッチ社製)1.40gを10mmφアルミナボール600gが入った500mlアルミナ製容器に入れ密閉した。上記計量、密閉作業は全てグローブボックス内で実施し、使用する器具類は全て乾燥機で事前に水分除去したものを用いた。
 この密閉したアルミナ容器を、遊星ボールミル(伊藤製作所製LP-4)にて室温下、20時間メカニカルミリング処理することで白黄色の固体電解質ガラス粒子を得た。このときの回収率は65%であった。
 上記固体電解質ガラス粒子をグローブボックス内Ar雰囲気下でSUS製チューブに密閉し、220℃、2時間の加熱処理を施し電解質ガラスセラミック粒子を得た。この固体電解質ガラスセラミック粒子の伝導度は、0.7×10-3S/cmであった。
製造例3[硫黄-導電助剤複合体の製造]
 硫黄(アルドリッチ製、純度99.998%)35.0gと、導電助剤として細孔を有する高比表面積の活性炭であるマックスソーブMSC30(以下適宜「MSC30」という。関西熱化学株式会社製、BET比表面積:3000m/g)15.0gを遊星ボールミルで2分間混合した。この硫黄とMSC30の混合物をステンレス容器に入れ、60℃で10分、150℃で6時間、300℃で2時間45分間熱処理を行い、室温に冷却して、硫黄-導電助剤複合体を回収した。
製造例4[複合材料前駆体の製造]
 製造例3で作製した硫黄-導電助剤複合体5.00g、製造例2で作製した固体電解質5.00g、直径10mmのアルミナボール600gを500mlアルミナ製容器に入れ、20時間メカニカルミリング処理することで、硫黄、導電助剤及び固体電解質の複合体(複合材料前駆体)を得た。
製造例5[固体電解質の製造]
 製造例1(2)で作製した平均粒径30μm程度のLiS 3.90gと平均粒径50μm程度のP(アルドリッチ社製)6.10gを、直径10mmアルミナボール600gが入った500mlアルミナ製容器に入れ密閉した。上記計量、密閉作業は全てグローブボックス内で実施し、使用する器具類は全て乾燥機で事前に水分除去したものを用いた。
 この密閉したアルミナ容器を、遊星ボールミル(伊藤製作所製LP-4)にて室温下、20時間メカニカルミリング処理することで白黄色の固体電解質ガラス粒子を得た。このときの回収率は65%であった。
 この固体電解質ガラスセラミック粒子の伝導度は、0.2×10-3S/cmであった。
製造例6[複合材料前駆体の製造]
 製造例3で得られた硫黄-導電助剤複合体5.00g、製造例5で作製した固体電解質5.00g、直径10mmのアルミナボール600gを500mlアルミナ製容器に入れ、20時間メカニカルミリング処理することで、硫黄、導電助剤及び固体電解質の複合体(複合材料前駆体)を得た。
実施例1
 以下、本発明の複合正極材料の実施例について説明する。尚、全実施例・比較例で作製したリチウムイオン電池の0.2C放電容量、1C放電容量及び2C放電容量の測定方法は以下の通りである。
対極電極がIn/Li合金の場合
 0.2C放電容量は0.785mAの定電流放電で、終止電圧0.5Vまでの放電容量を測定した。同様に1C放電容量は3.927mAの定電流放電で、終止電圧0.5Vまでの放電容量を測定した。2C放電容量は7.854mAの定電流放電で、終止電圧0.5Vまでの放電容量を測定した。放電容量は、北斗電工(株)製:HJ1005SM8を用いて測定した。
対極電極がSi+SE(又はSi+SE+Li)の場合
 0.2C放電容量は0.400mAの定電流放電で、終止電圧0.6Vまでの放電容量を測定した。同様に1C放電容量は2.0mAの定電流放電で、終止電圧0.6Vまでの放電容量を測定した。2C放電容量は4.0mAの定電流放電で、終止電圧0.5Vまでの放電容量を測定した。放電容量は、北斗電工(株)製:HJ1005SM8を用いて測定した。
[複合正極材料及び電池の製造・評価]
 製造例4で作製した複合材料前駆体7.00gと、0.1mmt、3mm四方のLi箔(本城金属株式会社製)1.06gを500mlアルミナ製容器に入れ、薬匙で15分撹拌し、蓋をして密封した。この密閉したアルミナ容器を、セラミックボールを入れない遊星ボールミル装置で17時間撹拌処理し、硫化リチウム、導電助剤及び固体電解質の複合正極材料を作製した。尚、硫化リチウム、導電助剤及び固体電解質が複合化されていることは走査型電子顕微鏡を用いて確認した。
 この複合正極材料について、XRD(X線回折)測定で硫化リチウムのhkl=220面のピーク半値幅(2θdeg)を測定したところ、1.591°であった。
 XRDの測定条件は、以下の通りである。尚、以下の全実施例、比較例も同様である。
装置:リガクSmartlab
管電圧:45kV
管電流:200mA
スリット:soller slit 5.0°
スキャンスピード(2θ/θ):2°/min
ステップ幅(2θ/θ):0.02°
X線源:CuKα:λ=1.5418Å
 正極層にこの複合正極、電解質層に製造例1で製造した固体電解質、負極にIn/Li合金を用いてリチウム電池を作製し、充放電容量を測定した。結果を表1に示す。
実施例2[複合正極材料及び電池の製造・評価]
 製造例4で作製した複合材料前駆体0.850gと、0.1mmt、3mm四方のLi箔(本城金属株式会社製)0.206gを50mlアルミナ製容器に入れ、薬匙で15分撹拌し、蓋をして密封した。この密閉したアルミナ容器を、セラミックボールを入れない遊星ボールミル装置で17時間撹拌処理し、硫化リチウム、導電助剤及び固体電解質の複合正極材料を作製した。尚、硫化リチウム、導電助剤及び固体電解質が複合化されていることは走査型電子顕微鏡を用いて確認した。この複合正極材料について、XRD測定で硫化リチウムのhkl=220面のピーク半値幅を測定したところ、1.808°であった。
 正極層にこの複合正極、電解質層に製造例1で製造した固体電解質、負極にシリコン粉末と製造例1で作製した固体電解質の合材を用いてリチウム電池を作製し、充放電容量を測定した。結果を表1に示す。
実施例3[複合正極材料及び電池の製造・評価]
 製造例4で作製した複合材料前駆体0.850gと、0.1mmt、3mm四方のLi箔(本城金属株式会社製)0.348gを50mlアルミナ製容器に入れ、薬匙で15分撹拌し、蓋をして密封した。この密閉したアルミナ容器を、セラミックボールを入れない遊星ボールミル装置で17時間撹拌処理し、硫化リチウム、導電助剤及び固体電解質の複合正極材料を作製した。尚、硫化リチウム、導電助剤及び固体電解質が複合化されていることは走査型電子顕微鏡を用いて確認した。この複合正極材料について、XRD測定で硫化リチウムのhkl=220面のピーク半値幅を測定したところ、1.826°であった。
 正極層にこの複合正極、電解質層に製造例1で製造した固体電解質、負極にシリコン粉末と製造例1で作製した固体電解質の合材を用いてリチウム電池を作製し、充放電容量を測定した。結果を表1に示す。
実施例4[複合正極材料及び電池の製造・評価]
 製造例4で作製した複合材料前駆体0.850gと、0.1mmt、3mm四方のLi箔(本城金属株式会社製)0.155gを50mlアルミナ製容器に入れ、薬匙で15分撹拌し、蓋をして密封した。この密閉したアルミナ容器を、セラミックボールを入れない遊星ボールミル装置で17時間撹拌処理し、硫化リチウム、導電助剤及び固体電解質の複合正極材料を作製した。尚、硫化リチウム、導電助剤及び固体電解質が複合化されていることは走査型電子顕微鏡を用いて確認した。この複合正極材料について、XRD測定で硫化リチウムのhkl=220面のピーク半値幅を測定したところ、1.800°であった。
 正極層にこの複合正極、電解質層に製造例1で製造した固体電解質、負極にシリコン粉末と製造例1で作製した固体電解質の合材にシリコン粉末100重量部に対して17重量部のLi箔を貼付した負極合材を用いてリチウム電池を作製し、充放電容量を測定した。結果を表1に示す。
実施例5[複合正極材料及び電池の製造・評価]
 製造例4で作製した複合材料前駆体0.850gと、0.1mmt、3mm四方のLi箔(本城金属株式会社製)0.180gを50mlアルミナ製容器に入れ、薬匙で15分撹拌し、蓋をして密封した。この密閉したアルミナ容器を、セラミックボールを入れない遊星ボールミル装置で17時間撹拌処理し、硫化リチウム、導電助剤及び固体電解質の複合正極材料を作製した。尚、硫化リチウム、導電助剤及び固体電解質が複合化されていることは走査型電子顕微鏡を用いて確認した。この複合正極材料を、XRD測定で硫化リチウムのhkl=220面のピーク半値幅を測定したところ、1.671°であった。
 正極層にこの複合正極、電解質層に製造例1で製造した固体電解質、負極にシリコン粉末と製造例1で作製した固体電解質の合材にシリコン粉末100重量部に対して6重量部のLi箔を貼付した負極合材を用いてリチウム電池を作製し、充放電容量を測定した。結果を表1に示す。
実施例6[複合正極材料及び電池の製造・評価]
 製造例6で作製した複合材料前駆体8.684gと、0.1mmt、3mm四方のLi箔(本城金属株式会社製)1.316gを500mlアルミナ製容器に入れ、薬匙で15分撹拌し、蓋をして密封した。この密閉したアルミナ容器を、セラミックボールを入れない遊星ボールミル装置で17時間撹拌処理し、硫化リチウム、導電助剤及び固体電解質の複合正極材料を作製した。尚、硫化リチウム、導電助剤及び固体電解質が複合化されていることは走査型電子顕微鏡を用いて確認した。この複合正極材料について、XRD測定で硫化リチウムのhkl=220面のピーク半値幅を測定したところ、1.591°であった。
 正極層にこの複合正極、電解質層に製造例1で製造した固体電解質、負極にシリコン粉末と製造例1で作製した固体電解質の合材にシリコン粉末100重量部に対して17重量部のLi箔を貼付した負極合材を用いてリチウム電池を作製し、充放電容量を測定した。結果を表1に示す。
実施例7[複合正極材料及び電池の製造・評価]
 製造例6で作製した複合材料前駆体0.850gと、0.1mmt、3mm四方のLi箔(本城金属株式会社製)0.129gを50mlアルミナ製容器に入れ、薬匙で15分撹拌し、蓋をして密封した。この密閉したアルミナ容器を、セラミックボールを入れない遊星ボールミル装置で17時間撹拌処理し、硫化リチウム、導電助剤及び固体電解質の複合正極材料を作製した。尚、硫化リチウム、導電助剤及び固体電解質が複合化されていることは走査型電子顕微鏡を用いて確認した。この複合正極材料について、XRD測定で硫化リチウムのhkl=220面のピーク半値幅を測定したところ、1.939°であった。
 正極層にこの複合正極、電解質層に製造例1で製造した固体電解質、負極にシリコン粉末と製造例1で作製した固体電解質の合材にシリコン粉末100重量部に対して17重量部のLi箔を貼付した負極合材を用いてリチウム電池を作製し、充放電容量を測定した。結果を表1に示す。
実施例8[複合正極材料及び電池の製造・評価]
 製造例6で作製した複合材料前駆体1.700gと、0.1mmt、3mm四方のLi箔(本城金属株式会社製)0.696gを50mlアルミナ製容器に入れ、薬匙で15分撹拌し、蓋をして密封した。この密閉したアルミナ容器を、セラミックボールを入れない遊星ボールミル装置で17時間撹拌処理し、硫化リチウム、導電助剤及び固体電解質の複合正極材料を作製した。尚、硫化リチウム、導電助剤及び固体電解質が複合化されていることは走査型電子顕微鏡を用いて確認した。この複合正極材料について、XRD測定で硫化リチウムのhkl=220面のピーク半値幅を測定したところ、2.051°であった。
 正極層にこの複合正極、電解質層に製造例1で製造した固体電解質、負極にシリコン粉末と製造例1で作製した固体電解質の合材を用いてリチウム電池を作製し、充放電容量を測定した。結果を表1に示す。
比較例1[複合正極材料及び電池の製造・評価]
 国際公開2012/102037号パンフレットに記載の硫化リチウムと導電助剤の複合化方法を用いて、硫化リチウムカーボン複合体と固体電解質との複合正極材料を作製した。
 具体的には、THF72mlに製造例3で作製した硫黄-導電助剤複合体8.50gを加え、これに、溶媒がTHF溶液であり体積モル濃度が1.7である1.7MTEBHLi(水素化トリエチルホウ素リチウム)溶液(和光純薬株式会社製、120-05631)240mlを加えて65℃に加熱し、8時間撹拌した。
 撹拌後、24時間放置し、その後上澄みを取り、THFを添加して未反応TEBHLiをこのTHFに溶解させて、未反応TEBHLiを除去した。このTHFによる除去作業を2回行い、次いでヘキサンによる除去操作を2回繰り返した後、室温で真空引きして溶媒を除去し、150℃2時間の真空加熱、さらに300℃2時間の真空加熱により乾燥して、硫化リチウムカーボン複合体を回収した。
 上記で製造した硫化リチウムカーボン複合体0.65gと製造例2で製造した固体電解質0.50gを、セラミックボールを入れた遊星ボールミルで5時間混合し、硫化リチウムカーボンと固体電解質の複合正極材料を作製した。
 正極層にこの混合正極、電解質層に製造例1で製造した固体電解質ガラスセラミック粒子、負極にIn/Li合金を用いてリチウム電池を作製し、充放電容量を測定した。結果を表1に示す。
比較例2[複合正極材料及び電池の製造・評価]
 国際公開2012/102037号パンフレットの硫化リチウムと導電助剤の複合化方法を用いて、硫化リチウムカーボン複合体と固体電解質との複合正極材料を作製した。
 具体的に、THF72mlに製造例3で作製した硫黄-導電助剤複合体8.50gを加え、これに、溶媒がTHF溶液であり体積モル濃度が1.7である1.7MTEBHLi溶液(和光純薬株式会社製、120-05631)240mlを加えて65℃に加熱し、8時間撹拌した。
 上記8時間撹拌後に24時間放置し、その後上澄みを取り、THFを添加して未反応TEBHLiをこのTHFに溶解させて、未反応TEBHLiを除去した。このTHFによる除去作業を2回行い、次いでヘキサンによる除去操作を2回繰り返した後、室温で真空引きして溶媒を除去し、150℃2時間の真空加熱、さらに300℃2時間の真空加熱により乾燥して、硫化リチウムカーボン複合体を回収した。
 上記で製造した硫化リチウムカーボン複合体0.65gと製造例5で製造した固体電解質0.50gを、セラミックボールを入れた遊星ボールミルで5時間混合し、硫化リチウムカーボンと固体電解質の複合正極を作製した。
 この複合正極材料について、XRD測定で硫化リチウムのhkl=220面のピーク半値幅を測定したところ、0.645°であった。
 正極層にこの混合正極、電解質層に製造例1で製造した固体電解質ガラスセラミック粒子、負極にシリコン粉末と製造例1で作製した固体電解質の合材を用いてリチウム電池を作製し、充放電容量を測定した。結果を表1に示す。

Figure JPOXMLDOC01-appb-T000001
 本発明の複合材料は、リチウムイオン電池の正極に用いることができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (22)

  1.  アルカリ金属硫化物、細孔を有する導電助剤、及び固体電解質を含み、
     前記アルカリ金属硫化物、前記導電助剤及び前記固体電解質が複合化され、
     X線回折で測定した前記アルカリ金属硫化物のピークの半値幅が1.0°以上である複合材料。
  2.  前記アルカリ金属硫化物の少なくとも一部が前記導電助剤の細孔の内部に分散している請求項1に記載の複合材料。
  3.  前記アルカリ金属硫化物が硫化リチウムである請求項1又は2に記載の複合材料。
  4.  前記導電助剤が炭素材料である請求項1~3のいずれかに記載の複合材料。
  5.  前記導電助剤が活性炭である請求項1~4のいずれかに記載の複合材料。
  6.  前記固体電解質が硫化物系固体電解質である請求項1~5のいずれかに記載の複合材料。
  7.  前記固体電解質がLi、P及びSを含む硫化物系固体電解質である請求項1~6のいずれかに記載の複合材料。
  8.  前記固体電解質が、Li、P、S及びIを含む硫化物系固体電解質、Li、P、S及びBrを含む硫化物系固体電解質、又はLi、P、S及びClを含む硫化物系固体電解質である請求項1~7のいずれかに記載の複合材料。
  9.  前記固体電解質が少なくともLiSとPを原料として得られるものであり、原料として用いるLiSとPのモル比がLiS:P=60:40~80:20である請求項1~8のいずれかに記載の複合材料。
  10.  請求項1~9のいずれかに記載の複合材料から得られる電極。
  11.  請求項10に記載の電極を正極層として含むリチウムイオン電池。
  12.  硫黄、細孔を有する導電助剤、及び固体電解質を含み、前記硫黄、前記導電助剤及び前記固体電解質が複合化され、前記硫黄の少なくとも一部が前記導電助剤の細孔の内部に存在する複合材料前駆体を、
     アルカリ金属と反応させることを含む複合材料の製造方法。
  13.  下記工程(A)及び(B)を含む請求項12に記載の複合材料の製造方法。
    (A) 硫黄、及び細孔を有する導電助剤を含み、前記硫黄及び前記導電助剤が複合化され、前記硫黄の少なくとも一部が前記導電助剤の細孔の内部に存在する硫黄-導電助剤複合体を、固体電解質と複合化して複合材料前駆体を製造する工程
    (B) 前記複合材料前駆体をアルカリ金属と反応させる工程
  14.  下記工程(A-1)、(A-2)及び(B)を含む請求項12又は13に記載の複合材料の製造方法。
    (A-1) 硫黄と、細孔を有する導電助剤を複合化して、硫黄-導電助剤複合体を製造する工程
    (A-2) 前記硫黄-導電助剤複合体を固体電解質と複合化して、複合材料前駆体を製造する工程
    (B) 前記複合材料前駆体をアルカリ金属と反応させる工程
  15.  前記アルカリ金属がリチウム金属である請求項12~14のいずれかに記載の複合材料の製造方法。
  16.  前記導電助剤が炭素材料である請求項12~15のいずれかに記載の複合材料の製造方法。
  17.  前記導電助剤が活性炭である請求項12~16のいずれかに記載の複合材料の製造方法。
  18.  前記固体電解質が硫化物系固体電解質である請求項12~17のいずれかに記載の複合材料の製造方法。
  19.  前記固体電解質が、Li、P及びSを含む硫化物系固体電解質である請求項12~18のいずれかに記載の複合材料の製造方法。
  20.  前記固体電解質が、少なくともLiSとPを原料として得られるものであり、原料として用いるLiSとPのモル比がLiS:P=60:40~80:20である請求項12~19のいずれかに記載の複合材料の製造方法。
  21.  前記複合材料前駆体とアルカリ金属との反応を、前記複合材料前駆体と前記アルカリ金属のみを単に混合して行う請求項12~20のいずれかに記載の複合材料の製造方法。
  22.  前記複合材料前駆体とアルカリ金属との反応を、ボールを入れない遊星型ボールミルにより混合して行う請求項12~21のいずれかに記載の複合材料の製造方法。
PCT/JP2014/001735 2013-04-02 2014-03-26 複合材料 WO2014162693A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015509896A JP6475159B2 (ja) 2013-04-02 2014-03-26 複合材料
US14/781,747 US20160036054A1 (en) 2013-04-02 2014-03-26 Composite material
CN201480019377.XA CN105074974A (zh) 2013-04-02 2014-03-26 复合材料
EP14779867.2A EP2983231A4 (en) 2013-04-02 2014-03-26 Composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-077255 2013-04-02
JP2013077255 2013-04-02

Publications (1)

Publication Number Publication Date
WO2014162693A1 true WO2014162693A1 (ja) 2014-10-09

Family

ID=51658007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001735 WO2014162693A1 (ja) 2013-04-02 2014-03-26 複合材料

Country Status (5)

Country Link
US (1) US20160036054A1 (ja)
EP (1) EP2983231A4 (ja)
JP (1) JP6475159B2 (ja)
CN (1) CN105074974A (ja)
WO (1) WO2014162693A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222567A (ja) * 2016-06-14 2017-12-21 出光興産株式会社 硫化リチウム、及びその製造方法
JP2018170107A (ja) * 2017-03-29 2018-11-01 トヨタ自動車株式会社 全固体リチウムイオン二次電池用負極及びその負極を備える全固体リチウムイオン二次電池
JP2019506699A (ja) * 2015-12-04 2019-03-07 クアンタムスケイプ コーポレイション リチウム、リン、硫黄、及びヨウ素含有電解質及びカソライト組成物、電気化学装置用の電解質膜、並びにこれらの電解質及びカソライトを製造するアニーリング方法
JP2020064740A (ja) * 2018-10-16 2020-04-23 トヨタ自動車株式会社 硫化物全固体電池
CN111498842A (zh) * 2020-04-20 2020-08-07 辽宁科技大学 一种硫化亚铁沥青基复合球形活性炭的制备方法
KR20210073689A (ko) * 2019-12-10 2021-06-21 한국전자기술연구원 황화물계 고체전해질 복합체, 그를 이용한 전극 및 전고체전지
WO2024009978A1 (ja) * 2022-07-04 2024-01-11 出光興産株式会社 複合粉末、正極合材及びアルカリ金属イオン電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102239187B1 (ko) 2013-05-15 2021-04-09 콴텀스케이프 코포레이션 배터리용 고상 캐소라이트 또는 전해질
EP3314681B1 (en) 2015-06-24 2021-07-21 QuantumScape Battery, Inc. Composite electrolytes
US11342630B2 (en) 2016-08-29 2022-05-24 Quantumscape Battery, Inc. Catholytes for solid state rechargeable batteries, battery architectures suitable for use with these catholytes, and methods of making and using the same
WO2019178533A1 (en) * 2018-03-16 2019-09-19 University Of Maryland, College Park All solid-state sodium-sulfur or lithium-sulfur battery prepared using cast-annealing method
CN108598475B (zh) * 2018-04-25 2021-03-26 广东工业大学 离子电池用成分结构可调控的磷硫硒系列负极材料
JP7006510B2 (ja) * 2018-06-01 2022-01-24 トヨタ自動車株式会社 正極合材及びその製造方法
KR102626921B1 (ko) 2018-08-10 2024-01-19 삼성전자주식회사 리튬전지용 황화물계 고체 전해질, 그 제조방법 및 이를 포함하는 리튬전지

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202024A (ja) 1990-11-29 1992-07-22 Matsushita Electric Ind Co Ltd リチウムイオン伝導性固体電解質
JPH07330312A (ja) 1994-06-03 1995-12-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法
JP2002109955A (ja) 2000-10-02 2002-04-12 Osaka Prefecture 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池
JP2005228570A (ja) 2004-02-12 2005-08-25 Idemitsu Kosan Co Ltd リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法
JP2006032143A (ja) 2004-07-16 2006-02-02 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008226639A (ja) 2007-03-13 2008-09-25 Ngk Insulators Ltd 全固体電池
WO2010035602A1 (ja) * 2008-09-24 2010-04-01 独立行政法人産業技術総合研究所 硫化リチウム-炭素複合体、その製造方法、及び該複合体を用いるリチウムイオン二次電池
JP2010095390A (ja) 2008-09-16 2010-04-30 Tokyo Institute Of Technology メソポーラス炭素複合材料およびこれを用いた二次電池
WO2012102037A1 (ja) 2011-01-27 2012-08-02 出光興産株式会社 アルカリ金属硫化物と導電剤の複合材料
JP2013080637A (ja) * 2011-10-04 2013-05-02 Idemitsu Kosan Co Ltd 複合電極材料及びその製造方法、並びに該複合電極材料を用いたリチウム電池
JP2013125697A (ja) * 2011-12-15 2013-06-24 Idemitsu Kosan Co Ltd リチウム粒子を含む組成物、電極及び電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130133217A (ko) * 2010-12-24 2013-12-06 이데미쓰 고산 가부시키가이샤 리튬 이온 전지용 정극 재료 및 리튬 이온 전지
CN102163720A (zh) * 2011-02-12 2011-08-24 中南大学 一种锂离子电池用硫化锂-多孔碳复合正极材料及制备方法
JP2012243408A (ja) * 2011-05-16 2012-12-10 Idemitsu Kosan Co Ltd リチウムイオン電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202024A (ja) 1990-11-29 1992-07-22 Matsushita Electric Ind Co Ltd リチウムイオン伝導性固体電解質
JPH07330312A (ja) 1994-06-03 1995-12-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法
JP2002109955A (ja) 2000-10-02 2002-04-12 Osaka Prefecture 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池
JP2005228570A (ja) 2004-02-12 2005-08-25 Idemitsu Kosan Co Ltd リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法
JP2006032143A (ja) 2004-07-16 2006-02-02 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008226639A (ja) 2007-03-13 2008-09-25 Ngk Insulators Ltd 全固体電池
JP2010095390A (ja) 2008-09-16 2010-04-30 Tokyo Institute Of Technology メソポーラス炭素複合材料およびこれを用いた二次電池
WO2010035602A1 (ja) * 2008-09-24 2010-04-01 独立行政法人産業技術総合研究所 硫化リチウム-炭素複合体、その製造方法、及び該複合体を用いるリチウムイオン二次電池
WO2012102037A1 (ja) 2011-01-27 2012-08-02 出光興産株式会社 アルカリ金属硫化物と導電剤の複合材料
JP2013080637A (ja) * 2011-10-04 2013-05-02 Idemitsu Kosan Co Ltd 複合電極材料及びその製造方法、並びに該複合電極材料を用いたリチウム電池
JP2013125697A (ja) * 2011-12-15 2013-06-24 Idemitsu Kosan Co Ltd リチウム粒子を含む組成物、電極及び電池

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KANNO ET AL., JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 148, no. 7, 2001, pages A742 - 746
MOTOHIRO NAGAO ET AL.: "Ryukabutsu Kotai Denkaishitsu o Mochiita Zenkotai Li/S Denchi ni Okeru Denkyoku - Denkaishitsu Kotai Kaimen no Kochiku", DAI 52 KAI ABSTRACTS, BATTERY SYMPOSIUM IN JAPAN, 17 October 2011 (2011-10-17), pages 328, XP008181230 *
S.J. SANG; S.H. JOO; R.R YOO, J. AM. CHEM. SOC., vol. 122, 2000, pages 10712 - 10713
See also references of EP2983231A4
T. YOKOI; Y. SAKAMOTO; O. TERASAKI, J. AM. CHEM. SOC., vol. 128, 2006, pages 13664 - 13665

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019506699A (ja) * 2015-12-04 2019-03-07 クアンタムスケイプ コーポレイション リチウム、リン、硫黄、及びヨウ素含有電解質及びカソライト組成物、電気化学装置用の電解質膜、並びにこれらの電解質及びカソライトを製造するアニーリング方法
JP7071264B2 (ja) 2015-12-04 2022-05-18 クアンタムスケイプ バテリー, インク. リチウム、リン、硫黄、及びヨウ素含有電解質及びカソライト組成物、電気化学装置用の電解質膜、並びにこれらの電解質及びカソライトを製造するアニーリング方法
JP2017222567A (ja) * 2016-06-14 2017-12-21 出光興産株式会社 硫化リチウム、及びその製造方法
JP7014496B2 (ja) 2016-06-14 2022-02-01 出光興産株式会社 硫化リチウム、及びその製造方法
JP2018170107A (ja) * 2017-03-29 2018-11-01 トヨタ自動車株式会社 全固体リチウムイオン二次電池用負極及びその負極を備える全固体リチウムイオン二次電池
JP2020064740A (ja) * 2018-10-16 2020-04-23 トヨタ自動車株式会社 硫化物全固体電池
JP7119884B2 (ja) 2018-10-16 2022-08-17 トヨタ自動車株式会社 硫化物全固体電池
KR20210073689A (ko) * 2019-12-10 2021-06-21 한국전자기술연구원 황화물계 고체전해질 복합체, 그를 이용한 전극 및 전고체전지
KR102442718B1 (ko) * 2019-12-10 2022-09-14 한국전자기술연구원 황화물계 고체전해질/탄소원료 복합체, 그를 이용한 전극 및 전고체전지
CN111498842A (zh) * 2020-04-20 2020-08-07 辽宁科技大学 一种硫化亚铁沥青基复合球形活性炭的制备方法
WO2024009978A1 (ja) * 2022-07-04 2024-01-11 出光興産株式会社 複合粉末、正極合材及びアルカリ金属イオン電池

Also Published As

Publication number Publication date
EP2983231A4 (en) 2017-04-12
US20160036054A1 (en) 2016-02-04
JPWO2014162693A1 (ja) 2017-02-16
EP2983231A1 (en) 2016-02-10
CN105074974A (zh) 2015-11-18
JP6475159B2 (ja) 2019-02-27

Similar Documents

Publication Publication Date Title
JP6475159B2 (ja) 複合材料
JP5865268B2 (ja) アルカリ金属硫化物と導電剤の複合材料
Yao et al. Ultrathin Sb2S3 nanosheet anodes for exceptional pseudocapacitive contribution to multi-battery charge storage
Yu et al. Graphite microspheres decorated with Si particles derived from waste solid of organosilane industry as high capacity anodes for Li-ion batteries
JP4948659B1 (ja) リチウムイオン電池固体電解質材料用硫化リチウムの製造方法
Xie et al. Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance
US8192866B2 (en) Tin nanoparticles and methodology for making same
Cao et al. Hydrothermal synthesis of SnO2 embedded MoO3-x nanocomposites and their synergistic effects on lithium storage
WO2014030298A1 (ja) 全固体リチウムイオン電池及び正極合材
JP2016213006A (ja) 多硫化物複合体及び硫化リチウム複合体の製造方法、正極合材、並びに全固体電池
JP2017199631A (ja) 硫化物固体電解質、電極合材及びリチウムイオン電池
CN111446492B (zh) 硫化物固体电解质粒子及其制造方法和全固体电池
Man et al. Cube-like Sb 2 Se 3/C constructed by ultrathin nanosheets as anode material for lithium and sodium-ion batteries
Chang-Jian et al. Doping and surface modification enhance the applicability of Li4Ti5O12 microspheres as high-rate anode materials for lithium ion batteries
JP2017117635A (ja) 硫化物固体電解質、硫化物ガラス、電極合材及びリチウムイオン電池
JP5864993B2 (ja) 複合電極材料及びその製造方法、並びに該複合電極材料を用いたリチウム電池
WO2016201611A1 (en) Porous silicon particles and a method for producing silicon particles
Chen et al. a-MoO3 nanorods coated with SnS2 nano sheets core-shell composite as high-performance anode materials of lithium ion batteries
JP5895917B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6222433B2 (ja) 蓄電デバイス用負極活物質の製造方法
CN110556523B (zh) 正极合剂、全固体电池、正极合剂的制造方法和全固体电池的制造方法
JP2019102263A (ja) 硫化物固体電解質
Li et al. Enhancing high-voltage electrochemical performance of LiNi 0.7 Mn 0.15 Co 0.15 O 2 cathode materials with SiO 2 coatings via electrostatic attraction forces method
Jia et al. Glass-ceramic route to NASICON-type NaxTi2 (PO4) 3 electrodes for Na-ion batteries
Gong et al. Facile synthesis of MoS 2@ TiNb 2 O 7 nanocomposite anode materials with superior electrochemical performance for Li-ion batteries

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019377.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509896

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014779867

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14781747

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE