WO2014157375A1 - 内視鏡用可撓管およびその製造方法 - Google Patents

内視鏡用可撓管およびその製造方法 Download PDF

Info

Publication number
WO2014157375A1
WO2014157375A1 PCT/JP2014/058611 JP2014058611W WO2014157375A1 WO 2014157375 A1 WO2014157375 A1 WO 2014157375A1 JP 2014058611 W JP2014058611 W JP 2014058611W WO 2014157375 A1 WO2014157375 A1 WO 2014157375A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
flexible tube
resin
elastomer
compound
Prior art date
Application number
PCT/JP2014/058611
Other languages
English (en)
French (fr)
Inventor
中井 義博
清隆 深川
伸治 高橋
竹内 和也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013067194A external-priority patent/JP6047440B2/ja
Priority claimed from JP2013147104A external-priority patent/JP5991951B2/ja
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201480018577.3A priority Critical patent/CN105074306B/zh
Priority to EP14775365.1A priority patent/EP2980466B1/en
Publication of WO2014157375A1 publication Critical patent/WO2014157375A1/ja
Priority to US14/857,396 priority patent/US20160024343A1/en
Priority to US17/566,178 priority patent/US11892104B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/0011Manufacturing of endoscope parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to an endoscope flexible tube and a method for manufacturing the same.
  • An endoscope is a medical device for observing the inside of a patient's body cavity. Therefore, since it is used by being inserted into a body cavity, it is desirable that it does not damage the organ and does not cause pain or discomfort to the patient. From such a demand, a spiral tube formed by spirally winding a softly bent metal strip is adopted as the flexible tube constituting the insertion portion of the endoscope. Furthermore, the circumference
  • the resin layer can be formed by, for example, extrusion molding on the outer peripheral surface of a flexible tube base material in which a spiral tube is covered with a cylindrical net.
  • the distal end side is made flexible and soft, and the rear end side is made easy to operate.
  • the present applicant adopts a two-layer structure of inner and outer layers having different hardnesses as the resin layer, and changes the thickness ratio of the inner and outer layers of the resin layer in the axial direction of the flexible tube. Proposed (see Patent Document 1).
  • the flexibility is changed in the axial direction of the flexible tube to optimize the balance of the hardness of the entire flexible tube and meet the above demand.
  • Patent Document 2 describes an elastomer molded product obtained by crosslinking two or more kinds of thermoplastic polyester elastomers. By forming the resin layer of the flexible tube with this molded body, it is said that the resistance of the flexible tube to the peracetic acid aqueous solution is improved.
  • Patent Document 3 discloses that a resin layer of a flexible tube is formed of a resin having a structure in which a urethane polymer and an ester polymer are crosslinked. This describes that the solubility of the resin layer in chemicals such as N, N-dimethylformamide is suppressed.
  • the first aspect of the present invention maintains high resin physical properties required for the use such as flexibility in the resin layer of the endoscope flexible tube, has high resistance to the cleaning liquid, and depends on the temperature.
  • An object of the present invention is to provide a flexible tube for an endoscope that suppresses changes in physical properties (temperature dependency) and has excellent topcoat adhesion, and a method for manufacturing the same.
  • the present embodiment has basic characteristics required for a flexible tube used for an endoscope-type medical device such as flexibility, elasticity, and bending durability, and various disinfection methods. It is an object of the present invention to provide a flexible tube that exhibits good resistance to a chemical solution and an endoscope using the flexible tube.
  • a flexible tube comprising a flexible tubular flexible tube substrate and a resin layer covering the flexible tube substrate,
  • the resin layer is composed of at least two layers of a first layer and a second layer
  • the first layer comprises one or more elastomers selected from the group consisting of polyester elastomers, polyurethane elastomers, and polyamide elastomers, or chain extensions thereof
  • the flexible tube comprising a chain extension of two or more elastomers selected from the group consisting of a polyester elastomer, a polyurethane elastomer, and a polyamide elastomer.
  • the chain extender for preparing the elastomer chain extender is selected from polyfunctional epoxy compounds, polyfunctional isocyanate compounds, polyfunctional amino compounds, oxazoline compounds, carbodiimide compounds, and acid anhydrides.
  • Flexible tube [3] The flexible tube according to [2], wherein the chain extender of the elastomer is treated by adding at least one catalyst selected from an amine compound and a tin chelate to the elastomer in addition to the chain extender. [4] The flexible chain according to [2] or [3], wherein the chain extender of the elastomer is treated by blending 0.01 to 10 parts by mass of the chain extender with respect to 100 parts by mass of the elastomer. tube.
  • the resin layer is soluble in 1,1,1,3,3,3-hexafluoro-2-propanol and is not substantially cross-linked to any one of [1] to [7] The flexible tube as described.
  • the first layer of the resin layer is an inner layer that covers the entire circumferential surface around the axis of the flexible tube base, the second layer is in contact with the first layer, and the first layer The flexible tube according to any one of [1] to [8], which forms an outer layer covering the entire circumferential surface around the axis.
  • R 3 to R 6 each independently represent a hydrogen atom or carbon atom) Represents an alkyl group having 1 to 12.
  • R 7 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or —OR 8.
  • R 8 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. Indicates the bonding position.
  • R 1 and R 2 have the same meanings as in formula (1), L represents a single bond or a divalent linking group, p represents an integer of 2 to 4, and A 1 represents a divalent to tetravalent group)
  • R 9 to R 12 have the same meanings as R 1.
  • R 13 represents a reactive organic substituent.
  • the flexible tube according to any one of [11] to [26] which is for an endoscopic medical device.
  • An endoscopic medical device comprising the flexible tube according to any one of [11] to [27].
  • a method for producing a flexible tube comprising a flexible tubular flexible tube base material and a resin layer covering the flexible tube base material,
  • the resin layer is composed of at least two layers of a first layer and a second layer,
  • a first resin material containing a polyester elastomer, a polyurethane elastomer, or a polyamide elastomer constituting the first layer is prepared.
  • Preparing a second resin material containing two or more elastomers and a chain extender A method of manufacturing a flexible tube, wherein the first resin material and the second resin material are melt-kneaded around the flexible tube base material and extruded to coat the flexible tube base material.
  • the chain extender at least one chain extender selected from a polyfunctional epoxy compound, a polyfunctional isocyanate compound, a polyfunctional amino compound, an oxazoline compound, a carbodiimide compound, and an acid anhydride is used. The manufacturing method of the flexible tube.
  • a resin composition that forms a resin layer that covers a flexible tube substrate includes a polyester elastomer and a hindered phenol compound or a hindered amine compound.
  • a resin composition set comprising a multi-layer resin layer covering a flexible tube substrate, the resin composition comprising a polyester elastomer and a hindered phenol compound or a hindered amine compound, a polyester elastomer, and a polyurethane elastomer And a resin composition set in combination with a resin composition containing at least one selected from polyamide elastomers.
  • substituents, etc. when there are a plurality of substituents, linking groups, etc. (hereinafter referred to as substituents, etc.) indicated by specific symbols, or when a plurality of substituents etc. are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. In addition, even when not specifically stated, when a plurality of substituents are adjacent to each other, it means that they may be connected to each other or condensed to form a ring. In the present specification, a substituent that does not specify substitution / non-substitution (the same applies to a linking group) means that the group may have an arbitrary substituent as long as a desired effect is achieved. . This is also synonymous for compounds that do not specify substitution / non-substitution.
  • the flexible tube for an endoscope according to the first aspect of the invention has a coating resin layer that maintains the physical properties required for endoscope use such as flexibility, has high resistance to cleaning liquid, and changes in physical properties due to temperature. (Temperature dependency) is suppressed, and the adhesion of the top coat is also excellent. According to the manufacturing method of this embodiment, the flexible tube for endoscopes that exhibits the above-described excellent performance can be preferably manufactured.
  • the flexible tube used in the endoscope type medical device of the second invention and the endoscope using the flexible tube are such that the resin layer covering the flexible tube is flexible, elastic, and durable. It has the characteristics required for endoscope use such as sex and exhibits good resistance to various disinfectants.
  • FIG. 4 is a cross-sectional view taken along line BB in FIG. 3.
  • a flexible tube is incorporated in the electronic endoscope according to a preferred embodiment of the present invention.
  • the electronic endoscope 2 is connected to an insertion unit 3 inserted into a body cavity, a main body operation unit 5 connected to a proximal end portion of the insertion unit 3, a processor device, and a light source device. And a universal cord 6 to be connected.
  • the insertion portion 3 is provided with a flexible tube 3a continuously provided to the main body operation portion 5, an angle portion 3b provided continuously therewith, and an imaging device (not shown) for photographing inside the body cavity. Is comprised from the front-end
  • the flexible tube 3a that has the most length of the insertion portion 3 has flexibility over almost the entire length thereof, and in particular, a portion to be inserted into a body cavity or the like has a more flexible structure.
  • the flexible tube 3a (flexible tube for an endoscope) braids a metal wire on a spiral tube 11 formed by spirally winding a metal strip 11a on the innermost side.
  • the tubular net body 12 thus formed is covered with a flexible tube base material 14 fitted with caps 13 at both ends, and the outer peripheral surface thereof is covered with a resin layer 15.
  • the outer surface of the resin layer 15 is coated with a coat layer 16 containing, for example, fluorine having chemical resistance.
  • a coat layer 16 containing, for example, fluorine having chemical resistance.
  • the resin layer 15 covers the outer peripheral surface of the flexible tube base material 14.
  • the resin layer 15 has a two-layer configuration in which an inner layer 17 that covers the entire circumferential surface around the axis of the flexible tube substrate 14 and an outer layer 18 that covers the entire circumferential surface around the axis of the inner layer 17 are laminated.
  • a soft resin is used as the material of the inner layer 17, and a hard resin is used as the material of the outer layer 18.
  • the resin layer 15 is formed with a substantially uniform thickness in the longitudinal direction (axial direction) of the flexible tube base 14.
  • the thickness of the resin layer 15 is, for example, 0.2 mm to 1.0 mm, and the outer diameter D of the flexible tube 3a is, for example, 11 to 14 mm.
  • the thicknesses of the inner layer 17 and the outer layer 18 are formed such that the ratio of the thicknesses of the layers 17 and 18 to the total thickness of the resin layer 15 changes in the axial direction of the flexible tube substrate 14. Specifically, on the one end 14 a side (tip end side) of the flexible tube base 14 attached to the angle portion 3 b, the inner layer 17 is thicker than the outer layer 18 with respect to the total thickness of the resin layer 15. large.
  • the thickness of the inner layer 17 gradually decreases from the one end 14a toward the other end 14b (base end side) attached to the main body operation unit 5, and on the other end 14b side, the thickness of the outer layer 18 is the inner layer 17 side. It is larger than the thickness.
  • the ratio of the thickness of the inner layer 17 and the outer layer 18 is the maximum, 9: 1 at the one end 14a, and 1: 9 at the other end 14b.
  • the thickness ratio of the inner layer 17 and the outer layer 18 is changed to be reversed.
  • the flexibility of the flexible tube 3a changes in the axial direction so that a difference in hardness occurs between the one end 14a side and the other end 14b side, so that the one end 14a side is soft and the other end 14b side is hard.
  • the inner layer and the outer layer have a thickness ratio at one end of 5:95 to 40:60 (inner layer: outer layer) and a thickness ratio at the other end of 95: 5 to 60:40 (inner layer: outer layer). It is preferable that it exists in.
  • the ratio of the thickness of the inner layer 17 and the outer layer 18 is preferably in the range of 5:95 to 95: 5 as in the above example. By setting it within this range, the extrusion amount of the thinner resin can be controlled more precisely.
  • the difference in 100% modulus value which is an index representing the hardness after molding, is preferably 1 MPa or more, and more preferably 3 MPa or more, for the soft resin and the hard resin used for the inner layer 17 and the outer layer 18. When taking the difference large, 10 MPa or more is preferable.
  • the difference in melt viscosity at a molding temperature of 150 ° C. to 300 ° C., which is an index representing the fluidity of the resin in the molten state, is preferably 2500 PaS or less. Thereby, the resin layer 15 composed of the inner layer 17 and the outer layer 18 ensures both good molding accuracy and a necessary hardness difference between the distal end side and the proximal end side.
  • a manufacturing method includes: In forming the resin layer composed of at least two layers of the first layer and the second layer, (I) preparing a first resin material containing a polyester elastomer, polyurethane elastomer or polyamide elastomer constituting the first layer, and (ii) a polyester elastomer, polyurethane elastomer or polyamide elastomer constituting the second layer Preparing a second resin material containing two or more elastomers and a chain extender selected from the group consisting of: (Iii) It is preferable that the first resin material and the second resin material are melt-kneaded around the flexible tube base material and extruded to coat the resin layer with the resin layer.
  • the continuous molding machine 20 includes known extruding parts 21 and 22 including hoppers, screws 21a and 22a, a head part 23 for covering and molding the resin layer 15 on the outer peripheral surface of the flexible tube base 14, and a cooling part. 24, a transport unit 25 (a supply drum 28 and a take-up drum 29) for transporting the connected flexible tube base 31 to the head unit 23, and a control unit 26 for controlling them are preferably used.
  • the head portion 23 is preferably composed of a nipple 32, a die 33, and a support 34 that fixedly supports them.
  • an apparatus described in FIGS. 3 to 5 of JP 2011-72391 A can be used.
  • the molding temperature is preferably set in the range of 150 ° C to 300 ° C.
  • Each temperature of the soft resin 39 and the hard resin 40 can be increased by adjusting the heating temperature of the heating unit in the apparatus. In addition to this, the higher the rotational speed of each of the screws 21a and 22a, the higher the soft resin 39. And each temperature of hard resin 40 can be made still higher, and each fluidity can be raised. At this time, the forming speed of the inner layer 17 and the outer layer 18 is adjusted by changing the discharge amount of the soft resin 39 and the hard resin 40 in a molten state while keeping the conveying speed of the connected flexible tube base material 31 constant. Can do.
  • the process when the resin layer 15 is formed on the connected flexible tube base material 31 by the continuous molding machine 20 will be described.
  • the continuous molding machine 20 performs the molding process
  • the molten soft resin 39 from the extruded portions 21 and 22 is used.
  • the hard resin 40 is pushed out to the head portion 23.
  • the transport unit 25 operates to transport the connected flexible tube base material 31 to the head unit 23.
  • the extruding portions 21 and 22 are in a state in which the soft resin 39 and the hard resin 40 are always extruded and supplied to the head portion 23.
  • a two-layered resin layer 15 is formed in which the inner layer 17 using the soft resin 39 and the outer layer 18 using the hard resin 40 are overlapped.
  • the connected flexible tube base material 31 is formed by connecting a plurality of flexible tube base materials 14, and is continuously resinous with respect to the plurality of flexible tube base materials 14 while being conveyed in the molding passage 37. 15 is molded.
  • the resin layer 15 is molded from one end 14a side (front end side) to the other end 14b side (base end side) of one flexible tube base material, the inner layer immediately after the resin discharge by the extrusion portions 21 and 22 is started.
  • the thickness of 17 is increased.
  • the ratio of the thickness of the outer layer 18 is gradually increased in the intermediate part which goes to the other end 14b side. Thereby, it is preferable to control the discharge amount of the resin so that the thickness ratio of the inclined resin layer 15 is obtained.
  • the control part 26 is utilized for switching the discharge amount of the extrusion parts 21 and 22. Specifically, the control unit 26 determines the one end 14a side (distal end side) of the next flexible tube base material 14 from the thickness ratio on the other end 14b side (base end side) of one flexible tube base material 14. It is preferable to switch the discharge amounts of the extruding portions 21 and 22 so that the thickness ratio of When the resin layer 15 is molded from the one end 14a side to the other end 14b side of the next flexible tube base material 14, it is similarly extruded so that the thickness of the outer layer gradually increases from one end side to the other end side. It is preferable that the parts 21 and 22 are controlled.
  • the connected flexible tube base material 31 in which the resin layer 15 has been molded to the end is removed from the continuous molding machine 20, and then the joint member 30 is removed from the flexible tube base material 14. Separated. Next, the coated film 16 is coated on the resin layer 15 with respect to the separated flexible tube base material 14, and the flexible tube 3a is completed. The completed flexible tube 3a is conveyed to the assembly process of the electronic endoscope.
  • the resin layer of this embodiment is comprised by the at least 2 layer of the 1st layer and the 2nd layer, and the said 1st layer is from the group which consists of a polyester elastomer, a polyurethane elastomer, and a polyamide elastomer. It comprises one or more selected elastomers or chain extensions thereof.
  • the second layer comprises a chain extension of two or more elastomers selected from the group consisting of polyester elastomers, polyurethane elastomers, and polyamide elastomers. That is, the second layer contains a chain extension of an elastomer blend. Specifically, a blend of a polyester elastomer and at least one selected from a polyurethane elastomer and a polyamide elastomer is preferable.
  • the second layer uses a blend of two or more elastomers.
  • a combination of elastomers it is preferable to combine a polyester elastomer with another elastomer.
  • the blending ratio of the other elastomer is preferably 5 to 100 parts by weight, more preferably 10 to 80 parts by weight, and more preferably 15 to 60 parts by weight with respect to 100 parts by weight of the polyester elastomer. Particularly preferred.
  • Preferred combinations are listed as follows. ⁇ Main elastomer Secondary elastomer ⁇ PE PU PE PA PE PU + PA ⁇ PE: Polyester elastomer PU: Polyurethane elastomer PA: Polyamide elastomer
  • an elastomer blend may be used for the first layer.
  • an embodiment in which another elastomer is combined with a polyurethane elastomer, or an embodiment in which another elastomer is combined with a polyamide elastomer is preferable.
  • the blending amount is preferably 5 to 100 parts by weight, more preferably 10 to 80 parts by weight, and more preferably 15 to 60 parts by weight with respect to 100 parts by weight of the polyurethane elastomer or polyamide elastomer. It is particularly preferred. Preferred combinations are listed as follows.
  • the first layer is preferably the inner layer 17 (FIG. 2). In the present embodiment, this inner layer covers the entire peripheral surface around the axis of the flexible tube base material.
  • the first layer may be an elastomer made of the above resin, a chain extension product thereof, or a mixture containing an arbitrary additive therein.
  • a chain extender it is preferable to add a chain extender to the resin elastomer and perform a chain extension treatment in order to obtain a chain extender. What is necessary is just to select a chain extender suitably, It is preferable to use what is chosen from a polyfunctional epoxy compound, a polyfunctional isocyanate compound, a polyfunctional amino compound, an oxazoline compound, a carbodiimide compound, and an acid anhydride. Of these, polyfunctional isocyanate compounds, oxazoline compounds, and carbodiimide compounds are more preferably used.
  • the performance of the resin layer suitable for the flexible tube can be comprehensively increased, and in particular, the resulting flexible tube is resistant to peracetic acid, elasticity, and bending durability. It is preferable because the performance of items such as sex can be improved.
  • the polyfunctional epoxy used as a chain extender will not be restrict
  • the epoxy group-containing compound is a polymer, the weight average molecular weight is 2,000 to 1,000,000 from the viewpoint of excellent heat aging resistance and elongation improvement effect, less gelation, and excellent handleability. 000 is preferred, 3,000 to 500,000 is more preferred, and 4,000 to 250,000 is even more preferred.
  • the epoxy group-containing compound include an epoxy group-containing (meth) acrylic polymer, an epoxy group-containing polystyrene, an epoxidized vegetable oil, and a polyglycidyl ether.
  • the epoxy group-containing (meth) acrylic polymer is not particularly limited as long as the main chain is a (meth) acrylic polymer and contains two or more epoxy groups in the molecule.
  • (meth) acryl means one or both of acrylic and methacrylic.
  • the (meth) acrylic polymer as the main chain may be either a homopolymer or a copolymer.
  • Examples of the epoxy group-containing (meth) acrylic polymer include methyl methacrylate-glycidyl methacrylate copolymer, methyl methacrylate-styrene-glycidyl methacrylate copolymer, and the like. Of these, methyl methacrylate-glycidyl methacrylate copolymer and methyl methacrylate-styrene-glycidyl methacrylate copolymer are preferable.
  • the weight average molecular weight of the epoxy group-containing (meth) acrylic polymer is from 3,000 to 300,000 from the viewpoints of excellent heat aging resistance and an effect of improving elongation, hardly gelling, and excellent handleability. It is preferably 4,000 to 250,000.
  • the polyglycidyl ether is not particularly limited as long as it is a compound having two or more glycidyloxy groups in the molecule.
  • examples of the polyglycidyl ether include polyglycidyl ether of glycerin / epichlorohydrin-0 to 1 mol adduct, polyglycidyl ether of ethylene glycol-epichlorohydrin-0 to 2 mol adduct, polyethylene glycol-diglycidyl ether, neopentyl glycol- Examples thereof include diglycidyl ether and trimethylolpropane-polyglycidyl ether.
  • the epoxy equivalent of the epoxy group-containing compound is preferably 170 to 10000 g / equivalent (more narrowly 170 to 3300 g / equivalent) from the viewpoint of being excellent in heat aging resistance and the effect of improving elongation and being difficult to gel. More preferably, it is ⁇ 5000 g / equivalent (more narrowly 200 to 2,000 g / equivalent).
  • epoxy group-containing (meth) acrylic polymers include, for example, JoncrylonADR-4368 (acrylic polymer, powder, weight average molecular weight 6,800, epoxy equivalent 285 g / equivalent, manufactured by BASF), Marproof G -0150M (acrylic polymer, powder, weight average molecular weight 8,000 to 10,000, epoxy equivalent 310 g / equivalent, manufactured by NOF Corporation), Marproof G-2050M (acrylic polymer, powder, weight average molecular weight) 200,000 to 250,000, epoxy equivalent of 340 g / equivalent, manufactured by NOF Corporation).
  • Examples of commercially available products of epoxy group-containing polystyrene include Marproof G-1010S (styrene polymer, powder, weight average molecular weight 100,000, epoxy equivalent 1,700 g / equivalent, manufactured by NOF Corporation).
  • Commercial products of epoxidized vegetable oil include, for example, Neusizer 510R (manufactured by NOF Corporation), which is epoxidized soybean oil, JER1001 (solid, epoxy equivalent 450 to 500) manufactured by Mitsubishi Chemical Corporation, and JER1010 (solid, epoxy equivalent) 3000 to 5000).
  • Polyfunctional isocyanate compound include aromatic, aliphatic, cycloaliphatic, or alicyclic polyfunctional isocyanate compounds, or mixtures, adducts, modified products, polymers, etc. There may be mentioned functional isocyanate compounds.
  • a carbodiimide compound is a compound which has 1 or more (2 or more are preferable) carbodiimide group in a molecule
  • Examples of the carbodiimide compound include aromatic and aliphatic carbodiimide compounds.
  • polycarbodiimide produced from 4,4′-dicyclohexylmethane diisocyanate examples include “Carbodilite LA-1” manufactured by Nisshinbo Holdings Inc.
  • Examples of the monocarbodiimide compound having one carbodiimide group in the carbodiimide compound include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, and di-t Examples include -butyl carbodiimide, di- ⁇ -naphthyl carbodiimide, and the like. Among these, dicyclohexyl carbodiimide and diisopropyl carbodiimide are preferable because they are particularly easily available industrially.
  • the number average molecular weight (Mn) of the carbodiimide compound used in the present invention is preferably in the range of 100 to 40,000, more preferably in the range of 100 to 30,000.
  • the polyfunctional amino compound may be an aromatic amino compound (preferably having 6 to 26 carbon atoms, more preferably having 6 to 18 carbon atoms), or a non-aromatic amino compound (carbon The number 2 to 24 is preferable, and the number 2 to 12 is more preferable.
  • Aromatic amines such as m-phenylenediamine, p-phenylenediamine and 1,3,5-triaminobenzene, aliphatic amines such as ethylenediamine, piperazine and aminomethylpiperidine, and polyepihalohydrin were modified with the above monomer amines.
  • Amino polymers such as polymers are preferred.
  • a polyfunctional oxazoline compound is a compound containing two or more oxazoline groups in the molecule. Even an aromatic polyfunctional oxazoline compound (preferably having 6 to 26 carbon atoms, more preferably 6 to 18 carbon atoms) is a non-aromatic polyfunctional oxazoline compound (preferably having 2 to 24 carbon atoms, carbon The number 2 to 12 is more preferable.
  • a polyoxazoline compound containing the above-mentioned compound as a monomer unit such as a styrene-2-isopropenyl-2-oxazoline copolymer, and the like can be given.
  • Epoxy cloth manufactured by Nippon Shokubai Co., Ltd. having three or more oxazoline groups is preferred from the viewpoint of reactivity with the carboxy terminal group of the polyester.
  • an acid anhydride is a carboxylic acid anhydride. Even an aromatic acid anhydride (preferably 6 to 26 carbon atoms, more preferably 6 to 18 carbon atoms) is a non-aromatic acid anhydride (preferably 2 to 24 carbon atoms, more preferably 2 to 12 carbon atoms). May be preferable).
  • Specific examples of the acid anhydride include tetrahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, alkylated hexahydrophthalic anhydride, succinic anhydride, and maleic anhydride.
  • the amount of the chain extender is preferably 0.01 parts by mass or more and 0.05 parts by mass or more with respect to 100 parts by mass of the elastomer (the total in the case of a blend). It is more preferable that it is 0.1 parts by mass or more.
  • the upper limit is preferably 10 parts by mass or less, more preferably 5.0 parts by mass or less, and particularly preferably 1.0 part by mass or less. By setting it to the upper limit value or less, flexibility and bending durability of the obtained flexible tube can be improved, which is preferable. By setting it to the above lower limit or more, it is possible to improve the peracetic acid resistance of the obtained flexible tube, which is preferable.
  • the chain extenders can be used alone or in combination of two or more.
  • the chain extender preferably connects the hard segments formed by the elastomer to form a soft segment having a corresponding chain length. From this viewpoint, it is preferable to adjust the blending amount and molecular weight.
  • the molecular weight of the chain extender is preferably 100 to 50,000, more preferably 120 to 30,000, and particularly preferably 150 to 20,000.
  • the molecular weight calculated from the chemical structure described in the catalog can be applied to commercially available compounds. When the chemical structure is unknown, a method of determining the molecular weight by mass spectrometry after column separation by LC-MS can be applied.
  • the weight average molecular weight in terms of polystyrene can be measured by GPC.
  • GPC apparatus HLC-8220 manufactured by Tosoh Corporation
  • THF tetrahydrofuran
  • Shonan Wako Pure Chemical Industries was used as the eluent
  • the column was G3000HXL + G2000HXL
  • the flow rate was 1 mL / min at 23 ° C., Detect with RI.
  • the chain extension treatment is preferably performed by melt-kneading a resin mixture containing an elastomer and a chain extender.
  • This melt-kneading treatment may be carried out by using a kneader (extruder) and preliminarily pelletized and then molded by the molding machine or by a hopper or screw of the continuous molding machine. Since a chain extender can be applied evenly, it is preferable to use a kneader. At this time, it is preferable to heat, and this heating can be performed by controlling the temperature of each part of the kneader and the continuous molding machine as described above. The set temperature is as described above, but the resin temperature is preferably heated to 150 ° C.
  • the elastomer of this embodiment is preferably subjected to chain extension treatment in a series of processes of heating, melting, kneading, and extrusion during extrusion.
  • the chain extension treatment of the elastomer is preferably performed by adding a catalyst in addition to the chain extender.
  • the elastomer is preferably at least one selected from an amine compound and a tin chelate.
  • the blending amount of the catalyst is preferably 0.01 parts by mass or more, more preferably 0.02 parts by mass or more with respect to 100 parts by mass of the elastomer (the total in the case of a blend). 0.03 parts by mass or more is particularly preferable.
  • the upper limit is preferably 3 parts by mass or less, more preferably 1 part by mass or less, and particularly preferably 0.5 part by mass or less. By setting it to the upper limit value or less, it is preferable because thermal deterioration of the polymer due to an excessive catalyst can be suppressed. By setting it to the above lower limit or more, it is possible to improve the peracetic acid resistance of the obtained flexible tube, which is preferable.
  • the first layer further contains a heat stabilizer selected from a phenol compound, an amine compound, a phosphorus compound, a sulfur compound, and a phenyl acrylate compound.
  • a heat stabilizer selected from a phenol compound, an amine compound, a phosphorus compound, a sulfur compound, and a phenyl acrylate compound.
  • amine compounds are preferable, and hindered amine compounds are particularly preferable.
  • the amount of the heat stabilizer is preferably 0.01 parts by mass or more and 0.1 parts by mass or more with respect to 100 parts by mass of the elastomer (the total in the case of a blend). It is more preferable that the content is 0.5 parts by mass or more.
  • the upper limit is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and particularly preferably 3 parts by mass or less. By setting it to the upper limit value or less, it is preferable because bleed out of the heat stabilizer from the surface of the obtained flexible tube can be suppressed and high topcoat adhesion can be exhibited. By setting it to the above lower limit or more, the peracetic acid resistance of the obtained flexible tube can be improved, which is preferable.
  • the second layer is preferably the outer layer 18 (FIG. 2).
  • the outer layer is an outer layer that is in contact with the first layer and covers the entire circumferential surface of the first layer around the axis.
  • the elastomer itself is not applied, but a mixture containing the chain extender or other components is applied.
  • one of the features of this embodiment is the application of a specific elastomer chain extender to the second layer (preferably the outer layer), thereby providing a laminated resin for a flexible tube for an endoscope. It has a remarkable effect.
  • the type and amount of the chain extender, the mode of chain extension treatment, the type and amount of the catalyst, and the type and amount of the heat stabilizer are all the same as described in the first layer.
  • the molecular weight of the elastomer applied to the first layer and the second layer is not particularly limited. From the viewpoint of forming a suitable hard segment and drawing out a good interaction with the soft segment formed by the chain extender, the molecular weight is 10,000 to 1 million is preferred, a molecular weight of 20,000 to 500,000 is more preferred, and a molecular weight of 30,000 to 300,000 is particularly preferred.
  • the molecular weight of a polymer compound containing an elastomer means a weight average molecular weight unless otherwise specified. The weight average molecular weight can be measured as a molecular weight in terms of polystyrene by GPC.
  • GPC apparatus HLC-8220 (manufactured by Tosoh Corporation) is used, and the eluent is appropriately selected according to the polymer compound.
  • Chloroform is used for polyester elastomer
  • NMP N-methyl-2-pyrrolidone
  • m-cresol / chloroform manufactured by Shonan Wako Pure Chemical Industries
  • G3000HXL + G2000HXL is used for the column.
  • the flow rate at 1 ° C. is 1 mL / min, and detection is performed by RI.
  • a hardness: JISK7215 is preferably 40 or more, more preferably 50 or more, and particularly preferably 60 or more. It is preferably 98 or less, more preferably 95 or less, and particularly preferably 90 or less.
  • the storage elastic modulus E ′ is preferably 1 MPa or more, more preferably 2 MPa or more, and particularly preferably 3 MPa or more. It is preferably 150 MPa or less, more preferably 100 MPa or less, and particularly preferably 50 MPa or less.
  • the loss elastic modulus E ′′ is preferably 0.1 MPa or more, more preferably 0.3 MPa or more, particularly preferably 0.5 MPa or more. It is preferably 20 MPa or less, preferably 10 MPa or less.
  • the loss tangent is preferably 0.01 or more, more preferably 0.03 or more, and particularly preferably 0.05 or more. Or less, more preferably 0.5 or less, and particularly preferably 0.3 or less.
  • the value relating to viscoelasticity is a value of 25 ° C. unless otherwise specified.
  • the measurement method conforms to JIS-K7244-4.
  • the physical properties of the elastomer chain extender constituting the second layer (outer layer) are preferably set appropriately.
  • D hardness: JISK7215 is preferably 20 or more, more preferably 25 or more, and particularly preferably 30 or more. It is preferably 80 or less, more preferably 70 or less, and particularly preferably 60 or less.
  • the storage elastic modulus E ′ is preferably 1 MPa or more, more preferably 5 MPa or more, and particularly preferably 10 MPa or more. It is preferably 1 GPa or less, more preferably 500 MPa or less, and particularly preferably 300 MPa or less.
  • the loss elastic modulus E ′′ is preferably 0.1 MPa or more, more preferably 0.5 MPa or more, particularly preferably 1 MPa or more.
  • It is preferably 100 MPa or less, and preferably 50 MPa or less. More preferably, it is 30 MPa or less, and the loss tangent is preferably 0.01 or more, more preferably 0.03 or more, and particularly preferably 0.05 or more. Preferably, it is 0.5 or less, more preferably 0.3 or less.
  • the 100% modulus value of the first layer is preferably 0.5 MPa or more, more preferably 1.0 MPa or more, and particularly preferably 1.5 MPa or more.
  • the pressure is preferably 20 MPa or less, more preferably 15 MPa or less, and particularly preferably 10 MPa or less.
  • the 100% modulus value of the second layer is preferably 1.0 MPa or more, more preferably 1.5 MPa or more, and particularly preferably 2.0 MPa or more. It is preferably 30 MPa or less, more preferably 25 MPa or less, and particularly preferably 20 MPa or less.
  • the modulus value is a value of 25 ° C. unless otherwise specified.
  • the measurement method conforms to JIS-K7311.
  • the resin layer is preferably soluble in 1,1,1,3,3,3-hexafluoro-2-propanol (specific solvent).
  • specific solvent 1,1,1,3,3,3-hexafluoro-2-propanol
  • Being soluble in the specific solvent means having a solubility of 5% by mass at 20 ° C.
  • being soluble in a specific solvent has the technical significance that the resin does not have a three-dimensional (crosslinked) structure, and is flexible as a resin layer of a flexible tube for an endoscope. It is preferable because it exhibits.
  • the elastomer of the resin layer is not substantially crosslinked.
  • “not substantially crosslinked” means that the resin does not have a branched structure within a range detectable by NMR or the like, in addition to being not crosslinked. Since the elastomer of the resin layer (especially the second layer, layer A, and outer layer) according to the present embodiment is not substantially cross-linked, the resin layer of the endoscope flexible tube is referred to as flexibility and bending durability. It is preferable because of its performance.
  • the resin layer of the flexible tube of this embodiment consists of a single layer or a multilayer, and the outermost layer of the resin layer is layer A (a polyester elastomer, a hindered phenol compound, or a hindered amine compound). It is preferable to consist of a layer containing).
  • the “outermost layer” of the resin layer means the resin layer when the resin layer has a single layer structure, and when the resin layer has a multilayer structure of two or more layers, the resin layer of the flexible tube. Of these, the resin layer on the most surface side is meant. However, an outer layer (such as a top coat) may be further provided as long as the effects of the present invention are achieved.
  • the hindered phenol compound is preferably a compound having a structural moiety represented by the following formula (1)
  • the hindered amine compound is preferably a compound having a structural moiety represented by the following formula (2).
  • R 1 and R 2 are a hydrogen atom, an alkyl group having 1 to 12 carbon atoms (preferably an alkyl group having 1 to 8 carbon atoms, such as a methyl group, an ethyl group, an n-butyl group, An isopropyl group, a sec-butyl group, a t-butyl group, a t-pentyl group, a t-hexyl group, or a t-octyl group), or an aralkyl group having 7 to 36 (preferably 7 to 30) carbon atoms.
  • an alkyl group having 1 to 12 carbon atoms preferably an alkyl group having 1 to 8 carbon atoms, such as a methyl group, an ethyl group, an n-butyl group, An isopropyl group, a sec-butyl group, a t-butyl group, a t-pentyl group, a t-hexyl
  • At least one of R 1 and R 2 is preferably a secondary alkyl group or a tertiary alkyl group, and at least one of R 1 and R 2 is more preferably a tertiary alkyl group. It is also preferred that both R 1 and R 2 are tertiary alkyl groups (preferably t-butyl groups).
  • * represents a binding site.
  • the compound having a structural moiety represented by the above formula (1) is preferably a compound represented by the following formula (1-1) or (1-2).
  • L represents a single bond or a divalent linking group.
  • L represents an alkylene group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms), an alkenylene group having 2 to 10 carbon atoms (preferably 2 to 5 carbon atoms), or —L 1 —C ( ⁇ O) —.
  • a group represented by O—L 2 — is preferable.
  • L 1 and L 2 each represent a single bond, an alkylene group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms), a carbonyl group, an oxygen atom, or a combination thereof.
  • a 1 represents a divalent to tetravalent linking group.
  • a 1 is preferably a divalent to tetravalent organic group, and the organic group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and further preferably 1 to 12 carbon atoms. Preferably, it is 1-10.
  • a 1 is a divalent aliphatic group (preferably an alkylene group) having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms) or 6 carbon atoms. It is preferably an arylene group having from 22 to 22 (preferably having 6 to 14 carbon atoms).
  • a 1 is preferably a group represented by the following formula (A). In the following formula (A), * indicates a linking site.
  • R 15 to R 17 each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms).
  • a 1 is preferably a quaternary carbon atom.
  • the linking group L is preferably a group represented by —L 1 —C ( ⁇ O) —OL 2 —.
  • L 1 and L 2 have the same meanings as L 1 and L 2 , respectively.
  • R 9 to R 12 have the same meaning as R 1 .
  • R 13 is a reactive organic substituent, preferably a vinyl group-containing group, and more preferably a (meth) allyloyl group-containing group.
  • R 3 to R 6 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms (preferably 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms).
  • R 3 to R 6 include methyl group, ethyl group, n-butyl group, isopropyl group, sec-butyl group, t-butyl group, t-pentyl group, t-hexyl group, t-octyl group and the like.
  • R 3 to R 6 are preferably primary (linear) alkyl groups, more preferably all of R 3 to R 6 are primary alkyl groups (particularly preferably methyl groups).
  • R 7 is a hydrogen atom, 1 to 18 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, still more preferably 1 to 3 carbon atoms, still more preferably 1 carbon atom). Or 2) an alkyl group, or —OR 8 , wherein R 8 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms (preferably 1 to 12 carbon atoms). Among them, R 7 is preferably a hydrogen atom because it shows higher chemical resistance.
  • * represents a binding site
  • the compound having a structural moiety represented by the above formula (2) is preferably a compound represented by the following formula (2-1) or a compound having a repeating unit represented by (2-2).
  • R 3 ⁇ R 7 are each the same meaning as R 3 ⁇ R 7 in the formula (2), and their preferred ranges are also the same.
  • q represents an integer of 2 or more
  • D 1 represents a divalent or higher linking group.
  • s represents 1 or 2.
  • r represents an integer, and the range of the polymerization degree described later is preferable.
  • Q represents an s + 2 valent linking group, and examples thereof include a group containing an imino group (NR N ) and a group containing a triazine linking group.
  • R N represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms and piperazyl group-containing group represented by formula (2).
  • the compound having a structural moiety represented by the above formula (2) is more preferably a compound represented by the following formula (2-A) to (2-C) or (2-G), or the following formula (2- A polymer or oligomer having a repeating unit represented by D) (preferably a polymer or oligomer having any one of the repeating units of formulas (2D1) to (2D3)).
  • R 21 has the same meaning as R 7 in formula (2), and the preferred forms are also the same.
  • R 22 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms).
  • L 21 represents a single bond or an alkylene group having 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms).
  • RN has the same meaning as in formula (2-2).
  • n represents an integer of 1 to 20 (preferably 1 to 10).
  • the number of the repeating units is preferably 2 to 100, more preferably 2 to 50. 2 to 10 is more preferable.
  • the terminal structure of a polymer or an oligomer For example, it can be set as a hydrogen atom, a substituted or unsubstituted amino group, a substituted or unsubstituted triazyl group.
  • the content of the polyester elastomer is preferably 50% by mass or more, more preferably 55% by mass or more, and further preferably 60% by mass or more. And more preferably 65% by mass or more. Further, the content of the polyester elastomer in the resin component constituting the layer A may be 100% by mass, preferably 90% by mass or less, more preferably 80% by mass or less, and 75% by mass or less. More preferably.
  • the remainder excluding the polyester elastomer in the resin component may contain at least one of a polyurethane elastomer and a polyamide elastomer as a softer resin.
  • a polyurethane elastomer is included.
  • the content of the polyurethane elastomer is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 15% by mass or more, further preferably 20% by mass or more, More preferably, it is 25 mass% or more.
  • content of the polyurethane elastomer in the resin component of the layer A of a resin layer is 50 mass% or less, More preferably, it is 40 mass% or less, More preferably, it is 35 mass% or less.
  • layer A of the resin layer is preferably used as the outermost layer of the resin layer, and preferably contains both a hindered phenol compound and a hindered amine compound.
  • the resistance to the disinfectant is synergistically improved as compared with the case where each of them is contained alone.
  • the hindered phenol compound is contained in an amount of 0.01 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by mass of the resin component in the layer A of the resin layer. It is to contain.
  • regulation of an upper limit side it is preferable to contain 7 mass parts or less, and it is more preferable to contain 5 mass parts or less.
  • about the said hindered amine compound it is preferable to contain 0.01 mass part or more with respect to 100 mass parts of resin components, More preferably, it is 0.1 mass part or more.
  • regulation of an upper limit side it is preferable to contain 7 mass parts or less, and it is more preferable to contain 5 mass parts or less.
  • the total amount of the hindered phenol compound and the hindered amine compound is preferably 7 parts by mass or less, and 6 parts by mass or less with respect to 100 parts by mass of the resin component in layer A of the resin layer. It is more preferable that As the lower limit, the content is preferably 0.01 parts by mass or more, and more preferably 0.1 parts by mass or more.
  • the resin layer is composed of multiple layers, it is preferable that at least one layer other than the layer A (preferably the outermost layer) contains a polyurethane elastomer or a polyamide elastomer (hereinafter, this layer is referred to as “layer B”). More preferably, layer B contains at least a polyurethane elastomer.
  • the layer B preferably contains a polyurethane elastomer as a main component.
  • the content of the polyurethane elastomer is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably in the resin component of the layer B. It is 80 mass% or more, More preferably, it is 90 mass% or more.
  • all of the resin components in layer B are polyurethane elastomers, but otherwise the remainder is preferably composed of a polyamide elastomer and / or a polyester elastomer.
  • the main component of the layer B may be a polyamide elastomer.
  • the content of the polyamide elastomer may be 50% by mass or more in the resin component, or 70% by mass or more.
  • All of the resin components in the layer B can be made of a polyamide elastomer, but if not, the remainder is preferably made of a polyurethane elastomer and / or a polyester elastomer, and more preferably made of a polyurethane elastomer.
  • the layer B When the layer B is used as the outermost layer, it preferably includes at least one of a hindered phenol compound and a hindered amine compound. Thereby, the chemical resistance of a flexible tube can be improved more. When the layer B is used for the inner layer, it may be preferable not to include these in consideration of adhesion to the outer layer, etc. rather than chemical resistance. When layer B is used as the outermost layer, the preferred blending amounts of the hindered phenol compound and the hindered amine compound are the same as those of layer A.
  • the flexible tube of the present invention preferably includes a two-layered resin layer composed of one inner layer and one outer layer.
  • the inner layer is composed of layer B of the resin layer
  • the outer layer is composed of layer A of the resin layer.
  • the blending of each resin layer is preferably as follows.
  • the term “resin composition” is used to include the resin itself.
  • PE Polyester elastomer PU: Polyurethane elastomer
  • PA Polyamide elastomer HA: Hindered amine
  • Hindered phenol () is an optional element
  • the molecular weight of the elastomer to be applied is not particularly limited, but is preferably 10,000 to 1,000,000, more preferably 20,000 to 500,000, and particularly preferably 30,000 to 300,000.
  • the physical properties of the layer B are preferably set appropriately.
  • a hardness: JIS-K7215 is preferably 40 or more, more preferably 50 or more, and particularly preferably 60 or more.
  • the upper limit range is preferably 98 or less, more preferably 95 or less, and particularly preferably 90 or less.
  • the storage elastic modulus E ′ of the layer B is preferably 1 MPa or more, more preferably 2 MPa or more, and particularly preferably 3 MPa or more.
  • the range on the upper limit side is preferably 150 MPa or less, more preferably 100 MPa or less, and particularly preferably 50 MPa or less.
  • the loss elastic modulus E ′′ of the layer B is preferably 0.1 MPa or more, more preferably 0.3 MPa or more, and particularly preferably 0.5 MPa or more.
  • the upper limit range is 20 MPa or less. Preferably, it is 10 MPa or less, more preferably 5 MPa or less, and the loss tangent of the layer B is preferably 0.01 or more, more preferably 0.03 or more.
  • the upper limit side range is preferably 1 or less, more preferably 0.5 or less, and particularly preferably 0.3 or less.
  • the physical properties of the layer A of the resin layer are preferably set appropriately.
  • D hardness: JIS-K7215 is preferably 20 or more, more preferably 25 or more, and particularly preferably 30 or more.
  • the upper limit range is preferably 80 or less, more preferably 70 or less, and particularly preferably 60 or less.
  • the storage elastic modulus E ′ of the layer A of the resin layer is preferably 1 MPa or more, more preferably 5 MPa or more, and particularly preferably 10 MPa or more.
  • the range on the upper limit side is preferably 1 GPa or less, more preferably 500 MPa or less, and particularly preferably 300 MPa or less.
  • the loss elastic modulus E ′′ of the layer A of the resin layer is preferably 0.1 MPa or more, more preferably 0.5 MPa or more, and particularly preferably 1 MPa or more.
  • the upper limit range is 100 MPa or less. It is preferably 50 MPa or less, more preferably 30 MPa or less, and the loss tangent of the layer A of the resin layer is preferably 0.01 or more, and 0.03 or more.
  • the upper limit range is preferably 1 or less, more preferably 0.5 or less, and particularly preferably 0.3 or less. .
  • the 100% modulus value of the layer B is preferably 0.5 MPa or more, more preferably 1.0 MPa or more, and particularly preferably 1.5 MPa or more.
  • the upper limit range is preferably 20 MPa or less, more preferably 15 MPa or less, and particularly preferably 10 MPa or less.
  • the 100% modulus value of the layer A of the resin layer is preferably 1.0 MPa or more, more preferably 1.5 MPa or more, and particularly preferably 2.0 MPa or more.
  • the range on the upper limit side is preferably 30 MPa or less, more preferably 25 MPa or less, and particularly preferably 20 MPa or less. In this specification, the modulus value is a value of 25 ° C. unless otherwise specified.
  • the measurement method conforms to JIS-K7311.
  • a top coat (coat layer) 16 is applied to the endoscope flexible tube of the present embodiment.
  • the material of the top coat is not particularly limited, and urethane paint, acrylic paint, fluorine paint, silicone paint, epoxy paint, polyester paint, and the like are applied. From the viewpoint of outstanding adhesion to the resin layer, which is an advantage of this embodiment, and excellent chemical resistance, urethane paints, acrylic paints, and fluorine paints are preferred.
  • the top coat layer may be formed by a normal method, and a mode in which a curing agent is contained in a solution in which the above coating components are dissolved in a predetermined solvent as necessary is cured. Examples of the curing treatment include heating at 100 to 200 ° C.
  • the main purpose of using the top coat in this embodiment is to protect and polish the surface of the flexible tube, to impart slipperiness, and to impart chemical resistance. Therefore, it is preferable that the top coat has a high elastic modulus, a smooth surface, and excellent chemical resistance.
  • the storage elastic modulus E ′ in the topcoat single layer is preferably 1 MPa or more, more preferably 5 MPa or more, and particularly preferably 10 MPa or more. It is preferably 1 GPa or less, more preferably 500 MPa or less, and particularly preferably 300 MPa or less.
  • the soft resin layer (first layer, layer B) is disposed on the inner layer, and the hard resin layer (second layer, layer A) is disposed on the outer layer to form a two-layer molded resin layer.
  • the hard resin layer may be disposed on the inner layer and the soft resin layer may be disposed on the outer layer.
  • a two-layered outer skin layer is described as an example, but the outer skin layer may have a multilayer structure of two or more layers. Both layers do not have to be in contact with each other and other functional layers may be interposed therebetween.
  • an electronic endoscope that observes an image obtained by imaging the state of the subject using the imaging apparatus is described as an example.
  • the present invention is not limited to this, and an optical image is not limited thereto.
  • the present invention can also be applied to an endoscope that employs a guide and observes the state of a subject.
  • the flexible tube according to the present invention can be widely applied not only to an endoscope application but also to an endoscope medical device.
  • an endoscope medical device for example, it can be applied to an endoscope equipped with a clip or a wire at the tip of the endoscope, or an instrument equipped with a basket or a brush, and exhibits its excellent effect.
  • Endoscopic medical devices include medical devices that have the above-mentioned endoscope as a basic structure, as well as remote-controlled medical devices that are flexible and can be used by being introduced into the body. It means to include medical equipment widely.
  • Example I Example according to the first invention
  • the resin mixtures described in Tables I-1 and I-2 below were prepared and using a twin screw kneader (product name: KZW15-30MG) manufactured by Technobel.
  • a melt kneading process was performed at a barrel set temperature of 210 ° C. and a screw rotation speed of 100 rpm, and the discharged molten resin strand was cooled in a water tank, and then a pellet-shaped sample was prepared with a pelletizer.
  • the manufactured elastic material sample was subjected to the test described at the end. The results are shown in Table I-3.
  • LA-1 Carbodilite LA-1 (Nisshinbo Chemical Co., Ltd.) SBXL P: Starvacol P (made by Nippon Starvacol) HMDI: 1,6-hexamethylene diisocyanate TPA-100: Duranate TPA-100 (Asahi Kasei Chemicals) JER1010: oligomer type epoxy resin JER1010 (Mitsubishi Chemical Corporation) MA: Maleic anhydride
  • DABCO 1,4-diazabicyclo [2.2.2] octane
  • DBTDL dibutyltin dilaurate
  • TIN770 Tinuvin 770DF (manufactured by BASF)
  • INX 1098 Irganox 1098 (BASF)
  • IF168 Irgaphos 168 (manufactured by BASF)
  • TPS Sumilizer TPS (manufactured by Sumitomo Chemical Co., Ltd.)
  • GS Sumilizer GS (manufactured by Sumitomo Chemical Co., Ltd.)
  • Polyester elastomer (D hardness in parentheses: JIS K 7215)
  • PE1 Hytrel 4767 (47D) manufactured by Toray DuPont (Weight average molecular weight: 114,000)
  • PE2 Toyobo's Perprene P-40H (38D) (Weight average molecular weight: 132,000)
  • PE3 DSM Arnite EM400 (34D) (Weight average molecular weight: 121,000)
  • PE4 Toray DuPont Hytrel 3046 (27D) (Weight average molecular weight: 128,000)
  • PU1 Pandex T-2190 manufactured by DIC Bayer Polymer (92A) (Weight average molecular weight: 189,000)
  • PU2 Elastollan ET1080 (80A) manufactured by BASF (Weight average molecular weight: 124,000)
  • PU3 Milaclan E675MNAT from Japan (75A) (Weight average molecular weight: 27,000)
  • PU4 Pandex T-5865 manufactured by DIC Bayer Polymer (65A) (Weight average molecular weight: 172,000)
  • the resin is peeled off from the flexible tube, cut out at a size of 1 cm ⁇ 10 cm, used as a test piece, immersed in a 0.3% peracetic acid aqueous solution at 50 ° C. for 150 hours, thoroughly washed with water and then washed at 23 ° C. ⁇ 50% RH for 24 hours. After drying for a period of time, a tensile test with an elongation of 50% was performed using Tensilon.
  • Adhesive strength is sufficiently strong, and is agglomerated and peeled inside the resin layer or topcoat layer
  • a flexible tube substrate having a diameter of 12.0 mm was coated with the first layer resin (inner layer) in Table 2 and the second layer resin (outer layer) in Table I-1 in this order.
  • the thickness of the resin layer was 0.4 mm, and the ratio of the inner and outer layers at the front and rear ends was 10: 90-90: 10.
  • a model test assuming intra-body cavity diagnosis was performed.
  • the endoscope equipped with the flexible tube having the resin layer of the example showed good operability and washing resistance with small temperature dependence.
  • Example II Examples according to the second invention (Example II-1 and Comparative Example II-1) A resin mixture (resin mixture for outer layer and inner layer) was prepared with the formulation (parts by mass) shown in the following Tables II-1 and II-2, and a twin-screw kneader (product name: KZW15-30MG manufactured by Technobel). ) At a barrel set temperature of 210 ° C. and a screw rotation speed of 100 rpm, the discharged molten resin strand was cooled in a water tank, and a pellet-shaped sample was prepared with a pelletizer.
  • a twin-screw kneader product name: KZW15-30MG manufactured by Technobel
  • the resin is peeled off from the flexible tube, cut out at a size of 1 cm ⁇ 10 cm, used as a test piece, immersed in a 0.3% peracetic acid aqueous solution at 50 ° C. for 150 hours, thoroughly washed with water and then washed at 23 ° C. ⁇ 50% RH for 24 hours. After drying for a period of time, a tensile test with an elongation of 50% was performed using Tensilon.
  • Polyester elastomer (D hardness in parentheses: JIS-K7215)
  • PE1 Hytrel 4047 (40D) manufactured by Toray DuPont (Weight average molecular weight: 123,000, 100% modulus 25 MPa)
  • PE2 Toyobo's Perprene P-40H (38D) (Weight average molecular weight: 132,000, 100% modulus 17 MPa)
  • PE3 DSM Arnite EM400 (34D) (Weight average molecular weight: 121,000, 100% modulus 12 MPa)
  • PE4 Toray DuPont Hytrel 3046 (27D) (Weight average molecular weight: 128,000, 100% modulus 8.0 MPa)
  • PU1 Pandex T-2190 manufactured by DIC Bayer Polymer (92A) (Weight average molecular weight: 189,000, 100% modulus 11 MPa)
  • PU2 Elastollan ET1080 (80A) manufactured by BASF (Weight average molecular weight: 124,000, 100% modulus 5.0 MPa)
  • PU3 Milaclan E675MNAT from Japan (75A) (Weight average molecular weight: 217,000, 100% modulus 2.9 MPa)
  • PU4 Pandex T-5865 manufactured by DIC Bayer Polymer (65A) (Weight average molecular weight: 172,000, 100% modulus 2.3 MPa)
  • PA1 Pevacs 2533 (75A) manufactured by Arkema (Weight average molecular weight: 208,000, 100% modulus 4.4 MPa)
  • PA2 Pevacs 3533 (83A) manufactured by Arkema (Weight average molecular weight: 171,000, 100% modulus 6.0 MPa)
  • the obtained pellet was kept at 220 ° C. for a certain time under nitrogen using TG / DTA, and the time until the weight decreased by 2% was determined.
  • the flexible tube of the present invention and the endoscope using the flexible tube are required for endoscope-type medical device applications in which the resin layer covering the flexible tube has flexibility, elasticity, and bending durability. It can be seen that it has properties and exhibits good resistance to various disinfectants.
  • Example II-2 The test No.
  • the flexible tubes 111 and 112 were treated with peracetic acid and hydrogen peroxide water without removing the coating resin.
  • the treatment conditions were the same as in Example II-1.
  • a flexible tube specimen was prepared in the same manner except that the inner layer B-1 was changed to B-6, and each test was performed.
  • the chemical resistance was evaluated by cutting out from the flexible tube after chemical treatment.
  • Test No. The performance of 111 and 112 was set to Fair, and it was confirmed whether the improvement (Good) or the reduction (Bad) of the performance was observed by changing the inner layer resin therefrom.
  • the flexibility, elasticity, and bending durability were all performed using a flexible tube after the chemical treatment test. For bending durability, the number of reciprocations was 25,000.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Surgery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

 可撓性を有する筒状の可撓管基材と当該可撓管基材を被覆する樹脂層とを有してなる可撓管であって、前記樹脂層が特定の樹脂を含有する第1層と特定の樹脂を含有する第2層との少なくとも2層で構成された可撓管、または、前記樹脂層が単層または2層以上の複層であり、当該樹脂層のいずれかの層Aがポリエステルエラストマーとヒンダードフェノール化合物又はヒンダードアミン化合物とを含む可撓管。

Description

内視鏡用可撓管およびその製造方法
 本発明は、内視鏡用可撓管およびその製造方法に関する。
 内視鏡は、患者の体腔内を観察するための医療用の機器である。したがって、体腔内に挿入して用いるため、臓器に傷をつけず、患者に痛みや違和感を与えないものが望まれる。そのような要請から、内視鏡の挿入部を構成する可撓管には、柔らかく屈曲する金属帯片を螺旋状に巻いて形成された螺旋管が採用されている。さらに、その周囲が柔軟な樹脂で被覆され、食道や腸などの表面に刺激や傷などを与えない工夫がなされている。
 前記の樹脂層は、例えば、螺旋管を筒状網体で覆った可撓管基材の外周面に押し出し成形することにより被覆成形することができる。このとき、挿入部を体腔内に挿入しやすくするため、先端側は柔軟性を高くし軟らかく、後端側は操作しやすくするため、柔軟性を低く硬くすることが好ましい。これを考慮し、本出願人は、樹脂層として互いに硬さが異なる内層及び外層の二層構造を採用し、その樹脂層の内層と外層の厚みの割合を可撓管の軸方向で変化させたものを提案した(特許文献1参照)。これにより、可撓管の軸方向において柔軟性を変化させて、可撓管全体の硬さのバランスを好適化し、上記の要望に応えるものである。
 内視鏡は繰り返し使用されるため、使用のたびに洗浄し、薬品を用いて消毒する必要がある。用いる薬品は一般的に内視鏡材料に対する刺激が強いものが用いられる。そのため、内視鏡の耐薬品性を向上させる技術もいくつか知られている。例えば特許文献2には、2種類以上の熱可塑性ポリエステルエラストマーが架橋してなるエラストマー成形体が記載されている。この成形体で可撓管の樹脂層を形成することで、可撓管の過酢酸水溶液に対する耐性が向上したとされる。
 また、特許文献3には、ウレタン系高分子とエステル系高分子とが架橋された構造の樹脂で可撓管の樹脂層を形成したものが開示されている。これにより、N,N-ジメチルホルムアミド等の薬品に対する樹脂層の溶解性を抑えたことが記載されている。
特開2011-72391号公報 特開2009-183467号公報 特開2002-153418号公報
・第1の発明に係る課題
 本出願人は、上記特許文献1で開発した二層構造の内視鏡可撓管の樹脂層に対してさらに改良を加え、内視鏡に求められる総合性能を引き上げることを開発の目標に据えた。特に、可撓性や弾発性といった樹脂の基本物性はもとより、診断後の洗浄に対する耐性や、医師の診断における微妙な操作性を左右する温度依存性といった点にも配慮した樹脂配合について探索した。
 そこで、本第1の発明は、内視鏡用可撓管の樹脂層において、可撓性等の当該用途に求められる良好な樹脂物性を維持して、洗浄液に対する高い耐性を有し、温度による物性変化(温度依存性)を抑え、かつトップコートの密着性にも優れた内視鏡用可撓管およびその製造方法の提供を目的とする。
・第2の発明に係る課題
 消毒薬に対する耐久性と可撓管に求められる諸性能との両立を考慮したとき、前記各文献の技術で十分かは分からなかった。上記の点に鑑み、本実施形態は、可撓性、弾発性及び折曲耐久性といった内視鏡型医療機器等に用いられる可撓管に求められる基本特性を備え、かつ、種々の消毒薬液に対する良好な耐性を発揮する可撓管およびこれを用いた内視鏡を提供することを目的とする。
 上記目的は下記の手段により達成された。
〔1〕可撓性を有する筒状の可撓管基材と上記可撓管基材を被覆する樹脂層とを有してなる可撓管であって、
 上記樹脂層は第1層と第2層との少なくとも2層で構成され、
 上記第1層は、ポリエステルエラストマー、ポリウレタンエラストマー、およびポリアミドエラストマーからなる群より選ばれる一つ以上のエラストマーまたはその鎖延長体を含んでなり、
 上記第2層は、ポリエステルエラストマー、ポリウレタンエラストマー、およびポリアミドエラストマーからなる群より選ばれる二つ以上のエラストマーの鎖延長体を含んでなる可撓管。
〔2〕上記エラストマーの鎖延長体を調製する鎖延長剤が、多官能エポキシ化合物、多官能イソシアネート化合物、多官能アミノ化合物、オキサゾリン化合物、カルボジイミド化合物、および酸無水物から選ばれる〔1〕に記載の可撓管。
〔3〕上記エラストマーの鎖延長体が、上記鎖延長剤に加え、さらにエラストマーをアミン化合物および錫キレートから選ばれる少なくとも一つの触媒を加えて処理されてなる〔2〕に記載の可撓管。
〔4〕上記エラストマーの鎖延長体が、上記エラストマー100質量部に対して、上記鎖延長剤0.01~10質量部の配合で処理されてなる〔2〕または〔3〕に記載の可撓管。
〔5〕上記エラストマーの鎖延長体が、上記エラストマー100質量部に対して、上記触媒を0.01~3質量部の配合で処理されてなる〔3〕または〔4〕に記載の可撓管。
〔6〕上記エラストマーが少なくとも上記鎖延長剤とともに溶融混練されてなる〔1〕~〔5〕のいずれか1つに記載の可撓管。
〔7〕上記第2層を構成する二つ以上のエラストマーが、ポリエステルエラストマーと、ポリウレタンエラストマーおよびポリアミドエラストマーから選ばれる少なくとも1種との組合せである〔1〕~〔6〕のいずれか1つに記載の可撓管。
〔8〕上記樹脂層が1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールに可溶で、実質的に架橋していない〔1〕~〔7〕のいずれか1つに記載の可撓管。
〔9〕上記樹脂層の第1層は、上記可撓管基材の軸回りの全周面を被覆する内層をなし、上記第2層は上記第1層に接し、かつ、上記第1層の上記軸回りの全周面を被覆する外層をなす〔1〕~〔8〕のいずれか1つに記載の可撓管。
〔10〕上記樹脂層に、フェノール系化合物、アミン系化合物、リン系化合物、およびイオウ系化合物、フェニルアクリレート系化合物から選ばれる熱安定剤をさらに含有させた〔1〕~〔9〕のいずれか1つに記載の内視鏡用可撓管。
〔11〕可撓性を有する筒状の可撓管基材と、上記可撓管基材を被覆する樹脂層とを有する可撓管であって、
 上記樹脂層が単層または2層以上の複層であり、上記樹脂層のいずれかの層Aがポリエステルエラストマーとヒンダードフェノール化合物又はヒンダードアミン化合物とを含む可撓管。
〔12〕上記層Aにおいて、樹脂成分中のポリエステルエラストマーの含有量が50質量%以上である〔11〕に記載の可撓管。
〔13〕上記層Aが、さらにポリウレタンエラストマー又はポリアミドエラストマーを含有する〔11〕又は〔12〕に記載の可撓管。
〔14〕上記層Aが、ヒンダードフェノール化合物及びヒンダードアミン化合物をともに含有する〔11〕~〔13〕のいずれか1つに記載の可撓管。
〔15〕上記ヒンダードフェノール化合物の含有量が、樹脂層中の樹脂成分100質量部に対して0.01~5質量部である〔11〕~〔14〕のいずれか1つに記載の可撓管。
〔16〕上記ヒンダードアミン化合物の含有量が、樹脂層中の樹脂成分100質量部に対して0.01~5質量部である〔11〕~〔14〕のいずれか1つに記載の可撓管。
〔17〕上記ヒンダードフェノール化合物が下記式(1)で表される構造部位を有し、上記ヒンダードアミン化合物が下記式(2)で表される構造部位を有する〔11〕~〔16〕のいずれか1つに記載の可撓管。
Figure JPOXMLDOC01-appb-C000004
(式中、RおよびRはそれぞれ独立に水素原子、炭素数1~12のアルキル基、または炭素数7~36のアラルキル基を示す。R~Rはそれぞれ独立に水素原子または炭素数1~12のアルキル基を示す。Rは水素原子、炭素数1~18のアルキル基、又は-ORを示す。Rは水素原子又は炭素数1~20のアルキル基を示す。*は結合位置を示す。)
〔18〕上記ヒンダードフェノール化合物が、下記式(1-1)又は(1-2)で表される〔17〕に記載の可撓管。
Figure JPOXMLDOC01-appb-C000005
(式中、R及びRは式(1)と同義である。Lは単結合又は2価の連結基を示す。pは2~4の整数を示し、Aは2~4価の連結基を示す。R~R12はRと同義である。R13は反応性有機置換基を表す。)
〔19〕上記ヒンダードアミン化合物が下記式(2-1)で表される化合物又は(2-2)で表される繰り返し単位を有する化合物である〔17〕に記載の可撓管。
Figure JPOXMLDOC01-appb-C000006
(式中、R~Rは式(2)と同義である。qは2以上の整数を示し、Dは2価以上の連結基を示す。rは整数を表す。Qはs+2価の連結基を表す。sは1又は2を表す。)
〔20〕上記樹脂層が複層であり、上記層Aが樹脂層の最外層を構成する〔11〕~〔19〕のいずれか1つに記載の可撓管。
〔21〕上記最外層以外の層Bがポリエステルエラストマー、ポリウレタンエラストマー、およびポリアミドエラストマーから選ばれる少なくとも1つの樹脂を含有する〔20〕に記載の可撓管。
〔22〕上記層Bの樹脂成分中のポリウレタンエラストマーの含有量が50質量%以上である〔21〕に記載の可撓管。
〔23〕上記層Bが、ヒンダードフェノール化合物又はヒンダードアミン化合物を含有する〔21〕または〔22〕に記載の可撓管。
〔24〕上記樹脂層が2層からなる〔11〕~〔23〕のいずれか1つに記載の可撓管。
〔25〕上記樹脂層全体の厚みに対し、上記内層及び外層の厚みの割合が、上記可撓管基材の軸方向において傾斜的に変化している〔24〕に記載の可撓管。
〔26〕上記内層及び外層は一端における厚みの割合が、内層:外層=5:95~40:60であり、他端における厚みの割合が、内層:外層=95:5~60:40であり、両端間において厚みの割合が逆転している〔25〕に記載の可撓管。
〔27〕内視鏡型医療機器用である〔11〕~〔26〕のいずれか1つに記載の可撓管。
〔28〕〔11〕~〔27〕のいずれか1つに記載の可撓管を具備する内視鏡型医療機器。
〔29〕可撓性を有する筒状の可撓管基材と、上記可撓管基材を被覆する樹脂層とを有してなる可撓管の製造方法であって、
 上記樹脂層は第1層と第2層との少なくとも2層で構成され、
 上記第1層を構成するポリエステルエラストマー、ポリウレタンエラストマー、またはポリアミドエラストマーを含む第1樹脂材料を準備し、他方
 上記第2層を構成する、ポリエステルエラストマー、ポリウレタンエラストマー、またはポリアミドエラストマーからなる群より選ばれる二つ以上のエラストマーと鎖延長剤とを含有する第2樹脂材料を準備し、
 上記第1樹脂材料と上記第2樹脂材料とを上記可撓管基材の周囲に溶融混練して押し出し成形し、上記樹脂層を上記可撓管基材に被覆する可撓管の製造方法。
〔30〕上記鎖延長剤として、多官能エポキシ化合物、多官能イソシアネート化合物、多官能アミノ化合物、オキサゾリン化合物、カルボジイミド化合物、および酸無水物から選ばれる少なくとも1つの鎖延長剤を用いる〔29〕に記載の可撓管の製造方法。
〔31〕上記第1樹脂材料および/または第2樹脂材料に、さらにアミン化合物および錫キレートから選ばれる少なくとも一つの触媒を含有させる〔29〕または〔30〕に記載の可撓管の製造方法。
〔32〕可撓管基材を被覆する樹脂層をなす樹脂組成物であって、ポリエステルエラストマーとヒンダードフェノール化合物又はヒンダードアミン化合物とを含む樹脂組成物。
〔33〕可撓管基材を被覆する複層の樹脂層をなす樹脂組成物のセットであって、ポリエステルエラストマーとヒンダードフェノール化合物又はヒンダードアミン化合物とを含む樹脂組成物と、ポリエステルエラストマー、ポリウレタンエラストマー、およびポリアミドエラストマーから選ばれる少なくとも1つを含む樹脂組成物とを組み合わせた樹脂組成物のセット。
 本明細書において、特定の符号で示された置換基や連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
 本明細書において置換・無置換を明記していない置換基(連結基についても同様)については、所望の効果を奏する範囲で、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。
 本第1の発明の内視鏡用可撓管は、その被覆樹脂層が可撓性等の内視鏡用途に求められる物性を維持して、洗浄液に対する高い耐性を有し、温度による物性変化(温度依存性)が抑えられ、かつトップコートの密着性にも優れる。本実施形態の製造方法によれば、上記の優れた性能を発揮する内視鏡用可撓管を好適に製造することができる。
 本第2の発明の内視鏡型医療機器等に用いられる可撓管およびこれを用いた内視鏡は、前記可撓管を被覆する樹脂層が可撓性、弾発性及び折曲耐久性等の内視鏡用途に求められる特性を備え、かつ、種々の消毒液に対する良好な耐性を発揮する。
 本発明の上記及び他の特徴及び利点は、下記の記載および添付の図面からより明らかになるであろう。
電子内視鏡の構成を示す外観図である。 可撓管の概略的な構成を示す部分断面図である。 内視鏡用可撓管の製造装置の構成を概略的に示すブロック図である。 図3のB-B線で切断した断面図である。
 本発明の好ましい実施形態に係る電子内視鏡には、可撓管が組み込まれている。こうした製品は医療用として広く用いられる。図1に示した例において、電子内視鏡2は、体腔内に挿入される挿入部3と、挿入部3の基端部分に連設された本体操作部5と、プロセッサ装置や光源装置に接続されるユニバーサルコード6とを備えている。挿入部3は、本体操作部5に連設される可撓管3aと、そこに連設されるアングル部3bと、その先端に連設され、体腔内撮影用の撮像装置(図示せず)が内蔵された先端部3cとから構成される。挿入部3の大半の長さをしめる可撓管3aは、そのほぼ全長にわたって可撓性を有し、特に体腔等の内部に挿入される部位はより可撓性に富む構造となっている。
(可撓管)
 可撓管3a(内視鏡用可撓管)は、図2に示すように、最内側に金属帯片11aを螺旋状に巻回することにより形成される螺旋管11に、金属線を編組してなる筒状網体12を被覆して両端に口金13をそれぞれ嵌合した可撓管基材14とし、さらに、その外周面に樹脂層15が被覆された構成となっている。また、樹脂層15の外面に、耐薬品性のある例えばフッ素等を含有したコート層16をコーティングしている。螺旋管11は、1層だけ図示されているが、同軸に2層重ねにして構成してもよい。なお、樹脂層15及びコート層16は、層構造を明確に図示するため、可撓管基材14の径に比して厚く描いている。
 本実施形態に係る樹脂層15は、可撓管基材14の外周面を被覆する。樹脂層15は、可撓管基材14の軸回りの全周面を被覆する内層17と、内層17の軸回りの全周面を被覆する外層18とを積層した二層構成である。内層17の材料には、軟質樹脂が使用され、外層18の材料には、硬質樹脂が使用される。
 本実施形態において、樹脂層15は、可撓管基材14の長手方向(軸方向)においてほぼ均一な厚みで形成される。樹脂層15の厚みは、例えば、0.2mm~1.0mmであり、可撓管3aの外径Dは、例えば、11~14mmである。内層17及び外層18の厚みは、可撓管基材14の軸方向において、樹脂層15の全体の厚みに対して、各層17,18の厚みの割合が変化するように形成されている。具体的には、アングル部3bに取り付けられる可撓管基材14の一端14a側(先端側)は、樹脂層15の全厚みに対して、内層17の厚みの方が外層18の厚みよりも大きい。そして、一端14aから本体操作部5に取り付けられる他端14b側(基端側)に向かって、徐々に内層17の厚みが漸減し、他端14b側では、外層18の厚みの方が内層17の厚みよりも大きくなっている。
 本実施形態の両端14a,14bにおいて、内層17と外層18の厚みの割合は最大であり、一端14aにおいて、9:1であり、他端14bにおいて、1:9である。両端14a,14bの間は、内層17と外層18の厚みの割合が逆転するように変化させている。これにより、可撓管3aは、一端14a側と、他端14b側の硬度に差が生じ、一端14a側が軟らかく、他端14b側が硬くなるように軸方向において柔軟性が変化する。前記内層及び外層は、一端における厚みの割合は、さらに5:95~40:60(内層:外層)であり、他端における厚みの割合が95:5~60:40(内層:外層)の範囲にあることが好ましい。
 なお、内層17と外層18との厚みの割合は、上記例のように5:95~95:5の範囲内とすることが好ましい。この範囲内とすることで、薄い方の樹脂の押し出し量もより精密に制御することができる。
 内層17及び外層18に用いる軟質樹脂及び硬質樹脂は、成形後の硬度を表す指標である100%モジュラス値の差が1MPa以上であることが好ましく、3MPa以上であることがより好ましい。その差を大きくとるときには10MPa以上が好ましい。溶融状態の樹脂の流動性を表す指標である150℃~300℃の成形温度における溶融粘度の差は、2500PaS以下であることが好ましい。これにより、内層17及び外層18からなる樹脂層15は、良好な成形精度と、先端側と基端側において必要な硬度差の両方が確保される。
(可撓管の製造方法)
 第1の発明の好ましい実施形態に係る製造方法は、
 第1層と第2層との少なくとも2層で構成された樹脂層を形成するに当たり、
(i)前記第1層を構成するポリエステルエラストマー、ポリウレタンエラストマー、またはポリアミドエラストマーを含む第1樹脂材料を準備し、他方
(ii)前記第2層を構成する、ポリエステルエラストマー、ポリウレタンエラストマー、またはポリアミドエラストマーからなる群より選ばれる二つ以上のエラストマーと鎖延長剤とを含有する第2樹脂材料を準備し、
(iii)前記第1樹脂材料と前記第2樹脂材料とを前記可撓管基材の周囲に溶融混練して押し出し成形し、前記樹脂層を当該可撓管基材に被覆することが好ましい。
 第2の発明を含め、樹脂層が内層と外層からなる2層構造の可撓管の製造方法の一例について以下に説明するが、樹脂層が1層あるいは3層以上の態様も、下記方法に準じて製造することができる。
 内層と外層との少なくとも2層で構成された樹脂層を形成するに当たり、
(i)前記内層を構成する、第1樹脂材料を準備し、他方
(ii)前記外層を構成する、第2樹脂材料を準備し、
(iii)前記第1樹脂材料と前記第2樹脂材料とを前記可撓管基材の周囲に溶融混練して押し出し成形し、前記樹脂層を当該可撓管基材に被覆することが好ましい。
 図3、図4に基づき可撓管3a(図1、図2)の製造方法について説明すると、その樹脂層15を成形するために連続成形機を用いることが好ましい。連続成形機20は、ホッパ、スクリュー21a、22aなどからなる周知の押し出し部21、22と、可撓管基材14の外周面に樹脂層15を被覆成形するためのヘッド部23と、冷却部24と、連結可撓管基材31をヘッド部23へ搬送する搬送部25(供給ドラム28と、巻取ドラム29)と、これらを制御する制御部26とからなるものを用いることが好ましい。ヘッド部23は、ニップル32、ダイス33、及びこれらを固定的に支持する支持体34からなるものが好ましい。このような装置の構成例としては、例えば、特開2011-72391号公報の図3~5に記載の装置を使用することができる。
 ダイス33の内部を所定の成形温度に加熱することが好ましい。成形温度は、150℃~300℃の範囲に設定されることが好ましい。装置内の加熱部を加熱温調することにより軟質樹脂39及び硬質樹脂40の各温度を高温にすることができるが、これに加え、スクリュー21a、22aの各回転数が高い程、軟質樹脂39及び硬質樹脂40の各温度をさらに高くすることができ、それぞれの流動性を高めることができる。このとき、連結可撓管基材31の搬送速度を一定とし、溶融状態の軟質樹脂39及び硬質樹脂40の各吐出量を変更することにより、内層17及び外層18の各成形厚みを調整することができる。
 連続成形機20で連結可撓管基材31に樹脂層15を成形するときのプロセスについて説明すると、連続成形機20が成形工程を行うときは、押し出し部21、22から溶融状態の軟質樹脂39及び硬質樹脂40がヘッド部23へと押し出される。これとともに、搬送部25が動作して連結可撓管基材31がヘッド部23へと搬送される。このとき、押し出し部21、22は、軟質樹脂及39及び硬質樹脂40を常時押し出してヘッド部23へ供給する状態であり、押し出し部21、22からゲート35、36へ押し出された軟質樹脂39及び硬質樹脂40は、エッジを通過して合流し、重なった状態で樹脂通路38を通って成形通路37へ供給される。これにより、軟質樹脂39を使用した内層17と硬質樹脂40を使用した外層18が重なった二層成形の樹脂層15が形成される。
 連結可撓管基材31は、複数の可撓管基材14が連結されたものであり、成形通路37内を搬送中に、複数の可撓管基材14に対して連続的に樹脂層15が成形される。1つの可撓管基材の一端14a側(先端側)から他端14b側(基端側)まで樹脂層15を成形するとき、押し出し部21、22による樹脂の吐出を開始した直後は、内層17の厚みを厚くとる。そして、他端14b側へ向かう中間部分で徐々に外層18の厚みの割合を漸増させる。これにより、前記の傾斜的な樹脂層15の厚み割合となるように樹脂の吐出量を制御することが好ましい。
 ジョイント部材30は、2つの可撓管基材14の連結部であるので、制御部26は押し出し部21、22の吐出量の切り替えに利用される。具体的には、制御部26は、1本の可撓管基材14の他端14b側(基端側)における厚みの割合から、次の可撓管基材14の一端14a側(先端側)の厚みの割合になるように、押し出し部21、22の吐出量を切り替えることが好ましい。次の可撓管基材14の一端14a側から他端14b側まで樹脂層15を成形するときは、同様に一端側から他端側へ向かって徐々に外層の厚みが大きくなるように、押し出し部21、22が制御されることが好ましい。
 最後端まで樹脂層15が成形された連結可撓管基材31は、連続成形機20から取り外された後、可撓管基材14からジョイント部材30が取り外され、各可撓管基材14に分離される。次に、分離された可撓管基材14に対して、樹脂層15の上にコート膜16がコーティングされて、可撓管3aが完成する。完成した可撓管3aは、電子内視鏡の組立工程へ搬送される。
(樹脂層)
・第1の発明に係る実施形態
 本実施形態の樹脂層は第1層と第2層との少なくとも2層で構成され、前記第1層はポリエステルエラストマー、ポリウレタンエラストマー、およびポリアミドエラストマーからなる群より選ばれる一つ以上のエラストマーまたはその鎖延長体を含んでなる。一方、前記第2層は、ポリエステルエラストマー、ポリウレタンエラストマー、ポリアミドエラストマーからなる群より選ばれる二つ以上のエラストマーの鎖延長体を含んでなる。つまり第2層は、エラストマーブレンドの鎖延長体を含有している。具体的には、ポリエステルエラストマーと、ポリウレタンエラストマーおよびポリアミドエラストマーから選ばれる少なくとも一種とのブレンドであることが好ましい。
 第2層は上述のとおり、2種以上のエラストマーのブレンドを用いる。エラストマーの組合せとしては、ポリエステルエラストマーと他のエラストマーとを組み合わせることが好ましい。その配合比は、ポリエステルエラストマー100質量部に対して、その他のエラストマーを5~100質量部とすることが好ましく、10~80質量部とすることがより好ましく、15~60質量部とすることが特に好ましい。
 好ましい組合せを列記すると下記のとおりである。
 ―――――――――――――――――――――
 主エラストマー   副エラストマー
 ―――――――――――――――――――――
 PE        PU
 PE        PA
 PE        PU+PA
 ―――――――――――――――――――――
 PE:ポリエステルエラストマー
 PU:ポリウレタンエラストマー
 PA:ポリアミドエラストマー
 第1層についても同様にエラストマーブレンドを用いてもよく、その組合せとしては、ポリウレタンエラストマーにその他のエラストマーを組み合わせる態様、あるいはポリアミドエラストマーにその他のエラストマーを組み合わせる態様が好ましい。その配合は、ポリウレタンエラストマーまたはポリアミドエラストマー100質量部に対して、その他のエラストマーを5~100質量部とすることが好ましく、10~80質量部とすることがより好ましく、15~60質量部とすることが特に好ましい。
 好ましい組合せを列記すると下記のとおりである。
 ―――――――――――――――――――――
 主エラストマー   副エラストマー
 ―――――――――――――――――――――
 PU        PE
 PU        PA
 PU        PA、PU
 PA        PU
 PA        PE
 PA        PE、PU
 ―――――――――――――――――――――
 PE:ポリエステルエラストマー
 PU:ポリウレタンエラストマー
 PA:ポリアミドエラストマー
-第1層-
 第1層は前記の内層17(図2)であることが好ましい。本実施形態において、この内層は、前記可撓管基材の軸回りの全周面を被覆している。第1層は前記の樹脂からなるエラストマーであっても、その鎖延長体であっても、さらにそこに任意の添加剤を含有させた混合物であってもよい。
・鎖延長剤
 鎖延長体とするために、前記樹脂エラストマーに鎖延長剤を配合して鎖延長処理を施すことが好ましい。鎖延長剤は適宜に選定されればよく、多官能エポキシ化合物、多官能イソシアネート化合物、多官能アミノ化合物、オキサゾリン化合物、カルボジイミド化合物、および酸無水物から選ばれるものを用いることが好ましい。なかでも、多官能イソシアネート化合物、オキサゾリン化合物、カルボジイミド化合物を用いることがより好ましい。これらの選択された鎖延長剤を適用することで可撓管に適合した樹脂層の性能を総合的に引き上げることができ、特に、得られる可撓管の過酢酸耐性、弾発性、折り曲げ耐久性といった項目の性能を高めることができ好ましい。
・多官能エポキシ化合物
 鎖延長剤として用いられる多官能エポキシは、エポキシ基を2個以上含有する化合物であれば特に制限されず、モノマー、オリゴマー、ポリマーのいずれも用いることができる。エポキシ基含有化合物がポリマーである場合には、その重量平均分子量は、耐熱老化性及び伸び率の向上効果に優れ、ゲル化しにくく、取り扱い性に優れるという観点から、2,000~1,000,000であるのが好ましく、3,000~500,000であるのがより好ましく、4,000~250,000であるのがさらに好ましい。
上記エポキシ基含有化合物としては、例えば、エポキシ基含有(メタ)アクリル系ポリマー、エポキシ基含有ポリスチレン、エポキシ化植物油、ポリグリシジルエーテルなどが挙げられる。
 エポキシ基含有(メタ)アクリル系ポリマーは、主鎖が(メタ)アクリル系ポリマーであり、分子内にエポキシ基を2個以上含有するポリマーであれば特に制限されない。なお、本発明において、(メタ)アクリルはアクリル及びメタクリルのうちの一方又は両方を意味する。主鎖としての(メタ)アクリル系ポリマーは、ホモポリマー及びコポリマーのうちのいずれであってもよい。エポキシ基含有(メタ)アクリル系ポリマーとしては、例えば、メタクリル酸メチル-メタクリル酸グリシジル共重合体、メタクリル酸メチル-スチレン-メタクリル酸グリシジル共重合体等が挙げられる。なかでも、メタクリル酸メチル-メタクリル酸グリシジル共重合体、メタクリル酸メチル-スチレン-メタクリル酸グリシジル共重合体が好ましい。
 エポキシ基含有(メタ)アクリル系ポリマーの重量平均分子量は、耐熱老化性及び伸び率の向上効果に優れ、ゲル化しにくく、取り扱い性に優れるという観点から、3,000~300,000であるのが好ましく、4,000~250,000であるのがより好ましい。
 ポリグリシジルエーテルは、分子内に2個以上のグリシジルオキシ基を有する化合物であれば特に制限されない。ポリグリシジルエーテルとしては、例えば、グリセリン・エピクロルヒドリン-0~1モル付加物のポリグリシジルエーテル、エチレングリコール-エピクロルヒドリン-0~2モル付加物のポリグリシジルエーテル、ポリエチレングリコール-ジグリシジルエーテル、ネオペンチルグリコール-ジグリシジルエーテル、トリメチロールプロパン-ポリグリシジルエーテル等が挙げられる。
 エポキシ基含有化合物のエポキシ当量は、耐熱老化性及び伸び率の向上効果に優れ、ゲル化しにくいという観点から、170~10000g/当量(より狭くは170~3300g/当量)であるのが好ましく、200~5000g/当量(より狭くは200~2000g/当量)であるのがより好ましい。
 エポキシ基含有(メタ)アクリル系ポリマーの市販品としては、例えば、Joncryl ADR-4368(アクリル系ポリマー、粉体、重量平均分子量6,800、エポキシ当量285g/当量、BASF社製)、マープルーフG-0150M(アクリル系ポリマー、粉体、重量平均分子量8,000~10,000、エポキシ当量310g/当量、日油株式会社製)、マープルーフG-2050M(アクリル系ポリマー、粉体、重量平均分子量200,000~250,000、エポキシ当量340g/当量、日油株式会社製)が挙げられる。エポキシ基含有ポリスチレンの市販品としては、例えば、マープルーフG-1010S(スチレン系ポリマー、粉体、重量平均分子量100,000、エポキシ当量1,700g/当量、日油株式会社製)が挙げられる。エポキシ化植物油の市販品としては、例えば、エポキシ化大豆油であるニューサイザー510R(日油株式会社製)、三菱化学社製JER1001(固体、エポキシ当量450~500)や、JER1010(固体、エポキシ当量3000~5000)等が挙げられる。
多官能イソシアネート化合物
 多官能イソシアネート化合物としては、芳香族系、脂肪族系、環式脂肪族系、若しくは脂環式多官能イソシアネート化合物、又はその混合物、付加物、変性物、重合物等公知の多官能イソシアネート化合物類を挙げることができる。本発明においては、なかでも、トリレンジイソシアネート(TDI)、4,4-ジフェニルメタンジイソシアネート(MDI)、水素添化ジフェニルメタンジイソシアネート(H12 MDI)、ポリフェニルメタンポリイソシアネート(クルードMDI)、変性ジフェニルメタンジイソシアネート(変性MDI)、キシリレンジイソシアネート(XDI)、水素添化キシリレンジイソシアネート(H-XDI)、ヘキサメチレンジイソシアネート(HMDI)、トリメチルヘキサメチレンジイソシアネート(TMXDI)、イソホロンジイソシアネート(IPDI)等のポリイソシアネート或いはこれらのポリイソシアネートの三量体化合物が好ましい。
・カルボジイミド化合物
 カルボジイミド化合物は、分子内に1個以上(2個以上が好ましい)のカルボジイミド基を有する化合物である。芳香族系のカルボジイミド化合物(炭素数6~26が好ましく、炭素数6~18がより好ましい)であっても、非芳香族系のカルボジイミド化合物(炭素数2~24が好ましく、炭素数2~12がより好ましい)であってもよい。カルボジイミド化合物としては、芳香族、脂肪族のカルボジイミド化合物が挙げられる。分子内に2個以上のカルボジイミド基を有する脂肪族ポリカルボジイミド化合物を用いることがより好ましく、4,4’-ジシクロヘキシルメタンジイソシアネートより製造されるポリカルボジイミドを用いることが更に好ましい。4,4’-ジシクロヘキシルメタンジイソシアネートより製造されるポリカルボジイミドとしては、日清紡ホールディングス株式会社製「カルボジライトLA-1」等が挙げられる。
 上記カルボジイミド化合物に含まれる、分子内に1個のカルボジイミド基を有するモノカルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド等を例示することができ、これらの中では、特に工業的に入手が容易な点から、ジシクロヘキシルカルボジイミドやジイソプロピルカルボジイミドが好適である。
 本発明に用いられるカルボジイミド化合物の数平均分子量(Mn)は、好ましくは100~40,000の範囲、より好ましくは100~30,000の範囲である。
・多官能アミノ化合物
 多官能アミノ化合物としては、芳香族系のアミノ化合物(炭素数6~26が好ましく、炭素数6~18がより好ましい)であっても、非芳香族系のアミノ化合物(炭素数2~24が好ましく、炭素数2~12がより好ましい)であってもよい。m-フェニレンジアミン、p-フェニレンジアミン、1,3,5-トリアミノベンゼンなどの芳香族アミン類、エチレンジアミン、ピペラジン、アミノメチルピペリジンなどの脂肪族アミン類、ポリエピハロヒドリンを上記モノマーアミン類で変性したポリマーなどのアミノポリマー類が好ましい。
・多官能オキサゾリン
多官能オキサゾリン化合物とは、分子内にオキサゾリン基を二つ以上含有する化合物である。芳香族系の多官能オキサゾリン化合物(炭素数6~26が好ましく、炭素数6~18がより好ましい)であっても、非芳香族系の多官能オキサゾリン化合物(炭素数2~24が好ましく、炭素数2~12がより好ましい)であってもよい。制限はないが、具体的には2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-ビス(4-エチル-2-オキサゾリン)、2,2’-ビス(4,4’-ジエチル-2-オキサゾリン)、2,2’-ビス(4-プロピル-2-オキサゾリン)、2,2’-ビス(4-ブチル-2-オキサゾリン)、2,2’-ビス(4-ヘキシル-2-オキサゾリン)、2,2’-ビス(4-フェニル-2-オキサゾリン)、2,2’-ビス(4-シクロヘキシル-2-オキサゾリン)、2,2’-ビス(4-ベンジル-2-オキサゾリン)、2,2’-p-フェニレンビス(2-オキサゾリン)、2,2’-m-フェニレンビス(2-オキサゾリン)、2,2’-o-フェニレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-p-フェニレンビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-エチレンビス(2-オキサゾリン)、2,2’-テトラメチレンビス(2-オキサゾリン)、2,2’-ヘキサメチレンビス(2-オキサゾリン)、2,2’-オクタメチレンビス(2-オキサゾリン)、2,2’-デカメチレンビス(2-オキサゾリン)、2,2’-エチレンビス(4-メチル-2-オキサゾリン)、2,2’-テトラメチレンビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-9,9’-ジフェノキシエタンビス(2-オキサゾリン)、2,2’-シクロヘキシレンビス(2-オキサゾリン)、2,2’-ジフェニレンビス(2-オキサゾリン)、株式会社日本触媒製エポクロス等が挙げられる。さらには、上記した化合物をモノマー単位として含むポリオキサゾリン化合物など、例えばスチレン・2-イソプロペニル-2-オキサゾリン共重合体等が挙げられる。ポリエステルのカルボキシ末端基との反応性の観点から三つ以上のオキサゾリン基を有する株式会社日本触媒製エポクロスが好ましい。
・酸無水物
 酸無水物はカルボン酸無水物であることが好ましい。芳香族酸無水物(炭素数6~26が好ましく、炭素数6~18がより好ましい)であっても、非芳香族酸無水物(炭素数2~24が好ましく、炭素数2~12がより好ましい)であってもよい。酸無水物の具体例としては、無水テトラヒドロフタル酸、アルキル化無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、アルキル化無水ヘキサヒドロフタル酸、無水コハク酸、無水マレイン酸が挙げられる。
 前記鎖延長剤の配合量としては、前記エラストマー(ブレンドの場合はその合計)100質量部に対して、鎖延長剤0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることが特に好ましい。上限は、10質量部以下であることが好ましく、5.0質量部以下であることがより好ましく、1.0質量部以下であることが特に好ましい。上記上限値以下とすることで、得られる可撓管の可撓性と折り曲げ耐久性を向上することができ好ましい。上記下限値以上とすることで、得られる可撓管の過酢酸耐性を向上することができ好ましい。
 本発明において、鎖延長剤は、それぞれ単独で又は2種類以上を組み合わせて使用することができる。
 鎖延長剤はエラストマーがなすハードセグメントを連結し、相応の鎖長をもつソフトセグメントを構成することが好ましい。かかる観点から、上記の配合量や分子量を調整することが好ましい。鎖延長剤の分子量としては、100~5万が好ましく、120~3万がより好ましく、150~2万が特に好ましい。なお、鎖延長剤の分子量については、市販の化合物についてはカタログ記載の化学構造から算出した分子量を適用することができる。化学構造が不明の場合は、LC-MSによりカラム分離をした上でマススペクトロメトリーにより分子量を決定する方法を適用することができる。また、分子量が大きくマススペクトロメトリーの解析が困難な場合はGPCによってポリスチレン換算の重量平均分子量を計測することができる。このとき、GPC装置HLC-8220(東ソー社製)を用い、溶離液としてはTHF(テトラヒドロフラン)(湘南和光純薬社製)を用いカラムはG3000HXL+G2000HXLを用い、23℃で流量は1mL/minで、RIで検出することとする。
 鎖延長処理は、エラストマーと鎖延長剤とを含有する樹脂混合物を溶融混練して行うことが好ましい。この溶融混練処理は、混練機(エクストルーダー)を用いて混練して予めペレット状態にした後に前記成形機で成形したり、前記連続成形機のホッパやスクリューなどで行われる方法があるが、均一にまんべんなく鎖延長剤を適用させることができることから、混練機を用いることが好ましい。このとき、加熱されることが好ましく、この加熱は前記のように混練機や連続成形機の各部を温度制御することにより行うことができる。その設定温度は前述のとおりであるが、樹脂の温度としていうと、150℃~300℃に加熱されることが好ましく、180℃~250℃に加熱されることが好ましい。このように、本実施形態のエラストマーは、押出成形時の加熱、溶融、混練、押出の一連の過程において鎖延長処理が行われることが好ましい。
・触媒
 前記エラストマーの鎖延長処理は、前記鎖延長剤に加え、触媒を加えて行うことが好ましい。触媒としては、エラストマーをアミン化合物および錫キレートから選ばれる少なくとも一つであることが好ましい。
 前記触媒の配合量としては、前記エラストマー(ブレンドの場合はその合計)100質量部に対して、触媒0.01質量部以上であることが好ましく、0.02質量部以上であることがより好ましく、0.03質量部以上であることが特に好ましい。上限は、3質量部以下であることが好ましく、1質量部以下であることがより好ましく、0.5質量部以下であることが特に好ましい。上記上限値以下とすることで、過剰な触媒によるポリマーの熱劣化を抑制することができ好ましい。上記下限値以上とすることで、得られる可撓管の過酢酸耐性を向上することができ好ましい。
 上記第1層には、フェノール系化合物、アミン系化合物、リン系化合物、イオウ系化合物、フェニルアクリレート系化合物から選ばれる熱安定剤をさらに含有させることが好ましい。中でもアミン系化合物が好ましく、特にヒンダードアミン系化合物が特に好ましい。これにより、混練や成形加工時の熱履歴による樹脂の変質を抑えることができ、医師の診断における機器の操作性を安定させることができる。
 前記熱安定剤の配合量としては、前記エラストマー(ブレンドの場合はその合計)100質量部に対して、熱安定剤0.01質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、0.5質量部以上であることが特に好ましい。上限は、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることが特に好ましい。上記上限値以下とすることで、得られる可撓管表面からの熱安定剤のブリードアウトを抑制し、なおかつ高いトップコート密着性を発揮することができ好ましい。上記下限値以上とすることで、得られる可撓管の過酢酸耐性が向上することができ好ましい。
-第2層-
・第2層は前記の外層18(図2)であることが好ましい。本実施形態において、この外層は、前記第1層に接し、かつ、前記第1層の前記軸回りの全周面を被覆する外層をなす。第2層は、エラストマー自体が適用されることはなく、その鎖延長体がまたはその他の成分を含有する混合物が適用される。このように、第2層(好ましくは外層)に特定エラストマーの鎖延長体を適用したことが本実施形態の特徴の1つであり、これにより内視鏡用可撓管の積層樹脂としたときに、顕著な効果を発揮する。
 鎖延長剤の種類および量、鎖延長処理の態様、触媒の種類および量、熱安定剤の種類および量は、いずれも第1層で述べたことと同じである。
-物性-
 第1層および第2層に適用されるエラストマーの分子量は特に限定されないが、好適なハードセグメントを構成し、鎖延長剤のなすソフトセグメントとの良好な相互作用を引き出す観点から、分子量1万~100万が好ましく、分子量2万~50万がより好ましく、分子量3万~30万が特に好ましい。
 本明細書において、エラストマーを含む高分子化合物の分子量は、特に断らない限り、重量平均分子量を意味する。当該重量平均分子量は、GPCによってポリスチレン換算の分子量として計測することができる。このとき、GPC装置HLC-8220(東ソー社製)を用い、溶離液としては、適宜高分子化合物に合わせて選定する。ポリエステルエラストマーの場合はクロロホルム、ポリウレタンエラストマーの場合はNMP(N-メチル-2-ピロリドン)、ポリアミドエラストマーの場合はm-クレゾール/クロロホルム(湘南和光純薬社製)を用いカラムはG3000HXL+G2000HXLを用い、23℃で流量は1mL/minで、RIで検出することとする。
 第1層(内層)を構成するエラストマーないしその鎖延長体の物性は好適に設定されていることが好ましい。例えば、A硬さ:JISK7215は、40以上であることが好ましく、50以上であることがより好ましく、60以上であることが特に好ましい。98以下であることが好ましく、95以下であることがより好ましく、90以下であることが特に好ましい。
 貯蔵弾性率E’は1MPa以上であることが好ましく、2MPa以上であることがより好ましく、3MPa以上であることが特に好ましい。150MPa以下であることが好ましく、100MPa以下であることがより好ましく、50MPa以下であることが特に好ましい。損失弾性率E”は0.1MPa以上であることが好ましく、0.3MPa以上であることがより好ましく、0.5MPa以上であることが特に好ましい。20MPa以下であることが好ましく、10MPa以下であることがより好ましく、5MPa以下であることが特に好ましい。損失正接は0.01以上であることが好ましく、0.03以上であることがより好ましく、0.05以上であることが特に好ましい。1以下であることが好ましく、0.5以下であることがより好ましく、0.3以下であることが特に好ましい。
 なお、本明細書において粘弾性に関する値は、特に断らない限り、25℃の値とする。測定方法は、JIS-K7244-4に準拠する。
 第2層(外層)を構成するエラストマーの鎖延長体の物性は好適に設定されていることが好ましい。例えば、D硬さ:JISK7215は、20以上であることが好ましく、25以上であることがより好ましく、30以上であることが特に好ましい。80以下であることが好ましく、70以下であることがより好ましく、60以下であることが特に好ましい。
 貯蔵弾性率E’は1MPa以上であることが好ましく、5MPa以上であることがより好ましく、10MPa以上であることが特に好ましい。1GPa以下であることが好ましく、500MPa以下であることがより好ましく、300MPa以下であることが特に好ましい。損失弾性率E”は0.1MPa以上であることが好ましく、0.5MPa以上であることがより好ましく、1MPa以上であることが特に好ましい。100MPa以下であることが好ましく、50MPa以下であることがより好ましく、30MPa以下であることが特に好ましい。損失正接は0.01以上であることが好ましく、0.03以上であることがより好ましく、0.05以上であることが特に好ましい。1以下であることが好ましく、0.5以下であることがより好ましく、0.3以下であることが特に好ましい。
 第1層の100%モジュラス値は、0.5MPa以上であることが好ましく、1.0MPa以上であることがより好ましく、1.5MPa以上であることが特に好ましい。20MPa以下であることが好ましく、15MPa以下であることがより好ましく、10MPa以下であることが特に好ましい。
 第2層の100%モジュラス値は、1.0MPa以上であることが好ましく、1.5MPa以上であることがより好ましく、2.0MPa以上であることが特に好ましい。30MPa以下であることが好ましく、25MPa以下であることがより好ましく、20MPa以下であることが特に好ましい。
 なお、本明細書においてモジュラス値は、特に断らない限り、25℃の値とする。測定方法は、JIS-K7311に準拠する。
 前記樹脂層は、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(特定溶媒)に可溶であることが好ましい。前記特定溶媒に可溶であるとは、20℃で5質量%の溶解度を示すことを意味する。このように、特定溶媒に可溶であるとは、樹脂が三次元(架橋)構造を有していないという技術的意義を有し、内視鏡用可撓管の樹脂層として可撓性を発揮するため好ましい。
 前記樹脂層は、そのエラストマーが実質的に架橋していないことが好ましい。ここで、実質的に架橋していないとは、架橋されていないことのほか、樹脂がNMR等で検出可能な範囲で分岐構造を有していないことを言う。
 本実施形態に係る樹脂層(特に第2層、層A、外層)のエラストマーが実質的に架橋されていないことにより、内視鏡用可撓管の樹脂層として可撓性と折り曲げ耐久性という性能を発揮するため好ましい。
(樹脂層)
・第2の発明に係る実施形態
 本実施形態の可撓管の樹脂層は単層又は複層からなり、樹脂層の最外層が層A(ポリエステルエラストマーと、ヒンダードフェノール化合物又はヒンダードアミン化合物とを含有する層)からなることが好ましい。ここで樹脂層の「最外層」とは、樹脂層が1層構造である場合には当該樹脂層を意味し、2層以上の複層構造である場合には、可撓管の樹脂層のうち最も表層側の樹脂層を意味する。ただし、本発明の効果を奏する範囲で更に外側の層(トップコートなど)を設けてもよい。
 上記ヒンダードフェノール化合物は下記式(1)で表される構造部位を有する化合物であることが好ましく、上記ヒンダードアミン化合物は下記式(2)で表される構造部位を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
-式(1)-
 上記式(1)中、R及びRは、水素原子、炭素数1~12のアルキル基(好ましくは炭素数1~8のアルキル基、例えば、メチル基、エチル基、n-ブチル基、イソプロピル基、sec-ブチル基、t-ブチル基、t-ペンチル基、t-ヘキシル基、又はt-オクチル基)、または炭素数7~36(好ましくは7~30)のアラルキル基である。R及びRの少なくとも一方が二級のアルキル基もしくは三級のアルキル基であることが好ましく、R及びRの少なくとも一方が三級のアルキル基であることがより好ましい。また、R及びRがともに三級のアルキル基(好ましくはt-ブチル基)であることも好ましい。
 上記式(1)中、*は結合部位を表す。
 上記式(1)で表される構造部位を有する化合物は、下記式(1-1)又は(1-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 式中、R及びRは、それぞれ上記式(1)中のR及びRと同義である。
 Lは単結合又は2価の連結基を示す。Lは、炭素数1~10(好ましくは炭素数1~5)のアルキレン基、炭素数2~10(好ましくは炭素数2~5)のアルケニレン基、又は-L-C(=O)-O-L-で表される基であることが好ましい。ここで、L及びLは単結合、炭素数1~10(好ましくは炭素数1~5)のアルキレン基、カルボニル基、酸素原子、またはそれらの組合せを示す。
 pは2~4の整数であり、Aは2~4価の連結基を示す。Aは2~4価の有機基であることが好ましく、この有機基の炭素数は1~20であることが好ましく、1~15であることがより好ましく、1~12であることがさらに好ましく、1~10であることがさらに好ましい。
 pが2で、Aが2価の有機基の場合、Aは炭素数1~10(好ましくは炭素数1~5)の2価の脂肪族基(好ましくはアルキレン基)又は炭素数6~22(好ましくは炭素数6~14)のアリーレン基であることが好ましい。
 pが3で、Aが3価の連結基である場合、Aは下記式(A)で表される基であることが好ましい。下記式(A)中、*は連結部位を示す。
Figure JPOXMLDOC01-appb-C000009
 上記式(A)中、*は結合部位を示す。R15~R17は、水素原子又は炭素数1~10(好ましくは炭素数1~6、より好ましくは炭素数1~3)のアルキル基を示す。
 pが4でAが4価の連結基である場合、Aは4級炭素原子であることが好ましい。この場合、連結基Lは-L-C(=O)-O-L-で表される基が好ましい。ここで、L及びLはそれぞれ上記L及びLと同義である。
 R~R12はRと同義である。R13は反応性有機置換基であり、ビニル基含有基が好ましく、(メタ)アルリロイル基含有基がより好ましい。
-式(2)-
 上記式(2)中、R~Rは水素原子または炭素数1~12(好ましくは炭素数1~8、より好ましくは炭素数1~5)のアルキル基を示す。R~Rの例としては、メチル基、エチル基、n-ブチル基、イソプロピル基、sec-ブチル基、t-ブチル基、t-ペンチル基、t-ヘキシル基、t-オクチル基等が挙げられる。R~Rは一級の(直鎖の)アルキル基であることが好ましく、より好ましくはR~Rの全てが一級のアルキル基(特に好ましくはメチル基)である。
 式(2)中、Rは水素原子、炭素数1~18(好ましくは炭素数1~10、より好ましくは炭素数1~5、さらに好ましくは炭素数1~3、さらに好ましくは炭素数1又は2)のアルキル基、又は-ORを示し、Rは水素原子又は炭素数1~20(好ましくは炭素数1~12)のアルキル基を示す。Rは、なかでも水素原子であることが、一層高い耐薬品性を示すため好ましい。
 上記式(2)中、*は結合部位を表す。
 上記式(2)で表される構造部位を有する化合物は、好ましくは下記式(2-1)で表される化合物または(2-2)で表される繰り返し単位を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000010
 式中、R~Rは、それぞれ上記式(2)中のR~Rと同義であり、好ましい範囲も同一である。qは2以上の整数を示し、Dは2価以上の連結基を示す。sは1又は2を表す。rは整数を表し、後記重合度の値の範囲が好ましい。Qはs+2価の連結基を表し、イミノ基(NR)を含む基、トリアジン連結基を含む基等が挙げられる。Rは水素原子、炭素数1~6のアルキル基、式(2)で表されるピペラジル基含有基が挙げられる。
 上記式(2)で表される構造部位を有する化合物は、より好ましくは下記式(2-A)~(2-C)又は(2-G)で表される化合物、又は下記式(2-D)で表される繰り返し単位を有するポリマーまたはオリゴマー(好ましくは式(2D1)~(2D3)のいずれかの繰り返し単位を有するポリマーまたはオリゴマー)である。
Figure JPOXMLDOC01-appb-C000011
 上記各式中R21は式(2)中のRと同義であり、好ましい形態も同じである。
 R22は水素原子または炭素数が1~20(好ましくは炭素数1~12、より好ましくは炭素数1~8、さらに好ましくは炭素数1~6)のアルキル基を示す。L21は単結合又は炭素数1~20(好ましくは炭素数1~10)のアルキレン基を示す。Rは式(2-2)と同義である。nは1~20(好ましくは1~10)の整数を示す。
 上記式(2)で表される構造部位を有する化合物がポリマーまたはオリゴマーである場合、当該繰り返し単位の数(重合度)は2~100であることが好ましく、2~50であることがより好ましく、2~10であることがさらに好ましい。また、ポリマーまたはオリゴマーの末端構造に特に制限はないが、例えば、水素原子、置換又は無置換のアミノ基、置換又は無置換のトリアジル基とすることができる。
 樹脂層の層A(好ましくは最外層)を構成する樹脂成分中、ポリエステルエラストマーの含有量は、50質量%以上であることが好ましく、より好ましくは55質量%以上、さらに好ましくは60質量%以上であり、さらに好ましくは65質量%以上である。また、層Aを構成する樹脂成分中のポリエステルエラストマーの含有量は100質量%でもよいが、90質量%以下とすることが好ましく、80質量%以下とすることがより好ましく、75質量%以下とすることがさらに好ましい。層A中のポリエステルエラストマーの含有量を上記好ましい範囲内とし、残部に軟質樹脂をブレンドすることで、より優れた可撓性を付与することができる。
 樹脂層の層Aが樹脂成分としてポリエステルエラストマー以外の成分を含むとき、この樹脂成分中においてポリエステルエラストマーを除く残部には、より軟質の樹脂としてポリウレタンエラストマー及びポリアミドエラストマーの少なくとも1種が含まれることが好ましく、少なくともポリウレタンエラストマーが含まれることが好ましい。樹脂層の層Aの樹脂成分中、ポリウレタンエラストマーの含有量は5質量%以上であることが好ましく、より好ましくは10質量%以上、さらに好ましくは15質量%以上、さらに好ましくは20質量%以上、さらに好ましくは25質量%以上である。また、樹脂層の層Aの樹脂成分中のポリウレタンエラストマーの含有量は50質量%以下であることが好ましく、より好ましくは40質量%以下、さらに好ましくは35質量%以下である。
 また、本発明のより好ましい実施形態において、樹脂層の層Aは樹脂層の最外層に用いることが好ましく、ヒンダードフェノール化合物とヒンダードアミン化合物の両方を含有することが好ましい。ヒンダードフェノール化合物とヒンダードアミン化合物を樹脂層の層A中に併存させることで、それぞれを単独で含有させた場合に比べて、消毒薬に対する耐性が相乗的に向上する。
 樹脂層の層Aの好ましい態様では、樹脂層の層A中の樹脂成分100質量部に対して、上記ヒンダードフェノール化合物を0.01質量部以上含有し、より好ましくは0.1質量部以上含有することである。上限側の規定としては、7質量部以下含有することが好ましく、5質量部以下含有することがより好ましい。上記ヒンダードアミン化合物については、樹脂成分100質量部に対して、0.01質量部以上で含有することが好ましく、より好ましくは0.1質量部以上である。上限側の規定としては、7質量部以下含有することが好ましく、5質量部以下含有することがより好ましい。樹脂層の層A中、上記ヒンダードフェノール化合物と上記ヒンダードアミン化合物の合計量は、樹脂層の層A中の樹脂成分100質量部に対して7質量部以下であることが好ましく、6質量部以下であることがより好ましい。下限側の規定としては、0.01質量部以上で含有することが好ましく、0.1質量部以上であることがより好ましい。
 上記樹脂層が複層から成る場合、層A(好ましくは最外層)以外の少なくとも1層がポリウレタンエラストマー又はポリアミドエラストマーを含有することが好ましい(以下、この層を「層B」という。)。層Bは少なくともポリウレタンエラストマーを含有することがより好ましい。層Bはポリウレタンエラストマーを主成分とすることが好ましく、この場合、ポリウレタンエラストマーの含有量は層Bの樹脂成分中50質量%以上であることが好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上である。層B中の樹脂成分のすべてがポリウレタンエラストマーであることも好ましいが、そうでない場合、残部はポリアミドエラストマー及び/又はポリエステルエラストマーで構成されることが好ましい。
 また、層Bは主成分がポリアミドエラストマーであってもよい。例えば、ポリアミドエラストマーを含有する層Bにおいて、ポリアミドエラストマーの含有量を樹脂成分中50質量%以上としてもよく、70質量%以上とすることもできる。層B中の樹脂成分のすべてをポリアミドエラストマーとすることもできるが、そうでない場合、残部はポリウレタンエラストマー及び/又はポリエステルエラストマーで構成されることが好ましく、ポリウレタンエラストマーで構成されることがより好ましい。
 上記の層Bは、最外層として用いるとき、ヒンダードフェノール化合物及びヒンダードアミン化合物の少なくとも1種を含むことが好ましい。これにより、可撓管の耐薬品性をより向上させることができる。層Bを内層に用いる場合には、耐薬品性よりも、外層との密着性等を考慮しこれらを含まないことが好ましい場合がある。層Bを最外層に用いる場合には、そのヒンダードフェノール化合物及びヒンダードアミン化合物の好ましい配合量は、前記層Aと同様である。
 本発明の可撓管は、内層1層と外層1層からなる2層構造の樹脂層を備えることが好ましい。この場合、内層は上記樹脂層の層Bで構成され、外層は上記樹脂層の層Aで構成される。それぞれの樹脂層の配合は下記のとおりであることが好ましい。本発明においては、上記A層とB層となす樹脂組成物のセットとすることも好ましい。ここで、「樹脂組成物」という用語は、当該樹脂そのものを含む意味として用いる。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 PE:ポリエステルエラストマー
 PU:ポリウレタンエラストマー
 PA:ポリアミドエラストマー
 HA:ヒンダードアミン
 HP:ヒンダードフェノール
 ( )は任意要素
-物性-
 適用されるエラストマーの分子量は特に限定されないが、分子量1万~100万が好ましく、分子量2万~50万がより好ましく、分子量3万~30万が特に好ましい。
 上記層B(好ましくは内層)の物性は好適に設定されていることが好ましい。例えば、A硬さ:JIS-K7215は、40以上であることが好ましく、50以上であることがより好ましく、60以上であることが特に好ましい。上限側の範囲は、98以下であることが好ましく、95以下であることがより好ましく、90以下であることが特に好ましい。
 上記層Bの貯蔵弾性率E’は1MPa以上であることが好ましく、2MPa以上であることがより好ましく、3MPa以上であることが特に好ましい。上限側の範囲は、150MPa以下であることが好ましく、100MPa以下であることがより好ましく、50MPa以下であることが特に好ましい。上記層Bの損失弾性率E”は0.1MPa以上であることが好ましく、0.3MPa以上であることがより好ましく、0.5MPa以上であることが特に好ましい。上限側の範囲は、20MPa以下であることが好ましく、10MPa以下であることがより好ましく、5MPa以下であることが特に好ましい。上記層Bの損失正接は0.01以上であることが好ましく、0.03以上であることがより好ましく、0.05以上であることが特に好ましい。上限側の範囲は、1以下であることが好ましく、0.5以下であることがより好ましく、0.3以下であることが特に好ましい。
 樹脂層の層Aの物性は好適に設定されていることが好ましい。例えば、D硬さ:JIS-K7215は、20以上であることが好ましく、25以上であることがより好ましく、30以上であることが特に好ましい。上限側の範囲は、80以下であることが好ましく、70以下であることがより好ましく、60以下であることが特に好ましい。
 樹脂層の層Aの貯蔵弾性率E’は1MPa以上であることが好ましく、5MPa以上であることがより好ましく、10MPa以上であることが特に好ましい。上限側の範囲は、1GPa以下であることが好ましく、500MPa以下であることがより好ましく、300MPa以下であることが特に好ましい。樹脂層の層Aの損失弾性率E”は0.1MPa以上であることが好ましく、0.5MPa以上であることがより好ましく、1MPa以上であることが特に好ましい。上限側の範囲は、100MPa以下であることが好ましく、50MPa以下であることがより好ましく、30MPa以下であることが特に好ましい。樹脂層の層Aの損失正接は0.01以上であることが好ましく、0.03以上であることがより好ましく、0.05以上であることが特に好ましい。上限側の範囲は、1以下であることが好ましく、0.5以下であることがより好ましく、0.3以下であることが特に好ましい。
 上記層Bの100%モジュラス値は、0.5MPa以上であることが好ましく、1.0MPa以上であることがより好ましく、1.5MPa以上であることが特に好ましい。上限側の範囲は、20MPa以下であることが好ましく、15MPa以下であることがより好ましく、10MPa以下であることが特に好ましい。
 樹脂層の層Aの100%モジュラス値は、1.0MPa以上であることが好ましく、1.5MPa以上であることがより好ましく、2.0MPa以上であることが特に好ましい。上限側の範囲は、30MPa以下であることが好ましく、25MPa以下であることがより好ましく、20MPa以下であることが特に好ましい。
 なお、本明細書においてモジュラス値は、特に断らない限り、25℃の値とする。測定方法は、JIS-K7311に準拠する。
[トップコート]
 本実施形態の内視鏡用可撓管には、トップコート(コート層)16が適用されている。トップコートの材料は特に制限されないが、ウレタン塗料、アクリル塗料、フッ素塗料、シリコーン塗料、エポキシ塗料、ポリエステル塗料などが適用される。本実施形態の利点である樹脂層との密着性が顕著になり、かつ耐薬品性に優れる観点からは、ウレタン塗料、アクリル塗料、フッ素塗料が好ましい。トップコート層の被膜は通常の方法によればよいが、上記のコーティング成分を所定の溶媒に溶解させた溶液に必要により硬化剤を含有させ、硬化させる態様が挙げられる。硬化処理の仕方は、100~200℃加熱することなどが挙げられる。
 本実施形態におけるトップコートを使用する主な目的は、可撓管表面の保護や艶出し、滑り性の付与、そして耐薬品性の付与である。そのため、トップコートとしては弾性率が高く、かつ表面が平滑になり、耐薬品性に優れるものが好ましい。トップコート単独層での貯蔵弾性率E’は1MPa以上であることが好ましく、5MPa以上であることがより好ましく、10MPa以上であることが特に好ましい。1GPa以下であることが好ましく、500MPa以下であることがより好ましく、300MPa以下であることが特に好ましい。貯蔵弾性率E’を1MPa以上とすることで、トップコートとしての表面保護機能を発揮することができ、また、1GPa以下とすることで、得られる可撓管の可撓性を維持することができる。
 上記実施形態においては、軟質樹脂層(第1層、層B)を内層に、硬質樹脂層(第2層、層A)を外層に配して二層成形の樹脂層を形成しているが、硬質樹脂層を内層に、軟質樹脂層を外層に配してもよい。上記実施形態では、二層構成の外皮層を例に説明しているが、外皮層は二層以上の多層構成であってもよい。両層は互いに接して積層していなくてもよく、その間に他の機能層が介在していてもよい。
 上記実施形態においては、撮像装置を用いて被検体の状態を撮像した画像を観察する電子内視鏡を例に上げて説明しているが、本発明はこれに限るものではなく、光学的イメージガイドを採用して被検体の状態を観察する内視鏡にも適用することができる。
 本発明に係る可撓管は、内視鏡用途に限らず、内視鏡型医療機器に対して広く適用することができる。例えば、内視鏡の先端にクリップやワイヤーを装備したもの、あるいはバスケットやブラシを装備した器具に適用することもでき、その優れた効果を発揮する。なお、内視鏡型医療機器とは、上述した内視鏡を基本構造とする医療機器のほか、遠隔操作型の医療機器など、可撓性を有し、体内に導入して用いられる医療・診療機器を広く含む意味である。
 以下に、本発明について実施例を通じてさらに詳細に説明するが、本発明がこれにより限定して解釈されるものではない。なお、実施例I、IIにおいて配合成分の記号などで共通するものがあるが、それぞれの実施例において区別されるものである。
(実施例I)第1の発明に係る実施例
 下記表I-1およびI-2に記載の樹脂混合物を準備し、テクノベル社製の二軸混練機(製品名:KZW15-30MG)を用いてバレル設定温度210℃で、スクリュー回転数100rpmで溶融混練処理を行い、吐出された溶融状態の樹脂ストランドを水槽で冷却後、ペレタイザーでペレット形状の試料を作製した。作製した弾性材試料について、末尾に記載の試験を行った。結果を表I-3に示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 PBO:2,2’-(1,3-フェニレン)-ビス(2-オキサゾリン)
 LA-1:カルボジライト LA-1(日清紡ケミカル社製)
 SBXL P:スタバクゾールP(日本スタバクゾール社製)
 HMDI:1,6-ヘキサメチレンジイソシアネート
 TPA-100:デュラネート TPA-100
     (旭化成ケミカルズ社製)
 JER1010:オリゴマー型エポキシ樹脂JER1010
     (三菱化学社製)
 MA: 無水マレイン酸
 DABCO:1,4-ジアザビシクロ[2.2.2]オクタン
 DBTDL:ジブチルスズジラウレート
 TIN770:チヌビン770DF(BASF社製)
 INX 1098:イルガノックス 1098(BASF社製)
 IF168:イルガフォス168(BASF社製)
 TPS:スミライザー TPS(住友化学社製)
 GS:スミライザー GS(住友化学社製)
ポリエステルエラストマー(かっこ内はD硬さ:JIS K 7215)
 PE1:東レデュポン社製ハイトレル4767(47D)
     (重量平均分子量:11.4万)
 PE2: 東洋紡社製ペルプレンP-40H(38D)
     (重量平均分子量:13.2万)
 PE3: DSM社製アーニテルEM400(34D)
     (重量平均分子量:12.1万)
 PE4: 東レデュポン社製ハイトレル3046(27D)
     (重量平均分子量:12.8万)
ポリウレタンエラストマー(かっこ内はD硬さ:JIS K 7215)
 PU1: DICバイエルポリマー社製パンデックスT-2190
     (92A)
     (重量平均分子量:18.9万)
 PU2: BASF社製エラストランET1080(80A)
     (重量平均分子量:12.4万)
 PU3: 日本ミラクトラン社性ミラクトランE675MNAT
     (75A)
     (重量平均分子量:21.7万)
 PU4: DICバイエルポリマー社製パンデックスT-5865
     (65A)
     (重量平均分子量:17.2万)
ポリアミドエラストマー(かっこ内はD硬さ:JIS K 7215)
 PA1: アルケマ社製ペバックス2533(84A)
     (重量平均分子量:20.8万)
 PA2: アルケマ社製ペバックス3533(75A)
     (重量平均分子量:17.1万)
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 太字下線部分は比較成分もしくはデータの劣るものを示す。
 試験No.が「C」で始まるものは比較例
 以下の試験は特に断らない限り、25℃(常温)、50%RH環境下で行った。
[樹脂層のHFIPへの溶解性]
 成形加工後の可撓管から樹脂0.2gを引き剥がし、室温にて1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール5ml中に投入し、4時間放置した後に残渣の有無を目視にて確認した。
  A:残渣が全く認められなかったもの
  C:残渣が認められたもの
[過酢酸耐性]
 上記可撓管から樹脂を引き剥がし、1cm×10cmサイズで切り出して試験片とし、50℃の0.3%過酢酸水溶液に150時間浸漬、よく表面を水洗した後に23℃×50%RHで24時間乾燥後、テンシロンを用いて伸度50%の引張試験を行った。
  AA:伸度150%の引張試験でも破断しなかったもの
  A :伸度50%の引張試験にて破断しなかったもの
  B :伸度50%の引張試験にて破断しなかったが層間で剥離が発生したもの
  C :伸度50%の引張試験にて破断したもの
[可撓性]
 先端部から20cmの位置と同じく40cmの位置を固定し、30cmの位置で15mm押し込み、30秒後の反発力をフォースゲージで測定した。
  A:反発弾性が15N以下のもの
  B:15N超25N以下のもの
  C:25N超のもの
[弾発性]
 先端部から50cmの位置と同じく70cmの位置を固定し、60cmの位置(可撓管の中心部)で15mm押しこみ、0.1秒後の反発力(A)に対し、30秒後の反発力(B)の比率を弾発性(%)として測定した。
  [弾発性(%)]=(B)/(A)×100
  AA:弾発性が85%以上のもの
  A :80%以上85%未満のもの
  B :70%以上80%未満のもの
  C :70%未満のもの
[捻りトルク]
 上記得られた可撓管を、テーブル上に曲率部の半径20cmとなる様にU字状に配置し、先端部(軟らかい側)にトルクメーターを取り付け、後端部(硬い側)を一定速度で360°回転させ、トルクメーターが示した値の最大値を捻りトルクとした。捻りトルクが低いほど捻り追随性は良好であると判断され、特に0.1Nm以下であれば捻り追随性は良好、0.1Nmを超えると不良、0.2Nmと超えると著しく不良、と判断した。
[折曲耐久性]
 上記得られた可撓管を、直径10cmのプーリーの半周部分をU字状になる様に接触させ、先端部および後端部がプーリー端の5cm手前にまで来る位置になる様に一万回往復運動させ、樹脂の状態を目視にて観察した。
  A:樹脂の裂けや剥がれが見られないもの
  B:一部に剥がれが見られるもの
  C:多くの部分に剥がれが見られるもの
  D:ほぼ全面が剥がれたもの
[温度依存性]
 上記弾発性試験を同様に40℃、50%RH環境下で測定を行い、25℃での弾発性(X)と40℃での弾発性(Y)との比率を以下式により求めた。
 [温度依存性(%)]=(Y)/(X)×100
  AA:温度依存性が、95%以上105%未満のもの
  A :90%以上95%未満ないし105%以上110%未満のもの
  B :85%以上90%未満ないし110%以上115%未満のもの
  C :85%未満ないし115%以上のもの
[トップコート密着強度]
 上記得られた可撓管上から樹脂層を引き剥がし、外側面にMEK溶媒で希釈されたウレタン塗料(亜細亜工業社製ネオペイントウレタン#7000AB(二液型)を主剤:硬化剤を重量比で100:5になる様に配合)を塗布、50℃で30分MEKを揮散させ、同じ樹脂層を外側面が互いに向き合う様に貼り付け、続いて130℃で4時間加熱硬化させ、ウレタン系トップコート(凡その厚み50μm)をサンドイッチした多層シートを作製した。得られた多層シートの上樹脂層と下樹脂層とを、テンシロンを用いて180°剥離試験を行い、トップコート密着強度を測定した。
  AA:密着強度が充分に強く、樹脂層もしくはトップコート層内部で
                         凝集剥離したもの
  A:界面で剥離したが密着強度が4N/cm超であったもの
  B:界面で剥離したが密着強度が2N/cm以上4N/cm未満
                           であったもの
  C:2N/cm未満であったもの
 第1の発明に係る樹脂を用い、図3および図4に示した連続成形機に導入して、内視鏡用可撓管を作製した。具体的には、直径12.0mmの可撓管基材に表2の第1層樹脂(内層)および表I-1の第2層樹脂(外層)をこの順で被覆した。樹脂層の厚さは0.4mmであり、先端と後端の内外層比率は10:90-90:10とした。得られた可撓管を用いて、体腔内の診断を想定したモデル試験を実施した。その結果、実施例の樹脂層を有する可撓管を装着した内視鏡は温度依存性の小さい良好な操作性と洗浄耐性を示した。
(実施例II)第2の発明に係る実施例
(実施例II-1・比較例II-1)
 下記表II-1およびII-2に記載の配合(質量部)で樹脂混合物(それぞれ外層用および内層用の樹脂混合物)を準備し、テクノベル社製の二軸混練機(製品名:KZW15-30MG)を用いてバレル設定温度210℃で、スクリュー回転数100rpmで溶融混練処理を行い、吐出された溶融状態の樹脂ストランドを水槽で冷却後、ペレタイザーでペレット形状の試料を作製した。
 表II-1およびII-2に示した樹脂を用い、図3および図4に示した連続成形機に導入して、内視鏡用可撓管を作製した。具体的には、直径12.0mm、長さ120cmの可撓管基材に表2の内層用樹脂混合物(組成物)および表1の外層用樹脂混合物(組成物)をこの順で被覆した。樹脂層の厚さは0.4mmであり、先端と後端の内外層比率は下記表II-3に記載のとおりとした。得られた可撓管を用いて、下記の試験を行った。結果を表II-3に示す。
 以下の試験は特に断らない限り、25℃(常温)、50%RH環境下で行った。
[過酢酸耐性]
 上記可撓管から樹脂を引き剥がし、1cm×10cmサイズで切り出して試験片とし、50℃の0.3%過酢酸水溶液に150時間浸漬、よく表面を水洗した後に23℃×50%RHで24時間乾燥後、テンシロンを用いて伸度50%の引張試験を行った。
  AA:伸度150%の引張試験でも破断しなかったもの
  A :伸度50%の引張試験にて破断しなかったもの
  B :伸度50%の引張試験にて破断しなかったが層間で剥離が発生したもの
  C :伸度50%の引張試験にて破断したもの
[過酸化水素水耐性]
 上記可撓管から樹脂を引き剥がし、1cm×10cmサイズで切り出して試験片とし、55℃の7.0%過酸化水素水に150時間浸漬、よく表面を水洗した後に23℃×50%RHで24時間乾燥後、テンシロンを用いて伸度50%の引張試験を行った。
  AA:伸度150%の引張試験でも破断しなかったもの
  A :伸度50%の引張試験にて破断しなかったもの
  B :伸度50%の引張試験にて破断しなかったが層間で剥離が発生したもの
  C :伸度50%の引張試験にて破断したもの
[可撓性]
 先端部から20cmの位置と同じく40cmの位置を固定し、30cmの位置で15mm押し込み、30秒後の反発力をフォースゲージで測定した。
  A:反発弾性が15N以下のもの
  B:15N超25N以下のもの
  C:25N超のもの
[弾発性]
 先端部から50cmの位置と同じく70cmの位置を固定し、60cmの位置(可撓管の中心部)で15mm押しこみ、0.1秒後の反発力(A)に対し、30秒後の反発力(B)の比率を弾発性(%)として測定した。
  [弾発性(%)]=(B)/(A)×100
  A:弾発性が80%以上のもの
  B :70%以上80%未満のもの
  C :70%未満のもの
[折曲耐久性]
 上記得られた可撓管を、直径10cmのプーリーの半周部分をU字状になる様に接触させ、先端部および後端部がプーリー端の5cm手前にまで来る位置になる様に一万回往復運動させ、樹脂の状態を目視にて観察した。
  A:樹脂の裂けや剥がれが見られないもの
  B:一部に剥がれが見られるもの
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
<表中の用語の説明>
ポリエステルエラストマー(かっこ内はD硬さ:JIS-K7215)
 PE1: 東レデュポン社製ハイトレル4047(40D)
    (重量平均分子量:12.3万、100%モジュラス25MPa)
 PE2: 東洋紡社製ペルプレンP-40H(38D)
    (重量平均分子量:13.2万、100%モジュラス17MPa)
 PE3: DSM社製アーニテルEM400(34D)
    (重量平均分子量:12.1万、100%モジュラス12MPa)
 PE4: 東レデュポン社製ハイトレル3046(27D)
   (重量平均分子量:12.8万、100%モジュラス8.0MPa)
ポリウレタンエラストマー(かっこ内はD硬さ:JIS-K7215)
 PU1: DICバイエルポリマー社製パンデックスT-2190
                           (92A)
    (重量平均分子量:18.9万、100%モジュラス11MPa)
 PU2: BASF社製エラストランET1080(80A)
   (重量平均分子量:12.4万、100%モジュラス5.0MPa)
 PU3: 日本ミラクトラン社性ミラクトランE675MNAT
                           (75A)
   (重量平均分子量:21.7万、100%モジュラス2.9MPa)
 PU4: DICバイエルポリマー社製パンデックスT-5865
                           (65A)
   (重量平均分子量:17.2万、100%モジュラス2.3MPa)
ポリアミドエラストマー(かっこ内はD硬さ:JIS-K7215)
 PA1: アルケマ社製ペバックス2533(75A)
   (重量平均分子量:20.8万、100%モジュラス4.4MPa)
 PA2: アルケマ社製ペバックス3533(83A)
   (重量平均分子量:17.1万、100%モジュラス6.0MPa)
ヒンダードフェノール化合物(HP)
 HP-1: IRG1330:イルガノックス1330(BASF社製)
Figure JPOXMLDOC01-appb-C000022
 HP-2; IRG1010:イルガノックス1010(BASF社製)
Figure JPOXMLDOC01-appb-C000023
 HP-3; GS:スミライザーGS(住友化学社製)
Figure JPOXMLDOC01-appb-C000024
 ヒンダードアミン化合物(HA)
 HA-1; チヌビン770DF(BASF社製)
Figure JPOXMLDOC01-appb-C000025
 HA-2; アデカスタブLA-57(アデカ社製)
Figure JPOXMLDOC01-appb-C000026
 HA-3; アデカスタブLA-63P(アデカ社製)
Figure JPOXMLDOC01-appb-C000027
 HA-4; チヌビンPA144(BASF社製)
Figure JPOXMLDOC01-appb-C000028
 HA-5; チマソーブ2020FDL(BASF社製)
Figure JPOXMLDOC01-appb-C000029
 HA-6; チマソーブ944FDL(BASF社製)
Figure JPOXMLDOC01-appb-C000030
 HA-7; アデカスタブLA-81(アデカ社製)
Figure JPOXMLDOC01-appb-C000031
-熱安定性-
 得られたペレットをTG/DTAを用いて窒素下で220℃一定時間保持し、2%重量減少するまでの時間を求めた。
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 試験No.が「c」で始まるものは比較例
 PE:ポリエステルが配合されていないものを「X」として表記した
 PH:ヒンダードフェノールが配合されていないものを「X」として表記した
 PA:ヒンダードアミンが配合されていないものを「X」として表記した
 本発明の可撓管およびこれを用いた内視鏡は、前記可撓管を被覆する樹脂層が可撓性、弾発性及び折曲耐久性等の内視鏡型医療機器用途に求められる特性を備え、かつ、種々の消毒液に対する良好な耐性を発揮することが分かる。
(実施例II-2)
 前記試験No.111および112の可撓管について、その被覆樹脂をはがさずに、過酢酸および過酸化水素水での処理を行った。処理の条件は実施例II-1と同様にした。これに対し、内層B-1をB-6に変えた以外同様にして可撓管試験体を作成し、各試験を行った。ただし、耐薬品性については、薬品処理後の可撓管から切り出して評価を行った。試験No.111および112の性能をFairとし、そこから内層樹脂を変更することで、性能の改善(Good)もしくは低下(Bad)が見られるかを確認した。なお、可撓性、弾発性、および折曲耐久性はすべて、薬品処理試験後の可撓管を用いて行った。折曲耐久性については、その往復回数を2万5千回とした。
Figure JPOXMLDOC01-appb-T000034
 第2の発明に係る実施例では、上記表II-4のとおり、内層にヒンダードアミンおよびヒンダードフェノールを含まないものについて、折曲耐久性に改善が見られた。一方、耐薬品性については、外層において同等であり、内層においてB-6を用いた試料に若干の低下がみられたが許容しうる範囲であった。このように、内層に前記の添加剤を含まないことで、十分な耐薬品性を維持しつつ、樹脂の折曲耐久性(特に両層の密着性)を改善しうることが分かる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2013年3月27日に日本国で特許出願された特願2013-067194および2013年7月12日に日本国で特許出願された特願2013-147104に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
 2 電子内視鏡(内視鏡)
 3 挿入部
  3a 可撓管
  3b アングル部
  3c 先端部
 5 本体操作部
 6 ユニバーサルコード
 11 螺旋管
  11a 金属帯片
 12 筒状網体
 13 口金
 14 可撓管基材
  14a 先端側
  14b 基端側
 15 樹脂層
 16 コート膜
 17 内層
 18 外層
 20 連続成形機(製造装置)
 21,22 押し出し部
  21a スクリュー
  22a スクリュー
 23 ヘッド部
 24 冷却部
 25 搬送部
 26 制御部
 30 ジョイント部材
 31 連結可撓管基材
 32 ニップル
 33 ダイス
 34 支持体
 35、36 ゲート
 37 成形通路
 39 軟質樹脂
 40 硬質樹脂
 

Claims (33)

  1.  可撓性を有する筒状の可撓管基材と当該可撓管基材を被覆する樹脂層とを有してなる可撓管であって、
     前記樹脂層は第1層と第2層との少なくとも2層で構成され、
     前記第1層は、ポリエステルエラストマー、ポリウレタンエラストマー、およびポリアミドエラストマーからなる群より選ばれる一つ以上のエラストマーまたはその鎖延長体を含んでなり、
     前記第2層は、ポリエステルエラストマー、ポリウレタンエラストマー、およびポリアミドエラストマーからなる群より選ばれる二つ以上のエラストマーの鎖延長体を含んでなる可撓管。
  2.  前記エラストマーの鎖延長体を調製する鎖延長剤が、多官能エポキシ化合物、多官能イソシアネート化合物、多官能アミノ化合物、オキサゾリン化合物、カルボジイミド化合物、および酸無水物から選ばれる請求項1に記載の可撓管。
  3.  前記エラストマーの鎖延長体が、前記鎖延長剤に加え、さらにエラストマーをアミン化合物および錫キレートから選ばれる少なくとも一つの触媒を加えて処理されてなる請求項2に記載の可撓管。
  4.  前記エラストマーの鎖延長体が、前記エラストマー100質量部に対して、前記鎖延長剤0.01~10質量部の配合で処理されてなる請求項2または3に記載の可撓管。
  5.  前記エラストマーの鎖延長体が、前記エラストマー100質量部に対して、前記触媒を0.01~3質量部の配合で処理されてなる請求項3または4に記載の可撓管。
  6.  前記エラストマーが少なくとも前記鎖延長剤とともに溶融混練されてなる請求項1~5のいずれか1項に記載の可撓管。
  7.  前記第2層を構成する二つ以上のエラストマーが、ポリエステルエラストマーと、ポリウレタンエラストマーおよびポリアミドエラストマーから選ばれる少なくとも1種との組合せである請求項1~6のいずれか1項に記載の可撓管。
  8.  前記樹脂層が1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールに可溶で、実質的に架橋していない請求項1~7のいずれか1項に記載の可撓管。
  9.  前記樹脂層の第1層は、前記可撓管基材の軸回りの全周面を被覆する内層をなし、前記第2層は前記第1層に接し、かつ、前記第1層の前記軸回りの全周面を被覆する外層をなす請求項1~8のいずれか1項に記載の可撓管。
  10.  上記樹脂層に、フェノール系化合物、アミン系化合物、リン系化合物、およびイオウ系化合物、フェニルアクリレート系化合物から選ばれる熱安定剤をさらに含有させた請求項1~9のいずれか1項に記載の内視鏡用可撓管。
  11.  可撓性を有する筒状の可撓管基材と、当該可撓管基材を被覆する樹脂層とを有する可撓管であって、
     前記樹脂層が単層または2層以上の複層であり、当該樹脂層のいずれかの層Aがポリエステルエラストマーとヒンダードフェノール化合物又はヒンダードアミン化合物とを含む可撓管。
  12.  前記層Aにおいて、樹脂成分中のポリエステルエラストマーの含有量が50質量%以上である請求項11に記載の可撓管。
  13.  前記層Aが、さらにポリウレタンエラストマー又はポリアミドエラストマーを含有する請求項11又は12に記載の可撓管。
  14.  前記層Aが、ヒンダードフェノール化合物及びヒンダードアミン化合物をともに含有する請求項11~13のいずれか1項に記載の可撓管。
  15.  前記ヒンダードフェノール化合物の含有量が、樹脂層中の樹脂成分100質量部に対して0.01~5質量部である請求項11~14のいずれか1項に記載の可撓管。
  16.  前記ヒンダードアミン化合物の含有量が、樹脂層中の樹脂成分100質量部に対して0.01~5質量部である請求項11~14のいずれか1項に記載の可撓管。
  17.  前記ヒンダードフェノール化合物が下記式(1)で表される構造部位を有し、前記ヒンダードアミン化合物が下記式(2)で表される構造部位を有する請求項11~16のいずれか1項に記載の可撓管。
    Figure JPOXMLDOC01-appb-C000001
    (式中、RおよびRはそれぞれ独立に水素原子、炭素数1~12のアルキル基、または炭素数7~36のアラルキル基を示す。R~Rはそれぞれ独立に水素原子または炭素数1~12のアルキル基を示す。Rは水素原子、炭素数1~18のアルキル基、又は-ORを示す。Rは水素原子又は炭素数1~20のアルキル基を示す。*は結合位置を示す。)
  18.  前記ヒンダードフェノール化合物が、下記式(1-1)又は(1-2)で表される請求項17に記載の可撓管。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRは式(1)と同義である。Lは単結合又は2価の連結基を示す。pは2~4の整数を示し、Aは2~4価の連結基を示す。R~R12はRと同義である。R13は反応性有機置換基を表す。)
  19.  前記ヒンダードアミン化合物が下記式(2-1)で表される化合物又は(2-2)で表される繰り返し単位を有する化合物である請求項17に記載の可撓管。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R~Rは式(2)と同義である。qは2以上の整数を示し、Dは2価以上の連結基を示す。rは整数を表す。Qはs+2価の連結基を表す。sは1又は2を表す。)
  20.  前記樹脂層が複層であり、前記層Aが樹脂層の最外層を構成する請求項11~19のいずれか1項に記載の可撓管。
  21.  前記最外層以外の層Bがポリエステルエラストマー、ポリウレタンエラストマー、およびポリアミドエラストマーから選ばれる少なくとも1つの樹脂を含有する請求項20に記載の可撓管。
  22.  前記層Bの樹脂成分中のポリウレタンエラストマーの含有量が50質量%以上である請求項21に記載の可撓管。
  23.  前記層Bが、ヒンダードフェノール化合物又はヒンダードアミン化合物を含有する請求項21または22に記載の可撓管。
  24.  前記樹脂層が2層からなる請求項11~23のいずれか1項に記載の可撓管。
  25.  前記樹脂層全体の厚みに対し、前記内層及び外層の厚みの割合が、前記可撓管基材の軸方向において傾斜的に変化している請求項24に記載の可撓管。
  26.  前記内層及び外層は一端における厚みの割合が、内層:外層=5:95~40:60であり、他端における厚みの割合が、内層:外層=95:5~60:40であり、両端間において厚みの割合が逆転している請求項25に記載の可撓管。
  27.  内視鏡型医療機器用である請求項11~26のいずれか1項に記載の可撓管。
  28.  請求項11~27のいずれか1項に記載の可撓管を具備する内視鏡型医療機器。
  29.  可撓性を有する筒状の可撓管基材と、当該可撓管基材を被覆する樹脂層とを有してなる可撓管の製造方法であって、
     前記樹脂層は第1層と第2層との少なくとも2層で構成され、
     前記第1層を構成するポリエステルエラストマー、ポリウレタンエラストマー、またはポリアミドエラストマーを含む第1樹脂材料を準備し、他方
     前記第2層を構成する、ポリエステルエラストマー、ポリウレタンエラストマー、またはポリアミドエラストマーからなる群より選ばれる二つ以上のエラストマーと鎖延長剤とを含有する第2樹脂材料を準備し、
     前記第1樹脂材料と前記第2樹脂材料とを前記可撓管基材の周囲に溶融混練して押し出し成形し、前記樹脂層を当該可撓管基材に被覆する可撓管の製造方法。
  30.  前記鎖延長剤として、多官能エポキシ化合物、多官能イソシアネート化合物、多官能アミノ化合物、オキサゾリン化合物、カルボジイミド化合物、および酸無水物から選ばれる少なくとも1つの鎖延長剤を用いる請求項29に記載の可撓管の製造方法。
  31.  前記第1樹脂材料および/または第2樹脂材料に、さらにアミン化合物および錫キレートから選ばれる少なくとも一つの触媒を含有させる請求項29または30に記載の可撓管の製造方法。
  32.  可撓管基材を被覆する樹脂層をなす樹脂組成物であって、ポリエステルエラストマーとヒンダードフェノール化合物又はヒンダードアミン化合物とを含む樹脂組成物。
  33.  可撓管基材を被覆する複層の樹脂層をなす樹脂組成物のセットであって、ポリエステルエラストマーとヒンダードフェノール化合物又はヒンダードアミン化合物とを含む樹脂組成物と、ポリエステルエラストマー、ポリウレタンエラストマー、およびポリアミドエラストマーから選ばれる少なくとも1つを含む樹脂組成物とを組み合わせた樹脂組成物のセット。
     
PCT/JP2014/058611 2013-03-27 2014-03-26 内視鏡用可撓管およびその製造方法 WO2014157375A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480018577.3A CN105074306B (zh) 2013-03-27 2014-03-26 内窥镜用挠性管及其制造方法
EP14775365.1A EP2980466B1 (en) 2013-03-27 2014-03-26 Flexible tube for endoscopes and method for producing same
US14/857,396 US20160024343A1 (en) 2013-03-27 2015-09-17 Flexible tube for endoscopes and method for producing same
US17/566,178 US11892104B2 (en) 2013-03-27 2021-12-30 Flexible tube for endoscopes and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013067194A JP6047440B2 (ja) 2013-03-27 2013-03-27 内視鏡用可撓管およびその製造方法
JP2013-067194 2013-03-27
JP2013-147104 2013-07-12
JP2013147104A JP5991951B2 (ja) 2013-07-12 2013-07-12 内視鏡用可撓管および内視鏡型医療機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/857,396 Continuation US20160024343A1 (en) 2013-03-27 2015-09-17 Flexible tube for endoscopes and method for producing same

Publications (1)

Publication Number Publication Date
WO2014157375A1 true WO2014157375A1 (ja) 2014-10-02

Family

ID=51624338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058611 WO2014157375A1 (ja) 2013-03-27 2014-03-26 内視鏡用可撓管およびその製造方法

Country Status (4)

Country Link
US (2) US20160024343A1 (ja)
EP (1) EP2980466B1 (ja)
CN (1) CN105074306B (ja)
WO (1) WO2014157375A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108350204A (zh) * 2015-11-09 2018-07-31 Dic株式会社 环状烯烃树脂膜
WO2022004656A1 (ja) * 2020-06-29 2022-01-06 富士フイルム株式会社 内視鏡用可撓管、内視鏡型医療機器、及びこれらの製造方法
US11540702B2 (en) * 2017-06-30 2023-01-03 Fujifilm Corporation Flexible tube for endoscope, endoscopic medical device, resin composition for covering flexible tube substrate for endoscope, and set of resin compositions for covering flexible tube substrate for endoscope

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040199052A1 (en) 2003-04-01 2004-10-07 Scimed Life Systems, Inc. Endoscopic imaging system
JP6681212B2 (ja) * 2015-11-30 2020-04-15 株式会社潤工社 ポリウレタンチューブ
CN106725252A (zh) * 2016-12-23 2017-05-31 上海长海医院 具有被动弯曲连接的末端可弯曲的内窥镜
JP2018131533A (ja) * 2017-02-15 2018-08-23 オリンパス株式会社 医療機器用塗料および医療機器
KR102305196B1 (ko) 2017-03-24 2021-09-28 아사히 인텍크 가부시키가이샤 다일레이터
WO2018180652A1 (ja) * 2017-03-31 2018-10-04 Hoya株式会社 内視鏡用可撓管の製造方法および内視鏡の製造方法
JP2018201765A (ja) * 2017-06-01 2018-12-27 オリンパス株式会社 医療機器用チューブ
JP6920432B2 (ja) * 2017-06-30 2021-08-18 富士フイルム株式会社 内視鏡用可撓管、内視鏡型医療機器、内視鏡用可撓管基材被覆用樹脂組成物及び内視鏡用可撓管基材被覆用樹脂組成物のセット
WO2019013243A1 (ja) * 2017-07-12 2019-01-17 富士フイルム株式会社 内視鏡用可撓管、内視鏡型医療機器、及びこれらの製造方法
FR3073867B1 (fr) * 2017-11-17 2019-11-08 Arkema France Materiau textile souple etirable et anti-bouloches a base de copolymere a blocs
JP6846571B2 (ja) * 2018-03-28 2021-03-24 富士フイルム株式会社 内視鏡用可撓管、内視鏡型医療機器及び内視鏡用可撓管基材被覆用樹脂組成物
EP3824790B1 (en) * 2018-07-17 2023-10-11 FUJIFILM Corporation Insertion aid tube composition, insertion aid tube, endoscope/insertion aid tube set, endoscope device, and method for producing insertion aid tube
JPWO2020149259A1 (ja) * 2019-01-16 2021-11-04 富士フイルム株式会社 内視鏡用可撓管、内視鏡型医療機器、及びこれらの製造方法
WO2020232085A1 (en) 2019-05-15 2020-11-19 Boston Scientific Scimed, Inc. Medical device having asymmetric bending

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283346A (ja) * 1989-04-25 1990-11-20 Olympus Optical Co Ltd 内視鏡用可撓管
JP2001161633A (ja) * 1999-12-13 2001-06-19 Asahi Optical Co Ltd 内視鏡用可撓管および内視鏡用可撓管の製造方法
JP2002153418A (ja) 2000-11-20 2002-05-28 Asahi Optical Co Ltd 外皮材料、内視鏡用可撓管の製造方法および内視鏡用可撓管
JP2004195833A (ja) * 2002-12-19 2004-07-15 Toyobo Co Ltd 熱可塑性エステルエラストマー積層体
JP2004202844A (ja) * 2002-12-25 2004-07-22 Toyobo Co Ltd 耐候性に優れた熱可塑性ポリエステルエラストマー積層体
JP2004269608A (ja) * 2003-03-06 2004-09-30 Asahi Kasei Chemicals Corp 熱可塑性エラストマー組成物
JP2009183467A (ja) 2008-02-06 2009-08-20 Olympus Medical Systems Corp 内視鏡用エラストマー成形体
JP2011067383A (ja) * 2009-09-25 2011-04-07 Fujifilm Corp 内視鏡用可撓管及びその製造装置並びに製造方法
JP2011072391A (ja) 2009-09-29 2011-04-14 Fujifilm Corp 内視鏡用可撓管及びその製造方法
JP2011095480A (ja) * 2009-10-29 2011-05-12 Sumitomo Rubber Ind Ltd 導電性シームレスベルト

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542165A (en) * 1983-09-08 1985-09-17 Sanyo Chemical Industries, Ltd. Polyurethane based on epoxy-containing polymer polyol and process for making the same
US5824738A (en) * 1994-10-07 1998-10-20 Davidson Textron Inc. Light stable aliphatic thermoplastic urethane elastomers and method of making same
JP3672404B2 (ja) 1996-12-20 2005-07-20 日本ミラクトラン株式会社 熱可塑性ポリウレタン系樹脂組成物
JPH10231415A (ja) 1997-02-19 1998-09-02 Daicel Chem Ind Ltd ポリエステルエラストマー
JP3846757B2 (ja) * 1997-08-06 2006-11-15 古河電気工業株式会社 ケーブル
US6037423A (en) * 1998-09-09 2000-03-14 Toyo Boseki Kabushiki Kaisha Polyester elastomer composition
JP4589484B2 (ja) 2000-05-15 2010-12-01 Hoya株式会社 内視鏡用可撓管
JP2001314368A (ja) 2000-05-08 2001-11-13 Asahi Optical Co Ltd 内視鏡用可撓管
US6860849B2 (en) * 2000-05-08 2005-03-01 Pentax Corporation Flexible tube for an endoscope
JP5405862B2 (ja) 2008-03-31 2014-02-05 ウィンテックポリマー株式会社 多層チューブ
JP2010075352A (ja) * 2008-09-25 2010-04-08 Fujinon Corp 内視鏡用可撓管及び内視鏡
JP5370112B2 (ja) 2009-12-09 2013-12-18 東洋紡株式会社 ポリエステルエラストマー樹脂
JP5312380B2 (ja) * 2010-03-15 2013-10-09 富士フイルム株式会社 内視鏡可撓管の製造方法
JP5453156B2 (ja) * 2010-03-31 2014-03-26 富士フイルム株式会社 内視鏡の可撓管及びその製造方法
EP2834299A1 (en) * 2012-09-18 2015-02-11 Ticona LLC Polymer articles made from a blend of a copolyester elastomer and an alpha-olefin vinyl acetate copolymer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283346A (ja) * 1989-04-25 1990-11-20 Olympus Optical Co Ltd 内視鏡用可撓管
JP2001161633A (ja) * 1999-12-13 2001-06-19 Asahi Optical Co Ltd 内視鏡用可撓管および内視鏡用可撓管の製造方法
JP2002153418A (ja) 2000-11-20 2002-05-28 Asahi Optical Co Ltd 外皮材料、内視鏡用可撓管の製造方法および内視鏡用可撓管
JP2004195833A (ja) * 2002-12-19 2004-07-15 Toyobo Co Ltd 熱可塑性エステルエラストマー積層体
JP2004202844A (ja) * 2002-12-25 2004-07-22 Toyobo Co Ltd 耐候性に優れた熱可塑性ポリエステルエラストマー積層体
JP2004269608A (ja) * 2003-03-06 2004-09-30 Asahi Kasei Chemicals Corp 熱可塑性エラストマー組成物
JP2009183467A (ja) 2008-02-06 2009-08-20 Olympus Medical Systems Corp 内視鏡用エラストマー成形体
JP2011067383A (ja) * 2009-09-25 2011-04-07 Fujifilm Corp 内視鏡用可撓管及びその製造装置並びに製造方法
JP2011072391A (ja) 2009-09-29 2011-04-14 Fujifilm Corp 内視鏡用可撓管及びその製造方法
JP2011095480A (ja) * 2009-10-29 2011-05-12 Sumitomo Rubber Ind Ltd 導電性シームレスベルト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980466A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108350204A (zh) * 2015-11-09 2018-07-31 Dic株式会社 环状烯烃树脂膜
CN108350204B (zh) * 2015-11-09 2021-09-07 Dic株式会社 环状烯烃树脂膜
US11540702B2 (en) * 2017-06-30 2023-01-03 Fujifilm Corporation Flexible tube for endoscope, endoscopic medical device, resin composition for covering flexible tube substrate for endoscope, and set of resin compositions for covering flexible tube substrate for endoscope
WO2022004656A1 (ja) * 2020-06-29 2022-01-06 富士フイルム株式会社 内視鏡用可撓管、内視鏡型医療機器、及びこれらの製造方法
JPWO2022004656A1 (ja) * 2020-06-29 2022-01-06

Also Published As

Publication number Publication date
EP2980466A1 (en) 2016-02-03
EP2980466A4 (en) 2016-04-27
CN105074306B (zh) 2017-03-15
CN105074306A (zh) 2015-11-18
US11892104B2 (en) 2024-02-06
US20220119675A1 (en) 2022-04-21
EP2980466B1 (en) 2019-01-09
US20160024343A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
WO2014157375A1 (ja) 内視鏡用可撓管およびその製造方法
JP5991951B2 (ja) 内視鏡用可撓管および内視鏡型医療機器
JP6110827B2 (ja) 内視鏡用可撓管、内視鏡用接着剤、内視鏡型医療機器、ならびに内視鏡用可撓管および内視鏡型医療機器の製造方法
JP6966549B2 (ja) 内視鏡用可撓管、内視鏡型医療機器、及びこれらの製造方法
JP6072089B2 (ja) 可撓管、内視鏡型医療機器およびトップコート層用の樹脂組成物
JP6846571B2 (ja) 内視鏡用可撓管、内視鏡型医療機器及び内視鏡用可撓管基材被覆用樹脂組成物
JP6047440B2 (ja) 内視鏡用可撓管およびその製造方法
US11540702B2 (en) Flexible tube for endoscope, endoscopic medical device, resin composition for covering flexible tube substrate for endoscope, and set of resin compositions for covering flexible tube substrate for endoscope
JP6226494B2 (ja) 内視鏡用可撓管および内視鏡型医療機器
JP6329804B2 (ja) 可撓管、これを用いた内視鏡型医療機器、その接着剤、可撓管および内視鏡型医療機器の製造方法
WO2022004659A1 (ja) 内視鏡用可撓管、内視鏡型医療機器、及び内視鏡用可撓管基材被覆用材料
US20230139268A1 (en) Flexible tube for endoscope, endoscopic medical device, and methods for producing the same
JP2002224021A (ja) 内視鏡用可撓管
JP2002224018A (ja) 内視鏡用可撓管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018577.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775365

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014775365

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE